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Abstract

Background and purpose: The eye is a well-established model of brain structure and
function, yet region-specific structural correlations between the retina and the brain re-
main underexplored. Therefore, we aim to explore and describe the relationships be-
tween the retinal layer thicknesses and brain magnetic resonance image (MRI)-derived
phenotypes in UK Biobank.

Methods: Participants with both quality-controlled optical coherence tomography (OCT)
and brain MRl were included in this study. Retinal sublayer thicknesses and total macular
thickness were derived from OCT scans. Brain image-derived phenotypes (IDPs) of 153
cortical and subcortical regions were processed from MRI scans. We utilized multivari-
able linear regression models to examine the association between retinal thickness and
brain regional volumes. All analyses were corrected for multiple testing and adjusted for
confounders.

Results: Data from 6446 participants were included in this study. We identified signifi-
cant associations between volumetric brain MRI measures of subregions in the occipital

lobe (intracalcarine cortex), parietal lobe (postcentral gyrus), cerebellum (lobules VI, Vb,
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INTRODUCTION

The projected increase in dementia and mild cognitive impairment
suggests an impending health care crisis [1, 2]. Consequently, identi-
fying lifestyle or therapeutic interventions that retard or arrest cogni-
tive decline and dementia is a priority [3]. However, efforts have been
thwarted by failures in clinical trials and adverse effects of treatment
[4-6]. One theory is that interventions are introduced too late in the
disease to offer meaningful benefits [7]. Even the most well-resourced
health care systems are not able to support community screening by
magnetic resonance imaging (MRI). The choice of appropriate out-
come measures for clinical trials remains the subject of debate [8].
The eye offers well-established insights into brain struc-
ture and function. A thin retina is a well-recognized corollary of
Alzheimer disease (AD) [9]. We have found that a thinner retina is
associated with weaker current cognitive performance and accel-
erated cognitive decline [10]. Similarly, people with thinner reti-
nas are more likely to develop dementia [11]. In the same cohort,
we have also shown that inner and total retinal thicknesses are
correlated with total brain, grey and white matter, and occipital
lobe volumes. The macular ganglion cell complex (GCC) and total
retinal thicknesses show a significant correlation with hippocam-
pal volume, hinting at a potential role for retinal imaging in iden-
tifying those people with an increased risk of cognitive decline
[12]. Optical coherence tomography (OCT) offers a quick, widely
available, noninvasive, reproducible tool to measure retinal layer
thicknesses, a structural biomarker for cognitive health. This may
assist the identification of a risk-enriched cohort of participants
for clinical trials. We used data from UK Biobank to explore the
relationship between retinal layer thicknesses [13, 14] and brain

MRI-derived structural phenotypes [15].

METHODS
Study population
UK Biobank is a prospective population-based multicentre cohort

study of >500,000 participants residing in the UK and registered
with the National Health Service. Participants aged 37-73years

Vllla, VIllIb, and IX), and deep brain structures (thalamus, hippocampus, caudate, puta-
men, pallidum, and accumbens) and the thickness of the innermost retinal sublayers and
total macular thickness (all p<3.3x 1073). We did not observe statistically significant as-
sociations between brain IDPs and the thickness of the outer retinal sublayers.

Conclusions: Thinner inner and total retinal thicknesses are associated with smaller vol-
umes of specific brain regions. Notably, these relationships extend beyond anatomically

established retina-brain connections.

image-derived phenotypes, magnetic resonance imaging, optical coherence tomography, retinal
neurodegeneration, retinal thickness

were initially recruited between 2006 and 2010. The North West
Multicentre Research Ethics Committee approved the study in ac-
cordance with the principles of the Declaration of Helsinki. Study
protocols have been published online (https://www.ukbiobank.
ac.uk/media/gnkeyh2q/study-rationale.pdf). In brief, participants
answered a wide range of touchscreen questionnaires covering
demographic, socioeconomic, and lifestyle information along with
comprehensive physical measurements. A subset of UK Biobank
participants underwent detailed ophthalmic assessments, includ-
ing retinal imaging, at their initial assessment visit (2009-2010)
and follow-up (2012-2013) [16]. In 2014, UK Biobank launched
the imaging enhancement study, the world's largest multimodal
imaging study aiming to include MRI of the brain, heart, and ab-
domen, whole-body dual-energy X-ray absorptiometry and carotid
Doppler ultrasound for up to 100,000 participants. Notably, in-
vitations for this imaging enhancement study were extended to
individuals regardless of whether they had prior ophthalmic as-

sessments [17].

