
1

A remote fine grained scheduler,

with a case study on

an Nvidia BlueField DPU device

This thesis,

by Cyrus James Grahame Legg,

is presented for the degree

of Doctor of Philosophy,

at University College London (UCL).

2

3

Declaration

I, Cyrus James Grahame Legg, confirm that the work presented in my thesis is

my own. Where information has been derived from other sources, I confirm that

this has been indicated in the thesis.

Signature: _________________________

REDACTIONS:

This publication version of the thesis has been redacted compared to the

version accepted by the examiners (with corrections), which was also filed

with the University authorities. The redactions made were:

• Removal of the signature on this page, for privacy.

• In Table 7, which quotes 3rd party code, the extent of the quotation

has been further trimmed out of an abundance of caution with regard

to fair use of copyright works.

• As explained on page 264, the code annex has been removed as

licensed under the LGPL3 licence, which is not compatible with the

Creative Commons licence under which this document will be

published by the University.

4

5

Abstract

The QuickSched fine-grained task-based scheduler (used in the Swift

astrophysical smooth particle hydrodynamics code) was modified so that the

scheduler is located in a separate process from the computational threads, with

the computational threads calling the scheduler functions via an RPC message

loop. Thus, the time-divided scheduler of QuickSched on the computation threads

was replaced by a dedicated ‘remote’ process. The efficiency of the scheduler

was analysed in view of the likely detriment caused by the messaging. The

investigation was of an existing example of the tiled QR factorisation, and various

locations of the remote scheduler were tested: on the same and remote hosts on

the same LAN as the computational host, and on the general-purpose Arm

processor of BlueField cards located on these hosts.

Under optimisation of the tile size, a region of high performance was found and

was the same region for the original and new remote schedulers. Within that

region the new remote scheduler performed as well as the original to within a few

percent, and so the new scheduler location is viable despite the additional

messaging latency. The possibilities for extra functions for the scheduler opened

up by the extra resources of made available to the scheduler being in its own

process are discussed. The mechanisms affecting the performance change

between the original and new schedulers are complex. In the optimised region,

message latency can be insignificant in some cases and in others a decrease in

the time spent in kernels on changing to the new scheduler can partially but

significantly compensate for the latency introduced. QuickSched’s scheduler rule

of keeping unoccupied threads fed with ready tasks was seen to dilute the

effectiveness of the rule to allocate tasks to cores having input data for the task in

its cache.

6

7

Impact Statement

Undertaking this PhD has had significant impact for me personally, providing

retraining after a different career and a successful move into a new one of

academic high-performance computing (HPC) at UCL, where I have started a job

working on supporting cluster users, and in future helping to develop new clusters

and research the usefulness of novel accelerator cards. In this job we are

currently working on deployment of a new package manager, Spack, at UCL,

which may not only simplify the building of the hundreds of applications needed

by researchers but should improve the reproducibility of those builds and hence

of the results those applications produce.

I hope that my work will stimulate further work in my study area of fine-grained

task scheduling in HPC codes. I was privileged to give outline talks to two highly

prestigious conferences: GTC in November 2021 and the European ISC High

Performance, also in 2021, as well as at three other conferences and meetings:

HPC AI Japan 2021, HPC-AI Advisory Council Cloud-Native Supercomputing

Workshop (China) in November 2021 and Singapore SCAsia22 in March 2022.

Quoting from his comments on my impact, Richard Graham, form the sponsor

and a founder of the OpenMPI messaging library project, said, “This has also

been useful to understand some of the performance challenges future BlueField

devices should address, for this class of problems. The placement work focused

on creating a performance analysis tool for the MPI_Alltoall() collective operation

in native application use. This work [the placement] has been incorporated into

the open source tool, and is available for general use.”

So, the PhD work has provided the sponsor with a case to take into account for

future BlueField cards, and skills learnt are having impact elsewhere.

As set out in this thesis, I believe the work contributes practical ideas to, and

furthers understanding of, controlling HPC codes “from the network” and that it

has generated many ideas for that that could be developed further. I also believe

that contacts developed with Nvidia and other vendors during this work will be of

benefit in my future work in the team developing future HPC systems at UCL.

8

9

Acknowledgements

I should like to acknowledge the help and advice of all those who assisted me

along the way. They have been many, but I can only mention a few here:

At UCL:

Rev Dr Jeremy Yates

Dr Owain Kenway

Prof Serena Viti

Mr Denis Timm

Mr Tristan Clark

At Nvidia (formerly Mellanox)

Dr Richard Graham

Dr Geoffroy Vallee

Other

Joanna Clark

Dr Martyn Clark

Computing Resources

The work was primarily carried out on the facilities of the HPC AI Advisory

Council (https://www.hpcadvisorycouncil.com/). However, I would also like to

acknowledge the use of the HPC systems of Advanced Research Computing at

UCL and of the DINE system at The Institute for Computational Cosmology at

Durham University (https://www.dur.ac.uk/icc/cosma/facilities/dine/).

10

11

Contents

Declaration .. 3

Abstract ... 5

Impact Statement .. 7

Acknowledgements .. 9

Contents .. 11

List of Figures ... 18

List of Tables ... 21

List of Equations ... 23

1. Scope of Investigation .. 25

1.1. Project Sponsors ... 25

1.2. Project Brief ... 25

1.3. Sources of the problem to be solved ... 26

1.4. Problem to be solved ... 27

2. Task Based Scheduling... 29

2.1. Converting a program to task-based parallelism 31

2.2. Effect of task size ... 33

2.3. Executing a task graph .. 33

3. Background and other work in task based parallelism 35

3.1. What gets accelerated, and where? .. 35

3.2. Offloading to the network ... 36

3.3. Background relating to task-based scheduling 37

3.4. Prior uses of Quick Sched – Chalk and Swift ... 37

3.5. Other relevant work in task based scheduling 42

4. Hierarchy of software components in this project 45

4.1. Plan for discussion in subsequent chapters ... 46

12

5. Analysis of QuickSched .. 47

5.1. Origin and uses of QuickSched .. 47

5.2. Timescale of tasks ... 47

5.3. Build and execute cycle ... 48

5.4. Time slicing of the scheduler object ... 49

5.5. Location of task generator .. 49

5.6. What to offload to the BlueField card ... 50

5.7. QuickSched data structures: task DAG and ready task queues 50

5.8. QuickSched: library functions and call graph ... 52

5.9. QuickSched functions for initialisation and finalisation 53

5.10. QuickSched functions for building the task-graph 54

5.11. QuickSched functions for executing the task graph 56

5.12. Establishing the threads .. 56

5.13. Preparing to run .. 57

5.14. Running through the tasks .. 58

5.15. Proposal for splitting the scheduler ... 59

5.16. QuickSched functions for getting tasks and reporting their completion

 59

5.17. Further discussion of the proposed split ... 61

5.18. Need for an RPC library .. 62

6. Argmessage.. 63

6.1. Remote procedure calls ... 64

6.2. Argmessage Messages .. 65

6.3. Message structure .. 66

6.4. Modules of Argmessage and Operation ... 68

6.5. Packing functions ... 70

13

6.6. Sending the RPC request message ... 71

6.7. Receiving RPC requests .. 71

6.8. Remote user functions ... 72

6.9. Reply messages .. 72

6.10. Relationship between public interface and remote functions 73

6.11. Appendix material on Argmessage ... 73

6.12. Potential uses of multiple adapters ... 74

6.13. Potential uses of multiple clients ... 74

6.14. Providing for multiply threaded client applications 75

6.15. Multithreaded server operation ... 75

6.16. Main use of Argmessage in this work ... 76

7. Qsargm: application of Argmessage to QuickSched 77

7.1. Public interface functions ... 79

7.2. Pack and call functions .. 80

7.3. Client and server programs and initialisation and finalisation of qsargm 81

7.4. Converting qsched_run() ... 81

7.5. Single threaded operation .. 83

7.6. Supporting multithreaded operation ... 84

7.7. Reply tagging ... 84

7.8. Number of server threads .. 85

7.9. Single server thread and doevents mechanism 85

7.10. Multithreaded Argmessage and Qsargm server operation 87

7.12. A Qsargm problem – taskgraph build is single threaded 88

7.13. An observation on Argmessage messages having no reply 89

8. Test example of an application: Tiled QR factorisation 91

8.1. Selecting an application for performance testing 91

14

8.2. What is tiled QR factorisation? ... 91

9. Verification and Validation .. 97

9.1. Summary .. 97

9.2. Argmessage Toy examples .. 98

9.3. Correcting the QR factorisation example from QuickSched 104

9.4. Conclusions of QR factorisation task graph generation code analysis . 107

10. MPI Message Latency ... 109

10.1. Relationship to Argmessage / Qsargm RPC calls 111

10.2. Comparison to QuickSched function calls ... 111

10.3. Speculations on payoffs for message latency penalty 111

11. Experiments - general arrangements .. 115

11.1. Test Program .. 115

11.2. Test Geometries ... 115

11.3. QR experimental parameters .. 119

11.4. Machine Specifications ... 120

11.5. Parameter File Generation .. 122

11.6. Types of Parameter Sets Used ... 123

11.7. Timers used .. 124

11.8. Automation Frameworks for Computational Experiments 127

12. Performance Models ... 129

12.1. Performance of the build phase. ... 129

12.2. Run time performance in the many cores limit 130

12.3. Run time performance, for fewer cores ... 136

12.4. Performance modelling conclusions ... 141

13. Experimental Results and Discussion ... 143

13.1. Parameters for main experiments ... 143

15

13.2. Timer taskgraph_build_time for Set C .. 146

13.3. Task graph build time dominated by messaging............................... 150

13.4. Prepare Timer ... 152

13.5. Relative lengths of build, prepare and run stages 156

13.6. Task Graph Run Timer for Set C .. 157

13.7. Run timer results using sub optimal scheduler hints 163

13.8. Quantification of messaging overheads for run time 163

13.9. Time spent on kernel processing .. 174

13.10. Optimisation of tile size – run time and kernel time for Set F 180

13.11. Optimisation of tile size – relative performance for Set F 194

14. Improvements and Applications .. 200

14.1. Considerations for larger matrices .. 200

14.2. Multithreaded server experiments and proposed improvements 202

14.3. Proposed improvements to task graph building in Qsargm 204

14.4. Further optimisations .. 211

14.5. Complex scheduling applications ... 212

14.6. Cooperative compute node applications ... 214

15. Conclusions .. 220

15.1. Key conclusions .. 220

15.2. Task size interaction mechanisms .. 221

15.3. Task graph building .. 222

15.4. Argmessage and base transport ... 222

15.5. Qsargm ... 223

15.6. QR factorisation test example, and simulating other task graphs 223

15.7. “From the network” – meaning.. 225

16. References ... 228

16

17. Appendices .. 240

Appendix A – Operation of Argmessage – further details 240

17.1. Argmessage – initialisation (and finalisation) 240

17.2. Launching processes and initialising the software environment 240

17.3. Launching with mpirun .. 240

17.4. Use on heterogeneous architectures .. 241

17.5. Initialisation within the client and server applications 243

17.6. Using Argmessage in a client that has MPI peers............................. 244

17.7. Further initialisation of Argmessage .. 244

17.8. User library initialisation .. 245

17.9. Argmessage’s run mode ... 245

17.10. Finalisation .. 246

Appendix B – Compilation of Argmessage and Qsargm 247

17.11. Compilation of components for heterogeneous architectures 247

17.12. The Spack package manager .. 248

17.13. Build system for Argmessage .. 250

17.14. Compiling messaging libraries and launching experiment programs

 250

Appendix C – Results Archive Notes ... 261

17.15. Post Processing ... 261

17.16. Archive structure of “result sets” .. 262

Appendix D – Argmessage and Qsargm Code Files 264

Program Copyright Notice and Licence ... 264

argmessage.h .. 265

argmessage.c .. 265

argmessagehelpers.h .. 265

17

argmessagehelpers.c .. 265

argmessageproxy.h ... 265

argmessageproxy.c ... 265

argmessagesizes.h ... 265

packunpack.h .. 265

packunpack.c .. 265

waitfordebugger.h .. 265

waitfordebugger.c .. 265

qsargm_adapter0.h ... 265

qsargm-adapter0.c .. 265

qsargm_client.c ... 265

qsargm_common0.h .. 265

qsargm_common0.h .. 265

qsargm_common0.c .. 265

qsargm_proxy0.h ... 265

qsargm_proxy0.c ... 265

qsargm_server.c .. 265

qsched.h .. 265

qsched.c .. 265

qsargm_test_qr.c ... 266

18

List of Figures

 Page:

Figure 1 – Task-based parallelism .. 29

Figure 2 – Software dependencies in this project .. 45

Figure 3 – Main phases of operation of example programs of QuickSched 48

Figure 4 – QuickSched scheduler – data structures at task exectution time 51

Figure 5 – Call graph of QuickSched... 52

Figure 6 – Modules of the Argmessage library .. 69

Figure 7 – Qsargm: Argmessage applied to QuickSched 78

Figure 8 – Correct task graph of QR factorisation example (n=4, so 4 x 4 tiles) . 94

Figure 9 – Task graph of Figure 8 with no level grouping 95

Figure 10 – Experimental geometries, i.e., relative process locations 116

Figure 11 – Samples of getticks() against other clock functions, which are

generically labelled “Wall time” .. 126

Figure 12 – Messaging time effect on longest path ... 131

Figure 13 – Task graphs squeezed by not enough cores 137

Figure 14 – task graph build time - local host geometry (thor005) – against

threads .. 146

Figure 15 – task graph build time – local host geometry (thor005) – against tile

count parameter n ... 147

Figure 16 – Set C – Collected taskgraph_build_time – ratio to control 148

Figure 17 – prepare timer – thor system - local host geometry 153

Figure 18 – Set C – Collected prepare timer – ratio to control 154

Figure 19 – Set C3 – task_graph_run_time timer – thor – local host scheduler 157

19

Figure 20 – Set C3 – task_graph_run_time timer – thor – local BlueField

scheduler .. 159

Figure 21 – Set C3 – Collected task graph run time – ratio to control 161

Figure 22 – Set C single thread run timer (s) against n – data for thor system

fitted function of Equation 1 .. 164

Figure 23 – Set C, thor – excess task graph run time – overlain with performance

limits .. 167

Figure 24 – Set C, jupiter – excess task graph run time – overlain with

performance limits ... 168

Figure 25 – Set C3, thor – time spent in computational kernels – local host

scheduler .. 174

Figure 26 – Set C3 – ratio of time in kernels between experimental and original

schedulers .. 176

Figure 27 - Set F2, thor - task graph run time - local host scheduler – against

threads .. 180

Figure 28 – Set F2, thor - task graph run time – local host scheduler – against

tile count parameter n or equally tile size parameter k 180

Figure 29 – Set F2, thor - task graph run time – local BlueField scheduler –

against threads ... 182

Figure 30 – Set F2, thor – task graph run time – local BlueField scheduler –

against tile count parameter n or equally tile size parameter k 182

Figure 31 - Set F2, thor - total time in kernels - local host scheduler - against

threads .. 185

Figure 32 – Set F2, thor – total time in kernels – local host scheduler – against

tile count parameter n, or equally tile size k .. 185

Figure 33 – Set F2, thor - total time in kernels - local BlueField scheduler –

against threads ... 186

20

Figure 34 – Set F2, thor - total time in kernels – local BlueField scheduler –

against tile count parameter n, or equally tile size k .. 186

Figure 35 – Set F2 – ratio of run time for experimental and original schedulers 194

Figure 36 – Set F2 task graph run time (s) for high performance region of tile

count parameter n and threads (t) with markers by geometry, for jupiter (left) and

thor (right) systems.. 198

Figure 37 – Creating task graph en bloc on host processor 205

Figure 38 – Contemporaneous task generation and execution 206

Figure 39 – Task generator at the remote scheduler location 209

Figure 40 – Task generator at scheduler with overlapping build of next task graph

 .. 210

Figure 41 – Data movement tasks commanded from BlueField 215

Figure 42 – Launch flow diagram for experiment programs 254

21

List of Tables

 Page:

Table 1 – scheduling timescales ... 48

Table 2 – public interface functions of QuickSched .. 53

Table 3 – Example Argmessage message buffer ... 67

Table 4 – Argmessage buffer fields .. 68

Table 5 – Pseudocode for tiled QR factorisation ... 93

Table 6 – Client-side public interface of the “user list” user library 99

Table 7 – Annotated code from file test_qr.c of original QuickSched library 105

Table 8 – MPI message latency (µs) from the benchmark 111

Table 9 – QR factorisation example command line parameters 120

Table 10 – Set C and set F experiments – machine sets 121

Table 11 – timers for control and experiment runs – names after post processing

 .. 124

Table 12 – getticks() frequency ... 126

Table 13 – Set F (k,n) pairs and associated task counts 145

Table 14 – Geometry marker letters ... 149

Table 15 – Task graph build time estimates ... 152

Table 16 – Relative durations of build, prepare and run stages – thor system -set

C ... 156

Table 17 – Tiles in longest row of graphviz plot of QR factorisation task graph 160

Table 18 – Excess run time per task for experimental remote scheduler over

original scheduler (µs) for set C for single threaded task processing 166

Table 19 – Tiles in longest row of graphviz plot of QR factorisation task graph for

smaller values of n .. 171

22

Table 20 – Parameter fit values for Tk = anp .. 188

Table 21 – difference between experimental and original scheduler’s total core

time over task count based on Tk=anp model units of 2tm................................. 190

Table 22 – jupiter and thor processor cache sizes .. 192

Table 23 – ratio of experimental to original scheduler run time - jupiter system 195

Table 24 – ratio of experimental to original scheduler run time - thor system ... 196

Table 25 – Argmessage application launch mpirun example 241

Table 26 – Communication library compilation options 252

Table 27 – Parameters of the run-qsargm-tests.sh launch script 258

23

List of Equations

 Page:

Equation 1 – number of tasks NG in QR factorisation for a n x n grid of tiles 129

Equation 2 – Addition to task path execution time caused by messaging latency

in the case of longest path switching .. 133

Equation 3 – number of tasks on longest path for QR factorisation 134

Equation 4 – a task graph runtime analysis .. 187

24

25

1. Scope of Investigation

1.1. Project Sponsors

My place to study at UCL was sponsored by Mellanox. Mellanox were taken over

by Nvidia in 2019/2020 [1], and became the Nvidia Networks division. Nvidia

Networks are manufacturers of networking equipment for local area networks

(“LAN”), both Ethernet and Infiniband, and include both host channel adapters

(“HCA”), often called “network cards” or “network adapters”, and network

switches. Nvidia Networks’ Infiniband equipment is often selected for high

performance computing (“HPC”) clusters, as can be seen from the Top 500 listing

of such systems [2], where the name Mellanox is still quoted.

While the company has continued to improve the basic performance of these

HCAs, networking technology is still challenged by the demands of the compute

and data aspects of these computing systems. As a result, Nvidia have been

developing additional technologies to improve performance in specific cases.

One new technology of theirs in the area of LAN equipment is called “BlueField”.

This is described in more detail in section 1.3; however, briefly stated a BlueField

card is an HCA which has an on-board Arm cored general purpose computer –

so general purpose that you can run Linux on it – which can communicate with its

host compute node and, in one configuration, with other hosts and with BlueField

cards hosted on those. This card became a central feature of the project.

1.2. Project Brief

The initial brief for the investigation was to control a cluster from the network

during computation. The scope of that is extremely wide and does not

immediately suggest any particular problem to be solved nor any particular

direction toward a solution. It was also implicit that any solution would be

software based – no facilities for designing any kind of circuitry were part of the

context. A first vague idea was to build a network switch from a PC with multiple

network cards so that it could be at the centre of the network and have

processing power there that could provide organisational effort. That obviously

did not gain any traction because it was not clear what that organisation would be

26

and because the performance of such a switch would not anywhere near match

that of a standard network switch. Some more specific problem had to be found.

1.3. Sources of the problem to be solved

Two separate studies resulted in the basic idea that formed the germ of this

project.

The first was that after a while Mellanox/Nvidia were, generously, able to provide

me with access to an experimental cluster fitted with BlueField cards.

Nvidia promote the use of BlueField cards for networking, accessing network

storage, and security [3]. This is of course no surprise: BlueField is a “smart NIC”

and so its uses would be to do with interaction with the network, and this

continues in the line of their previous developments such as remote direct

memory access (“RDMA”) [4] and Sharp [5], both of which offload networking

work from the host CPU to the network card. However, after some familiarisation

with BlueField, it was clear that its Arm cored processor subsystem was indeed

general purpose: Linux can be run on it and a user can log into it and compile

and run whatever code they wish. It was also possible to send messages

between programs on the BlueField’s Arm processor and the programs on the

host processor using standard general-purpose messaging libraries, in particular

OpenMPI [6]. So, it was realised that cooperation between the BlueField’s

processor and the host processor was not necessarily limited to operations

involving the network and that therefore other operations helpful to the host

processor could be offloaded to the BlueField. (Having said that, however, later in

this thesis – section 14.6 – matters will come full circle with the network

connection of the BlueField becoming relevant again, and in the direction of

controlling the computation “from the network”.)

The other study was into the workings of the Swift code. Swift is a new

“hydrodynamics and gravity code for astrophysics and cosmology” [7], with big

ambitions: “we want to be able to simulate a whole universe!”. I took a deep look

into how the 70,000 lines of this code organised the calculation. As they mention,

it is, inter alia, task-based and uses the QuickSched library for scheduling the

tasks. Task-based scheduling in general, and QuickSched in particular, are

27

explained in the Chapters 2, 3 and 5, but, briefly stated, the computation is

divided into many small blocks of computation and these blocks, or tasks, are

dynamically allocated to the available processing units (typically the cores of the

processor) by a scheduler. In Swift, this scheduling forms the backbone of the

code, directing operations. Also, it was notable that this direction only takes place

from time to time: when a core has completed a task, the scheduler is woken up

and asked to find a new task for the core to execute.

1.4. Problem to be solved

Thus, the idea formed that this scheduling might be something that could be

taken away from the main processor of a compute node and be offloaded to the

processor of the BlueField card. That was of course just the germ of the idea; the

practicalities, compromises and benefits of this arrangement are explored in this

work.

28

29

2. Task Based Scheduling

The QuickSched library for task-based scheduling is analysed in Chapter 5 with a

view to determining which parts of it might usefully be offloaded to the processor

of a BlueField card, or any other “smart NIC” having a similar facility. The library

is however quite detailed in its data structures and operation and so an

introduction to task-based scheduling is first given here at a general abstract

level.

Task-based parallelism is one of many kinds of parallelism employed in

computers and computing. This particular approach involves dividing some

overall data processing task into a set of separate smaller tasks and then allotting

those to a pool of available processors in an appropriate order. Data

dependencies between the tasks are taken into account so that, simply stated, a

task may not start until all its inputs are ready. (QuickSched includes richer

concepts for data dependencies than this basic one – sections 3.4 and 5.10.)

Figure 1 is a block diagram showing how the approach works at a high level; the

language of the labels in brackets in the diagram relate to the particular

implementation of QuickSched. The Figure is adapted from a slide used in

various of my conference presentations explaining my work.

Figure 1 – Task-based parallelism

On the right is the task graph, shown in graphical form but standing also for an

actual data structure representing it and that therefore having physical location on

Forbidden

30

some computer. In the graph the nodes represent the tasks, and the directed

edges represent the dependencies between the tasks, pointing from preceding to

subsequent tasks. Acyclic task graphs are considered (a task graph with a cycle

has tasks whose dependencies can never be fulfilled). On the left are a set of

individual processors, labelled a processor pool to which the tasks are allocated,

one task at a time to any particular one of the processors. The thread pool

designation in brackets is in accordance with the implementations used in this

project, as is explained later, but in general task-based parallelism may be

applied to sets of other kinds of processing elements; so, the term processor pool

is apt for this more general definition. (For a different example, at a much larger

grained scale than in this project, each single processor element to which a task

may be assigned could even be a different (and dynamically formed) set of hosts

in a HPC cluster, with the task graph comprising task nodes that are jobs that are

(i) defined in the cluster job scheduler and (ii) that are linked by job

dependencies. While most users usually use jobs without dependencies, these

facilities do exist [8].)

The task-based scheduler of the Figure, which is the dotted box, is an object1 that

operates to carry out the task-based scheduling, allocating further tasks of the

task graph to the processor pool, making use of a task pool, which is a collection

of tasks that are ready to be executed but which have not yet been allocated to a

processor. In the diagram this task pool is labelled task queue (s) in brackets in

1 The term object is used in this thesis in a very general sense and is not intended to imply an

instance of a class in some particular object-oriented programming language, for example C++.

The “objects” in this diagram merely have some state, some associated operations to update that,

and some messages that pass between them. Extra object-oriented programming features such

as encapsulation, inheritance, polymorphism and so on by, for example, C++, are not implied.

The usage here therefore is consistent with a particular one of the several definitions given in [94],

namely that in the second paragraph, first sentence, first half sentence, which is “In the object-

oriented programming paradigm, object can be a combination of variables, functions, and data

structures;”.

31

accordance with the implementations used in this project, but again that level of

specificity is not needed in this general discussion.

The task generator is an object or process responsible for constructing the

representation of the task graph. In general, this is executed first to construct the

task graph representation and then the task graph is run by the task scheduler. A

task graph that is completed before it is executed, and not changed thereafter, is

known as a “static task graph; a task graph that is added to whilst it is being

executed is a “dynamic task graph”. The task generator is shown as separate

from the processor pool but of course it does have a physical location in any

particular implementation, and in many examples given here it exists in the same

overall process as the processor pool, and that process there both first generates

the task graph and then, second, executes its tasks.

The form of the task graph of course depends primarily on the algorithm that it

implements, and it is the responsibility of the programmer to provide code that

generates the tasks that will carry out the algorithm. Algorithms sometimes have

internal parameterized choices and, if so, those may well also be reflected in the

structure of the resultant task graph.

In use, there are cases where the task graph is generated and used just once

and others in which the problem requires many task graphs applied in sequence,

one after another. A reason for breaking the processing up into alternate periods

of task generation and task execution is that at some point it may be sensible to

change either which tasks to have in the next phase, or their arguments, in

response to values calculated by the last phase.

2.1. Converting a program to task-based parallelism

While a manual of requirements and strategies for a programmer to analyse an

algorithm and to implement task-based parallelism would be a highly useful

document, it is not the focus of this thesis, which concentrates on the efficiency of

the operation of the scheduler machinery of Figure 1 to both build and execute

the task graphs and this for fine-grained tasks within a high-performance

computational code.

32

Nonetheless, it is instructive, in order to understand fine-grained tasks, to

consider briefly how a programmer may go about the analysis of an existing

serial computational program into such tasks.

The first step is to identify computational kernels in the serial code. A kernel has

sets of data that are input and output; while that may be said of any section of

code, the programmer will want to find sets of data that are easily recognisable or

defined, and that preferably are already related to a defined interface in the code,

e.g., a function call. These kernels will cover all the operations of the computation

with nothing left out. The optimal size of these kernels is discussed in section 2.2

and in the results in section 13.10.

Those kernels will become the tasks of the task graph. If a kernel is called more

than once, each call has a respective node in the task graph, although with

different arguments for the kernel assigned to it. An edge between two tasks in

the graph represents the dependency between the output dataset of one of the

tasks and the input datasets of the other.

A useful tip is that the programmer has to keep clear in their mind the distinction

between (a) the abstract datasets passed between tasks and (b) the physical

areas of storage (working memory or backing store files) used to represent those

datasets. In the practicalities of programming, physical areas of storage can store

different versions of the same dataset because, for efficient programming,

datasets often get updated, rather than a complete fresh new dataset being

written to fresh memory to provide the output. Mistakes will happen if the two are

confused. The input to a task is a particular version of a dataset.

The serial computational code to be converted will have control structures

surrounding the kernels. Loops having a fixed number of passes are easiest to

deal with. Each kernel inside the loop has a node in the task graph for every pass

through the loop. The edges between them will then connect with nodes outside

the loop or with the correct ones of the nodes in the same or other passes of the

loop, which can be worked out by considering the arguments of the kernel

functions and the relationships between those arguments from different passes

33

through the loop, particularly with respect to which data items are referenced as a

result of the values of those arguments.

How conditional control structures may easily be dealt with depends on the length

of their branches. A single task may of course contain an entire conditional

control structure within it, although handling predictions of how long it will take

(for the purpose of scheduling tasks) will become more complicated. Decisions

about large sets of tasks which may or may not be executed may have to be left

to defining new task graphs in a cycle of defining task graphs and executing

them. For an intermediate sized conditional control structure, one could define

each branch as a task and include all those in the task graph, but each such task

as a first step in its operation checks the condition for the branch to be executed

but if it is not met the task then does no actual computation but returns

immediately reporting that the task is complete. This of course incurs the

overhead of the scheduler calls and so should not be done too often.

2.2. Effect of task size

The size of the tasks, so the size of the chunks of processing and of the chunks

of data that are processed, are to be determined by the programmer. If the

chunks are too small, there will be many tasks creating a large overhead of the

scheduler’s processing of the tasks. If the chunks are too large, this will result in

inefficiencies. First, there might not be enough ready tasks to keep all of the

processors of the processor pool supplied. Second, the data may be too large to

fit in the processor cache. The latter is a particular concern of QuickSched, the

tasked-based scheduler used in the implementations of this project.

2.3. Executing a task graph

Once the task graph is generated, the task scheduler proceeds to execute it. As

the processing proceeds, the scheduler keeps track of progress by identifying

ready tasks, those that have their dependencies fulfilled. This process has to be

started with those tasks that have no dependencies, since starting elsewhere

would of course violate the stated dependencies. These initial tasks can be

identified by the scheduler searching for them in the task graph, or perhaps by

nomination by the task generator.

34

These initial ready tasks are recorded somehow as the task pool, the set of such

tasks. Ready tasks found subsequently are included at that point in this same

task pool. Again, the task pool will, of course, have a representation with a

physical location.

The next function of the scheduler is to allocate such tasks from the task pool to

the processor pool to be executed. Only one task at a time is assigned to an

individual processor. Therefore, not only does the scheduler need a means of

establishing a new task on a processor so that it may be executed there, but also

a means of determining that it has finished processing the task. The arrows

labelled get task and task done respectively represent those two, but again the

specificity of their wording belongs to QuickSched.

When a task is allocated to a processor, that fact has to be recorded so that the

scheduler does not allocate it again, which for example may be by marking its

representation with that status, or as shown here by removing it from the task

pool. (The Figure illustrates the task pool as containing just queued, but not

executing, tasks.)

Once the execution of a task is complete, the scheduler uses that information to

determine, which, if any at that stage, of the forbidden tasks, i.e. those that do not

yet have all their dependencies fulfilled, now do, and so will now become ready

tasks and be added to the task pool. This adding to the task pool is marked

enqueue in the Figure; again, this name is in accordance with the QuickSched

scheduler implementation.

The process of tasks completing execution, adding to the task pool, and

allocating ready tasks to processors continues until all the tasks in the graph

have been processed.

35

3. Background and other work in task based parallelism

3.1. What gets accelerated, and where?

Where to process data and whether to provide more specialised hardware than a

general purpose processor is a long-standing theme in computer design.

One long-standing aspect of this has been what to put in the central processing

unit (CPU). So, for example at one time microprocessors did not have floating

point hardware and later they did, with an intermediate stage of putting the

floating point hardware in a separate coprocessor integrated circuit (IC) mounted

on the motherboard close by to the main CPU. The process has continued and

general purpose microprocessors have since gained further arithmetic hardware,

for example vector instructions.

Having multiple processors in the same machine is another long-standing theme,

but of course technical goals, economics and other motivations affecting it have

changed. In recent years multi core microprocessors are the norm and standard

servers have two microprocessor packages having access to a common RAM. In

that arrangement, these cores have been identical but now these have become

cores of different strengths incorporated in the same integrated circuit.

Having different processor ICs of disparate kinds in the same machine to perform

different kinds of computing task is also done. Graphics processing units (GPUs)

were originally designed to carry out rendering for video displays but are now an

established part of the arsenal in scientific computing, being used, for example,

for machine learning calculations since the GPU hardware is particularly suited to

that. The delivery of data between these processors then becomes an issue;

should they have their own RAM and should each processor have some, or

equal, access to the RAM of the other processor.

Other special processing hardware of a mathematical kind includes hardware for

encryption, data compression, or searching with regular expressions. Computers

of course also need to interface with the outside world, with storage devices and

with other computers in a local area network or further afield. Those may be

36

provided with their own separate integrated circuits but for some applications are

included with the CPU, e.g. a “system on a chip” (SOC).

All these components, and their vendors, form an ecosystem, and as it evolves

and the applications they support change, the combinations and locations of all

these elements changes, to solve the problems in and of the current context. The

BlueField card, and other smart NICs, is one such development. These are

designed with particular goals, but where there are new arrangements of

hardware there will be new opportunities.

3.2. Offloading to the network

As mentioned, the present work made use of BlueField cards. These combine, in

a single card, Nvidia Network’s Connect-X network adapter with an Arm

architecture processor, together with various specialised acceleration hardware

circuits.

Nvidia Networks, and Mellanox before them, stress the idea of “offloading” of

operations from the main CPU to the network. There is a hierarchy of the kinds of

operation offloaded.

At the lowest level are simple operations needed for the transmission of data. So,

for example in MPI messaging there is the process of tag matching. A tag is a

user defined subject matter, or purpose, marker attached to a message, and the

receiver can choose to receive messages with particular tags; so this is for a

particular section of a code to receive messages that it is dealing with. While this

sorting out of messages was originally conducted by the host CPU, the tag

matching function is now done in special hardware in the network adapter [9];

there is therefore no need to interrupt the host CPU, which may be left to its other

processing.

RDMA [10] allows a network card, on being issued with an instruction to transmit

data in the host RAM to the network, to do that using a Direct Memory Access

(“DMA”) engine on the network card to access the RAM.

At the next level, the network card carries out more computation operations.

Encryption is another feature that may be offloaded [11]. Clearly it is directed at

37

data transmission, the security of it, so is conceptually part of the business of a

network card, but it also offloads from the CPU a more computational operation,

the encryption.

Nvidia’s SHARP™ technology [12] offloads the organisation/calculation of

OpenMPI collectives to the network cards in a cluster (“MPI collectives” are

operations distributing and/or processing data from or to multiple points in the

network [13]). If left to the host CPU, that would be interrupted many times to

send the various messages involved and, for certain collectives, to calculate the

data reduction. So, this offers primitive (as in building block) cooperative data

processing between the nodes of a cluster.

Above that level, Nvidia have now provided, in their BlueField cards, a general

purpose Arm architecture CPU subsystem. Being general purpose, it could, of

course, in principle, offload any kind of work; thus, there is wide variety of

opportunity to consider what that might be. At an extreme, an early proposed

application of BlueField [14] for a storage server did away with the host CPU

entirely and connected the flash storage of the storage server to the BlueField,

which served the data stored to the network over its integrated network adapter.

This work, however, aims to provide a cooperation between the BlueField card

and the host. This is not primarily to do with low level networking, nor with

offloading computation per se, but to fulfil the brief as noted at sections 1.2 to 1.4

– to control a computation “from the network”.

3.3. Background relating to task-based scheduling

A general outline of what task-based scheduling is has been given in Chapter 2

and the importance of QuickSched in the context of the SPH code Swift to its

adoption in this project was noted at 1.3. Wider aspects of scheduling with

QuickSched, and of Swift, and other current efforts in task-based scheduling are

now discussed.

3.4. Prior uses of Quick Sched – Chalk and Swift

QuickSched is a fine-grained task-based scheduler developed by the contributors

Pedro Gonnet, Matthieu Schaller and Aidan Chalk and is available at their Source

38

Forge repository [15]. Aidan Chalk in his PhD thesis of 2017 [16] makes use of

QuickSched. It has also been adopted in the Swift smoothed particle

hydrodynamics (SPH) code [7].

Chalk’s thesis begins with a survey of existing task-based libraries such as Cilk,

Intel Thread Building Blocks, SMP Superscalar, StarPU, Quark and DAGuE. The

author states that the advantages of QuickSched include: efficient use of the

multiple cores of a processor because, as long as there are enough queued

tasks, an idle core may be assigned one; the use of a static task graph means

that the critical path through the task graph is known and so can be used in

scheduling decisions; it pays attention to “data locality”, i.e., aims to use data in

the processor cache. He also notes the full task graph declaration as a

disadvantage for the programmer, particularly for conversion of an existing code,

and notes that for linear algebra a full task graph can be large, “O(n3)”. He sets

out a hope for QuickSched, of using it in shared and distributed memory systems

and in accelerators, such as GPUs and aims to establish its use on GPUs, with

perhaps a departure from GPU normal programming in that the GPU performs,

“many [QuickSched] tasks in parallel inside a single GPU kernel.”

For DAGuE he notes that it provides cooperation between compute nodes to

transfer data needed between them, which is administered by a separate thread,

and that there are control messages between nodes about the completion of

tasks.

He also highlights for QuickSched that it supports “conflicts” – the data

dependency of “the concurrent updating of [a] resource”. Another noteworthy

point he makes is that task queues in QuickSched are cheap to maintain, being

heaps (i.e. the tree data structure – see, for example, [17]), or priority queues, but

that these do not have an efficient way for traversing them when looking beyond

the head task of the queue, although he asserts that it is good enough for the

purpose.

Amongst other uses, Chalk [16] reports use of QuickSched in Swift and a use on

a GPU of a tiled QR matrix decomposition. The algorithms are analysed for the

tasks needed to carry them out. In his Chapter 6, in a molecular dynamics

39

application, task queues are implemented on the GPU, data movement to and

from the GPU is modelled as tasks, and load balancing for distributed memory

systems, i.e. the distribution of tasks between nodes, is discussed, [16] at 6.3. In

particular, a graph (not a task graph) is made, with nodes representing the cells

that contain the particles of the simulation and edges between cells for which

there is interaction in the simulation, weights are assigned to represent the work

to be done and the METIS graph partitioning program [18] is used partition the

graph, thereby also partitioning the data, i.e., the cells, between compute nodes

of a cluster. Chapter 7 of his thesis deals in more detail with task-based

parallelism on distributed memory systems. Interestingly for one of the

suggestions in Chapter 14 of this thesis, he asserts, “as techniques such as work

stealing is not efficient between nodes, as nodes would need to pass multiple

messages back and forth to perform work stealing”. In that Chapter 7, he also

introduces send and receive tasks to transfer data between nodes at appropriate

times. He adopts an organisation where all nodes know all of the tasks and the

location of all of the data, but each node only has part of the data. Tasks are

created on each node, but these are then consolidated for the complete task

graph to be partitioned between the nodes. That leads to a partitioning of the

data. A rule for efficiency is that tasks and data are kept together to the extent

that a task must have one of its data resources on its node. But there are of

course tasks that have different parts of their data on different nodes. So finally

send and receive tasks are created on the nodes to service such tasks; however,

an efficiency is that the versions of the data resources held by the nodes involved

are considered and data transfer tasks are only created where the version held is

not up to date.

This arrangement of tasks for data movement between nodes’ tasks was kept in

mind and forms an element of a suggested arrangement for data movement

under the control BlueField cards made in Chapter 14 of this thesis.

In an early paper, 2013, on their smooth particle hydrodynamics code [19],

Gonnet, Schaller, Theuns and Chalk introduce “task-based shared memory

parallelism” to improve “parallel scaling and efficiency on multi-core

architectures”. The paper begins by discussing aspects of the algorithm such as

40

organisation of the particles of the simulation into trees and cells, finding near

neighbour particles in the simulated space as a precursor to calculating the

physical interactions. The limitations of OpenMP, then “arguably the most well-

known paradigm for shared-memory, or multi-threaded parallelism”, are

discussed. The points made include the “branch and bound” problem of OpenMP

parallel for loops – each parallel thread generated to process the for loop in

parallel will terminate at different times but then have to wait for a synchronisation

point at the end of the loop and then there will be a serial section wastefully using

only one thread before the next parallel section of the code begins. They propose

a switch to task based processing, since it is “inherently parallelizable”. It is a

feature of task based processing, however, that tasks on different threads may

overlap and not have to begin and terminate at the same time, and further, a new

task can be allocated to a thread immediately once the last has terminated. They

mention the allowance for the “conflicts” type concurrency in their task graph

model. Also here, the feature of a “ghost task” is mentioned, which is a single

task between the phase in the computation of calculating the density of material

in the simulation and the phase of calculating the forces on each particle, which

of course depend on the density; the ghost task provides a point of

synchronisation of all the threads between these phases. (In his thesis Chalk

mentioned that this was for reasons of reducing the number of task

dependencies, but of course it is also a synchronisation point in the calculation.)

The application of tasks to the algorithm was then discussed and the results of

using the resultant code on well-known simulation test cases reported, including

a high parallel efficiency of 75% and being 8 times faster for a cosmological

volume simulation than the well-known Gadget-2 code. Finally, they foreshadow

the developments of the Swift code to shared/distributed memory parallelism and

communication between compute nodes.

In a 2015 paper [20], Gonnet covers similar material to Chalk’s thesis in respect

of smoothed particle hydrodynamics and the task-based approach across

multiple compute nodes. I found motivation in Chalk’s Figure 7.7 and Gonnet’s

Figure 12, which both show the substantial discrepancy between nodes for the

time at which they finish their set of tasks for one time-step of a cosmological

41

simulation. Clearly there needs to be some further cooperation between compute

nodes to even that out, so that compute time is not wasted before the next time

step can start. Gonnet’s Figure 12 has white space, which is “time spent in the

MPI_Test function.” This is part of the communication processing of data transfer

tasks. It appears in that Figure that it is the compute nodes that have that feature

that take longest to complete their timestep. In the context of my studies, it

appeared to me that that part of the code should be offloaded “to the network”.

In another paper [21] from 2015, Theuns, Chalk, Schaller and Gonnet discuss the

types of tasks used in Swift to perform the density and gravity calculations.

In a first paper of 2016, Gonnet, Chalk and Schaller [22], cover similar material as

included in Chalk’s thesis, although it does not include the multi node

computations, nor hence the data transfer tasks. One notable, perhaps additional

comment there is, on page 4, “Finally, the task granularity is an important issue: if

the task decomposition is too coarse, then good parallelism and load balancing

will be difficult to achieve. Conversely if the tasks are too small, the costs of

selecting and scheduling tasks, which is usually constant per task, will quickly

destroy any gains from parallelism.” They continue as follows:

“In the examples presented herein, we have chosen our task

decomposition and granularity such that

● Each task maximizes the ratio of computation to the data

required,

● The resources required for each task fit comfortably in the

lowest-level caches of the underlying system.

