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Abstract 

The QuickSched fine-grained task-based scheduler (used in the Swift 

astrophysical smooth particle hydrodynamics code) was modified so that the 

scheduler is located in a separate process from the computational threads, with 

the computational threads calling the scheduler functions via an RPC message 

loop. Thus, the time-divided scheduler of QuickSched on the computation threads 

was replaced by a dedicated ‘remote’ process. The efficiency of the scheduler 

was analysed in view of the likely detriment caused by the messaging. The 

investigation was of an existing example of the tiled QR factorisation, and various 

locations of the remote scheduler were tested: on the same and remote hosts on 

the same LAN as the computational host, and on the general-purpose Arm 

processor of BlueField cards located on these hosts.  

Under optimisation of the tile size, a region of high performance was found and 

was the same region for the original and new remote schedulers. Within that 

region the new remote scheduler performed as well as the original to within a few 

percent, and so the new scheduler location is viable despite the additional 

messaging latency. The possibilities for extra functions for the scheduler opened 

up by the extra resources of made available to the scheduler being in its own 

process are discussed. The mechanisms affecting the performance change 

between the original and new schedulers are complex. In the optimised region, 

message latency can be insignificant in some cases and in others a decrease in 

the time spent in kernels on changing to the new scheduler can partially but 

significantly compensate for the latency introduced. QuickSched’s scheduler rule 

of keeping unoccupied threads fed with ready tasks was seen to dilute the 

effectiveness of the rule to allocate tasks to cores having input data for the task in 

its cache. 
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1. Scope of Investigation 

1.1. Project Sponsors 

My place to study at UCL was sponsored by Mellanox. Mellanox were taken over 

by Nvidia in 2019/2020 [1], and became the Nvidia Networks division. Nvidia 

Networks are manufacturers of networking equipment for local area networks 

(“LAN”), both Ethernet and Infiniband, and include both host channel adapters 

(“HCA”), often called “network cards” or “network adapters”, and network 

switches. Nvidia Networks’ Infiniband equipment is often selected for high 

performance computing (“HPC”) clusters, as can be seen from the Top 500 listing 

of such systems [2], where the name Mellanox is still quoted.   

While the company has continued to improve the basic performance of these 

HCAs, networking technology is still challenged by the demands of the compute 

and data aspects of these computing systems. As a result, Nvidia have been 

developing additional technologies to improve performance in specific cases. 

One new technology of theirs in the area of LAN equipment is called “BlueField”. 

This is described in more detail in section 1.3; however, briefly stated a BlueField 

card is an HCA which has an on-board Arm cored general purpose computer – 

so general purpose that you can run Linux on it – which can communicate with its 

host compute node and, in one configuration, with other hosts and with BlueField 

cards hosted on those. This card became a central feature of the project.  

1.2. Project Brief 

The initial brief for the investigation was to control a cluster from the network 

during computation. The scope of that is extremely wide and does not 

immediately suggest any particular problem to be solved nor any particular 

direction toward a solution.  It was also implicit that any solution would be 

software based – no facilities for designing any kind of circuitry were part of the 

context. A first vague idea was to build a network switch from a PC with multiple 

network cards so that it could be at the centre of the network and have 

processing power there that could provide organisational effort. That obviously 

did not gain any traction because it was not clear what that organisation would be 
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and because the performance of such a switch would not anywhere near match 

that of a standard network switch. Some more specific problem had to be found. 

1.3. Sources of the problem to be solved 

Two separate studies resulted in the basic idea that formed the germ of this 

project. 

The first was that after a while Mellanox/Nvidia were, generously, able to provide 

me with access to an experimental cluster fitted with BlueField cards.  

Nvidia promote the use of BlueField cards for networking, accessing network 

storage, and security [3]. This is of course no surprise: BlueField is a “smart NIC” 

and so its uses would be to do with interaction with the network, and this 

continues in the line of their previous developments such as remote direct 

memory access (“RDMA”) [4] and Sharp [5], both of which offload networking 

work from the host CPU to the network card. However, after some familiarisation 

with BlueField, it was clear that its Arm cored processor subsystem was indeed 

general purpose: Linux can be run on it and a user can log into it and compile 

and run whatever code they wish. It was also possible to send messages 

between programs on the BlueField’s Arm processor and the programs on the 

host processor using standard general-purpose messaging libraries, in particular 

OpenMPI [6]. So, it was realised that cooperation between the BlueField’s 

processor and the host processor was not necessarily limited to operations 

involving the network and that therefore other operations helpful to the host 

processor could be offloaded to the BlueField. (Having said that, however, later in 

this thesis – section 14.6 – matters will come full circle with the network 

connection of the BlueField becoming relevant again, and in the direction of 

controlling the computation “from the network”.) 

The other study was into the workings of the Swift code. Swift is a new 

“hydrodynamics and gravity code for astrophysics and cosmology” [7], with big 

ambitions: “we want to be able to simulate a whole universe!”. I took a deep look 

into how the 70,000 lines of this code organised the calculation. As they mention, 

it is, inter alia, task-based and uses the QuickSched library for scheduling the 

tasks. Task-based scheduling in general, and QuickSched in particular, are 
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explained in the Chapters 2, 3 and 5, but, briefly stated, the computation is 

divided into many small blocks of computation and these blocks, or tasks, are 

dynamically allocated to the available processing units (typically the cores of the 

processor) by a scheduler. In Swift, this scheduling forms the backbone of the 

code, directing operations. Also, it was notable that this direction only takes place 

from time to time: when a core has completed a task, the scheduler is woken up 

and asked to find a new task for the core to execute.  

1.4. Problem to be solved 

Thus, the idea formed that this scheduling might be something that could be 

taken away from the main processor of a compute node and be offloaded to the 

processor of the BlueField card. That was of course just the germ of the idea; the 

practicalities, compromises and benefits of this arrangement are explored in this 

work. 
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2. Task Based Scheduling 

The QuickSched library for task-based scheduling is analysed in Chapter 5 with a 

view to determining which parts of it might usefully be offloaded to the processor 

of a BlueField card, or any other “smart NIC” having a similar facility. The library 

is however quite detailed in its data structures and operation and so an 

introduction to task-based scheduling is first given here at a general abstract 

level. 

Task-based parallelism is one of many kinds of parallelism employed in 

computers and computing. This particular approach involves dividing some 

overall data processing task into a set of separate smaller tasks and then allotting 

those to a pool of available processors in an appropriate order. Data 

dependencies between the tasks are taken into account so that, simply stated, a 

task may not start until all its inputs are ready. (QuickSched includes richer 

concepts for data dependencies than this basic one – sections 3.4 and 5.10.) 

Figure 1 is a block diagram showing how the approach works at a high level; the 

language of the labels in brackets in the diagram relate to the particular 

implementation of QuickSched. The Figure is adapted from a slide used in 

various of my conference presentations explaining my work.  

 

Figure 1 – Task-based parallelism 

On the right is the task graph, shown in graphical form but standing also for an 

actual data structure representing it and that therefore having physical location on 
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some computer. In the graph the nodes represent the tasks, and the directed 

edges represent the dependencies between the tasks, pointing from preceding to 

subsequent tasks. Acyclic task graphs are considered (a task graph with a cycle 

has tasks whose dependencies can never be fulfilled). On the left are a set of 

individual processors, labelled a processor pool to which the tasks are allocated, 

one task at a time to any particular one of the processors. The thread pool 

designation in brackets is in accordance with the implementations used in this 

project, as is explained later, but in general task-based parallelism may be 

applied to sets of other kinds of processing elements; so, the term processor pool 

is apt for this more general definition. (For a different example, at a much larger 

grained scale than in this project, each single processor element to which a task 

may be assigned could even be a different (and dynamically formed) set of hosts 

in a HPC cluster, with the task graph comprising task nodes that are jobs that are 

(i) defined in the cluster job scheduler and (ii) that are linked by job 

dependencies. While most users usually use jobs without dependencies, these 

facilities do exist [8].)  

The task-based scheduler of the Figure, which is the dotted box, is an object1 that 

operates to carry out the task-based scheduling, allocating further tasks of the 

task graph to the processor pool, making use of a task pool, which is a collection 

of tasks that are ready to be executed but which have not yet been allocated to a 

processor. In the diagram this task pool is labelled task queue (s) in brackets in 

 

1 The term object is used in this thesis in a very general sense and is not intended to imply an 

instance of a class in some particular object-oriented programming language, for example C++. 

The “objects” in this diagram merely have some state, some associated operations to update that, 

and some messages that pass between them. Extra object-oriented programming features such 

as encapsulation, inheritance, polymorphism and so on by, for example, C++, are not implied. 

The usage here therefore is consistent with a particular one of the several definitions given in [94], 

namely that in the second paragraph, first sentence, first half sentence, which is “In the object-

oriented programming paradigm, object can be a combination of variables, functions, and data 

structures;”. 
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accordance with the implementations used in this project, but again that level of 

specificity is not needed in this general discussion.  

The task generator is an object or process responsible for constructing the 

representation of the task graph. In general, this is executed first to construct the 

task graph representation and then the task graph is run by the task scheduler. A 

task graph that is completed before it is executed, and not changed thereafter, is 

known as a “static task graph; a task graph that is added to whilst it is being 

executed is a “dynamic task graph”. The task generator is shown as separate 

from the processor pool but of course it does have a physical location in any 

particular implementation, and in many examples given here it exists in the same 

overall process as the processor pool, and that process there both first generates 

the task graph and then, second, executes its tasks.  

The form of the task graph of course depends primarily on the algorithm that it 

implements, and it is the responsibility of the programmer to provide code that 

generates the tasks that will carry out the algorithm. Algorithms sometimes have 

internal parameterized choices and, if so, those may well also be reflected in the 

structure of the resultant task graph.  

In use, there are cases where the task graph is generated and used just once 

and others in which the problem requires many task graphs applied in sequence, 

one after another. A reason for breaking the processing up into alternate periods 

of task generation and task execution is that at some point it may be sensible to 

change either which tasks to have in the next phase, or their arguments, in 

response to values calculated by the last phase. 

2.1. Converting a program to task-based parallelism 

While a manual of requirements and strategies for a programmer to analyse an 

algorithm and to implement task-based parallelism would be a highly useful 

document, it is not the focus of this thesis, which concentrates on the efficiency of 

the operation of the scheduler machinery of Figure 1 to both build and execute 

the task graphs and this for fine-grained tasks within a high-performance 

computational code. 
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Nonetheless, it is instructive, in order to understand fine-grained tasks, to 

consider briefly how a programmer may go about the analysis of an existing 

serial computational program into such tasks.  

The first step is to identify computational kernels in the serial code. A kernel has 

sets of data that are input and output; while that may be said of any section of 

code, the programmer will want to find sets of data that are easily recognisable or 

defined, and that preferably are already related to a defined interface in the code, 

e.g., a function call. These kernels will cover all the operations of the computation 

with nothing left out. The optimal size of these kernels is discussed in section 2.2 

and in the results in section 13.10. 

Those kernels will become the tasks of the task graph. If a kernel is called more 

than once, each call has a respective node in the task graph, although with 

different arguments for the kernel assigned to it. An edge between two tasks in 

the graph represents the dependency between the output dataset of one of the 

tasks and the input datasets of the other.  

A useful tip is that the programmer has to keep clear in their mind the distinction 

between (a) the abstract datasets passed between tasks and (b) the physical 

areas of storage (working memory or backing store files) used to represent those 

datasets. In the practicalities of programming, physical areas of storage can store 

different versions of the same dataset because, for efficient programming, 

datasets often get updated, rather than a complete fresh new dataset being 

written to fresh memory to provide the output. Mistakes will happen if the two are 

confused. The input to a task is a particular version of a dataset.  

The serial computational code to be converted will have control structures 

surrounding the kernels. Loops having a fixed number of passes are easiest to 

deal with. Each kernel inside the loop has a node in the task graph for every pass 

through the loop. The edges between them will then connect with nodes outside 

the loop or with the correct ones of the nodes in the same or other passes of the 

loop, which can be worked out by considering the arguments of the kernel 

functions and the relationships between those arguments from different passes 
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through the loop, particularly with respect to which data items are referenced as a 

result of the values of those arguments.  

How conditional control structures may easily be dealt with depends on the length 

of their branches. A single task may of course contain an entire conditional 

control structure within it, although handling predictions of how long it will take 

(for the purpose of scheduling tasks) will become more complicated. Decisions 

about large sets of tasks which may or may not be executed may have to be left 

to defining new task graphs in a cycle of defining task graphs and executing 

them. For an intermediate sized conditional control structure, one could define 

each branch as a task and include all those in the task graph, but each such task 

as a first step in its operation checks the condition for the branch to be executed 

but if it is not met the task then does no actual computation but returns 

immediately reporting that the task is complete. This of course incurs the 

overhead of the scheduler calls and so should not be done too often.  

2.2. Effect of task size 

The size of the tasks, so the size of the chunks of processing and of the chunks 

of data that are processed, are to be determined by the programmer. If the 

chunks are too small, there will be many tasks creating a large overhead of the 

scheduler’s processing of the tasks. If the chunks are too large, this will result in 

inefficiencies. First, there might not be enough ready tasks to keep all of the 

processors of the processor pool supplied. Second, the data may be too large to 

fit in the processor cache. The latter is a particular concern of QuickSched, the 

tasked-based scheduler used in the implementations of this project.  

2.3. Executing a task graph 

Once the task graph is generated, the task scheduler proceeds to execute it. As 

the processing proceeds, the scheduler keeps track of progress by identifying 

ready tasks, those that have their dependencies fulfilled. This process has to be 

started with those tasks that have no dependencies, since starting elsewhere 

would of course violate the stated dependencies. These initial tasks can be 

identified by the scheduler searching for them in the task graph, or perhaps by 

nomination by the task generator.  
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These initial ready tasks are recorded somehow as the task pool, the set of such 

tasks. Ready tasks found subsequently are included at that point in this same 

task pool. Again, the task pool will, of course, have a representation with a 

physical location. 

The next function of the scheduler is to allocate such tasks from the task pool to 

the processor pool to be executed. Only one task at a time is assigned to an 

individual processor. Therefore, not only does the scheduler need a means of 

establishing a new task on a processor so that it may be executed there, but also 

a means of determining that it has finished processing the task. The arrows 

labelled get task and task done respectively represent those two, but again the 

specificity of their wording belongs to QuickSched.  

When a task is allocated to a processor, that fact has to be recorded so that the 

scheduler does not allocate it again, which for example may be by marking its 

representation with that status, or as shown here by removing it from the task 

pool. (The Figure illustrates the task pool as containing just queued, but not 

executing, tasks.) 

Once the execution of a task is complete, the scheduler uses that information to 

determine, which, if any at that stage, of the forbidden tasks, i.e. those that do not 

yet have all their dependencies fulfilled, now do, and so will now become ready 

tasks and be added to the task pool. This adding to the task pool is marked 

enqueue in the Figure; again, this name is in accordance with the QuickSched 

scheduler implementation.  

The process of tasks completing execution, adding to the task pool, and 

allocating ready tasks to processors continues until all the tasks in the graph 

have been processed.   
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3. Background and other work in task based parallelism 

3.1. What gets accelerated, and where? 

Where to process data and whether to provide more specialised hardware than a 

general purpose processor is a long-standing theme in computer design.  

One long-standing aspect of this has been what to put in the central processing 

unit (CPU). So, for example at one time microprocessors did not have floating 

point hardware and later they did, with an intermediate stage of putting the 

floating point hardware in a separate coprocessor integrated circuit (IC) mounted 

on the motherboard close by to the main CPU. The process has continued and 

general purpose microprocessors have since gained further arithmetic hardware, 

for example vector instructions.  

Having multiple processors in the same machine is another long-standing theme, 

but of course technical goals, economics and other motivations affecting it have 

changed. In recent years multi core microprocessors are the norm and standard 

servers have two microprocessor packages having access to a common RAM. In 

that arrangement, these cores have been identical but now these have become 

cores of different strengths incorporated in the same integrated circuit. 

Having different processor ICs of disparate kinds in the same machine to perform 

different kinds of computing task is also done. Graphics processing units (GPUs) 

were originally designed to carry out rendering for video displays but are now an 

established part of the arsenal in scientific computing, being used, for example, 

for machine learning calculations since the GPU hardware is particularly suited to 

that. The delivery of data between these processors then becomes an issue; 

should they have their own RAM and should each processor have some, or 

equal, access to the RAM of the other processor.  

Other special processing hardware of a mathematical kind includes hardware for 

encryption, data compression, or searching with regular expressions. Computers 

of course also need to interface with the outside world, with storage devices and 

with other computers in a local area network or further afield. Those may be 
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provided with their own separate integrated circuits but for some applications are 

included with the CPU, e.g. a “system on a chip” (SOC). 

All these components, and their vendors, form an ecosystem, and as it evolves 

and the applications they support change, the combinations and locations of all 

these elements changes, to solve the problems in and of the current context. The 

BlueField card, and other smart NICs, is one such development. These are 

designed with particular goals, but where there are new arrangements of 

hardware there will be new opportunities.  

3.2. Offloading to the network 

As mentioned, the present work made use of BlueField cards. These combine, in 

a single card, Nvidia Network’s Connect-X network adapter with an Arm 

architecture processor, together with various specialised acceleration hardware 

circuits. 

Nvidia Networks, and Mellanox before them, stress the idea of “offloading” of 

operations from the main CPU to the network. There is a hierarchy of the kinds of 

operation offloaded.  

At the lowest level are simple operations needed for the transmission of data. So, 

for example in MPI messaging there is the process of tag matching. A tag is a 

user defined subject matter, or purpose, marker attached to a message, and the 

receiver can choose to receive messages with particular tags; so this is for a 

particular section of a code to receive messages that it is dealing with. While this 

sorting out of messages was originally conducted by the host CPU, the tag 

matching function is now done in special hardware in the network adapter [9]; 

there is therefore no need to interrupt the host CPU, which may be left to its other 

processing. 

RDMA [10] allows a network card, on being issued with an instruction to transmit 

data in the host RAM to the network, to do that using a Direct Memory Access 

(“DMA”) engine on the network card to access the RAM.  

At the next level, the network card carries out more computation operations. 

Encryption is another feature that may be offloaded [11]. Clearly it is directed at 
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data transmission, the security of it, so is conceptually part of the business of a 

network card, but it also offloads from the CPU a more computational operation, 

the encryption.  

Nvidia’s SHARP™ technology [12] offloads the organisation/calculation of 

OpenMPI collectives to the network cards in a cluster (“MPI collectives” are 

operations distributing and/or processing data from or to multiple points in the 

network [13]). If left to the host CPU, that would be interrupted many times to 

send the various messages involved and, for certain collectives, to calculate the 

data reduction. So, this offers primitive (as in building block) cooperative data 

processing between the nodes of a cluster. 

Above that level, Nvidia have now provided, in their BlueField cards, a general 

purpose Arm architecture CPU subsystem. Being general purpose, it could, of 

course, in principle, offload any kind of work; thus, there is wide variety of 

opportunity to consider what that might be. At an extreme, an early proposed 

application of BlueField [14] for a storage server did away with the host CPU 

entirely and connected the flash storage of the storage server to the BlueField, 

which served the data stored to the network over its integrated network adapter.  

This work, however, aims to provide a cooperation between the BlueField card 

and the host. This is not primarily to do with low level networking, nor with 

offloading computation per se, but to fulfil the brief as noted at sections 1.2 to 1.4 

– to control a computation “from the network”. 

3.3. Background relating to task-based scheduling 

A general outline of what task-based scheduling is has been given in Chapter 2 

and the importance of QuickSched in the context of the SPH code Swift to its 

adoption in this project was noted at 1.3. Wider aspects of scheduling with 

QuickSched, and of Swift, and other current efforts in task-based scheduling are 

now discussed.  

3.4. Prior uses of Quick Sched – Chalk and Swift 

QuickSched is a fine-grained task-based scheduler developed by the contributors 

Pedro Gonnet, Matthieu Schaller and Aidan Chalk and is available at their Source 
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Forge repository [15]. Aidan Chalk in his PhD thesis of 2017 [16] makes use of 

QuickSched. It has also been adopted in the Swift smoothed particle 

hydrodynamics (SPH) code [7]. 

Chalk’s thesis begins with a survey of existing task-based libraries such as Cilk, 

Intel Thread Building Blocks, SMP Superscalar, StarPU, Quark and DAGuE. The 

author states that the advantages of QuickSched include: efficient use of the 

multiple cores of a processor because, as long as there are enough queued 

tasks, an idle core may be assigned one; the use of a static task graph means 

that the critical path through the task graph is known and so can be used in 

scheduling decisions; it pays attention to “data locality”, i.e., aims to use data in 

the processor cache. He also notes the full task graph declaration as a 

disadvantage for the programmer, particularly for conversion of an existing code, 

and notes that for linear algebra a full task graph can be large, “O(n3)”. He sets 

out a hope for QuickSched, of using it in shared and distributed memory systems 

and in accelerators, such as GPUs and aims to establish its use on GPUs, with 

perhaps a departure from GPU normal programming in that the GPU performs, 

“many [QuickSched] tasks in parallel inside a single GPU kernel.”  

For DAGuE he notes that it provides cooperation between compute nodes to 

transfer data needed between them, which is administered by a separate thread, 

and that there are control messages between nodes about the completion of 

tasks.  

He also highlights for QuickSched that it supports “conflicts” – the data 

dependency of “the concurrent updating of [a] resource”. Another noteworthy 

point he makes is that task queues in QuickSched are cheap to maintain, being 

heaps (i.e. the tree data structure – see, for example, [17]), or priority queues, but 

that these do not have an efficient way for traversing them when looking beyond 

the head task of the queue, although he asserts that it is good enough for the 

purpose.  

Amongst other uses, Chalk [16] reports use of QuickSched in Swift and a use on 

a GPU of a tiled QR matrix decomposition. The algorithms are analysed for the 

tasks needed to carry them out. In his Chapter 6, in a molecular dynamics 
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application, task queues are implemented on the GPU, data movement to and 

from the GPU is modelled as tasks, and load balancing for distributed memory 

systems, i.e. the distribution of tasks between nodes, is discussed, [16] at 6.3. In 

particular, a graph (not a task graph) is made, with nodes representing the cells 

that contain the particles of the simulation and edges between cells for which 

there is interaction in the simulation, weights are assigned to represent the work 

to be done and the METIS graph partitioning program [18] is used partition the 

graph, thereby also partitioning the data, i.e., the cells, between compute nodes 

of a cluster. Chapter 7 of his thesis deals in more detail with task-based 

parallelism on distributed memory systems. Interestingly for one of the 

suggestions in Chapter 14 of this thesis, he asserts, “as techniques such as work 

stealing is not efficient between nodes, as nodes would need to pass multiple 

messages back and forth to perform work stealing”. In that Chapter 7, he also 

introduces send and receive tasks to transfer data between nodes at appropriate 

times. He adopts an organisation where all nodes know all of the tasks and the 

location of all of the data, but each node only has part of the data. Tasks are 

created on each node, but these are then consolidated for the complete task 

graph to be partitioned between the nodes. That leads to a partitioning of the 

data. A rule for efficiency is that tasks and data are kept together to the extent 

that a task must have one of its data resources on its node. But there are of 

course tasks that have different parts of their data on different nodes. So finally 

send and receive tasks are created on the nodes to service such tasks; however, 

an efficiency is that the versions of the data resources held by the nodes involved 

are considered and data transfer tasks are only created where the version held is 

not up to date.  

This arrangement of tasks for data movement between nodes’ tasks was kept in 

mind and forms an element of a suggested arrangement for data movement 

under the control BlueField cards made in Chapter 14 of this thesis. 

In an early paper, 2013, on their smooth particle hydrodynamics code [19], 

Gonnet, Schaller, Theuns and Chalk introduce “task-based shared memory 

parallelism” to improve “parallel scaling and efficiency on multi-core 

architectures”. The paper begins by discussing aspects of the algorithm such as 
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organisation of the particles of the simulation into trees and cells, finding near 

neighbour particles in the simulated space as a precursor to calculating the 

physical interactions. The limitations of OpenMP, then “arguably the most well-

known paradigm for shared-memory, or multi-threaded parallelism”, are 

discussed. The points made include the “branch and bound” problem of OpenMP 

parallel for loops – each parallel thread generated to process the for loop in 

parallel will terminate at different times but then have to wait for a synchronisation 

point at the end of the loop and then there will be a serial section wastefully using 

only one thread before the next parallel section of the code begins. They propose 

a switch to task based processing, since it is “inherently parallelizable”. It is a 

feature of task based processing, however, that tasks on different threads may 

overlap and not have to begin and terminate at the same time, and further, a new 

task can be allocated to a thread immediately once the last has terminated. They 

mention the allowance for the “conflicts” type concurrency in their task graph 

model. Also here, the feature of a “ghost task” is mentioned, which is a single  

task between the phase in the computation of calculating the density of material 

in the simulation and the phase of calculating the forces on each particle, which 

of course depend on the density; the ghost task provides a point of 

synchronisation of all the threads between these phases. (In his thesis Chalk 

mentioned that this was for reasons of reducing the number of task 

dependencies, but of course it is also a synchronisation point in the calculation.) 

The application of tasks to the algorithm was then discussed and the results of 

using the resultant code on well-known simulation test cases reported, including 

a high parallel efficiency of 75% and being 8 times faster for a cosmological 

volume simulation than the well-known Gadget-2 code. Finally, they foreshadow 

the developments of the Swift code to shared/distributed memory parallelism and 

communication between compute nodes.  

In a 2015 paper [20], Gonnet covers similar material to Chalk’s thesis in respect 

of smoothed particle hydrodynamics and the task-based approach across 

multiple compute nodes. I found motivation in Chalk’s Figure 7.7 and Gonnet’s 

Figure 12, which both show the substantial discrepancy between nodes for the 

time at which they finish their set of tasks for one time-step of a cosmological 
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simulation. Clearly there needs to be some further cooperation between compute 

nodes to even that out, so that compute time is not wasted before the next time 

step can start. Gonnet’s Figure 12 has white space, which is “time spent in the 

MPI_Test function.” This is part of the communication processing of data transfer 

tasks. It appears in that Figure that it is the compute nodes that have that feature 

that take longest to complete their timestep. In the context of my studies, it 

appeared to me that that part of the code should be offloaded “to the network”.  

In another paper [21] from 2015, Theuns, Chalk, Schaller and Gonnet discuss the 

types of tasks used in Swift to perform the density and gravity calculations. 

In a first paper of 2016, Gonnet, Chalk and Schaller [22], cover similar material as 

included in Chalk’s thesis, although it does not include the multi node 

computations, nor hence the data transfer tasks. One notable, perhaps additional 

comment there is, on page 4, “Finally, the task granularity is an important issue: if 

the task decomposition is too coarse, then good parallelism and load balancing 

will be difficult to achieve. Conversely if the tasks are too small, the costs of 

selecting and scheduling tasks, which is usually constant per task, will quickly 

destroy any gains from parallelism.” They continue as follows: 

“In the examples presented herein, we have chosen our task 

decomposition and granularity such that  

● Each task maximizes the ratio of computation to the data 

required,  

● The resources required for each task fit comfortably in the 

lowest-level caches of the underlying system.  

The first criteria is biased towards bigger tasks, while the second 

limits their size. The parameters controlling the size of the tasks 

in the examples, i.e. the tile size in the QR decomposition and 

the limits nmax and ntask were were determined empirically and 

only optimised to the closest power of two or rough power of ten 

respectively. Further tuning of these parameters could very likely 

lead to further performance gains, but such an effort would go 

beyond the scope and point of this paper.” 
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During this work, the need to keep the task data in the cache was ever present in 

my mind, particularly from studying the workings of the QuickSched scheduler, 

where it is a key part of the task allocation rules. The significance of the rule is 

studied in this work. The optimisation of the task size is not stressed in this 

reference and is not discussed there in any detail; it is only said that there are 

performance gains for optimising in respect of it. An optimisation on task size is 

performed in this work and is studied in detail, particularly in relation to 

messaging, which is not mentioned per se here. The phenomenon noted in the 

brief remark in this reference of the costs of scheduling being “usually constant 

per task” does emerge in the study in this work of the effects of messaging.  

They also show the progression of tasks from the scheduler into the queues and 

onto the threads and note that both the scheduler and the queues have roles in 

contributing to efficiency of execution and reiterate the importance of allocating 

tasks to threads that have memory resources in their cache. They also mention 

the need to follow the longest critical path through the task graph, ascribing the 

better performance of QuickSched over OmpSs to it.  

In a second paper [23] of 2016, for the Proceedings of the Platform for Advanced 

Scientific Computing Conference, Schaller, Gonnet, Chalk and Draper presented 

their work on the Swift simulation using the task-based approach based on 

QuickSched and, in particular, presented comparative runs on various clusters to 

demonstrate the independence of the approach from the particular hardware 

used. 

By 2018 development of Swift was still concerned with efficiency but had turned 

to matters other than task scheduling per se. In [24], Willis, Schaller, Gonnet, 

Bower and Draper used hand coded vector processor operations inside the tasks 

that sort the list to find the neighbours that interact in the simulation. In [25], 

Borrow, Bower, Draper, Gonnet and Schaller examined implementing multiple 

time step sizes in Swift. 

3.5. Other relevant work in task based scheduling 

In [26] (from 2020 so now contemporaneous with this work), Samfass, Weinzierl, 

Charrier and Bader, discuss their system for offloading tasks to another compute 
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node. In the computation method of “Arbitrary high-order DERivative 

Discontinuous Galerkin”, they identify a class of tasks that may be sent to another 

compute node for processing, owing to the length of time before their results are 

needed. In this scheme the tasks are processed on the remote node with high 

priority and the results sent back to the originating node as soon as they are 

completed; there is no long-term transfer of the task or its data. Nodes that are 

causing delays to other nodes are identified by MPI waiting times, and these are 

designated to be in need of help and are the source of the tasks offloaded. The 

tasks are offloaded to nodes that are most able to take up more work without 

decreasing their performance, again as indicated by MPI wait times.  

In [27], also from 2020, Samfass, Weinzierl, Hazelwood and Bader introduce their 

TeaMPI code for task-based codes. This addresses the problem of failure of 

hardware elements of large clusters by replicating task data; each node in the 

cluster having a small number of replica nodes. The replicas are in general slated 

to run the same tasks, but the order is shuffled between them, and results of a 

task (or particularly, for preference, of tasks with high amounts of computation but 

compact results) are distributed to the node’s replicas. If a node fails, the 

computation may continue. On the other hand, to avoid duplication of execution 

of a task, if a node has received the results of a task that it now wants to 

schedule for execution, it recognises that and cancels the task and moves on 

using the received results. This paper ends, “…, we plan to investigate whether 

emerging technologies such as SmartNICs can be exploited to offload the task 

sharing fully to the network hardware and to guarantee sufficient MPI progress.” 

The Excalibur research program [28] funds projects needed for computing on 

exa-scale clusters; in their words, “redesigning high priority computer codes and 

algorithms to meet the demands of both advancing technology and UK research.” 

According to their website one project relates to task-based codes: “Exposing 

Parallelism: Task Parallelism”, [29] is a response to the difficulty, or at least 

labour, noted by Chalk and at section 2.1 above, of converting codes to task-

based ones. A tool, called Otter [30], has been developed which allows a 

programmer to annotate their code at instances of task like structures and when 

the code is run the annotations are logged as they are passed. An analysis part 
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of the tool provides a graph of the events and provides suggestions of how to 

“taskify” their code, at the level of OpenMP pragmas to add. Clearly such a tool 

will be useful both practically and psychologically to overcome the perceived 

difficulties and as a teaching aid. This work uses the QR factorisation, discussed 

later, as its example task-based code; this has a clear task structure, but such a 

tool will help with codes for where the task nature of the algorithm is less clear.  
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4. Hierarchy of software components in this project 

The diagram of Figure 2 shows, in the left column, the dependencies of the 

software components used in this project, while the right column provides 

references to the main chapter or section of this thesis where the component is 

discussed. The libraries highlighted in blue are either heavily adapted from an 

existing library or are completely new. 

Software Component  Thesis Chapter / Section 

Computational Application 

e.g. QR Matrix decomposition 

 Chapter 8 

↓ 

↓   

Other 

dependencies  

LAPACK linear  

algebra library 

 Sections 17.12, 8.2, 17.14 

   

Qsargm 

Task scheduling library – 

adapted from QuickSched 

 Chapter 7, also Chapter 5 

↓   

Argmessage 

A new library for  

remote procedure calls 

 Chapter 6 

↓   

Messaging Library  OpenMPI - Chapters 6, 7, 10, 11; 

Sections 17.12, SNAPI – Sections 

7.13, 9.1, 11.2, 15.3, 17.4 

OpenMPI or SNAPI  

↓    

UCX – base messaging library  Chapter 10; Sections 11.2, 17.2, 17.4 

Figure 2 – Software dependencies in this project 
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Thus, a computational application uses the Qsargm library to perform its task-

based scheduling and may of course have other dependencies. Qsargm uses the 

Argmessage remote procedure call (RPC) library for communications between its 

client and server processes. (The terms “client” and “server” are used herein with 

their normal meaning as used with RPC and similar arrangements – the “client” 

process makes a request, or “calls”, to another process, the “server”, which is 

then responsible for carrying out the request, and which then returns an answer 

to the client.) Argmessage sends messages between the client and server with 

either the OpenMPI or SNAPI messaging libraries. OpenMPI has options for a 

base messaging library; in this project the UCX [31] library was used.  

Omitted from the software diagram are the scripts used to launch the application 

program (which includes the Qsargm/Argmessage client) and the 

Qsargm/Argmessage server process. These scripts are not trivial since multiple 

programs are to be launched on heterogeneous processor architectures.  The 

scripts are explained at sections 17.2, 17.3 and 17.14 in Appendix A.  

4.1.  Plan for discussion in subsequent chapters 

The discussion of the relevant ones of these components does not, however, 

proceed in that order, but rather, as follows. 

First, the original QuickSched task-based scheduling library is analysed to find 

how it might be split into client and server processes. Next comes the features 

and development of the new Argmessage library, which allows communications 

between such a client and server, but which both enables the library using it, to 

hide that from the application using it, and promotes reuse of functions of a library 

being adapted to use Argmessage. That then allows an explanation of how 

QuickSched was adapted to use Argmessage. Experiments were carried out on a 

QR factorisation example (originating from the QuickSched library archive) and 

so that example is explained before, finally, the results of the experiments are 

presented.  
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5. Analysis of QuickSched 

Chapter 2 described some general features of task-based scheduling. As 

foreshadowed, this chapter now analyses in detail the particular task-based 

scheduler, QuickSched, of which use is made in this work, to identify how and to 

what extent it might, in principle, be offloaded to a BlueField card. The 

modifications made in this project to the QuickSched library based on this 

analysis and the practical results of those are discussed in the later chapters.  

5.1. Origin and uses of QuickSched 

As discussed in Chapters 1 to 3, QuickSched is a fine-grained task-based 

scheduler developed by Pedro Gonnet, Matthieu Schaller and Aidan Chalk. My 

code developed for this project uses their code from their Source Forge 

repository, in particular version 1.1.0 [15]. A version of the original QuickSched 

has also been incorporated into the Swift smoothed particle hydrodynamics 

astrophysical code [7], but with some other modifications. This analysis is based 

on QuickSched 1.1.0 as available on Source Forge, and on the corresponding 

description in Chalk’s doctoral thesis [16], as well as on my own analysis of 

those.   

5.2. Timescale of tasks  

QuickSched is a scheduler library to be used in an application program to 

schedule units of work, “tasks”. At a general level it has the organisation set out 

in the earlier chapter on task-based scheduling. The tasks of QuickSched are 

quite general but in its target use area, of scientific computing, the most common 

type of task is some part of the computation. QuickSched is designed for fine-

grained tasking, meaning that the duration of the tasks is on a timescale suitable 

for the efficient scheduling of a large computation. In one example in the 

experiments described later the mean task execution time was around 1 × 10-4s, 

and there the task size was designed around the processor cache size, which is 

a common requirement in computational applications. Table 1 is of some typical 

timescales for scheduling (not just task-based) for context.  
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Example of scheduling  Timescale  

A scripted data processing workflow 

having tasks that are each the run of an 

application program 

Minutes to days  

Operating System process scheduling  10 ms [32] 

QuickSched fine grained task-based 

scheduling  

0.1 ms  

Processor instruction hardware 

scheduling 

1 ns  

Table 1 – scheduling timescales 

So, this gives an indication of the timescale in which QuickSched expects to 

operate. On such a timescale it is clearly a challenge for QuickSched to take its 

decisions and establish new ready tasks on a thread as fast as possible. Its 

design certainly reflects that.  

5.3. Build and execute cycle 

A first thing to note about QuickSched is, obviously, that everything takes place in 

the same process (as defined, for example, in a Linux system).  

The processor pool of Figure 1 that executes the tasks is, in QuickSched, a pool 

of threads in that single process. The threads are executed on the cores of one or 

more CPU integrated circuits in a shared memory fashion. The QuickSched 

scheduler operates to assign tasks to these threads. Interaction between the 

main program of the process and the QuickSched library is via C function calls.  

The example programs using the QuickSched library that are included in its 

archive follow the pattern shown in the flow chart of Figure 3, in which the 

 
Figure 3 – Main phases of operation of  

example programs of QuickSched 

Build task set 

Execute tasks 
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program has separate phases of generating tasks and of executing those tasks. 

An application using QuickSched may use the two phases just once or repeat 

them. (In fact, QuickSched does allow dynamic task creation during the execution 

phase, but that did not feature in anything considered here.) Thus, the task 

generator of Figure 1 is also to be identified as belonging to the same process as 

the process that executes the tasks themselves. 

5.4. Time slicing of the scheduler object 

The library maintains a scheduler object, to keep the state of the task graph and 

the task pool, etc., and when a call is made by a thread that thread becomes the 

scheduler for the period needed to process the call. Thus, in Figure 1 of Chapter  

2, the processor pool operates both the execution of the tasks and as the 

scheduler.  This is at the heart of QuickSched’s design, and because during the 

execution phase operating the scheduler takes processing time away from 

executing the computational kernels the scheduler is designed to be as efficient 

and lightweight as possible.  

This time slicing of the processors of the processor pool between executing the 

tasks and executing the scheduler was a feature I found striking when reviewing 

QuickSched to see what might be offloaded to a BlueField, and this task 

execution phase has emphasis in this project. 

5.5. Location of task generator 

That the task generator was part of the same process as the task execution and 

scheduling was more implicit and not initially questioned. The original 

QuickSched has, of course, to be that way since (i) it is a library that operates by 

function calls and (ii) the task building calls to the library exist to create the 

representations of the task graph and task pool within the single process so that 

they are then ready there to be used when the function calls to the scheduler are 

made during the task execution phase.  

Figure 1, while showing the general arrangement of task scheduling, was of 

course drawn, after the modifications of this project had been made and the 

experiments run, in a manner emphasising that the scheduler and task generator 

are actually separate concerns from executing the tasks. The modifications made 
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in this project concentrated on the task execution, but the task generation phase 

is also important as the experimental results were to show.  

5.6.  What to offload to the BlueField card 

Having seen that the scheduling decisions and executing of tasks are separate 

concerns in QuickSched, the operations of the scheduler were studied in more 

detail to see which parts of the scheduler might be relocated to the BlueField. 

The objective being to relieve the host of the work of executing the scheduler, it 

was decided to leave the execution of the tasks on the host x86 processor, 

(There were also some important motivations for having the scheduling data on 

the BlueField, which are about what else could be enabled by that; those are 

discussed in Chapter 14.) 

