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Research in context

Evidence before this study

Sepsis remains one of the leading causes of childhood mortality and morbidity globally. While
sepsis is defined as dysregulated host response to infection leading to organ dysfunction,
criteria for sepsis remain based on physiological measures of organ dysfunction rather than
biological markers of host response. The risk of overusing antimicrobials lends further urgency
to develop and validate novel pathogen group-specific sepsis markers. There is thus an unmet
need for point of care tests identifying host response specific to bacterial versus viral infection
leading to organ dysfunction in children. Whole blood human transcriptomic analyses have
emerged as a promising approach to characterize the host response, but most previous studies
on septic patients included adults, were limited to differentiating bacterial versus viral
infection, or focussed on mortality as an outcome in ICU patients. Furthermore, the majority
of previous studies used multi-array rather than RNAseq, and the size of included cohorts was
relatively small. We searched publications in English language in PubMed since January 2011
with the terms ““child OR paediatric”, “sepsis OR septic shock™, “infection”, “bacterial”, “viral”

AND “transcriptomics OR multiarray OR RNAseq” to identify relevant previous studies.



Added value of this study

In this large cohort investigating host gene expression signatures to identify sepsis in children,
patients were recruited through a multicenter prospective Australian study, and split into a
discovery (n=595) and a validation (n=312) cohort. An external validation cohort consisted of
children with infection (n=362) recruited through a European consortium. We derived and
validated two novel gene expression signatures — a 10-gene signature to discriminate bacterial
from viral infection, and a 10-gene signature to identify the development of organ dysfunction.
This novel sepsis signatures achieved an AUC of 90.5% (95%-CI 83.3% - 97.6%) and 94.7%
(95%-CI 87.8% - 100.0%) in the validation dataset at identifying organ dysfunction within 24

hours specific for bacterial, and viral infection, respectively.

Implications of all the available evidence

A novel host gene expression signature can identify type of infection and organ dysfunction in
children evaluated for sepsis. Findings were robust across a number of severity outcomes, such
as need for organ support, need for vasopressors, multi-organ failure, and organ failure remote
from the organ of infection. In addition, we compared the performance of this novel
transcriptomic signature to previously published infection-specific, or severity-specific
signatures, providing for the first time independent validation of previously reported
signatures. Whether the implementation of such signatures into point-of-care tests provides
actionable information on treatable traits at the bedside, potentially leading to improved use of

antibiotics, needs to be tested in future trials.



Abstract

Background: Sepsis is defined as dysregulated host response to infection leading to life-
threatening organ dysfunction. Biomarkers characterising dysregulated host response in sepsis
are lacking. We aimed to develop host gene expression signatures predicting organ dysfunction
in children with bacterial versus viral infection.

Methods: Prospective observational study in four Emergency Departments and Intensive Care
Units in Australia. 907 children aged 1 month to 17 years evaluated for sepsis were recruited
between September 2017 and October 2021. Patients were split into discovery (n=595) and
validation (n=312) cohorts. An external validation cohort consisted of 362 children with
infection. Whole blood RNA sequencing was performed using lllumina NovaSeq. Feature
selection approaches were applied to discover novel gene signatures for infection type and
organ dysfunction. The primary endpoint was the presence of organ dysfunction at 24 hours of
sampling in the presence of confirmed bacterial, versus viral infection.

Findings: We identified a novel 10-gene disease-class signature, which achieved an Area
under the Curve (AUC) of 94.1% (95%-confidence interval [CI], 90.6% - 97.7%) to
discriminate bacterial from viral infection in the validation cohort. We also identified a novel
10-gene disease-severity signature to predict the development of organ dysfunction within 24
hours with an AUC of 82.2% (95%-CI 76.3% - 88.1%) in the validation cohort. In combination,
the disease-class and disease-severity signatures achieved an AUC of 90.5% (95%-CI 83.3% -
97.6%) and 94.7% (95%-CI 87.8% - 100.0%) at predicting organ dysfunction within 24 hours
of sampling in predicted bacterial, and viral infection, respectively. In the external dataset, the
signatures achieved an AUC of 90.9% (95%-CI 85.0% - 96.9%) for bacterial/viral
classification and an AUC of 70.1% (95%-C1 44.1% - 96.2%) for identifying organ dysfunction

at time of sampling in patients with predicted bacterial infection.



Interpretation: In children evaluated for sepsis, novel host transcriptomic signatures specific
for bacterial and viral infection can identify dysregulated host response leading to organ

dysfunction.

Funding: Medical Research Future Fund and several additional grants.



Introduction

Sepsis is defined as a dysregulated host response to infection leading to life-threatening organ
dysfunction®. Sepsis remains a leading cause of mortality in paediatric age groups with over 3
million annual deaths attributable to sepsis?. In the United States alone, paediatric sepsis was
estimated to account for $7.31 billion direct costs in 2016°, and one in five survivors will
develop new or progressive medical conditions after sepsis*. However, most paediatric
infections are viral resulting in particular challenges in recognizing sepsis in this age group.
Therefore, campaigns providing incentives for early administration of antimicrobials have been
criticized as they may potentially encourage unnecessary use of antibiotics®. Despite progress
in microbiological diagnostics, their turnaround time and accuracy remains inadequate to guide
initial empiric treatment and lacks the ability to predict disease severity. Rapid diagnostics have
enormous potential to enhance timeliness and accuracy of sepsis treatment, as well as of

reducing inadvertent antibiotic usage.

