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Abstract 

Encapsulin nanocompartments are prokaryotic protein-based organelles. T he y displa y div erse natural functions, including mineral storage and 
stress response. Encapsulins also ha v e applications in synthetic biology, drug deliv ery, v accines, and met abolic engineering . Disco v ering no v el 
encapsulins is challenging due to inconsistent annotations, and data contamination due to similarity with phage proteins. P re vious studies ha v e 
disco v ered thousands of encapsulin sequences from bacteria and archaea, but met agenomics dat abases were not specifically interrogated. 
Metagenomics can provide information on a much larger diversity of unculturable organisms and environmental samples than con v entional 
sequencing experiments, and metagenomic protein databases ha v e shed light on previously unexplored regions of the protein universe. This 
study le v erages de v elopments in deep learning for str uct ure and function prediction, to produce a dataset of o v er 1300 no v el putativ e encap- 
sulin sequences from the MGnify Protein Database. Some well-known encapsulins and their cargo proteins were identified, predominantly 
pero xidases and ferritin-lik e proteins. A potentially no v el encapsulin-associated biosynthetic gene cluster in v olv ed in producing cytoto xic or an- 
timicrobial saccharides was discovered using biosynthetic gene cluster prediction. Finally, a cluster of predicted str uct ures with no v el features 
not seen in experimentally solved encapsulin str uct ures was discovered using large-scale, deep learning-based str uct ure prediction of putative 
metagenomic encapsulins. 
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ntroduction 

ncapsulin nanocompartments 

ncapsulin nanocompartments are icosahedral protein-based
rganelles found in bacteria and archaea ( 1 ). Encapsulin or-
anelles serve a wide range of physiological functions, in-
luding mineral storage ( 2 ), oxidative stress response ( 3 ), en-
yme catalysis ( 4 ) and secondary metabolism ( 5 ,6 ) These pro-
ein nanostructures have many potential applications in syn-
hetic biology and biomedicine, for example metal ion load-
ng for use as imaging agents in biomedicine ( 7 ,8 ), antigen
isplay for protein-based vaccines ( 9 ), as recently demon-
trated with the surface display of S AR S-CoV-2 antigens in
nimal models ( 10 ), and packaging of proteins and RNA to-
ards drug delivery applications ( 11 ,12 ). Encapsulins may
lso be a promising platform for metabolic engineering via
oading of heterologous enzymes; this approach may pro-
ect unstable proteins from degradation, increase reaction
ates, and enable the use of reaction pathways with toxic
ntermediates ( 13 ). 

Encapsulin monomers spontaneously self-assemble into
ull-sized capsids and are capable of encapsulating cargo pro-
eins in a specific manner (as shown in Figure 1 A). Encap-
ulin cargo proteins contain C-terminal cargo loading pep-
ides (CLPs) ( 14 ) or longer N-terminal domains (NTDs) ( 4 )
esponsible for targeting them to the capsid interior. Encap-
ulins display similar icosahedral symmetry to virus capsids
nd, as such, are assigned triangulation numbers (T-numbers)
ased on the number of subunits and size of the capsid as-
embly (Figure 1 B). Encapsulin proteins share a common an-
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cestor with HK97-fold phage major capsid proteins, and as
such show sequence and structural similarity with this family
of viral proteins ( 15 ). This shared evolutionary history makes
discovery of encapsulins from protein sequence databases
difficult, since encapsulin sequences are often misannotated
as phage capsid proteins, bacteriocins or linocins ( 16 ), and
search hits can be ‘contaminated’ with phage capsid proteins
( 5 ). 

Encapsulins are currently grouped into four families based
on their cargo type and Pfam annotation (Figure 1 C) ( 5 ).
Family 1 currently includes encapsulins from Pfam family
PF04454 (Encapsulating Protein for Peroxidase). As the Pfam
name suggests, these encapsulins are associated with cargo
proteins from the dye-decolourizing peroxidase (DyP) fam-
ily, or iron-binding cargo proteins like ferritins, rubrerythrin,
hemerythrin, or manganese catalase-like proteins ( 5 ). Almost
all experimentally solved encapsulin protein structures are de-
rived from family 1. Family 2 is the largest encapsulin fam-
ily, whose members are most often associated with four dif-
ferent types of cargo enzymes; these are cysteine desulfurase,
polyprenyl transferase, xylulose kinase, and terpene cyclase.
Family 2 encapsulins are not typically associated with any
single Pfam family. Family 2 encapsulin capsid proteins can
also be found fused to cyclic NMP-binding domains ( 5 ). Fam-
ily 3 includes encapsulins from the Pfam family PF05065
(Phage capsid family), which are found within biosyn-
thetic gene clusters (BGCs)—sets of genes encoding enzymes
responsible for the synthesis of a variety of natural prod-
ucts. Finally, family 4 encapsulins are part of Pfam family
ry 19, 2024. Accepted: February 21, 2024 
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Figure 1. Encapsulin Str uct ure and Function ( A ) Encapsulins spontaneously self-assemble from multiple copies of a single monomer. Cargo proteins 
contain peptide sequences (shown in purple) which target them to the interior of the capsid in a specific manner. PDB codes 6NJ8 and 6N63 for 
encapsulin and cargo respectively. ( B ) Encapsulins are assigned a triangulation number (T-number) which describes the icosahedral geometry of the 
capsid. The number of subunits is equal to the T-number multiplied by 60. T = 1 capsids are formed only of pentameric units whereas higher T-numbers 
make use of hexameric and pentameric units (outlined). ( C ) Encapsulins are classified into four families based on function. Family 1 encapsulins typically 
encapsulate peroxidases or ferritin-like proteins. Family 2 encapsulins can contain a cNMP-binding domain and are sometimes found as fusions of two 
encapsulin monomers. These encapsulins can contain four different enzyme types. Family 3 encapsulins are typically found within biosynthetic gene 
clusters, whilst family 4 encapsulins are truncated forms of the full HK97 fold. 
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F08967 (DUF1884 domain-containing protein). These pro-
eins display a truncated form of the HK97-fold containing
nly the A-domain. It is currently unknown whether these
roteins are capable of self-assembly into an icosahedral par-
icle like known encapsulins, or whether they encapsulate any
argo proteins. Despite this, previous work ( 5 ) has consid-
red this small family of proteins as encapsulins and clas-
ified them based on the presence of putative ‘cargo’ pro-
eins – hydrogenase, osmotic shock-associated proteins, de-
xyribose phosphate aldolase, or glyceraldehyde-3-phosphate
ehydrogenase. 