Now, offloading the operation of the scheduler to the BlueField card would 

require some messaging between the host and the scheduler. Such messaging 

of course introduces delays and so should be kept to a minimum. Therefore, this 

study considered (a) the data structures employed by the scheduler, since a 

decision about where to keep them, on the host or the BlueField, would be 

needed, and (b) the flow of information or instructions about them, which might 

be turned into messages.  

5.7. QuickSched data structures: task DAG and ready task queues 

As in the general chapter on task-based scheduling, Chapter 2, QuickSched uses 

a directed acyclic graph (“DAG”) as the data structure for the task set created in 

the first phase. The nodes of the graph represent the tasks to be done and the 

edges represent the dependencies between them, i.e., a task must not be 

executed until its parent task(s) are finished.. With the caveat of the conflicts 

mechanism noted in sections 3.4, 5.10, 5.16 and 9.4, this task graph provides, in 

general, full information as to the relationships between the tasks of the 

application and how they could be executed serially and in parallel whilst 

ensuring that the resultant computation is correct.  

It is also the job of the scheduler, in the second phase of executing the tasks, to 

work through the tasks in an efficient manner. With the same caveat, the data 
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structure that QuickSched employs for this efficiency aspect is a set of queues, 

one per thread.  

The number of threads is intended in QuickSched to be equal to the number of 

cores allotted to run them, with each thread being pinned to a respective core. In 

this way QuickSched takes responsibility for the scheduling, while neutralising 

any, potentially competing, attempt by the operating system to schedule threads 

on and off and to different cores.  

 

Figure 4 – QuickSched scheduler – data structures at task exectution time 

Figure 4 shows the task graph and task queues of QuickSched, so in more detail 

than given in Figure 1. Although they have not been identified yet the messages 

between the data structures are shown in Figure 4; the details of this follow in 

sections 5.8 to 5.14, which discuss how they operate.  
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5.8. QuickSched: library functions and call graph 

While extremely useful to a programmer wanting to maintain or improve code, a 

static call graph for a C code is not simple to construct [33] (see section 1.2 

thereof). Commercial call graph analysers were not available to me, and in any 

event, I was able to compile the static call graph, Figure 5, for the library by 

inspection of the code and from the set of partial call graphs in QuickSched’s 

documentation of each of its code functions. I have also added a colour coding 

for the functions, and some annotations.   

Each box in Figure 5, apart from the orange ones, is a function in the library. The 

orange boxes are example programs that come with the library, that make use of 

it. As earlier, with reference to Figure 1, the example programs use the 

QuickSched library to first build a task graph and then execute it.  

Figure 5 – Call graph of QuickSched 
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The items in the second column, with the function names in red, are the top-level 

functions, which form the public interface of the library. These fall into four 

general categories:  

a) library initialisation and teardown:  qsched_init(),  

  qsched_reset(),  

  qsched_free()  

b) functions for building the task graph:  qsched_addtask(),  

  qsched_addres(), 

  qsched_addlock(),  

  qsched_addunlock(),  

  qsched_adduse,  

  qsched_addres(),  

  qsched_res_own(),  

c) the main function for executing the tasks:  qsched_run(), and  

d) auxiliary functions:  qsched_ timer_names(),  

  qsched_getdata().  

Table 2 – public interface functions of QuickSched 

It is notable that the interface has many functions (b) for building the task graph 

but only one (c) for executing it. The code for these functions may obviously be 

reviewed in the official archive.  The corresponding functions used in this project 

are discussed in the chapter on Qsargm, the version of library produced for the 

project. 

5.9. QuickSched functions for initialisation and finalisation 

First the initialisation functions (a), are straightforward: 

qsched_init() allocates memory for the scheduler’s tables, which are: 

• Resources 

• Tasks  

• Unlocks 

• Locks 

• Uses 
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It is these tables that provide the representation of the task graph. The role of the 

many functions of category (b) is to populate these tables with various aspects of 

the task graph. (Note that, as will become apparent from the descriptions of the 

category (b) functions in section 5.10, while the names “unlocks” and “lock” 

appear, just from the names, to be opposites, that is not the case, and they relate 

to quite different matters.) 

qsched_reset() zeros the counts of the items on those tables, so that the 

allocated memory blocks for them may be reused. 

qsched_free() deallocates the memory of the tables. 

5.10. QuickSched functions for building the task-graph 

So, after initialisation, the application program builds the task graph using the 

functions (b): 

qsched_addtask() allows a new task record to be recorded. The data supplied 

and recorded is: 

• A type identifying the type of work to be done by the task. In particular in 

QuickSched, this identifies a particular one of the kernel functions 

mentioned earlier that is responsible for that type of work.  

• Some data allowing further definition of the task. In QuickSched, these are 

the arguments to be passed to the kernel function. 

• A flag that may be task_flag_none, task_flag_skip, or task_flag_virtual. 

• A cost, which is an estimate of the time it will take for the task to run. The 

units are arbitrary and relative to the other tasks. The scale is intended to 

be additive. This forms the basis of the scheduler’s selection of which task 

to allocate next to a thread.  

qsched_addunlock() is called to register a dependency between two tasks. So, it 

is this function that links the tasks into the task graph. These are recorded as a 

table of dependency-depending task pairs. The “unlock” in the function name 

connotes that when the dependency task is completed it unlocks or frees up the 

depending task to become a ready task. Of course, a depending task may have 

plural dependencies, and all of these have to be completed before a depending 



55 

 

task is “unlocked”. Chalk [16] briefly mentions (at section 3.1.1) the terms Read 

after Write and Write after Read for this task relationship. So, for where the 

relationship is about data, this is the usual type of relationship: if task B is 

dependent on task A, then task A must finish writing to a data item before task B 

consumes it and/or task B must not write to a data item before A reads it. 

qsched_addunlock() is used to declare that relationship. The book “Computer 

Architecture” by Hennessy and Patterson [34] describes the various kinds of data 

dependencies, in section 3.1 and appendix C; although that is in the context of 

instruction pipelining in processors, the concepts are relevant here.  

qsched_addres() allows a resource to be declared. To the scheduler each 

resource is an abstract item; it is up to the user program to know what they 

represent. Typically, a resource is a set of data items or block of memory. The 

index to the resource that is returned by this function is used in other functions in 

this section to register relationships of the resource with the scheduler.  

qsched_addlock() is for specifying that a task needs to obtain exclusive access to 

a particular resource. The scheduler operates, when allocating tasks for 

execution, to obtain a lock on this resource for a candidate task and does not 

allocate the task if a lock is not available. (The lock is obtained on the abstract 

resource and not on the data it represents, so the application programmer of 

course has to respect this.)  

Now, the data dependencies between dependency and depending tasks are 

already represented with the qsched_addunlock() calls. However, according to 

QuickSched, those relationships can be too restrictive. If two tasks require 

access to the same resource and that access needs to be exclusive but the order 

does not matter, then this function qsched_addlock() may be used in respect of 

both those tasks and the resource in question to declare the relationship. If the 

resource is a data item, then that means that both tasks modify the data item, but 

the order does not matter. Chalk [16] terms this a “conflict” (at section 2.3) and 

gives an example, which is an accumulator data item into which both tasks add 

respective results. (Thus this declaration is needed for correctness of the 

algorithm, since a task dependency is not being used.) He notes that this more 
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efficient for scheduling than declaring a dependency, i.e., with 

qsched_addunlock(), which would fix an arbitrary order between the two tasks, 

potentially reducing efficiency of processing.  

The qsched_addlock() declaration also serves a purpose in the efficient ordering 

of tasks during the execution phase, beyond the freedom of order mentioned in 

the previous paragraph: qsched_enqueue() takes note of the resources so linked 

to the tasks in the allocation of tasks to a thread having tasks operating with the 

same data. This is in the hope that the newly allocated task will find at least some 

of its data in the processor cache.  

qsched_adduse() this also records a resource against a task, this time as a use. 

This is also used in the qsched_enqueue() function to support the rules for the 

efficient allocation of tasks to threads. Here this is only for that purpose rather 

than as with unlock to declare a dependency needed for correctness. So, a data 

resource used by a kernel should be declared as a use if it is not declared as lock 

if the task allocation rules are to operate.  

These functions therefore build the task graph representation. As noted earlier, 

initially the location of the task generator was not recognised as an issue. 

However, if task generation is to be processed in another process from that of the 

scheduler, then the information for the tasks will need to be transmitted between 

those processes as messages. As ideas about this were prompted by the 

experimental results, those are not discussed here but after those, in Chapter 14.  

5.11. QuickSched functions for executing the task graph 

So, the data collected in the build phase will serve three purposes during 

execution of the task graph: (i) working through the task graph identifying ready 

tasks, (ii) allocating tasks to queues having tasks using similar resources, and (iii) 

deciding which of the ready tasks in the queues is next to be executed.   

5.12. Establishing the threads 

The single function of set (c), qsched_run(), for executing the tasks of a task 

graph is shown in detail in Figure 5. At the most general level, this function 

executes the tasks of the task graph in a correct order, each on just one of a pool 



57 

 

of available threads. So, its first job is to set up some threads to be available. 

QuickSched is capable of using threads provided by either Linux pthreads or 

OpenMP; hence the two functions qsched_run_pthread() and 

qsched_run_openmp(), which are next down the call graph from qsched_run(), in 

Figure 5. These are therefore alternatives, only one of which is used during any 

run. In the call graph setting up pthreads takes a set of functions: 

qsched_run_pthread(), qsched_launch_threads(), qsched_pthread_run() and 

qsched_barrier_wait(), while the OpenMP threads alternative just uses 

qsched_run_openmp().  

In QuickSched, the threads are pinned to respective cores, which discourages 

the operating system from engaging in its own, quite possibly competing, 

scheduling of the threads. The operating system’s scheduling of threads may well 

include wastefully moving them around between cores and this is contrary to and 

aspect of QuickSched’s operation, which is to allocate tasks to threads where the 

respective processor core already has data that is needed in its cache. (The 

pinning does not appear in the QuickSched code per se; it is left to the user to 

arrange that when launching an application that uses the library.)  

5.13. Preparing to run 

Both alternatives then have a common path. As its name suggests, 

qsched_prepare() makes some preparations before actually executing any tasks, 

which are: 

• One preparation is to sort the various tables of items created by the 

various task declaration functions. These sorts are carried out in parallel 

on different threads.  

• Another preparation is to initialise the queues of Figure 4, with 

queue_init(). 

• A wait value for each task is calculated, which is the number of 

dependency tasks it has, which is used in qsched_done(), described at 

sections 5.14, 5.15, and 5.16, for determining whether a depending task 

has become a ready task.  



58 

 

• A weight for the task is derived from the costs, which is used for the 

priority for allocation of ready tasks from the queues. In particular, the 

weight is calculated, as Chalk [16] describes (at section 3.1.1), as the cost 

of the task plus the cost of all descendant tasks in the task graph, which 

are therefore a hinterland of tasks that are being held up from processing 

by the present task.  

• The final preparation is to enqueue the initial task(s), which are those that 

have no dependencies, which are the root(s) of the DAG. (This may be a 

single task, but the task DAG could have more than one root.) Enqueuing 

a task, with qsched_enqueue(), is described in more detail in section 5.16. 

5.14. Running through the tasks 

With the preparations completed, each thread repeats the cycle of (i) allocating 

tasks to itself of the thread pool and (ii) determining that the thread has become 

free for a further allocation.  

The reason in QuickSched for using a pool of threads in the same process is so 

that all tasks may have rapid, direct access to all the data items of the 

computation in RAM, i.e. “shared memory” operation. Thus, the thread pool is an 

essential feature of QuickSched, and was preserved in the modifications made.   

So, at this point each thread is running either qsched_run_openmp() or 

qsched_pthread_run() and this first calls qsched_gettask(). This call is made on 

each of the threads of the pool in parallel. If the call is successful, in that the 

scheduler is able to return to the thread in question, a task from the queues, that 

thread executes the task. qsched_gettask() returns a pointer to the task record, 

and the thread, in function qsched_run_openmp() or qsched_pthread_run(), uses 

this to look up the task type and task data (section 5.10) and then the function 

identified by type is called using the arguments data. In fact, in QuickSched the 

decoding of the type and data into a kernel and call and its parameters is 

delegated to a function that the programmer of the application program using 

QuickSched must supply.  

Once a thread has completed the task, so now back in function 

qsched_run_openmp() or qsched_pthread_run(), it notifies the scheduler that the 
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task has been carried out and is now complete by calling qsched_done(), 

allowing the scheduler, as described at section 5.16, to find more ready tasks. 

The thread is now free to carry out more work, so it calls qsched_gettask() again. 

This cycle is repeated until there are no more tasks to be executed. That that has 

occurred is determined simply by initially counting the tasks in the graph and 

keeping track of how many have been completed. When all are completed the 

active one of the two “run” functions terminates. 

5.15. Proposal for splitting the scheduler 

From this analysis it appeared that a suitable place to divide QuickSched, for the 

run phase, would be with qsched_gettask() and qsched_done() providing the 

interface to the remote scheduler, so that the functions qsched_run_openmp() 

and qsched_pthread_run() and those above them in the call graph would remain 

on the host, while those within would be on the BlueField.  

There remain further details of QuickSched to look at to understand the 

implications of the proposed split (and to check on to see whether some other 

split would be useful).  

5.16. QuickSched functions for getting tasks and reporting their completion 

When qsched_gettask() is called by a thread, the scheduler removes a task from 

a selected one of the queues as follows. For preference, the thread takes a task 

from its own respective queue. Its own queue contains tasks that are likely to 

have their data in the cache of the processor core to which the thread is pinned. If 

a task is not available in that queue, the other queues that are not empty are 

identified and those queues are checked through once in a random order. This is 

termed work-stealing, and is well known; for example, it was used in [35], [36] 

and [37]. 

To query any particular queue qsched_gettask() calls queue_get(). That works 

through the queue, ideally in its priority order, checking if each task is locked, 

which will fail if any of its associated resources are locked, (thus implementing 

the conflict mechanism – sections 3.4 and 5.10). If there is a task that is not 

locked then that is the one assigned to the thread, after first locking its resources 

so that no other task may concurrently use its resources. That task is also 



60 

 

removed from the queue and the queue is resorted according to its priority order, 

which prioritises tasks which have the longest path to completion of the task 

graph, which information is embodied in the weight value for the task, which was 

calculated by qsched_prepare(). 

In Figure 4, the detail of each thread querying its own respective queue first is 

shown by having a respective arrow from the thread to its queue. The 

subsequent search of the other queues when necessary is indicated by the 

dotted line tying those arrows together. 

When qsched_done() is called by a thread, the scheduler marks the task as 

complete and unlocks its resources so that that does not prevent other tasks from 

running. It also reduces each counter belonging to its depending tasks of its 

remaining dependencies. It then determines therefore which of the tasks in the 

task graph are now therefore ready tasks, i.e., have no more dependencies to be 

fulfilled. qsched_done() then adds the tasks identified as ready tasks to the 

queues by calling qsched_enqueue().  

qsched_enqueue() assigns the task to the queue that has the highest number of 

resources related to it by the queue's current tasks, (related by both the locks and 

the uses – sections 5.9 and 5.10). A resource related to plural tasks in the queue 

is counted that many times. In turn qsched_enqueue() calls queue_put() to 

actually assign the task to the queue selected. That first waits to get a lock on the 

queue, because there may be concurrent requests from other threads to modify 

that particular queue. It does this by adding to it to the end of the queue and 

“Bubbl[ing it] up” to its position in the queue as determined according to the 

weights of the task in the queue. Therefore, the weightiest get processed for 

preference, since they are holding up a greater amount of work.  

The queue is a priority queue, in the form of a heap (i.e. the tree data structure – 

see, for example, [17]). This only guarantees to put the highest priority item at the 

front of the queue. This is fine if that can be removed, but if it is unavailable 

through locking, then qsched_gettask(), will not in general allocate the most 

weighty task that is not locked, because in that case it works through the tasks in 

their physical order in the memory of the queue until it finds one that may be 
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allocated. Chalk [16] notes this (at section 3.1.2), but states it is “sufficient for 

efficient task-based computations”. To try to remove a task from a queue 

qsched_gettask() calls queue_get(). When that finds a task that may be removed 

it does that and then sorts the queue as a heap by weight, similarly to 

queue_put(). 

It is also notable that the scheduler does operate in a multithreaded manner, so 

calls to it from different threads can be processed concurrently. However, certain 

functions require a lock to be obtained. For example, updates to a queue require 

a lock on that queue. Potential concurrent updates to some counters are handled 

with an atomic decrement function, for example, the global count of tasks not yet 

completed and the count each task has of it the dependencies that remain to be 

fulfilled.  

5.17. Further discussion of the proposed split 

The proposed split leaves to the BlueField all of the processing carried out by the 

scheduler to determine the next task. This includes both that for finding the ready 

tasks from the task graph and making the choice from the queues of which task 

to process next, so that that will result in efficient processing of the tasks as a 

whole. The objective was to offload processing of the scheduler, so leaving all 

that to the BlueField is in accordance with that. Further, the split only requires two 

small messages between the host and the BlueField per task, those for 

qsched_gettask() and qsched_done(). The number here is important as replacing 

a function call with a message will introduce significant extra latency. The 

smallness is less important in that extra information could be added to a message 

without much extra overhead, but it also suggests that compiling the messages is 

unlikely to require much additional work to derive their content.  

The proposed split also keeps the scheduler data, the five tables identified earlier 

in this chapter, in the same place as each other, so their processing will not be 

negatively impacted by messaging. Further, the data returned by the 

qsched_gettask(), the type and the data values are abstract to the scheduler in 

that it does not process them per se and just hands them to the threads which 

are then responsible for interpreting them, so there is no need for extra exchange 
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of data with the scheduler during the execution of a task on the host. All this 

therefore was encouraging to pursue this split for the offload.  

It was mentioned earlier that the task generator, in both the examples of 

QuickSched and in the experiments was located on the host. This means of 

course that all of the information in the five tables set up by qsched_init(), which 

support both the task graph and queue processing, has to be supplied from the 

host to the BlueField, with messages for each.  

There is another seeming division in the data used by the scheduler, which is 

between the task graph on the one hand, and the queues on the other. These are 

connected by the qsched_enqueue() function. So, one could perhaps envisage 

putting just one or other of the task graph and the queues on the BlueField. Each 

task is enqueued once, so the number of messages is, at a high level, not 

changed. The main indication against is, however, that the objective is to offload 

work, so doing less of it with the same number of messages in a more 

complicated way did not appear attractive.  

5.18. Need for an RPC library 

The other aspect that came out of the analysis of QuickSched was the scheduler 

has a public interface of function calls and that these were going to be called from 

the host but executed on data, the task graph and the queues, that would be 

located on the BlueField and then return data as the return type of the function. 

This pattern was recognised as generally similar to a remote procedure call 

(RPC). Consequently, it was decided to implement the interaction between the 

host and the BlueField using such a pattern. As explained in the next chapter it 

was further decided to implement that aspect as a separate and new library. 
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6. Argmessage 

The Argmessage library is the lowest level of component that was written for this 

project. Apart from the lower-level messaging libraries on which it depends, it is a 

new project, completely written from scratch.  

The library provides facilities for a client application on a host to execute 

functions on a remote server device. In the main use made of this library in this 

thesis, the host is a compute node of a cluster (so most likely having an Intel or 

AMD x86-64 processor), while the “remote” server is the Arm processor that is 

provided as part of a BlueField smart network card, and this card is attached to 

the PCIe bus of the host.  

That example already indicates one requirement for Argmessage, which is that 

client and server processes exist in different address spaces and so inter process 

communication between them will generally be of the messaging kind, in 

distinction from communication via shared memory. (So, while the BlueField card 

of the example mentioned here is physically located not that far away, i.e., in the 

same enclosure as the host, it is “remote” in that sense.)  

In its main version, the Argmessage library uses the OpenMPI messaging library 

for sending the messages per se between the client and server processes, for 

several reasons. OpenMPI is quite straightforward to use, it is very mature, and 

will work on different processor architectures, as is also required here. It is also 

designed for codes that are initiated at the same time to run simultaneously on 

multiple nodes in a cluster, which are target requirements here since the goal is 

to support large computational programs running on multiple nodes.  

(OpenMPI has data type declaration facilities [38] that solve the problem of 

different endianness, in cases where it exists, of data items in messages 

transmitted between machines of different architectures. Note, however, that did 

not occur in the present work and the facilities were not used in the Argmessage 

code, which takes a manual approach to packing and unpacking the messages, 

for which see sections 6.5 and 6.7.) 
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6.1. Remote procedure calls 

This overall function of the Argmessage library is, in general, a remote procedure 

call (RPC) function. Ex post facto, one might ask why RPC libraries were not 

systematically surveyed at the outset and an appropriate one selected, rather 

than writing a special one for this application. In fact, in order to be able to 

support QuickSched, Argmessage developed a particular set of features. These 

are explained in this section and contrasted with the generalities of RPC 

frameworks.  

RPC libraries are many and diverse, built to suit various computing environments. 

For example, once the RPC pattern was recognised, I first recalled an RPC 

library that I had used before, Simple Object Access Protocol (SOAP), but 

obviously that was not going to be at all suitable for this project, since it uses slow 

transports such as Hypertext Transfer Protocol (HTTP) or even email. It is 

important to note that the timescales needed for this project are, contrastingly, 

sub millisecond. Equally inappropriately it uses an XML markup for the values 

sent, but again, in contrast, in this project the message format would have to be 

small and simple to meet the timescale requirement. I was also aware of the 

highly complex CORBA. So, of course, these were not going to be useful.  

I did find, however, at a later date, a more low-level library than those, an RPC 

library project called ONC+ [39], which was more appropriate, and which is also 

free. This was not pursued as Argmessage had advanced, but, notably, in ONC+, 

each call to the server from the client waits for the operations on the server to 

complete and return a result before continuing [40]. That was not always 

necessary in this project and so would have degraded performance in some 

aspects, and indeed allowing not to have a return type is now a feature of 

Argmessage.  

A recent brief survey of RPC frameworks (in a Rutgers University course note) 

[41], analyses RPC frameworks into first and second generations. A difference 

between those that is relevant here is that the first generation (there including 

ONC) provide stateless calls to the server, i.e. each call provides all information 

needed from the client needed to answer it, so not taking into account any history 
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of the calls made. The second generation frameworks are stateful. This 

generation is also object oriented and a client makes RPC calls that run methods 

on objects that may persist between calls and modify their state. An important 

aspect of Argmessage is that it is stateful; as it is used for Quicksched, it 

maintains the state of the scheduler on the server side. 

A further aspect that came out in the project was that the cooperation between 

client and server in using QuickSched via Argmessage could involve parallel 

processes (in fact parallel threads) on both the client and server sides, giving rise 

to interactions between the effects of messages. This is explored in Chapter 7. (It 

should be noted that, as Argmessage and Qsargm were developed together and 

for that purpose only, it is possible that Argmessage is not a full treatment of the 

problems that could arise for RPC communication between multithreaded 

processes.)  

It was also important that OpenMPI was successful, without too much coding 

difficulty, in sending messages between the heterogeneous host and BlueField 

card installed therein. Added to that, OpenMPI is well suited to low latency 

communications in the cluster, and it was hoped by extension that it would also 

be so across the connection between those two items. This and the RPC 

approach mean that Argmessage could be a useful tool for rapidly adapting other 

libraries to make use of remote communication in the HPC context. 

6.2. Argmessage Messages  

A key component of any messaging library, or an application or library that runs 

over one, is, of course, the structure of the messages sent.  

As noted at section 5.18, Argmessage is an RPC library and so has a client-side 

interface that sends messages, on behalf of some client application, to an 

Argmessage server component, which responds to that to execute a procedure 

on the server as specified in the message. The result of that procedure is 

returned in a reply message from the server to the client, which passes the result 

to the client application. Argmessage relies on a base messaging system, 

OpenMPI, to transport these messages for it. The Argmessage client and server 

construct their messages for each other in a buffer in a format discussed section 
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6.3. This buffer is then the payload of a message constructed in the underlying 

message system, by calling the appropriate functions of the underlying message 

library. These calls will of course wrap the payload buffer with metadata that 

concern that base message library, for example the network addresses of the 

client and server; the format of that outer message is generally not important 

here, but of course the Argmessage library does supply the necessary data 

items, such as the network addresses, using the message construction functions 

of the underlying messaging library. These values are generally fixed, and they 

are established by the client and server of the Argmessage library in an 

initialisation phase. 

If the underlying messaging library were to be changed, Argmessage’s calls to it 

would have to be changed correspondingly. A new underlying messaging library 

might have different concepts or related hardware, and if so, that may well make 

the changes needed more complex. However, because Argmessage uses just 

the simple buffer as its actual message between its client and server, it is 

expected that little, if anything, would, in fact, have to be changed in that. 

(Although note the uses of MPI tags described later in this thesis, which are an 

exception to all the application’s data being in the buffer.) 

6.3. Message structure  

The Argmessage message buffer is designed, in the time-honoured fashion, with 

a header of fixed control data, and a more free-form second part. This second 

part provides flexibility to accommodate different messages for different RPC 

calls. In particular, however, the second part is always the packed arguments of 

the remote procedure call to be called on the server; in particular they are the 

arguments of the C function on the server that implements the call. For simplicity, 

both Argmessage’s internal housekeeping functions, and those for RPC calls 

made to achieve the client application’s actual purpose, employ the same 

message format and indeed the same RPC mechanism. 

An example of an Argmessage message buffer is shown in Table 3, as printed 

out by the print statement trace included in the library for debugging purposes 

(function argmessage_printbuffer() from file argmessageinternalhelpers.c).  
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ARGMESSAGE SERVER: raw message received: 

Mess size:    Proxy ID:     Prox seq no:  Adapter ID:   Func ID:      

Argbuff size:  

1C 00 00 00 | 00 00 00 00 | 04 00 00 00 | 00 00 00 00 | 66 00 00 00 | 04 

00 00 00 |  

00 00 00 00 |  ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  

~  ~  ~ |  

 ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  

~  ~  ~ |  

Text Equivalent :- 

            |             |             |             |  f          |             

|  

            |  ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  

~  ~  ~ |  

 ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  ~  ~  ~ |  ~  

~  ~  ~ |  

selected struct members: 

  adapterid=0, args buffer address=0x2983a78, message start 

address=0x2983a60 

print message buffer: returing from printbuffer 

Table 3 – Example Argmessage message buffer 

 

The printout, which is of course reminiscent of the hexdump utility, shows all the 

bytes of the message in hexadecimal byte values, and below that the text 

equivalents. The first 24 bytes, comprising six 4-byte integers, are the fixed data 

items, with the remainder being the flexible argument buffer part. The fixed items 

are named in the line above. The tilde (“~”) symbol is for padding the print display 

with items beyond the end of the message (the messages are of variable length, 

but the print is not), and if the bytes have no text equivalent they are shown as 

blank spaces. On receipt the message buffer is cast into a C struct, and the items 

at the end of the printout are printed from that. This deals with the items of the 

fixed header part – the second flexible part is decoded subsequently. 
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More details of the data items in the message buffer are given in Table 4. 

Message size  the total number of bytes in the header and the argument 

buffer 

Proxy ID and 

Adapter ID  

as explained later, the library can handle having multiple 

instances of the proxy and the adapter objects at the client 

and server ends, respectively. 

Proxy sequence 

number  

a serial number for the messages issued by a proxy 

object. This is useful for debugging and maintaining the 

correctness of the program executed on the server as 

intended by the client. The functions executed on the 

server must be executed in a correct order. The server 

checks that messages arrive in the order they are sent and 

raises a fatal error if they are not. Such a constraint is a 

good starting point for debugging and understanding 

behaviour of the library, but it is envisaged that it could be 

relaxed if need be. 

Function ID  identifies which one of the user-supplied remote functions 

is to be called on the server side. Argmessage’s 

housekeeping messages also have these, but of course 

with different values from those for the user’s functions.  

Argbuffsize  gives the size in bytes of the remainder of the message, 

which is the set of arguments to be passed to the function 

to be called.  

Argbuff A variable length field which is the packed arguments of 

the function to be called, 

(not labelled in Table 3 per se but visible as the second 

and subsequent data lines).  

Table 4 – Argmessage buffer fields 

6.4. Modules of Argmessage and Operation 

Figure 6 is a block diagram showing the code modules and data structures of the 

Argmessage library. An application using the library runs as two processes:  a 

client process (the large grey box on the left) and a server process (the large blue 
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box on the right).  In the main use of this library in this thesis, the user 

application, e.g., some scientific computation, runs on a host compute node, 

while the server typically runs on a BlueField card installed on that host.  

The overall functionality provided by Argmessage is for the user application main 

code (top left in the Figure) to be able to call the user function remote code 

(bottom right) on the server, preferably just using a simple function call, 

transparently giving the same appearance as if the call were local. 

The user function remote code on the server is provided by the user, rather than 

by Argmessage per se, and provides a set of functions needed by the user 

application. The diagram shows the core code of Argmessage in green and some 

functions provided by the user in orange. On the client side the user application 

code could use the core facilities of the Argmessage library directly; it is however 

logically much clearer for the user to provide the user library public interface 

comprising a set of function calls to operate the Argmessage library, thus 

providing the transparent interface. If the user is converting a library of functions 

that previously executed in the client process, then, in general, the functions of 

that library can be used to provide the remote user functions on the server side 

and the interface of the existing can be reproduced as the user library public 

Figure 6 – Modules of the Argmessage library 
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interface on the client side. This pattern is used in the main application of 

Argmessage in this thesis.  

The terms proxy object and adapter object are used in the diagram. These 

names are explained as follows (following the terminology of [42]). The proxy 

object is so named because, at least wrapped in the user library public interface, 

it stands on the client side for the remote library of functions, providing the 

transparency property. The adapter object is named that because it adapts the 

incoming messages from the client to the function library on the server side.  

So now, in detail, the operation of a call from the user application to one of the 

public interface functions is described, in sections 6.5 to 6.10. This is of course 

for the case where the programmer providing the public interface functions has 

used the Argmessage library as it is expected to be used. The first half of this 

operation follows the red arrows in the diagram. 

6.5. Packing functions 

In response to the main application code calling one of the public interface 

functions, that function first packs the arguments passed to it into the contiguous 

memory region Argbuff of an instance of the message buffer (section 6.3). 

Argmessage provides functions to do that packing for common function 

signatures. For example, pack functions for signatures comprising several 

different small counts of integer parameters are provided. If Argmessage does 

not include a packing function matching the public interface function’s signature, 

then the user must provide one, preferably using the helper functions provided in 

Argmessage, and following the pattern of the pack functions that it does provide. 

It is not necessary for the arguments to be arranged in the buffer in the order they 

appear in the function signature but that would be a helpful convention for a 

programmer to adopt, and indeed that convention is followed by the pack 

functions provided in Argmessage. In the uses to which Argmessage is put in this 

thesis, the arguments are simple atomic values. In principle there would be no 

problem with further arguments being added to the Argbuff buffer that were not 

provided in the public interface function call, so which would be retrieved or 

calculated from values somewhere else on the client side. 



71 

 

The pack function also sets some of the fixed fields in the header of the message 

buffer, namely the proxy and adapter IDs and the sizes. The function ID is set to 

whichever of the remote user functions it is desired to call and, in most cases, will 

be a constant for a particular one of the public interface functions. To aid the 

programmer to use the right function ID, a function index enum is declared, and is 

used both on the client and server sides.  

6.6. Sending the RPC request message 

Next, the public interface function called calls the argmessage_send() function 

associated with the previously initialised proxy object. This adds the sequence 

number to the message buffer and then sends it to the server process using 

OpenMPI. The network address of the server (the “rank” in OpenMPI 

terminology) is needed for that and has been established in an earlier 

initialisation phase.  

6.7. Receiving RPC requests 

On receipt at the server, the message is picked up by an 

argmessage_consumemessage() function and the server then uses it to call the 

correct remote user function on the server, as follows. A previously prepared 

function table on the server comprises an entry for each remote user function, 

comprising a pointer to the remote user function and a pointer to an unpack and 

call function appropriate to the signature of the remote user function. The 

argmessage_consumemessage() function uses the function ID in the received 

message to retrieve those, and calls the unpack and call function, which, in turn, 

unpacks the arguments from the Argbuff section of the incoming message and 

calls the function pointed to with those arguments. As with the pack functions on 

the client side, Argmessage provides unpack and call functions for common 

function signatures, and again, if a user remote function needs a signature that 

has not been provided for, then the user will need to provide one. Again, the 

unpack and call functions provided with Argmessage follow the convention that 

arguments are applied to the user remote function in the order in which they are 

arranged in Argbuff. 
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Before calling the remote function, argmessage_consumemessage() checks the 

sequence number of the message to ensure that it is indeed the next in the 

sequence. The user program does not supply Argmessage with any information 

as to which order the remote functions should be executed for correctness. It is 

therefore assumed that the calls to the user library interface will be made in a 

correct order and Argmessage then executes the corresponding remote functions 

in that order. MPI guarantees the order of messages [43],  see section 3.5, and 

so no issues in this respect were encountered, but the check could well prove 

useful if the messaging is converted to some other library. 

6.8. Remote user functions 

The remote user function may well need to access to some state to interact with. 

This state can be attached to the adapter object on the server (see also Appendix 

A). This is certainly done in the Qsargm application described in later sections, 

but it would also be possible for the adapter to interact with other data either in 

other processes on the server or even on other machines further afield.  

In Argmessage it is allowed for the remote user functions to have a return type or 

not.  

If there is no return type, processing ends there on the server, and on the client 

the public function does not wait for a reply and continues its processing, by 

returning to the main user application. Thus, for such calls the processing time for 

the call on the server and possibly some of the overhead of the messaging 

introduced by Argmessage is not experienced by the user application program. 

This is because the processing occurs in parallel with the application program on 

another processor. Nonetheless, there will be some overhead of the messaging 

because the proxy does have to call the functions of the underlying messaging 

library.  

6.9. Reply messages 

If there is a return type, a message containing it is sent back using a similar 

process as before (there are no arrows in the Figure for this stage). The return 

value is packed into a message, which is sent back to the client using OpenMPI. 

There the public interface function that started the whole call is waiting to receive 
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it and once it does, it unpacks the value and returns it as the return type of that 

public interface function.  

If a function would naturally return a pointer to some data on the server, then the 

programmer would have some more analysis to do, since, at the client the data 

would not be directly available. The data could, for example, be packaged into 

the return message rather than the reference, but then of course the data might 

then only be a snapshot of the authentic current data on the server. Further 

functions to access the data with the pointer may have to be added to the user 

library. 

6.10. Relationship between public interface and remote functions 

Typically, the relationship of user library public interface functions to remote user 

functions is 1:1, but it may be convenient in some cases for this to be 1:many. 

This will depend on the particular user library being implemented and on the 

programmer’s design choices. 

Also, an analysis of the problem to be solved by the user library could, depending 

on the case, suggest that some of the processing of the public interface functions 

(in part or the whole) would be better carried out on the client. In that case local 

function code (bottom left in the diagram) can be provided on the client. This may 

be called before sending the message to the server and/or after receiving the 

response message as needed. Such code may need to refer to some state data. 

This state may be internal and so could be attached to the proxy object, but is not 

shown as so attached because another possibility is that the state could be some 

values in the main application to be referred to or updated. The latter would break 

a pure function call pattern of the user library public interface, but on the other 

hand it is not uncommon for functions in C to interact with global variables.  

6.11. Appendix material on Argmessage 

Further information useful to a programmer using Argmessage is to be found in 

Appendix A, which covers initialisation and finalisation of the various components 

and considerations for launching programs using it. Appendix B includes remarks 

on compiling Argmessage. 
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6.12. Potential uses of multiple adapters 

One instance of the Argmessage server will support multiple adapters. The 

Argmessage server will service multiple clients, one per rank, and initialises a 

fixed number of adapters for each proxy. As it stands all of these are initialised 

with the same user library functions, just in case a proxy needs more than one 

instance of the library – for example if the user library has some main object that 

needs to be instantiated to operate and each of instance of this can then be kept 

by a respective adapter object. The proxy specifies the index of the one of its 

adapters that it wants to use in each call to the server. The number of adapters 

per proxy is defined by a C macro, so this may be tuned for a particular 

application, or indeed it could be replaced by a runtime parameter supplied to the 

Argmessage initialisation functions.  

If the server is required to support more than one user library, then the remote 

user functions from all of those should be compiled with the server, but the server 

initialisation should be changed to map the functions of each user library to 

different ones of the adapters. It would also be possible in this way to map 

different user libraries to different ones of the clients if desired, so if the different 

clients had different roles.  

6.13. Potential uses of multiple clients 

Allowing for multiple ranks to share the Argmessage server was provided with 

two particular purposes in mind. A first one is that the server machine may, 

depending on the application, be powerful enough to service more than one 

client. So, for the example of a BlueField card, if these were provided in a cluster 

at a density of less than one per host machine, then several host machines could 

share the server as a common resource.  

The other purpose would be a way to support cooperative processing of 

information at the server from various ranks. The particular application of that in 

mind is an extension for the QuickSched application – adapters for several ranks 

would be keeping their progress information in the same place making that 

readily available to make quick cooperative decisions about cooperation on tasks, 

for example, for arranging work stealing between nodes.   



75 

 

6.14. Providing for multiply threaded client applications 

Applications based on the QuickSched library are natively multithreaded. 

Argmessage will support multiply threaded applications, but this needs some 

additions to the code described so far. A first problem is that Argmessage uses 

an underlying messaging library, so if an application has multiple threads that are 

going to make use of that by sending RPC messages to the Argmessage server 

then the underlying messaging library must be able to support that. The 

underlying messaging library used here, OpenMPI, fortunately supports it. 

Accordingly, the multithreaded version of OpenMPI was used. In addition to 

selecting the correct build options for OpenMPI, this only requires changing the 

MPI_Init() call to MPI_Init_thread(). This has a parameter to select between three 

modes of multithreaded operation for the MPI library [44]; 

MPI_THREAD_MULTIPLE was selected because this allows all threads to issue 

calls to the library with unrestricted timing, so on the face of it seems to promise 

not holding up any of the user threads, which is what is desired for this project. 

On the other hand, this option must be the most challenging for the OpenMPI 

code to handle so it could result in more overhead or blockages than the others. 

It was not however tested whether the other options in fact performed better in 

actual uses of Argmessage, but rather it was trusted that the issues of competing 

amongst threads for messaging resources had been better solved by the 

OpenMPI library authors than my trying to do so.  

With that in place and with the general architecture of Argmessage described in 

this Chapter, Argmessage can easily support a multithreaded client library, e.g., 

QuickSched, since each call to the client library from whatever thread simply 

translates the call into an OpenMPI send, which can cope with concurrent 

threads. Any concurrency issues in the values of the parameters packed into 

those OpenMPI messages will generally have existed in the original client library 

and will have been solved already to that extent.  

6.15. Multithreaded server operation 

In the earlier experiments performed, Argmessage and Qsargm, which is a 

version of QuickSched using Argmessage developed in this project, were 
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operated with a single threaded server.  Multithreaded operation is discussed in 

section 7.10. 

6.16. Main use of Argmessage in this work 

The main user library to which Argmessage was applied in this work was, of 

course, the QuickSched library. The next chapter describes how Argmessage 

was applied to it; this also discusses some modifications that were found to be 

needed to Argmessage in order to support QuickSched. 
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7. Qsargm: application of Argmessage to QuickSched 

Chapter 5 was an analysis of how the QuickSched library might be split into client 

and server portions and Chapter 6 described a new RPC library, Argmessage, 

designed to handle the communications between those two portions. This 

chapter explains how Argmessage was applied to QuickSched. The resultant 

library is called Qsargm. This process also revealed that some further changes 

were needed to Argmessage to support QuickSched and these are also 

discussed.  