The first criteria is biased towards bigger tasks, while the second

limits their size. The parameters controlling the size of the tasks

in the examples, i.e. the tile size in the QR decomposition and

the limits nmax and ntask were were determined empirically and

only optimised to the closest power of two or rough power of ten

respectively. Further tuning of these parameters could very likely

lead to further performance gains, but such an effort would go

beyond the scope and point of this paper.”

42

During this work, the need to keep the task data in the cache was ever present in

my mind, particularly from studying the workings of the QuickSched scheduler,

where it is a key part of the task allocation rules. The significance of the rule is

studied in this work. The optimisation of the task size is not stressed in this

reference and is not discussed there in any detail; it is only said that there are

performance gains for optimising in respect of it. An optimisation on task size is

performed in this work and is studied in detail, particularly in relation to

messaging, which is not mentioned per se here. The phenomenon noted in the

brief remark in this reference of the costs of scheduling being “usually constant

per task” does emerge in the study in this work of the effects of messaging.

They also show the progression of tasks from the scheduler into the queues and

onto the threads and note that both the scheduler and the queues have roles in

contributing to efficiency of execution and reiterate the importance of allocating

tasks to threads that have memory resources in their cache. They also mention

the need to follow the longest critical path through the task graph, ascribing the

better performance of QuickSched over OmpSs to it.

In a second paper [23] of 2016, for the Proceedings of the Platform for Advanced

Scientific Computing Conference, Schaller, Gonnet, Chalk and Draper presented

their work on the Swift simulation using the task-based approach based on

QuickSched and, in particular, presented comparative runs on various clusters to

demonstrate the independence of the approach from the particular hardware

used.

By 2018 development of Swift was still concerned with efficiency but had turned

to matters other than task scheduling per se. In [24], Willis, Schaller, Gonnet,

Bower and Draper used hand coded vector processor operations inside the tasks

that sort the list to find the neighbours that interact in the simulation. In [25],

Borrow, Bower, Draper, Gonnet and Schaller examined implementing multiple

time step sizes in Swift.

3.5. Other relevant work in task based scheduling

In [26] (from 2020 so now contemporaneous with this work), Samfass, Weinzierl,

Charrier and Bader, discuss their system for offloading tasks to another compute

43

node. In the computation method of “Arbitrary high-order DERivative

Discontinuous Galerkin”, they identify a class of tasks that may be sent to another

compute node for processing, owing to the length of time before their results are

needed. In this scheme the tasks are processed on the remote node with high

priority and the results sent back to the originating node as soon as they are

completed; there is no long-term transfer of the task or its data. Nodes that are

causing delays to other nodes are identified by MPI waiting times, and these are

designated to be in need of help and are the source of the tasks offloaded. The

tasks are offloaded to nodes that are most able to take up more work without

decreasing their performance, again as indicated by MPI wait times.

In [27], also from 2020, Samfass, Weinzierl, Hazelwood and Bader introduce their

TeaMPI code for task-based codes. This addresses the problem of failure of

hardware elements of large clusters by replicating task data; each node in the

cluster having a small number of replica nodes. The replicas are in general slated

to run the same tasks, but the order is shuffled between them, and results of a

task (or particularly, for preference, of tasks with high amounts of computation but

compact results) are distributed to the node’s replicas. If a node fails, the

computation may continue. On the other hand, to avoid duplication of execution

of a task, if a node has received the results of a task that it now wants to

schedule for execution, it recognises that and cancels the task and moves on

using the received results. This paper ends, “…, we plan to investigate whether

emerging technologies such as SmartNICs can be exploited to offload the task

sharing fully to the network hardware and to guarantee sufficient MPI progress.”

The Excalibur research program [28] funds projects needed for computing on

exa-scale clusters; in their words, “redesigning high priority computer codes and

algorithms to meet the demands of both advancing technology and UK research.”

According to their website one project relates to task-based codes: “Exposing

Parallelism: Task Parallelism”, [29] is a response to the difficulty, or at least

labour, noted by Chalk and at section 2.1 above, of converting codes to task-

based ones. A tool, called Otter [30], has been developed which allows a

programmer to annotate their code at instances of task like structures and when

the code is run the annotations are logged as they are passed. An analysis part

44

of the tool provides a graph of the events and provides suggestions of how to

“taskify” their code, at the level of OpenMP pragmas to add. Clearly such a tool

will be useful both practically and psychologically to overcome the perceived

difficulties and as a teaching aid. This work uses the QR factorisation, discussed

later, as its example task-based code; this has a clear task structure, but such a

tool will help with codes for where the task nature of the algorithm is less clear.

45

4. Hierarchy of software components in this project

The diagram of Figure 2 shows, in the left column, the dependencies of the

software components used in this project, while the right column provides

references to the main chapter or section of this thesis where the component is

discussed. The libraries highlighted in blue are either heavily adapted from an

existing library or are completely new.

Software Component Thesis Chapter / Section

Computational Application

e.g. QR Matrix decomposition

 Chapter 8

↓

↓

Other

dependencies

LAPACK linear

algebra library

 Sections 17.12, 8.2, 17.14

Qsargm

Task scheduling library –

adapted from QuickSched

 Chapter 7, also Chapter 5

↓

Argmessage

A new library for

remote procedure calls

 Chapter 6

↓

Messaging Library OpenMPI - Chapters 6, 7, 10, 11;

Sections 17.12, SNAPI – Sections

7.13, 9.1, 11.2, 15.3, 17.4

OpenMPI or SNAPI

↓

UCX – base messaging library Chapter 10; Sections 11.2, 17.2, 17.4

Figure 2 – Software dependencies in this project

46

Thus, a computational application uses the Qsargm library to perform its task-

based scheduling and may of course have other dependencies. Qsargm uses the

Argmessage remote procedure call (RPC) library for communications between its

client and server processes. (The terms “client” and “server” are used herein with

their normal meaning as used with RPC and similar arrangements – the “client”

process makes a request, or “calls”, to another process, the “server”, which is

then responsible for carrying out the request, and which then returns an answer

to the client.) Argmessage sends messages between the client and server with

either the OpenMPI or SNAPI messaging libraries. OpenMPI has options for a

base messaging library; in this project the UCX [31] library was used.

Omitted from the software diagram are the scripts used to launch the application

program (which includes the Qsargm/Argmessage client) and the

Qsargm/Argmessage server process. These scripts are not trivial since multiple

programs are to be launched on heterogeneous processor architectures. The

scripts are explained at sections 17.2, 17.3 and 17.14 in Appendix A.

4.1. Plan for discussion in subsequent chapters

The discussion of the relevant ones of these components does not, however,

proceed in that order, but rather, as follows.

First, the original QuickSched task-based scheduling library is analysed to find

how it might be split into client and server processes. Next comes the features

and development of the new Argmessage library, which allows communications

between such a client and server, but which both enables the library using it, to

hide that from the application using it, and promotes reuse of functions of a library

being adapted to use Argmessage. That then allows an explanation of how

QuickSched was adapted to use Argmessage. Experiments were carried out on a

QR factorisation example (originating from the QuickSched library archive) and

so that example is explained before, finally, the results of the experiments are

presented.

47

5. Analysis of QuickSched

Chapter 2 described some general features of task-based scheduling. As

foreshadowed, this chapter now analyses in detail the particular task-based

scheduler, QuickSched, of which use is made in this work, to identify how and to

what extent it might, in principle, be offloaded to a BlueField card. The

modifications made in this project to the QuickSched library based on this

analysis and the practical results of those are discussed in the later chapters.

5.1. Origin and uses of QuickSched

As discussed in Chapters 1 to 3, QuickSched is a fine-grained task-based

scheduler developed by Pedro Gonnet, Matthieu Schaller and Aidan Chalk. My

code developed for this project uses their code from their Source Forge

repository, in particular version 1.1.0 [15]. A version of the original QuickSched

has also been incorporated into the Swift smoothed particle hydrodynamics

astrophysical code [7], but with some other modifications. This analysis is based

on QuickSched 1.1.0 as available on Source Forge, and on the corresponding

description in Chalk’s doctoral thesis [16], as well as on my own analysis of

those.

5.2. Timescale of tasks

QuickSched is a scheduler library to be used in an application program to

schedule units of work, “tasks”. At a general level it has the organisation set out

in the earlier chapter on task-based scheduling. The tasks of QuickSched are

quite general but in its target use area, of scientific computing, the most common

type of task is some part of the computation. QuickSched is designed for fine-

grained tasking, meaning that the duration of the tasks is on a timescale suitable

for the efficient scheduling of a large computation. In one example in the

experiments described later the mean task execution time was around 1 × 10-4s,

and there the task size was designed around the processor cache size, which is

a common requirement in computational applications. Table 1 is of some typical

timescales for scheduling (not just task-based) for context.

48

Example of scheduling Timescale

A scripted data processing workflow

having tasks that are each the run of an

application program

Minutes to days

Operating System process scheduling 10 ms [32]

QuickSched fine grained task-based

scheduling

0.1 ms

Processor instruction hardware

scheduling

1 ns

Table 1 – scheduling timescales

So, this gives an indication of the timescale in which QuickSched expects to

operate. On such a timescale it is clearly a challenge for QuickSched to take its

decisions and establish new ready tasks on a thread as fast as possible. Its

design certainly reflects that.

5.3. Build and execute cycle

A first thing to note about QuickSched is, obviously, that everything takes place in

the same process (as defined, for example, in a Linux system).

The processor pool of Figure 1 that executes the tasks is, in QuickSched, a pool

of threads in that single process. The threads are executed on the cores of one or

more CPU integrated circuits in a shared memory fashion. The QuickSched

scheduler operates to assign tasks to these threads. Interaction between the

main program of the process and the QuickSched library is via C function calls.

The example programs using the QuickSched library that are included in its

archive follow the pattern shown in the flow chart of Figure 3, in which the

Figure 3 – Main phases of operation of

example programs of QuickSched

Build task set

Execute tasks

49

program has separate phases of generating tasks and of executing those tasks.

An application using QuickSched may use the two phases just once or repeat

them. (In fact, QuickSched does allow dynamic task creation during the execution

phase, but that did not feature in anything considered here.) Thus, the task

generator of Figure 1 is also to be identified as belonging to the same process as

the process that executes the tasks themselves.

5.4. Time slicing of the scheduler object

The library maintains a scheduler object, to keep the state of the task graph and

the task pool, etc., and when a call is made by a thread that thread becomes the

scheduler for the period needed to process the call. Thus, in Figure 1 of Chapter

2, the processor pool operates both the execution of the tasks and as the

scheduler. This is at the heart of QuickSched’s design, and because during the

execution phase operating the scheduler takes processing time away from

executing the computational kernels the scheduler is designed to be as efficient

and lightweight as possible.

This time slicing of the processors of the processor pool between executing the

tasks and executing the scheduler was a feature I found striking when reviewing

QuickSched to see what might be offloaded to a BlueField, and this task

execution phase has emphasis in this project.

5.5. Location of task generator

That the task generator was part of the same process as the task execution and

scheduling was more implicit and not initially questioned. The original

QuickSched has, of course, to be that way since (i) it is a library that operates by

function calls and (ii) the task building calls to the library exist to create the

representations of the task graph and task pool within the single process so that

they are then ready there to be used when the function calls to the scheduler are

made during the task execution phase.

Figure 1, while showing the general arrangement of task scheduling, was of

course drawn, after the modifications of this project had been made and the

experiments run, in a manner emphasising that the scheduler and task generator

are actually separate concerns from executing the tasks. The modifications made

50

in this project concentrated on the task execution, but the task generation phase

is also important as the experimental results were to show.

5.6. What to offload to the BlueField card

Having seen that the scheduling decisions and executing of tasks are separate

concerns in QuickSched, the operations of the scheduler were studied in more

detail to see which parts of the scheduler might be relocated to the BlueField.

The objective being to relieve the host of the work of executing the scheduler, it

was decided to leave the execution of the tasks on the host x86 processor,

(There were also some important motivations for having the scheduling data on

the BlueField, which are about what else could be enabled by that; those are

discussed in Chapter 14.)

Now, offloading the operation of the scheduler to the BlueField card would

require some messaging between the host and the scheduler. Such messaging

of course introduces delays and so should be kept to a minimum. Therefore, this

study considered (a) the data structures employed by the scheduler, since a

decision about where to keep them, on the host or the BlueField, would be

needed, and (b) the flow of information or instructions about them, which might

be turned into messages.

5.7. QuickSched data structures: task DAG and ready task queues

As in the general chapter on task-based scheduling, Chapter 2, QuickSched uses

a directed acyclic graph (“DAG”) as the data structure for the task set created in

the first phase. The nodes of the graph represent the tasks to be done and the

edges represent the dependencies between them, i.e., a task must not be

executed until its parent task(s) are finished.. With the caveat of the conflicts

mechanism noted in sections 3.4, 5.10, 5.16 and 9.4, this task graph provides, in

general, full information as to the relationships between the tasks of the

application and how they could be executed serially and in parallel whilst

ensuring that the resultant computation is correct.

It is also the job of the scheduler, in the second phase of executing the tasks, to

work through the tasks in an efficient manner. With the same caveat, the data

51

structure that QuickSched employs for this efficiency aspect is a set of queues,

one per thread.

The number of threads is intended in QuickSched to be equal to the number of

cores allotted to run them, with each thread being pinned to a respective core. In

this way QuickSched takes responsibility for the scheduling, while neutralising

any, potentially competing, attempt by the operating system to schedule threads

on and off and to different cores.

Figure 4 – QuickSched scheduler – data structures at task exectution time

Figure 4 shows the task graph and task queues of QuickSched, so in more detail

than given in Figure 1. Although they have not been identified yet the messages

between the data structures are shown in Figure 4; the details of this follow in

sections 5.8 to 5.14, which discuss how they operate.

Forbidden

52

5.8. QuickSched: library functions and call graph

While extremely useful to a programmer wanting to maintain or improve code, a

static call graph for a C code is not simple to construct [33] (see section 1.2

thereof). Commercial call graph analysers were not available to me, and in any

event, I was able to compile the static call graph, Figure 5, for the library by

inspection of the code and from the set of partial call graphs in QuickSched’s

documentation of each of its code functions. I have also added a colour coding

for the functions, and some annotations.

Each box in Figure 5, apart from the orange ones, is a function in the library. The

orange boxes are example programs that come with the library, that make use of

it. As earlier, with reference to Figure 1, the example programs use the

QuickSched library to first build a task graph and then execute it.

Figure 5 – Call graph of QuickSched

53

The items in the second column, with the function names in red, are the top-level

functions, which form the public interface of the library. These fall into four

general categories:

a) library initialisation and teardown: qsched_init(),

 qsched_reset(),

 qsched_free()

b) functions for building the task graph: qsched_addtask(),

 qsched_addres(),

 qsched_addlock(),

 qsched_addunlock(),

 qsched_adduse,

 qsched_addres(),

 qsched_res_own(),

c) the main function for executing the tasks: qsched_run(), and

d) auxiliary functions: qsched_ timer_names(),

 qsched_getdata().

Table 2 – public interface functions of QuickSched

It is notable that the interface has many functions (b) for building the task graph

but only one (c) for executing it. The code for these functions may obviously be

reviewed in the official archive. The corresponding functions used in this project

are discussed in the chapter on Qsargm, the version of library produced for the

project.

5.9. QuickSched functions for initialisation and finalisation

First the initialisation functions (a), are straightforward:

qsched_init() allocates memory for the scheduler’s tables, which are:

• Resources

• Tasks

• Unlocks

• Locks

• Uses

54

It is these tables that provide the representation of the task graph. The role of the

many functions of category (b) is to populate these tables with various aspects of

the task graph. (Note that, as will become apparent from the descriptions of the

category (b) functions in section 5.10, while the names “unlocks” and “lock”

appear, just from the names, to be opposites, that is not the case, and they relate

to quite different matters.)

qsched_reset() zeros the counts of the items on those tables, so that the

allocated memory blocks for them may be reused.

qsched_free() deallocates the memory of the tables.

5.10. QuickSched functions for building the task-graph

So, after initialisation, the application program builds the task graph using the

functions (b):

qsched_addtask() allows a new task record to be recorded. The data supplied

and recorded is:

• A type identifying the type of work to be done by the task. In particular in

QuickSched, this identifies a particular one of the kernel functions

mentioned earlier that is responsible for that type of work.

• Some data allowing further definition of the task. In QuickSched, these are

the arguments to be passed to the kernel function.

• A flag that may be task_flag_none, task_flag_skip, or task_flag_virtual.

• A cost, which is an estimate of the time it will take for the task to run. The

units are arbitrary and relative to the other tasks. The scale is intended to

be additive. This forms the basis of the scheduler’s selection of which task

to allocate next to a thread.

qsched_addunlock() is called to register a dependency between two tasks. So, it

is this function that links the tasks into the task graph. These are recorded as a

table of dependency-depending task pairs. The “unlock” in the function name

connotes that when the dependency task is completed it unlocks or frees up the

depending task to become a ready task. Of course, a depending task may have

plural dependencies, and all of these have to be completed before a depending

55

task is “unlocked”. Chalk [16] briefly mentions (at section 3.1.1) the terms Read

after Write and Write after Read for this task relationship. So, for where the

relationship is about data, this is the usual type of relationship: if task B is

dependent on task A, then task A must finish writing to a data item before task B

consumes it and/or task B must not write to a data item before A reads it.

qsched_addunlock() is used to declare that relationship. The book “Computer

Architecture” by Hennessy and Patterson [34] describes the various kinds of data

dependencies, in section 3.1 and appendix C; although that is in the context of

instruction pipelining in processors, the concepts are relevant here.

qsched_addres() allows a resource to be declared. To the scheduler each

resource is an abstract item; it is up to the user program to know what they

represent. Typically, a resource is a set of data items or block of memory. The

index to the resource that is returned by this function is used in other functions in

this section to register relationships of the resource with the scheduler.

qsched_addlock() is for specifying that a task needs to obtain exclusive access to

a particular resource. The scheduler operates, when allocating tasks for

execution, to obtain a lock on this resource for a candidate task and does not

allocate the task if a lock is not available. (The lock is obtained on the abstract

resource and not on the data it represents, so the application programmer of

course has to respect this.)

Now, the data dependencies between dependency and depending tasks are

already represented with the qsched_addunlock() calls. However, according to

QuickSched, those relationships can be too restrictive. If two tasks require

access to the same resource and that access needs to be exclusive but the order

does not matter, then this function qsched_addlock() may be used in respect of

both those tasks and the resource in question to declare the relationship. If the

resource is a data item, then that means that both tasks modify the data item, but

the order does not matter. Chalk [16] terms this a “conflict” (at section 2.3) and

gives an example, which is an accumulator data item into which both tasks add

respective results. (Thus this declaration is needed for correctness of the

algorithm, since a task dependency is not being used.) He notes that this more

56

efficient for scheduling than declaring a dependency, i.e., with

qsched_addunlock(), which would fix an arbitrary order between the two tasks,

potentially reducing efficiency of processing.

The qsched_addlock() declaration also serves a purpose in the efficient ordering

of tasks during the execution phase, beyond the freedom of order mentioned in

the previous paragraph: qsched_enqueue() takes note of the resources so linked

to the tasks in the allocation of tasks to a thread having tasks operating with the

same data. This is in the hope that the newly allocated task will find at least some

of its data in the processor cache.

qsched_adduse() this also records a resource against a task, this time as a use.

This is also used in the qsched_enqueue() function to support the rules for the

efficient allocation of tasks to threads. Here this is only for that purpose rather

than as with unlock to declare a dependency needed for correctness. So, a data

resource used by a kernel should be declared as a use if it is not declared as lock

if the task allocation rules are to operate.

These functions therefore build the task graph representation. As noted earlier,

initially the location of the task generator was not recognised as an issue.

However, if task generation is to be processed in another process from that of the

scheduler, then the information for the tasks will need to be transmitted between

those processes as messages. As ideas about this were prompted by the

experimental results, those are not discussed here but after those, in Chapter 14.

5.11. QuickSched functions for executing the task graph

So, the data collected in the build phase will serve three purposes during

execution of the task graph: (i) working through the task graph identifying ready

tasks, (ii) allocating tasks to queues having tasks using similar resources, and (iii)

deciding which of the ready tasks in the queues is next to be executed.

5.12. Establishing the threads

The single function of set (c), qsched_run(), for executing the tasks of a task

graph is shown in detail in Figure 5. At the most general level, this function

executes the tasks of the task graph in a correct order, each on just one of a pool

57

of available threads. So, its first job is to set up some threads to be available.

QuickSched is capable of using threads provided by either Linux pthreads or

OpenMP; hence the two functions qsched_run_pthread() and

qsched_run_openmp(), which are next down the call graph from qsched_run(), in

Figure 5. These are therefore alternatives, only one of which is used during any

run. In the call graph setting up pthreads takes a set of functions:

qsched_run_pthread(), qsched_launch_threads(), qsched_pthread_run() and

qsched_barrier_wait(), while the OpenMP threads alternative just uses

qsched_run_openmp().

In QuickSched, the threads are pinned to respective cores, which discourages

the operating system from engaging in its own, quite possibly competing,

scheduling of the threads. The operating system’s scheduling of threads may well

include wastefully moving them around between cores and this is contrary to and

aspect of QuickSched’s operation, which is to allocate tasks to threads where the

respective processor core already has data that is needed in its cache. (The

pinning does not appear in the QuickSched code per se; it is left to the user to

arrange that when launching an application that uses the library.)

5.13. Preparing to run

Both alternatives then have a common path. As its name suggests,

qsched_prepare() makes some preparations before actually executing any tasks,

which are:

• One preparation is to sort the various tables of items created by the

various task declaration functions. These sorts are carried out in parallel

on different threads.

• Another preparation is to initialise the queues of Figure 4, with

queue_init().

• A wait value for each task is calculated, which is the number of

dependency tasks it has, which is used in qsched_done(), described at

sections 5.14, 5.15, and 5.16, for determining whether a depending task

has become a ready task.

58

• A weight for the task is derived from the costs, which is used for the

priority for allocation of ready tasks from the queues. In particular, the

weight is calculated, as Chalk [16] describes (at section 3.1.1), as the cost

of the task plus the cost of all descendant tasks in the task graph, which

are therefore a hinterland of tasks that are being held up from processing

by the present task.

• The final preparation is to enqueue the initial task(s), which are those that

have no dependencies, which are the root(s) of the DAG. (This may be a

single task, but the task DAG could have more than one root.) Enqueuing

a task, with qsched_enqueue(), is described in more detail in section 5.16.

5.14. Running through the tasks

With the preparations completed, each thread repeats the cycle of (i) allocating

tasks to itself of the thread pool and (ii) determining that the thread has become

free for a further allocation.

The reason in QuickSched for using a pool of threads in the same process is so

that all tasks may have rapid, direct access to all the data items of the

computation in RAM, i.e. “shared memory” operation. Thus, the thread pool is an

essential feature of QuickSched, and was preserved in the modifications made.

So, at this point each thread is running either qsched_run_openmp() or

qsched_pthread_run() and this first calls qsched_gettask(). This call is made on

each of the threads of the pool in parallel. If the call is successful, in that the

scheduler is able to return to the thread in question, a task from the queues, that

thread executes the task. qsched_gettask() returns a pointer to the task record,

and the thread, in function qsched_run_openmp() or qsched_pthread_run(), uses

this to look up the task type and task data (section 5.10) and then the function

identified by type is called using the arguments data. In fact, in QuickSched the

decoding of the type and data into a kernel and call and its parameters is

delegated to a function that the programmer of the application program using

QuickSched must supply.

Once a thread has completed the task, so now back in function

qsched_run_openmp() or qsched_pthread_run(), it notifies the scheduler that the

59

task has been carried out and is now complete by calling qsched_done(),

allowing the scheduler, as described at section 5.16, to find more ready tasks.

The thread is now free to carry out more work, so it calls qsched_gettask() again.

This cycle is repeated until there are no more tasks to be executed. That that has

occurred is determined simply by initially counting the tasks in the graph and

keeping track of how many have been completed. When all are completed the

active one of the two “run” functions terminates.

5.15. Proposal for splitting the scheduler

From this analysis it appeared that a suitable place to divide QuickSched, for the

run phase, would be with qsched_gettask() and qsched_done() providing the

interface to the remote scheduler, so that the functions qsched_run_openmp()

and qsched_pthread_run() and those above them in the call graph would remain

on the host, while those within would be on the BlueField.

There remain further details of QuickSched to look at to understand the

implications of the proposed split (and to check on to see whether some other

split would be useful).

5.16. QuickSched functions for getting tasks and reporting their completion

When qsched_gettask() is called by a thread, the scheduler removes a task from

a selected one of the queues as follows. For preference, the thread takes a task

from its own respective queue. Its own queue contains tasks that are likely to

have their data in the cache of the processor core to which the thread is pinned. If

a task is not available in that queue, the other queues that are not empty are

identified and those queues are checked through once in a random order. This is

termed work-stealing, and is well known; for example, it was used in [35], [36]

and [37].

To query any particular queue qsched_gettask() calls queue_get(). That works

through the queue, ideally in its priority order, checking if each task is locked,

which will fail if any of its associated resources are locked, (thus implementing

the conflict mechanism – sections 3.4 and 5.10). If there is a task that is not

locked then that is the one assigned to the thread, after first locking its resources

so that no other task may concurrently use its resources. That task is also

60

removed from the queue and the queue is resorted according to its priority order,

which prioritises tasks which have the longest path to completion of the task

graph, which information is embodied in the weight value for the task, which was

calculated by qsched_prepare().

In Figure 4, the detail of each thread querying its own respective queue first is

shown by having a respective arrow from the thread to its queue. The

subsequent search of the other queues when necessary is indicated by the

dotted line tying those arrows together.

When qsched_done() is called by a thread, the scheduler marks the task as

complete and unlocks its resources so that that does not prevent other tasks from

running. It also reduces each counter belonging to its depending tasks of its

remaining dependencies. It then determines therefore which of the tasks in the

task graph are now therefore ready tasks, i.e., have no more dependencies to be

fulfilled. qsched_done() then adds the tasks identified as ready tasks to the

queues by calling qsched_enqueue().

qsched_enqueue() assigns the task to the queue that has the highest number of

resources related to it by the queue's current tasks, (related by both the locks and

the uses – sections 5.9 and 5.10). A resource related to plural tasks in the queue

is counted that many times. In turn qsched_enqueue() calls queue_put() to

actually assign the task to the queue selected. That first waits to get a lock on the

queue, because there may be concurrent requests from other threads to modify

that particular queue. It does this by adding to it to the end of the queue and

“Bubbl[ing it] up” to its position in the queue as determined according to the

weights of the task in the queue. Therefore, the weightiest get processed for

preference, since they are holding up a greater amount of work.

The queue is a priority queue, in the form of a heap (i.e. the tree data structure –

see, for example, [17]). This only guarantees to put the highest priority item at the

front of the queue. This is fine if that can be removed, but if it is unavailable

through locking, then qsched_gettask(), will not in general allocate the most

weighty task that is not locked, because in that case it works through the tasks in

their physical order in the memory of the queue until it finds one that may be

61

allocated. Chalk [16] notes this (at section 3.1.2), but states it is “sufficient for

efficient task-based computations”. To try to remove a task from a queue

qsched_gettask() calls queue_get(). When that finds a task that may be removed

it does that and then sorts the queue as a heap by weight, similarly to

queue_put().

It is also notable that the scheduler does operate in a multithreaded manner, so

calls to it from different threads can be processed concurrently. However, certain

functions require a lock to be obtained. For example, updates to a queue require

a lock on that queue. Potential concurrent updates to some counters are handled

with an atomic decrement function, for example, the global count of tasks not yet

completed and the count each task has of it the dependencies that remain to be

fulfilled.

5.17. Further discussion of the proposed split

The proposed split leaves to the BlueField all of the processing carried out by the

scheduler to determine the next task. This includes both that for finding the ready

tasks from the task graph and making the choice from the queues of which task

to process next, so that that will result in efficient processing of the tasks as a

whole. The objective was to offload processing of the scheduler, so leaving all

that to the BlueField is in accordance with that. Further, the split only requires two

small messages between the host and the BlueField per task, those for

qsched_gettask() and qsched_done(). The number here is important as replacing

a function call with a message will introduce significant extra latency. The

smallness is less important in that extra information could be added to a message

without much extra overhead, but it also suggests that compiling the messages is

unlikely to require much additional work to derive their content.

The proposed split also keeps the scheduler data, the five tables identified earlier

in this chapter, in the same place as each other, so their processing will not be

negatively impacted by messaging. Further, the data returned by the

qsched_gettask(), the type and the data values are abstract to the scheduler in

that it does not process them per se and just hands them to the threads which

are then responsible for interpreting them, so there is no need for extra exchange

62

of data with the scheduler during the execution of a task on the host. All this

therefore was encouraging to pursue this split for the offload.

It was mentioned earlier that the task generator, in both the examples of

QuickSched and in the experiments was located on the host. This means of

course that all of the information in the five tables set up by qsched_init(), which

support both the task graph and queue processing, has to be supplied from the

host to the BlueField, with messages for each.

There is another seeming division in the data used by the scheduler, which is

between the task graph on the one hand, and the queues on the other. These are

connected by the qsched_enqueue() function. So, one could perhaps envisage

putting just one or other of the task graph and the queues on the BlueField. Each

task is enqueued once, so the number of messages is, at a high level, not

changed. The main indication against is, however, that the objective is to offload

work, so doing less of it with the same number of messages in a more

complicated way did not appear attractive.

5.18. Need for an RPC library

The other aspect that came out of the analysis of QuickSched was the scheduler

has a public interface of function calls and that these were going to be called from

the host but executed on data, the task graph and the queues, that would be

located on the BlueField and then return data as the return type of the function.

This pattern was recognised as generally similar to a remote procedure call

(RPC). Consequently, it was decided to implement the interaction between the

host and the BlueField using such a pattern. As explained in the next chapter it

was further decided to implement that aspect as a separate and new library.

63

6. Argmessage

The Argmessage library is the lowest level of component that was written for this

project. Apart from the lower-level messaging libraries on which it depends, it is a

new project, completely written from scratch.

The library provides facilities for a client application on a host to execute

functions on a remote server device. In the main use made of this library in this

thesis, the host is a compute node of a cluster (so most likely having an Intel or

AMD x86-64 processor), while the “remote” server is the Arm processor that is

provided as part of a BlueField smart network card, and this card is attached to

the PCIe bus of the host.

That example already indicates one requirement for Argmessage, which is that

client and server processes exist in different address spaces and so inter process

communication between them will generally be of the messaging kind, in

distinction from communication via shared memory. (So, while the BlueField card

of the example mentioned here is physically located not that far away, i.e., in the

same enclosure as the host, it is “remote” in that sense.)

In its main version, the Argmessage library uses the OpenMPI messaging library

for sending the messages per se between the client and server processes, for

several reasons. OpenMPI is quite straightforward to use, it is very mature, and

will work on different processor architectures, as is also required here. It is also

designed for codes that are initiated at the same time to run simultaneously on

multiple nodes in a cluster, which are target requirements here since the goal is

to support large computational programs running on multiple nodes.

(OpenMPI has data type declaration facilities [38] that solve the problem of

different endianness, in cases where it exists, of data items in messages

transmitted between machines of different architectures. Note, however, that did

not occur in the present work and the facilities were not used in the Argmessage

code, which takes a manual approach to packing and unpacking the messages,

for which see sections 6.5 and 6.7.)

64

6.1. Remote procedure calls

This overall function of the Argmessage library is, in general, a remote procedure

call (RPC) function. Ex post facto, one might ask why RPC libraries were not

systematically surveyed at the outset and an appropriate one selected, rather

than writing a special one for this application. In fact, in order to be able to

support QuickSched, Argmessage developed a particular set of features. These

are explained in this section and contrasted with the generalities of RPC

frameworks.

RPC libraries are many and diverse, built to suit various computing environments.

For example, once the RPC pattern was recognised, I first recalled an RPC

library that I had used before, Simple Object Access Protocol (SOAP), but

obviously that was not going to be at all suitable for this project, since it uses slow

transports such as Hypertext Transfer Protocol (HTTP) or even email. It is

important to note that the timescales needed for this project are, contrastingly,

sub millisecond. Equally inappropriately it uses an XML markup for the values

sent, but again, in contrast, in this project the message format would have to be

small and simple to meet the timescale requirement. I was also aware of the

highly complex CORBA. So, of course, these were not going to be useful.

I did find, however, at a later date, a more low-level library than those, an RPC

library project called ONC+ [39], which was more appropriate, and which is also

free. This was not pursued as Argmessage had advanced, but, notably, in ONC+,

each call to the server from the client waits for the operations on the server to

complete and return a result before continuing [40]. That was not always

necessary in this project and so would have degraded performance in some

aspects, and indeed allowing not to have a return type is now a feature of

Argmessage.

A recent brief survey of RPC frameworks (in a Rutgers University course note)

[41], analyses RPC frameworks into first and second generations. A difference

between those that is relevant here is that the first generation (there including

ONC) provide stateless calls to the server, i.e. each call provides all information

needed from the client needed to answer it, so not taking into account any history

65

of the calls made. The second generation frameworks are stateful. This

generation is also object oriented and a client makes RPC calls that run methods

on objects that may persist between calls and modify their state. An important

aspect of Argmessage is that it is stateful; as it is used for Quicksched, it

maintains the state of the scheduler on the server side.

A further aspect that came out in the project was that the cooperation between

client and server in using QuickSched via Argmessage could involve parallel

processes (in fact parallel threads) on both the client and server sides, giving rise

to interactions between the effects of messages. This is explored in Chapter 7. (It

should be noted that, as Argmessage and Qsargm were developed together and

for that purpose only, it is possible that Argmessage is not a full treatment of the

problems that could arise for RPC communication between multithreaded

processes.)

It was also important that OpenMPI was successful, without too much coding

difficulty, in sending messages between the heterogeneous host and BlueField

card installed therein. Added to that, OpenMPI is well suited to low latency

communications in the cluster, and it was hoped by extension that it would also

be so across the connection between those two items. This and the RPC

approach mean that Argmessage could be a useful tool for rapidly adapting other

libraries to make use of remote communication in the HPC context.

6.2. Argmessage Messages

A key component of any messaging library, or an application or library that runs

over one, is, of course, the structure of the messages sent.

As noted at section 5.18, Argmessage is an RPC library and so has a client-side

interface that sends messages, on behalf of some client application, to an

Argmessage server component, which responds to that to execute a procedure

on the server as specified in the message. The result of that procedure is

returned in a reply message from the server to the client, which passes the result

to the client application. Argmessage relies on a base messaging system,

OpenMPI, to transport these messages for it. The Argmessage client and server

construct their messages for each other in a buffer in a format discussed section

66

6.3. This buffer is then the payload of a message constructed in the underlying

message system, by calling the appropriate functions of the underlying message

library. These calls will of course wrap the payload buffer with metadata that

concern that base message library, for example the network addresses of the

client and server; the format of that outer message is generally not important

here, but of course the Argmessage library does supply the necessary data

items, such as the network addresses, using the message construction functions

of the underlying messaging library. These values are generally fixed, and they

are established by the client and server of the Argmessage library in an

initialisation phase.

If the underlying messaging library were to be changed, Argmessage’s calls to it

would have to be changed correspondingly. A new underlying messaging library

might have different concepts or related hardware, and if so, that may well make

the changes needed more complex. However, because Argmessage uses just

the simple buffer as its actual message between its client and server, it is

expected that little, if anything, would, in fact, have to be changed in that.

(Although note the uses of MPI tags described later in this thesis, which are an

exception to all the application’s data being in the buffer.)

6.3. Message structure

The Argmessage message buffer is designed, in the time-honoured fashion, with

a header of fixed control data, and a more free-form second part. This second

part provides flexibility to accommodate different messages for different RPC

calls. In particular, however, the second part is always the packed arguments of

the remote procedure call to be called on the server; in particular they are the

arguments of the C function on the server that implements the call. For simplicity,

both Argmessage’s internal housekeeping functions, and those for RPC calls

made to achieve the client application’s actual purpose, employ the same

message format and indeed the same RPC mechanism.

An example of an Argmessage message buffer is shown in Table 3, as printed

out by the print statement trace included in the library for debugging purposes

(function argmessage_printbuffer() from file argmessageinternalhelpers.c).

67

ARGMESSAGE SERVER: raw message received:

Mess size: Proxy ID: Prox seq no: Adapter ID: Func ID:

Argbuff size:

1C 00 00 00 | 00 00 00 00 | 04 00 00 00 | 00 00 00 00 | 66 00 00 00 | 04

00 00 00 |

00 00 00 00 | ~ ~ ~ ~ | ~ ~ ~ ~ | ~ ~ ~ ~ | ~ ~ ~ ~ | ~

~ ~ ~ |

 ~ ~ ~ ~ | ~ ~ ~ ~ | ~ ~ ~ ~ | ~ ~ ~ ~ | ~ ~ ~ ~ | ~

~ ~ ~ |

Text Equivalent :-

 | | | | f |

|

 | ~ ~ ~ ~ | ~ ~ ~ ~ | ~ ~ ~ ~ | ~ ~ ~ ~ | ~

~ ~ ~ |

 ~ ~ ~ ~ | ~ ~ ~ ~ | ~ ~ ~ ~ | ~ ~ ~ ~ | ~ ~ ~ ~ | ~

~ ~ ~ |

selected struct members:

 adapterid=0, args buffer address=0x2983a78, message start

address=0x2983a60

print message buffer: returing from printbuffer

Table 3 – Example Argmessage message buffer

The printout, which is of course reminiscent of the hexdump utility, shows all the

bytes of the message in hexadecimal byte values, and below that the text

equivalents. The first 24 bytes, comprising six 4-byte integers, are the fixed data

items, with the remainder being the flexible argument buffer part. The fixed items

are named in the line above. The tilde (“~”) symbol is for padding the print display

with items beyond the end of the message (the messages are of variable length,

but the print is not), and if the bytes have no text equivalent they are shown as

blank spaces. On receipt the message buffer is cast into a C struct, and the items

at the end of the printout are printed from that. This deals with the items of the

fixed header part – the second flexible part is decoded subsequently.

68

More details of the data items in the message buffer are given in Table 4.

Message size the total number of bytes in the header and the argument

buffer

Proxy ID and

Adapter ID

as explained later, the library can handle having multiple

instances of the proxy and the adapter objects at the client

and server ends, respectively.

Proxy sequence

number

a serial number for the messages issued by a proxy

object. This is useful for debugging and maintaining the

correctness of the program executed on the server as

intended by the client. The functions executed on the

server must be executed in a correct order. The server

checks that messages arrive in the order they are sent and

raises a fatal error if they are not. Such a constraint is a

good starting point for debugging and understanding

behaviour of the library, but it is envisaged that it could be

relaxed if need be.

Function ID identifies which one of the user-supplied remote functions

is to be called on the server side. Argmessage’s

housekeeping messages also have these, but of course

with different values from those for the user’s functions.

Argbuffsize gives the size in bytes of the remainder of the message,

which is the set of arguments to be passed to the function

to be called.

Argbuff A variable length field which is the packed arguments of

the function to be called,

(not labelled in Table 3 per se but visible as the second

and subsequent data lines).

Table 4 – Argmessage buffer fields

6.4. Modules of Argmessage and Operation

Figure 6 is a block diagram showing the code modules and data structures of the

Argmessage library. An application using the library runs as two processes: a

client process (the large grey box on the left) and a server process (the large blue

69

box on the right). In the main use of this library in this thesis, the user

application, e.g., some scientific computation, runs on a host compute node,

while the server typically runs on a BlueField card installed on that host.

The overall functionality provided by Argmessage is for the user application main

code (top left in the Figure) to be able to call the user function remote code

(bottom right) on the server, preferably just using a simple function call,

transparently giving the same appearance as if the call were local.

The user function remote code on the server is provided by the user, rather than

by Argmessage per se, and provides a set of functions needed by the user

application. The diagram shows the core code of Argmessage in green and some

functions provided by the user in orange. On the client side the user application

code could use the core facilities of the Argmessage library directly; it is however

logically much clearer for the user to provide the user library public interface

comprising a set of function calls to operate the Argmessage library, thus

providing the transparent interface. If the user is converting a library of functions

that previously executed in the client process, then, in general, the functions of

that library can be used to provide the remote user functions on the server side

and the interface of the existing can be reproduced as the user library public

Figure 6 – Modules of the Argmessage library

70

interface on the client side. This pattern is used in the main application of

Argmessage in this thesis.

The terms proxy object and adapter object are used in the diagram. These

names are explained as follows (following the terminology of [42]). The proxy

object is so named because, at least wrapped in the user library public interface,

it stands on the client side for the remote library of functions, providing the

transparency property. The adapter object is named that because it adapts the

incoming messages from the client to the function library on the server side.

So now, in detail, the operation of a call from the user application to one of the

public interface functions is described, in sections 6.5 to 6.10. This is of course

for the case where the programmer providing the public interface functions has

used the Argmessage library as it is expected to be used. The first half of this

operation follows the red arrows in the diagram.

6.5. Packing functions

In response to the main application code calling one of the public interface

functions, that function first packs the arguments passed to it into the contiguous

memory region Argbuff of an instance of the message buffer (section 6.3).

Argmessage provides functions to do that packing for common function

signatures. For example, pack functions for signatures comprising several

different small counts of integer parameters are provided. If Argmessage does

not include a packing function matching the public interface function’s signature,

then the user must provide one, preferably using the helper functions provided in

Argmessage, and following the pattern of the pack functions that it does provide.

It is not necessary for the arguments to be arranged in the buffer in the order they

appear in the function signature but that would be a helpful convention for a

programmer to adopt, and indeed that convention is followed by the pack

functions provided in Argmessage. In the uses to which Argmessage is put in this

thesis, the arguments are simple atomic values. In principle there would be no

problem with further arguments being added to the Argbuff buffer that were not

provided in the public interface function call, so which would be retrieved or

calculated from values somewhere else on the client side.

71

The pack function also sets some of the fixed fields in the header of the message

buffer, namely the proxy and adapter IDs and the sizes. The function ID is set to

whichever of the remote user functions it is desired to call and, in most cases, will

be a constant for a particular one of the public interface functions. To aid the

programmer to use the right function ID, a function index enum is declared, and is

used both on the client and server sides.

6.6. Sending the RPC request message

Next, the public interface function called calls the argmessage_send() function

associated with the previously initialised proxy object. This adds the sequence

number to the message buffer and then sends it to the server process using

OpenMPI. The network address of the server (the “rank” in OpenMPI

terminology) is needed for that and has been established in an earlier

initialisation phase.