To date, the mechanisms underpinning dysregulated host response(s) characterizing the
progression from uncomplicated infection towards infection with organ dysfunction remain
poorly elucidated®®. There is an unmet need for diagnostic markers characterizing the
progression of simple infection to one with organ dysfunction, specific for the type of infection.
The ideal sepsis biomarker would yield information on the presence and type of the underlying
infection (to guide decisions on antibiotics), as well as the likelihood of developing organ
dysfunction (to guide decisions on treatment escalation and resuscitation, such as fluids,
inotropes, and intensive care unit [ICU] admission), and be translatable into a point-of-care
platform. Recently, host transcriptomic biomarkers have shown great promise in differentiating

between viral and bacterial infections®1°,



We hypothesized that RNA sequencing of whole blood would identify distinct host response
patterns characteristic for viral versus bacterial infection, and that these can be combined with
specific patterns characterizing children developing infection-associated organ dysfunction
versus those without organ dysfunction. Accordingly, we designed the Rapid Paediatric
Infection Diagnosis in Sepsis (RAPIDS) multi-center prospective cohort, to develop and

validate markers of the early host response in children evaluated for sepsis.

Methods

Study design and oversight

This prospective multi-center cohort was performed at four hospitals in Queensland, Australia
(eMethods 1). The study reporting follows the Standards of Reporting of Diagnostic Accuracy
Studies 2015 Update!!. The institutional Human Research Ethics Committee approved the
study (HREC/17/QRCH/85, June 9™ 2017; eMethods 2). Written informed consent or delayed

consent was obtained for all participants from their parents/carers (eMethods 3).

Patients
Children aged over 1 month to 17 years evaluated for sepsis at the participating Emergency
Departments (ED) and ICUs were eligible if they underwent a diagnostic work-up for suspected

sepsis, including blood cultures upon admission (eMethods 3).

Study procedures

We obtained 2.5mL blood in PAXgene RNA tubes (PreAnalytix GMBH, Switzerland)
simultaneously with routine clinical testing including blood cultures, blood counts, C-reactive
protein, and microbiological investigations such as nasopharyngeal swabs as indicated

clinically. A REDCap study database'? prospectively captured information on demographics,



symptoms, comorbidities, microbiology results, antimicrobial treatment, and severity. Disease
severity was assessed at baseline (time of blood sampling) and at 24 hours using clinical,
laboratory, and organ support criteria for organ dysfunction defined by the 2005 International
Pediatric Sepsis Definition Consensus Conference!®!*. Accordingly, presence of organ
dysfunction (cardiovascular, respiratory, neurologic, renal, hepatic, haematologic) was
adjudicated. The infection status was categorized into definite bacterial (DB), definite viral
(DV), probable bacterial (PB), probable viral (PV), combined bacterial and viral (CBV), non-
infectious (NI) and unknown based upon a previously validated approach® (eFigure 1;
eMethods 4). Two assessors experienced in paediatric critical care and infectious diseases
independently verified the infection status using clinical records, microbiologic results,
laboratory data and discharge reports. Adjudication of the final clinical phenotype required
agreement of both assessors; in case of disagreement, a third senior assessor reviewed cases

with the two assessors to ensure robust adjudication of clinical phenotypes (eMethods 5).

Endpoints

The primary outcomes were the presence of organ dysfunction at 24 hours of sampling in
children with DB infection, and in children with DV infection. This outcome was constructed
by combining the infection phenotype category (restricted to DB, DV, PB, PV, NI), with the
adjudication by organ dysfunction at 24 hours (i.e. presence of any organ dysfunction versus
no organ dysfunction at 24 hours). Given the lack of a gold standard for sepsis severity®®,
several secondary severity outcomes were defined: (i) organ dysfunction remote from the
primary focus of infection (as a proxy of organ dysfunction caused by a systemic process
related to infection®®); (ii) need for organ support (invasive or non-invasive respiratory support,
inotropes/vasopressors, renal replacement, extracorporeal membrane oxygenation); (iii) need

for inotrope/vasopressors; (iv) multi-organ dysfunction; (v) presence of cardiovascular,



respiratory, or neurologic dysfunction®*; and (vi) type of organ dysfunction. These outcomes
were assessed at 24 hours from sampling, as well as at time of sampling; with an additional
secondary severity outcome created by the dynamics within the first 24 hours (worsening or

improving) (eFigure 2).