It was proposed that the split of the QuickSched library for the task run phase of 

its operation should be to have on the server both the principal data structures of 

the task graph and the queue data and their attendant processing, while the client 

only operates in the function qsched_run() to set up / destroy the threads and to 

execute allocated tasks, while sending between them messages representing the 

qsched_gettask() and qsched_done() function calls to the scheduler on the 

server. Those latter two function calls were therefore implemented as RPC calls 

using Argmessage. This arrangement is illustrated in Figure 7. This is similar to 

Figure 6 of the last chapter but redrawn to show this split of the QuickSched user 

library functions and their principal data structures (but with some of the 

Argmessage machinery simplified). 
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Figure 7 – Qsargm: Argmessage applied to QuickSched 

As may be seen, in the task run phase, the user application calls the public 

interface function qsched_run() and this then operates to keep the host 

cores/threads occupied with tasks, which it obtains from the scheduler on the 

server by calling qsched_gettask(), with it notifying the scheduler of completed 

tasks by calling qsched_done(). 

Each of the public interface functions of QuickSched was implemented as an 

RPC call to the server. These included all the functions used to build the task 

graph. This choice, as discussed in sections 13.2 and 14.3, results in many 

messages being necessary to build the task graph representation on the server, 

and hence poor performance. Nonetheless, converting the library in that way was 

straightforward and mechanistic, so increasing the chances that the converted 

library would operate correctly, which was achieved.  

In the archive, the code files for Qsargm are to be found mainly in the directory 

qs/src. The original QuickSched library is in the directory qsoriginal/src and the 

code there is utilised by the converted library.  

This original QuickSched library is unmodified, except for the renaming of many 

of its functions by adding the prefix “loc_” (see these on the server side in Figure 
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7) and some of the files with the suffix “_local”. These names are to suggest that 

the function will operate in the local process (on the server), rather than making 

an RPC call. The transformation into Qsargm therefore, as a general rule, just 

uses Argmessage to change where in the system they are located, with 

qsched_run() being the main exception to that. Both of these are described in 

detail in the sections 7.1 to 7.4. 

7.1. Public interface functions 

In Qsargm, the file qsched.h contains prototypes for the public interface functions 

with the same names as in the original QuickSched. In this way any user 

application program using QuickSched can use Qsargm without changing the 

function names.  

However, since the experiments on the library will compare the performance of 

Qsargm to the original library, each implementation of those functions in qsched.c 

does not immediately carry out the operations of QuickSched via RPC but first 

provides a switch between: (a) calls to the Qsargm versions of the functions, 

which make use of RPC calls to the server as appropriate, and (b) calls to the 

original functions, whose names are now prefixed with “loc_”. The switch 

switches between them at run time in accordance with a global variable 

activestrategy, which is constant for any particular run of the application code, so 

that any particular run provides results for either the original, QuickSched, or the 

new, Qsargm, version of the library. To avoid confusion this second use (b) is not 

shown in Figure 7. 

In use (a), the new library, each public interface function calls a similarly named 

function, but prefixed with “qsargmproxy0” rather than “qsched”, and these are in 

the file qsargm_proxy0.c. The code of each such function has the form of an RPC 

call, and so packing the arguments of the function into an Argmessage buffer in 

the manner described in the previous Chapter, which is then sent to the 

Argmessage server with the function argmessage_proxysendfunction(). (Refer 

back to Figure 6.)  

For functions that have a return type, that is obtained by immediately calling 

argmessage_proxyreceivefunctionresult() and unpacking the result from the reply 
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message buffer, once it is received, and using that as the return value of the 

function. Although the call is made immediately the reply message will, of course, 

not come back immediately and so the client waits here for the server to respond.  

On the server side, counterpart functions were provided for each of the public 

interface functions, with similar names but prefixed “qsargmadapter0”, and having 

the same signature except an additional parameter of the adapter id, and these 

are in the file qsargm_adapter0.c. The adapter id is used to retrieve the state of 

the QuickSched library, and the counterpart then calls the original QuickSched 

library function with a reference to the retrieved state. Conveniently for achieving 

that, the original QuickSched library defined a main singleton object, of type 

struct qsched, to contain its state and required a reference this object to be 

passed to each of its functions, so that object was attached to the adapter object. 

In that way, it was quite straightforward to reproduce exactly the same operation 

of the scheduler functions on the server, because they use the same code and 

the same data. 

The remote counterparts to qsched_init() and  qsched free(), and 

qsched_addtask() and qsched_gettask() were also modified, but the changes 

were not particularly significant.  

qsargmadapter0_addtask() was changed only to initialise a new task with 

additional fields of the size of the task data and a record of its own id. The point 

of this is described in the section 7.4 on qsargmproxy0_run_openmp(), in 

particular the part relating to qsargmadapter0_gettask().  

7.2. Pack and call functions 

It was mentioned in Chapter 6 that Argmessage requires a client library that is 

using it to define pack functions and call functions for any function signatures for 

which it did not provide those itself. In converting QuickSched it was needed to 

provide those for the qsched_addtask() function, because it uses a pointer to a 

small array of data (the definition of the task), whose individual items are packed 

into the Argmessage message (section 6.5) and at the server side are unpacked 

into a new array at the client side.  
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7.3. Client and server programs and initialisation and finalisation of qsargm  

A client program developed for the Qsargm library was 

qs/examples/qsargm_test_qr, and was the one that was used in the performance 

measurements. This was developed from the QR factorisation test supplied with 

the original QuickSched.  

Its initialisation and finalisation were adapted to use the Qsargm library, instead 

of the original QuickSched library, simply by  

• replacing the QuickSched library with the Qsargm library, which, as 

described has the same interface, but which makes RPC calls using the 

Argmessage library to a remote instance of the QuickSched library.  

• providing the Argmessage initialisation and finalisation statements for an 

Argmessage client, as described in Appendix A at section 17.1. 

The counterpart server program qs/src/qsargm_server.c  

• was provided with the Argmessage general initialisation and finalisation 

statements for an Argmessage server, 

• included the original QuickSched library and include statement, 

• and was provided with a function 

qsargmadapter0_serverregisterfunctions(), which initialises the table of 

functions used in the Argmessage server when unpacking the RPC 

messages and calling the library function requested, with of course entries 

pointing at the original QuickSched functions. 

7.4. Converting qsched_run() 

As noted at section 5.15, this function has its operations split between the client 

and server. The version of the client-side function qsargmproxy0_run_openmp() 

part of that is discussed, since the pthreads option was not investigated. That 

function like its original, qsched_run_openmp(), calls the function to prepare the 

scheduler and then starts a set of parallel OpenMP threads equal in number to 

the cores assigned to the client process and to the number of queues. Each 

thread has its own respective core to run tasks on the client and its own 

respective task queue on the server. Each thread on the client executes the 
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same loop of getting a task from the scheduler, executing it, and then reporting to 

the scheduler that the task has been completed.  

The prepare operation is in relation to the task graph tables and queues and was 

described in the earlier chapter on the analysis of QuickSched. Since it was 

decided to put these on the server then this is implemented in 

qsargmproxy0_run_openmp() by an Argmessage RPC call to call on the server 

qsargmadapter0_prepare(), which, in turn, simply calls an unchanged 

loc_qsched_prepare(). 

The loop of getting a task from the scheduler, executing it, and then reporting to 

the scheduler that the task was implemented as follows. First, an Argmessage 

RPC call to qsargmadapter0_gettask(), which operates, as the original generally 

does to return a task, which is then communicated to the client in the return 

message. Second, the task is executed in the client thread just as in the original. 

Third, an RPC call is made to report that execution of the task is complete, to 

qsargmadapter0_done(). This call generates no reply.  

The introduction of messaging between client and server at these points does, 

however, amount to significant difference in the mechanics of the interaction of 

the threads and the scheduler compared to the original QuickSched, significant 

enough to require further modifications to Argmessage and some details of 

QuickSched itself. In the original QuickSched each thread in effect becomes the 

scheduler when it is not executing a task. In contrast, in Qsargm the scheduler is 

in a separate process elsewhere and needs messages between the threads and 

the scheduler. A number of issues were recognised, and modifications made.   

The original qsched_gettask() returned a pointer to a task, and the original 

qsched_run_openmp() ran that task using a pointer to the task parameter data 

looked up in the task table entry for the task. In Qsargm, this would have required 

lookup from the client to the server, and so more messages between the client 

and server; so, to obviate and pre-empt that in Qsargm, in 

qsargmadapter0_gettask() on the server, the task data is looked up there and 

packed, with the task id also, into that function’s reply message, thereby limiting 

this operation to a single RPC message and reply. qsargmproxy0_run_openmp() 
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receives the task id but has no use for it now to look up the data, but the task id is 

used to encode in that message whether the task graph has issued all its tasks, 

with a special code of for the task id (-1 to avoid the positive values used for the 

task ids of actual tasks).  

In the discussion of Figure 4 in Chapter 5 on the analysis of QuickSched, it can 

be seen that the threads interrogate the task queues for the next task to execute, 

and in the call graph of Figure 5 it can be seen that that is done by the function 

queue_get(). That suggests that an alternative place to split the 

qsched_run_openmp() function between client and server might be at the 

queue_get() calls. This, however, would be more inefficient, which is explained as 

follows.  Interrogating a queue can fail in a number of ways: the queue(s) can be 

locked because other threads are modifying them, because another thread has 

locked a task in the queue (see inside function queue_get()), and because there 

are no tasks in the queues at present, which could be the case if the scheduler 

has not finished moving to the queues tasks that have recently become ready 

tasks. qsched_gettask() responds to these failures by trying again until a task is 

eventually obtained. There could be several such attempts, and each would 

require a message and reply between the client and server if the split were made 

at queue_get(). However, the thread cannot be put to any useful work until 

gettask is successful in obtaining a task, so it is better for that period of waiting to 

involve just the single message and reply that is needed by the gettask split.  

7.5. Single threaded operation 

QuickSched is of course intended to operate in a multithreaded manner: the 

essence of QuickSched is to supply tasks to multiple parallel threads, and each 

thread can concurrently become the scheduler as needed (with the exception that 

some operations within the scheduler are protected from concurrent updates with 

locks). Nonetheless, the operation of Qsargm was first debugged and verified 

using single threaded operation, on both the client and the server because it is 

much easier to follow what was happening in that case. 
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7.6. Supporting multithreaded operation 

Moving to multithreaded operation presented both some design choices to make 

and problems to solve. In the original QuickSched there is only one pool of 

threads, those that execute the tasks and that each become the scheduler when 

a new task is needed. In Qsargm there are now two pools: i.e., the pool on the 

host that executes the tasks, as before, but now there is potentially a second 

independent pool on the server to execute the scheduler.  

7.7. Reply tagging 

A modification that was needed here was to ensure that each thread on the host 

receives the correct reply to each of its RPC call (for those that have a reply). The 

potential problem is that two threads may both be waiting to receive a reply, so 

could, if the matter were not attended to, receive the reply intended for the other.  

OpenMPI was used for the messaging and was used with the kind of 

multithreading provided by initialising with the constant 

MPI_THREAD_MULTIPLE. This was chosen from the options available so that 

Qsargm could pass on its RPC calls, made with MPI_Send(), to the underlying 

OpenMPI library in the simplest and quickest way, the assumption being that the 

OpenMPI library would sort out the basic concurrent messaging issues more 

efficiently than any effort that might be made in this project.  

MPI allows a receive operation to select a message on the basis of a tag 

attached to the message on the send side. This mechanism was used in 

Argmessage to ensure that each thread on the server receives only its own RPC 

replies. The mechanism should be efficient as it is hardware based. Specifically, 

Argmessage RPC requests are marked with the unique omp_thread_num of the 

thread and that identifier is applied to the reply as the MPI tag and the thread 

listens for that tag in its receive operation for the reply.  

An extra field was added to the fixed header of the Argmessage message buffer, 

namely the omp_thread_num identifier, of the outgoing RPC request to provide a 

way for the scheduler to know which tag to apply to the reply. The scheduler on 

the server is set to receive RPC messages from any thread – as noted in section 

7.8, a one-to-one relationship between client and server threads was rejected.  
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This tag field of MPI is a separate parameter of MPI function calls, i.e., it is 

outside of the message buffer. This is contrary to the goal advanced in Chapter 6, 

of keeping as much information as possible in the Argmessage message buffer 

so that the messaging library can be changed as easily as possible. This tag 

mechanism for directing the RPC replies to the correct thread is therefore noted 

as something that will require specific implementation if the underlying messaging 

library is changed, whether that is by analogous interaction with the messaging 

library per se if it has suitable features, or by handling the issue somehow in 

Argmessage itself. However, not only is the tag feature of MPI longstanding and 

so should be efficient, but hardware tag matching is now available.  

7.8. Number of server threads 

It was recognised that operating the scheduler in an analogous way to the 

original QuickSched with the scheduler having a fixed respective thread for each 

queue / task executing client thread was not going to be appropriate.  

A first point is that a thread only operates as the scheduler for a small fraction of 

the time, compared to task execution, so the scheduler would only use each 

thread of the server pool for that small fraction of the time, which is very 

inefficient. A second point is that in the typical use, an x86 compute host and a 

BlueField card, the number of cores on the host will typically be much larger than 

on the BlueField, so this one-to-one mapping would not even be possible.  

The goal should be to use as few threads on the BlueField as possible without it 

becoming “overloaded”, so that the other BlueField cores could be put to some 

other use. (“Overloading” would manifest as a growing queue of RPC messages 

to the server that need servicing by the scheduler.) 

7.9. Single server thread and doevents mechanism 

Nonetheless, although it might cause some extra delay to replies to simultaneous 

gettask requests, and hence reduction of efficiency of task execution on the 

compute host, the first multithreaded configuration tried was multiple threads on 

the host serviced by only a single thread on the BlueField. Again, this was for 

simplicity of debugging and following what was going on.  
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This, however, led to a condition in which the operation of the scheduler came to 

a halt. Gregory Andrews, in his book, “Concurrent programming – Principles and 

Practice” [45], defines deadlock thus, “A process is in a deadlock state if it is 

blocked waiting for a condition that will never come true” and livelock thus “A 

process is livelocked if it is spinning while waiting for a condition that will never 

come true.” This was a livelock. The problem found occurred when the scheduler 

queues became empty and there was a gettask message at the head of the 

received queue of messages, when the task done message that would allow 

creation of more ready tasks was behind it. In the server, the processing of the 

gettask request is to repeatedly interrogate the ready task queues, which 

therefore remain empty. 

The solution found to this problem was for the scheduler on the server, when 

processing a gettask request, and on finding that there are no ready tasks 

available, to listen again for the next message from the client and process it, in 

the hope that the next message is a task done message which may well then free 

up at least one new ready task. This was achieved by the 

argmessage_consumemessage() function calling itself. If the next message 

received by the next level of argmessage_consumemessage() is a task done 

message, the new ready task(s) are then found by the server, and the gettask 

request is then responded to in the lower level of 

argmessage_consumemessage(). 

If it happens that the next message received by the recursively called 

argmessage_consumemessage() is also a gettask then the recursion is repeated. 

This recursive process does not however go on forever. Each client thread can 

only send one gettask at a time; it must wait for a reply before it sends any more 

messages. (This may leave several gettask requests outstanding at end of the 

task graph. At this point the server takes its usual action of replying with the  

special task id code indicating that the task graph is finished, and the client 

thread reacts by ending its processing of tasks.) 

(The term used in the code in relation to this mechanism is “doevents”, after the 

similarly named function in the Visual Basic.) 
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7.10. Multithreaded Argmessage and Qsargm server operation 

Multithreaded server operation was also experimented with, but this needed 

further improvements over the “doevents” mechanism described at 7.9.  

The general approach for this was to set each server thread to independently 

listen for messages from the client, with a blocking MPI_Recv, with each listener 

then processing whatever message the underlying OpenMPI messaging library 

choose to present to it from its queue of received messages, with the server 

thread thereafter returning immediately to listening. So, this again utilised the 

MPI_THREAD_MULTIPLE version of OpenMPI multithreading. 

The aim (achieved) was also for the threads to operate in a symmetrical manner, 

i.e., all using that policy, rather than, e.g., some scheme in which one or more 

threads listened and then farmed out the processing of the messages to other 

threads. Such a symmetrical arrangement was imagined to be simpler to program 

and would require less thinking about how to scale to different numbers of 

threads. 

However, there was again a problem, when ready tasks were scarce, of the 

scheduler becoming locked, this time deadlocked. It was found that, when a task 

done message was received by a listening thread on the server, server threads 

processing get task messages were finding none available. The cause was that 

scheduler data was being locked by a thread processing the task done message, 

causing threads processing gettask messages to revert immediately to listening. 

This absorbed any further get task requests, with the same return to listening 

happening again. The resultant state was that all the client threads were left 

waiting for a reply to get task, while all the server threads were paused listening 

for new messages. The server thread processing the task done message did, of 

course, supply new ready tasks to the task queues but by that stage all the other 

server threads were listening again; the task done server thread also returned to 

listening but the client threads would not then issue further get tasks as they were 

waiting for a reply to one they had just issued.  

This problem was overcome with a new strategy, which was for get task 

processing by each server thread not to immediately listen again when no ready 
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task could be retrieved, but to inspect, or peek into, the incoming OpenMPI 

message queue to see if a task done message had arrived and if so, processing 

that. If not, the server thread polls for ready tasks. This cycle of peeking and 

polling is repeated until a ready task is retrieved from the scheduler queues, at 

which point the retrieved task is returned to the client and the server thread 

listens again for another message.   

(OpenMPI provides non-blocking probe functions to inspect the received 

incoming messages and such messages may be filtered by the MPI tag; 

Argmessage messages from the client are tagged by their type, and that was 

used to find the task done type messages. The MPI_Improbe version of the 

probe function was used; ‘I’ in the name is the non-blocking version, and ‘m’ in 

the name means that the function both returns a handle to the message it finds 

and reserves the found message found to be received by a subsequent OpenMPI 

receive statement quoting the handle. This solves the problem that an attempt to 

receive the message would fail if another thread had received it in the meantime.)  

7.11. Closing open listeners after the end of the task graph. 

There will of course come a time when all tasks have been exhausted and that 

often occurred while some server threads were in the listening state. These were 

satisfied by the expedient of sending no operation messages from the client to 

the server. The number of messages needed was not accurately determined but 

rather enough were sent to satisfy the maximum conceivable number of listening 

threads, with that being the number of server threads minus one (one thread will 

be needed to process Argmessage termination messages). This number of 

messages was communicated by adding a reply, containing that number, to the 

kill adapter message, which previously did not have any reply. 

7.12. A Qsargm problem –  taskgraph build is single threaded 

Another problem with multithreading the server was that during the build task 

phase the order of the function calls does matter, in that some of those function 

calls require arguments that are handles for items already created in the 

scheduler. The example of QR factorisation (discussed in Chapter 8) used a 
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single threaded program section to build the task graph to ensure that the order 

of the task build messages was preserved.  

In order to mirror this behaviour on the server a modification was made, which 

was to divide the server operation between a first single threaded phase to 

handle the task graph build phase and a multithreaded phase to handle the task 

graph run phase.  

7.13. An observation on Argmessage messages having no reply 

It was observed that a feature of errors arising when the server was first run in a 

multithreaded manner was that they were related to Argmessage messages, e.g., 

task done, that did not, unlike the prototypical RPC, have a return message. This 

is understandable in that it causes more uncertainly about the order of the 

processing of the messages on the server. For example, a client thread, once it 

has sent a task done, will immediately send a get task, which therefore on the 

server will both be immediately received, but on different server threads; so those 

will be processed on the server concurrently. Whereas, if the task done had a 

reply the get task would not be issued until the client thread has received the 

reply, or if the server was single threaded it would process the task done and get 

task in the order they were issued (since MPI guarantees, in general, to preserve 

the message order). 
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8. Test example of an application: Tiled QR factorisation 

8.1. Selecting an application for performance testing 

A task-based computation was needed to test the performance of the of the 

Qsargm library. The original QuickSched library came with several examples. 

The tiled QR factorisation was selected and has the following useful properties.  

• The result computation is always the same, making it a good regression 

test. As noted earlier the example came with a test that uses another 

computational method to verify the result, hence providing strong evidence 

that the calculation proceeded as intended. This test is quick to repeat 

when the code or the libraries have been updated.  

• The kernels always perform the same computational operations. This 

would mean that the variation in the execution times of the kernels would 

be small, so less likely to swamp the difference in performance between 

Qsargm and the original QuickSched. (The processors used do, in 

general, adjust their clock speeds dynamically, in response to the load, but 

not necessarily in a repeatable manner, and so variation in execution time, 

as measured in real world time (or wall time), could result, since, of 

course, instructions execute at a rate determined by the processor clock.) 

• It has an internal parameter, the tile size, that can be optimised with 

respect to the performance of the scheduling algorithm, both for the 

original QuickSched and the new Qsargm library. The tile size parameter 

also affects the size of the tasks, and relatedly the number of tasks in the 

task graph.  

8.2. What is tiled QR factorisation? 

A QR factorisation of a matrix is its factorisation into the product of an orthogonal 

matrix Q and an upper triangular matrix R. The factorisation is widely used and 

useful enough to appear in linear algebra computation libraries such as LAPACK 

and Mathematica [46] and Eigen [47]. According to the LAPACK manual [48] this 

usefulness includes, “Orthogonal factorizations are used in the solution of linear 

least squares problems. They may also be used to perform preliminary steps in 
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the solution of eigenvalue or singular value problems”, with the Mathematica 

manual giving similar applications.  

“Tiled” refers to splitting the matrix to be factorised into a grid of blocks, or tiles, 

and organising the computation around operations on those tiles. Fortunately, 

such an algorithm exists, but for the present purposes it is not necessary to 

understand why exactly the operations of the algorithm achieve a QR 

factorisation. Each of these operations on the tiles provides, however, a task that 

may be scheduled in a task-based manner. It is the scheduling of these tasks 

which is studied in this project. How the QR factorisation is actually achieved is, 

however, explained in a paper by Buttari et al [49], which is also cited by [16] and 

[50], the latter being a paper very similar to one to be found in the documentation 

in the original QuickSched repository [15]. 

The pattern of operations on the tiles by this algorithm, and hence its task graph, 

is now explained with reference to these documents. This gives a concrete 

example of a task graph. (Section 9.3 explains that there was a difficulty with the 

tasks generated by the QuickSched code in its QR factorisation example; the 

task graph pattern shown here provides a basis for understanding that.)  

Figure 4.10 from [16] or Figure 7 from [50], which are the same, and which it will 

be helpful to have in view, show a 4 by 4 grid of tiles of matrix elements of the 

matrix to be factorised. These are operated on by the kernels of the tasks. [16]  

and [50] explain the algorithm via a number of “levels”, each of which is a high-

level sweep across all the tiles, and which are also the index of the outermost for 

loop of the task building code. In each level the processing of the top row and left 

column of the active tiles of the level reach their final form and are omitted from 

the active tiles of the next level. 
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Pseudocode for the algorithm is given in Table 5: 

for each level k in 1..n, where the matrix has n x n tiles, with parallelism at *:  

 (i) perform the function task S/DGEQRF (red)   

     on data of tile(tile_row = k, tile_column = k), 

 then (ii) {   

(a) { for each column c in k+1..n, in parallel: 

   perform S/DLARFT (green) on data of tile(k,c),    

      using also the upper right potion of tile(k,k) }  

  and (b), in parallel with (a), 

   { for each row r in k+1..n, in sequence: 

   perform S/DTSQRF (blue) on tile(r,k) and on lower left of tile(k,k), 

    and then  { for each column c in k + 1, in parallel: 

      perform S/DSSRFT(yellow) on tile(r,c) and  

       on tile(k,c) and using tile(r,k) (but only  

     once S/DLARFT or S/DSSRFT operating 

       in level k on tile(r-1,c) has completed) 

     } 

   } 

      } 

but for k = n: only perform S/DGEQRF (red) on data of tile(n, n) 

 

* parallelism for level k: wherein if the function tasks on a preceding level k-1 

have completed writing to the particular input data of function tasks on the next 

level k, those particular functions may begin before all function tasks on level k-1 

have completed, once also the dependencies of their own level k have been met. 

Table 5 – Pseudocode for tiled QR factorisation 

where the function names follow Chalk’s and hence LAPACK’s naming scheme, 

with ‘S’ and ‘D’ refer to single and double value types. Figure 4.10/Figure 7 of 

those cited references also shows, with arrows, the dependencies in the task 
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graph between these function tasks. The colouring of the functions in Table 5 

matches that of the tasks in those Figures.  

Figure 8 represents the same tasks as a task graph, but which I derived, in order 

to check, from the task creation code in the original QuickSched QR factorisation 

example (archive:expt0078/original_qs_for_ref/quicksched-

1.1.0/examples/test_qr.c), but with the correction to be explained in section 9.3. 

In the Figure the nodes (ovals) again represent the tasks and the edges 

represent their dependencies in the task graph; again the tasks’ colours 

represent the particular kernel function used (using the same scheme as Figure 

4.10/Figure 7), but each task is now marked with the identity of the first tile 

mentioned after each function in Table 5 (again according to the Figure 

4.10/Figure 7 scheme). With the correction the dependencies in this Figure 8 

match to those in Figure 4.10/Figure 7. Finally, the nodes have been grouped into 

respective boxes for each level to aid comparison with that, but otherwise the 

tasks were laid out by Graphviz to accommodate the dependencies. As with 

Figure 4.10/Figure 7, there are 16 tiles in a 4 by 4 grid. 

 

Figure 8 – Correct task graph of QR factorisation example (n=4, so 4 x 4 tiles) 
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A different layout of Figure 8 is given in Figure 9, namely with the grouping of 

nodes into levels removed.  

 

Figure 9 – Task graph of Figure 8 with no level grouping 

This perhaps even better illustrates that tasks from the different levels can be 

executed that the same time. 
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9. Verification and Validation  

9.1. Summary 

The operation of the various code modules of this project were verified as follows.  

The function of the basic Argmessage code (Chapter 6) was verified primarily 

with toy examples, described in section 9.2. These were mainly overall functional 

tests (although some intermediate values in the logs were also tested for). 

Explicit unit tests should be added if Argmessage is developed further with a view 

to supporting other distributed applications. However, Argmessage has a client 

and server architecture, and the overall function depends on the interaction 

between the two. Therefore, mocks [51] supplying incoming messages will be 

required for unit tests of the individual functions within the client and server. 

The Qsargm library is at a higher level than Argmessage and so for this 

functional testing was adopted. The main example used in the experiments to 

test performance of the code, the QR matrix factorisation, from the original 

QuickSched library and discussed in Chapter 8, came with a functional 

correctness test comparing the outputs of the QR factorisation using QuickSched 

to that of the same factorisation using a standard matrix library for equality. It was 

therefore convenient to use the same correctness test of the QR factorisation for 

the Qsargm library of this project. Therefore, this is a functional correctness test 

and is also a regression test in that Qsargm is expected to arrive at the same 

result as Quicksched for the same QR factorisation. The test is powerful in that it 

is a completely independent calculation of the result and can be rerun for many 

different random matrix inputs. Further since the output is two n × n matrices, so 

a large number of separate values, the test is likely to be sensitive to a wide 

range of potential errors in the code.  

That test and also the toy example tests of Argmessage were automated as 

pytest tests, to be found in the project archive at 

archive:expt0069/argmessageprivate/test_endtoend. Unfortunately, the original 

QR QuickSched library did not pass this overall functional test, so it was 

important to fix this issue, which was done as described in section 9.3 onwards. 
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The performance experiments conducted and discussed in Chapter 13 are 

measurements that rely on hardware timers, and on library functions to read 

them. These functions and timers were validated as described in section 11.7. 

9.2. Argmessage Toy examples  

Some toy applications of Argmessage were developed as both as tests of the 

Argmessage code, and as a demonstration to an application programmer of how 

to use the library and how it operates.  

A first toy example (archive:expt0069/argmessageprivate/examples/ex2) 

demonstrates just a server program with just the built-in Argmessage RPC 

functions and has a corresponding client program to call them. So, that is with no 

user library functions supplied. 

argmessageserverbare.c has the Argmessage library as an include and simply 

then makes calls to the library to initialise it, set it running and then finalises it. 

Accordingly, the server program therefore consists of just these calls: 

argmessage_serverenginegetobject() 

argmessage_serverengineechoenginestatus() 

argmessage_serverenginerun() 

argmessage_serverengineechoenginestatus() 

argmessage_serverenginefree() 

So, this is the basic server; just three function calls – the calls to 

argmessage_serverengineechoenginestatus() are not essential and just echo 

some status of the server for debugging purposes. 

The corresponding client program, argmessageclientsendstdout.c, is again basic 

and consists primarily of just these calls to the Argmessage library: 

argmessage_proxygetobject() 

argmessage_proxyechoproxystatusonproxy() 

argmessage_proxyrun() 

argmessage_proxysendstdoutmessage() 

argmessage_proxykillserverrequest() 

argmessage_proxykilladapter() 

argmessage_proxyechoproxystatusonproxy() 

argmessage_proxyfree() 

So again, these are calls to initialise the Argmessage library, to set it running and 

then to finalise it. (The calls to argmessage_proxyechoproxystatusonproxy() are 

also not essential; again, they echo some status for debugging and 
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demonstration purposes, but this time on the client.) It is the client’s responsibility 

to terminate the run phase of the server by issuing the calls to 

argmessage_proxykillserverrequest() and argmessage_proxykilladapter(). As an 

example, a single call is made to the server during the run phase, which is to 

argmessage_proxysendstdoutmessage(), which sends a message to the server 

causing it to call a corresponding built-in server function to print in its own stdout 

a text provided as the argument to the client function. That text is of course 

transmitted as the Argbuff of the Argmessage payload message.  

As the next example demonstrates, the client and server applications for cases 

where an actual user library based on Argmessage is implemented have the 

same basic structure as these examples. The purpose of this user library in this 

second toy example (archive:expt0069/argmessageprivate/examples/ex3) is to 

maintain a list of strings on the server and thus provides a programmer with an 

example to follow if they wish to create a library of RPC callable functions using 

Argmessage. The example comprises both library functions of the user library 

and example client and server programs using that. 

The library header file, argmuserlist.h, sets out many of the key components of 

the user library. These functions, declared therein, form the client-side public 

interface of the user library:  

struct argmuserlist_publiclist* argmuserlist_createlist() 
void argmuserlist_additem(struct argmuserlist_publiclist* list,  

                              char value[]) 

void argmuserlist_printatserver(struct argmuserlist_publiclist* list,  

                              int item_idx) 

char* argmuserlist_returnlistitem(struct argmuserlist_publiclist* list,  

                              int item_idx) 

Table 6 – Client-side public interface of the “user list” user library 

The toy purpose of the user library is to store and access a list of strings on the 

server, so the functions in Table 6 respectively operate: to begin a new list, to 

add an item to the list, to print a particular item at the server, and to return a 

particular item from the list to the client.  

Each of those functions has to be implemented by the user library programmer to 

send an appropriate message to the server to cause it to call a corresponding 

remote function on the server using the facilities provided by Argmessage.  
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Further, before they can be used the remote library functions need to be 

registered with the server adapters. For this the programmer of the user library 

has provided a function argmuserlist_serverregisterfunctions(), which registers 

them in the adapter function table in the same way as is done for the built-in 

functions, by calling argmessage_serverengineregisterfunction() for each 

function. argmuserlist_serverregisterfunctions() is called in the server program for 

this library, argmessageserverregisterfunctionslist.c described later in this 

section, just after the call to argmessage_serverenginegetobject(). 

The user library requires some initialisation on the server side, which is provided 

in the function argmuserlist_serversinit(), which attaches to each adapter a state 

object, of type struct argmuserlist_serverstate, which comprises a count of lists 

created by the user application and for each potential list up to a pre-set 

maximum, a state for that list comprising a pointer to the first item of the list and a 

count of the items in that list.   

Taking the first function of Table 6 as a first example of the client-side public 

interface functions, the code is:  

struct argmuserlist_publiclist* argmuserlist_createlist(){ 

    struct argmuserlist_privatelist* newitem =  

                     (struct argmuserlist_privatelist*)  

                      malloc(sizeof(struct argmuserlist_privatelist)); 

    newitem->itemcount = 0; 

    newitem->instance_id = argmlist_client_listcount; 

    /* call to proxy of argmessage proxy */ 

    struct argmessage_message * message = packunpack_dummypayload(); 

    message->functionid = createlist; 

    message->adapterid = proxy->myrank * ARGMESSAGE_ADAPTERS_PER_PROXY;  

      // in this example we are only using the zeroth adapter of this 

proxy 

    argmessage_proxysendfunction(message); 

    argmlist_client_listcount++; 

    return (struct argmuserlist_publiclist*) newitem;  

} 

In the centre of this is the call to function packunpack_dummypayload(). Its job is 

both to create the Argmessage message buffer and to fill in some of its data 

items. In particular, reflecting its name, it packs the arguments to be passed to 

the remote server function into the Argbuff section of the message buffer, and 

sets the Message size and Argbuffsize fields, as the values of those are now 
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determined, and sets other fields to -1, as a not set value. In this case the 

function has no arguments, so the pack function provides a dummy. 

Next, further items of the message buffer are set. The functionid is an index 

identifying the server function to be called and the adapterid identifies the adapter 

that is to be used on the server to process the call. For clarity, and to avoid 

mistakes, the user library programmer should declare an enum, in the user library 

header file mentioned earlier in this section, for the different functionid values. 

The file argmuserlist.h includes one: enum argmuserlist_remotefunctions. For the 

programmer’s convenience these can start at 0, which is the default value for an 

enum, since the built-in server functions have index numbers starting at a much 

higher value, which is defined by a constant set with as a C macro in the file 

argmessagesizes.h. As the comment in the code states, only a single adapter, 

the zeroth for the single proxy is used in this example. Finally, the Argmessage 

function argmessage_proxysendfunction() is called to send the message buffer to 

the server. 

This example illustrates a use of client-side state by a user library. Instead of 

waiting for a reply message to receive a handle or reference to the new toy list as 

it exists on the server, the function argmuserlist_createlist() creates one, 

newitem, immediately and passes this object back to the application program for 

it to keep. newitem contains, in fact, not only the handle per se, instance_id, but 

also a count of how many items there are in the list, itemcount. This makes these 

data items readily available to the application code, but at the cost of duplicating 

and keeping synchronised information on the client and the server (the server will 

want to keep track of these values as well). In this case the cost is not that great 

because the instance_id is simply one more than the last one issued (kept in 

argmlist_client_listcount), which may not be much of a cost compared to not 

having to wait for a reply from the list creation function and also the application 

program not having to ask the server how many items are on the list if it needs to 

enquire.  

The application programmer will have to note however that the instance_id and 

itemcount values are read-only to it because they are maintained by the library.  
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The toy list object is passed back to user as a pointer. However, for this step, it is 

first cast from argmuserlist_privatelist  struct type to the argmuserlist_publiclist 

struct type, which may not have been wise. The public and private versions of 

this type differ by hiding the list’s instance_id to avoid trying to present the 

application program with, in effect, duplicate information – a pointer and an id – 

and hiding a data item, the id, that the application program should not write. 

However, this is only partial encapsulation it does not make the field itemcount 

read only. It would have been clearer to not make the cast and just have a rule 

that the application programmer using the user library should respect what is 

read-only.  

On the server side the message sent by argmuserlist_createlist() is received by 

the server engine which calls a corresponding function, 

argmuserlist_servercreatelist(), which has also been provided by the user library 

programmer. This retrieves the library’s state and updates one of its items, 

listcount, by incrementing it, which also keeps this value in line with the 

corresponding value on the client. There is no other initialisation required here 

because the rest was already done in the general initialisation carried out by 

argmuserlist_serversinit(). 

The next function argmuserlist_additem() has the code: 

void argmuserlist_additem(struct argmuserlist_publiclist* list, char 

value[]){ 

    struct argmuserlist_privatelist* list_private = (struct 

argmuserlist_privatelist*) list; 

    /* call to proxy of argmessage proxy */ 

    struct argmessage_message* message = 

argmuserlist_packoneintonestring(list_private->instance_id, value); 

    message->functionid = additem; 

    message->adapterid = proxy->myrank * ARGMESSAGE_ADAPTERS_PER_PROXY; 

// in this example we are only using the zeroth adapter of this proxy 

    argmessage_proxysendfunction(message); 

    list_private->itemcount++; 

    return; 

} 

This allows a user to add an item, which is a string, to a one of the lists identified 

by a parameter. The basic Argmessage library does not include a pack function 

for a signature comprising an int and a string, so the programmer of this toy user 

library has provided one, argmuserlist_packoneintonestring(), which follows the 
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standard pattern for these functions. Once the Argmessage message buffer has 

been sent to the server, that calls the corresponding remote server function, 

argmuserlist_serveradditem(), which creates a new object, of type 

argmuserlist_serverlistitem, to store the new list item and links that into the linked 

list structure used to store the particular list that begins with the pointer to the first 

item of that as given in the state object attached to the adapter. The client and 

server functions both increment their own counts of how many items there are in 

the particular list in order to have that information available locally.  

The final two functions of Table 6, argmuserlist_printatserver() and 

argmuserlist_returnlistitem(), perform the functions their names suggest but do 

not illustrate any further points. The user library also includes a function 

argmuserlist_serversfree() to free the data structures used to store the lists on 

the server in the finalisation stage.  

This example also has, of course, exemplary client and server application 

programs. Compared to the previous example of an Argmessage program this 

example includes a user library. The server application program, 

argmessageserverregisterfunctionslist.c, is similar to that of the previous 

example, argmessageserverbare.c; it therefore includes the library and has calls 

to argmuserlist_serverregisterfunctions(), to register the remote user library 

functions in the function table for each adapter, and a call to 

argmuserlist_serversinit(), to initialise the server-side state of the user library (as 

described in Appendix A at section 17.8). The client application program, 

compared the that of the previous example, includes the user library, and then 

when in Argmessage’s run mode it has example statements to create lists, add 

items to them, print them at the server and retrieve items; otherwise, the 

backbone of calls to initialise, run and finalise the Argmessage proxy remain the 

same.  
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9.3. Correcting the QR factorisation example from QuickSched 

A correction of the tiled QR example from the original QuickSched, as obtained 

from its Source Forge repository [15], was briefly mentioned in sections 8.2 and 

9.1. The difficulty with the example was that it did not pass its own functional 

verification test. The error was traced to the section of the task building section of 

the example code; the malfunction did not touch on the QuickSched library itself.  