6.7. Receiving RPC requests

On receipt at the server, the message is picked up by an

argmessage_consumemessage() function and the server then uses it to call the

correct remote user function on the server, as follows. A previously prepared

function table on the server comprises an entry for each remote user function,

comprising a pointer to the remote user function and a pointer to an unpack and

call function appropriate to the signature of the remote user function. The

argmessage_consumemessage() function uses the function ID in the received

message to retrieve those, and calls the unpack and call function, which, in turn,

unpacks the arguments from the Argbuff section of the incoming message and

calls the function pointed to with those arguments. As with the pack functions on

the client side, Argmessage provides unpack and call functions for common

function signatures, and again, if a user remote function needs a signature that

has not been provided for, then the user will need to provide one. Again, the

unpack and call functions provided with Argmessage follow the convention that

arguments are applied to the user remote function in the order in which they are

arranged in Argbuff.

72

Before calling the remote function, argmessage_consumemessage() checks the

sequence number of the message to ensure that it is indeed the next in the

sequence. The user program does not supply Argmessage with any information

as to which order the remote functions should be executed for correctness. It is

therefore assumed that the calls to the user library interface will be made in a

correct order and Argmessage then executes the corresponding remote functions

in that order. MPI guarantees the order of messages [43], see section 3.5, and

so no issues in this respect were encountered, but the check could well prove

useful if the messaging is converted to some other library.

6.8. Remote user functions

The remote user function may well need to access to some state to interact with.

This state can be attached to the adapter object on the server (see also Appendix

A). This is certainly done in the Qsargm application described in later sections,

but it would also be possible for the adapter to interact with other data either in

other processes on the server or even on other machines further afield.

In Argmessage it is allowed for the remote user functions to have a return type or

not.

If there is no return type, processing ends there on the server, and on the client

the public function does not wait for a reply and continues its processing, by

returning to the main user application. Thus, for such calls the processing time for

the call on the server and possibly some of the overhead of the messaging

introduced by Argmessage is not experienced by the user application program.

This is because the processing occurs in parallel with the application program on

another processor. Nonetheless, there will be some overhead of the messaging

because the proxy does have to call the functions of the underlying messaging

library.

6.9. Reply messages

If there is a return type, a message containing it is sent back using a similar

process as before (there are no arrows in the Figure for this stage). The return

value is packed into a message, which is sent back to the client using OpenMPI.

There the public interface function that started the whole call is waiting to receive

73

it and once it does, it unpacks the value and returns it as the return type of that

public interface function.

If a function would naturally return a pointer to some data on the server, then the

programmer would have some more analysis to do, since, at the client the data

would not be directly available. The data could, for example, be packaged into

the return message rather than the reference, but then of course the data might

then only be a snapshot of the authentic current data on the server. Further

functions to access the data with the pointer may have to be added to the user

library.

6.10. Relationship between public interface and remote functions

Typically, the relationship of user library public interface functions to remote user

functions is 1:1, but it may be convenient in some cases for this to be 1:many.

This will depend on the particular user library being implemented and on the

programmer’s design choices.

Also, an analysis of the problem to be solved by the user library could, depending

on the case, suggest that some of the processing of the public interface functions

(in part or the whole) would be better carried out on the client. In that case local

function code (bottom left in the diagram) can be provided on the client. This may

be called before sending the message to the server and/or after receiving the

response message as needed. Such code may need to refer to some state data.

This state may be internal and so could be attached to the proxy object, but is not

shown as so attached because another possibility is that the state could be some

values in the main application to be referred to or updated. The latter would break

a pure function call pattern of the user library public interface, but on the other

hand it is not uncommon for functions in C to interact with global variables.

6.11. Appendix material on Argmessage

Further information useful to a programmer using Argmessage is to be found in

Appendix A, which covers initialisation and finalisation of the various components

and considerations for launching programs using it. Appendix B includes remarks

on compiling Argmessage.

74

6.12. Potential uses of multiple adapters

One instance of the Argmessage server will support multiple adapters. The

Argmessage server will service multiple clients, one per rank, and initialises a

fixed number of adapters for each proxy. As it stands all of these are initialised

with the same user library functions, just in case a proxy needs more than one

instance of the library – for example if the user library has some main object that

needs to be instantiated to operate and each of instance of this can then be kept

by a respective adapter object. The proxy specifies the index of the one of its

adapters that it wants to use in each call to the server. The number of adapters

per proxy is defined by a C macro, so this may be tuned for a particular

application, or indeed it could be replaced by a runtime parameter supplied to the

Argmessage initialisation functions.

If the server is required to support more than one user library, then the remote

user functions from all of those should be compiled with the server, but the server

initialisation should be changed to map the functions of each user library to

different ones of the adapters. It would also be possible in this way to map

different user libraries to different ones of the clients if desired, so if the different

clients had different roles.

6.13. Potential uses of multiple clients

Allowing for multiple ranks to share the Argmessage server was provided with

two particular purposes in mind. A first one is that the server machine may,

depending on the application, be powerful enough to service more than one

client. So, for the example of a BlueField card, if these were provided in a cluster

at a density of less than one per host machine, then several host machines could

share the server as a common resource.

The other purpose would be a way to support cooperative processing of

information at the server from various ranks. The particular application of that in

mind is an extension for the QuickSched application – adapters for several ranks

would be keeping their progress information in the same place making that

readily available to make quick cooperative decisions about cooperation on tasks,

for example, for arranging work stealing between nodes.

75

6.14. Providing for multiply threaded client applications

Applications based on the QuickSched library are natively multithreaded.

Argmessage will support multiply threaded applications, but this needs some

additions to the code described so far. A first problem is that Argmessage uses

an underlying messaging library, so if an application has multiple threads that are

going to make use of that by sending RPC messages to the Argmessage server

then the underlying messaging library must be able to support that. The

underlying messaging library used here, OpenMPI, fortunately supports it.

Accordingly, the multithreaded version of OpenMPI was used. In addition to

selecting the correct build options for OpenMPI, this only requires changing the

MPI_Init() call to MPI_Init_thread(). This has a parameter to select between three

modes of multithreaded operation for the MPI library [44];

MPI_THREAD_MULTIPLE was selected because this allows all threads to issue

calls to the library with unrestricted timing, so on the face of it seems to promise

not holding up any of the user threads, which is what is desired for this project.

On the other hand, this option must be the most challenging for the OpenMPI

code to handle so it could result in more overhead or blockages than the others.

It was not however tested whether the other options in fact performed better in

actual uses of Argmessage, but rather it was trusted that the issues of competing

amongst threads for messaging resources had been better solved by the

OpenMPI library authors than my trying to do so.

With that in place and with the general architecture of Argmessage described in

this Chapter, Argmessage can easily support a multithreaded client library, e.g.,

QuickSched, since each call to the client library from whatever thread simply

translates the call into an OpenMPI send, which can cope with concurrent

threads. Any concurrency issues in the values of the parameters packed into

those OpenMPI messages will generally have existed in the original client library

and will have been solved already to that extent.

6.15. Multithreaded server operation

In the earlier experiments performed, Argmessage and Qsargm, which is a

version of QuickSched using Argmessage developed in this project, were

76

operated with a single threaded server. Multithreaded operation is discussed in

section 7.10.

6.16. Main use of Argmessage in this work

The main user library to which Argmessage was applied in this work was, of

course, the QuickSched library. The next chapter describes how Argmessage

was applied to it; this also discusses some modifications that were found to be

needed to Argmessage in order to support QuickSched.

77

7. Qsargm: application of Argmessage to QuickSched

Chapter 5 was an analysis of how the QuickSched library might be split into client

and server portions and Chapter 6 described a new RPC library, Argmessage,

designed to handle the communications between those two portions. This

chapter explains how Argmessage was applied to QuickSched. The resultant

library is called Qsargm. This process also revealed that some further changes

were needed to Argmessage to support QuickSched and these are also

discussed.

It was proposed that the split of the QuickSched library for the task run phase of

its operation should be to have on the server both the principal data structures of

the task graph and the queue data and their attendant processing, while the client

only operates in the function qsched_run() to set up / destroy the threads and to

execute allocated tasks, while sending between them messages representing the

qsched_gettask() and qsched_done() function calls to the scheduler on the

server. Those latter two function calls were therefore implemented as RPC calls

using Argmessage. This arrangement is illustrated in Figure 7. This is similar to

Figure 6 of the last chapter but redrawn to show this split of the QuickSched user

library functions and their principal data structures (but with some of the

Argmessage machinery simplified).

78

Figure 7 – Qsargm: Argmessage applied to QuickSched

As may be seen, in the task run phase, the user application calls the public

interface function qsched_run() and this then operates to keep the host

cores/threads occupied with tasks, which it obtains from the scheduler on the

server by calling qsched_gettask(), with it notifying the scheduler of completed

tasks by calling qsched_done().

Each of the public interface functions of QuickSched was implemented as an

RPC call to the server. These included all the functions used to build the task

graph. This choice, as discussed in sections 13.2 and 14.3, results in many

messages being necessary to build the task graph representation on the server,

and hence poor performance. Nonetheless, converting the library in that way was

straightforward and mechanistic, so increasing the chances that the converted

library would operate correctly, which was achieved.

In the archive, the code files for Qsargm are to be found mainly in the directory

qs/src. The original QuickSched library is in the directory qsoriginal/src and the

code there is utilised by the converted library.

This original QuickSched library is unmodified, except for the renaming of many

of its functions by adding the prefix “loc_” (see these on the server side in Figure

79

7) and some of the files with the suffix “_local”. These names are to suggest that

the function will operate in the local process (on the server), rather than making

an RPC call. The transformation into Qsargm therefore, as a general rule, just

uses Argmessage to change where in the system they are located, with

qsched_run() being the main exception to that. Both of these are described in

detail in the sections 7.1 to 7.4.

7.1. Public interface functions

In Qsargm, the file qsched.h contains prototypes for the public interface functions

with the same names as in the original QuickSched. In this way any user

application program using QuickSched can use Qsargm without changing the

function names.

However, since the experiments on the library will compare the performance of

Qsargm to the original library, each implementation of those functions in qsched.c

does not immediately carry out the operations of QuickSched via RPC but first

provides a switch between: (a) calls to the Qsargm versions of the functions,

which make use of RPC calls to the server as appropriate, and (b) calls to the

original functions, whose names are now prefixed with “loc_”. The switch

switches between them at run time in accordance with a global variable

activestrategy, which is constant for any particular run of the application code, so

that any particular run provides results for either the original, QuickSched, or the

new, Qsargm, version of the library. To avoid confusion this second use (b) is not

shown in Figure 7.

In use (a), the new library, each public interface function calls a similarly named

function, but prefixed with “qsargmproxy0” rather than “qsched”, and these are in

the file qsargm_proxy0.c. The code of each such function has the form of an RPC

call, and so packing the arguments of the function into an Argmessage buffer in

the manner described in the previous Chapter, which is then sent to the

Argmessage server with the function argmessage_proxysendfunction(). (Refer

back to Figure 6.)

For functions that have a return type, that is obtained by immediately calling

argmessage_proxyreceivefunctionresult() and unpacking the result from the reply

80

message buffer, once it is received, and using that as the return value of the

function. Although the call is made immediately the reply message will, of course,

not come back immediately and so the client waits here for the server to respond.

On the server side, counterpart functions were provided for each of the public

interface functions, with similar names but prefixed “qsargmadapter0”, and having

the same signature except an additional parameter of the adapter id, and these

are in the file qsargm_adapter0.c. The adapter id is used to retrieve the state of

the QuickSched library, and the counterpart then calls the original QuickSched

library function with a reference to the retrieved state. Conveniently for achieving

that, the original QuickSched library defined a main singleton object, of type

struct qsched, to contain its state and required a reference this object to be

passed to each of its functions, so that object was attached to the adapter object.

In that way, it was quite straightforward to reproduce exactly the same operation

of the scheduler functions on the server, because they use the same code and

the same data.

The remote counterparts to qsched_init() and qsched free(), and

qsched_addtask() and qsched_gettask() were also modified, but the changes

were not particularly significant.

qsargmadapter0_addtask() was changed only to initialise a new task with

additional fields of the size of the task data and a record of its own id. The point

of this is described in the section 7.4 on qsargmproxy0_run_openmp(), in

particular the part relating to qsargmadapter0_gettask().

7.2. Pack and call functions

It was mentioned in Chapter 6 that Argmessage requires a client library that is

using it to define pack functions and call functions for any function signatures for

which it did not provide those itself. In converting QuickSched it was needed to

provide those for the qsched_addtask() function, because it uses a pointer to a

small array of data (the definition of the task), whose individual items are packed

into the Argmessage message (section 6.5) and at the server side are unpacked

into a new array at the client side.

81

7.3. Client and server programs and initialisation and finalisation of qsargm

A client program developed for the Qsargm library was

qs/examples/qsargm_test_qr, and was the one that was used in the performance

measurements. This was developed from the QR factorisation test supplied with

the original QuickSched.

Its initialisation and finalisation were adapted to use the Qsargm library, instead

of the original QuickSched library, simply by

• replacing the QuickSched library with the Qsargm library, which, as

described has the same interface, but which makes RPC calls using the

Argmessage library to a remote instance of the QuickSched library.

• providing the Argmessage initialisation and finalisation statements for an

Argmessage client, as described in Appendix A at section 17.1.

The counterpart server program qs/src/qsargm_server.c

• was provided with the Argmessage general initialisation and finalisation

statements for an Argmessage server,

• included the original QuickSched library and include statement,

• and was provided with a function

qsargmadapter0_serverregisterfunctions(), which initialises the table of

functions used in the Argmessage server when unpacking the RPC

messages and calling the library function requested, with of course entries

pointing at the original QuickSched functions.

7.4. Converting qsched_run()

As noted at section 5.15, this function has its operations split between the client

and server. The version of the client-side function qsargmproxy0_run_openmp()

part of that is discussed, since the pthreads option was not investigated. That

function like its original, qsched_run_openmp(), calls the function to prepare the

scheduler and then starts a set of parallel OpenMP threads equal in number to

the cores assigned to the client process and to the number of queues. Each

thread has its own respective core to run tasks on the client and its own

respective task queue on the server. Each thread on the client executes the

82

same loop of getting a task from the scheduler, executing it, and then reporting to

the scheduler that the task has been completed.

The prepare operation is in relation to the task graph tables and queues and was

described in the earlier chapter on the analysis of QuickSched. Since it was

decided to put these on the server then this is implemented in

qsargmproxy0_run_openmp() by an Argmessage RPC call to call on the server

qsargmadapter0_prepare(), which, in turn, simply calls an unchanged

loc_qsched_prepare().

The loop of getting a task from the scheduler, executing it, and then reporting to

the scheduler that the task was implemented as follows. First, an Argmessage

RPC call to qsargmadapter0_gettask(), which operates, as the original generally

does to return a task, which is then communicated to the client in the return

message. Second, the task is executed in the client thread just as in the original.

Third, an RPC call is made to report that execution of the task is complete, to

qsargmadapter0_done(). This call generates no reply.

The introduction of messaging between client and server at these points does,

however, amount to significant difference in the mechanics of the interaction of

the threads and the scheduler compared to the original QuickSched, significant

enough to require further modifications to Argmessage and some details of

QuickSched itself. In the original QuickSched each thread in effect becomes the

scheduler when it is not executing a task. In contrast, in Qsargm the scheduler is

in a separate process elsewhere and needs messages between the threads and

the scheduler. A number of issues were recognised, and modifications made.

The original qsched_gettask() returned a pointer to a task, and the original

qsched_run_openmp() ran that task using a pointer to the task parameter data

looked up in the task table entry for the task. In Qsargm, this would have required

lookup from the client to the server, and so more messages between the client

and server; so, to obviate and pre-empt that in Qsargm, in

qsargmadapter0_gettask() on the server, the task data is looked up there and

packed, with the task id also, into that function’s reply message, thereby limiting

this operation to a single RPC message and reply. qsargmproxy0_run_openmp()

83

receives the task id but has no use for it now to look up the data, but the task id is

used to encode in that message whether the task graph has issued all its tasks,

with a special code of for the task id (-1 to avoid the positive values used for the

task ids of actual tasks).

In the discussion of Figure 4 in Chapter 5 on the analysis of QuickSched, it can

be seen that the threads interrogate the task queues for the next task to execute,

and in the call graph of Figure 5 it can be seen that that is done by the function

queue_get(). That suggests that an alternative place to split the

qsched_run_openmp() function between client and server might be at the

queue_get() calls. This, however, would be more inefficient, which is explained as

follows. Interrogating a queue can fail in a number of ways: the queue(s) can be

locked because other threads are modifying them, because another thread has

locked a task in the queue (see inside function queue_get()), and because there

are no tasks in the queues at present, which could be the case if the scheduler

has not finished moving to the queues tasks that have recently become ready

tasks. qsched_gettask() responds to these failures by trying again until a task is

eventually obtained. There could be several such attempts, and each would

require a message and reply between the client and server if the split were made

at queue_get(). However, the thread cannot be put to any useful work until

gettask is successful in obtaining a task, so it is better for that period of waiting to

involve just the single message and reply that is needed by the gettask split.

7.5. Single threaded operation

QuickSched is of course intended to operate in a multithreaded manner: the

essence of QuickSched is to supply tasks to multiple parallel threads, and each

thread can concurrently become the scheduler as needed (with the exception that

some operations within the scheduler are protected from concurrent updates with

locks). Nonetheless, the operation of Qsargm was first debugged and verified

using single threaded operation, on both the client and the server because it is

much easier to follow what was happening in that case.

84

7.6. Supporting multithreaded operation

Moving to multithreaded operation presented both some design choices to make

and problems to solve. In the original QuickSched there is only one pool of

threads, those that execute the tasks and that each become the scheduler when

a new task is needed. In Qsargm there are now two pools: i.e., the pool on the

host that executes the tasks, as before, but now there is potentially a second

independent pool on the server to execute the scheduler.

7.7. Reply tagging

A modification that was needed here was to ensure that each thread on the host

receives the correct reply to each of its RPC call (for those that have a reply). The

potential problem is that two threads may both be waiting to receive a reply, so

could, if the matter were not attended to, receive the reply intended for the other.

OpenMPI was used for the messaging and was used with the kind of

multithreading provided by initialising with the constant

MPI_THREAD_MULTIPLE. This was chosen from the options available so that

Qsargm could pass on its RPC calls, made with MPI_Send(), to the underlying

OpenMPI library in the simplest and quickest way, the assumption being that the

OpenMPI library would sort out the basic concurrent messaging issues more

efficiently than any effort that might be made in this project.

MPI allows a receive operation to select a message on the basis of a tag

attached to the message on the send side. This mechanism was used in

Argmessage to ensure that each thread on the server receives only its own RPC

replies. The mechanism should be efficient as it is hardware based. Specifically,

Argmessage RPC requests are marked with the unique omp_thread_num of the

thread and that identifier is applied to the reply as the MPI tag and the thread

listens for that tag in its receive operation for the reply.

An extra field was added to the fixed header of the Argmessage message buffer,

namely the omp_thread_num identifier, of the outgoing RPC request to provide a

way for the scheduler to know which tag to apply to the reply. The scheduler on

the server is set to receive RPC messages from any thread – as noted in section

7.8, a one-to-one relationship between client and server threads was rejected.

85

This tag field of MPI is a separate parameter of MPI function calls, i.e., it is

outside of the message buffer. This is contrary to the goal advanced in Chapter 6,

of keeping as much information as possible in the Argmessage message buffer

so that the messaging library can be changed as easily as possible. This tag

mechanism for directing the RPC replies to the correct thread is therefore noted

as something that will require specific implementation if the underlying messaging

library is changed, whether that is by analogous interaction with the messaging

library per se if it has suitable features, or by handling the issue somehow in

Argmessage itself. However, not only is the tag feature of MPI longstanding and

so should be efficient, but hardware tag matching is now available.

7.8. Number of server threads

It was recognised that operating the scheduler in an analogous way to the

original QuickSched with the scheduler having a fixed respective thread for each

queue / task executing client thread was not going to be appropriate.

A first point is that a thread only operates as the scheduler for a small fraction of

the time, compared to task execution, so the scheduler would only use each

thread of the server pool for that small fraction of the time, which is very

inefficient. A second point is that in the typical use, an x86 compute host and a

BlueField card, the number of cores on the host will typically be much larger than

on the BlueField, so this one-to-one mapping would not even be possible.

The goal should be to use as few threads on the BlueField as possible without it

becoming “overloaded”, so that the other BlueField cores could be put to some

other use. (“Overloading” would manifest as a growing queue of RPC messages

to the server that need servicing by the scheduler.)

7.9. Single server thread and doevents mechanism

Nonetheless, although it might cause some extra delay to replies to simultaneous

gettask requests, and hence reduction of efficiency of task execution on the

compute host, the first multithreaded configuration tried was multiple threads on

the host serviced by only a single thread on the BlueField. Again, this was for

simplicity of debugging and following what was going on.

86

This, however, led to a condition in which the operation of the scheduler came to

a halt. Gregory Andrews, in his book, “Concurrent programming – Principles and

Practice” [45], defines deadlock thus, “A process is in a deadlock state if it is

blocked waiting for a condition that will never come true” and livelock thus “A

process is livelocked if it is spinning while waiting for a condition that will never

come true.” This was a livelock. The problem found occurred when the scheduler

queues became empty and there was a gettask message at the head of the

received queue of messages, when the task done message that would allow

creation of more ready tasks was behind it. In the server, the processing of the

gettask request is to repeatedly interrogate the ready task queues, which

therefore remain empty.

The solution found to this problem was for the scheduler on the server, when

processing a gettask request, and on finding that there are no ready tasks

available, to listen again for the next message from the client and process it, in

the hope that the next message is a task done message which may well then free

up at least one new ready task. This was achieved by the

argmessage_consumemessage() function calling itself. If the next message

received by the next level of argmessage_consumemessage() is a task done

message, the new ready task(s) are then found by the server, and the gettask

request is then responded to in the lower level of

argmessage_consumemessage().

If it happens that the next message received by the recursively called

argmessage_consumemessage() is also a gettask then the recursion is repeated.

This recursive process does not however go on forever. Each client thread can

only send one gettask at a time; it must wait for a reply before it sends any more

messages. (This may leave several gettask requests outstanding at end of the

task graph. At this point the server takes its usual action of replying with the

special task id code indicating that the task graph is finished, and the client

thread reacts by ending its processing of tasks.)

(The term used in the code in relation to this mechanism is “doevents”, after the

similarly named function in the Visual Basic.)

87

7.10. Multithreaded Argmessage and Qsargm server operation

Multithreaded server operation was also experimented with, but this needed

further improvements over the “doevents” mechanism described at 7.9.

The general approach for this was to set each server thread to independently

listen for messages from the client, with a blocking MPI_Recv, with each listener

then processing whatever message the underlying OpenMPI messaging library

choose to present to it from its queue of received messages, with the server

thread thereafter returning immediately to listening. So, this again utilised the

MPI_THREAD_MULTIPLE version of OpenMPI multithreading.

The aim (achieved) was also for the threads to operate in a symmetrical manner,

i.e., all using that policy, rather than, e.g., some scheme in which one or more

threads listened and then farmed out the processing of the messages to other

threads. Such a symmetrical arrangement was imagined to be simpler to program

and would require less thinking about how to scale to different numbers of

threads.

However, there was again a problem, when ready tasks were scarce, of the

scheduler becoming locked, this time deadlocked. It was found that, when a task

done message was received by a listening thread on the server, server threads

processing get task messages were finding none available. The cause was that

scheduler data was being locked by a thread processing the task done message,

causing threads processing gettask messages to revert immediately to listening.

This absorbed any further get task requests, with the same return to listening

happening again. The resultant state was that all the client threads were left

waiting for a reply to get task, while all the server threads were paused listening

for new messages. The server thread processing the task done message did, of

course, supply new ready tasks to the task queues but by that stage all the other

server threads were listening again; the task done server thread also returned to

listening but the client threads would not then issue further get tasks as they were

waiting for a reply to one they had just issued.

This problem was overcome with a new strategy, which was for get task

processing by each server thread not to immediately listen again when no ready

88

task could be retrieved, but to inspect, or peek into, the incoming OpenMPI

message queue to see if a task done message had arrived and if so, processing

that. If not, the server thread polls for ready tasks. This cycle of peeking and

polling is repeated until a ready task is retrieved from the scheduler queues, at

which point the retrieved task is returned to the client and the server thread

listens again for another message.

(OpenMPI provides non-blocking probe functions to inspect the received

incoming messages and such messages may be filtered by the MPI tag;

Argmessage messages from the client are tagged by their type, and that was

used to find the task done type messages. The MPI_Improbe version of the

probe function was used; ‘I’ in the name is the non-blocking version, and ‘m’ in

the name means that the function both returns a handle to the message it finds

and reserves the found message found to be received by a subsequent OpenMPI

receive statement quoting the handle. This solves the problem that an attempt to

receive the message would fail if another thread had received it in the meantime.)

7.11. Closing open listeners after the end of the task graph.

There will of course come a time when all tasks have been exhausted and that

often occurred while some server threads were in the listening state. These were

satisfied by the expedient of sending no operation messages from the client to

the server. The number of messages needed was not accurately determined but

rather enough were sent to satisfy the maximum conceivable number of listening

threads, with that being the number of server threads minus one (one thread will

be needed to process Argmessage termination messages). This number of

messages was communicated by adding a reply, containing that number, to the

kill adapter message, which previously did not have any reply.

7.12. A Qsargm problem – taskgraph build is single threaded

Another problem with multithreading the server was that during the build task

phase the order of the function calls does matter, in that some of those function

calls require arguments that are handles for items already created in the

scheduler. The example of QR factorisation (discussed in Chapter 8) used a

89

single threaded program section to build the task graph to ensure that the order

of the task build messages was preserved.

In order to mirror this behaviour on the server a modification was made, which

was to divide the server operation between a first single threaded phase to

handle the task graph build phase and a multithreaded phase to handle the task

graph run phase.

7.13. An observation on Argmessage messages having no reply

It was observed that a feature of errors arising when the server was first run in a

multithreaded manner was that they were related to Argmessage messages, e.g.,

task done, that did not, unlike the prototypical RPC, have a return message. This

is understandable in that it causes more uncertainly about the order of the

processing of the messages on the server. For example, a client thread, once it

has sent a task done, will immediately send a get task, which therefore on the

server will both be immediately received, but on different server threads; so those

will be processed on the server concurrently. Whereas, if the task done had a

reply the get task would not be issued until the client thread has received the

reply, or if the server was single threaded it would process the task done and get

task in the order they were issued (since MPI guarantees, in general, to preserve

the message order).

90

91

8. Test example of an application: Tiled QR factorisation

8.1. Selecting an application for performance testing

A task-based computation was needed to test the performance of the of the

Qsargm library. The original QuickSched library came with several examples.

The tiled QR factorisation was selected and has the following useful properties.

• The result computation is always the same, making it a good regression

test. As noted earlier the example came with a test that uses another

computational method to verify the result, hence providing strong evidence

that the calculation proceeded as intended. This test is quick to repeat

when the code or the libraries have been updated.

• The kernels always perform the same computational operations. This

would mean that the variation in the execution times of the kernels would

be small, so less likely to swamp the difference in performance between

Qsargm and the original QuickSched. (The processors used do, in

general, adjust their clock speeds dynamically, in response to the load, but

not necessarily in a repeatable manner, and so variation in execution time,

as measured in real world time (or wall time), could result, since, of

course, instructions execute at a rate determined by the processor clock.)

• It has an internal parameter, the tile size, that can be optimised with

respect to the performance of the scheduling algorithm, both for the

original QuickSched and the new Qsargm library. The tile size parameter

also affects the size of the tasks, and relatedly the number of tasks in the

task graph.

8.2. What is tiled QR factorisation?

A QR factorisation of a matrix is its factorisation into the product of an orthogonal

matrix Q and an upper triangular matrix R. The factorisation is widely used and

useful enough to appear in linear algebra computation libraries such as LAPACK

and Mathematica [46] and Eigen [47]. According to the LAPACK manual [48] this

usefulness includes, “Orthogonal factorizations are used in the solution of linear

least squares problems. They may also be used to perform preliminary steps in

92

the solution of eigenvalue or singular value problems”, with the Mathematica

manual giving similar applications.

“Tiled” refers to splitting the matrix to be factorised into a grid of blocks, or tiles,

and organising the computation around operations on those tiles. Fortunately,

such an algorithm exists, but for the present purposes it is not necessary to

understand why exactly the operations of the algorithm achieve a QR

factorisation. Each of these operations on the tiles provides, however, a task that

may be scheduled in a task-based manner. It is the scheduling of these tasks

which is studied in this project. How the QR factorisation is actually achieved is,

however, explained in a paper by Buttari et al [49], which is also cited by [16] and

[50], the latter being a paper very similar to one to be found in the documentation

in the original QuickSched repository [15].

The pattern of operations on the tiles by this algorithm, and hence its task graph,

is now explained with reference to these documents. This gives a concrete

example of a task graph. (Section 9.3 explains that there was a difficulty with the

tasks generated by the QuickSched code in its QR factorisation example; the

task graph pattern shown here provides a basis for understanding that.)

Figure 4.10 from [16] or Figure 7 from [50], which are the same, and which it will

be helpful to have in view, show a 4 by 4 grid of tiles of matrix elements of the

matrix to be factorised. These are operated on by the kernels of the tasks. [16]

and [50] explain the algorithm via a number of “levels”, each of which is a high-

level sweep across all the tiles, and which are also the index of the outermost for

loop of the task building code. In each level the processing of the top row and left

column of the active tiles of the level reach their final form and are omitted from

the active tiles of the next level.

93

Pseudocode for the algorithm is given in Table 5:

for each level k in 1..n, where the matrix has n x n tiles, with parallelism at *:

 (i) perform the function task S/DGEQRF (red)

 on data of tile(tile_row = k, tile_column = k),

 then (ii) {

(a) { for each column c in k+1..n, in parallel:

 perform S/DLARFT (green) on data of tile(k,c),

 using also the upper right potion of tile(k,k) }

 and (b), in parallel with (a),

 { for each row r in k+1..n, in sequence:

 perform S/DTSQRF (blue) on tile(r,k) and on lower left of tile(k,k),

 and then { for each column c in k + 1, in parallel:

 perform S/DSSRFT(yellow) on tile(r,c) and

 on tile(k,c) and using tile(r,k) (but only

 once S/DLARFT or S/DSSRFT operating

 in level k on tile(r-1,c) has completed)

 }

 }

 }

but for k = n: only perform S/DGEQRF (red) on data of tile(n, n)

* parallelism for level k: wherein if the function tasks on a preceding level k-1

have completed writing to the particular input data of function tasks on the next

level k, those particular functions may begin before all function tasks on level k-1

have completed, once also the dependencies of their own level k have been met.

Table 5 – Pseudocode for tiled QR factorisation

where the function names follow Chalk’s and hence LAPACK’s naming scheme,

with ‘S’ and ‘D’ refer to single and double value types. Figure 4.10/Figure 7 of

those cited references also shows, with arrows, the dependencies in the task

94

graph between these function tasks. The colouring of the functions in Table 5

matches that of the tasks in those Figures.

Figure 8 represents the same tasks as a task graph, but which I derived, in order

to check, from the task creation code in the original QuickSched QR factorisation

example (archive:expt0078/original_qs_for_ref/quicksched-

1.1.0/examples/test_qr.c), but with the correction to be explained in section 9.3.

In the Figure the nodes (ovals) again represent the tasks and the edges

represent their dependencies in the task graph; again the tasks’ colours

represent the particular kernel function used (using the same scheme as Figure

4.10/Figure 7), but each task is now marked with the identity of the first tile

mentioned after each function in Table 5 (again according to the Figure

4.10/Figure 7 scheme). With the correction the dependencies in this Figure 8

match to those in Figure 4.10/Figure 7. Finally, the nodes have been grouped into

respective boxes for each level to aid comparison with that, but otherwise the

tasks were laid out by Graphviz to accommodate the dependencies. As with

Figure 4.10/Figure 7, there are 16 tiles in a 4 by 4 grid.

Figure 8 – Correct task graph of QR factorisation example (n=4, so 4 x 4 tiles)

95

A different layout of Figure 8 is given in Figure 9, namely with the grouping of

nodes into levels removed.

Figure 9 – Task graph of Figure 8 with no level grouping

This perhaps even better illustrates that tasks from the different levels can be

executed that the same time.

96

97

9. Verification and Validation

9.1. Summary

The operation of the various code modules of this project were verified as follows.

The function of the basic Argmessage code (Chapter 6) was verified primarily

with toy examples, described in section 9.2. These were mainly overall functional

tests (although some intermediate values in the logs were also tested for).

Explicit unit tests should be added if Argmessage is developed further with a view

to supporting other distributed applications. However, Argmessage has a client

and server architecture, and the overall function depends on the interaction

between the two. Therefore, mocks [51] supplying incoming messages will be

required for unit tests of the individual functions within the client and server.

The Qsargm library is at a higher level than Argmessage and so for this

functional testing was adopted. The main example used in the experiments to

test performance of the code, the QR matrix factorisation, from the original

QuickSched library and discussed in Chapter 8, came with a functional

correctness test comparing the outputs of the QR factorisation using QuickSched

to that of the same factorisation using a standard matrix library for equality. It was

therefore convenient to use the same correctness test of the QR factorisation for

the Qsargm library of this project. Therefore, this is a functional correctness test

and is also a regression test in that Qsargm is expected to arrive at the same

result as Quicksched for the same QR factorisation. The test is powerful in that it

is a completely independent calculation of the result and can be rerun for many

different random matrix inputs. Further since the output is two n × n matrices, so

a large number of separate values, the test is likely to be sensitive to a wide

range of potential errors in the code.

That test and also the toy example tests of Argmessage were automated as

pytest tests, to be found in the project archive at

archive:expt0069/argmessageprivate/test_endtoend. Unfortunately, the original

QR QuickSched library did not pass this overall functional test, so it was

important to fix this issue, which was done as described in section 9.3 onwards.

98

The performance experiments conducted and discussed in Chapter 13 are

measurements that rely on hardware timers, and on library functions to read

them. These functions and timers were validated as described in section 11.7.

9.2. Argmessage Toy examples

Some toy applications of Argmessage were developed as both as tests of the

Argmessage code, and as a demonstration to an application programmer of how

to use the library and how it operates.

A first toy example (archive:expt0069/argmessageprivate/examples/ex2)

demonstrates just a server program with just the built-in Argmessage RPC

functions and has a corresponding client program to call them. So, that is with no

user library functions supplied.

argmessageserverbare.c has the Argmessage library as an include and simply

then makes calls to the library to initialise it, set it running and then finalises it.

Accordingly, the server program therefore consists of just these calls:

argmessage_serverenginegetobject()

argmessage_serverengineechoenginestatus()

argmessage_serverenginerun()

argmessage_serverengineechoenginestatus()

argmessage_serverenginefree()

So, this is the basic server; just three function calls – the calls to

argmessage_serverengineechoenginestatus() are not essential and just echo

some status of the server for debugging purposes.

The corresponding client program, argmessageclientsendstdout.c, is again basic

and consists primarily of just these calls to the Argmessage library:

argmessage_proxygetobject()

argmessage_proxyechoproxystatusonproxy()

argmessage_proxyrun()

argmessage_proxysendstdoutmessage()

argmessage_proxykillserverrequest()

argmessage_proxykilladapter()

argmessage_proxyechoproxystatusonproxy()

argmessage_proxyfree()

So again, these are calls to initialise the Argmessage library, to set it running and

then to finalise it. (The calls to argmessage_proxyechoproxystatusonproxy() are

also not essential; again, they echo some status for debugging and

99

demonstration purposes, but this time on the client.) It is the client’s responsibility

to terminate the run phase of the server by issuing the calls to

argmessage_proxykillserverrequest() and argmessage_proxykilladapter(). As an

example, a single call is made to the server during the run phase, which is to

argmessage_proxysendstdoutmessage(), which sends a message to the server

causing it to call a corresponding built-in server function to print in its own stdout

a text provided as the argument to the client function. That text is of course

transmitted as the Argbuff of the Argmessage payload message.

As the next example demonstrates, the client and server applications for cases

where an actual user library based on Argmessage is implemented have the

same basic structure as these examples. The purpose of this user library in this

second toy example (archive:expt0069/argmessageprivate/examples/ex3) is to

maintain a list of strings on the server and thus provides a programmer with an

example to follow if they wish to create a library of RPC callable functions using

Argmessage. The example comprises both library functions of the user library

and example client and server programs using that.

The library header file, argmuserlist.h, sets out many of the key components of

the user library. These functions, declared therein, form the client-side public

interface of the user library:

struct argmuserlist_publiclist* argmuserlist_createlist()
void argmuserlist_additem(struct argmuserlist_publiclist* list,

 char value[])

void argmuserlist_printatserver(struct argmuserlist_publiclist* list,

 int item_idx)

char* argmuserlist_returnlistitem(struct argmuserlist_publiclist* list,

 int item_idx)

Table 6 – Client-side public interface of the “user list” user library

The toy purpose of the user library is to store and access a list of strings on the

server, so the functions in Table 6 respectively operate: to begin a new list, to

add an item to the list, to print a particular item at the server, and to return a

particular item from the list to the client.

Each of those functions has to be implemented by the user library programmer to

send an appropriate message to the server to cause it to call a corresponding

remote function on the server using the facilities provided by Argmessage.

100

Further, before they can be used the remote library functions need to be

registered with the server adapters. For this the programmer of the user library

has provided a function argmuserlist_serverregisterfunctions(), which registers

them in the adapter function table in the same way as is done for the built-in

functions, by calling argmessage_serverengineregisterfunction() for each

function. argmuserlist_serverregisterfunctions() is called in the server program for

this library, argmessageserverregisterfunctionslist.c described later in this

section, just after the call to argmessage_serverenginegetobject().

The user library requires some initialisation on the server side, which is provided

in the function argmuserlist_serversinit(), which attaches to each adapter a state

object, of type struct argmuserlist_serverstate, which comprises a count of lists

created by the user application and for each potential list up to a pre-set

maximum, a state for that list comprising a pointer to the first item of the list and a

count of the items in that list.

Taking the first function of Table 6 as a first example of the client-side public

interface functions, the code is:

struct argmuserlist_publiclist* argmuserlist_createlist(){

 struct argmuserlist_privatelist* newitem =

 (struct argmuserlist_privatelist*)

 malloc(sizeof(struct argmuserlist_privatelist));

 newitem->itemcount = 0;

 newitem->instance_id = argmlist_client_listcount;

 /* call to proxy of argmessage proxy */

 struct argmessage_message * message = packunpack_dummypayload();

 message->functionid = createlist;

 message->adapterid = proxy->myrank * ARGMESSAGE_ADAPTERS_PER_PROXY;

 // in this example we are only using the zeroth adapter of this

proxy

 argmessage_proxysendfunction(message);

 argmlist_client_listcount++;

 return (struct argmuserlist_publiclist*) newitem;

}

In the centre of this is the call to function packunpack_dummypayload(). Its job is

both to create the Argmessage message buffer and to fill in some of its data

items. In particular, reflecting its name, it packs the arguments to be passed to

the remote server function into the Argbuff section of the message buffer, and

sets the Message size and Argbuffsize fields, as the values of those are now

101

determined, and sets other fields to -1, as a not set value. In this case the

function has no arguments, so the pack function provides a dummy.

Next, further items of the message buffer are set. The functionid is an index

identifying the server function to be called and the adapterid identifies the adapter

that is to be used on the server to process the call. For clarity, and to avoid

mistakes, the user library programmer should declare an enum, in the user library

header file mentioned earlier in this section, for the different functionid values.

The file argmuserlist.h includes one: enum argmuserlist_remotefunctions. For the

programmer’s convenience these can start at 0, which is the default value for an

enum, since the built-in server functions have index numbers starting at a much

higher value, which is defined by a constant set with as a C macro in the file

argmessagesizes.h. As the comment in the code states, only a single adapter,

the zeroth for the single proxy is used in this example. Finally, the Argmessage

function argmessage_proxysendfunction() is called to send the message buffer to

the server.

This example illustrates a use of client-side state by a user library. Instead of

waiting for a reply message to receive a handle or reference to the new toy list as

it exists on the server, the function argmuserlist_createlist() creates one,

newitem, immediately and passes this object back to the application program for

it to keep. newitem contains, in fact, not only the handle per se, instance_id, but

also a count of how many items there are in the list, itemcount. This makes these

data items readily available to the application code, but at the cost of duplicating

and keeping synchronised information on the client and the server (the server will

want to keep track of these values as well). In this case the cost is not that great

because the instance_id is simply one more than the last one issued (kept in

argmlist_client_listcount), which may not be much of a cost compared to not

having to wait for a reply from the list creation function and also the application

program not having to ask the server how many items are on the list if it needs to

enquire.

The application programmer will have to note however that the instance_id and

itemcount values are read-only to it because they are maintained by the library.

102

The toy list object is passed back to user as a pointer. However, for this step, it is

first cast from argmuserlist_privatelist struct type to the argmuserlist_publiclist

struct type, which may not have been wise. The public and private versions of

this type differ by hiding the list’s instance_id to avoid trying to present the

application program with, in effect, duplicate information – a pointer and an id –

and hiding a data item, the id, that the application program should not write.

However, this is only partial encapsulation it does not make the field itemcount

read only. It would have been clearer to not make the cast and just have a rule

that the application programmer using the user library should respect what is

read-only.

On the server side the message sent by argmuserlist_createlist() is received by

the server engine which calls a corresponding function,

argmuserlist_servercreatelist(), which has also been provided by the user library

programmer. This retrieves the library’s state and updates one of its items,

listcount, by incrementing it, which also keeps this value in line with the

corresponding value on the client. There is no other initialisation required here

because the rest was already done in the general initialisation carried out by

argmuserlist_serversinit().

The next function argmuserlist_additem() has the code:

void argmuserlist_additem(struct argmuserlist_publiclist* list, char

value[]){

 struct argmuserlist_privatelist* list_private = (struct

argmuserlist_privatelist*) list;

 /* call to proxy of argmessage proxy */

 struct argmessage_message* message =

argmuserlist_packoneintonestring(list_private->instance_id, value);

 message->functionid = additem;

 message->adapterid = proxy->myrank * ARGMESSAGE_ADAPTERS_PER_PROXY;

// in this example we are only using the zeroth adapter of this proxy

 argmessage_proxysendfunction(message);

 list_private->itemcount++;

 return;

}

This allows a user to add an item, which is a string, to a one of the lists identified

by a parameter. The basic Argmessage library does not include a pack function

for a signature comprising an int and a string, so the programmer of this toy user

library has provided one, argmuserlist_packoneintonestring(), which follows the

103

standard pattern for these functions. Once the Argmessage message buffer has

been sent to the server, that calls the corresponding remote server function,

argmuserlist_serveradditem(), which creates a new object, of type

argmuserlist_serverlistitem, to store the new list item and links that into the linked

list structure used to store the particular list that begins with the pointer to the first

item of that as given in the state object attached to the adapter. The client and

server functions both increment their own counts of how many items there are in

the particular list in order to have that information available locally.