revious work and aims of this work 

he most recent bioinformatics survey yielded a dataset
f approximately 6000 encapsulin sequences ( 5 ). However,
his work did not include metagenomics databases. These
esources, compared to conventional genomic databases,
ontain large numbers of novel protein sequences and
ovel protein folds ( 17 ,18 ). Recent advances in deep learn-
ng have produced state-of-the-art bioinformatics tools for
rotein structure prediction ( 18 ,19 ), functional annota-
ion ( 20 ), and biosynthetic gene cluster prediction ( 21 ).
hese tools are critical for understanding metagenomic
roteins, which are otherwise difficult to analyse due to
heir diversity relative to annotated proteins in conventional
atabases. 
Since encapsulins share significant sequence and structural

imilarity with HK97-fold phage capsid proteins, any bioin-
ormatics search is likely to return many viral protein se-
uences. Previous work filtered out phage capsids by screening
he genomic context of each search hit and removing any hits
hose genome neighbourhood contained phage-associated
roteins ( 5 ). However, when metagenomics databases are
earched, the full genomic sequence for each returned candi-
ate may be unavailable. Instead, only a single contig of vari-
ble length is available for each returned search sequence, and
etrieving these contigs may require integrating data from dif-
erent databases. In this case, an in-depth curation and filtering
ipeline is required. 
In light of this, the goal of this work was to utilize deep

earning tools and bioinformatics to uncover novel encap-
ulin candidates with new structural and functional proper-
ies, specifically from metagenomics databases. Here, we de-
cribe how we have extended previous encapsulin discovery
pproaches ( 5 ) to public metagenomic data sources, by in-
orporating protein structure prediction and the use of pre-
icted structure databases ( 18 ), combined with biosynthetic
ene cluster prediction, and Pfam annotations generated us-
ng deep learning tools. Search hits were filtered to remove
ontaminating phage protein sequences using an in-depth cu-
ation pipeline which resulted in a dataset of 1326 novel
utative encapsulin sequences. Importantly, many of the se-
uences we found share little or no sequence identity with
urrently known encapsulins and their predicted structures
how novel conformational features. The new candidates we
resent here are expected to considerably expand the known
rray of biological functions observed in this class of pro-
ein nanocompartment, and will need to be experimentally

alidated.  
Materials and methods 

Search strategy 

To discover novel encapsulin sequences, a combined sequence
annotation and structure-based search approach was used.
The 2022 / 05 release of the MGnify Protein Database ( 22 )
was filtered to recover all accessions with Pfam annotations
from clan CL0373 (phage coat), which contains all HK97
fold-associated Pfam families. These annotations are gener-
ated using a convolutional deep neural network tool instead of
the traditional Hidden Markov Model (HMM) method used
by Pfam ( 23 ), which has been demonstrated to assign function
more accurately in cases where sequence homology is remote
or non-existent ( 20 ). In tandem, structure searches were per-
formed against the 2023 / 02 release of ESM Atlas ( 18 ) using
experimentally solved structures of the T = 1 encapsulin from
T. maritima , the T = 3 encapsulin from M. xanthus , the T = 4
encapsulin from Q. thermotolerans , and the T = 1 encapsulin
from S. elongatus (PDB codes 7MU1, 7S2T, 6NJ8 and 6X8M
respectively). ESM Atlas structures with pTM scores of 0.7
and higher were downloaded using aria2c ( 24 ), and structure
searches were performed using Foldseek ( 25 ) with the ‘easy
search’ workflow and a minimum coverage of 0.5. These two
searches gave an initial dataset of ∼800 000 sequences. Struc-
ture database search was carried out on VM.Standard.E4.Flex
cloud instance with 64 cores and 1024GB of RAM (Oracle
Cloud). 

Removing phage-associated sequence 

contamination 

Genomic contigs for each returned search sequence were
retrieved using a combination of text-based filtering using
bash, and API calls using Python ( Supplementary Figure S1 ).
To retrieve contigs for each returned search sequence, an
MGYC contig accession was obtained from the MGnify Pro-
tein Database for each candidate. For each MGYC accession,
a corresponding European Nucleotide Archive analysis acces-
sion (ERZ) and MGnify contig name was also retrieved from
the MGnify Protein Database. Lastly, a MGnify analysis acces-
sion (MGYA) was obtained for each ERZ accession using the
MGnify API. This API was also used to obtain protein coding
sequences (CDS) for each search hit, using the hit’s respective
ERZ and MGYA accession and contig name. Any returned
search sequence with missing MGYC accession contig CDS
was removed from the dataset. These retrieval steps yielded
a filtered dataset of ≈ 372000 putative encapsulin sequences
with accompanying contig nucleotide sequences and CDS. De-
tailed metrics for the number of sequences removed at every
filtering step are shown in Supplementary Figure S3 . 

As in previously published analyses ( 5 ), a custom mm-
seqs2 database ( 26 ) was prepared from two phage pro-
teome datasets: one containing all proteins from Bacterio-
phage HK97, and one containing proteins from a broader
set of prokaryotic tailed dsDNA viruses (UniProt proteome
accessions UP000002576 and UP000391682, respectively).
This database was searched using candidate contig protein
sequences as query; searches were performed using mmseqs2
( 26 ) with the iterative search function, a starting sensitivity of
4, a final sensitivity of 7, and 5 sensitivity steps (all further
searches in this study used these parameters unless otherwise
stated). Any candidates whose contigs contained mmseqs2
hits against these two phage proteomes were removed from

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae025#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae025#supplementary-data
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the dataset, leaving ≈340 000 putative encapsulin sequences
whose contigs produced no matches against these phage
proteomes. 

Any returned search sequence with contigs under 25 kb in
length or containing fewer than 10 protein sequences was then
removed from the dataset—this was done to ensure that ev-
ery candidate has enough genomic context available to confi-
dently filter out phage-associated proteins and provide func-
tional information for putative encapsulins. This drastically
reduced the size of the dataset to 13 031 putative encapsulin
sequences and associated contigs. 

Next, every contig protein’s Pfam annotations were re-
trieved from the MGnify Protein Database. These annotations
were screened against a manually curated set of 279 phage-
associated Pfam families, and any candidates whose contigs
contained these proteins were removed from the dataset. This
removed a substantial number of putative encapsulin hits
from the dataset, yielding a filtered set of 1550 sequences. 

Finally, to ascertain maximum sequence identity with pro-
teins in conventional databases, putative encapsuling candi-
dates were searched against the UniRef90 database (down-
loaded 2023-03-30) ( 27 ) using mmseqs2 with previously men-
tioned parameters, and ‘–max-accept’ set to 1. UniRef90
database search was carried out on a VM.Standard.E4.Flex
cloud instance with 64 cores and 1024GB of RAM (Ora-
cle Cloud). The taxonomy ID of each encapsulin candidate
was used to retrieve its taxonomic lineage using the UniProt
API, and 2 encapsulin sequences showing > 95% identity to
UniRef90 sequences from the superkingdom ‘viruses’ were re-
moved from the dataset. 

Structure prediction and analysis 

Where available, putative encapsulin structure predictions
were retrieved from ESM Atlas using the public API. How-
ever, most candidate sequences had no available structure pre-
diction data. For these candidates, structure prediction was
carried out using ESMFold ( 18 ) in Google Colaboratory ( 28 )
with a chunk size of 64 for sequences larger than 700 amino
acids, and 128 for sequences smaller than 700 amino acids.
Structures for putative encapsulins longer than 900 amino
acids were not predicted due to computational constraints
(however, there were only 38 encapsulin sequences longer than
900 residues, see Supplementary Figure S2 ). Any structure pre-
dictions with a mean pLDDT value under 70 were removed
from the dataset. 