The task building code from the QR factorisation example from the original 

QuickSched repository is reproduced in Table 7, with key lines in the building of 

the task graph in bold and with colours added to match the colouring scheme in 

Figure 4.10/Figure 7 of the references by [16] and [50], and hence that of the task 

graphs of Figure 8 and Figure 9. An ellipsis character is used to mark sections 

omitted for brevity. In the code, indices k, i and j are respectively the level, the 

row of the current tile in the tile grid, and the column of the current tile. 

void test_qr(int m, int n, int K, int nr_threads, int runs, double* 

matrix) { 

 

…  

 

  enum task_types { 

    task_DGEQRF, 

    task_DLARFT, 

    task_DTSQRF, 

    task_DSSRFT  

  }; 

… 

  /* Build the tasks. */ 

  for (k = 0; k < m && k < n; k++) { 

 

    /* Add kth corner task. */ 

    data[0] = k; 

    data[1] = k; 

    data[2] = k; 

    tid_new = qsched_addtask(&s, task_DGEQRF, task_flag_none, data,   

                             sizeof(int) * 3, 2); 

… 

    /* Add column tasks on kth row. */ 

    for (j = k + 1; j < n; j++) { 

      data[0] = k; 

      data[1] = j; 

      data[2] = k; 
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      tid_new = qsched_addtask(&s, task_DLARFT, task_flag_none, data, 

                               sizeof(int) * 3, 3); 

… 

 

    /* For each following row... */ 

    for (i = k + 1; i < m; i++) { 

 

      /* Add the row taks for the kth column. */ 

      data[0] = i; 

      data[1] = k; 

      data[2] = k; 

      tid_new = qsched_addtask(&s, task_DTSQRF, task_flag_none, data, 

                               sizeof(int) * 3, 3); 

… 

      /* Add the inner tasks. */ 

      for (j = k + 1; j < n; j++) { 

        data[0] = i; 

        data[1] = j; 

        data[2] = k; 

        tid_new = qsched_addtask(&s, task_DSSRFT, task_flag_none, data, 

                                 sizeof(int) * 3, 5); 

        qsched_addlock(&s, tid_new, rid[j * m + i]); 

        qsched_adduse(&s, tid_new, rid[k * m + i]); 

        qsched_adduse(&s, tid_new, rid[j * m + k]); 

        // qsched_addunlock(&s, tid[k * m + i], tid_new); 

        qsched_addunlock(&s, tid[j * m + i - 1], tid_new); 

        if (tid[j * m + i] != -1) qsched_addunlock(&s, tid[j * m + i], 

tid_new); 

 

        tid[j * m + i] = tid_new; 

      } 

    } 

 

  } /* build the tasks. */ 

  … 

 

  /* Loop over the number of runs. */ 

  for (k = 0; k < runs; k++) { 

 

    /* Execute the the tasks. */ 

    … 

  } 

Table 7 – Annotated code from file test_qr.c of original QuickSched library 

The yellow arrow in Table 7 marks a code line for adding the task dependencies 

from the DTSQRF task on each row to each of the DSSRFT tasks in the same 

row, which in the repository version was unfortunately commented out.  
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With the line uncommented, the example QR factorisation does pass its 

verification test. Having found the error it is also reassuring that the line is 

uncommented in the version of the task creation code of Figure 14 of Appendix B 

of [50]. 
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9.4. Conclusions of QR factorisation task graph generation code analysis 

Having corrected an error in the original QR test of the QuickSched code, there 

was now a version that would make a realistic test of the QuickSched in its new 

form, Qsargm. It also sheds some light, by example, on how locks and uses 

should be assigned. Finally, it allows reasonable speculation, as noted in this 

section, on how an incorrect attempt at correcting the incorrect QR test might 

affect the performance of QuickSched.  

So, with respect to locks and uses, the key difference between them is that while 

both inform the scheduler about which data are being accessed and so therefore 

are likely to be in a processor core’s cache, and so provide hints to the scheduler 

as to which core to use for a task, a lock is also used to prevent concurrent 

updates, where that is not prevented by the task dependencies.  

Unfortunately, while working to correct the error, further, unnecessary changes 

were made to the task graph creation code. Awkwardly, these incorrect 

corrections did not affect the correctness of the QR factorisation calculation and, 

as a consequence, were not immediately detected and so were in the code used 

in this project to generate earlier ones of the experimental results, but of course 

they did provide a contrast to the main results.  

The errors were that for each blue task, instead of specifying a use of the top-left 

tile, a use of the tile in the row above in the same column was specified, and for a 

yellow task, instead of specifying a use of the tile at the top of the same column, 

a use of the tile in the row above in the same column was specified. As these are 

only uses, this explains why they did not affect the correctness of the QR 

factorisation. They might, however, cause a task to be assigned to a less efficient 

queue because the task has thereby been associated with data that it is not in 

fact using, and in turn this might cause additional cache misses when the task is 

assigned to a core. That will only of course be a significant degradation in 

performance if this mechanism to avoid cache misses was in fact already 

providing significant improvements to performance. 
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10. MPI Message Latency  

A key quantity in the performance of the experimental QuickSched library, using 

Argmessage, is of course the message latency, i.e., the time taken for a message 

sent from one of the client or server processes to arrive at the other. This 

definition is taken to mean the time for the whole message to arrive and be 

available for use at the destination. It therefore will, in general, be dependent on 

the size of the message, since the data of messages are transmitted serially.  

This definition is consistent with the “latency” quantity as measured by the OSU 

Microbenchmarks [52] and with, for example the definition given at item 1 of 

section 1.3 of “Interconnection Networks, An Engineering Approach” [53]. (Note 

the contrast with other definitions of latency in which the time for a signal to 

propagate, or a response begins to be received, is measured, which is not 

affected by the subsequent length of the rest of the signal, for example the length 

of the block of data being transmitted. For example, this paper [54] about "low 

latency data transmission” uses latency to mean the signal propagation delay and 

measures the quantity in µs/km.) 

For most of the experiments with Qsargm, OpenMPI was used as the message 

layer for Argmessage. The message latency of OpenMPI was therefore 

measured for each of the experimental geometries (which are defined in detail in 

section 11.2), in particular using the OSU Microbenchmarks  [52].  

To allow close comparison to the clocks used in the experiments of the current 

project, the OSU benchmarks were compiled and run using essentially the same 

build and run scripts as were used for the experiments. Therefore, they were 

compiled and run using the same OpenMPI and UCX libraries. The benchmarks 

were also compiled separately for the different processor architectures used. 

For completeness, the derivation of the clock used by the benchmark was 

checked in the code of its sources and indeed is valued in microseconds, as 

follows. The benchmark pt2pt/osu_latency benchmark from the OSU 

Benchmarks obtains clock values from the OpenMPI MPI_Wtime() [55] function. 

In turn this obtains its clock reading from the OpenMPI function 

opal_clock_gettime() [56]. In turn that obtains its clock value from either 
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clock_gettime() of time.h [57] or gettimeofday() of sys/time.h [58]. Both of those 

return their clock value as two-part structs of seconds and nanoseconds or 

microseconds and this value is passed up the chain with MPI_Wtime() presenting 

it as a combined double precision value in seconds. The benchmark scales that 

to microseconds.  

From inspection of the benchmark code, the latency time it measures is half the 

average time taken to do a round trip: an MPI_Send and MPI_Recv on MPI rank 

0 and a corresponding MPI_Recv and MPI_Send on MPI rank 1. (MPI ranks 0 

and 1 are respective Linux processes in their respective locations that are started 

by MPI’s mpirun command to run respective copies of the benchmark program in 

those processes.)  The benchmark measures the message latency for a range of 

message sizes (in bytes).  

The results were taken for various locations of the two MPI ranks (matching the 

experimental geometries defined in section 11.2) in the jupiter and thor cluster 

systems at the HPCAC; details of these systems are discussed in more detail at 

section 11.4.  

The message latency measurements from the OSU benchmark showed that 

there is a minimum message size below which the latency does not reduce 

further and that the value of this minimum is dependent on the geometry. That 

and other key values for the message latency are given in Table 8. The minimum 

message latency is for the rank 1 process of the benchmark being on the other 

socket of the same host as the rank 0 process, with that message latency being 

0.3 μs for jupiter and 0.4 μs for thor. Using a BlueField card for the rank 1 

process increases the message latency to 1.4 μs for a local BlueField and to 1.6 

μs for a remote one on another host. Interestingly, on one of the machine types, 

thor, for the server on the remote host (thor005 to thor006), the messaging is 

quicker than to a local BlueField (thor005 to thor-bf05).  
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Cluster and geometry  Minimum 32-byte 

messages 

64-byte 

messages 

thor005 to thor005 0.38 0.5 0.51 

jupiter029 to jupiter029 0.30 0.48 0.49 

thor005 to thor-bf05 1.39 1.48 1.56 

jupiter029 to jupiter-bf29 1.35 1.45 1.54 

thor005 to thor006 1.20 1.23 1.31 

jupiter029 to jupiter030 1.66 1.73 1.81 

thor005 to thor-bf06 1.64 1.73 1.81 

jupiter029 to jupiter-bf30 1.60 1.72 1.81 

Table 8 – MPI message latency (µs) from the benchmark 

Values for the 32- and 64-byte message sizes of the benchmark are also noted 

and are relevant as they are similar in size to the Argmessage message used in 

Qsargm as discussed at Chapter 13, so will be better values than the minimum 

for comparison to the Qsargm RPC latency in the experiments of this project.  

10.1. Relationship to Argmessage / Qsargm RPC calls 

In Argmessage, to receive the answer to a function call two messages are 

needed, a first to call the function and a second to return the answer. So, for such 

calls the messaging overhead will be twice the values in Table 8, or at least that 

as the use of OpenMPI may be slightly more complicated there than that of the 

benchmark, and further there will be the extra overhead of packing and 

unpacking the arguments sent.  

10.2. Comparison to QuickSched function calls 

The equivalent operation in the original QuickSched scheduler is to call a 

function. That itself may have no overhead if the function is in-lined by the 

compiler. If it is not the overhead may be O(10ns), so O(100) times faster than 

the messaging introduced by this project.  

10.3. Speculations on payoffs for message latency penalty  

These patterns of message latencies are considered later in Chapter 13 when 

discussing the experimental results of the modified QuickSched scheduler, 



112 

 

Qsargm, in actual measured examples. However, the following remarks and 

speculations can be made at this stage. 

If the messaging delay is indeed significant in the scheduler performance, there 

will need to be some pay-off to make having the scheduler in a separate process 

worthwhile. This may be of two general kinds: 

• Processing of the scheduler in parallel with computation of kernels on the 

thread(s) calling the scheduler 

• Extra scheduler functionality 

The latter is considered in Chapter 14.  

Based on the message latency results, it is a reasonable conjectureTable 8 that 

the best place to locate the separate scheduler process, to avoid the latency 

penalty, is to put it on dedicated cores of the same host that is running the client 

computational tasks. Doing this however would reduce the number of cores 

available to the client, which in general would reduce performance. However, not 

all codes will have enough tasks in their task graph to keep a large number of 

cores occupied. For such codes allotting host cores to the server process is free.  

Locating the scheduler process on the BlueField card does increase the 

messaging time still further but these cores are not, without extra arrangements 

being made, available to process the computational kernels. Thus, cores on the 

BlueField are always free in that sense, even for codes that are able to use all of 

the cores of the host processor.   

However, in the basic arrangements described so far and studied in the 

experiments, while they have the computation and scheduling performed in 

separate processes on separate cores or processors, these do not particularly 

seek to overlap the scheduling of the processes with the computation in time; 

when a computational core asks for a new task it still waits while the scheduler 

identifies the new task. Suggestions about how overlap might be achieved are 

however discussed in Chapter 14.  

While there are small differences in the messaging latency values for the rank 1 

process of the benchmark on the local BlueField, on the remote BlueField, and 
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on the remote host, these values are generally similar to each other. This 

suggests that it may be possible to run the scheduler for several client hosts on a 

common BlueField card or on a common dedicated host without much 

degradation in performance. The multiple schedulers will each receive messages 

from their respective client so the number of messages to the common BlueField 

card or host will be multiplied up, but the messages are small and infrequent in 

smaller cases and so the messaging may well not be a bottleneck – there will be 

messaging limit but it is not speculated whether that will take effect before the 

capacity of the scheduler processor is exhausted. A common location to process 

multiple schedulers might however offer a significant advantage when it comes to 

organising work stealing between computational hosts: this advantage is that all, 

quite up to date, information on the state of progress on the tasks is available in 

one place, the common location of the schedulers, and so quite complex 

processing of that could be considered. That possibility has, however, not been 

explored in any detail in this work.  

Another use for Qsargm, in particular in the local host geometry for the scheduler, 

might be for use on host processors where the cores are not symmetrical. 

Examples of such processors include Intel’s latest2 12th Generation Core 

processors (codename Alder Lake – first released at the end of 2021). These are 

provided with two classes of cores, called by Intel, “Performance-cores” and 

“Efficient-cores” [59]. In the Qsargm model, the processing of the scheduler on 

the one hand and the processing of the kernels on the other are not symmetric. 

So scheduling, being a less demanding operation, should perhaps therefore be 

allocated to one of the Efficiency cores. However, if that significantly affects the 

latency of the scheduling calls then perhaps, counterintuitively, it might turn out 

that one of the Performance cores should be allocated. Experiments would be 

needed. 

 

2 “latest” at the time of writing –13th generation parts are due to be released in the final quarter of 

2022 and the first of 2023 and will continue the performance and efficiency distinction. 
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In any event, such new processor designs could pose significant challenges to 

the scheduling model of both of the original QuickSched and Qsargm, which 

assumes equal performance of the cores in applying the scheduling rules – the 

tasks have costs and weights, but these are not adjusted for likely performance of 

whichever core might in future be allocated to them, which in turn would not be 

straightforward to predict. The allocation of the scheduler to one or other of the 

core classes does not alleviate this problem because the two classes are 

provided by the manufacturer in similar numbers. Although the Performance ones 

allow hyperthreading whereas the Efficient ones do not, meaning the majority of 

threads are on Performance cores, there are still significant numbers of Efficiency 

cores, so scheduling of tasks will have to be on to a mix of Performance and 

Efficiency cores. The problem is in fact worse than that in that Alder Lake 

processors also have what Intel call “Turbo Boost Max Technology 3.0” [59], 

which recognises the difference in clock speeds that each individual Performance 

core is capable of and schedules threads to them accordingly; this is not just a 

static determination but dynamically takes into account factors of many kinds 

[60]: local physical environment factors of power consumption and temperature; 

“type of workload” so presumably based on the instructions of the software being 

executed; and the number of cores active, which in task-based scheduling is a 

result of the task schedule itself, making the problem recursive.  

Having asymmetric cores is not confined to Intel processors. Many Arm 

processors have different cores of different types [61], and there is increasing 

interest in building HPC systems using Arm processors. 

So, in future, more complex models may well be needed for efficient task 

scheduling in HPC applications. 
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11. Experiments - general arrangements 

11.1. Test Program 

The experiments were conducted with the tiled QR matrix factorisation example 

using both the original QuickSched scheduler and the modified Qsargm 

scheduler of this project, which, of course, places the scheduler in a separate 

process remote from the process executing the computational kernels, with calls 

to the scheduler being made via the Argmessage remote procedure library of this 

project. The original version of QuickSched employed was version 1.1.0 from 

Source Forge. 

11.2. Test Geometries  

Figure 10 is a block diagram showing the geometries used in the experiments for 

the location of the scheduler relative to the computational kernels used. The host 

computers used were “dual socket” meaning that the mother board had two 

processor integrated circuits. The processors had x86-64 architectures. Both of 

those are the norm in HPC clusters. Further, also as usual for HPC, the dual 

socket host processors were identical processors and shared the same memory 

space for the main RAM attached to them on the motherboard. In addition, each 

host computer, or ‘node’, was equipped with a BlueField™ card. These are fairly 

new to the market and are only becoming available in a few experimental HPC 

systems. These BlueField cards combine a network adapter (Ethernet and/or 

Infiniband), in particular a Connect-X™ adapter, with an Arm architecture 

processor on the card with its own RAM in its own address space and with its 

own Linux operating system, on which user programs may be run.  Precise 

specifications of the machines and interconnect used are given in section 11.4. 
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Figure 10 – Experimental geometries, i.e., relative process locations 

In the experiments, the threads of the process running the computational kernels 

were pinned to cores of one host processor integrated circuits (socket 0 in Figure 

10) as intended by both the original and modified QuickSched. Four possible 

locations were used for the experimental scheduler process. Those were: 

• A process having its threads pinned to the cores of the other processor 

integrated circuit of the host (socket 1 in Figure 10) in the same node 

(Node A) as the computational kernels process. This geometry is 

designated local host scheduler in this thesis. 

• A process running on a BlueField card (BlueField Card A) mounted to the 

same mother board as the processor running the computational kernels, 

designated local BlueField scheduler. 

• A process running on a BlueField card (BlueField Card B) mounted to the 

mother board of another compute node (Node B) of the cluster, designated 

remote BlueField scheduler. 

• A process having its threads pinned to the cores of a processor integrated 

circuit (socket 1) of the host of the second compute node (Node B), 

designated remote host scheduler.  
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Thus, geometry is defined here to include more than just the topological aspects 

of the network connections, which would be the pattern of available connections, 

and, of those, the route being used, but includes also the physical conditions and 

types of electronic circuit along the route. So, this encompasses the type and 

length of network cables, and the network protocol being used, the model of the 

network adapters being used, whether network transmission is being used at all 

or rather inter-process communication via shared memory, whether there is any 

effect of CPU socket or NUMA region, how many PCI switches and interfaces 

there are on the route, and so on. 

Only one of these locations for the scheduler was used in any particular run of 

the QR factorisation code. The long red arrows in the diagram show the paths of 

the messages between the computational kernels and the scheduler in each of 

those locations. Experimental runs were repeated in these different geometries 

for comparison.  

Finally, a 5th location for the scheduler, a control, was used. This was the original 

QuickSched scheduler, so without the modifications of this project, and so the 

scheduler operates within the same process as the computational kernels. In this, 

each thread, when done with its latest task, becomes the scheduler object for a 

time while it works out which task the thread should perform next. The purpose of 

including this in the experiments was to provide a comparison basis for the 

experimental scheduler: i.e., is it any better than the original? 

Communications between the computational kernels and the experimental 

schedulers, in contrast to the control scheduler, were conducted through a 

messaging library, which was of course the Argmessage library of this project. 

That library, however, requires a base messaging library to carry its messages. 

The main one used was OpenMPI, and within that use of UCX messaging was 

specified. These libraries make choices for themselves on exactly how to conduct 

the communication in any particular situation; however, messages between 

processes on the different host nodes were transported via the InfiniBand 

interconnect, with, in particular, the Connect-X InfiniBand adapter portion of the 

BlueField card being selected. 
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In the local host geometry mode, messages between socket 0 and 1 are 

transferred via shared memory.  On the other hand, when messages are 

transferred between a host processor and a BlueField card or a remote host, that 

traffic is sent over the Infiniband network. However, for the local BlueField 

scheduler geometry, it was not clear whether the messages were transferred 

from the host processor to the Arm processor directly over the PCIe Bus, as 

might be expected for minimum latency, or went first from the host processor to 

the Connect-X Infiniband interface on the BlueField card and then from there to 

the Arm subsystem. The latter is what would be expected if the OpenMPI and 

UCX libraries do not have special code to take advantage of the direct route via 

the PCI bus only.3 

Another communication library used, as an alternative to OpenMPI, underneath 

Argmesssage was the SNAPI messaging library, under development at Nvidia, 

which was made available to me. This is designed for communication between a 

BlueField and its host and so was only used for the geometry of having the 

scheduler on the local BlueField. It was designed to have a simple programmers’ 

interface and is based on the InfiniBand verbs communication library [62]. It was 

used because it was plausible that it would be lighter weight than OpenMPI.  

The control scheduler does not, by definition, make use of Argmessage, nor any 

messaging library at all. The equivalent of the messages is simply function calls, 

the original ones, to the QuickSched scheduler library.  

The purpose of testing these various locations for the scheduler is to determine 

the extent to which their relative remoteness from the computational kernel 

process in terms of the messaging latency affects operation.  

 

 

3 An attempt to clarify this point with the BlueField manufacturers was not successful. 
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11.3. QR experimental parameters 

The launch script for the experimental code deals with experimental parameters, 

which is detailed in in Appendix A at section 17.14.  

The parameters passed to the QR factorisation code itself were as set out in 

Table 9. In the experiments these are all specified in a set for one run4, being a 

line of the parameter file specified with the -g option of the launch script. The 

parameter file comprises many such sets for respective runs to build up a result 

data set, as explained in sections 11.5 and 11.6. 

Parameter 

Name 

Description 

-T The number of threads allocated to the scheduler program. 

-t The number of threads allocated to the computational kernels, i.e., to 

the application program.  

-r The number of repeats of the application program calculation, i.e., 

one repeat = 1 QR factorisation.  

-k The tile size of the QR factorisation algorithm. The tile has k × k 

matrix elements. 

-n -m  The matrix factorised has n × m tiles. In all experiments n = m was 

used. So, the size of the matrix was (n × k) × (n × k) elements in total. 

-S “Strategy” – 0 = use experimental scheduler,  

99 = use original QuickSched inside the application’s client process, 

i.e., in the compute threads. 

 

4 A “run” comprises a number of repeats, as specified by -r. 
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-v      Run the verification part of the QR program – this is a test to verify the 

result of the QR factorisation using just a standard library function – 

this test was available in the original QuickSched library. This was 

used at first to check that the QR factorisation was running correctly 

but was turned off later to save time, thereby allowing more 

parameter sets to be tested.  

 

Table 9 – QR factorisation example command line parameters 

The parameters m, n, k, r, t and v were available in the QR factorisation test in 

the original QuickSched archive.  

11.4. Machine Specifications 

The experiments were carried out on compute nodes of the clusters at the HPC-

AI Advisory Council [63], on two kinds of machine. The jupiter machines used in 

some experiments are stated [64] on their website to have this configuration: 

• “Dual Socket Intel® Xeon® 10-core CPUs E5-2680 V2 @ 2.80 GHz 

• NVIDIA ConnectX-4 EDR 100Gb/s InfiniBand adapter 

• NVIDIA Innova-2 Flex Open VPI, dual-port QSFP28, EDR / 100GbE, 

KU15P (7 adapters) 

• NVIDIA BlueField SmartNIC VPI MBF1L516A-ESNAT, 100Gb Ethernet / 

InfiniBand EDR (8 adapters) 

• NVIDIA Switch-IB 2 SB7800 36-Port 100Gb/s EDR InfiniBand switches 

• Memory: 64GB DDR3 1600MHz RDIMMs per node” 

The BlueField part number MBF1L516A-ESNAT quoted there has a specification 

[65] of: 

• “16 Core Arm Processor, with 

• 16GB DDR4 RAM 

• EDR Infiniband”  

This BlueField card is part of the BlueField 1 Series, but in fact the jupiter 

machines contained BlueField-2 cards as noted in this section. 
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The Thor machines used in some of the experiments are stated [64] to have this 

configuration: 

• “Dual Socket Intel® Xeon® 16-core CPUs E5-2697A V4 @ 2.60 GHz 

• NVIDIA ConnectX-6 HDR100 100Gb/s InfiniBand/VPI adapters 

• NVIDIA BlueField-2 SoC, HDR100 100Gb/s InfiniBand/VPI adapters 

• NVIDIA HDR Quantum Switch QM7800 40-Port 200Gb/s HDR InfiniBand 

• Memory: 256GB DDR4 2400MHz RDIMMs per node” 

However, on all the BlueField cards used (jupiterbf001,002,029,030,031,032 and 

thor-bf01,02,05,06,07,08) the CA Type for the BlueField card is given as 

MT41686 by the ibstat command but lspci gave the number MT42822 for all the 

items found. The former of those numbers is used on the Mellanox website [66] 

for a Bluefield-2 card having the part number MBF2M516A-EEEOT [67] and the 

latter appears on the Nvidia website [68] also in the context of a BlueField 2 card. 

Therefore, the HPCAC website was out of date in respect of the BlueField cards 

in the jupiter nodes and the cards used in these experiments were all BlueField 2. 

In the results archive for the experiments in the provenance sections there is a 

log of the output of the command ibstat, and these give the CA type of the 

adapter used as MT41686. 

The experiments reported in Chapter 13 were run on the nodes of these systems 

with these machine names:  

Machine sets 

thor005, thor-bf05, thor006, thor-bf06 

jupiter001, jupiter-bf01, jupiter002, jupiter-bf02 

jupiter031, jupiter-bf31, jupiter032, jupiter-bf32 

Table 10 – Set C and set F experiments – machine sets 

Each of these three sets of four nodes comprise two x86-64 architecture host 

nodes and two BlueField cards, each BlueField node being plugged into a 

respective one of the host nodes. The BlueField cards were set up to have 

separate network addresses from their hosts, so they appear as separate 

machines with separate machine names on the local network and in the cluster 
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scheduler system, which is known as separated host mode [69]. The BlueField 

card nodes have “-bf” as part of their machine names, with the BlueField card 

having the number part of its name matching that of its respective host.  

Each group of four nodes by itself provides the possibility for all the test 

geometries described in section 11.2. In the Table the lower numbered x86-64 

host was the one running the client program that executes the computational 

kernels.  

11.5. Parameter File Generation 

A Python program gen-args.py (archive: expt0069/argmessageprivate/run-

scripts-HPCAC/qr_args/arg_sets/gen-args.py – see in particular the functions 

QR_args_set1() etc. therein) was written to generate and format sets of 

parameters, stored in a file, for passing to the application program, the QR 

factorisation. To generate a parameter file, the user supplies a list of parameter 

names and, for each of those a list of values the parameter is to take, and the 

program then uses Python’s itertools product function to generate a Cartesian 

product of those lists (i.e., all combinations of the possible values, one from each 

list). For parameters that are to remain constant, a list comprising just that 

constant value is supplied. However, parameter sets with a relationship between 

parameters were needed; n = m, as mentioned in Table 9, is an example, so it is 

also allowed in the parameter generating program to specify a transform to each 

parameter set to be applied after the Cartesian product. So, for the n = m 

example, only a single parameter x is specified by the user in place of n and m in 

the Cartesian product and then the transform is applied to the x parameter to 

derive the corresponding m and n parameters, giving both a value equal to that of 

x. The resulting parameter files are to be found at 

archive:expt0069/argmessageprivate/run-scripts-HPCAC/qr_args/qr_args/ and it 

is those files that are directly consumed by the launch scripts. 

Some of these sets have, as an outermost repeat, the entire parameter set 

generated by the mechanism of the immediately preceding paragraph repeated 

four times in the file. The point of this outermost repeat is that if a run, which itself 

would repeat the experiment with the same parameters a number of times 
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defined by the -r parameter, were to be adversely affected by some infrequent 

event in the computer then hopefully the outer repeat of that parameter set at 

another time would not be similarly affected. 

11.6. Types of Parameter Sets Used 

The main experiments conducted were: 

(i) to vary the number of client application threads t. Increasing the number 

of application threads (for the same size of matrix) increases the number 

of tasks that may be processed in parallel. More threads should therefore 

decrease the execution time, but only up to the point where the number of 

threads exceeds the maximum number of ready tasks generated at any 

one point in time in a run.  

(ii) to vary the number of tiles n × n, (with m = n always being used). 

Increasing n increases the size of the problem, i.e., the size of the matrix 

being factorised. It also increases therefore the number of tasks and 

hence the number of messages required between the kernel threads and 

the scheduler. Both of these will, at a constant number of threads t, 

increase the total execution time.  

While, generally, both of these, t and n, were varied over various ranges, plots 

were made of execution time against t at constant n, and so therefore at a 

constant matrix size. Such a plot therefore is a “strong scaling” test [70], which is 

of the performance at constant problem size against the number of processors. 

Plots were also made against n, so against increasing problem size, at constant 

t. (That is however not a “weak scaling” test [70], which requires the problem 

size to be increased with an assumed “constant workload per processor”.) 

In these experiments the number of scheduler threads, as opposed to the 

number of client threads, was usually fixed at 1.  

The number of repeats of each experiment (the inner -r repeat) was usually 50 or 

1. As explained in section 11.5, in some cases the same parameter combination 

was repeated four times, spaced over an extended period.  
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While the tile size was usually fixed, another kind of experiment was to keep the 

overall matrix the same size but to change the tile size. One would expect a 

complex interaction here since a larger tile size will make each task longer but 

reduce the number of them. 

11.7. Timers used 

The QuickSched library provided some timers for the execution various aspects 

of the code. These were extended to allow for the scheduler being in a separate 

process and were adapted take account of the RPC messaging loop.  

So, the timers that were used in the present project are set out in Table 11. 

Timers for control  

(Original QuickSched) 

Timers for experiment 

(Remote scheduler – Qsargm) 

clt_gettask 

- aggregate time inside _gettask() 

function  

clt_done 

- aggregate time inside _done() 

clt_prepare 

- aggregate time inside _prepare() 

 

 

“clt” = “client local timer”, meaning 

timers for the original control 

scheduler  

cpt_qsargm_client_remote_gettask 

- aggregate time inside _gettask() 

function 

cpt_qsargm_client_remote_done 

- aggregate time inside _done() 

cpt_qsargm_client_remote_prepare 

- aggregate time inside _prepare() 

cpt_qsargm_client_kernels 

- aggregate time inside kernels 

“cpt” = “client proxy timer”, meaning 

that the timer is located in the proxy on 

the client (so on the left hand side in 

Figure 7) and so these timers include 

the calls across the messaging link, 

except for the kernels timer which does 

not involve an RPC call 

Timers common to control and experiment 

taskgraph_build_time taskgraph_run_time 

Table 11 – timers for control and experiment runs – names after post processing 

Thus, the new timers are: taskgraph_build_time and task_graph_run, which were 

provided in the test_qr.c code to provide a direct comparison between the 
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experiment and control for those stages of operation. These were both measured 

with the omp_get_wtime() function, whereas all the others were measured with 

the getticks() function. 

The original QuickSched library used the function getticks() function for all its 

timers.  This function is to be found in the source file cycle.h, which contains 

many definitions of the function depending on processor architecture, compiler 

and operating system being used. For the gcc compiler and the x86-64 

architecture this is defined as the x-86 assembler instruction rdtsc. (This version 

is selected by the presence of the macros __GNUC__ and __x86_64_ which are 

set by default by the GNU C preprocessor, as verified by the command echo | 

cpp -dM -,  as suggested by [71].) The Intel® 64 and IA-32 Architectures 

Software Developer’s Manual Volume 3B: System Programming Guide, Part 2, 

available at [72], at section 17.15, describes the timer accessed with the rdtsc 

instruction, which states that for newer Intel processors this clock runs at a 

constant rate and so may be used to indicate wall time. [73] states that on Linux 

the presence of this feature is indicated by /proc/cpuinfo including the flag 

constant_tsc, and indeed on both the thor and jupiter host nodes that is present 

in the flags field. The duration of these ticks is set by the frequency of some clock 

signal and so that frequency needs to be determined if this timer is to be 

compared to the timers measured with other timer functions. 

In order to relate times measured by getticks() to those of other timers given 

natively in seconds, i.e., (i) the OpenMPI message latency values and (ii) the 

timers in the experimental code measured with omp_get_wtime(), the frequency 

of the getticks() clocks was measured for jupiter and thor hosts and for the 

BlueField cards. The method was to sample all of the clocks involved, once each, 

in quick succession spaced before repeating after intervals of a nominal second, 

over a total of 20s. The results are shown in Figure 11.  
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Figure 11 – Samples of getticks() against other clock functions, which are generically labelled “Wall time” 

The measurement recorded the ticks given by getticks() and the wall time given 

by each of the functions omp_get_wtime(), clock_gettime() and also 

MPI_Wtime(), the latter being used by the message latency benchmark. The ticks 

were plotted against the other wall time measurements. The relationship was 

highly linear, confirming that the rate of ticks was indeed constant, so for example 

not being changed in response to processor load. The rate of the ticks was found, 

from the slope of the graph, to be as follows: 

Machine getticks() frequency 

against other wall time functions (MHz) 

 omp_get_wtime() gettime() MPI_Wtime() 

thor005 2599.98588 ± 

0.00004 

2599.98599 ± 

0.00004 

2599.98595 ± 

0.00004 

jupiter0029 2799.91905 ± 

0.00033 

2799.91905 ± 

0.00033 

2799.91876 ± 

0.00005 

thorbf005 Not measured 199.965974 ± 

0.000008 

199.965975 ± 

0.000008 

 
Table 12 – getticks() frequency 

While these values are highly precise, they are only for one particular one of each 

nominal type of machine and only for a particular occasion; it is not known what 
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the variation was over time and between machines of the same kind. It was 

however also noticed that the measured rate of the getticks() clock was extremely 

close to the nominal clock rate of the Intel processors as revealed by the model 

name field of /proc/cpuinfo. In view of the potential variation stated, the nominal 

cpu frequencies, with their much lower precision, were used to scale the getticks 

values to seconds in the experimental plots and these uncertainties were kept in 

mind should the need to compare different machines or measurements on 

different occasions, which was in fact mostly avoided.  

The clock for BlueField at 200Mhz is much slower than the nominal clock speed. 

That would be important to note if the timers on the BlueField were used, but as 

mentioned the timers on BlueField were not in the analysis made.  

11.8. Automation Frameworks for Computational Experiments 

The workflow that developed for the experiments conducted was as follows: 

• Build code 

• Generate parameter files 

• Batch job for a set of parameter sets and geometry 

o Record provenance 

o Heterogeneous machine launch 

o Run experiments for each set of parameters from a parameter file 

• Post-processing 

o Extract result directory logs to structured JSON file 

o Aggregate JSONs 

o Query aggregate results 

o Plot 

The creation of scripts to perform, at least some of these steps undoubtedly 

repeated work done elsewhere, since relevant frameworks do exist and should 

provide the benefits of quality software including ease of use and reproducibility. 

One such, which has been suggested, is the FabSim3 framework [74], [75], [76]. 

This is aimed, according to the emphasis in its literature, to running physical 

simulation codes on large HPC sites. Through templates and plugins it provides 

mechanisms for generating and submitting job scripts for cluster schedulers and, 
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further for executing ensembles of jobs with difference input parameters. The job 

script generation would have been useful in this project and would have made the 

experiments more portable to other systems (although the latter was not a 

requirement of this project itself). The ensemble of cluster jobs feature would 

have been useful for running the experiments in the different geometries but 

would not have been so for stepping through the number of threads and tile 

parameters, which occurs too frequently - relaunch of the code that often would 

not have been efficient. The recording of provenance it provides was of the 

software environment, which was done so that would have been useful, but in 

this project hardware configuration was also interrogated and recorded. There is 

no reason to think that the framework would address the particular difficulties 

faced in launching the code components in this novel and heterogeneous 

hardware environment as outlined in section 17.14.  

The documents cited seem to indicate that postprocessing steps are included in 

the scope of the framework but the details of extraction of results from output logs 

is not discussed, but perhaps that is left to plugins for individual codes. 

The conclusion is that while using existing frameworks for running experiments 

must be desirable, it may, for this kind of project, be impractical in terms of 

recognising the requirements a priori and finding (possibly multiple) frameworks 

that fit all the needs of the project. In the case of FabSim3, it would appear of 

course to meet the needs of running well known simulation codes on large HPC 

facilities. Further the usefulness of this kind of framework is multiplied where 

there is a large community of users to share plugins and other configuration files. 
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12. Performance Models 

The operations of building and executing task graphs are complex. The 

performance of those two phases are considered here, particularly with regards 

to the effects of messages, which of course are introduced by Qsargm, before the 

results of the experiments with the QR factorisation example are presented and 

analysed in Chapter 13. 

12.1. Performance of the build phase. 

The number of tasks in a task graph is relevant to performance in both the build 

and execution phases.  

Working from Chapter 8 explaining the QR factorisation example, or equally from 

the references cited there, and from the code of the test QR example (file 

qsargm_test_qr.c in Appendix D), and counting up the number of tasks created 

(calls to the function qsched_addtask()), that number, NG is: 

𝑁𝐺 = ∑ 𝑖2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6

𝑛

𝑖=1

 

where the number of tiles in the matrix is n × n. 

The number of tasks is cubic in n, and since it has all the coefficients of all its 

powers of n positive, it has the general form of increasing with n and that with a 

positive and increasing gradient.  

A further detail relevant to the build phase is that for each call to 

qsched_addtask() to create one task in the task graph, around 4 calls are made 

to the other functions for building other aspects of the task graph, namely to the 

functions: qsched_addlock(), qsched_addunlock(), qsched_adduse(), the exact 

number of such calls depending on the task type; however since as n increases 

one type of task becomes strongly the most numerous, it would suggest that the 

variation in the number of those extra calls between task type will not change the 

general form. 

As noted at section 7.12, the task graph build phase in the original QuickSched 

was a single thread and this was preserved in the Qsargm scheduler of this 

Equation 1 – number of 
tasks NG in QR 
factorisation for a n x n 
grid of tiles 
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project. The time to build the QR factorisation task graph will therefore be 

generally the number of tasks as given in Equation 1 times the time to build each 

task. The time to build a task is the sum of the times to calculate the parameters 

of the task, make the calls (which will be OpenMPI messages in the case of 

Qsargm), and then process the calls by adding data to the relevant tables of the 

scheduler’s representation of the task graph. In the QR factorisation the 

parameters are cheaply calculated from simple rules and adding data to tables is 

not complex. This means that messaging time could well be significant. How 

significant that is reported in Chapter 13. 

12.2. Run time performance in the many cores limit 

[16] mentions that a strategy to optimise the overall task graph execution time is 

to prioritise the tasks on the predicted longest path to the final task; indeed, the 

longest path through a task graph is an irreducible minimum time for the overall 

execution of a task graph. This of course applies to a static task graph – if a task 

graph may have further tasks added to it then the longest path is not determined. 

In the limit of a large number of cores there will always be an idling core available 

to process immediately any new ready task; that of course includes tasks on the 

longest path, so when a task on the longest path finishes, the next task on the 

longest path will execute immediately. That next task will always be a ready task 

at that point since, if it had to wait for another task, then this other task would in 

fact be its predecessor on the longest path, while the just finishing task in 

question would not. In this regime, therefore, the length of the longest path is the 

time taken to execute the task graph overall.  

Moreover, the effect of messaging will be felt between the tasks that are on that 

path, while for tasks off the longest path it may not. Further, in general for short 

messaging delays, the effect of those messaging delays is proportional to the 

number of tasks on the longest path, since each junction between tasks on the 

longest path will add the time for the one taskdone and the one gettask message, 

with their also being one gettask at before the first task and one taskdone after 

the last. Figure 12 illustrates this. This shows the times taken to process the 

same exemplary task graph for different, increasing cases of message latency, 
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Cases A, B and C. (The exemplary task graph is not for the QR factorisation and 

is specially constructed to illustrate the points made here.) 

Cases A and B are shown in the Figure twice, once at marks A and B and again 

at marks A’ and B’. At A and B, only the tasks on the longest path are shown, but 

at A’ and B’ the tasks off the longest path are shown as well. At A and B there are 

dotted lines marking off the messaging overhead sections of the tasks, while at A’ 

and B’ (and also at mark C for Case C) the dotted lines are omitted for clarity. 

The arrows represent dependencies between the tasks. Tasks on the longest 

path through the task graph are marked in red.  

So, Case A is for a first, shortest, length of those messages, while Case B is for a 

longer length of the messages. Overall, the longest path has, between those two 

Cases, increased in length by 4 times the length of the message delay increase, 

since there are 4 tasks on the longest path and each task has a gettask message 

at its beginning and a task done message at its end. 

 

Figure 12 – Messaging time effect on longest path 

A’ C 

Time 

A B B’ 
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Consider now the full task graphs for Cases A and B, so at marks A’ and B’. 

Away from the first and last tasks, each task on the longest path has, in this 

exemplary task graph, in parallel with it, a section of 3 serial short tasks (i.e., the 

set of 3 and its parallel longest path task are both (i) dependent on the previous 

longest path task, and (ii) also dependent where it exists, on the previous set of 

3).  

For both these Cases, A and B, the total length of the set of 3 serial tasks is 

comfortably shorter than the parallel task on the longest path. So, the increase in 

message latency between the two cases has caused no change to the longest 

path. It remains that the additional length of the longest path due to messaging is 

proportional to the messaging time and the number of tasks on the longest path.  

Case C of Figure 12 shows, however, what happens when the messaging time is 

increased even further for this task graph example. Because there are more 

tasks in each series set than in the single task in parallel with it, these have 

grown faster and have now taken over as the longest path. Tasks on the original 

longest path of Cases A and B, for shorter messaging times, have been forced 

apart, i.e., there is a gap in time between them. 

So, there are some conclusions from this, i.e., for the case of a large number of 

cores as is being considered here: 

1. The increase to the longest path length caused by message latency is 

proportional to both the number of tasks on the longest path and the 

latency itself.  

2. The route of the longest path through a task graph is, in general, not 

independent of the messaging latency; it can switch to another path when 

tasks not on the longest path for a case of shorter messaging force apart 

the tasks that were on the longest path.  