The final two functions of Table 6, argmuserlist_printatserver() and

argmuserlist_returnlistitem(), perform the functions their names suggest but do

not illustrate any further points. The user library also includes a function

argmuserlist_serversfree() to free the data structures used to store the lists on

the server in the finalisation stage.

This example also has, of course, exemplary client and server application

programs. Compared to the previous example of an Argmessage program this

example includes a user library. The server application program,

argmessageserverregisterfunctionslist.c, is similar to that of the previous

example, argmessageserverbare.c; it therefore includes the library and has calls

to argmuserlist_serverregisterfunctions(), to register the remote user library

functions in the function table for each adapter, and a call to

argmuserlist_serversinit(), to initialise the server-side state of the user library (as

described in Appendix A at section 17.8). The client application program,

compared the that of the previous example, includes the user library, and then

when in Argmessage’s run mode it has example statements to create lists, add

items to them, print them at the server and retrieve items; otherwise, the

backbone of calls to initialise, run and finalise the Argmessage proxy remain the

same.

104

9.3. Correcting the QR factorisation example from QuickSched

A correction of the tiled QR example from the original QuickSched, as obtained

from its Source Forge repository [15], was briefly mentioned in sections 8.2 and

9.1. The difficulty with the example was that it did not pass its own functional

verification test. The error was traced to the section of the task building section of

the example code; the malfunction did not touch on the QuickSched library itself.

The task building code from the QR factorisation example from the original

QuickSched repository is reproduced in Table 7, with key lines in the building of

the task graph in bold and with colours added to match the colouring scheme in

Figure 4.10/Figure 7 of the references by [16] and [50], and hence that of the task

graphs of Figure 8 and Figure 9. An ellipsis character is used to mark sections

omitted for brevity. In the code, indices k, i and j are respectively the level, the

row of the current tile in the tile grid, and the column of the current tile.

void test_qr(int m, int n, int K, int nr_threads, int runs, double*

matrix) {

…

 enum task_types {

 task_DGEQRF,

 task_DLARFT,

 task_DTSQRF,

 task_DSSRFT

 };

…

 /* Build the tasks. */

 for (k = 0; k < m && k < n; k++) {

 /* Add kth corner task. */

 data[0] = k;

 data[1] = k;

 data[2] = k;

 tid_new = qsched_addtask(&s, task_DGEQRF, task_flag_none, data,

 sizeof(int) * 3, 2);

…

 /* Add column tasks on kth row. */

 for (j = k + 1; j < n; j++) {

 data[0] = k;

 data[1] = j;

 data[2] = k;

105

 tid_new = qsched_addtask(&s, task_DLARFT, task_flag_none, data,

 sizeof(int) * 3, 3);

…

 /* For each following row... */

 for (i = k + 1; i < m; i++) {

 /* Add the row taks for the kth column. */

 data[0] = i;

 data[1] = k;

 data[2] = k;

 tid_new = qsched_addtask(&s, task_DTSQRF, task_flag_none, data,

 sizeof(int) * 3, 3);

…

 /* Add the inner tasks. */

 for (j = k + 1; j < n; j++) {

 data[0] = i;

 data[1] = j;

 data[2] = k;

 tid_new = qsched_addtask(&s, task_DSSRFT, task_flag_none, data,

 sizeof(int) * 3, 5);

 qsched_addlock(&s, tid_new, rid[j * m + i]);

 qsched_adduse(&s, tid_new, rid[k * m + i]);

 qsched_adduse(&s, tid_new, rid[j * m + k]);

 // qsched_addunlock(&s, tid[k * m + i], tid_new);

 qsched_addunlock(&s, tid[j * m + i - 1], tid_new);

 if (tid[j * m + i] != -1) qsched_addunlock(&s, tid[j * m + i],

tid_new);

 tid[j * m + i] = tid_new;

 }

 }

 } /* build the tasks. */

 …

 /* Loop over the number of runs. */

 for (k = 0; k < runs; k++) {

 /* Execute the the tasks. */

 …

 }

Table 7 – Annotated code from file test_qr.c of original QuickSched library

The yellow arrow in Table 7 marks a code line for adding the task dependencies

from the DTSQRF task on each row to each of the DSSRFT tasks in the same

row, which in the repository version was unfortunately commented out.

106

With the line uncommented, the example QR factorisation does pass its

verification test. Having found the error it is also reassuring that the line is

uncommented in the version of the task creation code of Figure 14 of Appendix B

of [50].

107

9.4. Conclusions of QR factorisation task graph generation code analysis

Having corrected an error in the original QR test of the QuickSched code, there

was now a version that would make a realistic test of the QuickSched in its new

form, Qsargm. It also sheds some light, by example, on how locks and uses

should be assigned. Finally, it allows reasonable speculation, as noted in this

section, on how an incorrect attempt at correcting the incorrect QR test might

affect the performance of QuickSched.

So, with respect to locks and uses, the key difference between them is that while

both inform the scheduler about which data are being accessed and so therefore

are likely to be in a processor core’s cache, and so provide hints to the scheduler

as to which core to use for a task, a lock is also used to prevent concurrent

updates, where that is not prevented by the task dependencies.

Unfortunately, while working to correct the error, further, unnecessary changes

were made to the task graph creation code. Awkwardly, these incorrect

corrections did not affect the correctness of the QR factorisation calculation and,

as a consequence, were not immediately detected and so were in the code used

in this project to generate earlier ones of the experimental results, but of course

they did provide a contrast to the main results.

The errors were that for each blue task, instead of specifying a use of the top-left

tile, a use of the tile in the row above in the same column was specified, and for a

yellow task, instead of specifying a use of the tile at the top of the same column,

a use of the tile in the row above in the same column was specified. As these are

only uses, this explains why they did not affect the correctness of the QR

factorisation. They might, however, cause a task to be assigned to a less efficient

queue because the task has thereby been associated with data that it is not in

fact using, and in turn this might cause additional cache misses when the task is

assigned to a core. That will only of course be a significant degradation in

performance if this mechanism to avoid cache misses was in fact already

providing significant improvements to performance.

108

109

10. MPI Message Latency

A key quantity in the performance of the experimental QuickSched library, using

Argmessage, is of course the message latency, i.e., the time taken for a message

sent from one of the client or server processes to arrive at the other. This

definition is taken to mean the time for the whole message to arrive and be

available for use at the destination. It therefore will, in general, be dependent on

the size of the message, since the data of messages are transmitted serially.

This definition is consistent with the “latency” quantity as measured by the OSU

Microbenchmarks [52] and with, for example the definition given at item 1 of

section 1.3 of “Interconnection Networks, An Engineering Approach” [53]. (Note

the contrast with other definitions of latency in which the time for a signal to

propagate, or a response begins to be received, is measured, which is not

affected by the subsequent length of the rest of the signal, for example the length

of the block of data being transmitted. For example, this paper [54] about "low

latency data transmission” uses latency to mean the signal propagation delay and

measures the quantity in µs/km.)

For most of the experiments with Qsargm, OpenMPI was used as the message

layer for Argmessage. The message latency of OpenMPI was therefore

measured for each of the experimental geometries (which are defined in detail in

section 11.2), in particular using the OSU Microbenchmarks [52].

To allow close comparison to the clocks used in the experiments of the current

project, the OSU benchmarks were compiled and run using essentially the same

build and run scripts as were used for the experiments. Therefore, they were

compiled and run using the same OpenMPI and UCX libraries. The benchmarks

were also compiled separately for the different processor architectures used.

For completeness, the derivation of the clock used by the benchmark was

checked in the code of its sources and indeed is valued in microseconds, as

follows. The benchmark pt2pt/osu_latency benchmark from the OSU

Benchmarks obtains clock values from the OpenMPI MPI_Wtime() [55] function.

In turn this obtains its clock reading from the OpenMPI function

opal_clock_gettime() [56]. In turn that obtains its clock value from either

110

clock_gettime() of time.h [57] or gettimeofday() of sys/time.h [58]. Both of those

return their clock value as two-part structs of seconds and nanoseconds or

microseconds and this value is passed up the chain with MPI_Wtime() presenting

it as a combined double precision value in seconds. The benchmark scales that

to microseconds.

From inspection of the benchmark code, the latency time it measures is half the

average time taken to do a round trip: an MPI_Send and MPI_Recv on MPI rank

0 and a corresponding MPI_Recv and MPI_Send on MPI rank 1. (MPI ranks 0

and 1 are respective Linux processes in their respective locations that are started

by MPI’s mpirun command to run respective copies of the benchmark program in

those processes.) The benchmark measures the message latency for a range of

message sizes (in bytes).

The results were taken for various locations of the two MPI ranks (matching the

experimental geometries defined in section 11.2) in the jupiter and thor cluster

systems at the HPCAC; details of these systems are discussed in more detail at

section 11.4.

The message latency measurements from the OSU benchmark showed that

there is a minimum message size below which the latency does not reduce

further and that the value of this minimum is dependent on the geometry. That

and other key values for the message latency are given in Table 8. The minimum

message latency is for the rank 1 process of the benchmark being on the other

socket of the same host as the rank 0 process, with that message latency being

0.3 μs for jupiter and 0.4 μs for thor. Using a BlueField card for the rank 1

process increases the message latency to 1.4 μs for a local BlueField and to 1.6

μs for a remote one on another host. Interestingly, on one of the machine types,

thor, for the server on the remote host (thor005 to thor006), the messaging is

quicker than to a local BlueField (thor005 to thor-bf05).

111

Cluster and geometry Minimum 32-byte

messages

64-byte

messages

thor005 to thor005 0.38 0.5 0.51

jupiter029 to jupiter029 0.30 0.48 0.49

thor005 to thor-bf05 1.39 1.48 1.56

jupiter029 to jupiter-bf29 1.35 1.45 1.54

thor005 to thor006 1.20 1.23 1.31

jupiter029 to jupiter030 1.66 1.73 1.81

thor005 to thor-bf06 1.64 1.73 1.81

jupiter029 to jupiter-bf30 1.60 1.72 1.81

Table 8 – MPI message latency (µs) from the benchmark

Values for the 32- and 64-byte message sizes of the benchmark are also noted

and are relevant as they are similar in size to the Argmessage message used in

Qsargm as discussed at Chapter 13, so will be better values than the minimum

for comparison to the Qsargm RPC latency in the experiments of this project.

10.1. Relationship to Argmessage / Qsargm RPC calls

In Argmessage, to receive the answer to a function call two messages are

needed, a first to call the function and a second to return the answer. So, for such

calls the messaging overhead will be twice the values in Table 8, or at least that

as the use of OpenMPI may be slightly more complicated there than that of the

benchmark, and further there will be the extra overhead of packing and

unpacking the arguments sent.

10.2. Comparison to QuickSched function calls

The equivalent operation in the original QuickSched scheduler is to call a

function. That itself may have no overhead if the function is in-lined by the

compiler. If it is not the overhead may be O(10ns), so O(100) times faster than

the messaging introduced by this project.

10.3. Speculations on payoffs for message latency penalty

These patterns of message latencies are considered later in Chapter 13 when

discussing the experimental results of the modified QuickSched scheduler,

112

Qsargm, in actual measured examples. However, the following remarks and

speculations can be made at this stage.

If the messaging delay is indeed significant in the scheduler performance, there

will need to be some pay-off to make having the scheduler in a separate process

worthwhile. This may be of two general kinds:

• Processing of the scheduler in parallel with computation of kernels on the

thread(s) calling the scheduler

• Extra scheduler functionality

The latter is considered in Chapter 14.

Based on the message latency results, it is a reasonable conjectureTable 8 that

the best place to locate the separate scheduler process, to avoid the latency

penalty, is to put it on dedicated cores of the same host that is running the client

computational tasks. Doing this however would reduce the number of cores

available to the client, which in general would reduce performance. However, not

all codes will have enough tasks in their task graph to keep a large number of

cores occupied. For such codes allotting host cores to the server process is free.

Locating the scheduler process on the BlueField card does increase the

messaging time still further but these cores are not, without extra arrangements

being made, available to process the computational kernels. Thus, cores on the

BlueField are always free in that sense, even for codes that are able to use all of

the cores of the host processor.

However, in the basic arrangements described so far and studied in the

experiments, while they have the computation and scheduling performed in

separate processes on separate cores or processors, these do not particularly

seek to overlap the scheduling of the processes with the computation in time;

when a computational core asks for a new task it still waits while the scheduler

identifies the new task. Suggestions about how overlap might be achieved are

however discussed in Chapter 14.

While there are small differences in the messaging latency values for the rank 1

process of the benchmark on the local BlueField, on the remote BlueField, and

113

on the remote host, these values are generally similar to each other. This

suggests that it may be possible to run the scheduler for several client hosts on a

common BlueField card or on a common dedicated host without much

degradation in performance. The multiple schedulers will each receive messages

from their respective client so the number of messages to the common BlueField

card or host will be multiplied up, but the messages are small and infrequent in

smaller cases and so the messaging may well not be a bottleneck – there will be

messaging limit but it is not speculated whether that will take effect before the

capacity of the scheduler processor is exhausted. A common location to process

multiple schedulers might however offer a significant advantage when it comes to

organising work stealing between computational hosts: this advantage is that all,

quite up to date, information on the state of progress on the tasks is available in

one place, the common location of the schedulers, and so quite complex

processing of that could be considered. That possibility has, however, not been

explored in any detail in this work.

Another use for Qsargm, in particular in the local host geometry for the scheduler,

might be for use on host processors where the cores are not symmetrical.

Examples of such processors include Intel’s latest2 12th Generation Core

processors (codename Alder Lake – first released at the end of 2021). These are

provided with two classes of cores, called by Intel, “Performance-cores” and

“Efficient-cores” [59]. In the Qsargm model, the processing of the scheduler on

the one hand and the processing of the kernels on the other are not symmetric.

So scheduling, being a less demanding operation, should perhaps therefore be

allocated to one of the Efficiency cores. However, if that significantly affects the

latency of the scheduling calls then perhaps, counterintuitively, it might turn out

that one of the Performance cores should be allocated. Experiments would be

needed.

2 “latest” at the time of writing –13th generation parts are due to be released in the final quarter of

2022 and the first of 2023 and will continue the performance and efficiency distinction.

114

In any event, such new processor designs could pose significant challenges to

the scheduling model of both of the original QuickSched and Qsargm, which

assumes equal performance of the cores in applying the scheduling rules – the

tasks have costs and weights, but these are not adjusted for likely performance of

whichever core might in future be allocated to them, which in turn would not be

straightforward to predict. The allocation of the scheduler to one or other of the

core classes does not alleviate this problem because the two classes are

provided by the manufacturer in similar numbers. Although the Performance ones

allow hyperthreading whereas the Efficient ones do not, meaning the majority of

threads are on Performance cores, there are still significant numbers of Efficiency

cores, so scheduling of tasks will have to be on to a mix of Performance and

Efficiency cores. The problem is in fact worse than that in that Alder Lake

processors also have what Intel call “Turbo Boost Max Technology 3.0” [59],

which recognises the difference in clock speeds that each individual Performance

core is capable of and schedules threads to them accordingly; this is not just a

static determination but dynamically takes into account factors of many kinds

[60]: local physical environment factors of power consumption and temperature;

“type of workload” so presumably based on the instructions of the software being

executed; and the number of cores active, which in task-based scheduling is a

result of the task schedule itself, making the problem recursive.

Having asymmetric cores is not confined to Intel processors. Many Arm

processors have different cores of different types [61], and there is increasing

interest in building HPC systems using Arm processors.

So, in future, more complex models may well be needed for efficient task

scheduling in HPC applications.

115

11. Experiments - general arrangements

11.1. Test Program

The experiments were conducted with the tiled QR matrix factorisation example

using both the original QuickSched scheduler and the modified Qsargm

scheduler of this project, which, of course, places the scheduler in a separate

process remote from the process executing the computational kernels, with calls

to the scheduler being made via the Argmessage remote procedure library of this

project. The original version of QuickSched employed was version 1.1.0 from

Source Forge.

11.2. Test Geometries

Figure 10 is a block diagram showing the geometries used in the experiments for

the location of the scheduler relative to the computational kernels used. The host

computers used were “dual socket” meaning that the mother board had two

processor integrated circuits. The processors had x86-64 architectures. Both of

those are the norm in HPC clusters. Further, also as usual for HPC, the dual

socket host processors were identical processors and shared the same memory

space for the main RAM attached to them on the motherboard. In addition, each

host computer, or ‘node’, was equipped with a BlueField™ card. These are fairly

new to the market and are only becoming available in a few experimental HPC

systems. These BlueField cards combine a network adapter (Ethernet and/or

Infiniband), in particular a Connect-X™ adapter, with an Arm architecture

processor on the card with its own RAM in its own address space and with its

own Linux operating system, on which user programs may be run. Precise

specifications of the machines and interconnect used are given in section 11.4.

116

Figure 10 – Experimental geometries, i.e., relative process locations

In the experiments, the threads of the process running the computational kernels

were pinned to cores of one host processor integrated circuits (socket 0 in Figure

10) as intended by both the original and modified QuickSched. Four possible

locations were used for the experimental scheduler process. Those were:

• A process having its threads pinned to the cores of the other processor

integrated circuit of the host (socket 1 in Figure 10) in the same node

(Node A) as the computational kernels process. This geometry is

designated local host scheduler in this thesis.

• A process running on a BlueField card (BlueField Card A) mounted to the

same mother board as the processor running the computational kernels,

designated local BlueField scheduler.

• A process running on a BlueField card (BlueField Card B) mounted to the

mother board of another compute node (Node B) of the cluster, designated

remote BlueField scheduler.

• A process having its threads pinned to the cores of a processor integrated

circuit (socket 1) of the host of the second compute node (Node B),

designated remote host scheduler.

117

Thus, geometry is defined here to include more than just the topological aspects

of the network connections, which would be the pattern of available connections,

and, of those, the route being used, but includes also the physical conditions and

types of electronic circuit along the route. So, this encompasses the type and

length of network cables, and the network protocol being used, the model of the

network adapters being used, whether network transmission is being used at all

or rather inter-process communication via shared memory, whether there is any

effect of CPU socket or NUMA region, how many PCI switches and interfaces

there are on the route, and so on.

Only one of these locations for the scheduler was used in any particular run of

the QR factorisation code. The long red arrows in the diagram show the paths of

the messages between the computational kernels and the scheduler in each of

those locations. Experimental runs were repeated in these different geometries

for comparison.

Finally, a 5th location for the scheduler, a control, was used. This was the original

QuickSched scheduler, so without the modifications of this project, and so the

scheduler operates within the same process as the computational kernels. In this,

each thread, when done with its latest task, becomes the scheduler object for a

time while it works out which task the thread should perform next. The purpose of

including this in the experiments was to provide a comparison basis for the

experimental scheduler: i.e., is it any better than the original?

Communications between the computational kernels and the experimental

schedulers, in contrast to the control scheduler, were conducted through a

messaging library, which was of course the Argmessage library of this project.

That library, however, requires a base messaging library to carry its messages.

The main one used was OpenMPI, and within that use of UCX messaging was

specified. These libraries make choices for themselves on exactly how to conduct

the communication in any particular situation; however, messages between

processes on the different host nodes were transported via the InfiniBand

interconnect, with, in particular, the Connect-X InfiniBand adapter portion of the

BlueField card being selected.

118

In the local host geometry mode, messages between socket 0 and 1 are

transferred via shared memory. On the other hand, when messages are

transferred between a host processor and a BlueField card or a remote host, that

traffic is sent over the Infiniband network. However, for the local BlueField

scheduler geometry, it was not clear whether the messages were transferred

from the host processor to the Arm processor directly over the PCIe Bus, as

might be expected for minimum latency, or went first from the host processor to

the Connect-X Infiniband interface on the BlueField card and then from there to

the Arm subsystem. The latter is what would be expected if the OpenMPI and

UCX libraries do not have special code to take advantage of the direct route via

the PCI bus only.3

Another communication library used, as an alternative to OpenMPI, underneath

Argmesssage was the SNAPI messaging library, under development at Nvidia,

which was made available to me. This is designed for communication between a

BlueField and its host and so was only used for the geometry of having the

scheduler on the local BlueField. It was designed to have a simple programmers’

interface and is based on the InfiniBand verbs communication library [62]. It was

used because it was plausible that it would be lighter weight than OpenMPI.

The control scheduler does not, by definition, make use of Argmessage, nor any

messaging library at all. The equivalent of the messages is simply function calls,

the original ones, to the QuickSched scheduler library.

The purpose of testing these various locations for the scheduler is to determine

the extent to which their relative remoteness from the computational kernel

process in terms of the messaging latency affects operation.

3 An attempt to clarify this point with the BlueField manufacturers was not successful.

119

11.3. QR experimental parameters

The launch script for the experimental code deals with experimental parameters,

which is detailed in in Appendix A at section 17.14.

The parameters passed to the QR factorisation code itself were as set out in

Table 9. In the experiments these are all specified in a set for one run4, being a

line of the parameter file specified with the -g option of the launch script. The

parameter file comprises many such sets for respective runs to build up a result

data set, as explained in sections 11.5 and 11.6.

Parameter

Name

Description

-T The number of threads allocated to the scheduler program.

-t The number of threads allocated to the computational kernels, i.e., to

the application program.

-r The number of repeats of the application program calculation, i.e.,

one repeat = 1 QR factorisation.

-k The tile size of the QR factorisation algorithm. The tile has k × k

matrix elements.

-n -m The matrix factorised has n × m tiles. In all experiments n = m was

used. So, the size of the matrix was (n × k) × (n × k) elements in total.

-S “Strategy” – 0 = use experimental scheduler,

99 = use original QuickSched inside the application’s client process,

i.e., in the compute threads.

4 A “run” comprises a number of repeats, as specified by -r.

120

-v Run the verification part of the QR program – this is a test to verify the

result of the QR factorisation using just a standard library function –

this test was available in the original QuickSched library. This was

used at first to check that the QR factorisation was running correctly

but was turned off later to save time, thereby allowing more

parameter sets to be tested.

Table 9 – QR factorisation example command line parameters

The parameters m, n, k, r, t and v were available in the QR factorisation test in

the original QuickSched archive.

11.4. Machine Specifications

The experiments were carried out on compute nodes of the clusters at the HPC-

AI Advisory Council [63], on two kinds of machine. The jupiter machines used in

some experiments are stated [64] on their website to have this configuration:

• “Dual Socket Intel® Xeon® 10-core CPUs E5-2680 V2 @ 2.80 GHz

• NVIDIA ConnectX-4 EDR 100Gb/s InfiniBand adapter

• NVIDIA Innova-2 Flex Open VPI, dual-port QSFP28, EDR / 100GbE,

KU15P (7 adapters)

• NVIDIA BlueField SmartNIC VPI MBF1L516A-ESNAT, 100Gb Ethernet /

InfiniBand EDR (8 adapters)

• NVIDIA Switch-IB 2 SB7800 36-Port 100Gb/s EDR InfiniBand switches

• Memory: 64GB DDR3 1600MHz RDIMMs per node”

The BlueField part number MBF1L516A-ESNAT quoted there has a specification

[65] of:

• “16 Core Arm Processor, with

• 16GB DDR4 RAM

• EDR Infiniband”

This BlueField card is part of the BlueField 1 Series, but in fact the jupiter

machines contained BlueField-2 cards as noted in this section.

121

The Thor machines used in some of the experiments are stated [64] to have this

configuration:

• “Dual Socket Intel® Xeon® 16-core CPUs E5-2697A V4 @ 2.60 GHz

• NVIDIA ConnectX-6 HDR100 100Gb/s InfiniBand/VPI adapters

• NVIDIA BlueField-2 SoC, HDR100 100Gb/s InfiniBand/VPI adapters

• NVIDIA HDR Quantum Switch QM7800 40-Port 200Gb/s HDR InfiniBand

• Memory: 256GB DDR4 2400MHz RDIMMs per node”

However, on all the BlueField cards used (jupiterbf001,002,029,030,031,032 and

thor-bf01,02,05,06,07,08) the CA Type for the BlueField card is given as

MT41686 by the ibstat command but lspci gave the number MT42822 for all the

items found. The former of those numbers is used on the Mellanox website [66]

for a Bluefield-2 card having the part number MBF2M516A-EEEOT [67] and the

latter appears on the Nvidia website [68] also in the context of a BlueField 2 card.

Therefore, the HPCAC website was out of date in respect of the BlueField cards

in the jupiter nodes and the cards used in these experiments were all BlueField 2.

In the results archive for the experiments in the provenance sections there is a

log of the output of the command ibstat, and these give the CA type of the

adapter used as MT41686.

The experiments reported in Chapter 13 were run on the nodes of these systems

with these machine names:

Machine sets

thor005, thor-bf05, thor006, thor-bf06

jupiter001, jupiter-bf01, jupiter002, jupiter-bf02

jupiter031, jupiter-bf31, jupiter032, jupiter-bf32

Table 10 – Set C and set F experiments – machine sets

Each of these three sets of four nodes comprise two x86-64 architecture host

nodes and two BlueField cards, each BlueField node being plugged into a

respective one of the host nodes. The BlueField cards were set up to have

separate network addresses from their hosts, so they appear as separate

machines with separate machine names on the local network and in the cluster

122

scheduler system, which is known as separated host mode [69]. The BlueField

card nodes have “-bf” as part of their machine names, with the BlueField card

having the number part of its name matching that of its respective host.

Each group of four nodes by itself provides the possibility for all the test

geometries described in section 11.2. In the Table the lower numbered x86-64

host was the one running the client program that executes the computational

kernels.

11.5. Parameter File Generation

A Python program gen-args.py (archive: expt0069/argmessageprivate/run-

scripts-HPCAC/qr_args/arg_sets/gen-args.py – see in particular the functions

QR_args_set1() etc. therein) was written to generate and format sets of

parameters, stored in a file, for passing to the application program, the QR

factorisation. To generate a parameter file, the user supplies a list of parameter

names and, for each of those a list of values the parameter is to take, and the

program then uses Python’s itertools product function to generate a Cartesian

product of those lists (i.e., all combinations of the possible values, one from each

list). For parameters that are to remain constant, a list comprising just that

constant value is supplied. However, parameter sets with a relationship between

parameters were needed; n = m, as mentioned in Table 9, is an example, so it is

also allowed in the parameter generating program to specify a transform to each

parameter set to be applied after the Cartesian product. So, for the n = m

example, only a single parameter x is specified by the user in place of n and m in

the Cartesian product and then the transform is applied to the x parameter to

derive the corresponding m and n parameters, giving both a value equal to that of

x. The resulting parameter files are to be found at

archive:expt0069/argmessageprivate/run-scripts-HPCAC/qr_args/qr_args/ and it

is those files that are directly consumed by the launch scripts.

Some of these sets have, as an outermost repeat, the entire parameter set

generated by the mechanism of the immediately preceding paragraph repeated

four times in the file. The point of this outermost repeat is that if a run, which itself

would repeat the experiment with the same parameters a number of times

123

defined by the -r parameter, were to be adversely affected by some infrequent

event in the computer then hopefully the outer repeat of that parameter set at

another time would not be similarly affected.

11.6. Types of Parameter Sets Used

The main experiments conducted were:

(i) to vary the number of client application threads t. Increasing the number

of application threads (for the same size of matrix) increases the number

of tasks that may be processed in parallel. More threads should therefore

decrease the execution time, but only up to the point where the number of

threads exceeds the maximum number of ready tasks generated at any

one point in time in a run.

(ii) to vary the number of tiles n × n, (with m = n always being used).

Increasing n increases the size of the problem, i.e., the size of the matrix

being factorised. It also increases therefore the number of tasks and

hence the number of messages required between the kernel threads and

the scheduler. Both of these will, at a constant number of threads t,

increase the total execution time.

While, generally, both of these, t and n, were varied over various ranges, plots

were made of execution time against t at constant n, and so therefore at a

constant matrix size. Such a plot therefore is a “strong scaling” test [70], which is

of the performance at constant problem size against the number of processors.

Plots were also made against n, so against increasing problem size, at constant

t. (That is however not a “weak scaling” test [70], which requires the problem

size to be increased with an assumed “constant workload per processor”.)

In these experiments the number of scheduler threads, as opposed to the

number of client threads, was usually fixed at 1.

The number of repeats of each experiment (the inner -r repeat) was usually 50 or

1. As explained in section 11.5, in some cases the same parameter combination

was repeated four times, spaced over an extended period.

124

While the tile size was usually fixed, another kind of experiment was to keep the

overall matrix the same size but to change the tile size. One would expect a

complex interaction here since a larger tile size will make each task longer but

reduce the number of them.

11.7. Timers used

The QuickSched library provided some timers for the execution various aspects

of the code. These were extended to allow for the scheduler being in a separate

process and were adapted take account of the RPC messaging loop.

So, the timers that were used in the present project are set out in Table 11.

Timers for control

(Original QuickSched)

Timers for experiment

(Remote scheduler – Qsargm)

clt_gettask

- aggregate time inside _gettask()

function

clt_done

- aggregate time inside _done()

clt_prepare

- aggregate time inside _prepare()

“clt” = “client local timer”, meaning

timers for the original control

scheduler

cpt_qsargm_client_remote_gettask

- aggregate time inside _gettask()

function

cpt_qsargm_client_remote_done

- aggregate time inside _done()

cpt_qsargm_client_remote_prepare

- aggregate time inside _prepare()

cpt_qsargm_client_kernels

- aggregate time inside kernels

“cpt” = “client proxy timer”, meaning

that the timer is located in the proxy on

the client (so on the left hand side in

Figure 7) and so these timers include

the calls across the messaging link,

except for the kernels timer which does

not involve an RPC call

Timers common to control and experiment

taskgraph_build_time taskgraph_run_time

Table 11 – timers for control and experiment runs – names after post processing

Thus, the new timers are: taskgraph_build_time and task_graph_run, which were

provided in the test_qr.c code to provide a direct comparison between the

125

experiment and control for those stages of operation. These were both measured

with the omp_get_wtime() function, whereas all the others were measured with

the getticks() function.

The original QuickSched library used the function getticks() function for all its

timers. This function is to be found in the source file cycle.h, which contains

many definitions of the function depending on processor architecture, compiler

and operating system being used. For the gcc compiler and the x86-64

architecture this is defined as the x-86 assembler instruction rdtsc. (This version

is selected by the presence of the macros __GNUC__ and __x86_64_ which are

set by default by the GNU C preprocessor, as verified by the command echo |

cpp -dM -, as suggested by [71].) The Intel® 64 and IA-32 Architectures

Software Developer’s Manual Volume 3B: System Programming Guide, Part 2,

available at [72], at section 17.15, describes the timer accessed with the rdtsc

instruction, which states that for newer Intel processors this clock runs at a

constant rate and so may be used to indicate wall time. [73] states that on Linux

the presence of this feature is indicated by /proc/cpuinfo including the flag

constant_tsc, and indeed on both the thor and jupiter host nodes that is present

in the flags field. The duration of these ticks is set by the frequency of some clock

signal and so that frequency needs to be determined if this timer is to be

compared to the timers measured with other timer functions.

In order to relate times measured by getticks() to those of other timers given

natively in seconds, i.e., (i) the OpenMPI message latency values and (ii) the

timers in the experimental code measured with omp_get_wtime(), the frequency

of the getticks() clocks was measured for jupiter and thor hosts and for the

BlueField cards. The method was to sample all of the clocks involved, once each,

in quick succession spaced before repeating after intervals of a nominal second,

over a total of 20s. The results are shown in Figure 11.

126

Figure 11 – Samples of getticks() against other clock functions, which are generically labelled “Wall time”

The measurement recorded the ticks given by getticks() and the wall time given

by each of the functions omp_get_wtime(), clock_gettime() and also

MPI_Wtime(), the latter being used by the message latency benchmark. The ticks

were plotted against the other wall time measurements. The relationship was

highly linear, confirming that the rate of ticks was indeed constant, so for example

not being changed in response to processor load. The rate of the ticks was found,

from the slope of the graph, to be as follows:

Machine getticks() frequency

against other wall time functions (MHz)

 omp_get_wtime() gettime() MPI_Wtime()

thor005 2599.98588 ±

0.00004

2599.98599 ±

0.00004

2599.98595 ±

0.00004

jupiter0029 2799.91905 ±

0.00033

2799.91905 ±

0.00033

2799.91876 ±

0.00005

thorbf005 Not measured 199.965974 ±

0.000008

199.965975 ±

0.000008

Table 12 – getticks() frequency

While these values are highly precise, they are only for one particular one of each

nominal type of machine and only for a particular occasion; it is not known what

127

the variation was over time and between machines of the same kind. It was

however also noticed that the measured rate of the getticks() clock was extremely

close to the nominal clock rate of the Intel processors as revealed by the model

name field of /proc/cpuinfo. In view of the potential variation stated, the nominal

cpu frequencies, with their much lower precision, were used to scale the getticks

values to seconds in the experimental plots and these uncertainties were kept in

mind should the need to compare different machines or measurements on

different occasions, which was in fact mostly avoided.

The clock for BlueField at 200Mhz is much slower than the nominal clock speed.

That would be important to note if the timers on the BlueField were used, but as

mentioned the timers on BlueField were not in the analysis made.

11.8. Automation Frameworks for Computational Experiments

The workflow that developed for the experiments conducted was as follows:

• Build code

• Generate parameter files

• Batch job for a set of parameter sets and geometry

o Record provenance

o Heterogeneous machine launch

o Run experiments for each set of parameters from a parameter file

• Post-processing

o Extract result directory logs to structured JSON file

o Aggregate JSONs

o Query aggregate results

o Plot

The creation of scripts to perform, at least some of these steps undoubtedly

repeated work done elsewhere, since relevant frameworks do exist and should

provide the benefits of quality software including ease of use and reproducibility.

One such, which has been suggested, is the FabSim3 framework [74], [75], [76].

This is aimed, according to the emphasis in its literature, to running physical

simulation codes on large HPC sites. Through templates and plugins it provides

mechanisms for generating and submitting job scripts for cluster schedulers and,

128

further for executing ensembles of jobs with difference input parameters. The job

script generation would have been useful in this project and would have made the

experiments more portable to other systems (although the latter was not a

requirement of this project itself). The ensemble of cluster jobs feature would

have been useful for running the experiments in the different geometries but

would not have been so for stepping through the number of threads and tile

parameters, which occurs too frequently - relaunch of the code that often would

not have been efficient. The recording of provenance it provides was of the

software environment, which was done so that would have been useful, but in

this project hardware configuration was also interrogated and recorded. There is

no reason to think that the framework would address the particular difficulties

faced in launching the code components in this novel and heterogeneous

hardware environment as outlined in section 17.14.

The documents cited seem to indicate that postprocessing steps are included in

the scope of the framework but the details of extraction of results from output logs

is not discussed, but perhaps that is left to plugins for individual codes.

The conclusion is that while using existing frameworks for running experiments

must be desirable, it may, for this kind of project, be impractical in terms of

recognising the requirements a priori and finding (possibly multiple) frameworks

that fit all the needs of the project. In the case of FabSim3, it would appear of

course to meet the needs of running well known simulation codes on large HPC

facilities. Further the usefulness of this kind of framework is multiplied where

there is a large community of users to share plugins and other configuration files.

129

12. Performance Models

The operations of building and executing task graphs are complex. The

performance of those two phases are considered here, particularly with regards

to the effects of messages, which of course are introduced by Qsargm, before the

results of the experiments with the QR factorisation example are presented and

analysed in Chapter 13.

12.1. Performance of the build phase.

The number of tasks in a task graph is relevant to performance in both the build

and execution phases.

Working from Chapter 8 explaining the QR factorisation example, or equally from

the references cited there, and from the code of the test QR example (file

qsargm_test_qr.c in Appendix D), and counting up the number of tasks created

(calls to the function qsched_addtask()), that number, NG is:

𝑁𝐺 = ∑ 𝑖2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6

𝑛

𝑖=1

where the number of tiles in the matrix is n × n.

The number of tasks is cubic in n, and since it has all the coefficients of all its

powers of n positive, it has the general form of increasing with n and that with a

positive and increasing gradient.

A further detail relevant to the build phase is that for each call to

qsched_addtask() to create one task in the task graph, around 4 calls are made

to the other functions for building other aspects of the task graph, namely to the

functions: qsched_addlock(), qsched_addunlock(), qsched_adduse(), the exact

number of such calls depending on the task type; however since as n increases

one type of task becomes strongly the most numerous, it would suggest that the

variation in the number of those extra calls between task type will not change the

general form.

As noted at section 7.12, the task graph build phase in the original QuickSched

was a single thread and this was preserved in the Qsargm scheduler of this

Equation 1 – number of
tasks NG in QR
factorisation for a n x n
grid of tiles

130

project. The time to build the QR factorisation task graph will therefore be

generally the number of tasks as given in Equation 1 times the time to build each

task. The time to build a task is the sum of the times to calculate the parameters

of the task, make the calls (which will be OpenMPI messages in the case of

Qsargm), and then process the calls by adding data to the relevant tables of the

scheduler’s representation of the task graph. In the QR factorisation the

parameters are cheaply calculated from simple rules and adding data to tables is

not complex. This means that messaging time could well be significant. How

significant that is reported in Chapter 13.

12.2. Run time performance in the many cores limit

[16] mentions that a strategy to optimise the overall task graph execution time is

to prioritise the tasks on the predicted longest path to the final task; indeed, the

longest path through a task graph is an irreducible minimum time for the overall

execution of a task graph. This of course applies to a static task graph – if a task

graph may have further tasks added to it then the longest path is not determined.

In the limit of a large number of cores there will always be an idling core available

to process immediately any new ready task; that of course includes tasks on the

longest path, so when a task on the longest path finishes, the next task on the

longest path will execute immediately. That next task will always be a ready task

at that point since, if it had to wait for another task, then this other task would in

fact be its predecessor on the longest path, while the just finishing task in

question would not. In this regime, therefore, the length of the longest path is the

time taken to execute the task graph overall.

Moreover, the effect of messaging will be felt between the tasks that are on that

path, while for tasks off the longest path it may not. Further, in general for short

messaging delays, the effect of those messaging delays is proportional to the

number of tasks on the longest path, since each junction between tasks on the

longest path will add the time for the one taskdone and the one gettask message,

with their also being one gettask at before the first task and one taskdone after

the last. Figure 12 illustrates this. This shows the times taken to process the

same exemplary task graph for different, increasing cases of message latency,

131

Cases A, B and C. (The exemplary task graph is not for the QR factorisation and

is specially constructed to illustrate the points made here.)

Cases A and B are shown in the Figure twice, once at marks A and B and again

at marks A’ and B’. At A and B, only the tasks on the longest path are shown, but

at A’ and B’ the tasks off the longest path are shown as well. At A and B there are

dotted lines marking off the messaging overhead sections of the tasks, while at A’

and B’ (and also at mark C for Case C) the dotted lines are omitted for clarity.

The arrows represent dependencies between the tasks. Tasks on the longest

path through the task graph are marked in red.

So, Case A is for a first, shortest, length of those messages, while Case B is for a

longer length of the messages. Overall, the longest path has, between those two

Cases, increased in length by 4 times the length of the message delay increase,

since there are 4 tasks on the longest path and each task has a gettask message

at its beginning and a task done message at its end.

Figure 12 – Messaging time effect on longest path

A’ C

Time

A B B’

132

Consider now the full task graphs for Cases A and B, so at marks A’ and B’.

Away from the first and last tasks, each task on the longest path has, in this

exemplary task graph, in parallel with it, a section of 3 serial short tasks (i.e., the

set of 3 and its parallel longest path task are both (i) dependent on the previous

longest path task, and (ii) also dependent where it exists, on the previous set of

3).

For both these Cases, A and B, the total length of the set of 3 serial tasks is

comfortably shorter than the parallel task on the longest path. So, the increase in

message latency between the two cases has caused no change to the longest

path. It remains that the additional length of the longest path due to messaging is

proportional to the messaging time and the number of tasks on the longest path.

Case C of Figure 12 shows, however, what happens when the messaging time is

increased even further for this task graph example. Because there are more

tasks in each series set than in the single task in parallel with it, these have

grown faster and have now taken over as the longest path. Tasks on the original

longest path of Cases A and B, for shorter messaging times, have been forced

apart, i.e., there is a gap in time between them.

So, there are some conclusions from this, i.e., for the case of a large number of

cores as is being considered here:

1. The increase to the longest path length caused by message latency is

proportional to both the number of tasks on the longest path and the

latency itself.

2. The route of the longest path through a task graph is, in general, not

independent of the messaging latency; it can switch to another path when

tasks not on the longest path for a case of shorter messaging force apart

the tasks that were on the longest path.

Thinking about larger task graphs, one can see that this switching effect to a

different longest path, as messaging delay increases, could happen more than

once and could happen for sections of the (current) longest path where either or

both of the endpoints of the changing section are not the first and last tasks of the

task graph (as was indeed the case in Figure 12). The former would make the

133

addition to the task graph execution time piecewise linear as a function of

increasing messaging latency, with the discontinuities of gradient occurring when

the longest path switching occurs, so the additional task graph execution time ∆𝑇

due to the messaging latency L for each task (so modelled as a constant for all

tasks) is given by:

∆𝑇(𝐿) = ∑(𝐿𝑖 − 𝐿𝑖−1)𝑁𝑖−1 + (𝐿 − 𝐿𝑖−1)𝑁𝑘

𝑘

𝑖=1

where k is the number of longest task path switches that there are between no

messaging latency and the latency in question L, L0 = 0; Li is that latency at

switch k; and Ni is the number of tasks on the longest task path after i switches of

the longest path, with N0 being the number of tasks on the longest path at zero

message latency.

Given that in Figure 12 the switching of the longest path was caused by the

alternative path being greater in number of tasks than the related part of the

original longest path, one might guess that Ni > Ni-1 at each switching point, so

the gradient always gets steeper with increasing latency L. However, this task

graph is probably unusual in that it has short, repeated sections of only a single

long task on the longest path and each only has a single parallel path, and so on,

so many more cases would in fact have to be examined to discover that that is a

general rule.