Retinal imaging

Macula-centred OCT was performed using the three-dimensional
(3D) OCT-1000 Mk2 device (Topcon, Tokyo, Japan). Image acqui-
sition was performed under mesopic conditions, without pupil-
lary dilation, using the 3D macular volume scan (512 horizontal
A scans per B scan; 128 B scans in a 6x6mm? raster pattern).
Images from both eyes, where available, were used. We first in-
cluded participants who had retinal imaging at the same baseline
assessment (2009-2010) as when they completed their touch-
screen questionnaires. For participants without available OCT
images at the baseline visit, we used the OCT data at their fol-
low-up visit (2012-2013) for analysis. OCT-derived retinal thick-
nesses were estimated using the Topcon Advanced Boundary
Segmentation Tool (TABS), software providing automated seg-
mentation of retinal sublayers using dual-scale gradients [13].
TABS provides additional metadata for each image to establish
scan quality based on segmentation error, movement artefact,
and poor quality. Quality control (QC) of OCTs was performed as
previously described [18].
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Brain MRI

Brain MRI data were acquired using a Siemens Skyra 3T scanner
(Siemens Healthcare, Erlangen, Germany) using a 32-channel radi-
ofrequency receive head coil (see http://www.fmrib.ox.ac.uk/ukbio
bank/protocol/V4_23092014.pdf;  https://biobank.ndph.ox.ac.uk/
showcase/ukb/docs/brain_mri.pdf). Structural imaging data were
quality checked and processed to provide imaging-derived pheno-
types (IDPs) as described [15, 19]. IDPs (n=153) used in this study
were 139 regional grey matter volumes (GMVs) and 14 subcortical
structures' volumes, derived using parcellations from the Harvard-
Oxford Cortical and Subcortical Atlases (https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/Atlases) and the Diedrichsen Cerebellar Atlas (http://www.
diedrichsenlab.org/imaging/propatlas.htm). Volumetric grey mat-
ter IDPs in 139 regions of interest were generated from using FAST
(FMRIB's Automated Segmentation Tool) [20]; subcortical structures
volumes were modelled using FIRST (FMRIB's Integrated Registration
and Segmentation Tool) [21]. We normalized all the raw IDPs to head
size using the T1-based head size scaling factor (UK Biobank data field
25,000). The complete list of selected IDPs and their UK Biobank data
field IDs are summarized in eTable 1.

Assessments of age, sex, ethnicity, education level, Townsend
deprivation index, mean arterial pressure, body mass index, smok-
ing status, alcohol intake, self-reported diabetes mellitus and use of
antihypertension medications, intraocular pressure, spherical equiv-

alent, and glaucoma diagnosis are provided in eMethods.

Inclusion and exclusion criteria

Among participants with both OCT and MRI data available, those
who met the following criteria were excluded, consistent with
the OSCAR-IB criteria [22, 23], from the study to avoid local eye
pathology masking the more subtle effects of neurodegeneration:
(i) poor QC, (ii) both eyes' visual acuity worse than 0.5 logarithms of
the minimum angle of resolution (logMAR), (iii) either eye's corneal
compensated intraocular pressure (IOPcc) <6 mmHg or >24mmHg,
(iv) self-reported history of glaucoma (or glaucoma laser or glaucoma
surgery), (v) an International Classification of Diseases (ICD)-9 or
ICD-10 code for any types of glaucoma before or up to 1year after
baseline assessment (see eMethods), or (vi) self-reported neurological
conditions (eTable 2). We did not exclude participants with dementia
in the main analysis, to avoid truncating the distribution of brain

IDPs that would have affected the discovery power.

Statistical analysis

Participant-level retinal thicknesses were calculated as the mean of
right and left eye values to minimize measurement errors between
eyes. If data were available only for one eye, that value was used for
analysis. We did not derive participant-level brain IDPs by averaging
left and right hemispheric data, because the laterality information

is important for some neurological conditions [24, 25]. We first ex-
amined 1530 (10x153=1530) pairs of crude associations between
retinal thicknesses and brain IDPs, where the retinal metrics were
regarded as independent variables and brain IDPs as dependent vari-
ables using univariable linear regression. In the multivariable linear
regression model, we adjusted for age, sex, imaging site, time lapse
between OCT and MRI, education level, mean arterial pressure, body
mass index, smoking status, alcohol intake, diabetes mellitus, and
spherical equivalent refraction [18, 26-35]. Notably, spherical equiv-
alent serves as a proxy for axial length—an unmeasured parameter
in the UK Biobank dataset—thereby offering an indirect measure of
eyeball size. This adjustment was made to account for individual ana-
tomical variations, aligning with the common practice of adjusting for
head size when evaluating brain volumetrics. All analyses were con-
ducted in R (version 4.1.0, R Foundation for Statistical Computing).
p<3.268><10’5 (0.05/1530=3.268x107°) following Bonferroni cor-
rection was considered statistically significant.