Thinking about larger task graphs, one can see that this switching effect to a 

different longest path, as messaging delay increases, could happen more than 

once and could happen for sections of the (current) longest path where either or 

both of the endpoints of the changing section are not the first and last tasks of the 

task graph (as was indeed the case in Figure 12). The former would make the 
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addition to the task graph execution time piecewise linear as a function of 

increasing messaging latency, with the discontinuities of gradient occurring when 

the longest path switching occurs, so the additional task graph execution time ∆𝑇 

due to the messaging latency L for each task (so modelled as a constant for all 

tasks) is given by: 

 

∆𝑇(𝐿) = ∑(𝐿𝑖 − 𝐿𝑖−1)𝑁𝑖−1 + (𝐿 − 𝐿𝑖−1)𝑁𝑘

𝑘

𝑖=1

 

 

where k is the number of longest task path switches that there are between no 

messaging latency and the latency in question L, L0 = 0; Li is that latency at 

switch k; and Ni is the number of tasks on the longest task path after i switches of 

the longest path, with N0 being the number of tasks on the longest path at zero 

message latency. 

Given that in Figure 12 the switching of the longest path was caused by the 

alternative path being greater in number of tasks than the related part of the 

original longest path, one might guess that Ni > Ni-1 at each switching point, so 

the gradient always gets steeper with increasing latency L. However, this task 

graph is probably unusual in that it has short, repeated sections of only a single 

long task on the longest path and each only has a single parallel path, and so on, 

so many more cases would in fact have to be examined to discover that that is a 

general rule.  

Further, another reason for not getting too involved here with this analysis, is that 

for the QR factorisation the number of tasks on the longest path was, initially, 

determined empirically and had an outcome relevant to this. This determination 

was for the longest path as estimated by the task scheduler in the prepare stage 

(so the method was in the original scheduler). This determination was done here 

however with a separate Python program using the same method to it, using the 

same estimates for the individual task kernel execution times, while trying a 

range of message latencies. (archive: QSSim/src/quicksched/quickschedsim.py) 

Equation 2 – Addition to 
task path execution time 
caused by messaging 
latency in the case of 
longest path switching 
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So, for the QR factorisation, the number of tasks, NL, on the longest path was 

found to be given, always, exactly by: 

  

𝑁𝐿 = (3𝑛 − 2)  (=  𝑁0) 

 

where, as usual, n is the matrix tile count parameter (the matrix having n × n 

tiles). Moreover, this held true up to the largest n tried, of 512, and from very 

short messaging times (less than one thousandth of the estimated task duration) 

up to very large messaging times comparable in length to the estimated task 

execution times. (Note that in actual experiments as opposed to simulation the 

message time cannot be varied continuously, so simulation would provide more 

information, as well as being a quicker route to it.) Also, the total of the estimated 

time in the longest path task kernels was a constant for each n, meaning that if 

there was any switching of the longest path it was between task sections of the 

same length5. Therefore, it is thought from this that for the QR factorisation task 

graph the longest path, and certainly its length, probably does not switch from the 

ideal as a result of increased messaging latency and that in any event, in this 

simple model, the expected effect of the messaging delay is proportional to the 

individual messaging delay and to NL, as given in Equation 3. Note that this 

concerns the longest path in the task graph per se, which, in the case of a large 

number of cores, determines the overall task graph execution time. 

It was also subsequently realised that 3n-2 is the number of vertices on any path 

through a cubic grid of n × n × n vertices from the top northwest corner vertex to 

the bottom southeast corner vertex if only unit moves east, south and down are 

allowed (so, equally the Manhattan distance plus 1, since on a path the number 

of vertices is one more than the number of edges). From that and recalling that 

the QR task graph can be laid out on such a 3D grid with many of the 

 

5 which is not a switch in longest path but a split of it into parallel longest paths of the same 

length. 

Equation 3 – number of 
tasks on longest path 

for QR factorisation  
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dependencies being those unit moves (see Figure 8), it may well be that there is 

no freedom for the longest path for the QR factorisation graph to have any 

different length in terms of task count. 

Then further, inspecting the QR task graph for the n = 4 case in Figure 9, it was 

noticed that this has been automatically laid out, by the graphviz program, in 10, 

i.e., 3n - 2, rows of tasks down the page with all the dependencies being in the 

direction down the page. Here, most of the dependencies move forward down the 

page just one row, none move forward up the page, and, further, there are paths 

from top to bottom that pass through 10 vertices, one per row. It cannot be 

therefore that, for this case of n = 4 at least, a path has more than 10  

(= 3n - 2) tasks. Although it has not been confirmed, it seems unlikely that the 

possible paths from top to bottom that have fewer tasks will include the longest 

path. If so, the longest path will always have 10 tasks in this case, agreeing with 

the empirical result noted as Equation 3.  

So this analysis has shown that the tasks on the longest path are the ones where 

message latency takes effect, and that the effect is generally proportional to the 

number of tasks on that path, at least for small message delay increases, (rather 

than being determined, perhaps, by some more alarming number of tasks that 

one could cast around for, such as the total number of tasks in the graph, given 

by Equation 1). Further, in the present case of the QR factorisation example, 

piecewise linear increases in the effect following are not expected. 

Note also that conclusion 2 listed in this section would imply that strictly one 

should, in general, take into account the messaging time before determining the 

longest path in the scheduler. Such an adjustment is of course not onerous as it 

means only adding a constant to the already constant kernel execution time 

estimates, but while in fact this was not done for the estimates used in the 

original and experimental schedulers, in view of the matters discussed in this 

section, that does not seem likely to have caused the scheduler to have found the 

wrong longest path.  
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12.3. Run time performance, for fewer cores 

At the other extreme from a very large number of cores, there is the case of just a 

single core to execute all the tasks. In this case, the off longest path tasks in the 

task graph cannot, of course, be processed in parallel with the on longest path 

tasks but obviously will have to be processed at some point by the single core to 

allow child tasks, including those on the longest path, to become ready tasks. 

The result therefore is that these off longest path tasks will force gaps between 

the execution of the on longest path tasks, thus making the overall execution time 

for the task graph longer than the length of the longest path. That is perhaps an 

overly elaborate explanation for this case of the tasks all just being processed 

serially on the single core – however, the “forcing gaps” language helps with the 

intermediate regime also discussed in this section, as well of course with the high 

messaging latency case for many cores that was discussed in the previous 

section. So, in this other extreme, serial one core case, the number of taskdone 

and gettask message effects to count towards the slowdown is therefore actually 

now equal to the alarming number of the total of the tasks, so as given by 

Equation 1, NG = (n+1) (2n+1) / 6, rather than the number on the longest path of 

the task graph per se, as given by Equation 3, 3n-2, as was the case in the 

previous section for when there were a large number of cores available. 

Returning for a moment to the limit of a large number of cores, after a certain 

number of cores, having extra cores will be superfluous, because, for a finite task 

graph, both the number of cores occupied by tasks and the maximum number of 

tasks that can become ready tasks on completion of a task, and thus requiring 

further cores, are finite at any point in time. Below that number, there may, 

however, still be a regime down to some minimum number of cores in which the 

tasks on the longest path are still processed without pause, i.e., without the off 

longest path tasks forcing gaps between the on longest path tasks. 
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Figure 13 – Task graphs squeezed by not enough cores 

Figure 13 illustrates this. Another exemplary task graph is shown at mark X4 with 

arrows for its dependencies. This task graph has tasks on the longest path, again 

in red, that are each of 5 units in duration and, and away from the end tasks, 

those tasks each have 3 tasks of 1 unit duration constrained by dependencies to 

run in parallel with that longest path task and are not constrained with respect to 

each other so are able to run in parallel with each other. i.e., these 3 off longest 

path tasks all just have a dependency on the previous on longest path task, and 

the next longest path task is dependent on all of them.  

The task graph is laid out at mark X4 to show how it would execute in time on a 

large number of cores; at each stage both the longest path task and its 3 parallel 

tasks become ready tasks at the same time and are all immediately run on 

respective cores. It can be seen that a fifth core, or any further additional core, is 

superfluous. The number of messaging effects to take into account here for the 

overall task graph execution time is now again equal to the number of tasks on 

the longest path, as discussed in section 12.2.  

The execution with just 2 cores is shown at mark X2 for the same task graph. The 

dependency arrows are omitted for clarity. Here, for each of the on longest path 

tasks, one core will process the on longest path task and the other core will 



138 

 

process its respective off longest path tasks, in some order or other, and the 

latter will finish first. So, when an on longest path task completes, the next on 

longest path will execute immediately on one core, since it has priority6, and one 

of its respective 3 off longest path tasks will execute on the other core, while the 

other 2 will queue. This second core will then execute those 2, in some order, but 

will then again idle after because the queue is empty, again until the current on 

longest path task finishes and the next on longest path task and its 3 parallel off 

longest path tasks become ready tasks. Thus, for this task graph it will be 

processed overall in exactly the longest path time from using a large number of 

cores right down to only 2 cores. 2 cores is the lower limit for such processing in 

the time of the longest path since, of course, for a single core all the tasks must 

process serially, in which, as discussed, off longest path tasks force gaps 

between at least some of those on the longest path. 

A slightly different example is given at marks Y3 and Y2. This is as the last 

example but where the off longest path tasks are now of 2 units in duration, 

rather than 1. As it has the same dependencies as for example X, at each stage 

the longest path task and its parallel task become ready tasks at the same time. 

The longest path, is still favoured by the scheduling algorithm, i.e., each 5-unit 

duration task is immediately scheduled on becoming a ready task. In the case of 

3 cores, shown at mark Y3, the other two cores immediately process one each of 

the 3 off longest path tasks and then, next, one of them then processes the 

remaining one. The 3 off longest path tasks are all completed before the 5-unit 

task on longest path task completes. So, again, the task graph is executed 

overall in the length of the longest path. However, 3 cores is the minimum 

number for that to happen for this task graph. 

With just 2 cores, as shown at mark Y2, at each stage when the on longest path 

task and its parallel tasks become ready, the on longest path task is favoured and 

so executes immediately on one core. The other core executes the 3 tasks in 

parallel with it, but of course this is the only core left, so they will execute serially 

 

6 in QuickSched and presumably in the rules of any other sensible scheduler. 
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on it and will take a total of 6 units of time. The result is that the next 5-unit 

duration task on the longest path can therefore only start 1 unit after the end of 

the current 5-unit task. 

So, where there are only 2 cores this task graph will take longer than the length 

of the longest path to execute. The longest path tasks have been forced apart, 

having a gap of 1 unit between them. Thus, for this task graph the minimum 

number of cores at which the task graph executes in exactly the longest path 

time, and at which adding more cores makes no difference, has been found.  

For task graph Y for 3 cores the number of messages to take into account for the 

effect on the overall execution time is again the number of tasks on the longest 

path. However, for 2 cores this is no longer the case. To determine the number of 

messages affecting the overall execution time, one now has to trace a path down 

the tasks contiguous in time, i.e., avoiding any gaps on a core’s timeline, but 

where one may move between cores from one task immediately to the next. In 

the case of Y2 this starts with the red task on core #1, then passes through all 6 

black, off longest path tasks on core #2 and then back to core #1 for the final 

task.  

Determining the number of messages on this contiguous critical path would, in 

general, require a simulation, or other modelling, of the scheduling. However for 

this small and repeatingly structured task graph it is interesting to note the 

similarity in layout between Figure 13 at mark Y2 and Figure 12 at mark C. 

Remember that Figure 12 is concerned with the task graph per se, unconstrained 

by the number of cores. However, one could draw in in Figure 12 two dashed 

vertical lines for two cores through the two columns of tasks, which have been 

conveniently arranged for the purpose, to complete the analogy. In Figure 12, 

what constrains each set of three tasks to run serially within itself is the serial 

dependencies of the tasks between them, while in Figure 13 there are, however, 

no such dependencies (they may run in parallel with each other) and what 

constrains the tasks to run serially is that there is only one core to run them on. 

So, the lack of cores has in a sense created dependencies between the parallel 

tasks – they must run serially (but their order is not constrained). 
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(Note that the colouring of the sets of 3 tasks differs between Figure 12 and 

Figure 13. In Figure 12 they are on the longest path of the task graph per se but 

in Figure 13 they are not, and it would not help in the scheduler to somehow 

designate them as such; if given priority over the unit task, two of them would 

occupy the two threads, with the 5-unit task following, resulting in longer overall 

operation.)  

This perhaps suggests an alternative to step-by-step event simulation to obtain a 

prediction for the overall execution time of a task graph. Small sets of parallel 

tasks could, for the calculation be amalgamated into larger tasks (which in effect 

is adding serial dependencies between them). But then again, for example, 3 

parallel tasks would have 3 alternative forms by width, in terms of number of 

cores, and corresponding duration. In the cases previously mentioned in this 

section the number of cores available is known; it is set by the total available, 

less 1 for the longest path. But for larger task graphs the number of cores 

available would be set by parallel blocks of tasks on other cores, which would 

have their own set of possibilities for their shape. Further the process would be 

hierarchical, amalgamating these in turn into larger blocks, while fitting them into 

the number of cores available and taking into account the different possibilities for 

the shapes of each block. So, at first sight it appears that the complexity of this 

could well be greater than the step-by-step event simulation.  

Another interesting case is for forms of task graph that are not particularly 

constrained by dependencies, to the extent that the available cores always have 

ready tasks that can be run on them, so the cores are always occupied and never 

idle. A large number of embarrassingly parallel tasks of the same size, 

unconstrained by dependencies between themselves, and having a number that 

is a multiple of the number cores would clearly be such a case. Here, the time 

taken to run the task graph is equal to the total number of tasks times the 

execution time for one task, divided by the number of cores. If this behaviour 

remains true as the number of cores increases, then this is perfect strong scaling. 

In this case, something strange has happened to the longest path through the 

task graph per se: it is no longer single and has as many alternative branches as 

there are tasks, with each longest path consisting solely of a respective task. 
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Fortunately, the number of messaging effects to take into account for the overall 

execution time is trivial to find: each core will process, without gaps, a number of 

tasks equal to the total number of tasks divided by the number of cores. That 

number is the number of tasks to take into account and it is the same for each 

core. (So, for small departures from the tasks all having the same size but where 

all cores are kept occupied, the number of messages to take into account would 

be the largest of the number of tasks processed by each core. However, that 

would be harder to predict with increasing latency since that would cause 

rearrangement of the tasks on the cores.) 

12.4. Performance modelling conclusions 

The models of task graph building and execution here are applied in the 

discussion of the results of the experiments with the QR factorisation example in 

Chapter 13, where the importance of the messaging time borne out. So 

messaging time is an important aspect of such a model. It was noted at section 

8.1 that the QR factorisation has task kernels that will execute in a very stable 

amount of time; a more general model of application to other problems should 

include a model for the distribution of the execution times of each kind of kernel. 

These run time models may perhaps form the beginnings of predicting progress 

through the task graph as discussed in the final chapter.  
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13. Experimental Results and Discussion 

13.1. Parameters for main experiments  

The main experiments were runs of the task based QR factorisation code using 

my remote scheduler Qsargm based on my Argmessage RPC library and using 

the general arrangements set out in Chapter 11.  

Two different parameter sets were used, defining two kinds of experiment, as 

discussed in section 11.6. In a first, the “set C” experiments (designated “C” and 

“C3” in the archive), both the number of threads and the matrix size parameter n 

were both varied according to the parameter specification: 

[Opt(‘T’, [1]), Opt(‘r’, [1,50]), Opt(‘t’, list(range(1,11))),  

 Opt(‘x’, list(range(1,9))),  

 Opt(‘k’, [32]), Opt(‘S’, [99,0]), Opt(‘v’, [‘no’])]7, 

and transform: 

{(‘x’, N): [(‘m’, N), (‘n’, N)] for N in range(1,129)}, 

Therefore, this specifies the performance of 1 and 50 repeats of the experiments, 

for each of 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 computational threads, with a tile size of 

32 by 32 elements, for each of the original and experimental schedulers. Each of 

these combinations were generated for each of a dummy parameter x, having 

values of 1, 2, 3, 4, 5, 6, 7 and 8 which controlled the tile count parameter n so 

that the matrix had n by m tiles where n = m. 

Further the argument set used for each run of set C was that (in the file 

QR_args_set9.txt), had 4 outer repeats of that. 

With the S parameter being the rightmost in the specification, that meant that 

each experiment having otherwise the same parameters was first done with the 

control scheduler and then was immediately repeated with the experimental 

scheduler. This attempts to provide the control and experiments with the same 

environment, particularly the same CPU clock speed (see section 8.1).  

 

7 The Python range function does not include its upper limit argument in the range produced, so 

these ranges are the same as those given in the table below. 
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So, in summary, this parameter set is a grid of experiments, of kernel thread 

counts against numbers of tiles, with fixed tile size and one server thread. This 

provides a general survey of the performance of the code. 

A second, “set F” of the experiments explored the effect of size of the tiles used 

in the QR factorisation on the performance of the scheduler. This was generated 

using a parameter set file (QR_args_set21.txt), which was 4 long term repeats of 

the parameter set generated with the specification: 

[Opt(‘T’, [2,4]), Opt(‘r’, [50]), Opt(‘t’, [1,2,5,8,10]), 

Opt(‘y’, list(range(3,8))),  

Opt(‘S’, [99,0]), Opt(‘v’, [‘no’])] 

with transforms applied of:  

(i) {(‘y’, N): [(‘yy’, N), (‘k’, 2 ** N)] for N in 

range(2,11)}  

and then 

(ii) {(‘yy’, N): [(‘m’, 2 ** (log2elements//2 – N)),  

                (‘n’,  2 ** (log2elements//2 – N))]  

    for N in range(2,11)} 

where log2elements is a constant  20. 

Therefore, this specifies the performance of 50 repeats of the experiments for 

each of 2 and 4 server threads, for each of 1, 2, 5, 8 and 10 computational 

threads, for each of the original and experimental schedulers. Each of these 

combinations were generated for each of a dummy parameter y, having values of 

3, 4, 5, 6, 7 which controlled both the tile size parameter k and the tile count 

parameter n, in order to keep the total number of matrix elements constant. So, 

the tile size parameter k means that each matrix tile has k × k elements. The (k, 

n) pairs generated are below in Table 13, together with the total number of tasks 

and the number of tasks on the longest path through the task graph. 
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k n Total task count  

( n(n+1)(2n+1)/6 ) 

Longest path 

task count 

(3n-2) 

Tile size 

(kiB) 

8 128 707264 382 0.5 

16 64 89440 190 2 

32 32 11440 94 8 

64 16 1496 46 32 

128 8 204 22 128 

Table 13 – Set F (k,n) pairs and associated task counts 

So, in all set F experiments, the matrix being factorised had 1024 × 1024 

elements (hence the value of the constant log2elements). Thus, the problem size 

is a constant for all the experiments in Set F and all that differs is how the 

problem is divided up into tiles. The experiment was run on the jupiter and thor 

systems. 

The resulting graphs for the various timers are discussed in the remainder of this 

Chapter. 
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13.2. Timer taskgraph_build_time for Set C 

 

Figure 14 – task graph build time - local host geometry (thor005) – against threads 

Figure 14

 

 is a plot of the task graph build timer of the set C results against the number of 

threads allocated, with two makers for each set of 50 repeat sets, which are a + 

sign for the mean and a three-point star for its minimum. The tile count parameter 

n is indicated both by colour, as noted in the legend box, and a label equal to n. 

The control experiment of the original experiment is in the left panel and the right 

is for the Qsargm scheduler.  
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The reason for plotting the minima of the result sets is that in reviewing the 

performance of an algorithm the minimum is sometimes regarded as the best that 

an algorithm can do, with variation from that being dismissed as caused by 

extraneous events. On the other hand, in this work the code is multithreaded and 

many of the delay events are or could be caused by the code’s own operations, 

so the noise is intrinsic, and, generally a scheduler is for practical application, so 

mean performance figures are more appropriate for determining that.  

It can be seen that both the original and remote schedulers, the task graph build 

time is generally constant, independent of the number of threads allocated, for 

any particular tile count n. This is to be expected because, in the QR example, 

the code, in the client, that calls functions to build the task graph is only single 

threaded. The parameter threads plotted along the abscissa means only that that 

many cores are allotted to the code by the launch scripts; the client code itself 

would have to take them up. (For other timers, discussed later, the client code 

does take up these threads.)  

It is notable that, in general, the outer long-term repeats gave similar results to 

each other and so were reassuring that the experiment is generally stable and 

repeatable. It was also reassuring that the single repeats (not shown here) 

appeared to be consistent with the 50 repeats, indicating that there is no effect of 

repeating, or not, the experiment.  

 

Figure 15 – task graph build time – local host geometry (thor005) – against tile count parameter n 
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Figure 15 is for the same data as Figure 14 but plotted against the tile count 

parameter n, (so including experiments for all thread counts). Again, there is a + 

sign for the mean of each set of 50 and a three-point star for the minimum. The 

general form for both the control and experimental scheduler is increasing, and, 

with the exception of the control (row 2, column 3) between n = 6 and n = 7, 

increasing faster with n. The nominal number of client threads is not distinguished 

in the graph because the task graph build was single threaded. Again, this 

general form is to be expected, scaling with the number of tasks, as was 

explained in section 12.1, with reference to Equation 1.  

The most significant feature of these plots is, however, that for the experimental 

Qsargm scheduler the task graph build time is much slower than the original 

scheduler, more than 10 times slower. (Note the different scales on the ordinates 

between the left and right panels.) That this is due to the much-increased 

messaging time is confirmed in detail in the next section, section 13.3. The trend 

with increasing message time associated with changing the client-server 

geometry is, however, apparent from Figure 16. 

 

Figure 16 – Set C – Collected taskgraph_build_time – ratio to control 

Figure 16 combines, respectively in the left and right panels, the results for the 

third and first machine sets of Table 10, so for the client on jupiter031 and 

thor005 respectively, for all the geometries. (Some of the runs for the jupiter001 

set failed to complete, i.e. exceeded the maximum 12 hours allowed for a job on 

Thor machines 

Jupiter  machines  

– client on jupiter031 
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the cluster, and were omitted from the results on that ground. The failed results 

were not inspected and so were not rejected on the basis of the values they 

contained, and those that did complete, although then are not shown, are 

consistent with the jupiter031 set; they have the same machine specification.  

The value plotted is now not the absolute value of the task graph build timer but 

the ratio of the minimum of that timer for the experimental Qsargm scheduler over 

the control QuickSched scheduler.  The graphs are plotted against the number of 

tiles parameter n (i.e. there are n × n tiles). Different markers have been applied 

for the different geometries as follows in Table 14. 

 

Geometry Marker 

Local host  H 

Local BlueField B 

Remote host h 

Remote BlueField b 

 

Table 14 – Geometry marker letters 

The thor system machine set, in the right panel, shows some clear separation by 

geometry, with the geometries occurring in the order of their message latencies 

as shown in Table 8. For the jupiter system, in the left panel, the separation is 

between the local host geometry, the lower graph, while the remote host and 

local BlueField graphs are similar to each other, with an upper graph of the 

remote BlueField being separated again, which is more or less how the OpenMPI 

latencies for this system vary – to fit the latencies exactly the remote host (‘h’) 

marker should be at the same level as the remote Bluefield (‘b') . These graphs 

therefore further confirm that the task build appears to be dominated by the 

messaging overhead. A more detailed confirmation is given in section 13.3. 

The thor machine set, for the non-shared memory messaging geometries, shows 

a decrease in the ratio with the size of the task graph. (For the jupiter machine 

sets this is not so clear.) The shape suggests amortisation of a one-off cost in the 

experimental scheduler. Curiously, this is not there for the local host geometry 
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(the bottom band), which has a roughly constant ratio except for the smallest 

values of n where the ratio is a little less, suggesting that the one-off cost is 

related to setting up the messaging across an actual messaging link, rather than 

in shared memory.  

A final point is that the ratio is a little less for the BlueField cards for n = 5 than for 

its neighbouring values. This might suggest perhaps that the pattern of messages 

for building that particular task graph may have a more efficient pattern of overlap 

of messages in these cases. Better overlap of messages would be a potential 

explanation of the shape of the for the non-shared memory messaging 

geometries. 

This problem of a vastly increased time to build a task graph is clearly not 

tolerable in a practical system (for relative durations of the task graph build and 

run times see section 13.5) and how the problem can be resolved has been 

considered and set out in the next Chapter. 

13.3. Task graph build time dominated by messaging 

Considering now just the experimental Qsargm scheduler, for each task the 

messages sent from the client to the server are one for each qsched_addtask() 

and one for each of the additional calls listed in section 12.1. It might be expected 

that the additional to calls do not have such a significant latency, seen from the 

client, compared to qsched_addtask() itself, because, in contrast to the latter, no 

reply message from the remote task scheduler server is involved. (See in the 

server adapter code file for Quicksched (files qsargm_adapter0.h/c in 0) that 

function qsargmadapter0_addtask() has a return type of struct 

argmessage_message*, whereas qsargmadapter0_addlock(), 

qsargmadapter0_addunlock(), and qsargmadapter0_adduse() all have void return 

types, and so the scheduler server does not return a message to the client for 

those.) This is borne out by the results as follows. 

Therefore it could be guessed that the calls to qsched_addtask() would be the 

most significant element in the task graph build time, and this turns out to be 

correct. Taking a matrix of 8 × 8 tiles as an example, 204 calls are made to 

qsched_addtask(). In Qsargm, the buffer size for messages between the client 
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and server was generally between 24 and 48 bytes. The Argmessage code used 

here used MPI_Send / MPI_Recv for the messaging. According to the 

measurements made with the OSU point to point message latency benchmark 

(Chapter 10), which uses those same MPI message functions, each message 

round trip for a qsched_addtask() should take 2 × 0.5 μs for that size of message. 

In building the task graph for an 8 × 8 tile matrix the OpenMPI messaging for 

qsched_addtask() alone (not counting the small time for processing of the call at 

the server) should take 204 calls × 2 × 0.5 μs (Table 8, Chapter 10), so about 200 

μs in total. In the right panel of Figure 15, the minimum task graph build time for a 

matrix of that many tiles is around 500 μs (the three-pointed stars marked with an 

‘8’), meaning that roughly nearly half the task graph build time is taken up by the 

OpenMPI messaging in qsched_addtask(). Given the number of calls to the other 

task graph building functions, i.e., the ones that do not need a reply, the 

conclusion is that those calls do not contribute quite so strongly to the total build 

time, probably overlapping with each other.  

 

Table 15 tabulates rough figures for the minimum task graph build time for the  

8 × 8 tile example against a total of an estimated round trip message time for the 

calls to the qsched_addtask() function alone, estimated from the benchmark 

round trip time, for the various geometries.  
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Experimental 

scheduler 

location 

(Client was on 

thor005) 

Minimum task 

graph build 

duration 8 × 8 

tile example, 

read from 

subplot(1,4)  

(μs) 

Estimate of time for 

qsched_addtask() 

calls:  

204 × 2 × benchmark 

message latency for 

32 byte message 

(μs) 

Roughly 

estimated 

proportion of 

build time taken 

by 

qsched_addtask() 

messaging 

Local host 500 200 40% 

Local 

BlueField 
1200 600 50% 

Remote host 1000 500 50% 

Remote 

BlueField 
1400 700 50% 

 

Table 15 – Task graph build time estimates 

Since that for each qsched_addtask() there were also several messages from the 

client to the server that do not have a reply, which also contribute, but each not 

as strongly, the conclusion to be drawn is that in all geometries the task build 

time is dominated by messaging, and within that the main contribution is from the 

round trip necessary for the qsched_addtask() calls.  

 

13.4. Prepare Timer 

The next stage in the task graph processing is the prepare stage; once the task 

graph is built the user code calls qsched_run() and that in turn calls 

qsched_prepare() as a preliminary step. qsched_prepare() begins with respective 

sorts of three tables of the task graph’s representation (the tables deps, locks, 

and uses), which proceed in parallel on respective OpenMP threads. That is 

followed by several stages that are all processed serially on a single thread. 

Quoting from the comment lines in the code of the original QuickSched:  

  “link the locks and unlocks”,  

  “Init the queues”,  

  “set the waits”,  
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  “sort the tasks topologically”,  

  “set their weights, re-setting the waits while we’re at it”, and  

  “enqueue the non-waiting ones”.  

So, there is a portion, the sorts, that should benefit from the scheduler being 

allocated multiple threads, which can, of course, happen for both the original and 

experimental schedulers.  

For the original scheduler, the timer is between the beginning and end of the 

qsched_prepare() function, inside the function. For the experimental scheduler 

the timer is inside the function qsargmproxy0_run_openmp() on the client 

sidearound the prepare message sent to the server and its reply. The prepare 

action does not need a reply but one was provided in the code so that this did 

not overlap with the subsequent task execution giving the timers for both of those 

a clear meaning. In practice removing the message would allow such an overlap, 

which may save a little time.  

The next section, 13.5, concludes that the prepare stage is only as small part of 

the build-prepare-run process, and further there was also a bug in the code that 

meant that the table sorts for the experimental scheduler only operated on a 

single thread. Nonetheless there was some useful information to be had.  

 

Figure 17 – prepare timer – thor system - local host geometry 
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Figure 17 shows the prepare timer for the local host geometry for the thor system 

from the Set C results. The times in this plot were scaled to seconds using the 

ticks per second values presented in section 11.7. Each marker is the minimum 

of a set of 50 repeats. Markers for different values of the tile count parameter n 

are distinguish by colour and by the value of n plotted next to the markers. The 

results for the original scheduler are in the left panel and those for the 

experimental. These show that for each tile count parameter n the prepare timer 

is roughly constant with a small increase with the number of threads. It was also 

noted (from a plot of the variances – not shown) that the experimental scheduler 

is less noisy for this timer than the original. 

 

Figure 18 – Set C – Collected prepare timer – ratio to control 

Figure 18 is the ratio of the experimental prepare timer to the control and gathers 

the results from the jupiter and thor systems, in the same manner as Figure 18 

except there are markers per thread count in view of the weak dependency on 

thread count here. The markers are again as given in Table 14.  

An interesting outcome here is that for the local host geometry (‘H’), the remote 

scheduler is a little faster than the control for the thor system and for smaller 

problem sizes for the jupiter system.  

The BlueField geometries are slower. For the thor system, at large n, there is a 

clear banding between the Bluefield geometries and the host geometries. This 

will be because the prepare stage is computationally expensive and the BlueField 

cores are less powerful than those of the hosts. (The single message pair only is 

Thor machines 

Jupiter  machines  

– client on jupiter031 
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a small addition to the larger problem sizes.) However, the insignificance of this 

slowdown is discussed in the next section. 
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13.5. Relative lengths of build, prepare and run stages 

The typical durations of the build, prepare and run stages of the QR factorisation 

are set out in Table 16, taking as an example the values from the set C data, for 

8 × 8 tiles, for the thor system. (The values were read off graphs by eye; the data 

for the run stage is discussed in the next section.) 

Stage duration 

for 8 x 8 tiles 

(s) 

Control  Local host 

remote 

scheduler 

Approximate 

thread count 

dependency 

Build stage 5×10-5 1×10-3 
Independent of 

thread count 

Prepare stage 2×10-5 1.2×10-5 
Independent of 

thread count 

Run stage 
6.5×10-3 

→ 1.5×10-3 

7x10-3 

→ 2×10-3 

For 1 and 10 

threads 

Table 16 – Relative durations of build, prepare and run stages – thor system -set C 

This shows that for the original, control scheduler the build and prepare stages 

are insignificantly small compared to the run stage, being around 100 times 

shorter. The performance failure of the build stage for the experimental scheduler 

makes the build stage of significance, being almost of the same order of 

magnitude as the run stage. This however means that the schemes for reducing 

the build time for the experimental scheduler set out in section 14.3 would be 

worthwhile. Moreover, those arrangements could achieve a build time, without 

messaging, similar to that of the control scheduler; to that would then have to be 

added some O(1) messaging time for the en bloc arrangements, which has a cost 

of O(10-6s), so in total that would still be very much less than the O(10-3s) for the 

run time, making the build time insignificant again.  

Insignificant build and prepare times compared to the run time are the sensible 

regime in which to operate, because build and prepare are overhead to the actual 

calculation, but even if building the tasks was a much more complex operation 

than for the QR factorisation (for example as in the Swift code) and so were more 

of an overhead, the messaging here will be relatively less of a burden (because 
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more complex means more calculation to make the same size of task graph). So, 

the revised approaches of the experimental scheduler discussed remain valid for 

such codes. 

The results discussed in the next section, section 13.6, concerning the task graph 

run time, are therefore the most important to considering usefulness of the 

approach of this thesis. 

13.6. Task Graph Run Timer for Set C 

The time taken to run the task graph is the other key performance measure for 

the experimental scheduler. (As discussed in section 13.5, the time taken to build 

the task graph will be small by comparison for many application codes, if 

improvements mentioned there are made to the experimental scheduler, and so 

the task graph run time could be the key performance measure.) 

 

Figure 19 – Set C3 – task_graph_run_time timer – thor – local host scheduler 

Figure 19 shows the run timer against number of threads, for a range of the 

number of tiles parameter, with the results for the original scheduler shown in the 

left-hand panel and those for the Qsargm scheduler in the right, for the local host 

geometry. The minimum of each set of 50 repeats has a three-point star marker 

and the mean has a plus sign. The tile parameter n for each marker is 

distinguished both by colour and by the value of n marked close by. 
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The code for the running of the tasks is, unlike the task graph build code, 

multithreaded, and the general form of the graph is as expected for that: as the 

number of threads executing tasks increases, for a fixed tile count parameter n 

and hence for a fixed initial task graph, the overall time taken to execute the task 

graph falls, on inspection perhaps approaching a limiting value. In detail, the 

original control scheduler perhaps reaches the limit for smaller values of n.  

The left-hand panel for the other geometries (not all shown) showed very similar 

results, because, of course, the control experiment operates in exactly in the 

same way for all geometries. 

There are, of course, general reasons to expect an approach to a limiting value. 

This is the situation considered by the well-known Amdahl’s Law [77]. Amdahl 

observed that if a program has a serial part (always true) and a parallel part then, 

while the execution time of the parallel part might be reduced further and further 

by using more and more processors, the serial part will not be, and so the time to 

execute the serial part must be a theoretical lower limit to the execution time of 

the whole program. (One will not practically achieve that limit because breaking 

down the work into more and more parallel pieces will generate organisational 

overhead.)  

Section 12.2 discussed the minimum time to execute a task graph being that of 

the longest path through the task graph. Thinking about that in the context of 

Amdahl’s Law, it is the longest path from the root task to the last task that is that 

kind of minimum for the parallel processing of tasks in a task graph. (While the 

tasks along that path may be executed on different cores, they still have to occur 

in order, each starting after the last has finished, so in that sense serially.) So, 

Amdahl’s law may well account for the minimum that approached by each size of 

task graph.  
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Figure 20 – Set C3 – task_graph_run_time timer – thor – local BlueField scheduler 

Figure 20 is as Figure 19 but for the local BlueField geometry. The main point to 

note is that, for these and the other two geometries (not shown), the form of the 

plot for each fixed size task graph is the same form as for the original scheduler, 

but slower, in general just a little slower. This is quantified in section 13.8.  

A detail of both Figure 20 and Figure 19 is, however, increasing variation in the 

run time at or approaching 10 threads for the experimental scheduler, which is 

not present for the control scheduler. At this point there will be more threads than 

tasks available so a lot of redundant messaging and many potential conflicts 

between requests for tasks. To gauge the number of tasks, consider the 

diagrams in Chapter 8 showing the task graphs for the QR factorisation; in 

particular, in Figure 9, which is for the case of n = 4; on inspection it appears from 

the dependencies that for each of the 4th and 5th rows, the longest rows, all the 

tasks of the row could fall to be being processed at roughly the same time, if 

there are enough threads, and these rows are 5 and 6 in number, so a little larger 

than n but the other rows are 4 and less in number. 10 cores is, of course, 

greater than the largest n, n=8, tested in these set C experiments.  

However, later experiments go well beyond n = 8, so it was checked how the 

maximum number of tasks on the row of the QR factorisation task graph scales 

with n. This was checked with the expedient of having the dot program, which 

drew Figure 8 and Figure 9, output a list of coordinates on the page of where it 
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will plot the tasks. From that a short script collected the coordinates and grouped 

them into rows, so that they could be counted. The results are in Table 17: 

Tile count 

parameter n 

Tasks in longest 

row of graphviz 

plot 

4 6 

8 21 

16 80 

32 297 

Table 17 – Tiles in longest row of graphviz plot of QR factorisation task graph 

This shows that the longest row of the task graph found, so a rough estimator of 

how many threads could operate in parallel on the task graph without any being 

unused, scales faster than n (so, that it was roughly equal to n for n = 4 was a 

coincidence). On this simple model it appears possible to keep a great many 

threads occupied. 

An oddity in Figure 20, for the local BlueField geometry (and for the other 

geometries but not the local host geometry Figure 19) is that the case of 7 

threads, for the experimental scheduler, there is a very large variation in the time 

taken to run the task graph. Contrastingly, for the local host geometry there is 

increased variance for both 2 and 4 threads; there is a hint of this visible in Figure 

19, but it is clear in scatter plots and plots of the variance of the timer (not 

shown). 

Such operation may be highly inefficient but of course in practical situations the 

usual objective would be to use a large number of threads, so this is not much of 

a concern.  
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Figure 21 – Set C3 – Collected task graph run time – ratio to control 

Figure 21 quantifies the slowdown compared to the original scheduler. In the 

same way as with Figure 16, this collects the thor machine set, on the right, along 

with the similar data for one of the two jupiter machine sets, on the left, and 

shows the ratio of the run timers for the experimental and control schedulers. 

Again, the markers are as listed in Table 14. The top row is the plot against 

threads, while the bottom row is against the matrix tile count parameter n. As can 

be seen in the legends only a subset of the n parameter values, or a subset of 

the thread counts have been plotted to provide visual clarity. 

This Figure shows that the slowdown ranges from over 2.5 times in some cases 

down to only a few to 10 or 15 percent in others. The former is of course not 

practically useful at all, but the latter is very encouraging. The graphs show that 

the larger task graphs (see the top row against n) have better performance, i.e., 

less poor for the experimental scheduler. This region is more what would be 

wanted in practice, where task graphs can be much larger. (The task graph sizes 
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used on the experiment were limited by consideration of repeating each 

experiment 200 times in order to gather significant numbers of samples in time 

spaced bursts.)  

The upward trend in slowdown with number of threads is more clearly brought out 

in this Figure. This is a disadvantageous phenomenon in practice, since more 

modern processors have even larger numbers of cores than used here, but again 

closer inspection of the graphs suggests that the trend is less strong while the 

number of threads is suitable to the problem size, i.e., not more than the number 

of tasks available at one time.  

It is also clear that the slowdown is strongly dependent on the messaging time, 

so the local host geometry (marker H), with the smallest latency, being better 

than the others. The future advance of technology will be favourable here also. 

BlueField cards are new and are undergoing active development to new 

generations (another generation will at the time of writing be available shortly) 

and latency between the card and the host is doubtless being worked on, so one 

would have an expectation that the next generation of BlueFields would perform 

better. 

There is also of course the hope that optimisation of the arrangement of the 

messaging in the experimental scheduler could improve things further, especially 

for larger numbers of threads.  

These results mean that the central proposal of this thesis, moving the scheduler 

from being within the compute threads to a remote separate process, was a 

success, or at least not a discouraging failure. However, it is clear that an 

appropriate region of operation needs to be used, and indeed the set F data, 

discussed in section 13.10, pursues that and produces greater success. 