Further, another reason for not getting too involved here with this analysis, is that

for the QR factorisation the number of tasks on the longest path was, initially,

determined empirically and had an outcome relevant to this. This determination

was for the longest path as estimated by the task scheduler in the prepare stage

(so the method was in the original scheduler). This determination was done here

however with a separate Python program using the same method to it, using the

same estimates for the individual task kernel execution times, while trying a

range of message latencies. (archive: QSSim/src/quicksched/quickschedsim.py)

Equation 2 – Addition to
task path execution time
caused by messaging
latency in the case of
longest path switching

134

So, for the QR factorisation, the number of tasks, NL, on the longest path was

found to be given, always, exactly by:

𝑁𝐿 = (3𝑛 − 2) (= 𝑁0)

where, as usual, n is the matrix tile count parameter (the matrix having n × n

tiles). Moreover, this held true up to the largest n tried, of 512, and from very

short messaging times (less than one thousandth of the estimated task duration)

up to very large messaging times comparable in length to the estimated task

execution times. (Note that in actual experiments as opposed to simulation the

message time cannot be varied continuously, so simulation would provide more

information, as well as being a quicker route to it.) Also, the total of the estimated

time in the longest path task kernels was a constant for each n, meaning that if

there was any switching of the longest path it was between task sections of the

same length5. Therefore, it is thought from this that for the QR factorisation task

graph the longest path, and certainly its length, probably does not switch from the

ideal as a result of increased messaging latency and that in any event, in this

simple model, the expected effect of the messaging delay is proportional to the

individual messaging delay and to NL, as given in Equation 3. Note that this

concerns the longest path in the task graph per se, which, in the case of a large

number of cores, determines the overall task graph execution time.

It was also subsequently realised that 3n-2 is the number of vertices on any path

through a cubic grid of n × n × n vertices from the top northwest corner vertex to

the bottom southeast corner vertex if only unit moves east, south and down are

allowed (so, equally the Manhattan distance plus 1, since on a path the number

of vertices is one more than the number of edges). From that and recalling that

the QR task graph can be laid out on such a 3D grid with many of the

5 which is not a switch in longest path but a split of it into parallel longest paths of the same

length.

Equation 3 – number of
tasks on longest path

for QR factorisation

135

dependencies being those unit moves (see Figure 8), it may well be that there is

no freedom for the longest path for the QR factorisation graph to have any

different length in terms of task count.

Then further, inspecting the QR task graph for the n = 4 case in Figure 9, it was

noticed that this has been automatically laid out, by the graphviz program, in 10,

i.e., 3n - 2, rows of tasks down the page with all the dependencies being in the

direction down the page. Here, most of the dependencies move forward down the

page just one row, none move forward up the page, and, further, there are paths

from top to bottom that pass through 10 vertices, one per row. It cannot be

therefore that, for this case of n = 4 at least, a path has more than 10

(= 3n - 2) tasks. Although it has not been confirmed, it seems unlikely that the

possible paths from top to bottom that have fewer tasks will include the longest

path. If so, the longest path will always have 10 tasks in this case, agreeing with

the empirical result noted as Equation 3.

So this analysis has shown that the tasks on the longest path are the ones where

message latency takes effect, and that the effect is generally proportional to the

number of tasks on that path, at least for small message delay increases, (rather

than being determined, perhaps, by some more alarming number of tasks that

one could cast around for, such as the total number of tasks in the graph, given

by Equation 1). Further, in the present case of the QR factorisation example,

piecewise linear increases in the effect following are not expected.

Note also that conclusion 2 listed in this section would imply that strictly one

should, in general, take into account the messaging time before determining the

longest path in the scheduler. Such an adjustment is of course not onerous as it

means only adding a constant to the already constant kernel execution time

estimates, but while in fact this was not done for the estimates used in the

original and experimental schedulers, in view of the matters discussed in this

section, that does not seem likely to have caused the scheduler to have found the

wrong longest path.

136

12.3. Run time performance, for fewer cores

At the other extreme from a very large number of cores, there is the case of just a

single core to execute all the tasks. In this case, the off longest path tasks in the

task graph cannot, of course, be processed in parallel with the on longest path

tasks but obviously will have to be processed at some point by the single core to

allow child tasks, including those on the longest path, to become ready tasks.

The result therefore is that these off longest path tasks will force gaps between

the execution of the on longest path tasks, thus making the overall execution time

for the task graph longer than the length of the longest path. That is perhaps an

overly elaborate explanation for this case of the tasks all just being processed

serially on the single core – however, the “forcing gaps” language helps with the

intermediate regime also discussed in this section, as well of course with the high

messaging latency case for many cores that was discussed in the previous

section. So, in this other extreme, serial one core case, the number of taskdone

and gettask message effects to count towards the slowdown is therefore actually

now equal to the alarming number of the total of the tasks, so as given by

Equation 1, NG = (n+1) (2n+1) / 6, rather than the number on the longest path of

the task graph per se, as given by Equation 3, 3n-2, as was the case in the

previous section for when there were a large number of cores available.

Returning for a moment to the limit of a large number of cores, after a certain

number of cores, having extra cores will be superfluous, because, for a finite task

graph, both the number of cores occupied by tasks and the maximum number of

tasks that can become ready tasks on completion of a task, and thus requiring

further cores, are finite at any point in time. Below that number, there may,

however, still be a regime down to some minimum number of cores in which the

tasks on the longest path are still processed without pause, i.e., without the off

longest path tasks forcing gaps between the on longest path tasks.

137

Figure 13 – Task graphs squeezed by not enough cores

Figure 13 illustrates this. Another exemplary task graph is shown at mark X4 with

arrows for its dependencies. This task graph has tasks on the longest path, again

in red, that are each of 5 units in duration and, and away from the end tasks,

those tasks each have 3 tasks of 1 unit duration constrained by dependencies to

run in parallel with that longest path task and are not constrained with respect to

each other so are able to run in parallel with each other. i.e., these 3 off longest

path tasks all just have a dependency on the previous on longest path task, and

the next longest path task is dependent on all of them.

The task graph is laid out at mark X4 to show how it would execute in time on a

large number of cores; at each stage both the longest path task and its 3 parallel

tasks become ready tasks at the same time and are all immediately run on

respective cores. It can be seen that a fifth core, or any further additional core, is

superfluous. The number of messaging effects to take into account here for the

overall task graph execution time is now again equal to the number of tasks on

the longest path, as discussed in section 12.2.

The execution with just 2 cores is shown at mark X2 for the same task graph. The

dependency arrows are omitted for clarity. Here, for each of the on longest path

tasks, one core will process the on longest path task and the other core will

138

process its respective off longest path tasks, in some order or other, and the

latter will finish first. So, when an on longest path task completes, the next on

longest path will execute immediately on one core, since it has priority6, and one

of its respective 3 off longest path tasks will execute on the other core, while the

other 2 will queue. This second core will then execute those 2, in some order, but

will then again idle after because the queue is empty, again until the current on

longest path task finishes and the next on longest path task and its 3 parallel off

longest path tasks become ready tasks. Thus, for this task graph it will be

processed overall in exactly the longest path time from using a large number of

cores right down to only 2 cores. 2 cores is the lower limit for such processing in

the time of the longest path since, of course, for a single core all the tasks must

process serially, in which, as discussed, off longest path tasks force gaps

between at least some of those on the longest path.

A slightly different example is given at marks Y3 and Y2. This is as the last

example but where the off longest path tasks are now of 2 units in duration,

rather than 1. As it has the same dependencies as for example X, at each stage

the longest path task and its parallel task become ready tasks at the same time.

The longest path, is still favoured by the scheduling algorithm, i.e., each 5-unit

duration task is immediately scheduled on becoming a ready task. In the case of

3 cores, shown at mark Y3, the other two cores immediately process one each of

the 3 off longest path tasks and then, next, one of them then processes the

remaining one. The 3 off longest path tasks are all completed before the 5-unit

task on longest path task completes. So, again, the task graph is executed

overall in the length of the longest path. However, 3 cores is the minimum

number for that to happen for this task graph.

With just 2 cores, as shown at mark Y2, at each stage when the on longest path

task and its parallel tasks become ready, the on longest path task is favoured and

so executes immediately on one core. The other core executes the 3 tasks in

parallel with it, but of course this is the only core left, so they will execute serially

6 in QuickSched and presumably in the rules of any other sensible scheduler.

139

on it and will take a total of 6 units of time. The result is that the next 5-unit

duration task on the longest path can therefore only start 1 unit after the end of

the current 5-unit task.

So, where there are only 2 cores this task graph will take longer than the length

of the longest path to execute. The longest path tasks have been forced apart,

having a gap of 1 unit between them. Thus, for this task graph the minimum

number of cores at which the task graph executes in exactly the longest path

time, and at which adding more cores makes no difference, has been found.

For task graph Y for 3 cores the number of messages to take into account for the

effect on the overall execution time is again the number of tasks on the longest

path. However, for 2 cores this is no longer the case. To determine the number of

messages affecting the overall execution time, one now has to trace a path down

the tasks contiguous in time, i.e., avoiding any gaps on a core’s timeline, but

where one may move between cores from one task immediately to the next. In

the case of Y2 this starts with the red task on core #1, then passes through all 6

black, off longest path tasks on core #2 and then back to core #1 for the final

task.

Determining the number of messages on this contiguous critical path would, in

general, require a simulation, or other modelling, of the scheduling. However for

this small and repeatingly structured task graph it is interesting to note the

similarity in layout between Figure 13 at mark Y2 and Figure 12 at mark C.

Remember that Figure 12 is concerned with the task graph per se, unconstrained

by the number of cores. However, one could draw in in Figure 12 two dashed

vertical lines for two cores through the two columns of tasks, which have been

conveniently arranged for the purpose, to complete the analogy. In Figure 12,

what constrains each set of three tasks to run serially within itself is the serial

dependencies of the tasks between them, while in Figure 13 there are, however,

no such dependencies (they may run in parallel with each other) and what

constrains the tasks to run serially is that there is only one core to run them on.

So, the lack of cores has in a sense created dependencies between the parallel

tasks – they must run serially (but their order is not constrained).

140

(Note that the colouring of the sets of 3 tasks differs between Figure 12 and

Figure 13. In Figure 12 they are on the longest path of the task graph per se but

in Figure 13 they are not, and it would not help in the scheduler to somehow

designate them as such; if given priority over the unit task, two of them would

occupy the two threads, with the 5-unit task following, resulting in longer overall

operation.)

This perhaps suggests an alternative to step-by-step event simulation to obtain a

prediction for the overall execution time of a task graph. Small sets of parallel

tasks could, for the calculation be amalgamated into larger tasks (which in effect

is adding serial dependencies between them). But then again, for example, 3

parallel tasks would have 3 alternative forms by width, in terms of number of

cores, and corresponding duration. In the cases previously mentioned in this

section the number of cores available is known; it is set by the total available,

less 1 for the longest path. But for larger task graphs the number of cores

available would be set by parallel blocks of tasks on other cores, which would

have their own set of possibilities for their shape. Further the process would be

hierarchical, amalgamating these in turn into larger blocks, while fitting them into

the number of cores available and taking into account the different possibilities for

the shapes of each block. So, at first sight it appears that the complexity of this

could well be greater than the step-by-step event simulation.

Another interesting case is for forms of task graph that are not particularly

constrained by dependencies, to the extent that the available cores always have

ready tasks that can be run on them, so the cores are always occupied and never

idle. A large number of embarrassingly parallel tasks of the same size,

unconstrained by dependencies between themselves, and having a number that

is a multiple of the number cores would clearly be such a case. Here, the time

taken to run the task graph is equal to the total number of tasks times the

execution time for one task, divided by the number of cores. If this behaviour

remains true as the number of cores increases, then this is perfect strong scaling.

In this case, something strange has happened to the longest path through the

task graph per se: it is no longer single and has as many alternative branches as

there are tasks, with each longest path consisting solely of a respective task.

141

Fortunately, the number of messaging effects to take into account for the overall

execution time is trivial to find: each core will process, without gaps, a number of

tasks equal to the total number of tasks divided by the number of cores. That

number is the number of tasks to take into account and it is the same for each

core. (So, for small departures from the tasks all having the same size but where

all cores are kept occupied, the number of messages to take into account would

be the largest of the number of tasks processed by each core. However, that

would be harder to predict with increasing latency since that would cause

rearrangement of the tasks on the cores.)

12.4. Performance modelling conclusions

The models of task graph building and execution here are applied in the

discussion of the results of the experiments with the QR factorisation example in

Chapter 13, where the importance of the messaging time borne out. So

messaging time is an important aspect of such a model. It was noted at section

8.1 that the QR factorisation has task kernels that will execute in a very stable

amount of time; a more general model of application to other problems should

include a model for the distribution of the execution times of each kind of kernel.

These run time models may perhaps form the beginnings of predicting progress

through the task graph as discussed in the final chapter.

142

143

13. Experimental Results and Discussion

13.1. Parameters for main experiments

The main experiments were runs of the task based QR factorisation code using

my remote scheduler Qsargm based on my Argmessage RPC library and using

the general arrangements set out in Chapter 11.

Two different parameter sets were used, defining two kinds of experiment, as

discussed in section 11.6. In a first, the “set C” experiments (designated “C” and

“C3” in the archive), both the number of threads and the matrix size parameter n

were both varied according to the parameter specification:

[Opt(‘T’, [1]), Opt(‘r’, [1,50]), Opt(‘t’, list(range(1,11))),

 Opt(‘x’, list(range(1,9))),

 Opt(‘k’, [32]), Opt(‘S’, [99,0]), Opt(‘v’, [‘no’])]7,

and transform:

{(‘x’, N): [(‘m’, N), (‘n’, N)] for N in range(1,129)},

Therefore, this specifies the performance of 1 and 50 repeats of the experiments,

for each of 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 computational threads, with a tile size of

32 by 32 elements, for each of the original and experimental schedulers. Each of

these combinations were generated for each of a dummy parameter x, having

values of 1, 2, 3, 4, 5, 6, 7 and 8 which controlled the tile count parameter n so

that the matrix had n by m tiles where n = m.

Further the argument set used for each run of set C was that (in the file

QR_args_set9.txt), had 4 outer repeats of that.

With the S parameter being the rightmost in the specification, that meant that

each experiment having otherwise the same parameters was first done with the

control scheduler and then was immediately repeated with the experimental

scheduler. This attempts to provide the control and experiments with the same

environment, particularly the same CPU clock speed (see section 8.1).

7 The Python range function does not include its upper limit argument in the range produced, so

these ranges are the same as those given in the table below.

144

So, in summary, this parameter set is a grid of experiments, of kernel thread

counts against numbers of tiles, with fixed tile size and one server thread. This

provides a general survey of the performance of the code.

A second, “set F” of the experiments explored the effect of size of the tiles used

in the QR factorisation on the performance of the scheduler. This was generated

using a parameter set file (QR_args_set21.txt), which was 4 long term repeats of

the parameter set generated with the specification:

[Opt(‘T’, [2,4]), Opt(‘r’, [50]), Opt(‘t’, [1,2,5,8,10]),

Opt(‘y’, list(range(3,8))),

Opt(‘S’, [99,0]), Opt(‘v’, [‘no’])]

with transforms applied of:

(i) {(‘y’, N): [(‘yy’, N), (‘k’, 2 ** N)] for N in

range(2,11)}

and then

(ii) {(‘yy’, N): [(‘m’, 2 ** (log2elements//2 – N)),

 (‘n’, 2 ** (log2elements//2 – N))]

 for N in range(2,11)}

where log2elements is a constant 20.

Therefore, this specifies the performance of 50 repeats of the experiments for

each of 2 and 4 server threads, for each of 1, 2, 5, 8 and 10 computational

threads, for each of the original and experimental schedulers. Each of these

combinations were generated for each of a dummy parameter y, having values of

3, 4, 5, 6, 7 which controlled both the tile size parameter k and the tile count

parameter n, in order to keep the total number of matrix elements constant. So,

the tile size parameter k means that each matrix tile has k × k elements. The (k,

n) pairs generated are below in Table 13, together with the total number of tasks

and the number of tasks on the longest path through the task graph.

145

k n Total task count

(n(n+1)(2n+1)/6)

Longest path

task count

(3n-2)

Tile size

(kiB)

8 128 707264 382 0.5

16 64 89440 190 2

32 32 11440 94 8

64 16 1496 46 32

128 8 204 22 128

Table 13 – Set F (k,n) pairs and associated task counts

So, in all set F experiments, the matrix being factorised had 1024 × 1024

elements (hence the value of the constant log2elements). Thus, the problem size

is a constant for all the experiments in Set F and all that differs is how the

problem is divided up into tiles. The experiment was run on the jupiter and thor

systems.

The resulting graphs for the various timers are discussed in the remainder of this

Chapter.

146

13.2. Timer taskgraph_build_time for Set C

Figure 14 – task graph build time - local host geometry (thor005) – against threads

Figure 14

 is a plot of the task graph build timer of the set C results against the number of

threads allocated, with two makers for each set of 50 repeat sets, which are a +

sign for the mean and a three-point star for its minimum. The tile count parameter

n is indicated both by colour, as noted in the legend box, and a label equal to n.

The control experiment of the original experiment is in the left panel and the right

is for the Qsargm scheduler.

147

The reason for plotting the minima of the result sets is that in reviewing the

performance of an algorithm the minimum is sometimes regarded as the best that

an algorithm can do, with variation from that being dismissed as caused by

extraneous events. On the other hand, in this work the code is multithreaded and

many of the delay events are or could be caused by the code’s own operations,

so the noise is intrinsic, and, generally a scheduler is for practical application, so

mean performance figures are more appropriate for determining that.

It can be seen that both the original and remote schedulers, the task graph build

time is generally constant, independent of the number of threads allocated, for

any particular tile count n. This is to be expected because, in the QR example,

the code, in the client, that calls functions to build the task graph is only single

threaded. The parameter threads plotted along the abscissa means only that that

many cores are allotted to the code by the launch scripts; the client code itself

would have to take them up. (For other timers, discussed later, the client code

does take up these threads.)

It is notable that, in general, the outer long-term repeats gave similar results to

each other and so were reassuring that the experiment is generally stable and

repeatable. It was also reassuring that the single repeats (not shown here)

appeared to be consistent with the 50 repeats, indicating that there is no effect of

repeating, or not, the experiment.

Figure 15 – task graph build time – local host geometry (thor005) – against tile count parameter n

148

Figure 15 is for the same data as Figure 14 but plotted against the tile count

parameter n, (so including experiments for all thread counts). Again, there is a +

sign for the mean of each set of 50 and a three-point star for the minimum. The

general form for both the control and experimental scheduler is increasing, and,

with the exception of the control (row 2, column 3) between n = 6 and n = 7,

increasing faster with n. The nominal number of client threads is not distinguished

in the graph because the task graph build was single threaded. Again, this

general form is to be expected, scaling with the number of tasks, as was

explained in section 12.1, with reference to Equation 1.

The most significant feature of these plots is, however, that for the experimental

Qsargm scheduler the task graph build time is much slower than the original

scheduler, more than 10 times slower. (Note the different scales on the ordinates

between the left and right panels.) That this is due to the much-increased

messaging time is confirmed in detail in the next section, section 13.3. The trend

with increasing message time associated with changing the client-server

geometry is, however, apparent from Figure 16.

Figure 16 – Set C – Collected taskgraph_build_time – ratio to control

Figure 16 combines, respectively in the left and right panels, the results for the

third and first machine sets of Table 10, so for the client on jupiter031 and

thor005 respectively, for all the geometries. (Some of the runs for the jupiter001

set failed to complete, i.e. exceeded the maximum 12 hours allowed for a job on

Thor machines

Jupiter machines

– client on jupiter031

149

the cluster, and were omitted from the results on that ground. The failed results

were not inspected and so were not rejected on the basis of the values they

contained, and those that did complete, although then are not shown, are

consistent with the jupiter031 set; they have the same machine specification.

The value plotted is now not the absolute value of the task graph build timer but

the ratio of the minimum of that timer for the experimental Qsargm scheduler over

the control QuickSched scheduler. The graphs are plotted against the number of

tiles parameter n (i.e. there are n × n tiles). Different markers have been applied

for the different geometries as follows in Table 14.

Geometry Marker

Local host H

Local BlueField B

Remote host h

Remote BlueField b

Table 14 – Geometry marker letters

The thor system machine set, in the right panel, shows some clear separation by

geometry, with the geometries occurring in the order of their message latencies

as shown in Table 8. For the jupiter system, in the left panel, the separation is

between the local host geometry, the lower graph, while the remote host and

local BlueField graphs are similar to each other, with an upper graph of the

remote BlueField being separated again, which is more or less how the OpenMPI

latencies for this system vary – to fit the latencies exactly the remote host (‘h’)

marker should be at the same level as the remote Bluefield (‘b') . These graphs

therefore further confirm that the task build appears to be dominated by the

messaging overhead. A more detailed confirmation is given in section 13.3.

The thor machine set, for the non-shared memory messaging geometries, shows

a decrease in the ratio with the size of the task graph. (For the jupiter machine

sets this is not so clear.) The shape suggests amortisation of a one-off cost in the

experimental scheduler. Curiously, this is not there for the local host geometry

150

(the bottom band), which has a roughly constant ratio except for the smallest

values of n where the ratio is a little less, suggesting that the one-off cost is

related to setting up the messaging across an actual messaging link, rather than

in shared memory.

A final point is that the ratio is a little less for the BlueField cards for n = 5 than for

its neighbouring values. This might suggest perhaps that the pattern of messages

for building that particular task graph may have a more efficient pattern of overlap

of messages in these cases. Better overlap of messages would be a potential

explanation of the shape of the for the non-shared memory messaging

geometries.

This problem of a vastly increased time to build a task graph is clearly not

tolerable in a practical system (for relative durations of the task graph build and

run times see section 13.5) and how the problem can be resolved has been

considered and set out in the next Chapter.

13.3. Task graph build time dominated by messaging

Considering now just the experimental Qsargm scheduler, for each task the

messages sent from the client to the server are one for each qsched_addtask()

and one for each of the additional calls listed in section 12.1. It might be expected

that the additional to calls do not have such a significant latency, seen from the

client, compared to qsched_addtask() itself, because, in contrast to the latter, no

reply message from the remote task scheduler server is involved. (See in the

server adapter code file for Quicksched (files qsargm_adapter0.h/c in 0) that

function qsargmadapter0_addtask() has a return type of struct

argmessage_message*, whereas qsargmadapter0_addlock(),

qsargmadapter0_addunlock(), and qsargmadapter0_adduse() all have void return

types, and so the scheduler server does not return a message to the client for

those.) This is borne out by the results as follows.

Therefore it could be guessed that the calls to qsched_addtask() would be the

most significant element in the task graph build time, and this turns out to be

correct. Taking a matrix of 8 × 8 tiles as an example, 204 calls are made to

qsched_addtask(). In Qsargm, the buffer size for messages between the client

151

and server was generally between 24 and 48 bytes. The Argmessage code used

here used MPI_Send / MPI_Recv for the messaging. According to the

measurements made with the OSU point to point message latency benchmark

(Chapter 10), which uses those same MPI message functions, each message

round trip for a qsched_addtask() should take 2 × 0.5 μs for that size of message.

In building the task graph for an 8 × 8 tile matrix the OpenMPI messaging for

qsched_addtask() alone (not counting the small time for processing of the call at

the server) should take 204 calls × 2 × 0.5 μs (Table 8, Chapter 10), so about 200

μs in total. In the right panel of Figure 15, the minimum task graph build time for a

matrix of that many tiles is around 500 μs (the three-pointed stars marked with an

‘8’), meaning that roughly nearly half the task graph build time is taken up by the

OpenMPI messaging in qsched_addtask(). Given the number of calls to the other

task graph building functions, i.e., the ones that do not need a reply, the

conclusion is that those calls do not contribute quite so strongly to the total build

time, probably overlapping with each other.

Table 15 tabulates rough figures for the minimum task graph build time for the

8 × 8 tile example against a total of an estimated round trip message time for the

calls to the qsched_addtask() function alone, estimated from the benchmark

round trip time, for the various geometries.

152

Experimental

scheduler

location

(Client was on

thor005)

Minimum task

graph build

duration 8 × 8

tile example,

read from

subplot(1,4)

(μs)

Estimate of time for

qsched_addtask()

calls:

204 × 2 × benchmark

message latency for

32 byte message

(μs)

Roughly

estimated

proportion of

build time taken

by

qsched_addtask()

messaging

Local host 500 200 40%

Local

BlueField
1200 600 50%

Remote host 1000 500 50%

Remote

BlueField
1400 700 50%

Table 15 – Task graph build time estimates

Since that for each qsched_addtask() there were also several messages from the

client to the server that do not have a reply, which also contribute, but each not

as strongly, the conclusion to be drawn is that in all geometries the task build

time is dominated by messaging, and within that the main contribution is from the

round trip necessary for the qsched_addtask() calls.

13.4. Prepare Timer

The next stage in the task graph processing is the prepare stage; once the task

graph is built the user code calls qsched_run() and that in turn calls

qsched_prepare() as a preliminary step. qsched_prepare() begins with respective

sorts of three tables of the task graph’s representation (the tables deps, locks,

and uses), which proceed in parallel on respective OpenMP threads. That is

followed by several stages that are all processed serially on a single thread.

Quoting from the comment lines in the code of the original QuickSched:

 “link the locks and unlocks”,

 “Init the queues”,

 “set the waits”,

153

 “sort the tasks topologically”,

 “set their weights, re-setting the waits while we’re at it”, and

 “enqueue the non-waiting ones”.

So, there is a portion, the sorts, that should benefit from the scheduler being

allocated multiple threads, which can, of course, happen for both the original and

experimental schedulers.

For the original scheduler, the timer is between the beginning and end of the

qsched_prepare() function, inside the function. For the experimental scheduler

the timer is inside the function qsargmproxy0_run_openmp() on the client

sidearound the prepare message sent to the server and its reply. The prepare

action does not need a reply but one was provided in the code so that this did

not overlap with the subsequent task execution giving the timers for both of those

a clear meaning. In practice removing the message would allow such an overlap,

which may save a little time.

The next section, 13.5, concludes that the prepare stage is only as small part of

the build-prepare-run process, and further there was also a bug in the code that

meant that the table sorts for the experimental scheduler only operated on a

single thread. Nonetheless there was some useful information to be had.

Figure 17 – prepare timer – thor system - local host geometry

154

Figure 17 shows the prepare timer for the local host geometry for the thor system

from the Set C results. The times in this plot were scaled to seconds using the

ticks per second values presented in section 11.7. Each marker is the minimum

of a set of 50 repeats. Markers for different values of the tile count parameter n

are distinguish by colour and by the value of n plotted next to the markers. The

results for the original scheduler are in the left panel and those for the

experimental. These show that for each tile count parameter n the prepare timer

is roughly constant with a small increase with the number of threads. It was also

noted (from a plot of the variances – not shown) that the experimental scheduler

is less noisy for this timer than the original.

Figure 18 – Set C – Collected prepare timer – ratio to control

Figure 18 is the ratio of the experimental prepare timer to the control and gathers

the results from the jupiter and thor systems, in the same manner as Figure 18

except there are markers per thread count in view of the weak dependency on

thread count here. The markers are again as given in Table 14.

An interesting outcome here is that for the local host geometry (‘H’), the remote

scheduler is a little faster than the control for the thor system and for smaller

problem sizes for the jupiter system.

The BlueField geometries are slower. For the thor system, at large n, there is a

clear banding between the Bluefield geometries and the host geometries. This

will be because the prepare stage is computationally expensive and the BlueField

cores are less powerful than those of the hosts. (The single message pair only is

Thor machines

Jupiter machines

– client on jupiter031

155

a small addition to the larger problem sizes.) However, the insignificance of this

slowdown is discussed in the next section.

156

13.5. Relative lengths of build, prepare and run stages

The typical durations of the build, prepare and run stages of the QR factorisation

are set out in Table 16, taking as an example the values from the set C data, for

8 × 8 tiles, for the thor system. (The values were read off graphs by eye; the data

for the run stage is discussed in the next section.)

Stage duration

for 8 x 8 tiles

(s)

Control Local host

remote

scheduler

Approximate

thread count

dependency

Build stage 5×10-5 1×10-3
Independent of

thread count

Prepare stage 2×10-5 1.2×10-5
Independent of

thread count

Run stage
6.5×10-3

→ 1.5×10-3

7x10-3

→ 2×10-3

For 1 and 10

threads

Table 16 – Relative durations of build, prepare and run stages – thor system -set C

This shows that for the original, control scheduler the build and prepare stages

are insignificantly small compared to the run stage, being around 100 times

shorter. The performance failure of the build stage for the experimental scheduler

makes the build stage of significance, being almost of the same order of

magnitude as the run stage. This however means that the schemes for reducing

the build time for the experimental scheduler set out in section 14.3 would be

worthwhile. Moreover, those arrangements could achieve a build time, without

messaging, similar to that of the control scheduler; to that would then have to be

added some O(1) messaging time for the en bloc arrangements, which has a cost

of O(10-6s), so in total that would still be very much less than the O(10-3s) for the

run time, making the build time insignificant again.

Insignificant build and prepare times compared to the run time are the sensible

regime in which to operate, because build and prepare are overhead to the actual

calculation, but even if building the tasks was a much more complex operation

than for the QR factorisation (for example as in the Swift code) and so were more

of an overhead, the messaging here will be relatively less of a burden (because

157

more complex means more calculation to make the same size of task graph). So,

the revised approaches of the experimental scheduler discussed remain valid for

such codes.

The results discussed in the next section, section 13.6, concerning the task graph

run time, are therefore the most important to considering usefulness of the

approach of this thesis.

13.6. Task Graph Run Timer for Set C

The time taken to run the task graph is the other key performance measure for

the experimental scheduler. (As discussed in section 13.5, the time taken to build

the task graph will be small by comparison for many application codes, if

improvements mentioned there are made to the experimental scheduler, and so

the task graph run time could be the key performance measure.)

Figure 19 – Set C3 – task_graph_run_time timer – thor – local host scheduler

Figure 19 shows the run timer against number of threads, for a range of the

number of tiles parameter, with the results for the original scheduler shown in the

left-hand panel and those for the Qsargm scheduler in the right, for the local host

geometry. The minimum of each set of 50 repeats has a three-point star marker

and the mean has a plus sign. The tile parameter n for each marker is

distinguished both by colour and by the value of n marked close by.

158

The code for the running of the tasks is, unlike the task graph build code,

multithreaded, and the general form of the graph is as expected for that: as the

number of threads executing tasks increases, for a fixed tile count parameter n

and hence for a fixed initial task graph, the overall time taken to execute the task

graph falls, on inspection perhaps approaching a limiting value. In detail, the

original control scheduler perhaps reaches the limit for smaller values of n.

The left-hand panel for the other geometries (not all shown) showed very similar

results, because, of course, the control experiment operates in exactly in the

same way for all geometries.

There are, of course, general reasons to expect an approach to a limiting value.

This is the situation considered by the well-known Amdahl’s Law [77]. Amdahl

observed that if a program has a serial part (always true) and a parallel part then,

while the execution time of the parallel part might be reduced further and further

by using more and more processors, the serial part will not be, and so the time to

execute the serial part must be a theoretical lower limit to the execution time of

the whole program. (One will not practically achieve that limit because breaking

down the work into more and more parallel pieces will generate organisational

overhead.)

Section 12.2 discussed the minimum time to execute a task graph being that of

the longest path through the task graph. Thinking about that in the context of

Amdahl’s Law, it is the longest path from the root task to the last task that is that

kind of minimum for the parallel processing of tasks in a task graph. (While the

tasks along that path may be executed on different cores, they still have to occur

in order, each starting after the last has finished, so in that sense serially.) So,

Amdahl’s law may well account for the minimum that approached by each size of

task graph.

159

Figure 20 – Set C3 – task_graph_run_time timer – thor – local BlueField scheduler

Figure 20 is as Figure 19 but for the local BlueField geometry. The main point to

note is that, for these and the other two geometries (not shown), the form of the

plot for each fixed size task graph is the same form as for the original scheduler,

but slower, in general just a little slower. This is quantified in section 13.8.

A detail of both Figure 20 and Figure 19 is, however, increasing variation in the

run time at or approaching 10 threads for the experimental scheduler, which is

not present for the control scheduler. At this point there will be more threads than

tasks available so a lot of redundant messaging and many potential conflicts

between requests for tasks. To gauge the number of tasks, consider the

diagrams in Chapter 8 showing the task graphs for the QR factorisation; in

particular, in Figure 9, which is for the case of n = 4; on inspection it appears from

the dependencies that for each of the 4th and 5th rows, the longest rows, all the

tasks of the row could fall to be being processed at roughly the same time, if

there are enough threads, and these rows are 5 and 6 in number, so a little larger

than n but the other rows are 4 and less in number. 10 cores is, of course,

greater than the largest n, n=8, tested in these set C experiments.

However, later experiments go well beyond n = 8, so it was checked how the

maximum number of tasks on the row of the QR factorisation task graph scales

with n. This was checked with the expedient of having the dot program, which

drew Figure 8 and Figure 9, output a list of coordinates on the page of where it

160

will plot the tasks. From that a short script collected the coordinates and grouped

them into rows, so that they could be counted. The results are in Table 17:

Tile count

parameter n

Tasks in longest

row of graphviz

plot

4 6

8 21

16 80

32 297

Table 17 – Tiles in longest row of graphviz plot of QR factorisation task graph

This shows that the longest row of the task graph found, so a rough estimator of

how many threads could operate in parallel on the task graph without any being

unused, scales faster than n (so, that it was roughly equal to n for n = 4 was a

coincidence). On this simple model it appears possible to keep a great many

threads occupied.

An oddity in Figure 20, for the local BlueField geometry (and for the other

geometries but not the local host geometry Figure 19) is that the case of 7

threads, for the experimental scheduler, there is a very large variation in the time

taken to run the task graph. Contrastingly, for the local host geometry there is

increased variance for both 2 and 4 threads; there is a hint of this visible in Figure

19, but it is clear in scatter plots and plots of the variance of the timer (not

shown).

Such operation may be highly inefficient but of course in practical situations the

usual objective would be to use a large number of threads, so this is not much of

a concern.

161

Figure 21 – Set C3 – Collected task graph run time – ratio to control

Figure 21 quantifies the slowdown compared to the original scheduler. In the

same way as with Figure 16, this collects the thor machine set, on the right, along

with the similar data for one of the two jupiter machine sets, on the left, and

shows the ratio of the run timers for the experimental and control schedulers.

Again, the markers are as listed in Table 14. The top row is the plot against

threads, while the bottom row is against the matrix tile count parameter n. As can

be seen in the legends only a subset of the n parameter values, or a subset of

the thread counts have been plotted to provide visual clarity.

This Figure shows that the slowdown ranges from over 2.5 times in some cases

down to only a few to 10 or 15 percent in others. The former is of course not

practically useful at all, but the latter is very encouraging. The graphs show that

the larger task graphs (see the top row against n) have better performance, i.e.,

less poor for the experimental scheduler. This region is more what would be

wanted in practice, where task graphs can be much larger. (The task graph sizes

162

used on the experiment were limited by consideration of repeating each

experiment 200 times in order to gather significant numbers of samples in time

spaced bursts.)

The upward trend in slowdown with number of threads is more clearly brought out

in this Figure. This is a disadvantageous phenomenon in practice, since more

modern processors have even larger numbers of cores than used here, but again

closer inspection of the graphs suggests that the trend is less strong while the

number of threads is suitable to the problem size, i.e., not more than the number

of tasks available at one time.

It is also clear that the slowdown is strongly dependent on the messaging time,

so the local host geometry (marker H), with the smallest latency, being better

than the others. The future advance of technology will be favourable here also.

BlueField cards are new and are undergoing active development to new

generations (another generation will at the time of writing be available shortly)

and latency between the card and the host is doubtless being worked on, so one

would have an expectation that the next generation of BlueFields would perform

better.

There is also of course the hope that optimisation of the arrangement of the

messaging in the experimental scheduler could improve things further, especially

for larger numbers of threads.

These results mean that the central proposal of this thesis, moving the scheduler

from being within the compute threads to a remote separate process, was a

success, or at least not a discouraging failure. However, it is clear that an

appropriate region of operation needs to be used, and indeed the set F data,

discussed in section 13.10, pursues that and produces greater success.

The run time performance and its relationship to the messaging latency can be

quantified further and that is done for the set C data in section 13.8.

163

13.7. Run timer results using sub optimal scheduler hints

An initial bug in the correction of the QR factorisation code provided some code

which preformed the QR factorisation code correctly – it had the expected task

graph – bit which did not have the intended locks and uses specifications, which

are there to promote allocation of a task to a core that already has data for the

task. Results were obtained for this code and the following were noted.

• the absolute task graph run times are very similar

• for the thor system, with the unintended locks and uses there was larger

variation in run time for 9 and 10 threads

• for the thor system, with the unintended locks and uses the larger variation

for n = 7 was not present

An explanation for the first point become apparent in section 13.9. The latter two

points suggest that some combinations of task graph size (determined by n) and

thread count can have an unstable layout of the tasks in time and across the

cores between runs and that instability is sensitive to the hints given to the

scheduler as to where to place a task.

13.8. Quantification of messaging overheads for run time

The performance models of Chapter 12 help analyse the effects of messaging

delays on the execution of a task graph.

Starting with the case of a single core for executing the kernels, in this case the

total task graph run time is the sum of the time to execute all of the tasks plus the

overhead of allocating the next task after each of those and recalculating the

queues. This provides a basis for numerical comparison between the original

QuickSched and the experimental Qsargm remote scheduler runs, because the

messaging adds to that overhead. Also, the case of a single core is quite clean in

that there are messages only from that core, so clashes between messages from

different cores do not occur.

164

Figure 22 – Set C single thread run timer (s) against n
– data for thor system fitted function of Equation 1

Figure 22 is a scatter plot of the run timer of the Set C data for just the single

thread data for the thor system fitted to the function of Equation 1 for the number

of tasks in the QR factorisation task graph, NG.

165

The constant of proportionality needed to fit the results was noted for this and the

other machine sets for both the original and experimental schedulers; this

constant is the mean run time per task. The results for the original scheduler (not

shown) were very closely the same for each geometry because, of course, the

original scheduler does not communicate with the remote process, so the

geometry is not relevant. For both the original and the experimental scheduler the

fit in all cases is extremely good. That however is not miraculous given the

cleanness of the one core operation. The fit was carried out using the curve_fit

function from the scipy.optimize library [78].

The difference of the mean run time per task value given by the fit for the

experimental and original schedulers is given in the final column of Table 18 for

the different machine sets and geometries. That Table also includes the single

message latency data from Chapter 10. For the thor system the machine sets

were the same ones for the latencies and the fit result, but for the jupiter system

the machines used were not the same (the systems being unavailable), but of

course the machines within the jupiter system are similar, so the data can be

used for comparison. In each case, it can be seen that this excess of the fitted

value for the remote scheduler per task is something over twice the message

latency. (The 32- and 64-byte times are similar and as noted previously are in the

region of the message lengths used in Argmessage.)

This confirms therefore that the remote scheduler excess overhead is largely

accounted for by the messaging between the client thread and the server, as

follows. Recall that at the end of each task the thread first sends a task done

message and then a get task message and then waits for the scheduler to

process those and messages back the identity of the next task for it to execute.

The get task messages out and back will cause a slowdown of two message

latency times. The task done message does not cause an entire third one

because it overlaps with the outgoing task done message. There may also be a

contribution to the overhead caused by the more complex decoding of these

messages than the simple function call equivalent in the original scheduler and,

for the BlueField scheduler, this will not process the task done and gettask calls

166

as quickly as the host processors since the Arm processor used is not as

powerful as the hosts.

Single message latency

or, final column,

scheduler excess per

task, in µs

Cluster and geometry

Minimum

32-byte

messages

64-byte

messages

Remote

scheduler

excess per

task8 over

original

scheduler

Local host scheduler

thor005 to thor005 0.38 0.50 0.51 1.11

jupiter029 to jupiter029 0.30 0.48 0.49

jupiter031 to jupiter031 1.24

jupiter001 to jupiter001 1.27

Local BlueField scheduler

thor005 to thor-bf05 1.39 1.48 1.56 3.80

jupiter029 to jupiter-bf29 1.35 1.45 1.54

jupiter0031 to jupiter-bf31 4.25

jupiter001 to jupiter-bf01 4.97

Remote host scheduler

thor005 to thor006 1.20 1.23 1.31 2.88

jupiter029 to jupiter030 1.66 1.73 1.81

jupiter31 to jupiter32 3.90

Remote BlueField scheduler

thor005 to thor-bf06 1.64 1.73 1.81 4.31

jupiter029 to jupiter-bf30 1.60 1.72 1.81

Jupiter031 to jupiter-bf32 4.50

Table 18 – Excess run time per task for experimental remote scheduler over original scheduler (µs) for set C

for single threaded task processing

8 Output of the program:

archive:aftermath/aftermath/analyse/H0_run_timer_strategy_differences.py

167

Figure 23 – Set C, thor – excess task graph run time – overlain with performance limits

These excess remote scheduler values per task were then applied to the data

collected for the task graph run time for all the numbers of cores/threads

employed, not just the single core case, as follows. Figure 23 and respectively

168

show excess run time (in seconds) for the Set C data, for the thor and a jupiter

machine set; i.e. the mean, marked with a ‘+’, for all the samples taken of that for

the experimental scheduler minus that for the original scheduler.

Figure 24 – Set C, jupiter – excess task graph run time – overlain with performance limits

169

Each plot is for a different one of the geometries. Each plot is overlain with model

graph lines for two of the operational regimes discussed in sections 12.2 and

12.3. The curved model graph lines are for what would be expected for perfect

strong scaling, i.e., for the case of a task graph whose tasks are so

unconstrained by dependencies that the threads are always occupied, so the

form is proportional to 1/t, where t is the number of threads. This is plotted for

each case of the matrix tile count parameter n. Each curve is scaled so that the

point for one thread has the excess per task given in Table 18, that being the

difference for the experimental and original schedulers’ values found by the curve

fits for the single thread case (Figure 22), times the number of tasks as given by

Equation 1, since for one thread that thread executes all tasks. (Note these

curves do not for a particular value of n meet the respective single thread point

exactly, because the fit was for all values of n, 1 to 8, and not that particular value

of n.) Of course, perfect strong scaling is not expected for the case for the

present QR factorisation task graph, but this model is the best that could occur

for any kind of task graph and so provides a lower bound to compare the result

to. A model line for the actual, dependency constrained, QR optimisation for

smaller numbers of threads is not plotted because to obtain such a model would

require some simulation or complex estimation, as mentioned in section 12.3,

which was not undertaken.