Confident predicted structures were analysed using DALI
( 29 ) to compute all-against-all pairwise Z-scores. Experimen-
tally solved structures for four well-characterized encapsulin
proteins were also included, from T. maritima , M. xanthus ,
Q. thermotolerans and S. elongatus (PDB codes 7MU1, 7S2T,
6NJ8 and 6X8M respectively). The similarity matrix was
manually inspected, and a set of 130 structures showing ex-
tremely low similarity to all others were removed and man-
ually assigned to their own dissimilar cluster. The remaining
matrix was used as input for hierarchical clustering with com-
plete linkage using the scipy.cluster.hierarchy package ( 30 ).
The protein sequences within each cluster were then clustered
at 80% sequence identity cutoff using mmseqs2 to reduce re-
dundancy and facilitate easier manual inspection ( 26 ). Pre-
dicted structures for each cluster were visually inspected using
PyMOL ( 31 ). All plots were created and inspected using the
Plotly package in Python ( 32 ). 
Representative sequences from each cluster of ESMFold 

predicted structures were also predicted using AlphaFold2 

( 19 ). This was done to demonstrate that structure prediction 

with ESMFold is comparable and does not lead to exclusion 

of encapsulin structures due to inferior performance. Struc- 
tures were predicted with AlphaFold2 v2.3.0 using default 
MSA settings, and a maximum template cutoff date of 1 De- 
cember 2023. For structure clusters with fewer than 15 se- 
quences (after mmseqs2 clustering at 80% identity), all se- 
quences were predicted. In the case of larger structure clus- 
ters, a single representative sequence was chosen based on 

the lowest mean DALI Z-Score to every other member of the 
cluster. 

Encapsulin cargo type annotation 

Initially, all contig protein Pfam annotations were manually 
inspected to assign encapsulin candidate cargo type and bio- 
logical function. Two sets of Pfam annotations were consid- 
ered in this study: Pfam family annotations from the MGnify 
Protein Database which are generated using ProtENN, a deep 

learning tool based on convolutional neural networks ( 33 ),
and more conventional HMM-based Pfam assignments gen- 
erated using HMMScan as part of DeepBGC ( 21 ). A com- 
prehensive set of cargo types has previously been published 

( 5 ), however that work did not assign every cargo type a 
Pfam family or set of Pfam families. For this current study, the 
known cargo Pfam families were enriched with further man- 
ually curated Pfam families ( Supplementary Table S1 ), which 

were used to annotate some family 1, 2 and 4 encapsulin cargo 

proteins. However, since most putative encapsulins still had no 

family or cargo protein assigned, a more involved strategy was 
required. 

Additional Family 1 cargo proteins were identified by 
searching an mmseqs2 database containing all contig proteins,
using as query the family 1 cargo loading peptide (CLP) con- 
sensus sequences and secondary cargo CLP sequences ( 34 ) 
( Supplementary Data File S1 ). Search parameters in mmseqs2 

were optimized for short query sequences by using the PAM30 

Matrix, an E-value cutoff of 200000, and setting ‘spaced- 
kmer-mode’ to 0. 

Additional Family 2 cysteine desulfurase (CyD) cargo pro- 
tein candidates were identified using the same search parame- 
ters with a conserved motif (LARLANEFFS) found in the dis- 
ordered N-terminal domain (NTD) of CyD from the S. elonga- 
tus family 2 encapsulin system ( 4 ). Further Family 2 cargo pro- 
tein candidates were discovered using Hidden Markov Model 
(HMM)-based searches. For the four known cargo types (cys- 
teine desulfurase, xylulose kinase, polyprenyl transferase, and 

terpene cyclase) sequence accessions were collected ( 5 ) and se- 
quences retrieved from UniProt ( 27 ). Multiple sequence align- 
ments (MSAs) for each cargo type were built using Clustal 
Omega with default parameters ( 35 ), and HMMs produced 

from these MSAs using the hmmbuild utility from HMMer 
with default settings ( 36 ). The hmmsearch utility from HM- 
Mer was used to search these profile HMMs against all pu- 
tative cargo proteins and any hits with E -value < 1 were 
reported. 

Further cargo annotations were carried out using sequence 
similarity by searching all putative cargo proteins against the 
NCBI non-redundant protein database ( 37 ) using mmseqs2 

with the previously mentioned parameters and –max-accept 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae025#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae025#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae025#supplementary-data
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ut on a VM.Standard.E4.Flex cloud instance with 64 cores
nd 1024GB of RAM (Oracle Cloud). 

iosynthetic gene cluster prediction 

GCs were predicted from putative encapsulin-containing
etagenomic contigs using two different approaches. The an-

iSMASH 6.1.1 package ( 38 ) was used to predict BGCs from
ontigs with the following settings: Prodigal was used as the
enefinding tool, ClusterBLAST was used with the general,
ubclusters and knownclusters settings, active site finder was
nabled, and the pfam2go and clusterhmmer options were en-
bled. antiSMASH outputs in HTML format were parsed us-
ng the Beautifulsoup4 package in Python ( 39 ). In parallel,
eepBGC ( 21 ) was also used to predict BGCs, using Prodi-
al in metagenomic mode for gene finding, the ‘deepbgc’ de-
ector, and classifiers ‘product_class’ and ‘product_activity’.
redicted clusters were filtered to remove any clusters ending
ore than 10 kb upstream of the putative encapsulin gene or
eginning 10 kb downstream of that gene. 

esults 

utative encapsulin sequences from MGnify 

rotein database 

nterrogation of the MGnify protein database returned 1548
utative encapsulin sequences filtered from ≈ 800000 initial
its, of which 1326 showed sub-95% identity with any se-
uence in UniRef90 (Figure 2 A). Supplementary Figure S3
hows a detailed breakdown of the filtering pipeline and the
umber of sequences filtered at each step. Tracing the species
f origin is non-trivial because these sequences come from
nassembled contigs. However, biome annotations for ev-
ry protein sequence in the MGnify database are provided.
hese annotations (Figure 2 B and C) provide categorical in-

ormation about metagenomics samples according to the En-
ironment Ontology ( 40 ). Putative encapsulins were found in
000 different metagenomics samples across diverse environ-
ents. Whilst most samples are sourced from aquatic environ-
ents, a sizeable proportion (29%) are associated with host-

ssociated biomes, most of which are microbiota of the diges-
ive systems of humans, other mammals, or birds. The pres-
nce of encapsulins in host-associated pathogens aligns with
revious results ( 5 ) and may support the hypothesis that these
roteins serve roles in bacterial pathogenicity ( 41 ). 

utative encapsulins are associated with 

iosynthetic gene clusters (BGCs) 

ultiple techniques were used to identify associated cargo
roteins corresponding to putative metagenomic encapsulins.
hese included sequence similarity searches, and functional
nnotation searches using two different methods: Profile Hid-
en Markov Model searches, and sequence searches using
nown encapsulin cargo loading peptide (CLP) sequence mo-
ifs. Despite this broad strategy, only 177 cargo protein can-
idates were identified for 1550 putative metagenomic en-
apsulins (Figure 3 A). Most encapsulin cargo candidates be-
onged to encapsulin families 1 and 2 and included DyP-type
eroxidases, ferritin-like domains, cysteine desulfurases, and
olyprenyl transferases. Figure 3 B shows the predicted struc-
ure of a representative putative encapsulin and its candi-
ate corresponding ferritin-like cargo protein. Both show low
equence identity to any protein in conventional databases
(46.2% and 32.7% for encapsulin and cargo) but are anno-
tated as encapsulin and cargo by Pfam family. Predicted struc-
tures of these two proteins also corroborate their sequence-
based functional annotations – the encapsulin clearly dis-
plays the HK97 fold while the cargo protein gives significant
hits against crystal structures of ferritins from E. coli when
searched with Foldseek ( 25 ). Interestingly, this encapsulin was
annotated with Pfam PF05065 (‘phage capsid family’), a label
which was previously assigned to family 3 encapsulins ( 5 ) but
which is seen here in a putative family 1 encapsulin system. 