The run time performance and its relationship to the messaging latency can be 

quantified further and that is done for the set C data in section 13.8. 
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13.7. Run timer results using sub optimal scheduler hints 

An initial bug in the correction of the QR factorisation code provided some code 

which preformed the QR factorisation code correctly – it had the expected task 

graph – bit which did not have the intended locks and uses specifications, which 

are there to promote allocation of a task to a core that already has data for the 

task. Results were obtained for this code and the following were noted.  

• the absolute task graph run times are very similar 

• for the thor system, with the unintended locks and uses there was larger 

variation in run time for 9 and 10 threads 

• for the thor system, with the unintended locks and uses the larger variation 

for n = 7 was not present 

An explanation for the first point become apparent in section 13.9. The latter two 

points suggest that some combinations of task graph size (determined by n) and 

thread count can have an unstable layout of the tasks in time and across the 

cores between runs and that instability is sensitive to the hints given to the 

scheduler as to where to place a task.   

13.8. Quantification of messaging overheads for run time  

The performance models of Chapter 12 help analyse the effects of messaging 

delays on the execution of a task graph. 

Starting with the case of a single core for executing the kernels, in this case the 

total task graph run time is the sum of the time to execute all of the tasks plus the 

overhead of allocating the next task after each of those and recalculating the 

queues. This provides a basis for numerical comparison between the original 

QuickSched and the experimental Qsargm remote scheduler runs, because the 

messaging adds to that overhead. Also, the case of a single core is quite clean in 

that there are messages only from that core, so clashes between messages from 

different cores do not occur.  
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Figure 22 – Set C single thread run timer (s) against n  
– data for thor system fitted function of Equation 1 

Figure 22 is a scatter plot of the run timer of the Set C data for just the single 

thread data for the thor system fitted to the function of Equation 1 for the number 

of tasks in the QR factorisation task graph, NG. 
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The constant of proportionality needed to fit the results was noted for this and the 

other machine sets for both the original and experimental schedulers; this 

constant is the mean run time per task. The results for the original scheduler (not 

shown) were very closely the same for each geometry because, of course, the 

original scheduler does not communicate with the remote process, so the 

geometry is not relevant. For both the original and the experimental scheduler the 

fit in all cases is extremely good. That however is not miraculous given the 

cleanness of the one core operation. The fit was carried out using the curve_fit 

function from the scipy.optimize library [78].  

The difference of the mean run time per task value given by the fit for the 

experimental and original schedulers is given in the final column of Table 18 for 

the different machine sets and geometries. That Table also includes the single 

message latency data from Chapter 10. For the thor system the machine sets 

were the same ones for the latencies and the fit result, but for the jupiter system 

the machines used were not the same (the systems being unavailable), but of 

course the machines within the jupiter system are similar, so the data can be 

used for comparison. In each case, it can be seen that this excess of the fitted 

value for the remote scheduler per task is something over twice the message 

latency. (The 32- and 64-byte times are similar and as noted previously are in the 

region of the message lengths used in Argmessage.)  

This confirms therefore that the remote scheduler excess overhead is largely 

accounted for by the messaging between the client thread and the server, as 

follows. Recall that at the end of each task the thread first sends a task done 

message and then a get task message and then waits for the scheduler to 

process those and messages back the identity of the next task for it to execute. 

The get task messages out and back will cause a slowdown of two message 

latency times. The task done message does not cause an entire third one 

because it overlaps with the outgoing task done message. There may also be a 

contribution to the overhead caused by the more complex decoding of these 

messages than the simple function call equivalent in the original scheduler and, 

for the BlueField scheduler, this will not process the task done and gettask calls 
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as quickly as the host processors since the Arm processor used is not as 

powerful as the hosts.  

Single message latency 

or, final column, 

scheduler excess per 

task, in µs 

 

Cluster and geometry  

 

Minimum 

 

32-byte 

messages 

 

64-byte 

messages 

 

Remote 

scheduler 

excess per 

task8 over 

original 

scheduler 

Local host scheduler 

thor005 to thor005 0.38 0.50 0.51 1.11 

jupiter029 to jupiter029 0.30 0.48 0.49  

jupiter031 to jupiter031    1.24 

jupiter001 to jupiter001    1.27 

Local BlueField scheduler 

thor005 to thor-bf05 1.39 1.48 1.56 3.80 

jupiter029 to jupiter-bf29 1.35 1.45 1.54  

jupiter0031 to jupiter-bf31     4.25 

jupiter001 to jupiter-bf01    4.97 

Remote host scheduler 

thor005 to thor006 1.20 1.23 1.31 2.88 

jupiter029 to jupiter030 1.66 1.73 1.81  

jupiter31 to jupiter32    3.90 

Remote BlueField scheduler 

thor005 to thor-bf06 1.64 1.73 1.81 4.31 

jupiter029 to jupiter-bf30 1.60 1.72 1.81  

Jupiter031 to jupiter-bf32    4.50 

 
Table 18 – Excess run time per task for experimental remote scheduler over original scheduler (µs) for set C 

for single threaded task processing 

 

8 Output of the program: 

archive:aftermath/aftermath/analyse/H0_run_timer_strategy_differences.py 
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Figure 23 – Set C, thor – excess task graph run time – overlain with performance limits 

These excess remote scheduler values per task were then applied to the data 

collected for the task graph run time for all the numbers of cores/threads 

employed, not just the single core case, as follows. Figure 23 and respectively 
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show excess run time (in seconds) for the Set C data, for the thor and a jupiter 

machine set; i.e. the mean, marked with a ‘+’, for all the samples taken of that for 

the experimental scheduler minus that for the original scheduler. 

 

 

Figure 24 – Set C, jupiter – excess task graph run time – overlain with performance limits 
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Each plot is for a different one of the geometries. Each plot is overlain with model 

graph lines for two of the operational regimes discussed in sections 12.2 and 

12.3. The curved model graph lines are for what would be expected for perfect 

strong scaling, i.e., for the case of a task graph whose tasks are so 

unconstrained by dependencies that the threads are always occupied, so the 

form is proportional to 1/t, where t is the number of threads. This is plotted for 

each case of the matrix tile count parameter n. Each curve is scaled so that the 

point for one thread has the excess per task given in Table 18, that being the 

difference for the experimental and original schedulers’ values found by the curve 

fits for the single thread case (Figure 22), times the number of tasks as given by 

Equation 1, since for one thread that thread executes all tasks. (Note these 

curves do not for a particular value of n meet the respective single thread point 

exactly, because the fit was for all values of n, 1 to 8, and not that particular value 

of n.) Of course, perfect strong scaling is not expected for the case for the 

present QR factorisation task graph, but this model is the best that could occur 

for any kind of task graph and so provides a lower bound to compare the result 

to. A model line for the actual, dependency constrained, QR optimisation for 

smaller numbers of threads is not plotted because to obtain such a model would 

require some simulation or complex estimation, as mentioned in section 12.3, 

which was not undertaken. 

So, while the data points, for small numbers of threads and larger values of n, do 

track this overlaid, strong scaling, curve downwards, they of course do depart 

from it, i.e., not performing as well as the ideal strong scaling case. This is 

intrinsic in the task graph and so is not a bad thing. While in theory the downward 

trend should continue, that does not occur in practice; something is degrading 

performance at higher numbers of threads. This degradation in performance may 

not belong solely to the experimental scheduler. Earlier it was discussed how it 

does not seem likely that the pattern of execution of the task graph is not affected 

by the increased messaging latency, at least for the QR factorisation. So, the 

original scheduler may also be degrading owing to its own messaging and then 

the degradation of the experimental scheduler is a scaled up version of that.  
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The horizontal model lines were plotted as the remote scheduler excess per task 

value, which of course was for the single thread case, times the number of tasks 

on the longest path NL as given by Equation 3, for the various values of n. This 

represents the best the scheduler could perform for the QR factorisation task 

graph at a high number of threads, so where the task graph runs in exactly the 

longest path time, if the excess overhead for the experimental scheduler per task 

for large numbers of threads stays the same as it is for the single core case, 

which is plainly not being achieved.  

Note that the performance cannot be better than the strong scaling case, so only 

the section of each horizontal line to the right of its intersection with its respective 

strong scaling curve is valid as a minimum conceivable time for overall execution 

of the task graph. That does not mean the intersection point is one that could be 

approached for the QR factorisation, since its task graph cannot occupy all 

threads throughout the execution, i.e., cannot achieve strong scaling. So, the 

point at which the longest path limit could be achieved would be at some point to 

the right of the intersection.  

Earlier it was observed that a cursory inspection of the QR task graph for n = 4 

suggested that it has a maximum number of parallel tasks available of around 5 

or 6, which would be some indicator of the maximum number of threads that are 

useful to process it. Therefore, if the experimental scheduler where working well 

at large numbers of threads, it would approach the horizontal model line at some 

number of threads close that. Table 17 for the number of tasks in the longest row 

of the graphviz taskgraph plot has been recalculated for the values of n = 2 to 8 

to give Table 19. 
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Tile count parameter n Tasks in longest 

row of graphviz plot 

2 2 

3 3 

4 6 

5 9 

6 11 

7 17 

8 21 

Table 19 – Tiles in longest row of graphviz plot of QR factorisation task graph for smaller values of n 

However, it is clear from the experimental points that the minimum of the longest 

path in the task graph, the horizontal line, is nowhere near being achieved.  

For an empirical observation from the experimental points in Figure 23 and 

Figure 24, noting the point where the excess run time actually starts to increase 

with extra threads, this point occurs roughly, as a trend for this range of n, at 

where t is about half n. Up to that point the remote scheduler appears reasonably 

efficient, and so its performance is probably determined simply by the message 

latency. This could be the point at which the task graph is supplying the number 

of threads it can and any more threads above this point are superfluous and 

causing inefficiency in the scheduler with unnecessary requests. Again, this state 

of operation might be confirmed with a simulation of progress through the task 

graph plotting its performance on those Figures. (If a simulation did not take into 

account the effects of excess requests to the scheduler the performance would 

become constant above that number of threads.)  

If this number of threads of t being about half n, is the maximum number of 

threads that can be fed by the task graph then it is less than number in the 

longest row. This might simply reflect that for a lot of the time the task graph has 

fewer tasks in its rows than in the longest row, or there may be some interaction 

in the task graph that means only part of a whole row can become ready tasks at 

one time. There is tension between this and the idea that an infinite number of 

threads should ensure, with appropriate priority among ready tasks, that 
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processing of the task graph in the length of the longest path. It would be 

interesting therefore to plot progress of ready and executing tasks on taskgraph 

plots produced by graphviz, such as Figure 9, to see if there are any more 

complex patterns than a simply advancing front down the page.  

For the rising section of the data points, it could be that the scheduler is simply 

becoming swamped by the number of messages that it is receiving. As the 

number of threads increases there are increases in both the number of 

messages, leading to the increased chance of messages interacting, and in 

complexity for the messaging library to sort messages onto the correct thread. 

This interaction between messages is exacerbated by there being only one 

channel for the messages to travel along, so messages from the different threads 

will have to be serialised along it – if the channel is occupied with a message 

from a first thread, a message from another wanting to use it will suffer extra 

delay. There may also be an inefficiency in the scheduler of repeated failed 

attempts to find a task for threads that cannot be filled.  

So, how can performance at higher numbers of threads be improved? Reducing 

the message latency per se would of course reduce the chances of interaction 

between messages and so improve performance at high thread numbers. 

Doubtless the technology is moving in that direction. Another approach is to 

reduce the number of messages by reducing the number of tasks, i.e., larger 

tasks, but these might have difficulties as being too big for the cache, or being too 

few to keep the threads supplied. Some more detailed ideas for improving the 

messaging are as follows. On the other hand, a lesson to take is not to try to 

supply more threads than can be used.  

From the task graphs discussed in section 12.3, particularly Figure 13, or equally 

from Figure 9, it is apparent that when a task is done it may well cause several 

tasks to become ready at the same time. In the present experimental scheduler 

this will result in several get task reply messages being generated at essentially 

the same time. These will collide in that only one of these can be transmitted by 

OpenMPI at the same time. If a gettask reply message for a task on the longest 

path is among them, it could be delayed by the other gettask replies being 
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transmitted first; in the worst case it could be delayed until all of them have been 

transmitted. There does not appear to be a mechanism in OpenMPI to give 

priority to one message over another.  

One might perhaps try to account for this in the scheduler by scheduling the 

respective gettask message reply calls at a very fine scale with the reply for the 

longest path task first and then delays before sending the others, but even then it 

might not be guaranteed that the underlying OpenMPI library and the hardware 

would send the messages in the right order (as opposed to the promise to deliver 

them in that order). Certainly, this more detailed scheduling could be tried with 

the extra processing power allowed by the remote scheduler.  

Another superficially attractive idea would be to combine these multiple 

“simultaneous” get task reply messages into a single message. This would 

eliminate collision between them. However, this just then creates a problem at 

the receiving end, which is the kernel processing threads. If the thread receiving 

the combined message is that which is going to process the longest path task, 

then before it can do that it must first communicate with each of the other threads 

to notify them of their new tasks. If the receiving thread is another thread, then 

the longest path task thread must wait for that thread to notify it. In either case an 

extra communication hop has been added to the wait before the longest path task 

can begin processing. 

What would be useful here is to change the OpenMPI messaging for a more low-

level library that is capable of sending a single message, containing all the new 

task IDs, and respective parameters, but which scatters them, using DMA, to a 

respective block of locations for each thread concerned, with the threads waiting 

for a new task polling their respective block, until the new task information 

arrives. This would be very quick, avoid message collision and, one would 

imagine, would be controllable to scatter the longest path task first. The User 

Mode Registration of RDMA Core [79] might provide such a facility. Its detailed 

suitability has, however, not been investigated, but if it is then it is a very 

attractive prospect for Qsargm. 
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13.9. Time spent on kernel processing 

 

Figure 25 – Set C3, thor – time spent in computational kernels – local host scheduler 

Figure 25 shows the time spend in the computational kernels for the thor 

machines in the local host geometry. In fact all the geometries have the same 

form of plot as this, which is the minimum time spent processing kernels is for the 

single threaded case, then, as the number of threads increases, the time spent 

processing kernels increases, with the rate of increase generally decreasing, or 

at least there is an elbow at n = 3. Any difference in form between the 

experimental and original control scheduler is not easily discerned and the 

magnitudes of the timer appear quite similar between the two.  

Comparing this Figure to those for the task graph run time, Figure 19, it can be 

seen that for the single thread case that nearly all the run time is accounted for by 

the time inside the kernels. This is of course a sensible regime to be operating in, 

since scheduling should be a small overhead to the actual calculation.  

That both all geometries and original and experimental schedulers have the same 

graph form for the time spent in the kernels and have similar values for this timer 

is not that surprising since, on the face of it, the scheduling does not explicitly 

interact with the internal operation of the kernels; inside the kernels the same 

code operates on the same values no matter how it is called. However, how is it 

that time spent in the kernels differs between using 1 thread and using many 

threads, by a few percent? Recall that the scheduler favours allotting a task to a 
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thread that has recently operated on some of the data that the task will utilise and 

that this is to reduce cache misses. This is achieved by having a respective 

queue for each core and allotting a new ready task to a queue that has tasks with 

data in common with it. However, recall also the scheduler also has a competing 

rule, which is that if a core does not have any ready tasks available in its queue, 

then it will obtain one from the queue for another core. On being moved from this 

other core it is more likely that this core will not have data for its new task in its 

own cache and a cache miss will occur, degrading performance. The effect 

continues with increasing numbers of threads because the more threads there 

are the more often, in general, a core will not have any tasks in its queue, 

therefore causing a task to be stolen from another core, with a chance of another 

cache miss. The process has a theoretical upper limit, of course, which is that of 

all tasks suffering a cache miss for all of their data sets and correspondingly there 

will be an upper limit on the time spent in kernels. (In some cases, it might not be 

possible for all tasks to cause cache misses, with the result that the upper limit on 

the time spent in kernels would be lower than the case of all allocated tasks 

having total cache misses.) The form of the graphs of Figure 25 is clearly 

consistent with there being an upper limit and cache misses from allocating tasks 

to waiting cores rather than waiting to allocate for a cache hit is believed to be the 

cause. Further evidence could of course be obtained by using cache miss 

counters that are available on the processor. This was not done, however. 

(Note that it is not concluded that all task graphs would have a monotonic 

increase in the kernel timer with the number of threads, only that that would be 

the overall general form; it could be that in some cases the pattern of distribution 

of tasks could dramatically change with a small change in the number of threads 

and hence have another effect on cache misses. Perhaps an example of that, 

some zig-zagging in the kernel time ratio, is discussed later in this section.) 
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Figure 26 – Set C3 – ratio of time in kernels between experimental and original schedulers 

As the differences in the time spent in kernels between the experimental and 

control schedulers were not easily apparent from plots like Figure 25, they were 

investigated by plotting their ratio. This is shown in Figure 26, which again 

combines Set C3 results available for two of the machine sets of Table 10; again 

one of the jupiter machine sets is on the left and the thor machine set is on the 

right; the top row of plots is against threads and the bottom row is against the tile 

count parameter n, with the geometry being indicated with the marker letter as 

given in Table 14. For clarity of the plots only a subset of the points for certain n 

or thread count was used, but the same features are apparent in plots with a full 

set and indeed the following comments are made in respect of the full set. 

The behaviour is quite complex. While there are differences between the jupiter 

and thor systems there are some common features as well. For both, the ratio 

shows that, while the kernel timer ratio is generally around 1, there is a significant 

proportion, in fact a majority, of the test cases, where, for the experimental 
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scheduler, less time is spent in the kernels than for the original scheduler. 

Reduced total kernel time does not always guarantee faster overall run times, 

since there are the overheads to consider, but it is generally encouraging. 

Comparing the two machine systems, the jupiter system has a concentration of 

its ratio results in a central horizontal dense band for both the plots against 

threads and tile count parameter n, down from equality to 2% better for the 

experimental scheduler. For larger numbers of threads, the larger problem sizes 

of n = 4 to n = 8 are included in this band, which is the useful region in practice, 

i.e., lots of threads and large problems. For the thor system the band is not so 

well defined and in the plot against the tile count parameter n, the band is no 

longer horizontal but bows down, having a central portion favouring the 

experimental scheduler. So, here for a more limited range of tile count 

parameters, from n = 3 to n = 5 or 6, but again for a wide range of threads, 

including up to the maximum of 10, the experimental scheduler again has the 

advantage. 

Another observation from the graphs is that, for both systems, and for both 

against threads t and against the tile count parameter n, the graph lines linking 

points for the same geometry exhibit much zig-zagging; i.e. there is a 

dependency on (-1)n+t. 

There are perhaps two possible mechanisms which might cause the advantage 

to the experimental scheduler in total kernel time, when it exists:  

1. A different layout of the execution of the tasks in time and across the 

cores, which might be caused (i) by the different messaging latencies 

between the schedulers. Clearly, from the zig-zagging, there must be a 

different layout in tasks caused by (ii) increments in n or t. A different 

layout of tasks may well have a difference in cache misses involved and 

hence a difference in total core time, and this layout could be different 

between the experimental and control schedulers.  

2. Because, in the experimental scheduler, the scheduler is in a separate 

process on a separate core, the scheduler itself does not use memory 

belonging to the cores processing the kernels and so will not upset its 
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cache. In contrast, in the original scheduler, a core processing the 

scheduler, after its task has finished, on becoming the scheduler will have 

to bring all, or parts, of the various of the scheduler’s objects (the task 

graph tables, the core’s queue and probably also other cores’ queues (for 

work stealing)) into its cache, which may well displace some of the data 

that is needed for the next task allocated to the core, thereby causing a 

cache miss when that next task is executed by the core, when the 

application data might have otherwise been in the core’s cach, negating 

the effect of the schedulers’ preference for there to be such application 

data in the core’s cache. 

Now, these do not necessarily result in an effect on the task graph run time. First, 

in addition to the kernel time, there are the overheads to consider, and second, 

just because the total time spent in the kernels is reduced it does not necessarily 

mean that particular tasks relevant to the overall task graph execution time are 

affected, namely those on the longest path, or if relevant those on the contiguous 

critical path discussed in sections 12.2 and 12.3 for the case where off longest 

path tasks force apart longest path tasks. Further data concerning cache misses 

for particular tasks and a log of the particular cores they executed on would be 

needed to link the cache misses to overall run time quantitatively. However, both 

these effects, 1 and 2 listed immediately before this paragraph, on the cache are 

very plausible as the cause of the experimental scheduler having less kernel time 

and in turn that producing a faster overall run time than the original control 

scheduler, in certain circumstances yet to be discussed. The effect of reduced 

kernel time on the overall run time could be quite a significant one because, of 

course, in any sensible arrangement the time spent on processing a task is much 

larger than the time spent scheduling between tasks.  

For the jupiter system, the advantage of the experimental scheduler for 1 and 2 

threads, at smaller job sizes n, is particularly strong. It was discussed how, for 

smaller numbers of threads, the potential for cache misses caused by other 

effects remains high because the task stealing rule will not be operating to its full 

extent, so this may be evidence consistent with that. 
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In general, the mechanisms discussed here could well take effect differently 

between the two systems, leading to the different behaviour: they have different 

message latencies (as measured and noted in this thesis) and have different L3 

cache sizes (and potentially structures): the Xeon E5-2697A processors used in 

in the thor system have a 40MB Intel Smart Cache [80], whereas the jupiter use 

Xeon E5-2680 V2 has only a 25 MB Intel® Smart Cache, and there of course 

may be many other differences in the memory system between machines of the 

two systems. 

Now, it was true that for the Set C3 data none of the cases showed better 

performance in overall task graph execution time for the experimental scheduler. 

That does, however, mean that these cache miss effects are not significant in 

working against the direct effects of message latency. The section 13.10 sheds 

more light on the issue.  

Another interesting point arising from this applies to the original scheduler per se: 

if there are a very large number of cores, for example, as exists in modern 

processors, which means that a cache miss is very likely for each task, it may not 

be worth the cost in the scheduler of maintaining priority queues for the gain of 

saving only an occasional cache miss. Some simpler rule of a single ordinary 

queue, or random selection from a pool, might be much quicker and outweigh the 

loss of a few avoided cache misses; indeed, it might also reduce cache misses 

caused by operating the scheduler in the computational thread, since much less 

data will have to be consulted by the scheduler to make its choice of the next 

task.  
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13.10. Optimisation of tile size – run time and kernel time for Set F  

In general, task-based algorithms will have an internal parameter of the size of 

the tasks. Dividing the problem into larger tasks means fewer tasks and fewer 

messages; on the other hand, using smaller tasks may mean more opportunities 

to fit the tasks into spaces available on the threads. In the case of the QR 

factorisation studied here, the task size is directly related to the tile size. So, the 

effect of tile size on the task graph run time was investigated. 

 

Figure 27 - Set F2, thor - task graph run time - local host scheduler – against threads 

 

Figure 28 – Set F2, thor - task graph run time – local host scheduler  

– against tile count parameter n or equally tile size parameter k 
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Figure 27 and Figure 28 are plots of the task graph run time for the results of the 

Set F2 experiments, which were defined at section 13.1, for the local host 

geometry, for the thor system. Each marker is the minimum of each set of 50 

results. In Figure 28, as it is dependent on the tile count parameter n, the tile size 

parameter k is marked along the top axis. The colours of the markers are 

supplemented with labels nearby of the n or threads values respectively. The low 

variation in the minima for the same parameters means that in many cases some 

or all of their four respective markers are overlaid. 

From these Figures, it can be seen that many general features of the graphs for 

the original scheduler, on the left, and the experimental scheduler, on the right, 

are similar. Apart from the n = 128 and n = 64 cases for the experimental 

scheduler, the performance increases all the way to 10 threads. These larger n 

cases involve the greatest number of messages so one would expect that as the 

performance return for more threads diminishes, the overhead of more and more 

messages would eventually degrade performance. For both schedulers, at each 

of the higher thread counts of 5, 8, or 10 threads, generally both schedulers 

perform reasonably well, although from these Figures one can already see that 

for larger n the experimental scheduler is slower. Considering the tile count 

parameter n, the best performing values for both schedulers are n = 8, n = 16,  

n = 32; these all have similar performance, as indicated here by the plotted 

minimum of each set. To that group one might add n = 64 for the original 

scheduler, since it has almost as good a performance as the others, but not n = 

64 for the experimental scheduler where performance is clearly beginning to 

degrade.  

It is notable that for both schedulers the standard deviation in the run time (not 

shown) for n = 8 is generally larger than for the other best performing cases. Here 

there are many fewer tasks, so it is imagined that any variation between runs in 

how the tasks get laid out on the cores have less opportunity to average out. If 

the most stable, repeatable run time were to be needed, then n = 16 and n = 32 

for both schedulers are to be preferred. (This is not the case for the two BlueField 

geometries where n = 16 and n = 32 have larger standard deviation, that being 

there the same as for the n = 8 case.) Although lower numbers of threads are not 
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the general practical use case, it is interesting that n = 8 is better performing for 

just 1 and 2 threads, for both the original and experimental schedulers, compared 

to the other cases of n.  

 

Figure 29 – Set F2, thor - task graph run time – local BlueField scheduler – against threads 

 

Figure 30 – Set F2, thor – task graph run time – local BlueField scheduler  

– against tile count parameter n or equally tile size parameter k 

In the local BlueField geometry case of Figure 29 and Figure 30, the high-

performance groups are the same as for the local host geometry. However, the 

poor performing case of n = 128 is clearly much slower again for the experimental 

scheduler than for the local host geometry. That of course will be caused by the 

increased message latency given the large number of messages involved. These 
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patterns are the same for the remote host and remote BlueField geometries as 

well (not shown).  

It is quite striking that the overall best performing group (i) is the same group for 

the experimental and remote schedulers, and (ii) is the same group for all the 

geometries of the experimental scheduler.  

These observations are, however, explained by all the experiments being, for a 

particular value of n, for the same task graph, and so the tasks for these may well 

be, for a particular number of threads, generally, laid out across the cores and in 

time, in the same pattern. What differs between the experiments of different 

geometry or between the original and experimental schedulers having the same 

values of n and thread count is, on the face of it, only the message latency. This 

will increase the overall run time in proportion to the number of relevant 

messages, as discussed in previous sections, and the number of relevant 

messages will be the same because that pattern is generally the same. The 

original scheduler is unified in this since the calls to the scheduler are equivalent 

to low latency messages. Accordingly, all geometries for the experimental 

scheduler and the original scheduler have their minimum run times in the same 

place.  

In sections 12.2 and 12.3 it was explained how reducing the number of threads 

will after a certain point force apart the on longest path tasks and increase the 

number of relevant messages from the linear dependency on n indicated in the 

fourth column of Table 13Table 13. The third column of that Table is for the upper 

limit case of the number of relevant messages for a single thread, i.e., the total 

number of tasks, which is cubic in n.  

The same forcing apart effect will also occur for a fixed number of threads and 

increasing the number of tasks: while, at low task numbers, the runtime will be 

the length of the longest path in the task graph, as the number of tasks in the 

graph is increased, the on longest path tasks will be forced apart, and in Figure 

28 and Figure 30 (and similar Figures, not shown for the other geometries), the 

run time does indeed increase rapidly for n beyond the best performing group 

(even though the size of the individual tasks is decreasing). However, it remains 
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to explain why increasing the number of tasks does not within this high 

performance group, degrade performance, as is indeed the fact.  

In sections 12.2 and 12.3, it was also stated that for the QR factorisation the 

number of threads at which the run time becomes that of the longest path may be 

around where the number of threads was about equal to a moderately increasing 

function of the tile count parameter n – see Table 17. But it was also shown that 

execution in the longest path length time might occur down to a smaller number 

of threads than that, but that that point would be hard to find without simulation. 

So, it is not clear where that happens. 

Now, looking again at Figure 28, against n, for the 8 and 10 threads points, we 

can see that the point for where n is approximately equal to those thread counts, 

i.e., for n = 8, performs well, but those for n = 16 and n = 32 are not only not 

degraded in performance, but are in fact slightly better. Those are respectively 

roughly for 7 and 56 times as many tasks as for n = 8 and, further, from Table 17, 

they have task graphs that are at the widest roughly 10 and 30 times the number 

of threads available. Therefore, it seems unlikely, from the sheer number of 

tasks, that the longest path execution time still applies, and yet the times are in 

fact slightly better than for n = 8. Here are some possible causes that one could 

entertain: 

A. It might nonetheless be that the limit where the on longest path tasks have 

not been pushed apart has not been reached, despite the sheer number of 

tasks. 

B. Another possible cause might be because tasks are now queuing. (As 

noted, for n = 16 and n = 32 the “width” of the task graph in the sense 

discussed in relation to Figure 9, could be around 10 and 30 times the 

number of threads available.) Queuing tasks may mean that the scheduler 

rule aiming to allot tasks to cores having relevant data in their caches 

comes back into play; when a core becomes free it is more likely that there 

is, among the queuing tasks, a task that is in the particular queue for the 

free core and hence that new task already has some data in the core’s 
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cache. One might expect opportunities for such cache hits to increase with 

n.  

C. The intrinsic efficiency of the kernel code, related to the number and type 

of its internal operations, as a function of n would be relevant, if any 

increase as a function of n is not compensated for elsewhere.  

 

Figure 31 - Set F2, thor - total time in kernels - local host scheduler - against threads 

 

Figure 32 –  Set F2, thor –  total time in kernels –  local host scheduler  

–  against tile count parameter n, or equally tile size k 

The data available does not identify the particular tasks on the actual critical path. 

However, graphs of the total time spent in all the kernels are still productive to 

consider. Figure 31 to Figure 34 show the total time spent in kernels for the same 
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set F2 data from the thor system plotted against threads and tile count parameter 

n in the same way as for Figure 27 to Figure 30 for the task graph run time.  

 

Figure 33 – Set F2, thor - total time in kernels - local BlueField scheduler – against threads 

 

Figure 34 – Set F2, thor - total time in kernels – local BlueField scheduler  
– against tile count parameter n, or equally tile size k 

Looking first at the graphs against thread count, so Figure 31 and Figure 33, 

these show (the same is true for the other geometries, not shown) that for 1 and 

2 threads the total kernel time has a first approximately constant value, for each 

value of n, and for 5 or more threads it has a second, higher, constant value. This 

is consistent with the cache miss effect between tasks of there being more 

frequent cache misses as the number of threads increases, but that saturating 

when a minimum number, perhaps but not necessarily zero, of cache hits 
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between tasks remain. This would seem to rule out B because at high threads the 

cache missing has saturated, and, further, as n increases the time in the kernels 

increases, so if the effect exists it is not strong.  

Turning now to the dependency on n, so Figure 32 and Figure 34, these again 

show the same general pattern for both the original and experimental schedulers 

and for all the geometries (including for the other geometries that are not shown), 

which is that the total time spent in the kernels increases slightly with n.  

If it is also true, which seems likely, that the particular tasks on the critical path 

through the task graph therefore also increase just slightly in kernel time with n, 

then questions are: how does this increase with n, and does that differ when 

using the experimental scheduler compared to the original scheduler, and, then, 

how does that compare to the other effects on the critical path, i.e., the 

messaging and scheduler functioning?  

To consider this the run time Tr can be broken down as follows: 

𝑇𝑟 ≈ 𝑁(𝑛). [
6. 𝑇𝑘(𝑛, 𝑔)

𝑛(𝑛 + 1)(2𝑛 + 1)
+ 2. 𝑡𝑚(𝑔) + 𝑡𝑠(𝑛, 𝑔)] 

where,  

Tk is the total time spent in kernels, 

n(n+1)(n+2)/6 (= NG) is the number of tasks in the QR factorisation task graph, 

N is the total number of tasks on the actual critical path, 

tm is the time messaging time, and 

ts is a typical time for the scheduler to schedule one task. 

Now, ts should be small compared to the time for a task, unless scheduler is 

swamped at high n, and was not investigated. tm should also be smaller than a 

task but could be more significant for the experimental remote scheduler. N, as 

discussed in sections 12.2 and 12.3, can range between NL = 3n-2 and  

NG = n(n+1)(2n+1)/6 depending on how confined the task graph is by the number 

of threads.  

The dependency of Tk on n is examined in detail because clearly it will have a 

strong influence on the total run time. Figure 32 and Figure 34 show that the 

Equation 4 – a task 
graph runtime 

analysis 
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dependency is weak, almost constant. The points on these graphs are the 

minima of each set of experiments and the blue curves are for a simple model, 

the function Tk = a.np fitted to those for n = 8, 16 and 32, for the 10 threads 

points. The maximum of 10 threads was chosen because as it is realistic that a 

user would want to use a large number. (A fit was also tried including the n = 64 

points as well, but the curve did not fit the n = 32 point so well; as can be seen, 

performance at n = 64 is beginning to deteriorate, before it very badly 

deteriorates for n = 128, pulling the fitted curve away from the n = 32 point.) The 

values of a and p found for the fit are as set out in Table 20, which gives values 

for the thor machine set discussed and also a set of jupiter machines. 

Tk = aNp fit parameters 

client 

(so, covering all 

4 geometries) 

Scheduler – 

original or 

experiment 

mean a 

(seconds) 

mean p 

thor005 
original 0.3538 0.0685 

experiment 0.3591 0.0612 

thorbf005 
original 0.3542 0.0681 

experiment 0.3572 0.0632 

thor006 
original 0.3548 0.0669 

experiment 0.3574 0.0628 

thorbf006 
original 0.3545 0.0677 

experiment 0.3609 0.0599 

jupiter031 
original 0.3228 0.1193 

experiment 0.3301 0.1108 

jupiterbf031 
original 0.3194 0.1223 

experiment 0.3273 0.1138 

jupiter032 
original 0.3195 0.1221 

experiment 0.3288 0.1123 

jupiterbf032 
original 0.3192 0.1229 

experiment 0.3282 0.1132 

Table 20 – Parameter fit values for Tk = anp 
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A point about this, however, relates to the total time in the kernel being fairly 

constant. (While there is a difference in p for the jupiter and thor systems the 

values are both in the region of 0.1, therefore that is true for both.) So, this is a 

property of the overall computational algorithm, in this case the tiled QR 

factorisation. If it scaled poorly with n then of course it would not be known as a 

useful algorithm. (How poorly could be tolerated in general would depend on how 

N in Equation 4 scales for a particular algorithm.)  

Now, in this case, we also know that, in this region of interest, the run time Tr is 

also roughly constant. For that to be true that the number of tasks on the critical 

path N must nearly scale as n(n+1)(2n+1) – see Equation 4 – so only differing 

approximately by the factor of p ≈ 0.1, to cancel the coefficient of Tk. This 

dependency of N is not so surprising; as discussed when expressing less 

enthusiasm for A, for n=16 and n=32, it was suspected that these are in the 

region of on longest path tasks being forced apart and so will be on the way to 

the limit of N of n(n+1)(2n+1)/6 tasks (remembering that limit is of course for the 

single thread case). So, indeed, this eliminates A. 

The values in Table 20 also show differences between the experimental and 

original schedulers. It is particularly notable that p for the experimental scheduler 

is always smaller than that for the original scheduler, which is in the direction of 

giving an advantage to the experimental scheduler with increasing n. So, to see 

whether this is significant, the values of a and p and the model of Tk = anp were 

used to produce the difference in Tk between the experimental and original 

schedulers scaled down by the total number of tasks, to give per task values, and 

then the mean of those were then scaled in units of 2 message times relevant for 

the geometries from Table 8, to give the results in Table 21. 
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Difference of experimental to 
original scheduler total core time, 
over task count, in units of 2.tm  
(-ve advantageous for experimental) 
 

Scheduler server Machine 

n = 8 
(k = 128) 

n = 16 
(k = 64) 

n = 32 
(k = 32) 

thor005 -0.84 -1.56 -0.41 

thorbf005 -1.12 -0.47 -0.11 

thor006 -1.13 -0.48 -0.11 

thorbf006 0.82 -0.32 -0.10 

jupiter031 9.53 -0.42 -0.32 

jupiterbf031 4.69 0.11 -0.07 

jupiter032 4.72 0.12 -0.06 

jupiterbf032 4.43 0.08 -0.07 

Approximate mean task time 
(both systems) 

2 ms 300 µs 40 µs 

Table 21 – difference between experimental and original scheduler’s total core time over task count 
 based on Tk=anp model units of 2tm 

At the bottom of Table 21, there is also given an approximate value for the 

duration of a single task, for comparison with two messaging times, which of 

course is around 1 µs. For the case of n = 8, the duration of one task is around 

2 ms, and so over 1000 times the duration of a message; therefore, for such a 

case, which is in the high performance region, the messaging introduced by the 

remote scheduler per se is not practically significant at all. (On the other hand, for 

the jupiter system the total core time has actually increased, by around 0.5% or 

0.25% depending on the geometry.)  

However, for the n = 16 and n = 32 cases, which have shorter task execution 

times, adding the messaging time to each task would be considered practically 

significant. However, the evidence of the Table, for many cases, is that when the 

experimental scheduler is introduced there is a decrease in kernel time and that 

that is on a scale similar to the extra messaging time. For one particular case, 

n = 16 for the local host geometry (so thor005 being the scheduler), the value is  

-1.56, so for each task the extra messaging time is more than compensated for 

by the improvement in the kernel time.  

For the other geometries for the thor system, for n = 16, the compensation 

provided by the core time reduction is partial but still enough to mean that future 

improvements to messaging latency for those geometries would help 
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significantly. Of those, large improvement to the local BlueField geometry 

message latency is perhaps the more likely since the card is newer technology 

and is directly attached to the kernel processing host, while the other geometries 

involve shared memory messaging or messaging over the local area network, 

which are older technologies which will have benefitted from long periods of 

optimisation.  

In the jupiter system the compensation does not appear to exist on the same 

scale but the position generally improves across the Table, so with increasing n. 

For the thor system, the reduction in core time peaks at n = 8 (or before),  

or n = 16, and then declines with increasing n. 

So, what effect could there be that would improve the kernel performance 

according to these trends against n? 

Differences in cache misses in the tasks’ data resources caused by differences in 

task allocation between the original and experimental schedulers seem less likely 

to be large. A difference in operation between the experimental scheduler and the 

original scheduler is, however, that in the original scheduler, each time a core 

becomes the scheduler, the scheduler data will, to some extent be read into the 

cache of that core. Just before that, the data produced by the previous task on 

that core will have been in the cache, or at least as much of it as will fit (or 

perhaps less than that depending on how the kernel processes the data). The 

reading in of the scheduler data will to some extent obliterate that result data, 

making it a cache miss if the task allocation is working to allocate a task to use 

that result data. The sorting of a core’s queue will work over a lot of the data. 

The amount of data left in a core’s cache by each task that is obliterated by the 

original scheduler’s operations to find the next task for the core is hard to quantify 

without a detailed model of the cache. However, we do know that the size of the 

result tile(s), so k × k elements, scales as 1/n2, since in these experiments k × n 

is a constant (= 1024), so this might account for the decline in the effect for the 

thor system towards n = 32. On the other hand, the size of at least parts of the 

representation of the schedule that the scheduler will read will increase with n; for 
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example, the number of tasks in the tasks table NG scales as n3, increasing the 

chances that scheduler operation will obliterate the cached results tiles. 

One can check the sizes of the tiles relative to the cache sizes.  

jupiter: E5-2680 V2 Intel Xeon processor [81]  

L1 data cache  32 KB per core 

L2 cache  256 KB per core 

L3 shared cache  25 MB 

  

thor: E5-2697A V4 Intel Xeon processors [82]  

L1 data cache  32 KB per core 

L2 cache  256 KB per core 

L3 shared cache  40 MB 

Table 22 – jupiter and thor processor cache sizes 

Comparing the data size of a single tile from Table 13 to the cache sizes set out 

in Table 22Table 23, one can see that for n = 8 a single tile would fit into the L2 

cache but not the L1, so certainly not all the result will be in the L1 cache (in the 

QR factorisation the results can be more than 1 tile for some kernels). More of a 

result tile may fit in the L1 cache for n = 16 and all of a result tile would fit for 

n = 32. So, if this effect is operating, say, at the L1 cache a similar amount of 

result data might be there for n = 8 and n = 16 so the increased scheduler data 

may be operating to obliterate more of it and result in better kernel time for the 

experimental scheduler as observed. This is, however, all very speculative. The 

cache operation will be very complex and it is not known here whether a kernel 

would even leave all of its data in the cache even if there is space for all of it. 