RESULTS

There were 6650 participants with usable brain MRI and OCT imag-
ing data. It is important to note that OCT and MRI scans took place
during separate visits. OCT data were collected in two periods—either
2009-2010 or 2013-2014—whereas brain MRI data spanned from
2014 to 2020. The mean time lapse between OCT and MRI scans was
6.05years (median=6, interquartile range [IQR] =4, range=1-11). Of
these, 204 people were excluded because of visual acuity worse than
0.5 logMAR, IOPcc of <6mmHg or >24mmHg, or a self-reported his-
tory of glaucoma or neurological conditions. This left 6446 partici-
pants aged 40-75years (mean=57, median=58, IQR=12) for analysis

(eFigure 1). Baseline characteristics are detailed in Table 1.

Univariable associations between retinal metrics and
brain IDPs

We first performed the univariate, pairwise association analyses be-
tween 10 retinal metrics and 153 brain IDPs, where Pearson's correla-
tion r was also calculated (Figures 1 and 2). We observed a range of
statistically significant associations across different brain regions. The
strongest of these associations was observed between GCC and the
right thalamus (r=0.154, p=1.14x 107%%). The full set of 1530 pairs of
univariable associations are given in eTable 3. Of the 313 pairs of statis-
tically significant correlations, most were positive (1=312), suggesting

that a thinner retina may indicate regional brain atrophy.
Multivariable associations between retinal
metrics and brain IDPs

We then performed multivariable pairwise association analysis,
controlling for covariates as outlined in Methods. A complete list of
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TABLE 1 Demographic, systemic, and ocular characteristics of
the study population.

Characteristics n Mean +SD or n (%)
Age, years 6446 5712+7.73
Sex 6446

Male 3192 (49.52)

Female 3254 (50.48)
Ethnicity 6442

White 6233 (96.76)

Asian 89 (1.38)

Black 44 (0.68)

Other/mixed/unknown 76 (1.18)
Townsend deprivation index 6438 -1.96+2.62
Education level 6446

O level or less 1221 (18.94)

A level or professional 1608 (24.95)

quantifications

University degree 3335 (51.74)

Prefer not to say 282 (4.37)
Body mass index, kg/m2 6446 26.51+4.18
Mean arterial blood pressure, nmHg 6444 98.48+10.33
Smoking status 6442

Current 381 (5.92)

Previous 2140 (33.22)

Never 3913 (60.74)

Prefer not to answer 8(0.12)

Alcohol intake, g/week?® 6442 91.28 (126.91)
Self-reported diabetes 6446
Yes 347 (5.38)
No 6099 (94.62)
SE, diopters 6446 -0.09+1.96
IOPcc, mmHg 6351 15.72+3.02
Retinal OCT metrics 6446
mRNFL thickness, pm 31.19+4.99
GCIPL thickness, pm 71.40+6.43
GCC thickness, pm 102.59+7.48
INL thickness, pm 32.46+2.08
INL-ELM thickness, pm 80.40+5.62
INL-RPE thickness, pm 142.80+6.79
ELM-ISOS thickness, pm 23.70+£1.36
ISOS-RPE thickness, pm 38.75+3.32
RPE thickness, pm 24.89+2.48

Total macular thickness, pm 277.90+11.74

Abbreviations: ELM-ISOS, external limiting membrane-inner segment
outer segment; GCC, ganglion cell complex; GCIPL, ganglion cell-

inner plexiform layer; INL, inner nuclear layer; INL-ELM, inner nuclear
layer-external limiting membrane; INL-RPE, inner nuclear layer-retinal
pigment epithelium; IOPcc, corneal compensated intraocular pressure;
ISOS-RPE, inner segment outer segment-retinal pigment epithelium;
mRNFL, macular nerve fibre layer; OCT, optical coherence tomography;
RPE, retinal pigment epithelium; SE, spherical equivalent.