Family 3 encapsulins are found within biosynthetic gene
clusters (BGCs), defined as groups of genes in close ge-
nomic proximity which encode pathways producing special-
ized products known as secondary metabolites ( 42 ). BGC
prediction tools were used to identify putative encapsulin-
associated BGCs from MGnify contig data (see Materials
and methods). 

These predictions uncovered a potentially novel encapsulin-
associated BGC, the Saccharide BGC (Figure 4 A). These puta-
tive BGCs are predicted by DeepBGC ( 21 ) to produce antimi-
crobial or cytotoxic saccharides, and all encode at least one
glycosyl transferase enzyme, although most contain multiple
such enzymes. Other enzymes that can be found in such BGCs
include carbohydrate epimerases and dehydratases, methyl-
transferases, and oxygenases. Proteins from several Saccharide
BGC systems were analysed using BLAST searches ( 37 ), ESM-
Fold structure prediction ( 18 ), and Foldseek searches against
the PDB. However, none of these searches gave any significant
matches ( E -value < 10 

−3 for BLAST, or TM-score and prob-
ability > 0.5 for Foldseek) to proteins of known structure or
function, indicating a low degree of homology to proteins in
these databases. 

Several putative encapsulins were found within predicted
BGCs with known cargo proteins that contain capsid target-
ing peptides or domains (Figure 4 B). Several putative Sac-
charide BGCs also contains cysteine desulfurases, a known
family 2 cargo. A putative encapsulin was found downstream
of a putative hemerythrin cargo, but upstream of a polyke-
tide synthase-like BGC, which encodes enzymes involved in
the synthesis of chalcones. Putative encapsulins with fer-
ritin cargos were also found in N-acetylglutaminyl glutamine
(NAGGN) and non-ribosomal peptide synthetase (NRPS)-like
clusters, both of whose general function is to synthesise short
modified peptides ( 43–45 ). 

The encapsulin-associated NAGGN BGC described here
encodes the asparagine synthase and acetyltransferase en-
zymes needed to produce the osmoprotective peptide
NAGGN ( 45 ). NRPS-like encapsulin BGCs encode the
phosphate / AMP binding proteins usually associated with
NRPS BGCs, but are missing the key peptidyl carrier protein
(PCP), which is required for non-ribosomal peptide synthesis
( 46 ). However, such systems encode several potentially encap-
sulated enzymes, including gluconolactonases, thioesterases,
aldo-keto reductases, and nitroreductases. Encapsulins have
been previously reported as part of NRPS operons, but these
partial ‘NRPS-like’ systems lacking a full complement of en-
zymes have not been seen previously. 

Structural prediction of clusters with novel features 

Following cargo annotation, protein structures of putative en-
capsulin hits were predicted using ESMFold, and confident
structures were compared to each other using DALI. The

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae025#supplementary-data
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Figure 2. P utativ e metagenomic encapsulin sequences. ( A ) Histogram sho wing sequence identity of the closest match f or 1550 putativ e metagenomic 
encapsulins when searched against UniRef90. X-axis values indicate the centre of each bin. 77 sequences showed no significant hits in Uniref90, and 
225 sequences sho w ed o v er 95% sequence identity to the best hit in UniR ef90. ( B ) Breakdo wn of biome data f or the 20 0 0 met agenomic samples 
where putative encapsulin sequences were found. The four categories in the pie chart represent the four top-level categories of the Environment 
Ontology used in the MGnify dat abase—environment al, host-associated, engineered and mixed. ( C ) Sunburst plot showing a breakdown of the biomes 
within each category from ( B ). ‘Other animals’ includes mammals and birds. ‘Other’ engineered types include laboratory samples, food production, 
fermented be v erage production, and bioreactors / biogas sites. T hese categories contain man y sparsely populated subcategories whic h are omit ted for 
clarity. The ‘Mixed’ biome has no subcategories and is thus omitted. 
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A

B

Figure 3. Metagenomic encapsulin cargo protein ( A ) Icicle plot showing a breakdown of annotated cargo proteins by family. Out of 1550 putative 
encapsulin hits, 177 were annotated with putative cargo proteins. Most cargo proteins were from families 1 and 2, with 3 proteins from family 4. ( B ) 
ESMFold predicted str uct ures of a putative encapsulin hit and its respective ferritin-like cargo protein. Despite low sequence identity to any sequence in 
con v entional databases, both are identified as encapsulin and ferritin-like proteins by functional annotation and predicted str uct ures respectively. 
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esulting all-against-all similarity matrix (Figure 5 A) showed
lear patterns of clustered structures that share similarity with
ach other. These clusters also correspond to distinct regions
f protein feature space (Figure 5 B). Encapsulin hit sequences
xplore a wide range of lengths and charge properties, and
n several cases, predicted encapsulin structures in the same
luster show similar length and isoelectric points. Notably,
hree out of the four experimental structures analysed here
all within the largest cluster of structures, suggesting that
ther clusters may contain predicted structures with novel
eatures. Representatives from each cluster of ESMFold pre-
icted structures were also predicted using AlphaFold2 (see
upplementary Figure S6 ), and across this set of representa-
ives the two methods showed good agreement as measured
y TM-Score and comparison of pLDDT values. This appears
o rule out the possibility that results are influenced by arte-
acts from ESMFold structure prediction. 

Predicted encapsulin structures from several clusters were
anually inspected to reveal potentially novel features. As

ould be expected, the predicted structures from Cluster 8
which contained 3 / 4 of the experimental structures analysed)
ll resembled known encapsulin structures from the litera-
ure (Figure 6 A), with E-loops either in the ‘T = 1-like’ con-
ormation or in a position resembling the T = 3 or T = 4
ncapsulins. However, encapsulins from other clusters dis-
layed some conformational diversity compared to experi-
entally solved structures—for example putative encapsulins

rom Cluster 1 showed insertions in the A-domain and E-
oop. Interestingly, Cluster 6 encapsulin candidates all dis-
layed several interesting features not seen in known encap-
ulins (Figure 6 B). This included large insertion domains in the
-loop which could not be identified by sequence or structure
searches against existing databases. These predicted structures
also showed insertion of a small β-strand in the G-loop region,
which is not seen in the known encapsulins. The positioning of
these insertions in E- and G-loops indicates that these domains
could decorate the outside of the assembled capsid shell. All
predicted structures presented in Figure 6 showed acceptable
confidence metrics ( Supplementary Figure S5 ). 