RNA sequencing for discovery and validation cohort

Samples were stored at -80°C until extraction. RNA was purified from samples using PAXgene
Blood miRNA Kkits (PreAnalytix). Library preparation and sequencing were conducted at
Institute for Molecular Biosciences Sequencing Facility (University of Queensland, Australia).
The TruSeq RNA Ribo Zero Kit (Illumina) was used for ribosomal RNA depletion and
sequencing library preparation. Libraries were sequenced on a NovaSeq Sequencer (Illumina)
to generate at least 20 million sequencing reads per sample. The RNA sequencing configuration
was 75bp single-end (50 samples), 100bp single-end (545 samples) and 100bp paired-end (316
samples), respectively. FastQC*® and MultiQC*® were used to assess the quality of sequencing
reads. The first two batches of samples were used for discovery (n=595) and the third batch
was used for validation (n=316). For the discovery cohort, the sample size was based on power
to detect differential gene expression between conditions with 1.2-fold change, assuming 20
million reads per sample. According to RNASegPower package in R, we required at least 78
samples per condition to achieve 80% power. This was achieved for the majority of
comparisons, including organ dysfunction, and definite bacterial vs definite viral. For the
validation cohort, we used the methodology described in Burderer et al?® to estimate that a
sample size of 315 would allow us to correctly estimate the sensitivity and specificity of the
test within +/-0.05 at 95% confidence. Samples with completed phenotyping, monitoring, and
RNA extraction by March 2020 were included in the discovery cohort, the rest of the samples

which were recruited by October 2021 composed the validation cohort. Four samples in the
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validation cohort failed quality assessment and were excluded from analysis, leaving 595
samples in the discovery cohort, and 312 samples in the validation cohort.

Sequencing reads were mapped to the human reference genome (version hg38) using STAR
aligner (version 2.7.6a)?. GENCODE version 35 gene transcript annotation was used for the
alignment. HTSeq count (version 0.13.5)?? was used to ascertain the number of reads mapped
per gene. Principal component analysis (PCA) was performed to identify any outliers (eFigure

3; eMethods 6).

Differential Expression Analysis

DESeq2% was used for differential expression analysis between different phenotypes (bacterial
versus viral; with versus without organ dysfunction). Genes with <10 read counts were
excluded from analyses. Genes which had absolute log2 fold-change (LFC) of >1 and adjusted

p-value of <0.05 were considered as differentially expressed (eMethods 6).

External Validation Cohort

RNA sequencing gene expression count data were obtained from the European Childhood Life-
threatening Infectious Disease Study (EUCLIDS?*?%, eMethods 1, n=362). This observational
study recruited children with severe infection in nine European countries between 2012-2016.
Patients were phenotyped based on the likelihood of bacterial or viral infection?®® and

considering severity at time of sampling.

Signature Discovery and Evaluation with FSPLS

Forward Selection Partial Least Squares (FSPLS, eMethods 6) was used to discover novel

gene signatures to first distinguish infection types and to then predict presence of organ
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dysfunction. The FSPLS approach enables simultaneous multiple comparisons to identify
signatures which can be utilised to distinguish multiple phenotypes.

For disease-class signature analysis, FSPLS was run with five different comparisons (DB
versus DV; DB versus PV; DV versus PB; DB versus NI; DV versus NI). Combined infections
and unknown infections were not included in signature discovery. For severity signature
analysis, FSPLS was run with those with versus those without organ dysfunction at 24-hours
post sampling, and with those with versus those without organ dysfunction at the time of
sampling. Disease-class stratified severity weights were obtained by running FSPLS on
datasets stratified by predicted disease-class (viral, bacterial or non-infectious). To predict
sepsis, firstly we used the novel disease-class signature to predict the infection types as either
DB or DV or NI, as these groups have well-defined phenotypes (eFigure 1; eMethods 6).
Then, we applied the novel disease-severity signature for each infection type to identify organ

dysfunction (Figure 1).

In order to benchmark the novel signatures, we used our dataset to refit previously published
gene-expression signatures reported in patients with infection and sepsis (eMethods 6 and 7),
specifically Herberg et al®, McHugh et al'%, Tang et al”, Wong et al?¢, Sweeney et al>?, Sampson
et al®, Li et al*, Li et al* for disease-class and Lukaszewski et al*3, Pena et al*, Irwin et al®®
and Baghela et al* for disease-severity. As the weights of the genes in the signatures were not
publicly available, we used our dataset to re-fit and generate the weights to use in the analysis.
This allowed us to compare across all the signatures as they were all re-fitted similarly. We did

not correct for multiple comparisons.

Statistical Analysis:

12



All analyses were performed with Stata/SE version 17.0 (StataCorp Pty Ltd, College Station,
Texas) and R (R version 4.0.2)%". We used the pROC package®® to calculate the AUCSs to report
the performance of signatures and the DeLong method® to compare the AUC values between

signatures.