Moreover, this would apply to the thor system; for three of the geometries in the 

jupiter system the trend is of improving kernel time performance, so something 

else must be occurring her, or at least dominating the effect. 

Nonetheless this differing in total kernel time between the experimental and 

original schedulers is a fact, and so some interaction with the scheduler must 

affect the speed of operation of kernels and that effect being via their cache 

behaviour seems highly likely, since how else could their speed of calculation be 
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affected? (For example, more interruption in the case of the original scheduler 

does not seem likely.)  

As an aside, this kernel result data obliteration mechanism also suggests a 

second similar kind of possible cache effect in the scheduler. In the original 

scheduler each core becomes the scheduler and calls into the cache at least 

some of its data tables, but this scheduler data in the core’s cache will be 

obliterated to some extent by the operation the next kernel allocated or indeed, 

the scheduler coming into existence on some other core will not be able to make 

use of it because it is in the cache belonging to another core. In contrast, the 

experimental scheduler has a continuous existence separate from the cores 

processing the kernels, so it can keep its scheduler tables in its cache between 

the calls that are made to it. Such an effect might increase in size with n as the 

size of the scheduler data increases. The scheduler processing time was not 

however investigated.  
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13.11. Optimisation of tile size – relative performance for Set F 

Figure 35 is a plot of the ratio of the mean of the run time for the two schedulers. 

The points are plotted against the tile count parameter n and the number of 

threads (t) on the same axis and are coloured and have marker symbols that 

distinguish the geometry (from Table 14).  

 

Figure 35 – Set F2 – ratio of run time for experimental and original schedulers 

The error bars are calculated as the simple rule for error propagation for a ratio 

from standard deviations of the experimental and original schedulers 

respectively, therefore having the usual caveats. The left-hand subplot is for the 

jupiter system results and the right-hand is for thor, and as may be seen the data 

is selected to being that only of the high-performance region identified in section 

13.10.  

A ratio of less than unity means that the QR factorisation example runs faster 

with the experimental scheduler than with the original scheduler, for the same 

values of n and client thread count. As may be seen in the Figure, for n = 8 and 

n = 16 the points are within just few percent of unity. In fact, the standard 

deviation bars extend below unity, so while the mean ratio is above 1, the 

experimental scheduler does sometimes run faster than the original.  

It can be observed that for n = 8, the ranges for the different geometries mostly 

overlap, while at n = 16 and n = 32, the geometries with longer messaging times 

degrade progressively both with n and with longer messaging time, which is as 
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would be expected. Further, the performance for the thor system is better than 

jupiter at low n.  

The points in the Figure are tabulated in Table 23 and Table 24. 

 

Client 
machine 

Server 
machine 

n Threads (t) ratio Standard 
deviation 

jupiter031 jupiter031 8 8 1.003 0.021 
jupiter031 jupiter031 8 10 1.005 0.020 
jupiter031 jupiter031 16 8 1.012 0.006 
jupiter031 jupiter031 16 10 1.015 0.007 
jupiter031 jupiter031 32 8 1.036 0.004 

jupiter031 jupiter031 32 10 1.037 0.006 
jupiter031 jupiter032 8 8 1.011 0.022 
jupiter031 jupiter032 8 10 1.007 0.021 
jupiter031 jupiter032 16 8 1.018 0.006 
jupiter031 jupiter032 16 10 1.023 0.008 
jupiter031 jupiter032 32 8 1.079 0.006 
jupiter031 jupiter032 32 10 1.090 0.006 
jupiter031 jupiterbf031 8 8 1.009 0.018 
jupiter031 jupiterbf031 8 10 1.011 0.018 
jupiter031 jupiterbf031 16 8 1.028 0.006 
jupiter031 jupiterbf031 16 10 1.032 0.008 
jupiter031 jupiterbf031 32 8 1.216 0.008 

jupiter031 jupiterbf031 32 10 1.286 0.007 
jupiter031 jupiterbf032 8 8 1.004 0.021 
jupiter031 jupiterbf032 8 10 1.007 0.021 

jupiter031 jupiterbf032 16 8 1.031 0.007 
jupiter031 jupiterbf032 16 10 1.035 0.007 
jupiter031 jupiterbf032 32 8 1.242 0.007 
jupiter031 jupiterbf032 32 10 1.312 0.015 

Table 23 – ratio of experimental to original scheduler run time - jupiter system 
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Client 
machine 

Server 
machine 

n Threads (t) Ratio Standard 
deviation 

thor005 thor005 8 8 1.004 0.019 

thor005 thor005 8 10 1.004 0.021 

thor005 thor005 16 8 1.006 0.009 

thor005 thor005 16 10 1.010 0.011 

thor005 thor005 32 8 1.037 0.007 

thor005 thor005 32 10 1.040 0.006 

thor005 thor006 8 8 1.006 0.016 

thor005 thor006 8 10 1.005 0.019 

thor005 thor006 16 8 1.011 0.007 

thor005 thor006 16 10 1.015 0.010 

thor005 thor006 32 8 1.080 0.007 

thor005 thor006 32 10 1.091 0.007 

thor005 thorbf005 8 8 1.000 0.021 

thor005 thorbf005 8 10 1.004 0.022 

thor005 thorbf005 16 8 1.017 0.011 

thor005 thorbf005 16 10 1.020 0.009 

thor005 thorbf005 32 8 1.176 0.007 

thor005 thorbf005 32 10 1.224 0.011 

thor005 thorbf006 8 8 1.005 0.021 

thor005 thorbf006 8 10 1.006 0.021 

thor005 thorbf006 16 8 1.020 0.009 

thor005 thorbf006 16 10 1.023 0.010 

thor005 thorbf006 32 8 1.196 0.007 

thor005 thorbf006 32 10 1.255 0.020 
Table 24 – ratio of experimental to original scheduler run time - thor system 

Many points are within a very respectable 1% performance degradation. The 

original objective was not to be better than the original scheduler, which seemed 

unlikely given the substantial messaging latency that was being introduced, so it 

is gratifying to discover that, through other interactions in the system, there are 

some cases where the experimental scheduler is as good as the original for the 

mean run time.  

If these results can be repeated for use cases for which the experimental 

scheduler was envisaged, involving more complex scheduling, for example to 

provide other performance benefits, then cases where the experimental 

scheduler is slightly worse, for example, within 1% performance degradation are 

likely to be considered useful.  
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Of course, to find the fastest scheduler, one has to carry out an optimisation, but 

that is true also of the original scheduler. While outside the window of good 

performance, the experimental scheduler is very poor, that is of no consequence 

if the high performance region is suitable for the application. Usefully the region 

of high performance is wide in the n parameter governing the task size and is 

only a little narrower than that of the original scheduler. A wide window is useful 

as it is easier to find and stay within if there are other constraints. For example, if 

there are other optimisations in the system to be carried out that depend on data 

size, for example, transferring blocks of data to other nodes in a multi-node 

calculation; there is more chance that the useful data size regions will coincide.  

Forming the ratio of the results for the same number of threads t and tile count 

parameter n is appropriate comparison of the two schedulers, but they do not tell 

one which is better if there is a free choice of n and t. Figure 36 is a scatter plot of 

the same data as for Figure 35 but showing the absolute run times (in seconds) 

for all the geometries of the experimental scheduler and now also for all the 

results for the original scheduler, and still filtered again down to the high 

performing group of n = 8, n = 16, n = 32 and t = 8, t = 10. The same colour 

coding is used, so red for the local host geometry, blue for the local BlueField, 

yellow for the remote host and teal for the remote BlueField, with the original 

scheduler being black. The plot of course confirms the information that at n = 8, 

there is a high degree of overlap in performance between all the experimental 

geometries and the original scheduler, that at n = 16, the performance of the 

experimental scheduler is close to the original and that at n = 32, the 

performance of the experimental scheduler is degraded and strongly dependent 

on the message latency.  



198 

 

 

Figure 36 – Set F2 task graph run time (s) for high performance region of tile count parameter n and threads 

(t) with markers by geometry, for jupiter (left) and thor (right) systems 
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However, this plot further reveals that n = 16 is clearly faster than n = 8 and n = 

32, and that that is equally true for the experimental scheduler. There is a small 

advantage for the original scheduler at n = 16, but it is far more important to 

optimize the tile size. The choice between the original and the experimental 

scheduler makes a very small difference. In this case at least, the approach of 

the experimental scheduler, of moving the scheduler to a separate process and 

communicating by messaging, is vindicated.  
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14. Improvements and Applications 

14.1. Considerations for larger matrices 

The experiments were for a matrix of 1024 × 1024 elements. The size was set by 

the need to gather many data points in a reasonable amount of time. This size of 

matrix may well suffice for many problems, but in some applications it is 

necessary to process matrices of the size of the RAM of a node. 1024 × 1024 

elements equate to 8 MiB of storage (for double precision elements of 8 bytes 

each). 128GiB, so typical of node RAM sizes in HPC nodes, would store 217 x 217 

elements. In the set F experiments the optimised tile count parameter was n = 16, 

for which the tile size was 64 x 64 elements. If one scaled the QR factorisation to 

a matrix of 128 GiB, while keeping to the same tile size out of a desire to keep 

the inter-task cache hits, then this would have n = 4096. This is not practical. 

Guessing at 32 bytes per task, the size of the scheduler representation would be 

683 GiB, which is typically too large to fit into a node and is much more than the 

payload matrix data being processed and so will take significant time to process 

to make the scheduling decisions.  

A redesign would be needed. One could bring the number back in bounds by 

significantly increasing the size of tasks. This abandons having inter-task cache 

hits. As discussed, large tile sizes will reduce the cache hit effectiveness, but the 

evidence of this work is that the cache hits are reduced anyway by the scheduler 

rule to use other cores if they are available. With large tiles the optimisation to 

use the processor cache effectively will have to be inside the kernel functions. 

Processor caches are optimised to keep data processed in the immediate past; 

inter task cache hits stretch this beyond that design intention. Larger tasks, also 

as discussed, make messaging overhead much less significant.  

Table 17 shows that n = 32 may well, or n = 64 certainly, keep a modern 

processor of 40 or 80 cores supplied with tasks. These would be tile sizes of 

4096 × 4096 or 2048 × 2048 elements, so of 128 MiB or 32 MiB. Messaging time 

would be very insignificant (see Table 21) but these are too large for the 

processor cache, which would be a problem if efficiency inside the kernels 

strongly depended on the size of the tile relative to the cache. The largest tile 
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sizes used in Set F were 128 × 128 elements, which is 128 kiB, which is still 

within the L2 cache. Up to that point increasing tile size was reducing the total 

kernel time, but the next size, in the doubling scheme used, of 256 × 256 

elements, which would be 0.5 MiB, would be larger than the L2 cache but would 

still be inside a core’s share of the L3 cache, so it is hard to say whether the core 

time would continue to improve. Messaging time would certainly be insignificant, 

but the n would be 512, so the task graph representation estimate would still be 

over 1 GiB; this is still very much larger than the tile size and so seems likely to 

be burdensome to process for each task. Whether there is a sweet spot lying 

beyond there would require further experimentation.  

Another approach to redesign would be having the task creation run in parallel 

with the task execution to keep the size of the task representation down. This 

again points to a separate process for the scheduler (to be discussed in section 

14.3). Here the size of representation for the scheduler would be traded against 

use of cores to calculate the tasks on the fly. Whether that could be made 

efficient was beyond the scope of this work. For the QR factorisation calculating 

the next tasks beyond the working front in the task graph is easy, there are very 

simple rules for generating the tasks, but what is lost is finding the longest path, 

which uses the entire task graph. Some thought would have to be given whether 

the regularity in the structure of the task graph and the invariance of length of the 

longest path are clues to finding a rule to keeping to, or approximately to, the 

longest path that could be applied more locally in the task graph.  

In this light, the extreme example of a task graph with no dependencies is quite 

straightforward when it comes to a problem taking up a large, or indeed any 

amount of memory. The work should be divided equally among the threads, as 

single task for each. Dividing it into more tasks would result in messaging and 

task scheduling overheads being incurred. One might then say that each task 

kernel will be too large for the processor cache, but this is then a problem for 

within the kernel – the work can be ordered within the kernel in cache sized 

chunks, bit scheduling is not required. In general, this is an indication to 

consolidate parallel tasks where possible within the task graph, without of course 

compromising the ability to feed the threads. 
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14.2. Multithreaded server experiments and proposed improvements 

After a simple bug had been identified which caused the scheduler on the server 

to run in only a single thread this was corrected, and experiments were tried 

again.  

However, once multithreaded server operation was reinstated and the extra 

complications were dealt with as described in Chapter 7, the performance was 

worse. There were several possible reasons for that. First, it may have taken 

longer for the OpenMPI library to sort out the messages onto the different server 

threads. Second, while the server from QuickSched is inherently multithreaded, 

transmission of calls via OpenMPI will serialise them, wherein contrast in the 

original more than one thread, to a certain extent, could become the scheduler at 

the same time. With the messages serialised, the calls to enter the scheduler are 

spaced out, and in the extreme may not even overlap. Third, multiple threads 

may be moving scheduler data between cores on the server unnecessarily.  

Further investigation of the problems here, may be needed to decide if the 

performance of the server part of the scheduler can be improved, However, a 

suggestion is to separate the threads available on the server into different tasks. 

A first group of threads, perhaps just one, would deal with communication with 

the client. This would then launch the original functions of QuickSched on ones 

of another set of threads asynchronously, so checking from time to time for 

replies while otherwise dealing with other messages, and then sending those 

back to the client when they are ready. The number of threads in the second 

group could be varied to find the most efficient number.  

On the other hand, the threads in the second group, those processing the actual 

calls to the QuickSched functions, are not now limited to a single thread. In the 

original the scheduler could only use its own thread because the other threads 

are being used to process kernels. That does not apply with the scheduler in a 

remote process, so the QuickSched functions could be parallelised. Two places 

come to mind: (i) resorting of the queues (especially if they are redesigned to be 

fully sorted, rather than being a priority queue), and (ii) searching other queues 
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for work stealing when a thread’s own queue is not supplying a task; each queue 

could be searched in parallel with the first to supply a task terminating the search.  

However, the one queue per thread was an aspect of the original design where it 

was allotted tasks that may reuse data in the cache, while still be a quick to 

access data structure. The whole issue of the queuing and its data structures is 

therefore worthwhile reconsidering. For example, some more elaborate data 

structure recording which data resources are actually in the cache of each core 

(inferred from the tasks that have been sent there) could be kept, together with a 

complete record of which tasks in the whole task pool would want to use those 

resources. The server now has more power to interrogate such data and so may 

be able to make a cache hit more often.  

Another feature inherent in the design of the original QuickSched is that the 

scheduler must process its call quickly and then the thread must return to kernel 

processing. Although there is parallelism in that calls from different threads can 

be processed to some extent in parallel, it is not possible for the scheduler to 

work on the questions put to it while the thread in question is processing kernels. 

So, the new arrangement could make use of background processing. In one 

example the scheduler could keep ready an answer, revising it as task done 

messages arrive, to the question from a thread of what is its next task, gettask, 

with the answer being sent back immediately it is asked, while processing to 

maintain the scheduler data, so processing the consequences of the task done 

message, namely finding new ready tasks, selecting a queue for them and 

resorting the queues is done in the background. This does, however, alter the 

question being asked by a thread from what is the next task, given that I have just 

told you which task I have just completed, to what did you think was the best task 

a moment ago? This difference may or may not lead to less efficient task 

allocation. It will mean when few tasks are about that queues are starved, but 

then one just processes the task done to see if that generates new tasks, which 

is the same as the original scheduler and so is not a detriment. Even if the new 

question is sub optimal, it may be that its quicker answer is a sufficient payoff.  
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14.3. Proposed improvements to task graph building in Qsargm 

A clear outcome of the set C experiment, discussed at section 13.2, was that the 

task graph build time for the Qsargm scheduler is more than 10 times slower than 

for the original scheduler, in fact, 30 to 40 times slower for larger task graphs and 

geometries having actual messaging links, this is clearly not helpful to the utility 

of the experimental Qsargm scheduler and so alternatives are now considered. 

The problem is that the operation in the remote scheduler version to record a new 

task is a simple matter of recording a few values in a couple of tables but each 

such operation is burdened with its own messaging overhead; in fact, several 

messages are used per task as noted in sections 13.2 and 5.10. In the case of 

MPI messaging the overhead is much greater than the recording operation itself. 

Nonetheless, this suggests that the following changes to the client-server 

architecture will be improvements: 

A. Instead of building the representation of the task graph in the process of 

the remote scheduler as is done in the experimental code, the task graph 

representation could be built first in the client compute process, and when 

the tables representing the task graph are complete those should then be 

transferred en bloc in a single (or just a few) messages to the remote 

scheduler process. Once the tables are there, the remote scheduler can 

then perform the execution of the task graph as normal. (So again, this is a 

static task graph.) Owing to the very significant reduction in the number of 

messages involved, from O(n3), for the QR factorisation example, to O(1), 

this method will be much quicker. 

 

This method is illustrated in Figure 37, which shows the task generation 

code on the host processor, i.e. the processor that will later execute the 

tasks. The cores of the host processor are again shown as purple squares 

and a white oval on them means that they are processing the task 

generation code. Two of these are shown because, in general, task 

generation could be performed in parallel (as indeed it is in the Swift 

code). The task generation will again take O(n3) steps for a QR 

factorisation but those are much quicker because now each task 
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generation does not involve any messaging. The built task graph 

representation is then copied en bloc to the remote scheduler. Once there 

the task graph can be executed by the remote scheduler exactly as 

explained with reference to Figure 1 or Figure 4. 

 

 

 

Figure 37 – Creating task graph en bloc on host processor 

B. In conversation with Richard Graham of Nvida Networks with me about the 

problem, he suggested very generally overlapping task creation and 

execution. So, this is now a dynamic task graph, in that the task graph 

gains tasks after execution of it has begun. In this section I have worked 

through how that might be done. So, in an alternative to calculating the 

tasks en bloc, once the task graph has been compiled, the tasks could be 

sent one at a time as in the experiments, but the cost of the messaging 

could be hidden by starting the task graph execution before the task graph 

is complete. In fact, that could be started well before completion of the task 

graph build, i.e., shortly after the building of the task graph is commenced. 

So, once some tasks have been sent to the scheduler and are in the task 

graph representation there, execution of the task graph can be started by 

allocating some of those tasks to the compute cores. This would require 
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the task build code to create first those tasks that are to be executed first. 

In many cases, that would not be a burden to the application programmer 

because, of course, it is common, for algorithms to be thought about, 

and/or be expressed, in the order of the operations to be executed. So, 

this will be quite natural for the application programmer to organise.  

 

Figure 38 shows the arrangement. In this particular example, the task 

generator is located on the host processor that will execute the tasks. 

(Other locations, for example, on the remote processor would, I think, also 

allow the overlap of task generation and execution.) The host processor 

has multiple cores/threads and at least one is allocated to the task 

generation code. Here, however, the task generator does not build the 

representation of the task as in the arrangement of Figure 37, but reverts 

to the original method of sending small messages to the scheduler, which 

interprets them to build the representation of the task graph there. As 

shown, tasks at and near the root of the task graph are the first to be 

generated, queued, and executed.  

 

 
Figure 38 – Contemporaneous task generation and execution 

o A house-keeping point to be dealt with in this arrangement is that a 

task is in danger of being allocated to a queue before the 
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representation of that task is complete. This problem arises from 

the calls subsidiary to qsched_addtask() that are used to add 

details to a task; for example, the declaration of the parents of a 

task may not be complete but the child task may look apparently 

ready to be queued because its declared parents have all been 

executed. A simple fix would be to provide the task representation 

with a flag to mark its building complete, which the task building 

code only sets when that becomes true.   

o A more substantial issue is that in QuickSched some post 

processing is applied to the whole task graph once all its tasks have 

been declared to it. This is the prepare stage. Since this stage 

calculates some values to use later in the determining of priority 

among ready tasks, that can be worked around. One possibility 

would be to ignore the priority when allocating the early tasks and 

use some arbitrary order, since priority is a matter of efficiency 

rather than correctness (Chapter 5). The usual efficiency priority 

order could then be calculated and used only once all the tasks 

were declared. (It could also be considered whether a calculation of 

the usual priority can be made on a partially built task graph is 

meaningful and useful.) Note that when the task graph is complete 

it has become a static task graph and so predictions about the 

longest path can be made again.  

o In this method some thought should also be given as to how the 

task generation and task executing would be shared amongst the 

cores of the host processor. One might make special provision, by 

allotting a number of cores to task generation and leaving the 

remainder to task execution; once task building is complete the 

core(s) allotted to that would sensibly then be transferred to task 

execution. The choice will be informed by the relative amounts of 

time it takes to build the task graph and to execute it, and, within 

that, the need not to run out of tasks simply because they have not 

been created.  
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o One way to make this allocation of cores on the host processor to 

task generation would be to create task generation tasks. It is noted 

that the original QuickSched scheduler does have a dynamic task 

creation function that could be used. This however adds tasks to 

the current task graph and looks expensive, in that it recalculates 

the queues on each call to it. An efficiency could be to have task 

generation being limited to building tasks that are in the next 

“round” of computation, which round would have a separate task 

graph representation on the server. 

o Alternatively, it may well also work to have task generation and task 

execution as separate Linux processes on the host and allow the 

operating system’s process scheduler to determine the dynamic 

allocation of cores between the two, rather than making special 

provision in the user code. However, this may not be compatible 

with the current approach of pinning threads in the computational 

process to specific cores of the host processor, and also it would 

cause data access issues in the cases where the tasks created are 

based on the data created by tasks in an earlier round of 

computation.  

o If sending a message to create each task again proves inefficient in 

this case, the messaging overhead could again be reduced by 

compiling batches of tasks before sending a batch rather than a 

single task over in a message. 

These methods of sharing of the host’s resources between task generation and 

task execution may, I think, be quite efficient, in that many parallel algorithms 

start with a serial set of initial tasks or just a small set of few parallel 

computational tasks that have no other peers, so only a few threads/cores will be 

occupied with calculation at that time, leaving the others free to calculate the rest 

of the task graph. (For example, in the case of the exemplary QR factorisation 

algorithm only one task may be executed initially, that on the top left tile, and the 

number of ready tasks grows slowly – see the width of the rows in Figure 9 – so it 

fits this pattern.)  
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When it comes to codes that operate in rounds of first task creation and then 

execution, this overlapping task creation and task execution spreads the task 

graph execution over a longer period (while probably not increasing the total time 

for both the creation and execution), which means that any data movement tasks 

moving data between nodes will be more spread out in time, which is an 

advantage if the speed of operation of the code is limited by the network traffic. 

C. Another possibility is to have the server scheduler process build the task 

graph by itself, i.e., run the task generation code. This is shown in Figure 

39, which is quite similar to Figure 1 except that the task generator now 

has a definite location. Running the current QR example in this way would 

be a bit slower in the case of the scheduler on a BlueField card compared 

to the original QuickSched because its processor and memory were 

slower than that of the host, at least where a complete static task graph is 

generated. In this location the task creation messages are eliminated. 

Further, this arrangement could be combined with the starting of the task 

graph’s execution before it is complete from arrangement B and then there 

would be a high degree of overlap between task generation and execution. 

 

Figure 39 – Task generator at the remote scheduler location 

This arrangement C would be a very pure form of the philosophy proposed 

here of putting the ‘auxiliary’ card in charge of the calculation in place of 

the host processor. Here the host x86-64 processor has now become just 
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a processor of computational kernels and thus is now, in effect, a 

specialised ‘accelerator’ card. 

 

The disadvantage of this arrangement is when the generation of tasks is 

based on data produced in an earlier round of computation; the task 

generator would have to obtain those results from the host, possibly by 

sending messages to ask for it – a better method for dealing with that that 

could be used here would be pre-emptively forwarding the needed data 

from the host to the scheduler. That is used in the next arrangement, D. 

D. Another overlap between task generation and task execution which may 

be possible, is for the server process to generate a new task graph for a 

next round of calculation while the task graph for the previous round is 

being executed. The arrangement is shown in Figure 40. 

 

 

Figure 40 – Task generator at scheduler with overlapping build of next task graph 

The actual opportunity here will depend on the application. If the task 

graph for the next round is not particularly new, so in the extreme example 

would just apply the existing task graph to new data, or the results of the 

previous round, then it may be possible to determine the handles for those 
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new data items immediately and put them into the tasks of a copy of the 

existing task graph to make the new task graph.  

 

As mentioned, in more complex cases, however, the form of the new task 

graph, or equally each new task thereof, may be determined by the results 

of the previous round, so building the task graph early would require 

careful analysis of when sufficient data becomes available to generate 

each part of the task graph. That point may well be a fixed point in the task 

graph, (but the location of that point could in some cases perhaps depend 

on some of the results as well). Now, when the task graph generation is 

located at the task scheduler on the server it will always have progress 

information immediately available to it and so will immediately know when 

new tasks may be generated. This awareness is marked as the dotted 

arrow progress information in Figure 40Figure 40. 

 

The newly calculated data on the host, or some suitable data derived from 

it, needed to determine the details of the new tasks (and perhaps also 

needed to know when they may be created) does need to be transferred to 

the scheduler. That data may be tacked on to a task done message, as 

shown in Figure 40, marked with the dotted arrow labelled results 

summaries. This is an appropriate time in that the data is in a defined state 

and will not have gone out of date through the action of some other task. If 

the data on which new task generation is based requires some processing 

from the data that is the primary concern of the tasks, the balance between 

deriving it on the host or the remote scheduler should be examined. 

The conclusion is that while the task graph build in Qsargm performed very 

poorly, there are in fact many opportunities to improve performance, while 

keeping the task graph and scheduler in the remote location, so retaining the 

advantages of a remote scheduler. 

14.4. Further optimisations 

Any opportunity to improve the latency of messaging, especially for the gettask, 

and taskdone, messages should provide benefits. If this it does not provide 

significant improvement at the optimal task size for a given problem size, lower 
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latency should nonetheless improve the range in task size over which a remote 

scheduler is comparable in performance to the original one.  

While a change of base messaging library could be an option, there are some 

different arrangements in the OpenMPI messaging that could be investigated:  

• The messaging on the client side posts an MPI Send and then immediately 

waits for an answer to that particular message with MPI Recv. MPI Sendrecv 

is a single call designed to do both of those in one, more efficient, operation, 

so would be worthwhile trying.  

• The present Qsargm sends a task done message and then immediately 

sends a get task. These could be combined into a single operation with a 

combined call sending the identity of the task completed and the reply to that 

giving the next task to be executed. This may save some messaging time, 

(but the task done message does not have a reply and so may have aspects 

of its transmission that are already in parallel with the gettask message).  

• The rules of the scheduling could be changed so that the scheduler does not 

ask the current question of: now that the identity of the last task completed 

has been used to update the queues, what is, therefore, the highest priority 

task to execute? Instead, the scheduler should always have ready a new task 

to give to the thread and then process the task done message. This hides the 

time taken to process the task done message from the client, but it does have 

the scheduler answer instead the question of what the highest priority task 

was just before the completed task was known. This does change the 

priorities and so could well have effects on the task graph execution time, not 

necessarily for the better.  

14.5. Complex scheduling applications 

The scheduling algorithm of QuickSched, and equally that of this work’s Qsargm, 

concentrates on ensuring as far as possible that the tasks on the longest path in 

the task graph are the priority.  

As previously noted, in modern processors the cores are not all equal in 

processing power. This is not in accordance with the assumption in the scheduler 

used for calculating the priority, which is that each task has a single particular 
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duration. Clearly the duration of a task will depend on the type of core on which it 

is allocated. Further, in QuickSched this information is processed once before a 

run, but the cores to which a task will be allocated are not known ahead of time. 

A central feature of QuickSched is that the tasks are dynamically allocated. So 

some more complex rules may be needed to set the priority and worse, these 

might have to be (re)calculated dynamically during the run. Freeing up a separate 

process with its own cores addresses this issue; these are more resources that 

would allow more complex scheduling rules to deal with the issue to be 

calculated. 

Another issue that received attention in this thesis is the extent of the effect of 

cache misses. These may well not be the same for different types of core in the 

same microprocessor, so again this could be addressed in the scheduling rules, 

i.e. giving preference to tasks and cores for where there will be a bigger cache 

hit.  

A related point is the compromise, noted by Chalk, of QuickSched only sorting 

the queues into a heap so when the queue is searched beyond its head, a less 

high priority task may be found than if it were fully sorted. The extra resources of 

the scheduler in a separate process could be used to rectify that. 

Another potential type of complex schedule processing might be the dynamic 

splitting or aggregation of tasks. It has been noted that there is an optimal size for 

tasks when it comes to scheduling. In the optimisation experiment, this task size, 

or more correctly its data size, was the same for all tasks. However, it will be that 

at different times in the execution of a task graph there are different numbers of 

threads available and different kinds and numbers of task to fill them. So, for 

example if there are many threads available but only one large task, it may be 

that that task can be converted into a number that can be processed in parallel. 

(Whether that is possible will depend on the particular kernel of the task.) Such 

calculations in the scheduler would require resources.  

Another example of complex processing that may well need more resources for 

the scheduler is the problem, noted in [83], of memory controllers in modern 

processors not having sufficient capacity to feed all the cores. The authors say, 
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“Algorithms have to avoid that all tasks access the main memory controllers 

concurrently and thus become bandwidth bound.”  Potentially a scheduler could 

have rules to mitigate that also. 

14.6. Cooperative compute node applications 

The complex scheduling functions in the previous section relate to better rules for 

working through the task graph. Beyond that there are further functions that the 

scheduler could take on now it is provided with more resources, relating to 

cooperation with other compute nodes in the same cluster. 

A first application relates to data transfer between compute nodes that are 

cooperating on the same computation under the control of task-based schedulers 

on each node. From time to time, data will be produced on one compute node 

that will need to be transferred to another compute node. This may be done, as is 

done, for example, in the Swift application, by providing in the task graph 

dedicated data movement tasks. These are placed in the task graph with 

dependencies so that the data they move is ready to be moved when the data 

movement task is allotted to a core. The kernel of this data movement task does 

not perform calculations but rather makes the OpenMPI calls needed to move the 

data. (The process is more complicated in that the data resource at the other end 

has to be ready to receive the data and a matching data receive task is provided 

at a suitable point in the task graph at the other end to do the receiving.)  

It is now proposed that in Qsargm, particularly for the local BlueField geometry, 

that a data movement task is not allotted to one of the compute cores but is 

carried out, or rather commanded, by the BlueField. I was given access to a 

library in development at Nvidia, which allows such commands to be issued by a 

program running on the Arm processor of the BlueField, so the scheduler, to the 

RDMA system of the card to move data from the RAM of the host node to the 

RAM of another host node, or indeed in the opposite direction. The arrangement 

is as shown in the diagram of Figure 41.  
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Figure 41 – Data movement tasks commanded from BlueField 

Each node in the cluster has a respective BlueField card running a Qsargm 

scheduler, which in general is allocating compute tasks to the cores of its host 

computer. On reaching a data transfer task, the task oval with the green border, 

at the base of the green arrow, the schedulers command, through the library, 

their respective RDMA hardware on the Connect-X network adapter portion of the 

card to carry out the transfer, indicated by the green arrow. The RDMA hardware 

then transfers a specified memory block in the host RAM, the white block, to the 

RAM of the other host. Not shown here are any messages needed between the 

schedulers to time the transfer and which of the BlueFields actually makes the 

final instruction is glossed over. There is also the need to generate memory keys 

for the memory blocks. This is done on the relevant hosts and then the keys have 

to be transmitted to the BlueFields. However, the keys are long lasting and so 

may be generated ahead of time, for example when generating the tasks, so this 

preparation will not affect the task graph run time. There is no need to check that 

the data is indeed ready or that whether it is going to be written to by some other 

task; the dependencies and locks of the task graph have already taken care of 

those issues. The host cores have, however, not been involved at the time of the 

data movement task and therefore remain free to be allocated other 

computational tasks. So, in this arrangement not only has the task scheduling 

been offloaded to the BlueField but the network operations as well.  
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I did not implement this within Qsargm, but I did check that the proposed data 

transfers could be made with this library, so this test involved generating and 

distributing the memory keys, putting test data in the memory blocks, issuing the 

data transfer commands from a program running on the BlueField and then 

verifying that the test data was now in the other location.  

Another proposal is for the schedulers on BlueField cards to organise “work 

stealing”. Work stealing is the process of redistributing tasks from a processor 

that is falling behind on its schedule of tasks to another that is ahead. One such 

work stealing arrangement, discussed in section 3.5, was proposed in reference 

[26]. Here the situation addressed was tasks on one node blocking tasks on 

another. Another need for work stealing between nodes arises from the estimates 

for when the work will be done being inaccurate and the initial division of the work 

between processors being made on the basis of that – the cause of the 

discrepancies in the times nodes finish their work seen in [16] and [20] and 

discussed at section 3.4. Whatever the cause or the scheduling rules used to 

mitigate the problem, because the scheduler has information about progress and 

because cooperation with other nodes is needed to organise the response 

locating such a scheduler on the BlueField is a good fit. 

In the case of inaccurate work division between nodes, the scheduler is in a 

position to assess whether its node is ahead or behind schedule, or when that will 

occur in the near future. A node that is ahead of schedule will also need to find a 

partner node that is behind schedule. Further it will have to identify tasks that are 

ready (or predict when they will become so) and whose data can be shipped to 

the cooperating node, be processed there, and be shipped back ahead of the 

time when their data is needed by the next task (i.e. the point when that next 

task’s other dependencies are predicted to have been fulfilled). Now, this round 

trip time is dependent on the size of the data to be shipped and processed. This 

requirement on task size may in general be different to that found for optimising 

the task graph run time. These competing requirements could of course be taken 

into account in some overall optimisation, but dynamic splitting of tasks could 

also be considered – offloading a smaller task is more likely to be possible given 

the finite window before its results must be returned. All of this takes more 
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processing power to organise, so locating the scheduler on the BlueField is again 

indicated. 

One aspect of this is predicting the times of stages in the task graph execution 

being reached. This might perhaps be achieved through rules involving the 

weight of tasks as exist in QuickSched; another option might be simulation by the 

scheduler of its progress in near future from its current state of progress. Finally, 

it might be possible to make such predictions using machine learning techniques 

using the task graph as an input – it is notable that the roadmap for the BlueField 

card includes an on-board GPU. It would of course have to be checked whether 

such calculations could be made on the timescales needed by fine-grained 

scheduling.  

A similar but milder intervention might be as follows. In the papers concerning the 

use of QuickSched on multiple compute nodes, tasks that had input data and/or 

results on different nodes were dealt with using data communication tasks. For 

each of these cases alternative task subgraphs could be generated in which the 

task is carried out on one or the other of the nodes respectively. The schedulers 

of the nodes cooperating with each other would cause one or other of these to 

actually happen at the appropriate time depending on which was ahead, and 

which was behind schedule. This holds out a promise of helping to even up 

progress, but I have not worked out the details of whether it would do so at the 

cost of overall delay, nor tried any examples to see if it is a significant enough 

effect to reduce typical discrepancies in finishing time.  

Work stealing is of course remedial action. Better may be for nodes to cooperate 

on generating future tasks, contemporaneously with executing existing ones, in a 

continuous process and assigning them to nodes, and transferring the relevant 

data to them, according to rules designed to keep the workload balanced, without 

having to stop execution for task generation and mass data repartitioning periods. 

Such schemes will not be trivial to compute but a separate scheduler, for 

example, on the BlueField card (i) will have its own resources to compute that, (ii) 

will have its own access to the network to send control messages to its peers on 

other nodes, (iii) be able to control data movement between the host RAMs, so 
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offloading that from the host, and (iv) and still be able to schedule efficiently fine 

grained tasks on its host processor. A separate scheduler located on a BlueField 

card is again indicated. 
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15. Conclusions 

15.1. Key conclusions  

The main conclusion of this thesis is that messaging latency does not always kill 

the performance of a remote scheduler. Latency remains important, however, 

and should be attended to. Optimisation of task size is needed to find acceptable 

speed of operation in the task graph execution phase. Indeed, the performance of 

the remote scheduler was very similar to that of the original. In the case studied, 

it was found to be more important to perform this optimisation than to choose 

between the locations tried for the scheduler. 

All task-based algorithms have a free parameter of the size of the tasks, so this 

optimisation will be of general application to other computations having other 

forms of task graph. With a remote scheduler being a usable alternative to the 

original scheduler, the field of using task-based schedulers for more complex and 

augmented scheduling operations beyond the intentionally simple approach of 

the original scheduler is opened up. 

The task graph build phase must be organised to avoid poor performance caused 

by the overhead of many small messages. 

The motivation for even attempting such an unpromising arrangement was that 

the brief had been to find a way to control operations of a high-performance code 

from the network. In that context, the task-based scheduler, while in its original 

form does, on a time divided basis, mix up scheduling and task execution 

operations, it does separate those concerns, and therefore the scheduling, which 

is the control aspect, could be moved to the network. That was achieved 

Thus, the prejudice that remote scheduling would increase latency and steal 

processing power from the actual objective of executing the tasks, has been 

overcome.  
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15.2. Task size interaction mechanisms 

The task size optimisation for the run phase was found (or in some cases 

speculated) to operate through a highly complex set of interactions, including, 

• Growth of the task graph with problem size: 

o Ability to supply the threads with ready tasks; probably related to 

the task graph width. 

o Consequent time for the scheduler to answer the question of which 

task to run next. 

o Tasks may become ready tasks simultaneously and cause delay 

through serialisation of the communication between scheduler and 

task processing threads. 

• Time to run a task: 

o Relative size to messaging times for communicating a task as 

complete and the next task to start (including also to processing 

those events in the scheduler). Messaging times vary by location of 

the remote scheduler. 

o Scaling with task size - how the intrinsic number of operations to 

execute the kernel increases. 

• Layout of the tasks on the threads and in time generated by the scheduler: 

o There was a theoretical discussion of some reasons for stability of 

this pattern and reasons for abrupt change and some evidence for 

both kinds of behaviour.  

• Cache interactions 

o Self kernel interaction – how do the kernels perform if the task’s 

data fits within the cache, or only partially does so?  

o Dilution of inter-task cache hits with increasing thread count. 

o Task layout pattern changes affecting inter task cache hits. 

o Scheduler processing fitting or not in the cache, e.g. sorts of the 

ready task queues. 

o Scheduler processing overwriting task data in the cache intended 

for an inter-task cache hit, in the case of the original Quick Sched. 
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o Kernel processing overwriting scheduler data in the cache, in the 

case of the original QuickSched. 

• Absolute size of the problem 

o The optimum task size does depend on the overall problem size, 

through at least the effect of the problem size on the size of the task 

graph. 

15.3. Task graph building 

The task graph and queue scheduler component location decided on, together 

with a desire for ease of development, led to an almost complete preservation of 

the interface functions of the scheduler library. The results of that clearly showed 

that such a structure was naïve for building the task graph.  

With this problem having come to light, schemes for overcoming it were 

generated and were considered in detail. These solutions involved not only ways 

to batch up these messages to reduce their number, but ideas for how to 

implement overlapping task graph building and execution to hide messaging 

costs. 