Discussion 

In this work, a dataset of novel putative encapsulin sequences
is presented, leveraging the rapid growth in metagenomic
databases, and the wealth of new sequence diversity con-
tained within them. This diversity presents many opportuni-
ties for discovery of novel proteins; however, it also brings to
light several challenges which were encountered in this work.
Analysing metagenomic encapsulin hits by functional predic-
tion is a non-trivial task, as seen in the relatively slim propor-
tion of candidate encapsulin sequences that could be anno-
tated with a feasible cargo type. This could be because of low
sequence identity (often sub-30%) of putative cargo proteins
with any protein of known function, or it could also indicate
that putative encapsulins in this dataset are associated with
novel cargo proteins whose function has not previously been
observed in known encapsulin systems. The scarcity of ge-
nomic context surrounding metagenomic encapsulin hits also
makes removing phage proteins difficult, requiring a much
more involved search and manually intensive filtering strat-
egy compared to previous work ( 5 ). Many initial candidate
sequences had to be removed due to small contig sizes (see
Materials and methods), and contigs could not be retrieved

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae025#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae025#supplementary-data
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A

B

Figure 4. P utativ e encapsulin-associated biosynthetic gene clusters (BGCs). ( A ) 29 putativ e encapsulins are f ound in predicted saccharide BGCs, all 
containing at least one glycosyl transferase. These BGCs may also encode epimerases, aldolases, oxygenases, and redox proteins. ( B ) Some putative 
encapsulins are found in putative BGCs, and near known cargo proteins with loading peptides or domains (grey arrows with red dashed outline). In one 
example hemerythrin, a family 1 cargo protein, is seen upstream of the putative encapsulin and a polyketide synthase (PKS)-like BGC. Other encapsulin 
candidates are found upstream of saccharide BGCs containing cysteine desulfurase, a family 2 cargo. The N -acet ylglut aminyl glut amine amide (NAGGN) 
BGC contains asparagine synthase and acetyltransferase enzymes, whilst non-ribosomal peptide synthetase (NRPS)-like clusters encode 
phosphate / AMP binding proteins. Both contain putative encapsulins with ferritin cargos. Enzymes not found in all operons are shown in dashed outline. 
Direction of arrows does not indicate gene orientation and is for schematic purposes only. PAA = phenylacetic acid, IC = isoprenylcysteine, 
TetR = tetracycline regulator 
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Figure 5. Predicted encapsulin str uct ures form distinct clusters. ( A ) Clustered heatmap of DALI all-against-all pairwise similarity for high confidence 
encapsulin predicted str uct ures. Clusters of str uct ures sharing high similarity with each other can be seen visually and assigned using hierarchical 
clustering (see Methods). These clusters of similar str uct ures are shown in a coloured dendrogram at the top of the heatmap. ( B ) Scatterplot of 
sequence length versus isoelectric point for predicted encapsulin str uct ures, coloured by cluster. Whilst some clusters are relatively dispersed, there are 
some local regions where encapsulins of similar length and / or isoelectric point are clustered together (highlighted with coloured bo x es). Experimentally 
solved encapsulin str uct ures are shown, 3 / 4 of which fall within a single cluster. 
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or many candidate sequences due to missing metadata in the
Gnify Protein Database ( Supplementary Figures S1 and S3 ).
It must be noted that the Pfam annotations used in the ini-

ial search stage of this work were generated using ProtENN,
 previously described deep learning model which has been
emonstrated to be more accurate than conventional HMM-
ased approaches ( 33 ), particularly on sequences with remote
omology to any existing annotated sequence. The authors of
ProtENN suggest combining deep learning predictions with
traditional HMM approaches for optimal performance and
coverage. Unfortunately, re-annotating all 2.4 billion protein
sequences using HMMs is far beyond the scope of this study,
especially when ProtENN annotations are already provided,
and are likely to be more accurate for the novel sequences
sought after in this work. Aside from its use in the MGnify
Protein Database, to our knowledge there are no examples

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae025#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae025#supplementary-data
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A

B C

Figure 6. Predicted str uct ures of putative encapsulins show novel features. ( A ) Cluster 8 contains predicted structures closest to experimentally solved 
encapsulin str uct ures. Some resemble the T. maritima T = 1 encapsulin (left), while others ha v e an E-loop angle closer to higher T-number encapsulins 
from M. xanthus and Q. thermotolerans . Cluster 1 (right) contains str uct ures with minor variations, including insertion loops in the A-domain and a 
longer E-loop. ( B ) Cluster 6 contains no v el encapsulin predicted str uct ures with a large insertion domain in the E-loop (dark blue), and an extended 
G-loop (teal) not seen in experimental encapsulin str uct ures. Some predicted str uct ures contain N-terminal extensions or fusion domains (purple). ( C ) 
Alignment with the T. maritima encapsulin pentamer shows E-loop and G-loop extensions are predicted to decorate the outer surface of the capsid. 
Pentamer fitting is not energy minimized and shown for schematic purposes only. 
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n the literature of ProtENN being applied to metagenomics
ata. This work is the first study focusing on genome mining of
he MGnify Protein Database, and as such the first detailed in-
errogation of ProtENN annotations applied to metagenomics
ata. 
Despite the rigorous filtering strategy employed in this

tudy, there is still a chance that some candidate encapsulins
resented here are phage proteins and not encapsulin pro-
eins of cellular origin. Encapsulins and phage capsid proteins
rom conventional databases can show as little as 20% se-
uence identity despite close homology in tertiary and qua-
ernary structure ( Supplementary Figure S4 ). The degree of
ncertainty is compounded by the fact that the metagenomic
andidate sequences presented here show low identity with
equences in conventional biological databases, for which
pecies and functional annotations are available. This twofold
ssue of low sequence identity is then also complicated by the
nclear evolutionary history of the HK97 fold: it is unknown
hether this family of proteins originated in viruses or cellu-

ar organisms; both cases have been the subject of speculation
n the literature ( 15 ,41 ). Due to this obscure evolutionary re-
ationship, putative encapsulin hits may resemble phage cap-
id proteins in sequence or structure, however it is impossi-
le to rule out the scenario that they are very primitive cellu-
ar proteins close to the HK97 fold’s common ancestor. Ge-
omic context can give clues as to a protein’s origin, how-
ver in the metagenomic case this information is limited, and
unctional annotation of neighbouring genes is troublesome.
ndeed, an ancient phage-like encapsulin sequence could be
eighboured by primitive genes appearing viral in character,
nd with limited sequence identity and annotations it would
e very difficult to decide whether these genes are cellular or
iral in origin. These thought experiments serve to demon-
trate the difficulty in distinguishing encapsulins from phage
apsid proteins, and more broadly to discriminate between
iral and cellular proteins. Notwithstanding the presence of
uch thought-provoking examples, this work strives to use all
vailable information to rule out the presence of phage capsids
here possible. 
Biosynthetic gene cluster prediction revealed a potentially