Results

From January 2018 to October 2021, 907 children evaluated for sepsis were enrolled with 595
constituting the discovery, and 312 the RAPIDS validation cohort (Table 1, eTable 1). Study
samples were obtained at a median of 2.3 (interquartile range (IQR) 1.4, 4.1) hours, and 3.0
(IQR 1.8, 7.5) hours after hospital admission in the discovery, and validation cohort,
respectively. Overall, 87 (14.6%) patients in the discovery, and 65 (20.8%) in the validation
cohort had organ dysfunction 24-hours after sampling (eFigure 2). Of these, 76 (87.4%)
patients in the discovery cohort and 57 (87.7%) patients in the validation cohort had organ
dysfunction at baseline sampling. 24 (27.6%) patients in the discovery, and 22 (33.8%) patients
in the validation cohort developed new or additional organ dysfunction within 24 hours of
sampling compared to sampling baseline. 172 (28.9%) and 110 (18.5%) patients in the
discovery cohort had DB and DV infections, compared with 63 (20.2%) and 100 (32.1%) in

the validation cohort (eTable 1 and eTable2).

We assessed differential gene expression in the discovery cohort, first for disease-class, then
for disease-severity. Differential expression analysis based on the infection type identified 886
differentially expressed genes (adjusted p-value <0.05) between patients with DV and DB
infections (eFigure 4A; eTable 3). Comparing patients with versus without organ dysfunction

at 24 hours after sampling, 1028 genes were differentially expressed (eFigure 4B; eTable 3).
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Differentially expressed genes differed based upon whether patients with organ dysfunction

had DB or DV infections (eFigure 4C and 4D; eTable 3).

Using FSPLS, we discovered a novel 10-gene disease-class signature to distinguish type of
infection, which is comprised of USP18, NCF1B, BATF, CLC, S100A11, ZBED1, PTGES3,
HLX, NOD2 and ICAML1 genes (Figure 2A). This disease-class signature achieved an AUC of
93.5% (95%-Cl: 90.5% - 96.6%) in distinguishing DB versus DV in the discovery cohort, an
AUC of 94.1% (95%-ClI: 90.6% - 97.7%) in the RAPIDS validation cohort (Figure 2C), and
an AUC of 90.9% (95%-ClI: 85.0% - 96.9%) in the EUCLIDS validation cohort (Table 2).
Similar performances were achieved for other disease-class phenotype comparisons. Compared
with previously reported disease-class signatures (eMethods 7), this novel signature
demonstrated better performance for most classifications (Table 2, eTable 4). The disease-
class signature also distinguished patients with CBV infection and unknown infection status
(eTable 5). Gene Ontology enrichment analysis of the novel disease-class signature genes

showed enrichment of immune response GO terms (eMethods 8, eFigure 8).

Using FSPLS, we discovered a novel 10-gene disease-severity signature to identify presence
of organ dysfunction 24 hours after sampling which is comprised of AATBC, MAFG, VAV1,
MS4A7, IGHAL, ATP6VOALl, RN7SL3, MPP7, DSC2 and PHACTR2 (Figure 2B). This
signature achieved an AUC of 92.4% (95%-ClI: 89.2% - 95.6%) in distinguishing patients with
and without organ dysfunction at 24 hours in the discovery cohort and an AUC of 82.2% (95%-
Cl: 76.3% - 88.1%) in the RAPIDS validation cohort (Figure 2D; Table 3). Compared with
previously reported gene expression signatures for disease severity (eMethods 7) the novel
signature demonstrated comparable or superior performance (Table 3, eTable 6). Gene

Ontology enrichment analysis of the novel disease-severity signature genes showed enrichment
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of immunoglobulin complex, signal recognition and proton transporting GO terms indicating
biological pathways involved in the development of organ dysfunctions (eMethods 8, eFigure

8).

To enable prediction of sepsis, we used disease-class stratified severity weights which achieved
an AUC of 90.5% (95%-Cl 83.3% - 97.6%) and 94.7% (95%-CI 87.9% - 100.0%) in
identifying organ dysfunction in patients with predicted DB infection, and predicted DV
infection, respectively, in the RAPIDS validation cohort (Figure 2E and 2F; Table 3). We
then assessed the disease-class and disease-severity signatures using the EUCLIDS cohort,
however severity information was only available at the time of sampling. The disease-class
stratified severity signatures achieved an AUC of 70.1% (95%-CI 44.1% - 96.2%), and 69.6%
(95%-CI 53.1% - 86.0%) in identifying organ dysfunction in children with predicted DB and
DV infection, respectively in the EUCLIDS cohort (Table 3).

The novel severity signatures performed comparably with identifying secondary severity
outcomes at baseline and within 24 hours of sampling, including organ dysfunction remote
from the site of infection, type of organ dysfunction, need for organ support, and need for
inotrope support (Table 4). In the RAPIDS validation cohort, the signatures identified
progressive multi-organ dysfunction within 24 hours of sampling with an AUC of 75.8% (95%
Cl 67.3% - 84.3%) (Table 4).

Adding clinical information such as C-reactive protein levels and leukocyte counts to the gene
signatures failed to improve the prediction of disease-class and disease-severity, which was
superior to routine clinical markers (eFigure 9). Both the disease-class and disease-severity
signatures in the discovery and validation cohorts performed similarly across the age ranges

included (eTable 7 and eTable 8).