#Alcohol intake quantity is presented as median (interquartile range)
due to its right-skewed distribution.

multivariable pairwise associations is shown in eTable 4. Most of the
correlations in the univariate analysis were attenuated, leaving 36 pairs
of significant associations (shown in Figure 3). Table 2 and Figure 4 elu-
cidate the statistically significant associations between retinal layer
thicknesses and brain IDPs. Thinner macular retinal nerve fibre layer
(MRNFL) thickness was predominantly associated with lower GMV
in different segments of the cerebellum, including the left lobule VI,
vermis of lobule VlIb, and lobules Vllla, VllIb, and IX. Additionally, a
notable association was observed in the occipital lobe-bilateral intra-
calcarine cortex, with all p values <3.268x107°. Ganglion cell-inner
plexiform layer (GCIPL) thickness displayed strong correlations with
GMV in both the occipital lobe (specifically the bilateral intracalcar-
ine cortex) and the parietal lobe (bilateral postcentral gyri), and with
volumes of several subcortical structures including the bilateral thal-
ami, right caudate, right putamen, right pallidum, right accumbens,
and right hippocampus (all with p values <3.268x107°). GCC thick-
ness showed significant associations especially with GMV in bilateral
intracalcarine cortex in the occipital lobe, as well as with volumes of
subcortical structures such as bilateral thalami, right putamen, bilateral
pallidum, bilateral accumbens, and right hippocampus (all with p values
<3.268x% 10’5). A thinner total macular thickness was linked to a lower
GMV in right intracalcarine cortex (p=4.87x107) and a smaller vol-
ume of the right accumbens (p=5.78x107°).

Noting that age is the major source of covariation between
retina and brain measures (see partial R? of each predictors in the
model, eTable 5), we further adjusted for age squared (age?) in the
supplementary analysis (eTable 6, eFigure 2). Additional adjustment
for age2 did not meaningfully change the effect estimates between
retinal metrics and brain IDPs. In addition, we conducted another
sensitivity analysis (eTable 7) to account for the influence of anti-
hypertensive medication use. Although the results of this analysis
revealed slight variations, they remained overall consistent with our
primary findings. We also explored retina-brain associations accord-
ing to cerebral vascular supply territories (eFigure 3), where no sig-
nificant effect was observed.

In the sensitivity analysis (eTable 8), participants with a self-
reported history of multiple sclerosis (n=9), Parkinson disease
(n=5), dementia/AD/cognitive impairment (n=1), or stroke (n=69)
were excluded, resulting in a subset of 6362 eligible participants
for analysis. The majority (32/36) of the initially identified associa-
tions remained statistically significant. This outcome suggests that
the observed retina-brain associations may not be solely driven by
manifest neurodegenerative processes; instead, alternative factors,
including potential contributions from neurodevelopmental aspects,
might influence the observed patterns. Specifically, associations in-
volving the GCC, GCIPL with the putamen, and pallidum no longer
reached statistical significance in this sensitivity analysis.

DISCUSSION

To our best knowledge, this is the largest study to examine the struc-
tural correlations between retinal OCT and brain MRI measures. We
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FIGURE 1 |llustrative heatmaps of pairwise univariate correlations between 10 retinal metrics and 153 brain magnetic resonance image
derived phenotypes (IDPs). The left panel is a heatmap presenting Pearson correlation coefficients (r), which measure the correlations
between 10 retinal metrics and 153 brain IDPs. Cells in red represent a positive correlation (Pearson r>0) and in blue represent a negative
correlation (Pearson r<0), where darker colour indicates a stronger correlation (larger absolute value of Pearson r). The right panel is a
heatmap plotting the R? of pairwise univariate linear regression analysis of the association between retinal metrics and brain IDPs. A darker
colour represents a higher R? value, indicating better goodness-of-fit of the model. ELM_ISOS, external limiting membrane-inner segment
outer segment; GCC, ganglion cell complex; GCIPL, ganglion cell-inner plexiform layer; GM, grey matter; INL, inner nuclear layer; INL_ELM,
inner nuclear layer-external limiting membrane; INL_RPE, inner nuclear layer-retinal pigment epithelium; ISOS_RPE, inner segment outer
segment-retinal pigment epithelium; L, left hemisphere; mRNFL, macular retinal nerve fibre layer; R, right hemisphere; RPE, retinal pigment
epithelium; Total, total macular thickness.

have identified regional volumetric MRI measures of the occipital structures (thalamus, hippocampus, caudate, putamen, pallidum,
lobe (intracalcarine cortex), the parietal lobe (postcentral gyrus), and accumbens) that are associated with inner (RNFL to GCIPL)
the cerebellum (lobules VI, VIIb, Vllla, Vb, and IX), and subcortical and total cross-sectional retinal thicknesses. In this study, we did
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FIGURE 2 Visual representation of the results of pairwise univariate association tests between 10 retinal metrics and 153 brain magnetic
resonance image derived phenotypes. Univariable, pairwise linear regressions were performed using data from n=6446 participants.