ovel class of encapsulin-associated BGC, the Saccharide
GC. This may be an interesting new class of encapsulin sys-

em involved in producing cytotoxic or antimicrobial saccha-
ides, as predicted by deep learning tools. The precise sub-
trates and products of these saccharide pathways are not
nown. However, given the presence of putative encapsulins
n these systems, and that the predicted product classes of
hese systems are antimicrobial / cytotoxic, it is assumed that
hese saccharide pathways produce toxic products or inter-
ediates, hence the requirement for enzyme encapsulation.
here are many known glycosylated cytotoxic natural prod-
cts in bacteria ( 26 ), for example the substituted aminoglyco-
ide pactamycin ( 47 ). However, it is important not to draw too
trong a conclusion from the BGC prediction data; BGC pre-
iction algorithms are notoriously error-prone and are known
o produce many false positives ( 48 ). Indeed, a limitation was
ncovered in this very study: antiSMASH falsely predicted
round 80 ‘RiPP-like’ BGCs (short for ribosomally synthe-
ised and post-translationally modified product). The putative
ncapsulin genes in these BGCs are assigned the Pfam family
F04454 whose full name is ‘Encapsulating protein for perox-
dase’. However, antiSMASH incorrectly designates this Pfam
amily with the short name ‘Linocin:M18’ ( 49 ). Since linocin
genes are usually found as part of real RiPP-like BGCs, an-
tiSMASH falsely annotated these encapsulin-containing gene
clusters as RiPP-like. This false annotation of encapsulin genes
has been previously observed in the literature ( 16 ) and occurs
in the Pfam database itself as well as in programs such as an-
tiSMASH which make use of its functionality. 

Putative cargo proteins from several Saccharide BGC ex-
amples returned no informative hits when searched using
BLAST, or when predicted structures were searched against
the PDB using Foldseek. The few significant ( E -value < 10 

−3 )
sequence hits from BLAST were all hypothetical, uncharacter-
ized proteins with no annotated function.Structure hits only
showed insignificant structural similarity over small regions
(TM-scores and probabilities below 0.5). The number and ac-
curacy of BGC predictions is limited in this case by the ge-
nomic context available in the contigs surrounding each can-
didate encapsulin, which explains the relatively few BGC pre-
dictions observed in this study. Such tools are usually intended
to be run on full genome sequences. BGC prediction tools also
make use of Pfam and other functional annotations, which
have their own limitations with metagenomic proteins as pre-
viously mentioned. Given the limitations in the underlying
data and the tools used, Saccharide BGCs remain a hypothet-
ical new biological function for encapsulins until more rigor-
ous experimental analysis can be carried out. 

The same limited conclusions can be drawn from the ob-
servation of known family 1 or 2 cargos within other types of
BGC, including Saccharide BGCs. The limitations of the data
presented here indicate that this is simply a coincidence, how-
ever an encapsulin and its associated cargo forming part of a
larger cluster of metabolic genes is an interesting possibility. It
is speculated that if this were to be observed in a more signif-
icant number of genomes or metagenomic contigs, this could
have implications for encapsulated ferritin or cysteine desul-
furase function as part of a larger cluster of genes involved
in secondary product metabolism. It is noted that BGC pre-
diction in the context of encapsulins has not previously been
carried out on as large a scale as in this work, and such ap-
proaches could be applied to the existing encapsulin datasets
to potentially give new insights into biological function. 

Predicted structures of putative encapsulin hits reveal some
interesting new structural features. Whilst many of these pre-
dicted structures show similar topology to experimentally re-
solved encapsulin structures, the predicted structures from
Cluster 6 display a set of novel structural features compared
to known encapsulins. Insertions in the E-loop and A-domain
may decorate the vertices of pentameric units in the cap-
sid shell, and it is speculated that these insertion domains
may lead to architectural differences in these putative cap-
sids compared to experimental encapsulin structures. These
architectural differences, if experimentally confirmed, could
impart new physicochemical properties which may aid in en-
capsulin engineering. E-loop insertion domains may also con-
fer new biological function to the encapsulin monomer, how-
ever sequence- or structure-based search failed to reveal any
informative significant hits against this curious new structural
region. Some encapsulins in this cluster also show N-terminal
fusion domains, although again sequence- or structure-based
search fails to shed light on the function of these domains.
These could be cargo protein fusions, or they could be in-
volved in protein–protein interactions with a separately en-
coded cargo protein. Lastly, E-loop and G-loop insertion re-
gions could serve as useful functionalization sites for the ex-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae025#supplementary-data
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terior of the capsid shell, which may have biotechnology ap-
plications in vaccine development. 

To conclude, this study presents exploratory work to-
wards discovering new encapsulin sequences in metagenomic
databases, and the workflows required to filter and analyse
these sequences. These new data may be useful in understand-
ing encapsulin biology and / or in developing new engineering
applications for encapsulins, however experimental character-
ization is now needed to further understand these potentially
novel protein nanocompartments. 

Data availability 

All raw data and scripts needed to reproduce this work (in-
cluding Python and bash scripts, Jupyter notebooks, novel
putative encapsulin sequences, cargo protein sequences, MG-
nify Protein Database and European Nucleotide Archive ac-
cessions, and contig sequences) are available at Zenodo:
https:// doi.org/ 10.5281/ zenodo.8183050 and GitHub: https:
// github.com/ naailkhan28/ encapsulin _ metagenomics . 

Supplementary data 

Supplementary Data are available at NARGAB Online. 

A c kno wledg ements 

We warmly thank Dr Alexander Van De Steen and Ferdinando
Sereno for helpful discussions and input on this work. We
also thank Dr Ryan Payton, Mike Riley, James Fleming, Dave
Fuller, and Dr Dave Houldershaw for their advice and sup-
port on computational aspects of this work. We gratefully ac-
knowledge Prof Mark Williams and Dr Katherine Thompson
for valuable oversight and guidance. 

Funding 

N.K.K. is supported by the Biotechnology and Biological Sci-
ences Research Council [BB / T008709 / 1], with the London
Interdisciplinary Biosciences Consortium Doctoral Training
Partnership; Oracle Cloud credits and related resources pro-
vided by Oracle for Research via R.P ., M.R., J.F . and D.F . (in
part); EPSRC for funding SF [EP / R013756 / 1] through the Fu-
ture Vaccine Manufacturing Research Hub (Vax-Hub). 

Conflict of interest statement 

None declared. 

References 

1. Sutter, M. , Boehringer, D. , Gutmann, S. , Günther, S. , Prangishvili, D. , 
Loessner, M.J. , Stetter, K.O. , Weber-Ban, E. and Ban, N. (2008) 
Structural basis of enzyme encapsulation into a bacterial 
nanocompartment. Nat. Struct. Mol. Biol., 15 , 939–947.

2. Ross, J. , McIver, Z. , Lambert, T. , Piergentili, C. , Bird, J.E. , 
Gallagher, K.J. , Cruickshank, F.L. , James, P. , Zarazúa-Arvizu, E. , 
Horsfall, L.E. , et al. (2022) Pore dynamics and asymmetric cargo 
loading in an encapsulin nanocompartment. Sci. Adv. , 8 , eabj4461.