So, while the data points, for small numbers of threads and larger values of n, do

track this overlaid, strong scaling, curve downwards, they of course do depart

from it, i.e., not performing as well as the ideal strong scaling case. This is

intrinsic in the task graph and so is not a bad thing. While in theory the downward

trend should continue, that does not occur in practice; something is degrading

performance at higher numbers of threads. This degradation in performance may

not belong solely to the experimental scheduler. Earlier it was discussed how it

does not seem likely that the pattern of execution of the task graph is not affected

by the increased messaging latency, at least for the QR factorisation. So, the

original scheduler may also be degrading owing to its own messaging and then

the degradation of the experimental scheduler is a scaled up version of that.

170

The horizontal model lines were plotted as the remote scheduler excess per task

value, which of course was for the single thread case, times the number of tasks

on the longest path NL as given by Equation 3, for the various values of n. This

represents the best the scheduler could perform for the QR factorisation task

graph at a high number of threads, so where the task graph runs in exactly the

longest path time, if the excess overhead for the experimental scheduler per task

for large numbers of threads stays the same as it is for the single core case,

which is plainly not being achieved.

Note that the performance cannot be better than the strong scaling case, so only

the section of each horizontal line to the right of its intersection with its respective

strong scaling curve is valid as a minimum conceivable time for overall execution

of the task graph. That does not mean the intersection point is one that could be

approached for the QR factorisation, since its task graph cannot occupy all

threads throughout the execution, i.e., cannot achieve strong scaling. So, the

point at which the longest path limit could be achieved would be at some point to

the right of the intersection.

Earlier it was observed that a cursory inspection of the QR task graph for n = 4

suggested that it has a maximum number of parallel tasks available of around 5

or 6, which would be some indicator of the maximum number of threads that are

useful to process it. Therefore, if the experimental scheduler where working well

at large numbers of threads, it would approach the horizontal model line at some

number of threads close that. Table 17 for the number of tasks in the longest row

of the graphviz taskgraph plot has been recalculated for the values of n = 2 to 8

to give Table 19.

171

Tile count parameter n Tasks in longest

row of graphviz plot

2 2

3 3

4 6

5 9

6 11

7 17

8 21

Table 19 – Tiles in longest row of graphviz plot of QR factorisation task graph for smaller values of n

However, it is clear from the experimental points that the minimum of the longest

path in the task graph, the horizontal line, is nowhere near being achieved.

For an empirical observation from the experimental points in Figure 23 and

Figure 24, noting the point where the excess run time actually starts to increase

with extra threads, this point occurs roughly, as a trend for this range of n, at

where t is about half n. Up to that point the remote scheduler appears reasonably

efficient, and so its performance is probably determined simply by the message

latency. This could be the point at which the task graph is supplying the number

of threads it can and any more threads above this point are superfluous and

causing inefficiency in the scheduler with unnecessary requests. Again, this state

of operation might be confirmed with a simulation of progress through the task

graph plotting its performance on those Figures. (If a simulation did not take into

account the effects of excess requests to the scheduler the performance would

become constant above that number of threads.)

If this number of threads of t being about half n, is the maximum number of

threads that can be fed by the task graph then it is less than number in the

longest row. This might simply reflect that for a lot of the time the task graph has

fewer tasks in its rows than in the longest row, or there may be some interaction

in the task graph that means only part of a whole row can become ready tasks at

one time. There is tension between this and the idea that an infinite number of

threads should ensure, with appropriate priority among ready tasks, that

172

processing of the task graph in the length of the longest path. It would be

interesting therefore to plot progress of ready and executing tasks on taskgraph

plots produced by graphviz, such as Figure 9, to see if there are any more

complex patterns than a simply advancing front down the page.

For the rising section of the data points, it could be that the scheduler is simply

becoming swamped by the number of messages that it is receiving. As the

number of threads increases there are increases in both the number of

messages, leading to the increased chance of messages interacting, and in

complexity for the messaging library to sort messages onto the correct thread.

This interaction between messages is exacerbated by there being only one

channel for the messages to travel along, so messages from the different threads

will have to be serialised along it – if the channel is occupied with a message

from a first thread, a message from another wanting to use it will suffer extra

delay. There may also be an inefficiency in the scheduler of repeated failed

attempts to find a task for threads that cannot be filled.

So, how can performance at higher numbers of threads be improved? Reducing

the message latency per se would of course reduce the chances of interaction

between messages and so improve performance at high thread numbers.

Doubtless the technology is moving in that direction. Another approach is to

reduce the number of messages by reducing the number of tasks, i.e., larger

tasks, but these might have difficulties as being too big for the cache, or being too

few to keep the threads supplied. Some more detailed ideas for improving the

messaging are as follows. On the other hand, a lesson to take is not to try to

supply more threads than can be used.

From the task graphs discussed in section 12.3, particularly Figure 13, or equally

from Figure 9, it is apparent that when a task is done it may well cause several

tasks to become ready at the same time. In the present experimental scheduler

this will result in several get task reply messages being generated at essentially

the same time. These will collide in that only one of these can be transmitted by

OpenMPI at the same time. If a gettask reply message for a task on the longest

path is among them, it could be delayed by the other gettask replies being

173

transmitted first; in the worst case it could be delayed until all of them have been

transmitted. There does not appear to be a mechanism in OpenMPI to give

priority to one message over another.

One might perhaps try to account for this in the scheduler by scheduling the

respective gettask message reply calls at a very fine scale with the reply for the

longest path task first and then delays before sending the others, but even then it

might not be guaranteed that the underlying OpenMPI library and the hardware

would send the messages in the right order (as opposed to the promise to deliver

them in that order). Certainly, this more detailed scheduling could be tried with

the extra processing power allowed by the remote scheduler.

Another superficially attractive idea would be to combine these multiple

“simultaneous” get task reply messages into a single message. This would

eliminate collision between them. However, this just then creates a problem at

the receiving end, which is the kernel processing threads. If the thread receiving

the combined message is that which is going to process the longest path task,

then before it can do that it must first communicate with each of the other threads

to notify them of their new tasks. If the receiving thread is another thread, then

the longest path task thread must wait for that thread to notify it. In either case an

extra communication hop has been added to the wait before the longest path task

can begin processing.

What would be useful here is to change the OpenMPI messaging for a more low-

level library that is capable of sending a single message, containing all the new

task IDs, and respective parameters, but which scatters them, using DMA, to a

respective block of locations for each thread concerned, with the threads waiting

for a new task polling their respective block, until the new task information

arrives. This would be very quick, avoid message collision and, one would

imagine, would be controllable to scatter the longest path task first. The User

Mode Registration of RDMA Core [79] might provide such a facility. Its detailed

suitability has, however, not been investigated, but if it is then it is a very

attractive prospect for Qsargm.

174

13.9. Time spent on kernel processing

Figure 25 – Set C3, thor – time spent in computational kernels – local host scheduler

Figure 25 shows the time spend in the computational kernels for the thor

machines in the local host geometry. In fact all the geometries have the same

form of plot as this, which is the minimum time spent processing kernels is for the

single threaded case, then, as the number of threads increases, the time spent

processing kernels increases, with the rate of increase generally decreasing, or

at least there is an elbow at n = 3. Any difference in form between the

experimental and original control scheduler is not easily discerned and the

magnitudes of the timer appear quite similar between the two.

Comparing this Figure to those for the task graph run time, Figure 19, it can be

seen that for the single thread case that nearly all the run time is accounted for by

the time inside the kernels. This is of course a sensible regime to be operating in,

since scheduling should be a small overhead to the actual calculation.

That both all geometries and original and experimental schedulers have the same

graph form for the time spent in the kernels and have similar values for this timer

is not that surprising since, on the face of it, the scheduling does not explicitly

interact with the internal operation of the kernels; inside the kernels the same

code operates on the same values no matter how it is called. However, how is it

that time spent in the kernels differs between using 1 thread and using many

threads, by a few percent? Recall that the scheduler favours allotting a task to a

175

thread that has recently operated on some of the data that the task will utilise and

that this is to reduce cache misses. This is achieved by having a respective

queue for each core and allotting a new ready task to a queue that has tasks with

data in common with it. However, recall also the scheduler also has a competing

rule, which is that if a core does not have any ready tasks available in its queue,

then it will obtain one from the queue for another core. On being moved from this

other core it is more likely that this core will not have data for its new task in its

own cache and a cache miss will occur, degrading performance. The effect

continues with increasing numbers of threads because the more threads there

are the more often, in general, a core will not have any tasks in its queue,

therefore causing a task to be stolen from another core, with a chance of another

cache miss. The process has a theoretical upper limit, of course, which is that of

all tasks suffering a cache miss for all of their data sets and correspondingly there

will be an upper limit on the time spent in kernels. (In some cases, it might not be

possible for all tasks to cause cache misses, with the result that the upper limit on

the time spent in kernels would be lower than the case of all allocated tasks

having total cache misses.) The form of the graphs of Figure 25 is clearly

consistent with there being an upper limit and cache misses from allocating tasks

to waiting cores rather than waiting to allocate for a cache hit is believed to be the

cause. Further evidence could of course be obtained by using cache miss

counters that are available on the processor. This was not done, however.

(Note that it is not concluded that all task graphs would have a monotonic

increase in the kernel timer with the number of threads, only that that would be

the overall general form; it could be that in some cases the pattern of distribution

of tasks could dramatically change with a small change in the number of threads

and hence have another effect on cache misses. Perhaps an example of that,

some zig-zagging in the kernel time ratio, is discussed later in this section.)

176

Figure 26 – Set C3 – ratio of time in kernels between experimental and original schedulers

As the differences in the time spent in kernels between the experimental and

control schedulers were not easily apparent from plots like Figure 25, they were

investigated by plotting their ratio. This is shown in Figure 26, which again

combines Set C3 results available for two of the machine sets of Table 10; again

one of the jupiter machine sets is on the left and the thor machine set is on the

right; the top row of plots is against threads and the bottom row is against the tile

count parameter n, with the geometry being indicated with the marker letter as

given in Table 14. For clarity of the plots only a subset of the points for certain n

or thread count was used, but the same features are apparent in plots with a full

set and indeed the following comments are made in respect of the full set.

The behaviour is quite complex. While there are differences between the jupiter

and thor systems there are some common features as well. For both, the ratio

shows that, while the kernel timer ratio is generally around 1, there is a significant

proportion, in fact a majority, of the test cases, where, for the experimental

177

scheduler, less time is spent in the kernels than for the original scheduler.

Reduced total kernel time does not always guarantee faster overall run times,

since there are the overheads to consider, but it is generally encouraging.

Comparing the two machine systems, the jupiter system has a concentration of

its ratio results in a central horizontal dense band for both the plots against

threads and tile count parameter n, down from equality to 2% better for the

experimental scheduler. For larger numbers of threads, the larger problem sizes

of n = 4 to n = 8 are included in this band, which is the useful region in practice,

i.e., lots of threads and large problems. For the thor system the band is not so

well defined and in the plot against the tile count parameter n, the band is no

longer horizontal but bows down, having a central portion favouring the

experimental scheduler. So, here for a more limited range of tile count

parameters, from n = 3 to n = 5 or 6, but again for a wide range of threads,

including up to the maximum of 10, the experimental scheduler again has the

advantage.

Another observation from the graphs is that, for both systems, and for both

against threads t and against the tile count parameter n, the graph lines linking

points for the same geometry exhibit much zig-zagging; i.e. there is a

dependency on (-1)n+t.

There are perhaps two possible mechanisms which might cause the advantage

to the experimental scheduler in total kernel time, when it exists:

1. A different layout of the execution of the tasks in time and across the

cores, which might be caused (i) by the different messaging latencies

between the schedulers. Clearly, from the zig-zagging, there must be a

different layout in tasks caused by (ii) increments in n or t. A different

layout of tasks may well have a difference in cache misses involved and

hence a difference in total core time, and this layout could be different

between the experimental and control schedulers.

2. Because, in the experimental scheduler, the scheduler is in a separate

process on a separate core, the scheduler itself does not use memory

belonging to the cores processing the kernels and so will not upset its

178

cache. In contrast, in the original scheduler, a core processing the

scheduler, after its task has finished, on becoming the scheduler will have

to bring all, or parts, of the various of the scheduler’s objects (the task

graph tables, the core’s queue and probably also other cores’ queues (for

work stealing)) into its cache, which may well displace some of the data

that is needed for the next task allocated to the core, thereby causing a

cache miss when that next task is executed by the core, when the

application data might have otherwise been in the core’s cach, negating

the effect of the schedulers’ preference for there to be such application

data in the core’s cache.

Now, these do not necessarily result in an effect on the task graph run time. First,

in addition to the kernel time, there are the overheads to consider, and second,

just because the total time spent in the kernels is reduced it does not necessarily

mean that particular tasks relevant to the overall task graph execution time are

affected, namely those on the longest path, or if relevant those on the contiguous

critical path discussed in sections 12.2 and 12.3 for the case where off longest

path tasks force apart longest path tasks. Further data concerning cache misses

for particular tasks and a log of the particular cores they executed on would be

needed to link the cache misses to overall run time quantitatively. However, both

these effects, 1 and 2 listed immediately before this paragraph, on the cache are

very plausible as the cause of the experimental scheduler having less kernel time

and in turn that producing a faster overall run time than the original control

scheduler, in certain circumstances yet to be discussed. The effect of reduced

kernel time on the overall run time could be quite a significant one because, of

course, in any sensible arrangement the time spent on processing a task is much

larger than the time spent scheduling between tasks.

For the jupiter system, the advantage of the experimental scheduler for 1 and 2

threads, at smaller job sizes n, is particularly strong. It was discussed how, for

smaller numbers of threads, the potential for cache misses caused by other

effects remains high because the task stealing rule will not be operating to its full

extent, so this may be evidence consistent with that.

179

In general, the mechanisms discussed here could well take effect differently

between the two systems, leading to the different behaviour: they have different

message latencies (as measured and noted in this thesis) and have different L3

cache sizes (and potentially structures): the Xeon E5-2697A processors used in

in the thor system have a 40MB Intel Smart Cache [80], whereas the jupiter use

Xeon E5-2680 V2 has only a 25 MB Intel® Smart Cache, and there of course

may be many other differences in the memory system between machines of the

two systems.

Now, it was true that for the Set C3 data none of the cases showed better

performance in overall task graph execution time for the experimental scheduler.

That does, however, mean that these cache miss effects are not significant in

working against the direct effects of message latency. The section 13.10 sheds

more light on the issue.

Another interesting point arising from this applies to the original scheduler per se:

if there are a very large number of cores, for example, as exists in modern

processors, which means that a cache miss is very likely for each task, it may not

be worth the cost in the scheduler of maintaining priority queues for the gain of

saving only an occasional cache miss. Some simpler rule of a single ordinary

queue, or random selection from a pool, might be much quicker and outweigh the

loss of a few avoided cache misses; indeed, it might also reduce cache misses

caused by operating the scheduler in the computational thread, since much less

data will have to be consulted by the scheduler to make its choice of the next

task.

180

13.10. Optimisation of tile size – run time and kernel time for Set F

In general, task-based algorithms will have an internal parameter of the size of

the tasks. Dividing the problem into larger tasks means fewer tasks and fewer

messages; on the other hand, using smaller tasks may mean more opportunities

to fit the tasks into spaces available on the threads. In the case of the QR

factorisation studied here, the task size is directly related to the tile size. So, the

effect of tile size on the task graph run time was investigated.

Figure 27 - Set F2, thor - task graph run time - local host scheduler – against threads

Figure 28 – Set F2, thor - task graph run time – local host scheduler

– against tile count parameter n or equally tile size parameter k

181

Figure 27 and Figure 28 are plots of the task graph run time for the results of the

Set F2 experiments, which were defined at section 13.1, for the local host

geometry, for the thor system. Each marker is the minimum of each set of 50

results. In Figure 28, as it is dependent on the tile count parameter n, the tile size

parameter k is marked along the top axis. The colours of the markers are

supplemented with labels nearby of the n or threads values respectively. The low

variation in the minima for the same parameters means that in many cases some

or all of their four respective markers are overlaid.

From these Figures, it can be seen that many general features of the graphs for

the original scheduler, on the left, and the experimental scheduler, on the right,

are similar. Apart from the n = 128 and n = 64 cases for the experimental

scheduler, the performance increases all the way to 10 threads. These larger n

cases involve the greatest number of messages so one would expect that as the

performance return for more threads diminishes, the overhead of more and more

messages would eventually degrade performance. For both schedulers, at each

of the higher thread counts of 5, 8, or 10 threads, generally both schedulers

perform reasonably well, although from these Figures one can already see that

for larger n the experimental scheduler is slower. Considering the tile count

parameter n, the best performing values for both schedulers are n = 8, n = 16,

n = 32; these all have similar performance, as indicated here by the plotted

minimum of each set. To that group one might add n = 64 for the original

scheduler, since it has almost as good a performance as the others, but not n =

64 for the experimental scheduler where performance is clearly beginning to

degrade.

It is notable that for both schedulers the standard deviation in the run time (not

shown) for n = 8 is generally larger than for the other best performing cases. Here

there are many fewer tasks, so it is imagined that any variation between runs in

how the tasks get laid out on the cores have less opportunity to average out. If

the most stable, repeatable run time were to be needed, then n = 16 and n = 32

for both schedulers are to be preferred. (This is not the case for the two BlueField

geometries where n = 16 and n = 32 have larger standard deviation, that being

there the same as for the n = 8 case.) Although lower numbers of threads are not

182

the general practical use case, it is interesting that n = 8 is better performing for

just 1 and 2 threads, for both the original and experimental schedulers, compared

to the other cases of n.

Figure 29 – Set F2, thor - task graph run time – local BlueField scheduler – against threads

Figure 30 – Set F2, thor – task graph run time – local BlueField scheduler

– against tile count parameter n or equally tile size parameter k

In the local BlueField geometry case of Figure 29 and Figure 30, the high-

performance groups are the same as for the local host geometry. However, the

poor performing case of n = 128 is clearly much slower again for the experimental

scheduler than for the local host geometry. That of course will be caused by the

increased message latency given the large number of messages involved. These

183

patterns are the same for the remote host and remote BlueField geometries as

well (not shown).

It is quite striking that the overall best performing group (i) is the same group for

the experimental and remote schedulers, and (ii) is the same group for all the

geometries of the experimental scheduler.

These observations are, however, explained by all the experiments being, for a

particular value of n, for the same task graph, and so the tasks for these may well

be, for a particular number of threads, generally, laid out across the cores and in

time, in the same pattern. What differs between the experiments of different

geometry or between the original and experimental schedulers having the same

values of n and thread count is, on the face of it, only the message latency. This

will increase the overall run time in proportion to the number of relevant

messages, as discussed in previous sections, and the number of relevant

messages will be the same because that pattern is generally the same. The

original scheduler is unified in this since the calls to the scheduler are equivalent

to low latency messages. Accordingly, all geometries for the experimental

scheduler and the original scheduler have their minimum run times in the same

place.

In sections 12.2 and 12.3 it was explained how reducing the number of threads

will after a certain point force apart the on longest path tasks and increase the

number of relevant messages from the linear dependency on n indicated in the

fourth column of Table 13Table 13. The third column of that Table is for the upper

limit case of the number of relevant messages for a single thread, i.e., the total

number of tasks, which is cubic in n.

The same forcing apart effect will also occur for a fixed number of threads and

increasing the number of tasks: while, at low task numbers, the runtime will be

the length of the longest path in the task graph, as the number of tasks in the

graph is increased, the on longest path tasks will be forced apart, and in Figure

28 and Figure 30 (and similar Figures, not shown for the other geometries), the

run time does indeed increase rapidly for n beyond the best performing group

(even though the size of the individual tasks is decreasing). However, it remains

184

to explain why increasing the number of tasks does not within this high

performance group, degrade performance, as is indeed the fact.

In sections 12.2 and 12.3, it was also stated that for the QR factorisation the

number of threads at which the run time becomes that of the longest path may be

around where the number of threads was about equal to a moderately increasing

function of the tile count parameter n – see Table 17. But it was also shown that

execution in the longest path length time might occur down to a smaller number

of threads than that, but that that point would be hard to find without simulation.

So, it is not clear where that happens.

Now, looking again at Figure 28, against n, for the 8 and 10 threads points, we

can see that the point for where n is approximately equal to those thread counts,

i.e., for n = 8, performs well, but those for n = 16 and n = 32 are not only not

degraded in performance, but are in fact slightly better. Those are respectively

roughly for 7 and 56 times as many tasks as for n = 8 and, further, from Table 17,

they have task graphs that are at the widest roughly 10 and 30 times the number

of threads available. Therefore, it seems unlikely, from the sheer number of

tasks, that the longest path execution time still applies, and yet the times are in

fact slightly better than for n = 8. Here are some possible causes that one could

entertain:

A. It might nonetheless be that the limit where the on longest path tasks have

not been pushed apart has not been reached, despite the sheer number of

tasks.

B. Another possible cause might be because tasks are now queuing. (As

noted, for n = 16 and n = 32 the “width” of the task graph in the sense

discussed in relation to Figure 9, could be around 10 and 30 times the

number of threads available.) Queuing tasks may mean that the scheduler

rule aiming to allot tasks to cores having relevant data in their caches

comes back into play; when a core becomes free it is more likely that there

is, among the queuing tasks, a task that is in the particular queue for the

free core and hence that new task already has some data in the core’s

185

cache. One might expect opportunities for such cache hits to increase with

n.

C. The intrinsic efficiency of the kernel code, related to the number and type

of its internal operations, as a function of n would be relevant, if any

increase as a function of n is not compensated for elsewhere.

Figure 31 - Set F2, thor - total time in kernels - local host scheduler - against threads

Figure 32 – Set F2, thor – total time in kernels – local host scheduler

– against tile count parameter n, or equally tile size k

The data available does not identify the particular tasks on the actual critical path.

However, graphs of the total time spent in all the kernels are still productive to

consider. Figure 31 to Figure 34 show the total time spent in kernels for the same

186

set F2 data from the thor system plotted against threads and tile count parameter

n in the same way as for Figure 27 to Figure 30 for the task graph run time.

Figure 33 – Set F2, thor - total time in kernels - local BlueField scheduler – against threads

Figure 34 – Set F2, thor - total time in kernels – local BlueField scheduler
– against tile count parameter n, or equally tile size k

Looking first at the graphs against thread count, so Figure 31 and Figure 33,

these show (the same is true for the other geometries, not shown) that for 1 and

2 threads the total kernel time has a first approximately constant value, for each

value of n, and for 5 or more threads it has a second, higher, constant value. This

is consistent with the cache miss effect between tasks of there being more

frequent cache misses as the number of threads increases, but that saturating

when a minimum number, perhaps but not necessarily zero, of cache hits

187

between tasks remain. This would seem to rule out B because at high threads the

cache missing has saturated, and, further, as n increases the time in the kernels

increases, so if the effect exists it is not strong.

Turning now to the dependency on n, so Figure 32 and Figure 34, these again

show the same general pattern for both the original and experimental schedulers

and for all the geometries (including for the other geometries that are not shown),

which is that the total time spent in the kernels increases slightly with n.

If it is also true, which seems likely, that the particular tasks on the critical path

through the task graph therefore also increase just slightly in kernel time with n,

then questions are: how does this increase with n, and does that differ when

using the experimental scheduler compared to the original scheduler, and, then,

how does that compare to the other effects on the critical path, i.e., the

messaging and scheduler functioning?

To consider this the run time Tr can be broken down as follows:

𝑇𝑟 ≈ 𝑁(𝑛). [
6. 𝑇𝑘(𝑛, 𝑔)

𝑛(𝑛 + 1)(2𝑛 + 1)
+ 2. 𝑡𝑚(𝑔) + 𝑡𝑠(𝑛, 𝑔)]

where,

Tk is the total time spent in kernels,

n(n+1)(n+2)/6 (= NG) is the number of tasks in the QR factorisation task graph,

N is the total number of tasks on the actual critical path,

tm is the time messaging time, and

ts is a typical time for the scheduler to schedule one task.

Now, ts should be small compared to the time for a task, unless scheduler is

swamped at high n, and was not investigated. tm should also be smaller than a

task but could be more significant for the experimental remote scheduler. N, as

discussed in sections 12.2 and 12.3, can range between NL = 3n-2 and

NG = n(n+1)(2n+1)/6 depending on how confined the task graph is by the number

of threads.

The dependency of Tk on n is examined in detail because clearly it will have a

strong influence on the total run time. Figure 32 and Figure 34 show that the

Equation 4 – a task
graph runtime

analysis

188

dependency is weak, almost constant. The points on these graphs are the

minima of each set of experiments and the blue curves are for a simple model,

the function Tk = a.np fitted to those for n = 8, 16 and 32, for the 10 threads

points. The maximum of 10 threads was chosen because as it is realistic that a

user would want to use a large number. (A fit was also tried including the n = 64

points as well, but the curve did not fit the n = 32 point so well; as can be seen,

performance at n = 64 is beginning to deteriorate, before it very badly

deteriorates for n = 128, pulling the fitted curve away from the n = 32 point.) The

values of a and p found for the fit are as set out in Table 20, which gives values

for the thor machine set discussed and also a set of jupiter machines.

Tk = aNp fit parameters

client

(so, covering all

4 geometries)

Scheduler –

original or

experiment

mean a

(seconds)

mean p

thor005
original 0.3538 0.0685

experiment 0.3591 0.0612

thorbf005
original 0.3542 0.0681

experiment 0.3572 0.0632

thor006
original 0.3548 0.0669

experiment 0.3574 0.0628

thorbf006
original 0.3545 0.0677

experiment 0.3609 0.0599

jupiter031
original 0.3228 0.1193

experiment 0.3301 0.1108

jupiterbf031
original 0.3194 0.1223

experiment 0.3273 0.1138

jupiter032
original 0.3195 0.1221

experiment 0.3288 0.1123

jupiterbf032
original 0.3192 0.1229

experiment 0.3282 0.1132

Table 20 – Parameter fit values for Tk = anp

189

A point about this, however, relates to the total time in the kernel being fairly

constant. (While there is a difference in p for the jupiter and thor systems the

values are both in the region of 0.1, therefore that is true for both.) So, this is a

property of the overall computational algorithm, in this case the tiled QR

factorisation. If it scaled poorly with n then of course it would not be known as a

useful algorithm. (How poorly could be tolerated in general would depend on how

N in Equation 4 scales for a particular algorithm.)

Now, in this case, we also know that, in this region of interest, the run time Tr is

also roughly constant. For that to be true that the number of tasks on the critical

path N must nearly scale as n(n+1)(2n+1) – see Equation 4 – so only differing

approximately by the factor of p ≈ 0.1, to cancel the coefficient of Tk. This

dependency of N is not so surprising; as discussed when expressing less

enthusiasm for A, for n=16 and n=32, it was suspected that these are in the

region of on longest path tasks being forced apart and so will be on the way to

the limit of N of n(n+1)(2n+1)/6 tasks (remembering that limit is of course for the

single thread case). So, indeed, this eliminates A.

The values in Table 20 also show differences between the experimental and

original schedulers. It is particularly notable that p for the experimental scheduler

is always smaller than that for the original scheduler, which is in the direction of

giving an advantage to the experimental scheduler with increasing n. So, to see

whether this is significant, the values of a and p and the model of Tk = anp were

used to produce the difference in Tk between the experimental and original

schedulers scaled down by the total number of tasks, to give per task values, and

then the mean of those were then scaled in units of 2 message times relevant for

the geometries from Table 8, to give the results in Table 21.

190

Difference of experimental to
original scheduler total core time,
over task count, in units of 2.tm
(-ve advantageous for experimental)

Scheduler server Machine

n = 8
(k = 128)

n = 16
(k = 64)

n = 32
(k = 32)

thor005 -0.84 -1.56 -0.41

thorbf005 -1.12 -0.47 -0.11

thor006 -1.13 -0.48 -0.11

thorbf006 0.82 -0.32 -0.10

jupiter031 9.53 -0.42 -0.32

jupiterbf031 4.69 0.11 -0.07

jupiter032 4.72 0.12 -0.06

jupiterbf032 4.43 0.08 -0.07

Approximate mean task time
(both systems)

2 ms 300 µs 40 µs

Table 21 – difference between experimental and original scheduler’s total core time over task count
 based on Tk=anp model units of 2tm

At the bottom of Table 21, there is also given an approximate value for the

duration of a single task, for comparison with two messaging times, which of

course is around 1 µs. For the case of n = 8, the duration of one task is around

2 ms, and so over 1000 times the duration of a message; therefore, for such a

case, which is in the high performance region, the messaging introduced by the

remote scheduler per se is not practically significant at all. (On the other hand, for

the jupiter system the total core time has actually increased, by around 0.5% or

0.25% depending on the geometry.)

However, for the n = 16 and n = 32 cases, which have shorter task execution

times, adding the messaging time to each task would be considered practically

significant. However, the evidence of the Table, for many cases, is that when the

experimental scheduler is introduced there is a decrease in kernel time and that

that is on a scale similar to the extra messaging time. For one particular case,

n = 16 for the local host geometry (so thor005 being the scheduler), the value is

-1.56, so for each task the extra messaging time is more than compensated for

by the improvement in the kernel time.

For the other geometries for the thor system, for n = 16, the compensation

provided by the core time reduction is partial but still enough to mean that future

improvements to messaging latency for those geometries would help

191

significantly. Of those, large improvement to the local BlueField geometry

message latency is perhaps the more likely since the card is newer technology

and is directly attached to the kernel processing host, while the other geometries

involve shared memory messaging or messaging over the local area network,

which are older technologies which will have benefitted from long periods of

optimisation.

In the jupiter system the compensation does not appear to exist on the same

scale but the position generally improves across the Table, so with increasing n.

For the thor system, the reduction in core time peaks at n = 8 (or before),

or n = 16, and then declines with increasing n.

So, what effect could there be that would improve the kernel performance

according to these trends against n?

Differences in cache misses in the tasks’ data resources caused by differences in

task allocation between the original and experimental schedulers seem less likely

to be large. A difference in operation between the experimental scheduler and the

original scheduler is, however, that in the original scheduler, each time a core

becomes the scheduler, the scheduler data will, to some extent be read into the

cache of that core. Just before that, the data produced by the previous task on

that core will have been in the cache, or at least as much of it as will fit (or

perhaps less than that depending on how the kernel processes the data). The

reading in of the scheduler data will to some extent obliterate that result data,

making it a cache miss if the task allocation is working to allocate a task to use

that result data. The sorting of a core’s queue will work over a lot of the data.

The amount of data left in a core’s cache by each task that is obliterated by the

original scheduler’s operations to find the next task for the core is hard to quantify

without a detailed model of the cache. However, we do know that the size of the

result tile(s), so k × k elements, scales as 1/n2, since in these experiments k × n

is a constant (= 1024), so this might account for the decline in the effect for the

thor system towards n = 32. On the other hand, the size of at least parts of the

representation of the schedule that the scheduler will read will increase with n; for

192

example, the number of tasks in the tasks table NG scales as n3, increasing the

chances that scheduler operation will obliterate the cached results tiles.

One can check the sizes of the tiles relative to the cache sizes.

jupiter: E5-2680 V2 Intel Xeon processor [81]

L1 data cache 32 KB per core

L2 cache 256 KB per core

L3 shared cache 25 MB

thor: E5-2697A V4 Intel Xeon processors [82]

L1 data cache 32 KB per core

L2 cache 256 KB per core

L3 shared cache 40 MB

Table 22 – jupiter and thor processor cache sizes

Comparing the data size of a single tile from Table 13 to the cache sizes set out

in Table 22Table 23, one can see that for n = 8 a single tile would fit into the L2

cache but not the L1, so certainly not all the result will be in the L1 cache (in the

QR factorisation the results can be more than 1 tile for some kernels). More of a

result tile may fit in the L1 cache for n = 16 and all of a result tile would fit for

n = 32. So, if this effect is operating, say, at the L1 cache a similar amount of

result data might be there for n = 8 and n = 16 so the increased scheduler data

may be operating to obliterate more of it and result in better kernel time for the

experimental scheduler as observed. This is, however, all very speculative. The

cache operation will be very complex and it is not known here whether a kernel

would even leave all of its data in the cache even if there is space for all of it.

Moreover, this would apply to the thor system; for three of the geometries in the

jupiter system the trend is of improving kernel time performance, so something

else must be occurring her, or at least dominating the effect.

Nonetheless this differing in total kernel time between the experimental and

original schedulers is a fact, and so some interaction with the scheduler must

affect the speed of operation of kernels and that effect being via their cache

behaviour seems highly likely, since how else could their speed of calculation be

193

affected? (For example, more interruption in the case of the original scheduler

does not seem likely.)

As an aside, this kernel result data obliteration mechanism also suggests a

second similar kind of possible cache effect in the scheduler. In the original

scheduler each core becomes the scheduler and calls into the cache at least

some of its data tables, but this scheduler data in the core’s cache will be

obliterated to some extent by the operation the next kernel allocated or indeed,

the scheduler coming into existence on some other core will not be able to make

use of it because it is in the cache belonging to another core. In contrast, the

experimental scheduler has a continuous existence separate from the cores

processing the kernels, so it can keep its scheduler tables in its cache between

the calls that are made to it. Such an effect might increase in size with n as the

size of the scheduler data increases. The scheduler processing time was not

however investigated.

194

13.11. Optimisation of tile size – relative performance for Set F

Figure 35 is a plot of the ratio of the mean of the run time for the two schedulers.

The points are plotted against the tile count parameter n and the number of

threads (t) on the same axis and are coloured and have marker symbols that

distinguish the geometry (from Table 14).

Figure 35 – Set F2 – ratio of run time for experimental and original schedulers

The error bars are calculated as the simple rule for error propagation for a ratio

from standard deviations of the experimental and original schedulers

respectively, therefore having the usual caveats. The left-hand subplot is for the

jupiter system results and the right-hand is for thor, and as may be seen the data

is selected to being that only of the high-performance region identified in section

13.10.

A ratio of less than unity means that the QR factorisation example runs faster

with the experimental scheduler than with the original scheduler, for the same

values of n and client thread count. As may be seen in the Figure, for n = 8 and

n = 16 the points are within just few percent of unity. In fact, the standard

deviation bars extend below unity, so while the mean ratio is above 1, the

experimental scheduler does sometimes run faster than the original.

It can be observed that for n = 8, the ranges for the different geometries mostly

overlap, while at n = 16 and n = 32, the geometries with longer messaging times

degrade progressively both with n and with longer messaging time, which is as

195

would be expected. Further, the performance for the thor system is better than

jupiter at low n.

The points in the Figure are tabulated in Table 23 and Table 24.

Client
machine

Server
machine

n Threads (t) ratio Standard
deviation

jupiter031 jupiter031 8 8 1.003 0.021
jupiter031 jupiter031 8 10 1.005 0.020
jupiter031 jupiter031 16 8 1.012 0.006
jupiter031 jupiter031 16 10 1.015 0.007
jupiter031 jupiter031 32 8 1.036 0.004

jupiter031 jupiter031 32 10 1.037 0.006
jupiter031 jupiter032 8 8 1.011 0.022
jupiter031 jupiter032 8 10 1.007 0.021
jupiter031 jupiter032 16 8 1.018 0.006
jupiter031 jupiter032 16 10 1.023 0.008
jupiter031 jupiter032 32 8 1.079 0.006
jupiter031 jupiter032 32 10 1.090 0.006
jupiter031 jupiterbf031 8 8 1.009 0.018
jupiter031 jupiterbf031 8 10 1.011 0.018
jupiter031 jupiterbf031 16 8 1.028 0.006
jupiter031 jupiterbf031 16 10 1.032 0.008
jupiter031 jupiterbf031 32 8 1.216 0.008

jupiter031 jupiterbf031 32 10 1.286 0.007
jupiter031 jupiterbf032 8 8 1.004 0.021
jupiter031 jupiterbf032 8 10 1.007 0.021

jupiter031 jupiterbf032 16 8 1.031 0.007
jupiter031 jupiterbf032 16 10 1.035 0.007
jupiter031 jupiterbf032 32 8 1.242 0.007
jupiter031 jupiterbf032 32 10 1.312 0.015

Table 23 – ratio of experimental to original scheduler run time - jupiter system

196

Client
machine

Server
machine

n Threads (t) Ratio Standard
deviation

thor005 thor005 8 8 1.004 0.019

thor005 thor005 8 10 1.004 0.021

thor005 thor005 16 8 1.006 0.009

thor005 thor005 16 10 1.010 0.011

thor005 thor005 32 8 1.037 0.007

thor005 thor005 32 10 1.040 0.006

thor005 thor006 8 8 1.006 0.016

thor005 thor006 8 10 1.005 0.019

thor005 thor006 16 8 1.011 0.007

thor005 thor006 16 10 1.015 0.010

thor005 thor006 32 8 1.080 0.007

thor005 thor006 32 10 1.091 0.007

thor005 thorbf005 8 8 1.000 0.021

thor005 thorbf005 8 10 1.004 0.022

thor005 thorbf005 16 8 1.017 0.011

thor005 thorbf005 16 10 1.020 0.009

thor005 thorbf005 32 8 1.176 0.007

thor005 thorbf005 32 10 1.224 0.011

thor005 thorbf006 8 8 1.005 0.021

thor005 thorbf006 8 10 1.006 0.021

thor005 thorbf006 16 8 1.020 0.009

thor005 thorbf006 16 10 1.023 0.010

thor005 thorbf006 32 8 1.196 0.007

thor005 thorbf006 32 10 1.255 0.020
Table 24 – ratio of experimental to original scheduler run time - thor system

Many points are within a very respectable 1% performance degradation. The

original objective was not to be better than the original scheduler, which seemed

unlikely given the substantial messaging latency that was being introduced, so it

is gratifying to discover that, through other interactions in the system, there are

some cases where the experimental scheduler is as good as the original for the

mean run time.

If these results can be repeated for use cases for which the experimental

scheduler was envisaged, involving more complex scheduling, for example to

provide other performance benefits, then cases where the experimental

scheduler is slightly worse, for example, within 1% performance degradation are

likely to be considered useful.

197

Of course, to find the fastest scheduler, one has to carry out an optimisation, but

that is true also of the original scheduler. While outside the window of good

performance, the experimental scheduler is very poor, that is of no consequence

if the high performance region is suitable for the application. Usefully the region

of high performance is wide in the n parameter governing the task size and is

only a little narrower than that of the original scheduler. A wide window is useful

as it is easier to find and stay within if there are other constraints. For example, if

there are other optimisations in the system to be carried out that depend on data

size, for example, transferring blocks of data to other nodes in a multi-node

calculation; there is more chance that the useful data size regions will coincide.

Forming the ratio of the results for the same number of threads t and tile count

parameter n is appropriate comparison of the two schedulers, but they do not tell

one which is better if there is a free choice of n and t. Figure 36 is a scatter plot of

the same data as for Figure 35 but showing the absolute run times (in seconds)

for all the geometries of the experimental scheduler and now also for all the

results for the original scheduler, and still filtered again down to the high

performing group of n = 8, n = 16, n = 32 and t = 8, t = 10. The same colour

coding is used, so red for the local host geometry, blue for the local BlueField,

yellow for the remote host and teal for the remote BlueField, with the original

scheduler being black. The plot of course confirms the information that at n = 8,

there is a high degree of overlap in performance between all the experimental

geometries and the original scheduler, that at n = 16, the performance of the

experimental scheduler is close to the original and that at n = 32, the

performance of the experimental scheduler is degraded and strongly dependent

on the message latency.

198

Figure 36 – Set F2 task graph run time (s) for high performance region of tile count parameter n and threads

(t) with markers by geometry, for jupiter (left) and thor (right) systems

199

However, this plot further reveals that n = 16 is clearly faster than n = 8 and n =

32, and that that is equally true for the experimental scheduler. There is a small

advantage for the original scheduler at n = 16, but it is far more important to

optimize the tile size. The choice between the original and the experimental

scheduler makes a very small difference. In this case at least, the approach of

the experimental scheduler, of moving the scheduler to a separate process and

communicating by messaging, is vindicated.

200

14. Improvements and Applications

14.1. Considerations for larger matrices

The experiments were for a matrix of 1024 × 1024 elements. The size was set by

the need to gather many data points in a reasonable amount of time. This size of

matrix may well suffice for many problems, but in some applications it is

necessary to process matrices of the size of the RAM of a node. 1024 × 1024

elements equate to 8 MiB of storage (for double precision elements of 8 bytes

each). 128GiB, so typical of node RAM sizes in HPC nodes, would store 217 x 217

elements. In the set F experiments the optimised tile count parameter was n = 16,

for which the tile size was 64 x 64 elements. If one scaled the QR factorisation to

a matrix of 128 GiB, while keeping to the same tile size out of a desire to keep

the inter-task cache hits, then this would have n = 4096. This is not practical.

Guessing at 32 bytes per task, the size of the scheduler representation would be

683 GiB, which is typically too large to fit into a node and is much more than the

payload matrix data being processed and so will take significant time to process

to make the scheduling decisions.

A redesign would be needed. One could bring the number back in bounds by

significantly increasing the size of tasks. This abandons having inter-task cache

hits. As discussed, large tile sizes will reduce the cache hit effectiveness, but the

evidence of this work is that the cache hits are reduced anyway by the scheduler

rule to use other cores if they are available. With large tiles the optimisation to

use the processor cache effectively will have to be inside the kernel functions.

Processor caches are optimised to keep data processed in the immediate past;

inter task cache hits stretch this beyond that design intention. Larger tasks, also

as discussed, make messaging overhead much less significant.

Table 17 shows that n = 32 may well, or n = 64 certainly, keep a modern

processor of 40 or 80 cores supplied with tasks. These would be tile sizes of

4096 × 4096 or 2048 × 2048 elements, so of 128 MiB or 32 MiB. Messaging time

would be very insignificant (see Table 21) but these are too large for the

processor cache, which would be a problem if efficiency inside the kernels

strongly depended on the size of the tile relative to the cache. The largest tile

201

sizes used in Set F were 128 × 128 elements, which is 128 kiB, which is still

within the L2 cache. Up to that point increasing tile size was reducing the total

kernel time, but the next size, in the doubling scheme used, of 256 × 256

elements, which would be 0.5 MiB, would be larger than the L2 cache but would

still be inside a core’s share of the L3 cache, so it is hard to say whether the core

time would continue to improve. Messaging time would certainly be insignificant,

but the n would be 512, so the task graph representation estimate would still be

over 1 GiB; this is still very much larger than the tile size and so seems likely to

be burdensome to process for each task. Whether there is a sweet spot lying

beyond there would require further experimentation.

Another approach to redesign would be having the task creation run in parallel

with the task execution to keep the size of the task representation down. This

again points to a separate process for the scheduler (to be discussed in section

14.3). Here the size of representation for the scheduler would be traded against

use of cores to calculate the tasks on the fly. Whether that could be made

efficient was beyond the scope of this work. For the QR factorisation calculating

the next tasks beyond the working front in the task graph is easy, there are very

simple rules for generating the tasks, but what is lost is finding the longest path,

which uses the entire task graph. Some thought would have to be given whether

the regularity in the structure of the task graph and the invariance of length of the

longest path are clues to finding a rule to keeping to, or approximately to, the

longest path that could be applied more locally in the task graph.