15



Discussion

In this multi-center prospective study involving 912 children evaluated for suspected sepsis,
we derived and validated novel gene expression signatures to identify children with confirmed
viral versus bacterial infection and organ dysfunction. The sepsis signatures provide actionable
information on the likelihood of bacterial (versus viral) infection, and on the likelihood of life-
threatening organ dysfunction in 24 hours. Our approach demonstrates the potential of host
transcriptomics to distinguish infection types and predict organ dysfunction, as a means to

characterize sepsis in children.

In the past years, several infectious disease studies in adult and paediatric patients have
investigated host gene expression analyses to differentiate patients with bacterial versus viral
infection®32404% - At the same time, ICU-based studies revealed pathways and differentially
regulated genes associated with mortality in critically ill patients, which may identify patients
more likely to suffer harm from specific interventions such as corticosteroids*>3. Until
recently, however, the integration of the two key dimensions which constitute sepsis (i.e.
presence of infection and development of organ dysfunction) by a unifying measure of
dysregulated host response has been lacking. In contrast to most previous gene expression
studies, which were based on microarray, we utilized RNASeq which provides substantially
higher transcript resolution, and we included higher number of patients to increase power. We
utilised the FS-PLS approach to find a minimal gene signature for disease class and severity.
FS-PLS iteratively finds the next-most explanatory feature after removing the projection of
features onto the space spanned by variables previously selected. FS-PLS tends to find smaller
signatures than other commonly used approaches, such as LASSO. Furthermore, we enrolled
children early upon presentation, with sampling performed at a median of <3 hours after

presenting to hospital. Nonetheless, 87.5% of patients who met criteria for organ dysfunction
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at 24 hours post admission already manifested at least single organ dysfunction at the time of

sampling.

Compared with eight previously reported signatures®%27-32 to diagnose the type of infection,
the performance of the novel disease-class signature was similar or higher in terms of AUC in
both validation cohorts. Our disease-class signature included 10 transcripts, a number which
which has become feasible to implement in rapid point-of-care platforms. Compared with
seven previously reported signatures®- to diagnose disease severity, the performance of our
novel signature was higher in terms of AUCs in the RAPIDS validation cohort for organ
dysfunction 24 hours after sampling associated with bacterial and viral infection. The novel
signature was less complex (i.e., 10 genes versus 40 genes) than the best performing previously
published severity signature®®. When assessing other severity outcomes 24 hours after
sampling, such as organ dysfunction remote from the site of infection, multi-organ dysfunction,
or need for inotropes, the novel disease-severity signature performed well with AUCs above
80%. In the EUCLIDS validation cohort, however, information was only available on organ
dysfunction at the time of sampling, and overall AUCs were above 70%. The performance of
the severity signature in the EUCLIDS validation may further relate to later sampling, cohort
differences such as recruitment bias towards severe bacterial infections, restriction to

community-acquired infections and differences in primary clinical focus (eTable 1).

Overall, we observed a wider range in diagnostic performance of severity signatures across the
discovery and validation cohorts compared with disease-class signatures. Notably, contrary to
categorization on microbiologically confirmed bacterial versus viral infection, concepts of

severity such as organ dysfunction inherently lack a true gold standard against which to
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benchmark biomarkers. Accordingly, the clinical criteria used to define the primary outcome
of severity may fall short of the underlying biological complexity, as shown by recent
electronic health-record derived studies on sepsis phenotypes**’. The heterogeneity of
underlying causes, mechanisms, treatments, and trajectories characterizing critical illness

syndromes thus fundamentally challenge the feasibility of a simple severity marker.

Both disease-class and disease-severity gene signatures discovered in this study were shown to
predict multiple phenotypes successfully. The disease-class signature identified the infection
type in patients evaluated for sepsis. The disease-severity signature identified the presence of
organ dysfunction and several other severity phenotypes including whether the organ
dysfunction was likely to worsen within 24 hours of sampling. In combination, given the high
negative predictive value (eTable 6), the information provided by this novel sepsis signatures
has the potential to guide clinical decision-making (rule-out) on use of antimicrobials and
escalation of care.

Mortality and other severity outcomes in paediatric sepsis relate directly to delays between
presentation and delivery of a sepsis treatment bundle*®. Sepsis quality improvement programs
usually focus on presumed infection in the presence of clinical indicators of altered physiology.
However, it is well recognized that clinical features of sepsis are often subtle and non-specific,
in particular in children where viral etiologies predominate. Therefore, initiatives to promote
early treatment with intravenous antibiotics have been met with criticism as they risk
inappropriate use of antibiotics, potentially promoting antimicrobial resistance. In this context,
a direct marker of a dysregulated host response to bacterial versus viral infection remains

highly desirable and can serve to identify treatable traits early upon presentation.
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Several limitations of this study need to be considered. First, although the findings were
validated in an a priori defined separate sequencing batch of patients, external validation using
the EUCLIDS cohort was only partially feasible, given that 24-hour outcome data had not been
collected in the latter. Second, patients were recruited in a high-income setting with a low
mortality rate, with a predominance of Caucasian patients, and almost complete absence of
fungal and parasitic infections, which may not be representative of patients in less resourced
settings. Third, the study design excluded immunosuppressed patients and most included
patients had community-acquired infections, implying the need to validate the signature in
more comorbid cohorts with hospital-acquired infections. Finally, we did not perform RT-PCR
validation of the novel signatures, and future replication using a point-of-care device will be

required.