3. McHugh, C.A. , Fontana, J. , Nemecek, D. , Cheng, N. , Aksyuk, A.A. , 
Heymann, J.B. , Winkler, D.C. , Lam, A.S. , Wall, J.S. , Steven, A.C. , et al.
(2014) A virus capsid-like nanocompartment that stores iron and 
protects bacteria from oxidative stress. EMBO J. , 33 , 1896–1911. 
4. Nichols, R.J. , LaFrance, B. , Phillips, N.R. , Radford, D.R. , 
Oltrogge, L.M. , Valentin-Alvarado, L.E. , Bischoff, A.J. , Nogales, E. 
and Savage,D.F. (2021) Discovery and characterization of a novel 
family of prokaryotic nanocompartments involved in sulfur 
metabolism. eLife , 10 , e59288.

5. Andreas, M.P. and Giessen, T.W. (2021) Large-scale computational 
discovery and analysis of virus-derived microbial 
nanocompartments. Nat. Commun., 12 , 4748.

6. Gorges, J. , Panter, F. , Kjaerulff, L. , Hoffmann, T. , Kazmaier, U. and 
Müller,R. (2018) Structure, total synthesis, and biosynthesis of 
chloromyxamides: myxobacterial tetrapeptides featuring an 
uncommon 6-chloromethyl-5-methoxypipecolic acid building 
block. Angew. Chem. Int. Ed Engl., 57 , 14270–14275.

7. Sigmund, F. , Berezin, O. , Beliakova, S. , Magerl, B. , Drawitsch, M. , 
Piovesan, A. , Gonçalves, F. , Bodea, S.-V. , Winkler, S. , Bousraou, Z. , 
et al. (2023) Genetically encoded barcodes for correlative volume 
electron microscopy. Nat. Biotechnol., 41 , 1734–1735.

8. Sigmund, F. , Pettinger, S. , Kube, M. , Schneider, F. , Schifferer, M. , 
Schneider, S. , Efremova, M.V. , Pujol-Martí, J. , Aichler, M. , Walch, A. , 
et al. (2019) Iron-sequestering nanocompartments as multiplexed 
electron microscopy gene reporters. ACS Nano , 13 , 8114–8123.

9. Lagoutte, P. , Mignon, C. , Stadthagen, G. , Potisopon, S. , Donnat, S. , 
Mast, J. , Lugari, A. and Werle, B. (2018) Simultaneous surface 
display and cargo loading of encapsulin nanocompartments and 
their use for rational vaccine design. Vaccine , 36 , 3622–3628.

10. Khaleeq, S. , Sengupta, N. , Kumar, S. , Patel, U.R. , Rajmani, R.S. , 
Reddy, P. , Pandey, S. , Singh, R. , Dutta, S. , Ringe, R.P. , et al. (2023) 
Neutralizing efficacy of encapsulin nanoparticles against 
S AR S-CoV2 variants of concern. Viruses , 15 , 346.

11. Kwon, S. and Giessen, T.W. (2022) Engineered protein nanocages 
for concurrent RNA and protein packaging In V ivo. A CS Synth. 
Biol., 11 , 3504–3515.

12. Van de Steen, A. , Khalife, R. , Colant, N. , Mustafa Khan, H. , 
Deveikis, M. , Charalambous, S. , Robinson, C.M. , Dabas, R. , Esteban 
Serna, S. , Catana, D.A. , et al. (2021) Bioengineering bacterial 
encapsulin nanocompartments as targeted drug delivery system. 
Synth. Syst. Biotechnol., 6 , 231–241.

13. Lau, Y.H. , Giessen, T.W. , Altenburg, W.J. and Silver, P.A. (2018) 
Prokaryotic nanocompartments form synthetic organelles in a 
eukaryote. Nat. Commun., 9 , 1311.

14. Altenburg, W.J. , Rollins, N. , Silver, P.A. and Giessen, T.W. (2021) 
Exploring targeting peptide-shell interactions in encapsulin 
nanocompartments. Sci. Rep., 11 , 4951.

15. Krupovic, M. and Koonin, E.V. (2017) Multiple origins of viral 
capsid proteins from cellular ancestors. Proc. Natl. Acad. Sci. 
U.S.A., 114 , E2401–E2410.

16. Jones, J.A. and Giessen, T.W. (2021) Advances in encapsulin 
nanocompartment biology and engineering. Biotechnol. Bioeng., 
118 , 491–505.

17. Ovchinnikov, S. , Park, H. , Varghese, N. , Huang, P.-S. , 
Pavlopoulos, G.A. , Kim, D.E. , Kamisetty, H. , Kyrpides, N.C. and 
Baker,D. (2017) Protein structure determination using 
metagenome sequence data. Science , 355 , 294–298.

18. Lin, Z. , Akin, H. , Rao, R. , Hie, B. , Zhu, Z. , Lu, W. , Smetanin, N. , 
Verkuil, R. , Kabeli, O. , Shmueli, Y. , et al. (2023) Evolutionary-scale 
prediction of atomic level protein structure with a language model.
Science , 379 , 1123–1130.

19. Jumper, J. , Evans, R. , Pritzel, A. , Green, T. , Figurnov, M. , 
Ronneberger, O. , Tunyasuvunakool, K. , Bates, R. , Z’idek, A. , 
Potapenko, A. , et al. (2021) Highly accurate protein structure 
prediction with AlphaFold. Nature , 596 , 583–589.

20. Bileschi, M. , Belanger, D. , Bryant, D. , Sanderson, T. , Carter, B. , 
Sculley, D. , DePristo, M. and Colwell, L. (2019) Using deep learning 
to annotate the protein universe. Nat. Biotechnol., 40 , 932–937.

21. Hannigan, G.D. , Prihoda, D. , Palicka, A. , Soukup, J. , Klempir, O. , 
Rampula, L. , Durcak, J. , Wurst, M. , Kotowski, J. , Chang, D. , et al. 
(2019) A deep learning genome-mining strategy for biosynthetic 
gene cluster prediction. Nucleic Acids Res. , 47 , e110. 

22. Richardson, L. , Allen, B. , Baldi, G. , Beracochea, M. , Bileschi, M.L. , 
Burdett, T. , Burgin, J. , Caballero-Pérez, J. , Cochrane, G. , Colwell, L.J. , 

https://doi.org/10.5281/zenodo.8183050
https://github.com/naailkhan28/encapsulin_metagenomics
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae025#supplementary-data


NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 1 13 

2

2

2

2

2

2

2

3

3

3

3

3

3

3  

3

 

 

 

R
©
T
d

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/6/1/lqae025/7624091 by U

niversity C
et al. (2023) MGnify: the microbiome sequence data analysis 
resource in 2023. Nucleic Acids Res. , 51 , D753–D759. 

3. Mistry, J. , Chuguransky, S. , Williams, L. , Qureshi, M. , Salazar, G.A. , 
Sonnhammer, E.L.L. , Tosatto, S.C.E. , Paladin, L. , Raj, S. , 
Richardson, L.J. , et al. (2021) Pfam: the protein families database 
in 2021. Nucleic Acids Res. , 49 , D412–D419. 