In this light, the extreme example of a task graph with no dependencies is quite

straightforward when it comes to a problem taking up a large, or indeed any

amount of memory. The work should be divided equally among the threads, as

single task for each. Dividing it into more tasks would result in messaging and

task scheduling overheads being incurred. One might then say that each task

kernel will be too large for the processor cache, but this is then a problem for

within the kernel – the work can be ordered within the kernel in cache sized

chunks, bit scheduling is not required. In general, this is an indication to

consolidate parallel tasks where possible within the task graph, without of course

compromising the ability to feed the threads.

202

14.2. Multithreaded server experiments and proposed improvements

After a simple bug had been identified which caused the scheduler on the server

to run in only a single thread this was corrected, and experiments were tried

again.

However, once multithreaded server operation was reinstated and the extra

complications were dealt with as described in Chapter 7, the performance was

worse. There were several possible reasons for that. First, it may have taken

longer for the OpenMPI library to sort out the messages onto the different server

threads. Second, while the server from QuickSched is inherently multithreaded,

transmission of calls via OpenMPI will serialise them, wherein contrast in the

original more than one thread, to a certain extent, could become the scheduler at

the same time. With the messages serialised, the calls to enter the scheduler are

spaced out, and in the extreme may not even overlap. Third, multiple threads

may be moving scheduler data between cores on the server unnecessarily.

Further investigation of the problems here, may be needed to decide if the

performance of the server part of the scheduler can be improved, However, a

suggestion is to separate the threads available on the server into different tasks.

A first group of threads, perhaps just one, would deal with communication with

the client. This would then launch the original functions of QuickSched on ones

of another set of threads asynchronously, so checking from time to time for

replies while otherwise dealing with other messages, and then sending those

back to the client when they are ready. The number of threads in the second

group could be varied to find the most efficient number.

On the other hand, the threads in the second group, those processing the actual

calls to the QuickSched functions, are not now limited to a single thread. In the

original the scheduler could only use its own thread because the other threads

are being used to process kernels. That does not apply with the scheduler in a

remote process, so the QuickSched functions could be parallelised. Two places

come to mind: (i) resorting of the queues (especially if they are redesigned to be

fully sorted, rather than being a priority queue), and (ii) searching other queues

203

for work stealing when a thread’s own queue is not supplying a task; each queue

could be searched in parallel with the first to supply a task terminating the search.

However, the one queue per thread was an aspect of the original design where it

was allotted tasks that may reuse data in the cache, while still be a quick to

access data structure. The whole issue of the queuing and its data structures is

therefore worthwhile reconsidering. For example, some more elaborate data

structure recording which data resources are actually in the cache of each core

(inferred from the tasks that have been sent there) could be kept, together with a

complete record of which tasks in the whole task pool would want to use those

resources. The server now has more power to interrogate such data and so may

be able to make a cache hit more often.

Another feature inherent in the design of the original QuickSched is that the

scheduler must process its call quickly and then the thread must return to kernel

processing. Although there is parallelism in that calls from different threads can

be processed to some extent in parallel, it is not possible for the scheduler to

work on the questions put to it while the thread in question is processing kernels.

So, the new arrangement could make use of background processing. In one

example the scheduler could keep ready an answer, revising it as task done

messages arrive, to the question from a thread of what is its next task, gettask,

with the answer being sent back immediately it is asked, while processing to

maintain the scheduler data, so processing the consequences of the task done

message, namely finding new ready tasks, selecting a queue for them and

resorting the queues is done in the background. This does, however, alter the

question being asked by a thread from what is the next task, given that I have just

told you which task I have just completed, to what did you think was the best task

a moment ago? This difference may or may not lead to less efficient task

allocation. It will mean when few tasks are about that queues are starved, but

then one just processes the task done to see if that generates new tasks, which

is the same as the original scheduler and so is not a detriment. Even if the new

question is sub optimal, it may be that its quicker answer is a sufficient payoff.

204

14.3. Proposed improvements to task graph building in Qsargm

A clear outcome of the set C experiment, discussed at section 13.2, was that the

task graph build time for the Qsargm scheduler is more than 10 times slower than

for the original scheduler, in fact, 30 to 40 times slower for larger task graphs and

geometries having actual messaging links, this is clearly not helpful to the utility

of the experimental Qsargm scheduler and so alternatives are now considered.

The problem is that the operation in the remote scheduler version to record a new

task is a simple matter of recording a few values in a couple of tables but each

such operation is burdened with its own messaging overhead; in fact, several

messages are used per task as noted in sections 13.2 and 5.10. In the case of

MPI messaging the overhead is much greater than the recording operation itself.

Nonetheless, this suggests that the following changes to the client-server

architecture will be improvements:

A. Instead of building the representation of the task graph in the process of

the remote scheduler as is done in the experimental code, the task graph

representation could be built first in the client compute process, and when

the tables representing the task graph are complete those should then be

transferred en bloc in a single (or just a few) messages to the remote

scheduler process. Once the tables are there, the remote scheduler can

then perform the execution of the task graph as normal. (So again, this is a

static task graph.) Owing to the very significant reduction in the number of

messages involved, from O(n3), for the QR factorisation example, to O(1),

this method will be much quicker.

This method is illustrated in Figure 37, which shows the task generation

code on the host processor, i.e. the processor that will later execute the

tasks. The cores of the host processor are again shown as purple squares

and a white oval on them means that they are processing the task

generation code. Two of these are shown because, in general, task

generation could be performed in parallel (as indeed it is in the Swift

code). The task generation will again take O(n3) steps for a QR

factorisation but those are much quicker because now each task

205

generation does not involve any messaging. The built task graph

representation is then copied en bloc to the remote scheduler. Once there

the task graph can be executed by the remote scheduler exactly as

explained with reference to Figure 1 or Figure 4.

Figure 37 – Creating task graph en bloc on host processor

B. In conversation with Richard Graham of Nvida Networks with me about the

problem, he suggested very generally overlapping task creation and

execution. So, this is now a dynamic task graph, in that the task graph

gains tasks after execution of it has begun. In this section I have worked

through how that might be done. So, in an alternative to calculating the

tasks en bloc, once the task graph has been compiled, the tasks could be

sent one at a time as in the experiments, but the cost of the messaging

could be hidden by starting the task graph execution before the task graph

is complete. In fact, that could be started well before completion of the task

graph build, i.e., shortly after the building of the task graph is commenced.

So, once some tasks have been sent to the scheduler and are in the task

graph representation there, execution of the task graph can be started by

allocating some of those tasks to the compute cores. This would require

206

the task build code to create first those tasks that are to be executed first.

In many cases, that would not be a burden to the application programmer

because, of course, it is common, for algorithms to be thought about,

and/or be expressed, in the order of the operations to be executed. So,

this will be quite natural for the application programmer to organise.

Figure 38 shows the arrangement. In this particular example, the task

generator is located on the host processor that will execute the tasks.

(Other locations, for example, on the remote processor would, I think, also

allow the overlap of task generation and execution.) The host processor

has multiple cores/threads and at least one is allocated to the task

generation code. Here, however, the task generator does not build the

representation of the task as in the arrangement of Figure 37, but reverts

to the original method of sending small messages to the scheduler, which

interprets them to build the representation of the task graph there. As

shown, tasks at and near the root of the task graph are the first to be

generated, queued, and executed.

Figure 38 – Contemporaneous task generation and execution

o A house-keeping point to be dealt with in this arrangement is that a

task is in danger of being allocated to a queue before the

207

representation of that task is complete. This problem arises from

the calls subsidiary to qsched_addtask() that are used to add

details to a task; for example, the declaration of the parents of a

task may not be complete but the child task may look apparently

ready to be queued because its declared parents have all been

executed. A simple fix would be to provide the task representation

with a flag to mark its building complete, which the task building

code only sets when that becomes true.

o A more substantial issue is that in QuickSched some post

processing is applied to the whole task graph once all its tasks have

been declared to it. This is the prepare stage. Since this stage

calculates some values to use later in the determining of priority

among ready tasks, that can be worked around. One possibility

would be to ignore the priority when allocating the early tasks and

use some arbitrary order, since priority is a matter of efficiency

rather than correctness (Chapter 5). The usual efficiency priority

order could then be calculated and used only once all the tasks

were declared. (It could also be considered whether a calculation of

the usual priority can be made on a partially built task graph is

meaningful and useful.) Note that when the task graph is complete

it has become a static task graph and so predictions about the

longest path can be made again.

o In this method some thought should also be given as to how the

task generation and task executing would be shared amongst the

cores of the host processor. One might make special provision, by

allotting a number of cores to task generation and leaving the

remainder to task execution; once task building is complete the

core(s) allotted to that would sensibly then be transferred to task

execution. The choice will be informed by the relative amounts of

time it takes to build the task graph and to execute it, and, within

that, the need not to run out of tasks simply because they have not

been created.

208

o One way to make this allocation of cores on the host processor to

task generation would be to create task generation tasks. It is noted

that the original QuickSched scheduler does have a dynamic task

creation function that could be used. This however adds tasks to

the current task graph and looks expensive, in that it recalculates

the queues on each call to it. An efficiency could be to have task

generation being limited to building tasks that are in the next

“round” of computation, which round would have a separate task

graph representation on the server.

o Alternatively, it may well also work to have task generation and task

execution as separate Linux processes on the host and allow the

operating system’s process scheduler to determine the dynamic

allocation of cores between the two, rather than making special

provision in the user code. However, this may not be compatible

with the current approach of pinning threads in the computational

process to specific cores of the host processor, and also it would

cause data access issues in the cases where the tasks created are

based on the data created by tasks in an earlier round of

computation.

o If sending a message to create each task again proves inefficient in

this case, the messaging overhead could again be reduced by

compiling batches of tasks before sending a batch rather than a

single task over in a message.

These methods of sharing of the host’s resources between task generation and

task execution may, I think, be quite efficient, in that many parallel algorithms

start with a serial set of initial tasks or just a small set of few parallel

computational tasks that have no other peers, so only a few threads/cores will be

occupied with calculation at that time, leaving the others free to calculate the rest

of the task graph. (For example, in the case of the exemplary QR factorisation

algorithm only one task may be executed initially, that on the top left tile, and the

number of ready tasks grows slowly – see the width of the rows in Figure 9 – so it

fits this pattern.)

209

When it comes to codes that operate in rounds of first task creation and then

execution, this overlapping task creation and task execution spreads the task

graph execution over a longer period (while probably not increasing the total time

for both the creation and execution), which means that any data movement tasks

moving data between nodes will be more spread out in time, which is an

advantage if the speed of operation of the code is limited by the network traffic.

C. Another possibility is to have the server scheduler process build the task

graph by itself, i.e., run the task generation code. This is shown in Figure

39, which is quite similar to Figure 1 except that the task generator now

has a definite location. Running the current QR example in this way would

be a bit slower in the case of the scheduler on a BlueField card compared

to the original QuickSched because its processor and memory were

slower than that of the host, at least where a complete static task graph is

generated. In this location the task creation messages are eliminated.

Further, this arrangement could be combined with the starting of the task

graph’s execution before it is complete from arrangement B and then there

would be a high degree of overlap between task generation and execution.

Figure 39 – Task generator at the remote scheduler location

This arrangement C would be a very pure form of the philosophy proposed

here of putting the ‘auxiliary’ card in charge of the calculation in place of

the host processor. Here the host x86-64 processor has now become just

210

a processor of computational kernels and thus is now, in effect, a

specialised ‘accelerator’ card.

The disadvantage of this arrangement is when the generation of tasks is

based on data produced in an earlier round of computation; the task

generator would have to obtain those results from the host, possibly by

sending messages to ask for it – a better method for dealing with that that

could be used here would be pre-emptively forwarding the needed data

from the host to the scheduler. That is used in the next arrangement, D.

D. Another overlap between task generation and task execution which may

be possible, is for the server process to generate a new task graph for a

next round of calculation while the task graph for the previous round is

being executed. The arrangement is shown in Figure 40.

Figure 40 – Task generator at scheduler with overlapping build of next task graph

The actual opportunity here will depend on the application. If the task

graph for the next round is not particularly new, so in the extreme example

would just apply the existing task graph to new data, or the results of the

previous round, then it may be possible to determine the handles for those

211

new data items immediately and put them into the tasks of a copy of the

existing task graph to make the new task graph.

As mentioned, in more complex cases, however, the form of the new task

graph, or equally each new task thereof, may be determined by the results

of the previous round, so building the task graph early would require

careful analysis of when sufficient data becomes available to generate

each part of the task graph. That point may well be a fixed point in the task

graph, (but the location of that point could in some cases perhaps depend

on some of the results as well). Now, when the task graph generation is

located at the task scheduler on the server it will always have progress

information immediately available to it and so will immediately know when

new tasks may be generated. This awareness is marked as the dotted

arrow progress information in Figure 40Figure 40.

The newly calculated data on the host, or some suitable data derived from

it, needed to determine the details of the new tasks (and perhaps also

needed to know when they may be created) does need to be transferred to

the scheduler. That data may be tacked on to a task done message, as

shown in Figure 40, marked with the dotted arrow labelled results

summaries. This is an appropriate time in that the data is in a defined state

and will not have gone out of date through the action of some other task. If

the data on which new task generation is based requires some processing

from the data that is the primary concern of the tasks, the balance between

deriving it on the host or the remote scheduler should be examined.

The conclusion is that while the task graph build in Qsargm performed very

poorly, there are in fact many opportunities to improve performance, while

keeping the task graph and scheduler in the remote location, so retaining the

advantages of a remote scheduler.

14.4. Further optimisations

Any opportunity to improve the latency of messaging, especially for the gettask,

and taskdone, messages should provide benefits. If this it does not provide

significant improvement at the optimal task size for a given problem size, lower

212

latency should nonetheless improve the range in task size over which a remote

scheduler is comparable in performance to the original one.

While a change of base messaging library could be an option, there are some

different arrangements in the OpenMPI messaging that could be investigated:

• The messaging on the client side posts an MPI Send and then immediately

waits for an answer to that particular message with MPI Recv. MPI Sendrecv

is a single call designed to do both of those in one, more efficient, operation,

so would be worthwhile trying.

• The present Qsargm sends a task done message and then immediately

sends a get task. These could be combined into a single operation with a

combined call sending the identity of the task completed and the reply to that

giving the next task to be executed. This may save some messaging time,

(but the task done message does not have a reply and so may have aspects

of its transmission that are already in parallel with the gettask message).

• The rules of the scheduling could be changed so that the scheduler does not

ask the current question of: now that the identity of the last task completed

has been used to update the queues, what is, therefore, the highest priority

task to execute? Instead, the scheduler should always have ready a new task

to give to the thread and then process the task done message. This hides the

time taken to process the task done message from the client, but it does have

the scheduler answer instead the question of what the highest priority task

was just before the completed task was known. This does change the

priorities and so could well have effects on the task graph execution time, not

necessarily for the better.

14.5. Complex scheduling applications

The scheduling algorithm of QuickSched, and equally that of this work’s Qsargm,

concentrates on ensuring as far as possible that the tasks on the longest path in

the task graph are the priority.

As previously noted, in modern processors the cores are not all equal in

processing power. This is not in accordance with the assumption in the scheduler

used for calculating the priority, which is that each task has a single particular

213

duration. Clearly the duration of a task will depend on the type of core on which it

is allocated. Further, in QuickSched this information is processed once before a

run, but the cores to which a task will be allocated are not known ahead of time.

A central feature of QuickSched is that the tasks are dynamically allocated. So

some more complex rules may be needed to set the priority and worse, these

might have to be (re)calculated dynamically during the run. Freeing up a separate

process with its own cores addresses this issue; these are more resources that

would allow more complex scheduling rules to deal with the issue to be

calculated.

Another issue that received attention in this thesis is the extent of the effect of

cache misses. These may well not be the same for different types of core in the

same microprocessor, so again this could be addressed in the scheduling rules,

i.e. giving preference to tasks and cores for where there will be a bigger cache

hit.

A related point is the compromise, noted by Chalk, of QuickSched only sorting

the queues into a heap so when the queue is searched beyond its head, a less

high priority task may be found than if it were fully sorted. The extra resources of

the scheduler in a separate process could be used to rectify that.

Another potential type of complex schedule processing might be the dynamic

splitting or aggregation of tasks. It has been noted that there is an optimal size for

tasks when it comes to scheduling. In the optimisation experiment, this task size,

or more correctly its data size, was the same for all tasks. However, it will be that

at different times in the execution of a task graph there are different numbers of

threads available and different kinds and numbers of task to fill them. So, for

example if there are many threads available but only one large task, it may be

that that task can be converted into a number that can be processed in parallel.

(Whether that is possible will depend on the particular kernel of the task.) Such

calculations in the scheduler would require resources.

Another example of complex processing that may well need more resources for

the scheduler is the problem, noted in [83], of memory controllers in modern

processors not having sufficient capacity to feed all the cores. The authors say,

214

“Algorithms have to avoid that all tasks access the main memory controllers

concurrently and thus become bandwidth bound.” Potentially a scheduler could

have rules to mitigate that also.

14.6. Cooperative compute node applications

The complex scheduling functions in the previous section relate to better rules for

working through the task graph. Beyond that there are further functions that the

scheduler could take on now it is provided with more resources, relating to

cooperation with other compute nodes in the same cluster.

A first application relates to data transfer between compute nodes that are

cooperating on the same computation under the control of task-based schedulers

on each node. From time to time, data will be produced on one compute node

that will need to be transferred to another compute node. This may be done, as is

done, for example, in the Swift application, by providing in the task graph

dedicated data movement tasks. These are placed in the task graph with

dependencies so that the data they move is ready to be moved when the data

movement task is allotted to a core. The kernel of this data movement task does

not perform calculations but rather makes the OpenMPI calls needed to move the

data. (The process is more complicated in that the data resource at the other end

has to be ready to receive the data and a matching data receive task is provided

at a suitable point in the task graph at the other end to do the receiving.)

It is now proposed that in Qsargm, particularly for the local BlueField geometry,

that a data movement task is not allotted to one of the compute cores but is

carried out, or rather commanded, by the BlueField. I was given access to a

library in development at Nvidia, which allows such commands to be issued by a

program running on the Arm processor of the BlueField, so the scheduler, to the

RDMA system of the card to move data from the RAM of the host node to the

RAM of another host node, or indeed in the opposite direction. The arrangement

is as shown in the diagram of Figure 41.

215

Figure 41 – Data movement tasks commanded from BlueField

Each node in the cluster has a respective BlueField card running a Qsargm

scheduler, which in general is allocating compute tasks to the cores of its host

computer. On reaching a data transfer task, the task oval with the green border,

at the base of the green arrow, the schedulers command, through the library,

their respective RDMA hardware on the Connect-X network adapter portion of the

card to carry out the transfer, indicated by the green arrow. The RDMA hardware

then transfers a specified memory block in the host RAM, the white block, to the

RAM of the other host. Not shown here are any messages needed between the

schedulers to time the transfer and which of the BlueFields actually makes the

final instruction is glossed over. There is also the need to generate memory keys

for the memory blocks. This is done on the relevant hosts and then the keys have

to be transmitted to the BlueFields. However, the keys are long lasting and so

may be generated ahead of time, for example when generating the tasks, so this

preparation will not affect the task graph run time. There is no need to check that

the data is indeed ready or that whether it is going to be written to by some other

task; the dependencies and locks of the task graph have already taken care of

those issues. The host cores have, however, not been involved at the time of the

data movement task and therefore remain free to be allocated other

computational tasks. So, in this arrangement not only has the task scheduling

been offloaded to the BlueField but the network operations as well.

216

I did not implement this within Qsargm, but I did check that the proposed data

transfers could be made with this library, so this test involved generating and

distributing the memory keys, putting test data in the memory blocks, issuing the

data transfer commands from a program running on the BlueField and then

verifying that the test data was now in the other location.

Another proposal is for the schedulers on BlueField cards to organise “work

stealing”. Work stealing is the process of redistributing tasks from a processor

that is falling behind on its schedule of tasks to another that is ahead. One such

work stealing arrangement, discussed in section 3.5, was proposed in reference

[26]. Here the situation addressed was tasks on one node blocking tasks on

another. Another need for work stealing between nodes arises from the estimates

for when the work will be done being inaccurate and the initial division of the work

between processors being made on the basis of that – the cause of the

discrepancies in the times nodes finish their work seen in [16] and [20] and

discussed at section 3.4. Whatever the cause or the scheduling rules used to

mitigate the problem, because the scheduler has information about progress and

because cooperation with other nodes is needed to organise the response

locating such a scheduler on the BlueField is a good fit.

In the case of inaccurate work division between nodes, the scheduler is in a

position to assess whether its node is ahead or behind schedule, or when that will

occur in the near future. A node that is ahead of schedule will also need to find a

partner node that is behind schedule. Further it will have to identify tasks that are

ready (or predict when they will become so) and whose data can be shipped to

the cooperating node, be processed there, and be shipped back ahead of the

time when their data is needed by the next task (i.e. the point when that next

task’s other dependencies are predicted to have been fulfilled). Now, this round

trip time is dependent on the size of the data to be shipped and processed. This

requirement on task size may in general be different to that found for optimising

the task graph run time. These competing requirements could of course be taken

into account in some overall optimisation, but dynamic splitting of tasks could

also be considered – offloading a smaller task is more likely to be possible given

the finite window before its results must be returned. All of this takes more

217

processing power to organise, so locating the scheduler on the BlueField is again

indicated.

One aspect of this is predicting the times of stages in the task graph execution

being reached. This might perhaps be achieved through rules involving the

weight of tasks as exist in QuickSched; another option might be simulation by the

scheduler of its progress in near future from its current state of progress. Finally,

it might be possible to make such predictions using machine learning techniques

using the task graph as an input – it is notable that the roadmap for the BlueField

card includes an on-board GPU. It would of course have to be checked whether

such calculations could be made on the timescales needed by fine-grained

scheduling.

A similar but milder intervention might be as follows. In the papers concerning the

use of QuickSched on multiple compute nodes, tasks that had input data and/or

results on different nodes were dealt with using data communication tasks. For

each of these cases alternative task subgraphs could be generated in which the

task is carried out on one or the other of the nodes respectively. The schedulers

of the nodes cooperating with each other would cause one or other of these to

actually happen at the appropriate time depending on which was ahead, and

which was behind schedule. This holds out a promise of helping to even up

progress, but I have not worked out the details of whether it would do so at the

cost of overall delay, nor tried any examples to see if it is a significant enough

effect to reduce typical discrepancies in finishing time.

Work stealing is of course remedial action. Better may be for nodes to cooperate

on generating future tasks, contemporaneously with executing existing ones, in a

continuous process and assigning them to nodes, and transferring the relevant

data to them, according to rules designed to keep the workload balanced, without

having to stop execution for task generation and mass data repartitioning periods.

Such schemes will not be trivial to compute but a separate scheduler, for

example, on the BlueField card (i) will have its own resources to compute that, (ii)

will have its own access to the network to send control messages to its peers on

other nodes, (iii) be able to control data movement between the host RAMs, so

218

offloading that from the host, and (iv) and still be able to schedule efficiently fine

grained tasks on its host processor. A separate scheduler located on a BlueField

card is again indicated.

219

220

15. Conclusions

15.1. Key conclusions

The main conclusion of this thesis is that messaging latency does not always kill

the performance of a remote scheduler. Latency remains important, however,

and should be attended to. Optimisation of task size is needed to find acceptable

speed of operation in the task graph execution phase. Indeed, the performance of

the remote scheduler was very similar to that of the original. In the case studied,

it was found to be more important to perform this optimisation than to choose

between the locations tried for the scheduler.

All task-based algorithms have a free parameter of the size of the tasks, so this

optimisation will be of general application to other computations having other

forms of task graph. With a remote scheduler being a usable alternative to the

original scheduler, the field of using task-based schedulers for more complex and

augmented scheduling operations beyond the intentionally simple approach of

the original scheduler is opened up.

The task graph build phase must be organised to avoid poor performance caused

by the overhead of many small messages.

The motivation for even attempting such an unpromising arrangement was that

the brief had been to find a way to control operations of a high-performance code

from the network. In that context, the task-based scheduler, while in its original

form does, on a time divided basis, mix up scheduling and task execution

operations, it does separate those concerns, and therefore the scheduling, which

is the control aspect, could be moved to the network. That was achieved

Thus, the prejudice that remote scheduling would increase latency and steal

processing power from the actual objective of executing the tasks, has been

overcome.

221

15.2. Task size interaction mechanisms

The task size optimisation for the run phase was found (or in some cases

speculated) to operate through a highly complex set of interactions, including,

• Growth of the task graph with problem size:

o Ability to supply the threads with ready tasks; probably related to

the task graph width.

o Consequent time for the scheduler to answer the question of which

task to run next.

o Tasks may become ready tasks simultaneously and cause delay

through serialisation of the communication between scheduler and

task processing threads.

• Time to run a task:

o Relative size to messaging times for communicating a task as

complete and the next task to start (including also to processing

those events in the scheduler). Messaging times vary by location of

the remote scheduler.

o Scaling with task size - how the intrinsic number of operations to

execute the kernel increases.

• Layout of the tasks on the threads and in time generated by the scheduler:

o There was a theoretical discussion of some reasons for stability of

this pattern and reasons for abrupt change and some evidence for

both kinds of behaviour.

• Cache interactions

o Self kernel interaction – how do the kernels perform if the task’s

data fits within the cache, or only partially does so?

o Dilution of inter-task cache hits with increasing thread count.

o Task layout pattern changes affecting inter task cache hits.

o Scheduler processing fitting or not in the cache, e.g. sorts of the

ready task queues.

o Scheduler processing overwriting task data in the cache intended

for an inter-task cache hit, in the case of the original Quick Sched.

222

o Kernel processing overwriting scheduler data in the cache, in the

case of the original QuickSched.

• Absolute size of the problem

o The optimum task size does depend on the overall problem size,

through at least the effect of the problem size on the size of the task

graph.

15.3. Task graph building

The task graph and queue scheduler component location decided on, together

with a desire for ease of development, led to an almost complete preservation of

the interface functions of the scheduler library. The results of that clearly showed

that such a structure was naïve for building the task graph.

With this problem having come to light, schemes for overcoming it were

generated and were considered in detail. These solutions involved not only ways

to batch up these messages to reduce their number, but ideas for how to

implement overlapping task graph building and execution to hide messaging

costs.

15.4. Argmessage and base transport

It was realised that the remote scheduler needed an RPC messaging system,

and one was implemented appropriate to the timescale of the problem and to the

intended HPC applications, so in the C language and using OpenMPI messaging

as the base transport layer. Argmessage is unusual in that it provides for RPC

calls that do not have a return type, as well as those that do. Argmessage was

implemented successfully and would be applicable to remoting a wide range of C

libraries.

OpenMPI messaging was used because, as well as being applicable to the

application, it is well established and mature and therefore likely to be reliable

and to contain optimisations making a wide range of messaging scenarios

efficient. Certainly, OpenMPI caused no reliability problems relating to the

messaging per se. Nonetheless, it would be worthwhile implementing

Argmessage over any message transport more optimised for this particular

223

application. A candidate library for that, in development at Nvidia, “SNAPI”, was

tried but was not quicker. Improvements to MPI arrangements were suggested.

15.5. Qsargm

In order to implement this new location for the scheduler, the existing task-based

scheduling library, QuickSched, was analysed into its components and examined

for where it might be split between the compute threads and the remote process

provided by Argmessage. It was concluded that a split where the remote

scheduler had both its task graph and all its queue objects in the remote process

would be the preferred implementation.

The QuickSched scheduler was reimplemented using that split and using a

messaging loop provided between them provided by Argmessage. In particular,

in general each function call of the original library was provided with its own RPC

message. Details, like how to use tags to address the messages to individual

compute threads, and how to prevent lock up of the scheduler, particularly near

the end of the task graph, caused by the serialisation of messages between the

compute threads and the scheduler that had been introduced, were worked out.

15.6. QR factorisation test example, and simulating other task graphs

The difficulty with the locks and uses specification in the QR factorisation

example from the original scheduler’s repository required very detailed study to

resolve. However, this was fortuitous as it led me to a much greater appreciation

of the structure of the task graph and of the scheduling of tasks, for the QR

factorisation and by extension for task graphs in general. In the end, fixing the

problem made no difference to the results obtained, except some different values

of thread count and tile count parameter n where affected by larger variation in

task graph run time; this gives rise to an interest in future work exploring the

pattern of the layout of tasks across the cores and in time to see if these patterns

vary and if that is related to that phenomenon.

Future work should also include trying various other algorithms beyond the QR

factorisation, chosen for diversity in their task graph structure, in particular ones

having greater numbers of tasks that are more freely in parallel with each other

would provide a contrast to the QR factorisation.

224

While such work could be carried out using Qsargm directly, such experiments do

take a long time to run. The process could be much speeded up using a

simulation. Noisy variation in task and message duration may lead to

rearrangement of the pattern of the tasks across the cores against time, in

algorithms that are susceptible to that. A model for the effects of cache missing

may well be needed. Direct measures (e.g. cache miss counters) of the extent of

that (e.g. how much of a tile is left in the cache even when there is not a miss)

were not obtained, but simulation of a range of such extents, by adding to the

task graph execution time when there is a miss, could be used to explore the

effects.

Another benefit of such simulations would be the ease of visualisation of the front

of progress, the line between completed and ready tasks. This would be

interesting to see if there are patterns which hold up progress. For example, in

plots (not shown) for larger n values of the task graph of the QR factorisation

made by graphviz there are clear repeats in the occurrence of red, green and

blue tasks every three rows of the plot and the yellow tasks are grouped in the

plots rows with a high degree of fan out from a few tasks in the preceding row. I

can imagine that the propagation of the front of completed tasks through the task

graph may be affected by such more macro structures in the task graph. In turn

that may inspire more advanced scheduling rules.

A visualisation could also be obtained of the layout of the tasks across the

threads and in time. This is a 2D space and the placement of new ready tasks in

it is, in QuickSched, governed by the cache miss rules competing with the rule to

feed waiting threads. The former bind a new ready task to preferred sites in the

existing arrangement of completed and executing tasks. This is reminiscent of the

physical process of crystal growth, so one might expect to see regions of more

and less order and perhaps grain boundaries between ordered regions. It would

be interesting to see the effects of changing parameters like the number of tasks

and threads on this structure and, of course, on the task graph execution time.

Another parameter to vary would be the number of parents each task has in the

graph and the mix of that for different tasks. In real cases that property of a task

graph is fixed by a particular actual algorithm, but in a simulation this task graph

225

can be made abstract, with the actual work being done by the kernels being

ignored.

15.7. “From the network” – meaning

The goal set for this work was to perform the control of a code “from the network”.

Clearly control from somewhere else has been achieved, but where that is

requires some examination. The scheduler was placed in a variety of locations.

On the same host was some distance away from the compute threads in terms of

message latency and the local BlueField and the remote host and remote

BlueField locations were further away again. However, the network as distinct

entity did not appear – those are all just other locations on the edge of the

network and are not that dissimilar in distance from any particular host. While

these locations for the scheduler on remote machines seemed possible, no

compelling reason emerged to use them – the better latency of the local locations

would therefore favour them.

Assuming that one is operating in a regime where the messaging time of 1 µs is

significant, distance to a remote controller would come into play at the larger data

centre level, since 1 µs added by actual transmission in longer cables, rather than

processing and propagation in network electronics is equivalent to about 300 m,

so at that size of network the concept of control from the network might

conceivably emerge.

Another aspect of the phrase would be about access to the network. The

BlueField cards do not seem to have faster access to the network; both the host

CPU and Arm subsystem on the BlueField are connected to the network adapter

via the PCI switch on the card. What is important about the Arm subsystem is (i)

that it has access to the network so that it may communicate directly with its

peers on the network, (ii) that it is provided with its own computational resources

to perform complex calculations to support cooperation with its peers, (iii) that it

can of its own motion effect transfer of payload computational data between the

RAMs of hosts, and (iv) it can direct operations (execution of tasks) on its own

host. Taking all those into account the BlueField has become the centre of control

of operations of the local machine, both for internal operations and cooperation

226

with other hosts. It remains, however, at the edge of the network and a thing of

the local machine.

What has happened, however, is that the host CPU, although it still has the same

physical level of, and quality of, connectivity to the network, has conceptually

moved a step away; the BlueField is its interface to its peers in all matters as it

has become a dedicated computational engine. The model of control has

remained local and cooperative between machines, and no central organisation

has emerged, which at first sight the phrase “from the network” might imply.

227

228

16. References

[1] Nvidia, “NVIDIA Completes Acquisition of Mellanox, Creating Major Force

Driving Next-Gen Data Centers,” 27 April 2020. [Online]. Available:

https://nvidianews.nvidia.com/news/nvidia-completes-acquisition-of-

mellanox-creating-major-force-driving-next-gen-data-

centers#:~:text=NVIDIA%20today%20announced%20the%20completion,

performance%20and%20dat.

[2] TOP500 Project, “November 2021,” November 2021. [Online]. Available:

https://www.top500.org/lists/top500/2021/11/.

[3] Nvidia, “Datasheet: Nvidia Bluefield-2 DPU,” [Online]. Available:

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-

Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf. [Accessed 28

April 2022].

[4] Nvidia, “What is RDMA?,” 1 January 2020. [Online]. Available:

https://www.youtube.com/watch?v=lu78_C-9jvA.

[5] Nvidia, “NVIDIA® Mellanox® Scalable Hierarchical Aggregation and

Reduction Protocol (SHARP),” [Online]. Available:

https://docs.nvidia.com/networking/display/sharpv214.

[6] The Open MPI Project, “Open MPI: Open Source High Performance

Computing,” [Online]. Available: https://www.open-mpi.org/.

[7] Swift Project, “Swift - SPH WIth Inter-dependent Fine-grained Tasking,”

[Online]. Available: https://swift.dur.ac.uk/about.html. [Accessed 28 April

2022].

[8] SchedMD, “sbatch command reference page, version 21.08,” [Online].

Available: https://slurm.schedmd.com/sbatch.html (see “--dependency”

option). [Accessed 28 April 2022].

229

[9] S. Shuler, N. Bloch, O. Hayut, R. Graham and A. Shahar.United States

Patent 2016/0072906 (Application), 2016.

[10] J. Pinkerton, “The case for RDMA,” 29 May 2002. [Online]. Available:

http://www.rdmaconsortium.org/home/The_Case_for_RDMA020531.pdf.

[Accessed 14 March 2023].

[11] Nvidia Corporation, “ConnectX-6 Datasheet,” [Online]. Available:

https://nvdam.widen.net/s/5j7xtzqfxd/connectx-6-infiniband-datasheet-

1987500-r2. [Accessed 14 March 2023].

[12] MPI Forum, “Collective Communication - Introduction and Overview,”

[Online]. Available: https://www.mpi-forum.org/docs/mpi-1.1/mpi-11-

html/node64.html. [Accessed 14 March 2023].

[13] University of Tennessee, “MPI: A Message-Passing Interface Standard

(Version 1.1),” 12 June 1995. [Online]. Available: https://www.mpi-

forum.org/docs/mpi-1.1/mpi-11-html/node64.html#Node64. [Accessed 02

January 2024].

[14] C. Mellor, “Mellanox SoCs it to NVMe over Fabrics with BlueField platform

- JBOF made easier,” 9 August 2017. [Online]. Available:

https://www.theregister.com/2017/08/09/mellanox_bluefield_soc/.

[15] P. Gonnet, A. Chalk and M. Schaller, “Source Forge: QuickSched,” 2014

December 2014. [Online]. Available:

https://sourceforge.net/projects/quicksched/.

[16] A. B. G. Chalk, “Task-Based Parallelism for General Purpose Graphics

Processing Units and Hybrid Shared-Distributed Memory Systems,,” 5

September 2017. [Online]. Available: http://etheses.dur.ac.uk/12292/.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, “Chapter 6

Heapsort,” in Introduction to Algorithms, Fourth Edition, Cambridge MA,

MIT Press, 2022.

230

[18] Regents of the University of Minnesota, “METIS (Github),” 1998-2020.

[Online]. Available: https://github.com/KarypisLab/METIS. [Accessed 2

January 2024].

[19] P. Gonnet, M. Schaller, T. Theuns and A. B. G. Chalk, “SWIFT: fsat

algorithms for multi-resolution SPH on multi-core architectures,” 15

September 2013. [Online]. Available: arXiv:1309.3783v1.

[20] P. Gonnet, “Efficient and Scalable Algorithms for Smoothed Particle

Hydrodynamics on Hybrid Shared/Dsitributed-Memory Archtectures,”

SIAM Journal Of Scientific Computing, vol. 37, no. 1, pp. C95 - C121,

2015.

[21] T. Theuns, A. Chalk, M. Schaller and P. Gonnet, “Swift: task-based

hydrodynamics and gravity for cosmological simulations,” 1 August 2015.

[Online]. Available: arXiv:1508.00115v1. [Accessed 17 March 2023].

[22] P. Gonnet, A. B. G. Chalk and M. Schaller, “Quick Sched: Task-based

parallelism with dependencies and conflicts,” 20 January 2016. [Online].

Available: arXiv1601.05384v1.

[23] M. Schaller, P. Gonnet, A. B. G. Chalk and P. W. Draper, “SWIFT: Using

Task-Based Parallelism, Fully Asynchronous Communication, and Graph

Partition-Based Domain Decomposition for Strong Scaling on more than

100,000 Cores,” in Proceedings of the Platform for Advanced Scientific

Computing Conference 2016 (PASC), Lausanne, 2016.

[24] J. S. Willis, M. Schaller, P. Gonnet, R. G. Bower and P. W. Draper, “An

Efficient SIMD implementation of Pseudo-Verlet Lists for Neighbour

Interactions in Particle Based Codes,” 17 April 2018. [Online]. Available:

arXiv:1804.06231v1. [Accessed 18 March 2023].

[25] J. Borrow, R. G. Bower, P. W. Draper, P. Gonnet and M. Schaller,

“SWIFT: Maintaining wek-scalabilty with a dynamic range of 10^4 in time-

231

step size to harness extreme adaptivity,” in Proceedings of the 13th

SPHERIC International Workshop,, Galway, Ireland, 2018.

[26] P. Samfass, T. Weinzierl, D. E. Charrier and M. Bader, “Leigthweight

Task Offloading Exploting MPI Wait Times for Parallel Adaptive Mesh

Refinement,” 14 April 2020. [Online]. Available: arXiv:1909.06096v2.

[Accessed 18 March 2023].

[27] P. Samfass, T. Weinzierl, B. Hazlewood and M. Bader, “TeaMPI -

Replication-Based Resilience Without (Perfomance Pain),” in ISC High

Performance, Online, 2020.

[28] Excalibur Reseach Programme, “Excalibur Research Programme Home

Page,” [Online]. Available: https://excalibur.ac.uk/. [Accessed 15 March

2023].

[29] Excalibur Research Programme, “Exposing Parallelison: Task

Parallelism,” [Online]. Available: https://excalibur.ac.uk/projects/exposing-

parallelism-task-parallelism/. [Accessed 15 March 2023].

[30] A. Tuft and A. Chalk, “Otter project at GitHub,” [Online]. Available:

https://excalibur.ac.uk/projects/exposing-parallelism-task-parallelism/.

[Accessed 2023 March 2023].

[31] UCF Consortium, “Unfied Communication X,” [Online]. Available:

https://openucx.org/. [Accessed 4 May 2022].

[32] opensource.com, “CFS: Completely fair process scheduling in Linux,” 5

February 2019. [Online]. Available:

https://opensource.com/article/19/2/fair-scheduling-linux.

[33] H. Hoogendoorp, “Extraction and visual exploration of call graphs for large

software systems,” 15 February 2018. [Online]. Available:

https://fse.studenttheses.ub.rug.nl/9153/.

232

[34] J. L. Hennessy and D. A. Patterson, Computer Architecture A Quantitative

Approach, Sixth Edition, Cambridge, MA: Morgan Kaufmann, 2019.

[35] F. Burton and M. Sleep, “Executing functional programs on a virtual tree

of processors,” in Proceedings of the 1981 conference on Functional

programming languages and computer architecture;, New York City,

Association for Computer Machinery, 1981, pp. 187-194.

[36] R. J. Halstead, “Implementation of multilisp: Lisp on a multiprocessor,” in

Proceedings of the 1984 ACM Symposium on lisp and functional

programming, New York City, Association for Computer Machinery, 1984,

pp. 9-17.

[37] R. Rudolph, M. Slivkin-Allaouf and E. Upfal, “A simple load balancing

scheme for task allocation in parallel machines,” in Proceedings of the 3rd

Annual ACM Symposium on Parallel Algorithms and Architectures, New

York City, Association for Computer Machinery, 1991, pp. 237-245.

[38] OpenMPI Project, “FAQ: What kinds of systems / networks / run-time

environments does Open MPI support?,” [Online]. Available:

https://www.open-mpi.org/faq/?category=supported-systems. [Accessed 4

May 2022].

[39] Oracle Corporation, “ONC+ Developer's Guide,” [Online]. Available:

https://docs.oracle.com/cd/E19683-01/816-1435/index.html. [Accessed

2022 May 4].

[40] Oracle Corporation, “ONC+ Developer Guide, What IS TI-RPC,” [Online].

Available: https://docs.oracle.com/cd/E19683-01/816-1435/rpcintro-fig-

1/index.html. [Accessed 4 May 2022].

[41] P. Krzyzanowski, “Remote Procedure Calls &Web Services,” 18

September 2023. [Online]. Available:

https://people.cs.rutgers.edu/~pxk/417/notes/rpc_cases.html. [Accessed 3

January 2024].

233

[42] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design patterns :

elements of reusable object-oriented software, Boston: Addison-Wesley,

1995.

[43] Message Passing Interface Forum, “MPI: A Message-Passing Interface

Standard Version 4.0,” 9 June 2021. [Online]. Available: https://www.mpi-

forum.org/docs/mpi-4.0/mpi40-report.pdf.

[44] Open MPI Project, “MPI_Init_thread man page,” [Online]. Available:

https://www.open-mpi.org/doc/v4.1/man3/MPI_Init_thread.3.php.

[Accessed 4 May 2022].

[45] G. R. Andrews, “Glossary,” in Concurrent programming – Principles and

Practice, Redwood City, The Benjamin/Cummings Publishing Company,

Inc., 1991, p. 604.

[46] Wolfram, “Wolfram Langauage & System: Documenation Center

QRDecomposition,” [Online]. Available:

https://reference.wolfram.com/language/ref/QRDecomposition.html.