In conclusion, in this large cohort of children evaluated for sepsis encompassing a broad range
of disease severity, pathogens, and comorbidities, novel host transcriptomic signatures were
able to discriminate patients with bacterial versus viral infection and those who were likely to
manifest organ dysfunction within the next 24 hours at high accuracy. Whether such actionable
information can direct therapy to patients who are most likely to benefit from timely delivery
of a sepsis bundle while reducing unnecessary use of antibiotics, needs to be tested by

interventional trials.
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Figure Legends:

Figure 1. Schematic workflow of the multi-phenotype signature discovery using
transcriptomics data. The discovery cohort was used for the novel signature discovery. The
disease-class signature and disease-severity signature were discovered using the FSPLS
method. These signatures were validated on two independent validation cohorts. First, the
infection type of the sample was predicted using the disease-class signature, then the
probability of developing organ dysfunction was predicted using the disease-severity signature.
DB — Definite Bacterial; DV — Definite Viral; PV- Probable Viral; PB — Probable Bacterial;
NI — Non-infectious; OD - Organ Dysfunction; ROC curve — Receiver Operating

Characteristics curve; AUC — Area Under the Curve.

Figure 2: Performance of disease-class signature and disease-severity signature in
distinguishing infection type and identifying organ dysfunction. Heat map showing the
expression of (A) disease-class signature genes across patients in the discovery cohort with
definite bacterial (n=172) and definite viral (n=110) infections; (B) disease-severity signature
genes across patients in the discovery cohort with organ dysfunction (n=87) versus without
organ dysfunction (n=508) at 24-hours after sampling; Receiver Operating Characteristics
(ROC) curve for the performance of the signature in the discovery (red lines) and validation
(blue lines) data to distinguish (C) definite bacterial versus definite viral infections; (D) with
versus without organ dysfunction in all the patients; (E) with versus without organ dysfunction
in patients with predicted definite bacterial infections; and (F) with versus without organ
dysfunction in patients with predicted definite viral infections. Continuous red and blue lines

indicate AUC and the dashed lines shows the respective 95% confidence interval.
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Table 1. Clinical, microbiological, and severity characteristics of the discovery and validation cohorts of children evaluated for sepsis.

Characteristic Category Discovery RAPIDS EUCLIDS
N=595 Validation Validation
N=312 N=362
Gender n (%) Female 278 (46.7) 124 (39.7) 189 (52.2)
Age n (%) <1 year 156 (26.2) 43 (13.8) 99 (27.4)
1-5 years 217 (36.5) 159 (51.0) 152 (42.0)
5-10 years 119 (20.0) 56 (18.0) 60 (16.6)
10-18 years 103 (17.3) 54 (17.3) 51 (14.1)
Age (years) median (IQR) 2.8 (1.0, 7.7) 3.4(1.4,7.3) 2.6 (0.8,5.7)
Chronic condition n (%) Any 132 (22.2) 92 (29.5) -
Asthma 27 (4.5) 12 (3.9) -
Congenital Malformation 21 (3.5) 16 (5.1) -
Congenital Heart Defect 20 (3.4) 20 (6.4) -
Cerebral Palsy, Severe 18 (3.0) 14 (4.5) -
Encephalopathy
Syndrome or Genetic Disorder 0 (0) 22 (7.1) -
Other Chronic Condition 80 (13.5) 68 (21.8) -
Symptoms at presentation n (%) Fever 464 (78.0) 242 (79.6) -
Rash 71 (11.9) 49 (16.1) -
Altered level of consciousness 56 (9.4) 38 (12.5) -
Irritability 92 (15.5) 35 (11.5) -
Seizures 34 (5.7) 25 (8.2) -
Pain 155 (26.1) 96 (31.6) -
Nausea/VVomiting 182 (30.6) 97 (31.9) -
Diarrhoea 72 (12.1) 28 (9.2) -
Respiratory distress/apnoea 141 (23.7) 63 (20.7) -
Cough 207 (34.8) 97 (31.9) -
Pale/cyanotic episode 49 (8.2) 27 (8.9) -




Characteristic Category Discovery RAPIDS EUCLIDS
N=595 Validation Validation
N=312 N=362

Cold extremities 13 (2.2) 8 (2.6) -

Skin / wound infection 36 (6.1) 12 (4.0 -

Other 156 (26.2) 71 (23.4) -

Primary clinical focus n (%) Sepsis without a source 165 (27.7) 94 (30.1) 58 (16.0)

Lower respiratory infection 183 (30.8) 86 (27.6) 105 (29.0)