Each datapoint represents a single retina-brain association. Blue circles indicate positive regression coefficients; orange squares indicate
negative regression coefficients. We followed the convention for Manhattan plots and plotted -log10 (p values) on the y-axis. The dashed
horizontal line indicates the —log10 (p) threshold after Bonferroni correction is applied, and all associations above this line are considered
statistically significant at p<3.268x 107 (corresponding to a ~log10 [p] of 4.4857). ELM-ISOS, external limiting membrane-inner segment
outer segment; GCC, ganglion cell complex; GCIPL, ganglion cell-inner plexiform layer; GM, grey matter; INL, inner nuclear layer; INL-ELM,
inner nuclear layer-external limiting membrane; INL-RPE, inner nuclear layer-retinal pigment epithelium; ISOS-RPE, inner segment outer
segment-retinal pigment epithelium; L, left hemisphere; mRNFL, macular retinal nerve fibre layer; R, right hemisphere; RPE, retinal pigment
epithelium; Total, total macular thickness.
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FIGURE 3 Visual representation of the results of pairwise multivariable association tests between 10 retinal metrics and 153 brain
magnetic resonance image derived phenotypes. Multivariable linear regressions were performed using data from n=6421 participants,
adjusting for age, sex, imaging site, the time lapse between optical coherence tomography and magnetic resonance image scan, education
level, mean arterial pressure, body mass index, smoking status, alcohol intake, diabetes mellitus, and spherical equivalence. Each datapoint
represents a single retina-brain association. Blue circles indicate positive regression coefficients; orange squares indicate negative
regression coefficients. We followed the convention for Manhattan plots and plotted -log10 (p values) on the y-axis. The dashed horizontal
line indicates the -log10 (p) threshold after Bonferroni correction is applied, and all associations above this line are considered statistically
significant at p<3.268x 107> (corresponding to a —log10 [p] of 4.4857). ELM-ISOS, external limiting membrane-inner segment outer
segment; GCC, ganglion cell complex; GCIPL, ganglion cell-inner plexiform layer; GM, grey matter; INL, inner nuclear layer; INL-ELM,