[Accessed 5 June 2022].

[47] Eigen Project, “Eigen: Linear algebra and decompositions,” [Online].

Available:

https://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html.

[Accessed 5 June 2022].

[48] S. Blackford, “LAPACK User Guide: Orthogonal Factorizations and Linear

Least Squares Problems,” 1 October 1999. [Online]. Available:

http://netlib.org/lapack/lug/node39.html. [Accessed 5 June 2022].

[49] A. Buttari, J. Langou, J. Kurzak and J. Dongarra, “Parallel tiled QR

factorization for multicore architectures,” Concurrency and Computation:

Practice and Experience, vol. 20, pp. 1573-1590, 2008.

234

[50] P. Gonnet, A. B. G. Chalk and M. Schaller, “QuickSched: Task-based

parallelism with dependencies and conflicts,” 20 January 2016. [Online].

Available: https://arxiv.org/pdf/1601.05384.pdf.

[51] S. Freeman and N. Pryce, Growing object-oriented software, guided by

tests, Boston: Pearson Education, Inc., 2010.

[52] Network-Based Computing Laboroatory, The Ohio State University,

“MVAPICH: MPI over InfinDand,Omni-Path, Ethernet/iWARP, and

ROCE,” [Online]. Available: https://mvapich.cse.ohio-

state.edu/benchmarks/. [Accessed 5 May 2022].

[53] J. Duato, S. Yalamanchili and L. Ni, “Chapter 1 - Introduction,” in

Interconnection Networks - An Engineering Approach, San Francisco,

Morgan Kaufmann, 2003, pp. 1-41.

[54] Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley, E. N.

Fokoua, J. R. Hayes, N. V. Wheeler, D. R. Gray, B. Mangan, R. Slav´ık,

F. Poletti, M. Petrovich and D. Richardson, “Multi-kilometer Long,

Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for

Broadband Low Latency Data Transmission,” Juornal of Lightwave

yechnology, vol. 34, no. 1, pp. 104-113, 2016.

[55] OpenMPI Project, “ompi / ompi / mpi / c / wtime.c on gitHub,” [Online].

Available: https://github.com/open-

mpi/ompi/blob/eb87378cd8c55c08fde666c03a04aa2811da395a/ompi/mpi

/c/wtime.c. [Accessed 1 July 2022].

[56] OpenMPI Project, “ompi / opal / util / clock_gettime.h on GitHub,” [Online].

Available: https://github.com/open-

mpi/ompi/blob/eb87378cd8c55c08fde666c03a04aa2811da395a/opal/util/c

lock_gettime.h. [Accessed 1 July 2022].

[57] GNU project, “clock_gettime(3) - Linux man page,” [Online]. Available:

https://linux.die.net/man/3/clock_gettime. [Accessed 1 July 2022].

235

[58] GNU Project, “gettimeofday(2) - Linux man page,” [Online]. Available:

https://linux.die.net/man/2/gettimeofday. [Accessed 1 July 2022].

[59] Intel Corporation, “How 12th Gen’s Intel® Core™ Hybrid Technology

Works,” [Online]. Available:

https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-

design-works.html. [Accessed 14 June 2022].

[60] Intel Corporation, “Get to Know Intel® Turbo Boost Max Technology 3.0,”

[Online]. Available: https://www.intel.com/content/www/us/en/architecture-

and-technology/turbo-boost/turbo-boost-max-technology.html. [Accessed

15 June 2022].

[61] Arm, “big.LITTLE Technology,” [Online]. Available:

https://developer.arm.com/documentation/den0024/a/big-LITTLE-

Technology. [Accessed 15 June 2022].

[62] Nvidia Corporation, “VPI Verbs API,” [Online]. Available:

https://docs.nvidia.com/networking/pages/viewpage.action?pageId=34256

565. [Accessed 30 June 2022].

[63] HPC AI Advisory Council, “HPC AI Advisory Council - homepage,”

[Online]. Available: https://www.hpcadvisorycouncil.com/. [Accessed 21

June 2022].

[64] HPC AI Advisory Council, “HPC AI Advisory Council - High-Perfomance

Centre Overview,” [Online]. Available:

https://www.hpcadvisorycouncil.com/cluster_center.php. [Accessed 27

Janauary 2022].

[65] Mellanox (now Nvidia Networks), “BlueField Infiniband Specifications,”

[Online]. Available:

https://docs.mellanox.com/display/BFVPIDPU/Specifications . [Accessed

27 January 2022].

236

[66] Mellanox, “ConnectX-6DX/Bluefield-2 IPsec HW Full Offload

Configuration Guide,” [Online]. Available:

https://support.mellanox.com/s/article/ConnectX-6DX-Bluefield-2-IPsec-

HW-Full-Offload-Configuration-Guide. [Accessed 21 June 2022].

[67] Nvidia, “NVIDIA BLUEFIELD DPU FAMILY SOFTWARE 3.6.0.11699

DOCUMENTATION - Supported Platforms and Interoperability,” [Online].

Available:

https://docs.nvidia.com/networking/display/BlueFieldSWv36011699/Supp

orted+Platforms+and+Interoperability. [Accessed 21 June 2022].

[68] Mellanox, “BlueField-2 Infinband/VPU DPU User Guide,” [Online].

Available:

https://docs.nvidia.com/networking/display/BlueField2DPUVPI/Hardware+

Installation. [Accessed 27 January 2022].

[69] Nvidia Corporation, “BlueField DPU SW Manual - Modes of Operation,”

[Online]. Available:

https://docs.nvidia.com/networking/display/BlueFieldSWv35111601/Mode

s+of+Operation. [Accessed 14 July 2022].

[70] Herausgegeben im Auftrag des Rektors der Rheinisch-Westfälischen

Technischen Hochschule (RWTH) Aachen, “HPC Wiki - Scaling Tests,”

[Online]. Available: https://hpc-wiki.info/hpc/Scaling_tests. [Accessed 3

January 2024].

[71] GNU Project, “The C Preprocessor System-specific Predefined Macros,”

[Online]. Available: https://gcc.gnu.org/onlinedocs/cpp/System-specific-

Predefined-Macros.html#System-specific-Predefined-Macros. [Accessed

1 July 2022].

[72] Intel Corporation, “Intel® 64 and IA-32 Architectures Software Developer

Manuals,” [Online]. Available:

237

https://www.intel.com/content/www/us/en/developer/articles/technical/intel

-sdm.html. [Accessed 1 July 2022].

[73] Wikimedia Foundation, “Wikipedia - Time Stamp Counter,” [Online].

Available: https://en.wikipedia.org/wiki/Time_Stamp_Counter. [Accessed

1 July 2022].

[74] D. Groen, A. Bhati, J. Suter, J. Hetherington, S. Zasada and P. Coveney,

“ FabSim: facilitating computational research through automation on

large-scale and distributed e-infrastructures,” Computer Physics

Communications, no. 207, pp. 375-385, 2016.

[75] D. A. H. S. D. Groen, W. Edeling, E. Raffin, Y. Xue, K. Bronik, N. Monnier

and P. Coveney, “FabSim3: An automation toolkit for verified simulations

using high performance computing. Computer Physics Communications,”

Computer Physics Communications, no. 283, p. 108596, 2023.

[76] D. e. a. Groen, “FabSim3 - An automation toolkit for complex simulation

tasks - Readthedocs,” [Online]. Available:

https://fabsim3.readthedocs.io/en/latest/. [Accessed 5 January 2024].

[77] G. M. Amdahl, in AFIPS Conference Proceedings (30): 483–485, 1967.

[78] S. S. Council, “scipy.optimize.curve_fit,” 2022 October 19. [Online].

Available:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve

_fit.html. [Accessed 2022 October 23].

[79] Nvidia Corporation, “Nvidia RDMA Core (MLNX_OFED v5.0-1.0.0.0) -

User-Mode Memory Registration (UMR),” [Online]. Available:

https://docs.nvidia.com/networking/pages/viewpage.action?pageId=25138

119. [Accessed 19 February 2023].

[80] Intel Corporation, “Intel® Xeon® Processor E5-2697A v4,” 2022. [Online].

Available:

https://ark.intel.com/content/www/us/en/ark/products/91768/intel-xeon-

238

processor-e52697a-v4-40m-cache-2-60-ghz.html. [Accessed 09

Decemeber 2022].

[81] “CPU World - Intel Xeon E5-2680 v2,” [Online]. Available:

https://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20E5-

2680%20v2.html. [Accessed 12 February 2023].

[82] “CPU World - Intel Xeon E5-2697A v4,” [Online]. Available:

https://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20E5-

2697A%20v4.html. [Accessed 12 February 2023].

[83] D. E. Charrier, B. Hazelwood and T. Weinzierl, “Eclave Tasking for DG

Methods on Dynamically Adaptive Messages,” 24 February 2020.

[Online]. Available: arXIv:1806.07984V3. [Accessed 18 March 2023].

[84] “man page for bash,” [Online]. Available:

http://www.manpagez.com/man/1/bash/ at "INVOCATION". [Accessed 4

May 2022].

[85] Open Grid Scheduler Project, “qsub man page,” [Online]. Available:

http://gridscheduler.sourceforge.net/htmlman/htmlman1/qsub.html at

option "-v". [Accessed 2020 May 4].

[86] SchedMD, “sbatch man page,” [Online]. Available:

https://slurm.schedmd.com/sbatch.html at option "--export". [Accessed 4

May 2022].

[87] University College London, “UCL_RITS rcps-buildscripts,” [Online].

Available: https://github.com/UCL-RITS/rcps-buildscripts. [Accessed 4

May 2022].

[88] Spack project, “Spack,” [Online]. Available: 2022. [Accessed 4 May 2022].

[89] Nvidia, “Mellanox HPC-X Tollkit,” [Online]. Available:

https://support.mellanox.com/s/productdetails/a2v50000000XcPdAAK/hpc

x-toolkit. [Accessed 4 May 2022].

239

[90] The GNU project, “Bash Manual - Bash Satrtup Files,” [Online]. Available:

https://www.gnu.org/software/bash/manual/html_node/Bash-Startup-

Files.html. [Accessed 27 January 2022].

[91] Oracle Corporation, “Sun HPC ClusterTools 8.1 Software User’s Guide -

About the mpirun Command,” [Online]. Available:

https://docs.oracle.com/cd/E19923-01/820-6793-

10/ExecutingPrograms.html#50524166_62903. [Accessed 26 June 2022].

[92] University of Tennessee; University of California, Berkeley; University of

Colorado Denver; and NAG Ltd., “LAPACK - Linear Algebra PACKage,”

[Online]. Available: http://www.netlib.org/lapack/. [Accessed 28 June

2022].

[93] The NumPy Project, “Numpy - The fundamental package for scientific

computing with Python,” [Online]. Available: https://numpy.org/. [Accessed

30 June 2022].

[94] Wikipedia, “Object (computer science),” [Online]. Available:

https://en.wikipedia.org/wiki/Object_(computer_science). [Accessed 28

April 2022].

240

17. Appendices

Appendix A – Operation of Argmessage – further details

17.1. Argmessage – initialisation (and finalisation)

There are several aspects to starting an application that uses an Argmessage library:

• launching the processes that will execute the client and the server

• initialising the underlying messaging library used by Argmessage

• initialising the Argmessage client and server

• initialising the user library supported by Argmessage on both the client and

server

• initialising the user application itself, on the client

17.2. Launching processes and initialising the software environment

In this project the client and server are initialised together and run during the same

period, which is usually the lifetime of the client application. It could be envisaged to

have a long running server that clients connect to and disconnect from as necessary,

but that is outside the scope of this project. Such an arrangement would face

additional security and reliability issues.

In the main application of Argmessage in this project the underlying messaging

library is OpenMPI and some of the initialisation steps make use of OpenMPI

facilities. These therefore would have to be adapted if another underlying messaging

library was used.

17.3. Launching with mpirun

For the main MPI case, launching the client and server processes is preferably

carried out using an mpirun command that comes with MPI libraries, which is, of

course, the standard approach for MPI programs. Ordinary users of MPI codes will

be familiar with the mpirun command and its use to launch multiple copies of the

code spread across multiple compute nodes. It is also possible to use the mpirun

command to launch different codes on different nodes, and that is used here to

241

launch the Argmessage client and the server. This is a less common use, so an

example is given in Table 25.

Note, however the details of mpirun are implementation specific, which means not

only the particular MPI code project, of which there are several, but the details of the

installation on any cluster. The points made in this Appendix relating to MPI relate in

particular to OpenMPI and, further, may depend on the particular cluster I was

working on. The reader will therefore have to apply the points made to their particular

setup.

The mpirun command first launches a part of the communications library (the ORTE

daemon in the case of OpenMPI) on each node referred to by the mpirun command,

and then starts the specified programs, which will be the client and server of this

project. (The client and server programs will initialise the messaging library further by

each calling MPI_Init() from within their own program.)

So, an example mpirun command, for one client-server pair, is:

mpirun -np 1 –host client_hostname client_application : -np 1

 --host server_hostname server_application

Table 25 – Argmessage application launch mpirun example

The colon character separates the parameters used for the different programs being

launched. So, this launches one process (“-np 1”) of the application called

“client_application” and one process of the “server application” respectively on the

machines called “client_hostname” and “server_hostname”.

The mpirun command may be issued in various contexts. One is that it may be

included in the batch script of a scheduled job of a cluster scheduler. This script is of

course executed on the one of the nodes allocated to the batch job by the cluster

scheduler selected to be the head node. This is how it is used in the experiments of

this project. A requirement on the batch script is of course that it obtains from the

cluster scheduler, or has provided to it otherwise, access to the machines referenced

in the mpirun command.

17.4. Use on heterogeneous architectures

For the common use of mpirun of running multiple copies of the same code, the user

does not usually have to specify the hosts, which are instead communicated to

242

mpirun using a special file listing the hosts (sometimes called a “machine file”) or

using an environment variable. Whether or not a machine file is employed, in

Argmessage the user will have to make some arrangements to sort out which

machine will run which of the client and server. For example, in the particular case of

using a BlueField card for the server, one way will be for the job batch script to work

out which of the available nodes is the BlueField card and which is the host and

launch the server and client on those respectively. Helpfully most cluster system

administrators give nodes of similar specification the same name differentiated by a

serial number, so the BlueField cards will have different names from the hosts and

so the script can use those to differentiate.

Implicit in this is that the cluster scheduler has been set up to have the server (e.g., a

BlueField card) as a separate, allocatable node for cluster jobs, so that a batch job is

able to request it amongst its list of required nodes. In order to be able to be set up

as a separate node in the scheduler, a BlueField card should be set up in its

separated host mode.

The user will of course have to add further options to the mpirun command to

optimise, or simply make the communications work, on the cluster system, for

example covering things such as selecting the network cards to use and options that

determine which components/options of the underlying messaging library are used.

For example, for a host to communicate with its own BlueField card, one should

preferably set MPI to use the BlueField card as its network card, rather than some

other network card in the host computer. The latter might not fail but messages

between the host and its BlueField may well take an indirect route.

OpenMPI is designed to allow programs running on different architectures to

communicate with each other. The different binaries of these programs needed for

the different architectures can be specified using the colon syntax of mpirun shown

in Table 25.

The client and server programs per se, and their libraries including those of

OpenMPI, can require further painstaking set up. In Linux systems, where to find the

libraries is determined by the environment, in particular the environment variable

LD_LIBRARY_PATH. This can be set in various ways, for example by direct

243

assignment or by using environment modules provided by the module command, or

possibly also by the Spack command. It can also be set or modified at various times;

these may include:

• start-up scripts called when the cluster scheduler contacts the head node of

the batch job,

• commands inside the batch script itself, and

• start-up scripts called when the client and server are launched (launching

through mpirun causes this).

A further complication is that, potentially, different start-up scripts can be called

depending on just how any login to establish these processes is made [84] – for

example, value of shebang of the batch script and any scripts invoked by mpirun will

be important. Another complication is that the user’s environment at the time of

submitting the batch job to the scheduler may be considered. (I was unfortunate

enough to have to learn that one popular cluster scheduling system, SGE, has an

opt-in system for doing this [85], while another, SLURM, has an opt out [86].)

The user’s strategy for getting all this right is to either to diagnose what is happening

to the environment, for example by logging relevant items to a file in the various

scripts that may come into play, and go with it, or to override the

LD_LIBRARY_PATH environment variable at the last moment possible, which may

involve using mpirun not to call the client and server programs directly but to call

scripts that do launch them but only after first setting LD_LIBRARY_PATH. In the

latter case the user should ensure not to remove unintentionally something set by

the log in scripts but actually needed – this especially applies to the scripts controlled

by the system administrator rather than the user. The best strategy may depend on

the quality and breadth of the setup provided by the system administrators. The

experiments section of this thesis records how this was all achieved in the particular

case of the experimental runs.

17.5. Initialisation within the client and server applications

Once the correct client and server applications have been launched with the correct

environment, the remaining aspects of the initialisation are dealt with within the code

of the Argmessage client and server applications.

244

The underlying messaging library on which Argmessage depends will need to be

initialised. In the case of OpenMPI explicit action is required in the form of calling the

function MPI_Init(). This is included both in the Argmessage server code and client

code. MPI_Init() contacts the ORTE daemons mentioned earlier and establishes the

connections between the processes and their rank numbers, which are their abstract

addresses between which MPI messages are sent.

To start Argmessage on the client and server they respectively call

argmessage_proxygetobject(), argmessage_serverenginegetobject(). These in turn

both call MPI_Init().

17.6. Using Argmessage in a client that has MPI peers

It is noted that there may be an inconvenience in the case where the client

application is itself an OpenMPI application with peers on other host nodes of a

cluster, with which it would want to communicate using OpenMPI. In that case, a

refactoring of moving MPI_Init() out of the Argmessage library and into the client

application per se will help. Here, once the client application has called MPI_Init(), it

could then sort out first which rank numbers belong to its counterpart Argmessage

server and which to its peer client applications. The client will only have a single rank

number, so to separate the communications of the client application with its peers

from those with Argmessage server respective MPI communicators should be

defined for these two purposes. All OpenMPI calls in the client application and in the

Argmessage library will then have to be amended to refer to the correct one of those

communicators, rather than for example the general default communicator,

MPI_COMM_WORLD.

The Argmessage function argmessage_serverrank() negotiates which rank plays the

role of the Argmessage server and its logic might need to be reviewed in such a

refactorisation; as it stands it is expected that one rank will declare itself to be the

server, so if communicators were to be defined these should include just one rank

that has been launched to execute the server application.

17.7. Further initialisation of Argmessage

An initialisation step on the server, which could either precede or follow the OpenMPI

initialisation, is the initialisation of the proxy and adapter objects’ function tables.

245

These need to be populated with entries for both Argmessage’s internal

housekeeping functions and the remote functions of whichever application the server

is here to support. Finally, the server and client are then provided with further items

of its own initial state and initial state for the library that it supports.

17.8. User library initialisation

With the Argmessage library initialised, the user application of course needs to

complete any other initialisations it needs. The user library programmer should

provide initialisation functions, if required, for both the client-side and the server-side.

On the server-side there may be a need for either or both of automatic initialisation

and client-requested initialisation.

The former should be done once the adapter objects have been created, since the

state created by this initialisation should usually be attached to the relevant adapter

object for retrieval when a remote user function is called. For this purpose, an

adapter is already provided with a pointer to a state object, which can be set to the

initial state of the library so that the state may be retrieved, if needed, by subsequent

remote library function calls. Indeed, the first parameter of all remote library functions

is the identity of the adapter, which allows the remote library function to access the

pointer and hence access the library’s state.

Client-requested initialisation is for where the initialisation of the user library needs

some value from the client side, which is sent in an Argmessage message calling

this initialisation function. Because client-requested initialisation uses an

Argmessage message and a remote library function, it can only be called after

Argmessage has been placed in the run mode.

17.9. Argmessage’s run mode

With the initialisation complete (with the possible exception of client-requested

server-side initialisation of the user library), the Argmessage server is set to “run”

using the function, argmmessage_serverenginerun(), which means it will now accept

messages from the client, which it will interpret as RPC requests. The client does

have a corresponding “run” function, argmessage_proxyrun(), which is called at this

point, but it only initialises a precautionary maximum for the number of messages it

will process, guarding against an application that gets stuck in a loop; the proxy on

246

the client is only actually in execution during the run mode when public interface

functions are called by the client application. On the other hand, the server, when it

has nothing to do, is waiting to receive more RPC messages.

The details of how Argmessage messages operate to achieve RPC calls has been

described in section 6.4, with reference to Figure 6.

17.10. Finalisation

Once everything has been initialised, the client application can then of course make

calls to the user library via its public interface to achieve whatever is desired from it.

Finally, after the desired processing using the library is completed, in a finalisation

step, the client application should both make a call to the user library to finalise that,

and then finalise the Argmessage library. For the former the user library programmer

should provide a special function. The latter is achieved with calls to

argmessage_proxykillserverrequest() and as many calls to

argmessage_proxykilladapter() as the number of adapters that the client application

was using. The call to argmessage_proxykillserverrequest() is noted by the server

and is acted on once all the adapters have been deactivated with

argmessage_proxykilladapter(). This avoids unexpected termination of the service

for the other clients.

While it is desirable in some cases that using Argmessage appears transparent to

the application program, i.e., it just calls functions of the public interface,

Argmessage does requires initialisation and finalisation which are explicit from that

perspective; this is a modest complication for the application programmer.

Nonetheless between initialisation and finalisation it was possible to maintain that

transparency of presentation. (The more demanding complication of where

Argmessage and the client application share use of the same underlying message

library has been noted above.)

247

Appendix B – Compilation of Argmessage and Qsargm

17.11. Compilation of components for heterogeneous architectures

As will become apparent, the software in this project has server and client

applications that run in different processes, with the intention being, in general, that

they are run on separate processors. Indeed, the main target arrangement has the

client application running on an x86-64 compute node and the server running on a

BlueField card plugged into the motherboard of that compute node. In that case, the

two processors have different architectures.

It is therefore necessary to be able to compile the client application and the server

for their respective architectures. This leads to the following difficulties. While

administrators of HPC systems often provide a selection of dependencies

precompiled for compute nodes against which users may compile their own code,

unsurprisingly, since BlueField cards are relatively new and not commonplace, they

do not provide similar for the BlueField cards. The need for such libraries will not

only be a few system libraries, but also computational dependencies may well also

be needed on the compute node (and potentially the BlueField card but that did not

arise).

Compilation of libraries is often, of course, not that straightforward: each has its own

dependencies and options for compilation, and various build systems may be

preferred for each. This can lead to a complex set of possibilities, only some of which

work. System administrators distil their experience of getting a large set of working

dependencies to compile into a collection of build scripts. For example, those used

for the central HPC systems at University College London are to be found on GitHub

[87]. One route to providing for dependencies for different architectures might have

been to use such scripts adapting them as necessary. This would have been a

lengthy and risky process, for example working down the tree of dependencies only

to find some incompatibility. Certainly I found the process unwieldy. I hoped to

address this problem in this work by using the Spack package manager [88], but this

was only partially successful. Nonetheless it may find better application in future as

Spack develops.

248

17.12. The Spack package manager

In order to tailor the binaries for the system being used, Spack downloads the source

code, applies patches and compiles it using its own compile script. Further and

importantly, it also compiles any required dependencies, and dependencies needed

by them and so on, in a consistent manner. The build scripts for each package are

kept in a global central repository and are contributed and maintained by both

system administrators of many HPC and other systems and by the authors

themselves of the applications and libraries being built. In this way much more

experience of which build options and dependency versions are compatible is built

up. Spack provides build scripts for wide range of packages used in scientific

computing and so was suitable for use in this project.

In normal use of Spack these build scripts are fairly hidden from the user and so two

users on different systems, having the same or different architectures, will get highly

similarly built code. To provide some flexibility however in what is built, options are

provided to allow that. Those options, together with the version numbers and options

of the dependencies and even also those details for the compiler, used to build a

package are recorded, resulting in a complete specification of how that package and

its dependencies have been built. That specification can be later used to, more or

less exactly, reproduce the complete build, which is of great assistance to, for

example, another user who wants to reproduce computational results generated by

the package. These build operations are not instant, as Spack finds a wealth of

dependencies to be built for many packages, but it was of course far more

methodical in doing that than I could have been.

It was a goal in this project therefore to use Spack to build as many dependencies as

possible. In the end, it was only used to build the netlib-lapack package, which was

used in the main example of a computational program using the Qsargm library of

the project.

In the main this project used MPI, in particular OpenMPI, for the messaging between

the Argmessage client and the server. Spack has build scripts for OpenMPI but

these did not always work, particularly for more recent versions (at the time of

building them), failing when building its dependency on the lower level UCX

249

communication library [31]. Fortunately, (i) compiled versions of OpenMPI for many

different architectures and operating systems are provided by Nvdia/Mellanox in the

HPCX distribution [89], which are often, but apparently not always, easy to install,

and (ii) Spack does provide facilities for declaring a dependency that exists on the

system to be a package within its system, so that it is what I used generally.

One useful feature I found in Spack was on an earlier system than used for the final

experimental system, which did not allow Internet download to the BlueField cards,

which was inconvenient since Spack downloads the source code files. Spack allows

different installations (a set of sources and compiled software made by Spack –

Spack “site”) to be marked downstream of one another, with the downstream

installation reusing items available in the upstream one. So, I was able to declare

Spack sites for nodes of different processor architectures, one of which had Internet

access available for its nodes. Builds on that downloaded the sources and these

sources would then be reused by Spack when compiling packages on the BlueField

card.

250

17.13. Build system for Argmessage

The Argmessage build is not complex and could be achieved with various build

systems. The Argmessage client is intended to be compiled as part of the executable

of the application it serves, so a user of Argmessage should include it in the build

specification files of whatever build system is being used by the client application. In

this project it was applied to QuickSched, which uses the Autotools build system, so

the build specification files for that, the files Makefile.am, were extended to cover the

Argmessage files as well. One important aspect of Argmessage, as noted in section

17.11, is that it may well need to be built for different architectures. In-source builds

are always messy and do not work for multiple architectures as object files would be

overwritten when compiling for the second architecture. The build script to build the

application therefore uses a respective build directory for each architecture. The

application was built for each architecture on a machine of that architecture, so the

build script determines the architecture, and hence where to do the build, simply

from the hostname of the system. One further complication of this was that the login

node on the cluster where the code was developed has an architecture (an AMD

one) different from both that of the compute nodes (an Intel one) and that of the

BlueField cards (an Arm one); so, to allow for frequent compilation during debugging

a build for the login node’s architecture was also provided. The build script of course

also set the environment to include the correct versions of dependencies for the

architecture. Owing to the difficulties noted in this section, that comprised a mixture

of user environment modules made for the hand built messaging libraries and Spack

modules for the computational kernels.

17.14. Compiling messaging libraries and launching experiment programs

Section 17.2 discussed launching Argmessage applications generally. More detail is

given here on how the QR factorisation experiments were launched, including how to

launch for all the test geometries and including the arrangements for working through

the sets of experimental parameters used.

Many HPC clusters are homogeneous, meaning that all machines in the cluster have

the same processor architecture. If that is not the case, as in the present project,

which has both x86-64 machines, i.e., the hosts, and Arm processors, on the

251

BlueField cards, care has to be taken to use not only the correct versions of the

application code compiled for the respective architectures but also the correct

versions of all the dependencies. Heterogeneous production clusters, for example

with different generations of x86-64 processors with different instruction set

extensions, do exist and there are a couple of tricks that can help a system

administrator to deal with the problem of needing different versions of compiled

codes.

One is to compile all the software modules for each architecture in matching

directory structures and then mount on each machine the correct directory set for

that machine in exactly the same place with respect to the root directory, “/”,

independent of the architecture. In this way, selection of the correct version can be

made entirely automatic: i.e., nothing has to be done in a launch script on different

machines to make a selection since the same path for the code is quoted when

launching an application program.

It is possible, I understand, to include variants of the object code for different x86-64

generations in the same object code file, but that is not relevant here as the

machines here were more heterogeneous in that they include the Arm processors, to

which that does not extend.

The cluster used here was, of course, experimental, and little software was provided.

Only compilers and a few of the common computational libraries, MPI versions and a

few common HPC applications were provided for the host systems; none were

provided for the Arm system over the bare base operating system. So, since both

Arm and x86-64 code was required, all the experimental code and its dependencies

had to be compiled for each architecture separately. Not being granted administrator

rights, mounting the code at the same path in the file system was not an option.

Further, finding a compilation for OpenMPI that worked between the x86-64 hosts

and Arm BlueField did not happen straight away, but the combination noted in Table

26 was found to work and was used in the experiments. It was tried to compile these

with Spack but that failed to build the UCX dependency of OpenMPI.

252

OpenMPI 4.1.1

Archive file: openmpi-4.1.1.tar.gz

Configure flags: --prefix=/global/scratch/users/cyrusl/placement/

 software/openmpi-4.1.1/install-broadwell

--with-ucx=/global/scratch/users/cyrusl/placement/

 software/ucx-1.10.1/install_broadwell/

--enable-heterogeneous

--without-slurm

--enable-orterun-prefix-by-default=no

--enable-mca-no-build=btl-uct

--with-hwloc=/global/home/users/cyrusl/placement/

 software/hwloc-2.4.1-broadwell

UCX

Archive file: ucx-1.10.1.tar.gz

Configure flags: --disable-logging –disable-debug

--disable-assertions –disable-params-check

--prefix=/global/scratch/users/cyrusl/placement/

 software/ucx-1.10.1/install_broadwell

--enable-mt

hwloc (a dependency of OpenMPI)

Archive file: hwloc-2.4.1.tar.gz

Table 26 – Communication library compilation options

The compilation was done separately for each architecture: once for the Arm

aarch64 architecture and once each for each of the particular x86-64 architectures of

the different clusters used at HPCAC. The values in Table 26 for the OpenMPI and

all dependency paths are for the Broadwell x86-64 architecture and were changed

appropriately for the other x86-64 architectures. Linux modules were created for

each version.

253

The options --enable-heterogeneous, --without-slurm, --enable-orterun-prefix-by-

default=no for OpenMPI are all relevant to the launch flow described in Appendix A

sections 17.2 to 17.4.

The launching of the client and server programs was achieved in these experiments

as is now described, giving particular details of the MPI arrangements, as well as the

organisation of providing the experimental parameters to test application programs.

254

Figure 42 – Launch flow diagram for experiment programs

255

Figure 42 is a block diagram showing the flow of the launch process. A batch script

is submitted to the cluster batch scheduler, in this case the SLURM scheduler,

requesting a set of nodes of the form shown in Figure 10, namely a pair of x86 hosts

and their respective BlueField cards, so covering all the geometries. These batch

files in the archive have names prefixed with “epru”. The cluster scheduler allocates

those nodes and launches the epru script on the head node, which was always the

x86-64 node with the lower number in its machine name; so, for example, when

jupiter005, jupiter006, jupiter-bf05 and jupiter-bf06 were specified, jupiter005 was the

head node. While it would have been more transparent to set the OpenMPI modules

in the epru batch file, this was put in the .bashrc file, which is, of course, executed

each time a new bash shell is started as a login shell [90]. So in the launch

arrangements, .bashrc is executed in two places: (i) when the cluster scheduler

starts a new process on the head node to execute the epru script and (ii) when, in

the arrangement of the HPCAC clusters, mpirun starts new processes on the client

and server machines to run the application program. The reason for setting the

modules for OpenMPI in .bashrc comes from the second of those, which I shall come

to in a moment.

So, .bashrc is first executed just before the epru script (since the cluster scheduler

logs into the head node in order to run the latter). There .bashrc sets the version of

OpenMPI needed on an x86 host, in particular to execute the mpirun program. Next,

the epru script, in many examples, cycles through the four possible geometries and

for each calls the script run-qsargm-tests.sh. In turn that script cycles through the

parameter sets being used (one parameter set being one line of a parameter file),

and for each of those it launches the task scheduler server program and compute

client program in respective processes at their respective positions in the current

geometry. For each launch it first determines the names of the network interfaces to

use, the index numbers of the processor cores to be assigned to each of the two

processes, the locations, in the file system, of the object code for the programs

compiled for (i) the relevant architecture and (ii) for any specified compile time

options for the test application programs (usually the QR test and the remote

scheduler programs), and determines the launch method (depending on whether

256

OpenMPI or SNAPI messaging is being used), and further it passes on those of the

experimental parameters that the test application programs need to consume.

.bashrc is also called, for the second time, before each of the test client and server

programs is launched (since mpirun logs into their respective rank nodes in order to

launch those programs) in their respective locations. Here .bashrc, in the same way

as for the first visit to .bashrc, loads modules for OpenMPI and its dependencies

appropriate to the architecture of the machine. It is necessary to do that here

because the first thing that the mpirun command on the head node does once

logged into an MPI rank node, before it gets round to launching the program

requested in the mpirun command, is to launch its own component ORTE, which in

turn launches the application programs [91]. This process failed unless the correct

versions of OpenMPI for the respective architectures are already selected.

Therefore, in this arrangement it is necessary to select the OpenMPI modules before

that happens, therefore in .bashrc.

Now, the QR factorisation application program needed another dependency, in

particular the Netlib LAPACK library [92], for the independent verification of its

calculation. This library was prepared and loaded with the Spack package manager,

but it proved impossible to load it in .bashrc because it caused the mpirun operation

to fail, probably by timing out. Spack, especially when initialising, seems to require a

large number of file accesses, which is a very slow process on most parallel file

systems. So, the Spack initialisation had to be done later: mpirun was set to run a

launch script which first initialised Spack, then with that loaded the extra dependency

before finally launching the object codes of the client and server programs, which

meant that the Spack initialisation could be removed from .bashrc. (The bash script

was called set-modules-inc-spack-qsargm.sh or set-modules-and-path-for-snapi.sh.

For the case of the SNAPI messaging the SNAPI library was also selected in this

launch script.)

Splitting the selection of the dependencies like this, i.e., between .bashrc and a

launch script, makes it less easy for a reader of the code to see how the modules are

257

being loaded, but was necessary for the reason given.9 The launch script also

passes on to the client program the experimental parameter set it needed that came

from the current line of the parameter file.

To compare performance between machines of different specifications, experiments

were run on different sets of four machines. In some examples, the different

geometries were, as described above in this section, run with respective mpirun

commands in the same epru file; in others it was arranged by using a separate epru

batch job file for each such set, which differed in the machines specified there to the

SLRUM job scheduler. It depended on whether the maximum job run time for the

cluster was going to be exceeded.

Different epru batch job files were also used to change the parameter file being used

to provide parameter sets to the QR factorisation application. These batch files may

be found in the project archive in the directory

archive:expt0069/argmessageprivate/run-scripts-HPCAC/exptl_runs/.

In fact, the script run-qsargm-tests.sh had many parameters with the effects noted in

Table 27.

9 Having gained further experience with Spack more recently, I have noticed that part Spack can be

used to generate traditional environment modules which may be invoked without loading Spack.

These of course load much faster since they simply update environment variables. On the other hand

they hide the provenance of the code, whereas Spack can provide a full tree of the versions, options

and dependencies used to compile a code.

258

Parameter Effect

-p Selection of the application to be run, e.g. -p QR for the QR

factorisation experiment but there are also options for the simpler

test programs.

-m Selects between OpenMPI and SNAPI messaging for the

messages between the Argmessage client and server (distinct from

the -m parameter in Table 9).

-u Select for launch a previously compiled version of the QR

application having many print statements for debugging purposes.

-c Machine name for the client program.

-b Machine name for the remote server program, so together with -c,

these allow the geometry to be specified.

-w Run warm-up programs before the experiment (not used).

-W For internal use relating to the warm-up.

-g Path of a parameter file for client application (those parameters are

noted in Table 9), one line thereof being passed to the client at

each launch of the client application made by the run-qsargm-

tests.sh script.

-P Introduces a set of parameters to be passed to the client program

(an alternative to the -g mechanism), the set is to be put in quotes

in the run-qsargm-tests.sh command line. This was used for

interactive debugging and testing.

-T Number of threads to be allotted to the server program, which may

also be specified in the -g parameter file lines.

-o Select the compile time code optimisations for the QR application,

operates by selecting for launch among previously compiled

versions of the QR application having the combination of those

optimisations.

Table 27 – Parameters of the run-qsargm-tests.sh launch script

For most of the experiments, OpenMPI messaging was used. There was a difference

in the launching for when SNAPI messaging was used, which was that, instead of a

single mpirun statement being used to launch both the client and server, separate

259

and respective ssh calls to the relevant client and server locations were made. This

was done to make use of the taskset command to set the processor core assignment

explicitly, rather than having to consider whether mpirun would set those in the case

of an application program that did not use OpenMPI beyond that (i.e., has no MPI

statements in the application code), such as the SNAPI version of the experimental

code.

Finally, the control scheduler (the original QuickSched) does not, of course, by

definition, need a separate scheduler process. However, in the experimental runs

such a process with remote scheduler was launched to keep the launch

arrangements the same, but that process was not used once launched, i.e., it is

never contacted by the client with Argmessage RPC calls.

The selection in the application code between the original control and remote

schedulers comes inside the running of the client program in the code of each

Qsargm proxy interface function. This examines a parameter (-S, strategy, Table 9)

passed from the launch script and thereafter, in the case of control scheduler,

passes the call directly to the original QuickSched library, or, in the case of the

modified, Qsargm, scheduler, to a function that sends a message to the

experimental scheduler. In this way control experiments could be interleaved with

those using an experimental remote scheduler, without having to change the version

of the application programs being launched, avoiding any doubt as to the identity of

the code, otherwise, between the two cases.

260

261

Appendix C – Results Archive Notes

17.15. Post Processing

Post processing of the results began with filtering the output logs, from both the

client and server, for the timer values and their contexts. The ‘contexts’ were mostly

the parameters used to generate the experimental results, and also the index of the -

r repetition of the execution of the QR factorisation code for the same combination of

parameters. This data was compiled into a JSON format file.

The results files so gathered have a filename extension of .QR-2.json, the “2”

indicating that a second attempt was needed to optimise the format.

The program collect_QR.py performs the compilation of results form a results

directory and makes use of the functions in the library collectors.py, both at archive:

expt0069/argmessageprivate/aftermath/aftermath/collect/. The library functions find

lines in the logs using regex matching to find the data lines, but this is supplemented

with more regex to find surrounding context delimiting lines to deal with the data lines

being similar between repeats.

Each run produced by a line of a parameter set file produces separate log files.

Compiling the respective JSON file sections for these runs was an embarrassingly

parallel problem and so was parallelised using Python’s multiprocessing module.

The further processing of the JSON files, for example, in order to plot a graph,

begins with conversion of the JSON files into a single flat file numpy [93] table, with a

column for each timer and so repeating the values of outer context items in their

columns. This was performed by a program aggregate.py (archive:expt0069/

argmessageprivate/aftermath/aftermath/collect/aggregate.py). This single table

format was chosen as it is very straightforward to filter and sort as required, e.g., for

plotting graphs. When it was needed to include results from more than one result

directory, the conversion of each to a flat table is processed in parallel, again

parallelised using Python’s multiprocessing module, with the resulting flat file tables

being concatenated.

The routines for plotting the results of the QR factorisation experiments are to be

found in the at archive:

262

expt0069/argmessageprivate/aftermath/aftermath/plot/plotQR.py. The plots

themselves are explained in the relevant sections discussing the results. A higher

level script, archive:expt0069/argmessageprivate/aftermath/aftermath

build_display_sets.py compiles the items mentioned in the next section.

17.16. Archive structure of “result sets”

The epru batch scripts described above at section 17.14 were the unit of initiating

experiments. Each of these created one or more results directories, generally one for

each parameter file consumed and so, e.g., one for each of the geometries

addressed by the epru file. To organise these results directories into suitable groups

for post processing and ease of reference sets were defined. The sets aggregate

results directories for the different test geometries and for different specifications of

host node. These sets are referred to in this document by the same letter

designation as they are in the archive. The discussion of the results in the next

chapter starts, however, at set C, since sets A and B were part of the software

development process. To facilitate browsing of the results in the archive, the

directory for each set contains:

• symbolic links to the constituent result directories,

• a Python notebook in respect of each result directory grouping for displaying

the graphs in that result directory,

• image files of graphs based on data taken from across the result directories,

• a file run_dirs_for_set.dat listing the result directories for the set, which is

used by the scripts that compile the other items, and

• usually, top level logs of the batch jobs that created the results in the

respective result directories (file names are of the format

epruNNNN_JJJJJJ.out and .err, where NNNN is an index for the batch script

file and JJJJJJ is the job number for the system).

The gathered JSON results files remain in their respective results directories. Each

of those also sometimes contains a file args_with_resultant_omp_places.txt that

records the core index numbers actually allocated, recovered from the logs, for the

computational and scheduler threads against each input parameter set.

263

264

Appendix D – Argmessage and Qsargm Code Files

This appendix is the code of the Argmessage and Qsargm modules written for this

project. Code files of the original scheduler functions are not included; reference

should be made to the original authors’ code repository on Source Forge and their

publications. These files are used unchanged. Files are included which provide an

interface between the current project to original QuickSched functions or are the test

QR factorisation example. These necessarily reproduce code or structures of the

original but are included to show how they have been adapted to make use of the

original library within the current project. These files are acknowledged individually.

Program Copyright Notice and Licence

This program is copyright 2019-2023 James Legg, except as marked.

This program is free software: you can redistribute them and/or modify it under the

terms of the GNU Lesser General Public License as published by the Free Software

Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more

details.

A copy of the GNU Lesser General Public License may be found at

http://www.gnu.org/licenses/

So that the code may be published under this LGPL3 licence (that of the

predecessor project), it has been redacted here but published on Github at

https://github.com/cjlegg/qsargm-thesis. The filenames of the files intended for

this Annex are listed below, with the original comments on the code

remaining.

https://github.com/cjlegg/qsargm-thesis

265

argmessage.h

argmessagehelpers.h

argmessagehelpers.c

argmessageproxy.h

argmessagesizes.h

packunpack.h

packunpack.c

waitfordebugger.h

waitfordebugger.c

qsargm_adapter0.h

qsargm-adapter0.c

qsargm_client.c

qsargm_common0.h

qsargm_common0.h

qsargm_common0.c

qsargm_proxy0.h

qsargm_proxy0.c

qsargm_server.c

qsched.h

This file has been adapted from the original QuickSched, but has been updated to

include additional functions of this project.

qsched.c

This file has been adapted from the original QuickSched, but has been updated to

provide an interface to the code of this project, principally the switch in each public

interface function to call either the original code or the code of the present project.

266

qsargm_test_qr.c

This file has been adapted from the original QuickSched, but has been updated to

use the Qsargm version of that from this current project.