4. Release aria2 1.36.0. https:// github.com/ aria2/ aria2 , (1 March 
2023, date last accessed).

5. van Kempen, M. , Kim, S.S. , Tumescheit, C. , Mirdita, M. , Lee, J. , 
Gilchrist, C.L.M. , Söding, J. and Steinegger, M. (2023) Fast and 
accurate protein structure search with Foldseek. Nat. Biotechnol., 
42 , 243–246.

6. Mirdita, M. , Steinegger, M. and S"oding, J. (2019) MMseqs2 
desktop and local web server app for fast, interactive sequence 
searches. Bioinformatics , 35 , 2856–2858.

7. The UniProt Consortium (2023) UniProt: the Universal Protein 
knowledgebase in 2023. Nucleic Acids Res. , 51 , D523–D531. 

8. Google Colaboratory. https:// colab.research.google.com/ , (16 
February 2023,date last accessed).

9. Holm,L. (2022) Dali server: structural unification of protein 
families. Nucleic Acids Res. , 50 , W210–W215. 

0. V irtanen, P. , Gommers, R. , Oliphant, T.E. , Haberland, M. , Reddy, T. , 
Cournapeau, D. , Burovski, E. , Peterson, P. , Weckesser, W. , Bright, J. , 
et al. (2020) SciPy 1.0: fundamental algorithms for scientific 
computing in Python. Nat. Methods , 17 , 261–272.

1. Schrödinger,L.L.C. (2015) The PyMOL Molecular Graphics 
System. Version 1.8.

2. Plotly Technologies Inc. (2015) Collaborative data science. 
https://plot.ly (1 January 2024, date last accessed).

3. Bileschi, M.L. and Colwell, L.J. (2022) Using deep learning to 
annotate the protein universe. https:// blog.research.google/ 2022/ 
03/using- deep- learning- to- annotate- protein.html (1 January 
2024,date last accessed).

4. Giessen, T.W. and Silver, P.A. (2017) Widespread distribution of 
encapsulin nanocompartments reveals functional diversity. Nat. 
Microbiol., 2 , 17029.

5. Sievers, F. , Wilm, A. , Dineen, D. , Gibson, T.J. , Karplus, K. , Li, W. , 
Lopez, R. , McWilliam, H. , Remmert, M. , Söding, J. , et al. (2011) 
Fast, scalable generation of high-quality protein multiple sequence 
alignments using Clustal Omega. Mol. Syst. Biol., 7 , 539.

6. Finn, R.D. , Clements, J. and Eddy, S.R. (2011) HMMER web server:
interactive sequence similarity searching. Nucleic Acids Res., 39 , 
W29–W37.

7. Sayers, E.W. , Bolton, E.E. , Brister, J.R. , Canese, K. , Chan, J. , 
Comeau, D.C. , Connor, R. , Funk, K. , Kelly, C. , Kim, S. , et al. (2022) 
eceived: October 16, 2023. Revised: January 5, 2024. Editorial Decision: February 19, 2024. Accept
The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinf

his is an Open Access article distributed under the terms of the Creative Commons Attribution Lice
istribution, and reproduction in any medium, provided the original work is properly cited. 
Database resources of the national center for biotechnology 
information. Nucleic Acids Res. , 50 , D20–D26. 

38. Blin, K. , Shaw, S. , Kloosterman, A.M. , Charlop-Powers, Z. , van 
Wezel, G.P. , Medema, M.H. and Weber, T. (2021) antiSMASH 6.0: 
improving cluster detection and comparison capabilities. Nucleic 
Acids Res., 49 , W29–W35.

39. Richardson,L. (2023) beautifulsoup4: screen-scraping library. 
https://beautiful- soup- 4.readthedocs.io/en/latest/, (16 February 
2023, date last accessed).

40. Buttigieg, P.L. , Pafilis, E. , Lewis, S.E. , Schildhauer, M.P. , Walls, R.L. 
and Mungall,C.J. (2016) The environment ontology in 2016: 
bridging domains with increased scope, semantic density, and 
interoperation. J. Biomed. Semant., 7 , 57.

41. Giessen,T.W. (2022) Encapsulins. Annu. Rev. Biochem., 91 , 
353–380.

42. Medema, M.H. , Kottmann, R. , Y ilmaz, P. , Cummings, M. , 
Biggins, J.B. , Blin, K. , de Bruijn, I. , Chooi, Y.H. , Claesen, J. , 
Coates, R.C. , et al. (2015) Minimum information about a 
biosynthetic gene cluster. Nat. Chem. Biol., 11 , 625–631.

43. Arulprakasam, K.R. and Dharumadurai, D. (2021) Genome mining 
of biosynthetic gene clusters intended for secondary metabolites 
conservation in actinobacteria. Microb. Pathog., 161 , 105252.

44. Gulick,A.M. (2017) Nonribosomal peptide synthetase biosynthetic
clusters of ESKAPE pathogens. Nat. Prod. Rep., 34 , 981–1009.

45. Sagot, B. , Gaysinski, M. , Mehiri, M. , Guigonis, J.-M. , Le Rudulier, D. 
and Alloing,G. (2010) Osmotically induced synthesis of the 
dipeptide N-acetylglutaminylglutamine amide is mediated by a 
new pathway conserved among bacteria. Proc. Natl. Acad. Sci. 
U.S.A., 107 , 12652–12657.

46. Corpuz, J.C. , Sanlley, J.O. and Burkart, M.D. (2022) Protein-protein 
interface analysis of the non-ribosomal peptide synthetase peptidyl
carrier protein and enzymatic domains. Synth. Syst. Biotechnol., 7 ,
677–688.

47. Eida, A.A. and Mahmud, T. (2019) The secondary metabolite 
pactamycin with potential for pharmaceutical applications: 
biosynthesis and regulation. Appl. Microbiol. Biotechnol., 103 , 
4337–4345.

48. Prihoda, D. , Maritz, J.M. , Klempir, O. , Dzamba, D. , Woelk, C.H. , 
Hazuda, D.J. , Bitton, D.A. and Hannigan, G.D. (2021) The 
application potential of machine learning and genomics for 
understanding natural product diversity , chemistry , and 
therapeutic translatability. Nat. Prod. Rep., 38 , 1100–1108.

49. Paysan-Lafosse, T. , Blum, M. , Chuguransky, S. , Grego, T. , Pinto, B.L. , 
Salazar, G.A. , Bileschi, M.L. , Bork, P. , Bridge, A. , Colwell, L. , et al. 
(2023) InterPro in 2022. Nucleic Acids Res. , 51 , D418–D427. 
ed: February 21, 2024 
ormatics. 
nse (http: // creativecommons.org / licenses / by / 4.0 / ), which permits unrestricted reuse, 

ollege London user on 13 M
ay 2024

https://github.com/aria2/aria2
https://colab.research.google.com/
https://plot.ly
https://blog.research.google/2022/03/using-deep-learning-to-annotate-protein.html
https://beautiful-soup-4.readthedocs.io/en/latest/

	Introduction
	Materials and methods
	Results
	Discussion
	Data availability
	Supplementary data
	Acknowledgements
	Funding
	Conflict of interest statement
	References