inner nuclear layer-external limiting membrane; INL-RPE, inner nuclear layer-retinal pigment epithelium; ISOS-RPE, inner segment outer
segment-retinal pigment epithelium; L, left hemisphere; mRNFL, macular retinal nerve fibre layer; R, right hemisphere; RPE, retinal pigment
epithelium; Total, total macular thickness.
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TABLE 2 Multivariable analysis of associations between retinal layer thicknesses and brain magnetic resonance IDPs.
Retinal Metric, um Lobe Brain IDP, mm°® B coefficient (95% Cl) p Partial R, % R%, %
mRNFL thickness Occipital GMV in intracalcarine cortex (L) 0.060 (0.033-0.088) 2.10x 107> 0.27 3.0
mRNFL thickness Occipital GMV in intracalcarine cortex (R) 0.068 (0.040-0.095) 1.77x107° 0.34 3.9
mRNFL thickness Cerebellum GMV in VI cerebellum (L) 0.058 (0.033-0.084) 1.01x107° 0.29 15.6
mRNFL thickness Cerebellum GMV in Vb cerebellum (vermis) 0.058 (0.031-0.084) 2.17x107° 0.27 11.8
mRNFL thickness Cerebellum GMV in Vllla cerebellum (L) 0.057 (0.031-0.083) 1.57x107° 0.27 15.3
mRNFL thickness Cerebellum GMV in Vllla cerebellum (vermis) 0.082 (0.056-0.109) 1.03x107? 0.56 12.9
mRNFL thickness Cerebellum GMV in Vllla cerebellum (R) 0.067 (0.041-0.093) 3.08x107 0.39 17.9
mRNFL thickness Cerebellum GMV in VllIb cerebellum (L) 0.060 (0.033-0.087) 1.13x107° 0.28 10.5
mRNFL thickness Cerebellum GMV in VIlIb cerebellum (vermis) 0.080 (0.053-0.107) 6.21x107° 0.50 9.5
mRNFL thickness Cerebellum GMV in VllIb cerebellum (R) 0.057 (0.031-0.084) 1.71x107° 0.27 14.3
mRNFL thickness Cerebellum GMV in IX cerebellum (L) 0.070 (0.043-0.096) 2.49%x 1077 0.39 12.2
mRNFL thickness Cerebellum GMV in IX cerebellum (vermis) 0.067 (0.040-0.095) 1.12x107° 0.35 7.9
mRNFL thickness Cerebellum GMV in IX cerebellum (R) 0.071 (0.045-0.098) 1.08x1077 0.42 13.2
GCIPL thickness Parietal GMV in postcentral gyrus (L) 0.068 (0.042-0.095) 3.57x1077 0.39 20.9
GCIPL thickness Parietal GMV in postcentral gyrus (R) 0.062 (0.036-0.089) 2.65%x107¢ 0.33 22.0
GCIPL thickness Occipital GMV in intracalcarine cortex (L) 0.071 (0.042-0.100) 1.51x107° 0.34 3.1
GCIPL thickness Occipital GMV in intracalcarine cortex (R) 0.087 (0.059-0.116) 3.19%1077 0.53 4.1
GCIPL thickness Others Volume of thalamus (L) 0.061 (0.035-0.086) 3.12x107° 0.32 25.4
GCIPL thickness Others Volume of thalamus (R) 0.063 (0.038-0.089) 1.30x10°¢ 0.35 25.3
GCIPL thickness Others Volume of caudate (R) 0.065 (0.036-0.093) 8.83x107¢ 0.29 6.1
GCIPL thickness Others Volume of putamen (R) 0.060 (0.032-0.087) 2.25%107° 0.26 12.9
GCIPL thickness Others Volume of pallidum (R) 0.060 (0.032-0.089) 3.23x107° 0.25 6.9
GCIPL thickness Others Volume of accumbens (R) 0.074 (0.047-0.100) 521x10°8 0.45 19.1
GCIPL thickness Others Volume of hippocampus (R) 0.064 (0.036-0.091) 5.98x107° 0.30 12.9
GCC thickness Occipital GMV in intracalcarine cortex (L) 0.077 (0.052-0.102) 1.29%x107? 0.55 3.3
GCC thickness Occipital GMV in intracalcarine cortex (R) 0.091 (0.066-0.115) 6.05x107% 0.78 4.4
GCC thickness Others Volume of thalamus (L) 0.058 (0.036-0.080) 1.68x 1077 0.41 25.5
GCC thickness Others Volume of thalamus (R) 0.062 (0.040-0.084) 2.32x107® 0.47 254
GCC thickness Others Volume of putamen (R) 0.057 (0.034-0.081) 2.05x107¢ 0.34 13.0
GCC thickness Others Volume of pallidum (L) 0.055 (0.030-0.080) 1.24x107° 0.28 4.5
GCC thickness Others Volume of pallidum (R) 0.053(0.029-0.078) 1.68x107° 0.27 7.0
GCC thickness Others Volume of accumbens (L) 0.050 (0.027-0.072) 2.33x107° 0.26 17.2
GCC thickness Others Volume of accumbens (R) 0.064 (0.041-0.087) 3.39x10°® 0.46 19.1
GCC thickness Others Volume of hippocampus (R) 0.064 (0.040-0.087) 1.05% 1077 0.42 13.0
Total macular Occipital GMV in intracalcarine cortex (R) 0.063 (0.030-0.088) 4.87%107 0.38 4.0
thickness
Total macular Others Volume of accumbens (R) 0.052 (0.020-0.075) 578x107° 0.30 19.0

thickness

Note: In this table, only statistically significant results are presented. Retinal layer thicknesses serve as the independent variables, with brain IDPs

as the dependent variables. The multivariable regression models were adjusted for factors including age, sex, imaging site, the time lapse between
OCT and magnetic resonance image, education level, mean arterial pressure, body mass index, smoking status, alcohol intake, diabetes, and spherical
equivalence. To clarify, the presented p-values are raw and have not been Bonferroni-corrected. Standardized f coefficients are presented as per

SD difference of retinal thickness in per SD difference of corresponding brain structure volume. Raw regression coefficient (1 pm-1 mm®) values are
provided in the supplementary materials (eTable 4). The partial R? quantifies the percentage of variance in brain IDP attributable to a specific OCT-
derived retinal layer thickness, whereas the overall R? indicates the variance explained by all predictors in the model.