15.4. Argmessage and base transport 

It was realised that the remote scheduler needed an RPC messaging system, 

and one was implemented appropriate to the timescale of the problem and to the 

intended HPC applications, so in the C language and using OpenMPI messaging 

as the base transport layer. Argmessage is unusual in that it provides for RPC 

calls that do not have a return type, as well as those that do. Argmessage was 

implemented successfully and would be applicable to remoting a wide range of C 

libraries. 

OpenMPI messaging was used because, as well as being applicable to the 

application, it is well established and mature and therefore likely to be reliable 

and to contain optimisations making a wide range of messaging scenarios 

efficient. Certainly, OpenMPI caused no reliability problems relating to the 

messaging per se. Nonetheless, it would be worthwhile implementing 

Argmessage over any message transport more optimised for this particular 
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application. A candidate library for that, in development at Nvidia, “SNAPI”, was 

tried but was not quicker. Improvements to MPI arrangements were suggested.   

15.5. Qsargm 

In order to implement this new location for the scheduler, the existing task-based 

scheduling library, QuickSched, was analysed into its components and examined 

for where it might be split between the compute threads and the remote process 

provided by Argmessage. It was concluded that a split where the remote 

scheduler had both its task graph and all its queue objects in the remote process 

would be the preferred implementation.  

The QuickSched scheduler was reimplemented using that split and using a 

messaging loop provided between them provided by Argmessage. In particular, 

in general each function call of the original library was provided with its own RPC 

message. Details, like how to use tags to address the messages to individual 

compute threads, and how to prevent lock up of the scheduler, particularly near 

the end of the task graph, caused by the serialisation of messages between the 

compute threads and the scheduler that had been introduced, were worked out.  

15.6. QR factorisation test example, and simulating other task graphs 

The difficulty with the locks and uses specification in the QR factorisation 

example from the original scheduler’s repository required very detailed study to 

resolve. However, this was fortuitous as it led me to a much greater appreciation 

of the structure of the task graph and of the scheduling of tasks, for the QR 

factorisation and by extension for task graphs in general. In the end, fixing the 

problem made no difference to the results obtained, except some different values 

of thread count and tile count parameter n where affected by larger variation in 

task graph run time; this gives rise to an interest in future work exploring the 

pattern of the layout of tasks across the cores and in time to see if these patterns 

vary and if that is related to that phenomenon.  

Future work should also include trying various other algorithms beyond the QR 

factorisation, chosen for diversity in their task graph structure, in particular ones 

having greater numbers of tasks that are more freely in parallel with each other 

would provide a contrast to the QR factorisation.  
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While such work could be carried out using Qsargm directly, such experiments do 

take a long time to run. The process could be much speeded up using a 

simulation. Noisy variation in task and message duration may lead to 

rearrangement of the pattern of the tasks across the cores against time, in 

algorithms that are susceptible to that. A model for the effects of cache missing 

may well be needed. Direct measures (e.g. cache miss counters) of the extent of 

that (e.g. how much of a tile is left in the cache even when there is not a miss) 

were not obtained, but simulation of a range of such extents, by adding to the 

task graph execution time when there is a miss, could be used to explore the 

effects.  

Another benefit of such simulations would be the ease of visualisation of the front 

of progress, the line between completed and ready tasks. This would be 

interesting to see if there are patterns which hold up progress. For example, in 

plots (not shown) for larger n values of the task graph of the QR factorisation 

made by graphviz there are clear repeats in the occurrence of red, green and 

blue tasks every three rows of the plot and the yellow tasks are grouped in the 

plots rows with a high degree of fan out from a few tasks in the preceding row. I 

can imagine that the propagation of the front of completed tasks through the task 

graph may be affected by such more macro structures in the task graph. In turn 

that may inspire more advanced scheduling rules.   

A visualisation could also be obtained of the layout of the tasks across the 

threads and in time. This is a 2D space and the placement of new ready tasks in 

it is, in QuickSched, governed by the cache miss rules competing with the rule to 

feed waiting threads. The former bind a new ready task to preferred sites in the 

existing arrangement of completed and executing tasks. This is reminiscent of the 

physical process of crystal growth, so one might expect to see regions of more 

and less order and perhaps grain boundaries between ordered regions. It would 

be interesting to see the effects of changing parameters like the number of tasks 

and threads on this structure and, of course, on the task graph execution time. 

Another parameter to vary would be the number of parents each task has in the 

graph and the mix of that for different tasks. In real cases that property of a task 

graph is fixed by a particular actual algorithm, but in a simulation this task graph 
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can be made abstract, with the actual work being done by the kernels being 

ignored.  

15.7. “From the network” – meaning  

The goal set for this work was to perform the control of a code “from the network”. 

Clearly control from somewhere else has been achieved, but where that is 

requires some examination. The scheduler was placed in a variety of locations. 

On the same host was some distance away from the compute threads in terms of 

message latency and the local BlueField and the remote host and remote 

BlueField locations were further away again. However, the network as distinct 

entity did not appear – those are all just other locations on the edge of the 

network and are not that dissimilar in distance from any particular host. While 

these locations for the scheduler on remote machines seemed possible, no 

compelling reason emerged to use them – the better latency of the local locations 

would therefore favour them. 

Assuming that one is operating in a regime where the messaging time of 1 µs is 

significant, distance to a remote controller would come into play at the larger data 

centre level, since 1 µs added by actual transmission in longer cables, rather than 

processing and propagation in network electronics is equivalent to about 300 m, 

so at that size of network the concept of control from the network might 

conceivably emerge.  

Another aspect of the phrase would be about access to the network. The 

BlueField cards do not seem to have faster access to the network; both the host 

CPU and Arm subsystem on the BlueField are connected to the network adapter 

via the PCI switch on the card. What is important about the Arm subsystem is (i) 

that it has access to the network so that it may communicate directly with its 

peers on the network, (ii) that it is provided with its own computational resources 

to perform complex calculations to support cooperation with its peers, (iii) that it 

can of its own motion effect transfer of payload computational data between the 

RAMs of hosts, and (iv) it can direct operations (execution of tasks) on its own 

host. Taking all those into account the BlueField has become the centre of control 

of operations of the local machine, both for internal operations and cooperation 
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with other hosts. It remains, however, at the edge of the network and a thing of 

the local machine.  

What has happened, however, is that the host CPU, although it still has the same 

physical level of, and quality of, connectivity to the network, has conceptually 

moved a step away; the BlueField is its interface to its peers in all matters as it 

has become a dedicated computational engine. The model of control has 

remained local and cooperative between machines, and no central organisation 

has emerged, which at first sight the phrase “from the network” might imply. 
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17. Appendices 

Appendix A – Operation of Argmessage – further details 

 

17.1. Argmessage – initialisation (and finalisation)  

There are several aspects to starting an application that uses an Argmessage library:  

• launching the processes that will execute the client and the server 

• initialising the underlying messaging library used by Argmessage  

• initialising the Argmessage client and server 

• initialising the user library supported by Argmessage on both the client and 

server 

• initialising the user application itself, on the client 

17.2. Launching processes and initialising the software environment 

In this project the client and server are initialised together and run during the same 

period, which is usually the lifetime of the client application. It could be envisaged to 

have a long running server that clients connect to and disconnect from as necessary, 

but that is outside the scope of this project. Such an arrangement would face 

additional security and reliability issues.  

In the main application of Argmessage in this project the underlying messaging 

library is OpenMPI and some of the initialisation steps make use of OpenMPI 

facilities. These therefore would have to be adapted if another underlying messaging 

library was used.  

17.3. Launching with mpirun 

For the main MPI case, launching the client and server processes is preferably 

carried out using an mpirun command that comes with MPI libraries, which is, of 

course, the standard approach for MPI programs. Ordinary users of MPI codes will 

be familiar with the mpirun command and its use to launch multiple copies of the 

code spread across multiple compute nodes. It is also possible to use the mpirun 

command to launch different codes on different nodes, and that is used here to 
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launch the Argmessage client and the server. This is a less common use, so an 

example is given in Table 25.  

Note, however the details of mpirun are implementation specific, which means not 

only the particular MPI code project, of which there are several, but the details of the 

installation on any cluster. The points made in this Appendix relating to MPI relate in 

particular to OpenMPI and, further, may depend on the particular cluster I was 

working on. The reader will therefore have to apply the points made to their particular 

setup.   

The mpirun command first launches a part of the communications library (the ORTE 

daemon in the case of OpenMPI) on each node referred to by the mpirun command, 

and then starts the specified programs, which will be the client and server of this 

project. (The client and server programs will initialise the messaging library further by 

each calling MPI_Init() from within their own program.)  

So, an example mpirun command, for one client-server pair, is: 

mpirun -np 1 –host client_hostname client_application : -np 1  

                --host server_hostname server_application 

Table 25 – Argmessage application launch mpirun example 

The colon character separates the parameters used for the different programs being 

launched. So, this launches one process (“-np 1”) of the application called 

“client_application” and one process of the “server application” respectively on the 

machines called “client_hostname” and “server_hostname”.  

The mpirun command may be issued in various contexts. One is that it may be 

included in the batch script of a scheduled job of a cluster scheduler. This script is of 

course executed on the one of the nodes allocated to the batch job by the cluster 

scheduler selected to be the head node. This is how it is used in the experiments of 

this project. A requirement on the batch script is of course that it obtains from the 

cluster scheduler, or has provided to it otherwise, access to the machines referenced 

in the mpirun command. 

17.4. Use on heterogeneous architectures 

For the common use of mpirun of running multiple copies of the same code, the user 

does not usually have to specify the hosts, which are instead communicated to 
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mpirun using a special file listing the hosts (sometimes called a “machine file”) or 

using an environment variable. Whether or not a machine file is employed, in 

Argmessage the user will have to make some arrangements to sort out which 

machine will run which of the client and server. For example, in the particular case of 

using a BlueField card for the server, one way will be for the job batch script to work 

out which of the available nodes is the BlueField card and which is the host and 

launch the server and client on those respectively. Helpfully most cluster system 

administrators give nodes of similar specification the same name differentiated by a 

serial number, so the BlueField cards will have different names from the hosts and 

so the script can use those to differentiate.  

Implicit in this is that the cluster scheduler has been set up to have the server (e.g., a 

BlueField card) as a separate, allocatable node for cluster jobs, so that a batch job is 

able to request it amongst its list of required nodes. In order to be able to be set up 

as a separate node in the scheduler, a BlueField card should be set up in its 

separated host mode. 

The user will of course have to add further options to the mpirun command to 

optimise, or simply make the communications work, on the cluster system, for 

example covering things such as selecting the network cards to use and options that 

determine which components/options of the underlying messaging library are used. 

For example, for a host to communicate with its own BlueField card, one should 

preferably set MPI to use the BlueField card as its network card, rather than some 

other network card in the host computer. The latter might not fail but messages 

between the host and its BlueField may well take an indirect route. 

OpenMPI is designed to allow programs running on different architectures to 

communicate with each other. The different binaries of these programs needed for 

the different architectures can be specified using the colon syntax of mpirun shown 

in Table 25.  

The client and server programs per se, and their libraries including those of 

OpenMPI, can require further painstaking set up. In Linux systems, where to find the 

libraries is determined by the environment, in particular the environment variable 

LD_LIBRARY_PATH. This can be set in various ways, for example by direct 
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assignment or by using environment modules provided by the module command, or 

possibly also by the Spack command. It can also be set or modified at various times; 

these may include:  

• start-up scripts called when the cluster scheduler contacts the head node of 

the batch job,  

• commands inside the batch script itself, and  

• start-up scripts called when the client and server are launched (launching 

through mpirun causes this).  

A further complication is that, potentially, different start-up scripts can be called 

depending on just how any login to establish these processes is made [84] – for 

example, value of shebang of the batch script and any scripts invoked by mpirun will 

be important. Another complication is that the user’s environment at the time of 

submitting the batch job to the scheduler may be considered. (I was unfortunate 

enough to have to learn that one popular cluster scheduling system, SGE, has an 

opt-in system for doing this [85], while another, SLURM, has an opt out [86].) 

The user’s strategy for getting all this right is to either to diagnose what is happening 

to the environment, for example by logging relevant items to a file in the various 

scripts that may come into play, and go with it, or to override the 

LD_LIBRARY_PATH environment variable at the last moment possible, which may 

involve using mpirun not to call the client and server programs directly but to call 

scripts that do launch them but only after first setting LD_LIBRARY_PATH. In the 

latter case the user should ensure not to remove unintentionally something set by 

the log in scripts but actually needed – this especially applies to the scripts controlled 

by the system administrator rather than the user. The best strategy may depend on 

the quality and breadth of the setup provided by the system administrators. The 

experiments section of this thesis records how this was all achieved in the particular 

case of the experimental runs. 

17.5. Initialisation within the client and server applications 

Once the correct client and server applications have been launched with the correct 

environment, the remaining aspects of the initialisation are dealt with within the code 

of the Argmessage client and server applications.  
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The underlying messaging library on which Argmessage depends will need to be 

initialised. In the case of OpenMPI explicit action is required in the form of calling the 

function MPI_Init(). This is included both in the Argmessage server code and client 

code. MPI_Init() contacts the ORTE daemons mentioned earlier and establishes the 

connections between the processes and their rank numbers, which are their abstract 

addresses between which MPI messages are sent. 

To start Argmessage on the client and server they respectively call 

argmessage_proxygetobject(), argmessage_serverenginegetobject(). These in turn 

both call MPI_Init().  

17.6. Using Argmessage in a client that has MPI peers 

It is noted that there may be an inconvenience in the case where the client 

application is itself an OpenMPI application with peers on other host nodes of a 

cluster, with which it would want to communicate using OpenMPI. In that case, a 

refactoring of moving MPI_Init() out of the Argmessage library and into the client 

application per se will help. Here, once the client application has called MPI_Init(), it 

could then sort out first which rank numbers belong to its counterpart Argmessage 

server and which to its peer client applications. The client will only have a single rank 

number, so to separate the communications of the client application with its peers 

from those with Argmessage server respective MPI communicators should be 

defined for these two purposes. All OpenMPI calls in the client application and in the 

Argmessage library will then have to be amended to refer to the correct one of those 

communicators, rather than for example the general default communicator, 

MPI_COMM_WORLD. 

The Argmessage function argmessage_serverrank() negotiates which rank plays the 

role of the Argmessage server and its logic might need to be reviewed in such a 

refactorisation; as it stands it is expected that one rank will declare itself to be the 

server, so if communicators were to be defined these should include just one rank 

that has been launched to execute the server application.  

17.7. Further initialisation of Argmessage 

An initialisation step on the server, which could either precede or follow the OpenMPI 

initialisation, is the initialisation of the proxy and adapter objects’ function tables. 
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These need to be populated with entries for both Argmessage’s internal 

housekeeping functions and the remote functions of whichever application the server 

is here to support. Finally, the server and client are then provided with further items 

of its own initial state and initial state for the library that it supports.  

17.8. User library initialisation 

With the Argmessage library initialised, the user application of course needs to 

complete any other initialisations it needs. The user library programmer should 

provide initialisation functions, if required, for both the client-side and the server-side. 

On the server-side there may be a need for either or both of automatic initialisation 

and client-requested initialisation.  

The former should be done once the adapter objects have been created, since the 

state created by this initialisation should usually be attached to the relevant adapter 

object for retrieval when a remote user function is called. For this purpose, an 

adapter is already provided with a pointer to a state object, which can be set to the 

initial state of the library so that the state may be retrieved, if needed, by subsequent 

remote library function calls. Indeed, the first parameter of all remote library functions 

is the identity of the adapter, which allows the remote library function to access the 

pointer and hence access the library’s state. 

Client-requested initialisation is for where the initialisation of the user library needs 

some value from the client side, which is sent in an Argmessage message calling 

this initialisation function. Because client-requested initialisation uses an 

Argmessage message and a remote library function, it can only be called after 

Argmessage has been placed in the run mode.   

17.9. Argmessage’s run mode  

With the initialisation complete (with the possible exception of client-requested 

server-side initialisation of the user library), the Argmessage server is set to “run” 

using the function, argmmessage_serverenginerun(), which means it will now accept 

messages from the client, which it will interpret as RPC requests. The client does 

have a corresponding “run” function, argmessage_proxyrun(), which is called at this 

point, but it only initialises a precautionary maximum for the number of messages it 

will process, guarding against an application that gets stuck in a loop; the proxy on 
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the client is only actually in execution during the run mode when public interface 

functions are called by the client application. On the other hand, the server, when it 

has nothing to do, is waiting to receive more RPC messages. 

The details of how Argmessage messages operate to achieve RPC calls has been 

described in section 6.4, with reference to Figure 6. 

17.10. Finalisation 

Once everything has been initialised, the client application can then of course make 

calls to the user library via its public interface to achieve whatever is desired from it. 

Finally, after the desired processing using the library is completed, in a finalisation 

step, the client application should both make a call to the user library to finalise that, 

and then finalise the Argmessage library. For the former the user library programmer 

should provide a special function. The latter is achieved with calls to 

argmessage_proxykillserverrequest() and as many calls to 

argmessage_proxykilladapter() as the number of adapters that the client application 

was using. The call to argmessage_proxykillserverrequest() is noted by the server 

and is acted on once all the adapters have been deactivated with 

argmessage_proxykilladapter(). This avoids unexpected termination of the service 

for the other clients.  

While it is desirable in some cases that using Argmessage appears transparent to 

the application program, i.e., it just calls functions of the public interface, 

Argmessage does requires initialisation and finalisation which are explicit from that 

perspective; this is a modest complication for the application programmer. 

Nonetheless between initialisation and finalisation it was possible to maintain that 

transparency of presentation. (The more demanding complication of where 

Argmessage and the client application share use of the same underlying message 

library has been noted above.)  
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Appendix B –  Compilation of Argmessage and Qsargm 

17.11. Compilation of components for heterogeneous architectures 

As will become apparent, the software in this project has server and client 

applications that run in different processes, with the intention being, in general, that 

they are run on separate processors. Indeed, the main target arrangement has the 

client application running on an x86-64 compute node and the server running on a 

BlueField card plugged into the motherboard of that compute node. In that case, the 

two processors have different architectures.  

It is therefore necessary to be able to compile the client application and the server 

for their respective architectures. This leads to the following difficulties. While 

administrators of HPC systems often provide a selection of dependencies 

precompiled for compute nodes against which users may compile their own code, 

unsurprisingly, since BlueField cards are relatively new and not commonplace, they 

do not provide similar for the BlueField cards. The need for such libraries will not 

only be a few system libraries, but also computational dependencies may well also 

be needed on the compute node (and potentially the BlueField card but that did not 

arise). 

Compilation of libraries is often, of course, not that straightforward: each has its own 

dependencies and options for compilation, and various build systems may be 

preferred for each. This can lead to a complex set of possibilities, only some of which 

work. System administrators distil their experience of getting a large set of working 

dependencies to compile into a collection of build scripts. For example, those used 

for the central HPC systems at University College London are to be found on GitHub 

[87]. One route to providing for dependencies for different architectures might have 

been to use such scripts adapting them as necessary. This would have been a 

lengthy and risky process, for example working down the tree of dependencies only 

to find some incompatibility. Certainly I found the process unwieldy. I hoped to 

address this problem in this work by using the Spack package manager [88], but this 

was only partially successful. Nonetheless it may find better application in future as 

Spack develops. 
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17.12. The Spack package manager 

In order to tailor the binaries for the system being used, Spack downloads the source 

code, applies patches and compiles it using its own compile script. Further and 

importantly, it also compiles any required dependencies, and dependencies needed 

by them and so on, in a consistent manner. The build scripts for each package are 

kept in a global central repository and are contributed and maintained by both 

system administrators of many HPC and other systems and by the authors 

themselves of the applications and libraries being built. In this way much more 

experience of which build options and dependency versions are compatible is built 

up. Spack provides build scripts for wide range of packages used in scientific 

computing and so was suitable for use in this project.  

In normal use of Spack these build scripts are fairly hidden from the user and so two 

users on different systems, having the same or different architectures, will get highly 

similarly built code. To provide some flexibility however in what is built, options are 

provided to allow that. Those options, together with the version numbers and options 

of the dependencies and even also those details for the compiler, used to build a 

package are recorded, resulting in a complete specification of how that package and 

its dependencies have been built. That specification can be later used to, more or 

less exactly, reproduce the complete build, which is of great assistance to, for 

example, another user who wants to reproduce computational results generated by 

the package. These build operations are not instant, as Spack finds a wealth of 

dependencies to be built for many packages, but it was of course far more 

methodical in doing that than I could have been. 

It was a goal in this project therefore to use Spack to build as many dependencies as 

possible. In the end, it was only used to build the netlib-lapack package, which was 

used in the main example of a computational program using the Qsargm library of 

the project.  

In the main this project used MPI, in particular OpenMPI, for the messaging between 

the Argmessage client and the server. Spack has build scripts for OpenMPI but 

these did not always work, particularly for more recent versions (at the time of 

building them), failing when building its dependency on the lower level UCX 
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communication library [31]. Fortunately, (i) compiled versions of OpenMPI for many 

different architectures and operating systems are provided by Nvdia/Mellanox in the 

HPCX distribution [89], which are often, but apparently not always, easy to install, 

and (ii) Spack does provide facilities for declaring a dependency that exists on the 

system to be a package within its system, so that it is what I used generally.  

One useful feature I found in Spack was on an earlier system than used for the final 

experimental system, which did not allow Internet download to the BlueField cards, 

which was inconvenient since Spack downloads the source code files. Spack allows 

different installations (a set of sources and compiled software made by Spack – 

Spack “site”) to be marked downstream of one another, with the downstream 

installation reusing items available in the upstream one. So, I was able to declare 

Spack sites for nodes of different processor architectures, one of which had Internet 

access available for its nodes. Builds on that downloaded the sources and these 

sources would then be reused by Spack when compiling packages on the BlueField 

card.  
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17.13. Build system for Argmessage  

The Argmessage build is not complex and could be achieved with various build 

systems. The Argmessage client is intended to be compiled as part of the executable 

of the application it serves, so a user of Argmessage should include it in the build 

specification files of whatever build system is being used by the client application. In 

this project it was applied to QuickSched, which uses the Autotools build system, so 

the build specification files for that, the files Makefile.am, were extended to cover the 

Argmessage files as well. One important aspect of Argmessage, as noted in section 

17.11, is that it may well need to be built for different architectures. In-source builds 

are always messy and do not work for multiple architectures as object files would be 

overwritten when compiling for the second architecture. The build script to build the 

application therefore uses a respective build directory for each architecture. The 

application was built for each architecture on a machine of that architecture, so the 

build script determines the architecture, and hence where to do the build, simply 

from the hostname of the system. One further complication of this was that the login 

node on the cluster where the code was developed has an architecture (an AMD 

one) different from both that of the compute nodes (an Intel one) and that of the 

BlueField cards (an Arm one); so, to allow for frequent compilation during debugging 

a build for the login node’s architecture was also provided. The build script of course 

also set the environment to include the correct versions of dependencies for the 

architecture. Owing to the difficulties noted in this section, that comprised a mixture 

of user environment modules made for the hand built messaging libraries and Spack 

modules for the computational kernels.  

17.14. Compiling messaging libraries and launching experiment programs 

Section 17.2 discussed launching Argmessage applications generally. More detail is 

given here on how the QR factorisation experiments were launched, including how to 

launch for all the test geometries and including the arrangements for working through 

the sets of experimental parameters used.  

Many HPC clusters are homogeneous, meaning that all machines in the cluster have 

the same processor architecture. If that is not the case, as in the present project, 

which has both x86-64 machines, i.e., the hosts, and Arm processors, on the 
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BlueField cards, care has to be taken to use not only the correct versions of the 

application code compiled for the respective architectures but also the correct 

versions of all the dependencies. Heterogeneous production clusters, for example 

with different generations of x86-64 processors with different instruction set 

extensions, do exist and there are a couple of tricks that can help a system 

administrator to deal with the problem of needing different versions of compiled 

codes.  

One is to compile all the software modules for each architecture in matching 

directory structures and then mount on each machine the correct directory set for 

that machine in exactly the same place with respect to the root directory, “/”, 

independent of the architecture. In this way, selection of the correct version can be 

made entirely automatic: i.e., nothing has to be done in a launch script on different 

machines to make a selection since the same path for the code is quoted when 

launching an application program.  

It is possible, I understand, to include variants of the object code for different x86-64 

generations in the same object code file, but that is not relevant here as the 

machines here were more heterogeneous in that they include the Arm processors, to 

which that does not extend.  

The cluster used here was, of course, experimental, and little software was provided. 

Only compilers and a few of the common computational libraries, MPI versions and a 

few common HPC applications were provided for the host systems; none were 

provided for the Arm system over the bare base operating system. So, since both 

Arm and x86-64 code was required, all the experimental code and its dependencies 

had to be compiled for each architecture separately. Not being granted administrator 

rights, mounting the code at the same path in the file system was not an option. 

Further, finding a compilation for OpenMPI that worked between the x86-64 hosts 

and Arm BlueField did not happen straight away, but the combination noted in Table 

26 was found to work and was used in the experiments. It was tried to compile these 

with Spack but that failed to build the UCX dependency of OpenMPI.  
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OpenMPI 4.1.1 

Archive file: openmpi-4.1.1.tar.gz 

Configure flags: --prefix=/global/scratch/users/cyrusl/placement/ 

          software/openmpi-4.1.1/install-broadwell 

--with-ucx=/global/scratch/users/cyrusl/placement/ 

          software/ucx-1.10.1/install_broadwell/ 

--enable-heterogeneous 

--without-slurm 

--enable-orterun-prefix-by-default=no 

--enable-mca-no-build=btl-uct 

--with-hwloc=/global/home/users/cyrusl/placement/ 

         software/hwloc-2.4.1-broadwell 

UCX 

Archive file: ucx-1.10.1.tar.gz 

Configure flags: --disable-logging –disable-debug  

--disable-assertions –disable-params-check  

--prefix=/global/scratch/users/cyrusl/placement/ 

        software/ucx-1.10.1/install_broadwell  

--enable-mt 

hwloc (a dependency of OpenMPI) 

Archive file: hwloc-2.4.1.tar.gz 

 

Table 26 – Communication library compilation options 

The compilation was done separately for each architecture: once for the Arm 

aarch64 architecture and once each for each of the particular x86-64 architectures of 

the different clusters used at HPCAC. The values in Table 26 for the OpenMPI and 

all dependency paths are for the Broadwell x86-64 architecture and were changed 

appropriately for the other x86-64 architectures. Linux modules were created for 

each version.  
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The options --enable-heterogeneous, --without-slurm, --enable-orterun-prefix-by-

default=no for OpenMPI are all relevant to the launch flow described in Appendix A 

sections 17.2 to 17.4.  

The launching of the client and server programs was achieved in these experiments 

as is now described, giving particular details of the MPI arrangements, as well as the 

organisation of providing the experimental parameters to test application programs. 
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Figure 42 –  Launch flow diagram for experiment programs 
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Figure 42 is a block diagram showing the flow of the launch process. A batch script 

is submitted to the cluster batch scheduler, in this case the SLURM scheduler, 

requesting a set of nodes of the form shown in Figure 10, namely a pair of x86 hosts 

and their respective BlueField cards, so covering all the geometries. These batch 

files in the archive have names prefixed with “epru”. The cluster scheduler allocates 

those nodes and launches the epru script on the head node, which was always the 

x86-64 node with the lower number in its machine name; so, for example, when 

jupiter005, jupiter006, jupiter-bf05 and jupiter-bf06 were specified, jupiter005 was the 

head node. While it would have been more transparent to set the OpenMPI modules 

in the epru batch file, this was put in the .bashrc file, which is, of course, executed 

each time a new bash shell is started as a login shell [90].  So in the launch 

arrangements, .bashrc is executed in two places: (i) when the cluster scheduler 

starts a new process on the head node to execute the epru script and (ii) when, in 

the arrangement of the HPCAC clusters, mpirun starts new processes on the client 

and server machines to run the application program. The reason for setting the 

modules for OpenMPI in .bashrc comes from the second of those, which I shall come 

to in a moment. 

So, .bashrc is first executed just before the epru script (since the cluster scheduler 

logs into the head node in order to run the latter).  There .bashrc sets the version of 

OpenMPI needed on an x86 host, in particular to execute the mpirun program. Next, 

the epru script, in many examples, cycles through the four possible geometries and 

for each calls the script run-qsargm-tests.sh. In turn that script cycles through the 

parameter sets being used (one parameter set being one line of a parameter file), 

and for each of those it launches the task scheduler server program and compute 

client program in respective processes at their respective positions in the current 

geometry. For each launch it first determines the names of the network interfaces to 

use, the index numbers of the processor cores to be assigned to each of the two 

processes, the locations, in the file system, of the object code for the programs 

compiled for (i) the relevant architecture and (ii) for any specified compile time 

options for the test application programs (usually the QR test and the remote 

scheduler programs), and determines the launch method (depending on whether 
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OpenMPI or SNAPI messaging is being used), and further it passes on those of the 

experimental parameters that the test application programs need to consume.  

.bashrc is also called, for the second time, before each of the test client and server 

programs is launched (since mpirun logs into their respective rank nodes in order to 

launch those programs) in their respective locations. Here .bashrc, in the same way 

as for the first visit to .bashrc, loads modules for OpenMPI and its dependencies 

appropriate to the architecture of the machine. It is necessary to do that here 

because the first thing that the mpirun command on the head node does once 

logged into an MPI rank node, before it gets round to launching the program 

requested in the mpirun command, is to launch its own component ORTE, which in 

turn launches the application programs [91]. This process failed unless the correct 

versions of OpenMPI for the respective architectures are already selected. 

Therefore, in this arrangement it is necessary to select the OpenMPI modules before 

that happens, therefore in .bashrc.  

Now, the QR factorisation application program needed another dependency, in 

particular the Netlib LAPACK library [92], for the independent verification of its 

calculation. This library was prepared and loaded with the Spack package manager, 

but it proved impossible to load it in .bashrc because it caused the mpirun operation 

to fail, probably by timing out. Spack, especially when initialising, seems to require a 

large number of file accesses, which is a very slow process on most parallel file 

systems. So, the Spack initialisation had to be done later: mpirun was set to run a 

launch script which first initialised Spack, then with that loaded the extra dependency 

before finally launching the object codes of the client and server programs, which 

meant that the Spack initialisation could be removed from .bashrc. (The bash script 

was called set-modules-inc-spack-qsargm.sh or set-modules-and-path-for-snapi.sh. 

For the case of the SNAPI messaging the SNAPI library was also selected in this 

launch script.) 

Splitting the selection of the dependencies like this, i.e., between .bashrc and a 

launch script, makes it less easy for a reader of the code to see how the modules are 
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being loaded, but was necessary for the reason given.9  The launch script also 

passes on to the client program the experimental parameter set it needed that came 

from the current line of the parameter file.  

To compare performance between machines of different specifications, experiments 

were run on different sets of four machines. In some examples, the different 

geometries were, as described above in this section, run with respective mpirun 

commands in the same epru file; in others it was arranged by using a separate epru 

batch job file for each such set, which differed in the machines specified there to the 

SLRUM job scheduler. It depended on whether the maximum job run time for the 

cluster was going to be exceeded. 

Different epru batch job files were also used to change the parameter file being used 

to provide parameter sets to the QR factorisation application. These batch files may 

be found in the project archive in the directory 

archive:expt0069/argmessageprivate/run-scripts-HPCAC/exptl_runs/. 

In fact, the script run-qsargm-tests.sh had many parameters with the effects noted in 

Table 27. 

 

9 Having gained further experience with Spack more recently, I have noticed that part Spack can be 

used to generate traditional environment modules which may be invoked without loading Spack. 

These of course load much faster since they simply update environment variables. On the other hand 

they hide the provenance of the code, whereas Spack can provide a full tree of the versions, options 

and dependencies used to compile a code.  
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Parameter Effect 

-p  Selection of the application to be run, e.g. -p QR for the QR 

factorisation experiment but there are also options for the simpler 

test programs. 

-m Selects between OpenMPI and SNAPI messaging for the 

messages between the Argmessage client and server (distinct from 

the -m parameter in Table 9).  

-u  Select for launch a previously compiled version of the QR 

application having many print statements for debugging purposes.  

-c Machine name for the client program. 

-b Machine name for the remote server program, so together with -c, 

these allow the geometry to be specified. 

-w Run warm-up programs before the experiment (not used). 

-W For internal use relating to the warm-up. 

-g Path of a parameter file for client application (those parameters are 

noted in Table 9), one line thereof being passed to the client at 

each launch of the client application made by the run-qsargm-

tests.sh script. 

-P Introduces a set of parameters to be passed to the client program 

(an alternative to the -g mechanism), the set is to be put in quotes 

in the run-qsargm-tests.sh command line. This was used for 

interactive debugging and testing. 

-T  Number of threads to be allotted to the server program, which may 

also be specified in the -g parameter file lines. 

-o  Select the compile time code optimisations for the QR application, 

operates by selecting for launch among previously compiled 

versions of the QR application having the combination of those 

optimisations. 

Table 27 – Parameters of the run-qsargm-tests.sh launch script 

For most of the experiments, OpenMPI messaging was used. There was a difference 

in the launching for when SNAPI messaging was used, which was that, instead of a 

single mpirun statement being used to launch both the client and server, separate 
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and respective ssh calls to the relevant client and server locations were made. This 

was done to make use of the taskset command to set the processor core assignment 

explicitly, rather than having to consider whether mpirun would set those in the case 

of an application program that did not use OpenMPI beyond that (i.e., has no MPI 

statements in the application code), such as the SNAPI version of the experimental 

code.  

Finally, the control scheduler (the original QuickSched) does not, of course, by 

definition, need a separate scheduler process. However, in the experimental runs 

such a process with remote scheduler was launched to keep the launch 

arrangements the same, but that process was not used once launched, i.e., it is 

never contacted by the client with Argmessage RPC calls.   

The selection in the application code between the original control and remote 

schedulers comes inside the running of the client program in the code of each 

Qsargm proxy interface function. This examines a parameter (-S, strategy, Table 9) 

passed from the launch script and thereafter, in the case of control scheduler, 

passes the call directly to the original QuickSched library, or, in the case of the 

modified, Qsargm, scheduler, to a function that sends a message to the 

experimental scheduler. In this way control experiments could be interleaved with 

those using an experimental remote scheduler, without having to change the version 

of the application programs being launched, avoiding any doubt as to the identity of 

the code, otherwise, between the two cases.  
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Appendix C –  Results Archive Notes 

17.15. Post Processing  

Post processing of the results began with filtering the output logs, from both the 

client and server, for the timer values and their contexts. The ‘contexts’ were mostly 

the parameters used to generate the experimental results, and also the index of the -

r repetition of the execution of the QR factorisation code for the same combination of 

parameters. This data was compiled into a JSON format file.  

The results files so gathered have a filename extension of .QR-2.json, the “2” 

indicating that a second attempt was needed to optimise the format.  

The program collect_QR.py performs the compilation of results form a results 

directory and makes use of the functions in the library collectors.py, both at archive: 

expt0069/argmessageprivate/aftermath/aftermath/collect/. The library functions find 

lines in the logs using regex matching to find the data lines, but this is supplemented 

with more regex to find surrounding context delimiting lines to deal with the data lines 

being similar between repeats.  

Each run produced by a line of a parameter set file produces separate log files. 

Compiling the respective JSON file sections for these runs was an embarrassingly 

parallel problem and so was parallelised using Python’s multiprocessing module. 

The further processing of the JSON files, for example, in order to plot a graph, 

begins with conversion of the JSON files into a single flat file numpy [93] table, with a 

column for each timer and so repeating the values of outer context items in their 

columns. This was performed by a program aggregate.py (archive:expt0069/ 

argmessageprivate/aftermath/aftermath/collect/aggregate.py). This single table 

format was chosen as it is very straightforward to filter and sort as required, e.g., for 

plotting graphs. When it was needed to include results from more than one result 

directory, the conversion of each to a flat table is processed in parallel, again 

parallelised using Python’s multiprocessing module, with the resulting flat file tables 

being concatenated. 

The routines for plotting the results of the QR factorisation experiments are to be 

found in the at archive: 
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expt0069/argmessageprivate/aftermath/aftermath/plot/plotQR.py. The plots 

themselves are explained in the relevant sections discussing the results. A higher 

level script, archive:expt0069/argmessageprivate/aftermath/aftermath 

build_display_sets.py compiles the items mentioned in the next section. 

17.16. Archive structure of “result sets”  

The epru batch scripts described above at section 17.14 were the unit of initiating 

experiments. Each of these created one or more results directories, generally one for 

each parameter file consumed and so, e.g., one for each of the geometries 

addressed by the epru file.  To organise these results directories into suitable groups 

for post processing and ease of reference sets were defined. The sets aggregate 

results directories for the different test geometries and for different specifications of 

host node. These sets are referred to in this document by the same letter 

designation as they are in the archive. The discussion of the results in the next 

chapter starts, however, at set C, since sets A and B were part of the software 

development process.  To facilitate browsing of the results in the archive, the 

directory for each set contains: 

• symbolic links to the constituent result directories,  

• a Python notebook in respect of each result directory grouping for displaying 

the graphs in that result directory,   

• image files of graphs based on data taken from across the result directories,  

• a file run_dirs_for_set.dat listing the result directories for the set, which is 

used by the scripts that compile the other items, and  

• usually, top level logs of the batch jobs that created the results in the 

respective result directories (file names are of the format 

epruNNNN_JJJJJJ.out and .err, where NNNN is an index for the batch script 

file and JJJJJJ is the job number for the system).  

The gathered JSON results files remain in their respective results directories. Each 

of those also sometimes contains a file args_with_resultant_omp_places.txt that 

records the core index numbers actually allocated, recovered from the logs, for the 

computational and scheduler threads against each input parameter set. 
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Appendix D – Argmessage and Qsargm Code Files 

This appendix is the code of the Argmessage and Qsargm modules written for this 

project. Code files of the original scheduler functions are not included; reference 

should be made to the original authors’ code repository on Source Forge and their 

publications. These files are used unchanged. Files are included which provide an 

interface between the current project to original QuickSched functions or are the test 

QR factorisation example. These necessarily reproduce code or structures of the 

original but are included to show how they have been adapted to make use of the 

original library within the current project. These files are acknowledged individually. 

Program Copyright Notice and Licence 

This program is copyright 2019-2023 James Legg, except as marked. 

This program is free software: you can redistribute them and/or modify it under the 

terms of the GNU Lesser General Public License as published by the Free Software 

Foundation, either version 3 of the License, or (at your option) any later version. 

This program is distributed in the hope that it will be useful, but WITHOUT ANY 

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 

FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more 

details. 

A copy of the GNU Lesser General Public License may be found at 

http://www.gnu.org/licenses/ 

 

 

So that the code may be published under this LGPL3 licence (that of the 

predecessor project), it has been redacted here but published on Github at 

https://github.com/cjlegg/qsargm-thesis. The filenames of the files intended for 

this Annex are listed below, with the original comments on the code 

remaining. 

https://github.com/cjlegg/qsargm-thesis
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argmessage.h 

argmessagehelpers.h 

argmessagehelpers.c 

argmessageproxy.h 

argmessagesizes.h 

packunpack.h 

packunpack.c 

waitfordebugger.h 

waitfordebugger.c 

qsargm_adapter0.h 

qsargm-adapter0.c 

qsargm_client.c 

qsargm_common0.h 

qsargm_common0.h 

qsargm_common0.c 

qsargm_proxy0.h 

qsargm_proxy0.c 

qsargm_server.c 

qsched.h 

This file has been adapted from the original QuickSched, but has been updated to 

include additional functions of this project. 

qsched.c 

This file has been adapted from the original QuickSched, but has been updated to 

provide an interface to the code of this project, principally the switch in each public 

interface function to call either the original code or the code of the present project. 
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qsargm_test_qr.c 

This file has been adapted from the original QuickSched, but has been updated to 

use the Qsargm version of that from this current project.  

 