Upper respiratory infection 46 (7.7) 32 (10.3) 4(11)

Meningitis /Encephalitis 18 (3.0) 929 66 (18.2)

Urinary tract infection 47 (7.9) 20 (6.4) 13 (3.6)

Arthritis/ Osteomyelitis 15 (2.5) 314 17 (4.7)

Skin infection 28 (4.7) 7(2.2) 25 (6.9)

Wound infection 15 (2.5) 5 (1.6) 0

Toxic shock syndrome 6 (1.0) 2 (0.6) 11 (3.0)

ENT infection/abscess 29 (4.9) 11 (3.5) 4(1.1)

Gastroenteritis 18 (3.0) 18 (5.8) 514

Other 25 (4.2) 25 (8.0) 54 (14.9)

Time from hospital admission to sampling (hours) 2.3(1.4,4.1) 3.0(1.8,7.5) -

median (IQR)

Admission to PICU n (%) Yes 173 (29.1) 92 (29.5) 212 (58.6)
Patients with length of stay of under 24 hours n (%) 137 (23.0) 82 (26.3)

Laboratory characteristics at baseline median (IQR) Base excess [mmol/l] -2.1(-4.7,-0.2) | -1.8 (-4.3,0.2) -4.4 (-7.1,-1.3)

(N=379) (N=178) (N=192)

paO2 [mmHg] 99 (70, 130) 81 (69, 106) 97 (73, 139)

(N=89) (N=55) (N=84)

pCO,2 [mmHg] 38 (34, 45) 40 (36, 46) 45 (35, 56)

(N=89) (N=109) (N=183)

Lactate [mmol/I] 15(1.1,2.3) 1.4 (1.0,2.2) 1.4 (0.9, 2.3)

(N=394) (N=207) (N=185)




Characteristic Category Discovery RAPIDS EUCLIDS
N=595 Validation Validation
N=312 N=362
Creatinine [umol/l] 30 (30, 44) 31 (30, 42) 36 (27, 49)
(N=574) (N=283) (N=303)
Bilirubin [umol/I] 7(5,12) 7(5,12) 6 (4, 100)
(N=569) (N=287) (N=206)
International Normalized Ratio | 1.3 (1.1, 1.6) 1.3(1.2,1.7) 1.4(1.2,1.9)
(N=140) (N=69) (N=90)
Fibrinogen [g/L] 3.4(2.6,5.2) 3.3(2.4,4.1) -
(N=137) (N=69)
Platelets [*10%/uL] 303 (219,378) | 270(198,363) | 255 (163, 347)
(N=564) (N=291) (N=338)
White Cell Count [*10%/uL] 11.7 (7.9,16.5) | 10.7 (7.1, 15.9) -
(N=583) (N=295)
C-reactive protein [mg/L] 25 (7, 95) 34 (10, 89) -
(N=531) (N=267)
Infection Type n (%) Definite Bacterial 172 (28.9) 63 (20.2) 190 (52.5)
Probable Bacterial 64 (10.8) 39 (12.5) 60 (16.6)
Definite Viral 110 (18.5) 100 (32.1) 39 (10.8)
Probable Viral 87 (14.6) 32 (10.3) 12 (3.3)
Combined Bacterial /Viral 64 (10.8) 30 (9.6) 1(0.3)
Infection
Non-Infectious Illness 45 (7.6) 36 (11.9) -
Unknown 53 (8.9) 9(2.9 60 (16.6)
Deceased n (%) Death 6 (1.0) 4(1.3) 9(25)
At least one organ dysfunction n (%) Baseline 134 (22.5) 76 (24.4) 200 (55.3)
24 hours 87 (14.6) 65 (20.8)
Organ dysfunction remote from the primary site of | Baseline 132 (22.11) 74 (23.7) 179 (49.5)
infection n (%)
24 hours 86 (14.4) 61 (19.6)




Characteristic Category Discovery RAPIDS EUCLIDS
N=595 Validation Validation
N=312 N=362
Any organ support n (%) Baseline 74 (12.4) 51 (16.4) 164 (45.3)
24 hours 69 (11.6) 41 (13.1)
Any Inotropes n (%) Baseline 41 (6.9) 28 (9.0) 111 (30.7)
24 hours 46 (7.7) 26 (8.3)
Multi-organ dysfunction n (%) Baseline 81 (13.6) 50 (16.0) 136 (37.6)
24 hours 68 (11.4) 40 (12.8)

Table 2: Performance of the novel disease-class gene expression signature in distinguishing infection types, compared to previously
published host transcriptomic signatures. Areas under the Curve (AUC) with corresponding 95%-confidence intervals (CI) are shown. For
each tested phenotype, the best performing signature in terms of AUC is highlighted in red.