Abbreviations: Cl, confidence interval; GMV, grey matter volume; IDP, imaging-derived phenotype; L, left hemisphere; mRNFL, macular retinal nerve
fibre layer; OCT, optical coherence tomography; R, right hemisphere.
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FIGURE 4 Alluvial diagram illustrating the statistically significant retina-brain associations. For clarity, only statistically significant
associations identified by multivariable regression (Table 2) are shown in this diagram. Covariates adjusted in these multivariable models
include age, sex, imaging site, the time lapse between optical coherence tomography scan and magnetic resonance image scan, education
level, mean arterial pressure, body mass index, smoking status, alcohol intake, diabetes mellitus, and spherical equivalence. Each stream

in the diagram corresponds to a datapoint (retina-brain association) shown in Figure 3 falling above the Bonferroni-corrected threshold
line. The width of each stream is proportional to the partial R?, as shown in Table 2. GCC, ganglion cell complex; GCIPL, ganglion cell-inner
plexiform layer; GMV, grey matter volume; L, left hemisphere; mRNFL, macular retinal nerve fibre layer; R, right hemisphere.

not observe significant associations between the outer retinal layer
thicknesses and brain IDPs, suggesting that the outer retina may be
less relevant than the inner retina in assessing neurodegeneration
occurring in the brain.

Consistent with previous findings, we observed an association
between the inner retina and thalamus in both hemispheres [36, 37].
Data from the Rotterdam study showed that a thinner ganglion cell
layer is associated with lower grey matter density in the thalamus,
which could partially explain the associations we observed with thal-
amus volume, as changes in contrast in some thalamus edge voxels
(e.g., due to changes in grey matter density) may result in apparent
changes in volume. In humans, signals originating from the retina
synapse in the posterior lateral geniculate nucleus in the thalamus
then project onto the occipital lobes [38], demonstrating the vital
role of the thalamus in relaying sensory information from the periph-
ery to the cerebral cortex [39].

In line with previous reports [12, 36, 37, 40, 41], we found that
thinner mRNFL, GCIPL, and GCC were associated with smaller GMVs
of the intracalcarine cortex bilaterally, and total macular thickness
was correlated with right intracalcarine cortex. The relationship be-
tween retina and primary visual cortex (V1) is widely documented in
neuroimaging studies among patients with ocular and neurological
diseases, and among healthy individuals [37, 42-47]. Thus, detecting

these expected associations increases our confidence about the va-
lidity of two novel findings in this exploratory study.

First, we found that thinner GCIPL was associated with smaller
GMVs of the postcentral gyrus in the parietal lobes bilaterally. The
postcentral gyrus contains the primary somatosensory cortex (S1),
responsible for touch, pressure, temperature, and pain perception
[48]. One possible explanation is that somatosensation and vision
are closely related systems. Although the structural basis of any
connection is unclear, existing evidence does indicate a solid physio-
logical link between S1 and V1 in congenital blindness, with the phe-
nomenon of enhanced tactile skills in blind individuals [49-51]. Even
in normally sighted individuals, some level of tactile discrimination is
provided by the visual cortex [52]. Further studies are needed to val-
idate and uncover the underlying mechanisms of this novel finding.

Second, there was a consistent, significant association between
mMRNFL thickness and GMV in the posterior cerebellum, in lobules
VI-IX. The cerebellum coordinates unconscious regulation of bal-
ance and muscle tone, as well as coordination of voluntary move-
ments. The flocculonodular lobe (X) coordinates vestibulo-ocular
reflexes and eye movements, although we did not identify any di-
mensional relationship between lobe X and retinal metrics [53].
The anterior cerebellum (lobules I-V) provides sensorimotor pro-
prioceptive function, primarily receiving input from the spinal cord,
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with a second representation in lobule VIII in the posterior lobe [54].
Although we did not identify any association with lobules 1-V, we
did detect significant associations between lobules Vllla and Vllib
in the right and left hemispheres, the vermis, and mRNFL thickness,
suggesting significant integration of the visual system and the sen-
sorimotor cerebellum. In addition, we identified a relationship be-
tween lobule VI (left) and Vb (vermis). These regions are believed
to contribute to higher level processes, such as cognitive and emo-
tional functions [55, 56]. Patients with cerebellar damage often
present with the cerebellar motor syndrome of dysmetria, dysar-
thria, and ataxia, yet cerebellar lesions can also result in cerebellar
cognitive affective syndrome, including executive, visual-spatial,
and linguistic impairments, and affective dysregulation. It has been
hypothesized that lobules VI and VII of the posterior lobe comprise
the “cognitive cerebellum” [57]. The posterior vermis is the anatom-
ical substrate of the limbic cerebellum. It is interesting to note that
cognitive impairments occur when posterior lobe lesions affect lob-
ules VI and VII (including crus |, crus Il, and lobule VIIB), disrupting
cerebellar modulation of cognitive loops with cerebral association
cortices, whereas neuropsychiatric disorders manifest when vermis
lesions deprive cerebrocerebellar limbic loops of cerebellar input
[58]. Neuroimaging studies have suggested lateralization of cerebel-
lar function with language served on the right-hand side and spatial
awareness on the left, consistent with our finding of an association
between mRNFL thickness and GMV in left lobule VI [59]. Finally, we
identified significant associations with lobule IX (left, right, and ver-
mis). This region of the cerebellum is considered essential to visual
guidance of movement [60].

The study design allows us to identify associations but does
not permit the establishment of direct anatomical connections be-
tween the retina and specific brain regions. Shared susceptibility to
pathological processes such as genetic architecture, environmental
toxins, or other extrinsic factors might also cause volume loss in spe-
cific brain regions and simultaneously affect the retina. Inclusion of
diffusion tensor imaging and functional MRI in future studies will
help bridge the gap between structural correlations and anatomical
or functional connections, providing a more comprehensive under-
standing of the relationships we have observed.

Extending our prior analysis based on data from 2131 UK
Biobank participants [12], the current results concur with the previ-
ously observed association between hippocampal volume and inner
retinal thickness, now supported by a larger sample (n=6446). This
aligns with findings from the Rotterdam study, the Rhineland study,
and others [36, 40, 61-64]. Hippocampal atrophy is one of the hall-
mark features of overt AD and mild cognitive impairment, and is a
risk factor for future AD in cognitively intact elderly people [65-67].
Regarding the crucial role of the hippocampus in cognition [68, 69],
the present data support the concept that inner retinal measures may
serve as a structural biomarker for early cognitive decline, possibly
providing people with opportunities to change their lifestyles, and
facilitate risk-stratified enrolment into drug trials to delay or avert
the onset of dementia. Although our findings are certainly promis-
ing, they do come with notable limitations. Specifically, thinning of

RNFL or GCIPL is not unique to AD; it has also been observed across
various other central nervous system disorders. Therefore, these
retinal changes should be considered within a broader diagnostic
framework, because their standalone value as definitive indicators
of AD is limited. Furthermore, our research into the visual pathway,
particularly the thalamus and intracalcarine cortex, provides insights
into the visual symptoms often seen in AD [70].

Interestingly, we also found that thinner GCIPL, GCC, and total
macular thicknesses were associated with smaller volumes of basal
ganglia structures. The basal ganglia are a group of subcortical nuclei
responsible primarily for motor control (including eyes) and other
roles such as motor learning, executive functions and behaviours,
and emotions [71]. It is noteworthy that the strongest association
within the basal ganglia structures was the nuclear accumbens, part
of the limbic system. The accumbens is considered a node between
the executive control network and reward network through its pro-
jection to the frontal cortex and limbic pathway [72]. It is, therefore,
integral to several cognitive and emotional functions. Abnormalities
within the accumbens have been linked to numerous underlying psy-
chiatric conditions, such as schizophrenia, drug addiction, depres-
sion, and obsessive-compulsive disorder [73-75]. Thus, our findings
suggest the potential of retinal structural measures as biomarkers
for psychiatric disorders [76].

The strengths of this study include the large sample size, quanti-
tative, comprehensive, and region-specific assessments of the retina
and brain structures, and extensive data on covariates. Our study
does have limitations. First, participants in UK Biobank are likely to
be healthier than the general population [77], and we excluded those
with unusable OCT or MRI scans, which may result in selection bias.
Second, the cross-sectional nature of this study limits us from de-
termining causality and temporality. Moreover, OCT and MRI scans
were performed on different visits, and this time lapse may interfere
with our results; however, we did adjust for this factor in the multi-
variable analysis to minimize its effect. OCT scans of the optic nerve
head were not available in our dataset; peripapillary RNFL is possibly
a more relevant measure than mRNFL.

In conclusion, thinner mRNFL, GCIPL, GCC, and total macular
thicknesses are associated with smaller volumes of various subcorti-
cal brain structures and cortical regions, including the intracalcarine
cortex, postcentral gyrus, cerebellum, thalamus, hippocampus, and
basal ganglia. Notably, some of these relationships extend beyond
anatomically established retina-brain connections. Findings from
this in-depth examination of the region-specific associations be-
tween the retina and brain anatomy support the concept that retinal

layer thicknesses are indices of regional brain structures.
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