Number Discovery (n=595) RAPIDS Validation (n=312) EUCLIDS Validation (n=362)
. of genes 95%  95%  P- 95%  95%  P- 0 95%
Phenotype  Signature in |AUC ClI Cl value| AUC CI  CI value | AUC c9|5|?w Va'lte*
signature low high * low high * high
Novel disease- 10 0935 0.905 0966 - | 0941 0906 0977 - 0.909 0.850 0.969 -
class Signature
Herberg et al°® 2 0861 0815 0.908 0183 | 0.900 0.856 0.945 0.475 | 0.923 0.887 0.959  0.848
gfl‘f,Hugh et 4 0788 0733 0.843 0019 | 0.750 0.673 0.827 0024 | 0.738 0646 0.831 0.120
B[?,J{‘*Jt'g‘;ltgl Tang et al?’ 1 0.894 0.857 0931 0391 | 0.883 0.830 0936 0.362 | 0.895 0.843 0.948 0.858
ereus  Wong et al’® 5 0828 0779 0.876 0060 | 0.773 0.699 0.848 0.041 | 0.687 0591 0.784  0.503
Definite j,zwgee“ey et 7 0924 0894 0953 0779 | 0911 0865 0956 0594 | 0.911 0.862 0.960  0.980
Viral
:Ias[,“pson et 0894 0853 0935 0414 | 0.894 0845 0944 0438 | 0.921 0875 0966 0.880
Li et al®! 4 0691 0.627 0754 0001 | 0.668 0576 0.761 0.006 | 0.800 0731 0.870  0.235
I(_zloeztla)lsz 3 0881 0.837 0925 0307 | 0.907 0.860 00954 0555 | 0.906 0.855 0956 0.964




Novel disease-

: 10 0912 0876 0948 - | 0863 0771 0954 - | 0935 0899 0972 -
class Signature
Herberg et al® 2 0794 0738 0.849 0072 | 0.872 0785 0.959 0940 | 0.887 0811 0963 0.565
Q’I'I%Hugh et 4 0788 0730 0846 0069 | 0.712 0596 0829 0311 | 0.696 0526 0.866 0.168
55{2!}2. Tang et al”’ 1 0722 0656 0788 0011 | 0.788 0.682 0.893 0592 | 0726 0588 0.864 0.142
ercus  Wong etal® 5 0770 0711 0.830 0.040 | 0.829 0739 0919 0793 | 0838 0.750 0.926  0.309
Probable ;zwgeeneyet 7 0.862 0.817 0908 0390 | 0.850 0.764 0935 0918 | 0.770 0642 0899 0.216
Viral
Z%Q"F’SO” et 4 0760 0.696 0.824 0038 | 0.852 0761 0943 0935 | 0.831 0697 0964  0.450
Li et al® 0708 0.643 0773 0006 | 0.779 0.677 0.88L 0540 | 0754 0597 0911  0.262
(Lz'oeztl";'sz 3 0.810 0755 0.866 0.122 | 0.851 0.757 0.944 0927 | 0844 0737 0951 0421
Novel disease- 10 0909 0.864 0953 - | 085 0784 0929 - 0793 0.695 0.891 -
class Signature
Herberg et al® 2 0.805 0736 0.873 0201 | 0.827 0756 0.898 0.772 | 0.762 0.668 0.855 0.816
21'1%““9" et 4 0741 0666 0817 0057 | 0.765 0.666 0.865 0.460 | 0.668 0554 0782  0.404
D\e/fi'rrglte Tang et al”’ 1 0.833 0768 0.897 0.333 | 0.797 0707 0.887 0607 | 0.877 0810 0944  0.480
versus  Wongetal® 5 0780 0709 0.850 0.122 | 0.686 0592 0781 0.154 | 0544 0422 0.665 0.109
Probable aSIZ"‘f,ee”ey“ 7 0.860 0.810 0927 0588 | 0.839 0763 0915 0871 | 0.889 0.824 0954 0.414
Bacterial
as;quson et 4 0838 0777 0900 0352 | 0.83 0762 0910 0.845 | 0.807 0.720 0.894  0.917
Li et al® 0.603 0517 0690 0002 | 0.564 0452 0.677 0029 | 0578 0465 0.691 0.150
I(_zloeztla)lsz 3 0.828 0764 0.892 0303 | 0.841 0767 0916 0885 | 0.774 0680 0.868 0.887
. Novel disease-
Def.n._tel class Signature 10 0917 0879 0954 - | 0.654 0540 0768 -
ng:g;'sa Herberg et al® 2 0.775 0.704 0.847 0081 | 0571 0.454 0.689 0.614 NA
Non- gflﬁHughet 4 0830 0766 0.893 0239 | 0.663 0554 0771 0.957
Infectious g etal”” 1 0598 0504 0.691 0002 | 0462 0346 0578 0.239




Wong et al?® 5 0702 0617 0787 0021 | 0.712 0607 0817 0.709
jlzwgee“ey et 7 0.841 0773 0909 0332 | 0.678 0574 0783 0.874
gf;g“pson et 4 0701 0.612 0790 0026 | 0551 0.434 0668 0.529
Li et al® 4 0786 0716 0.857 0104 | 0.713 0609 0818 0.701
(LZIOeZtSLZ 3 0615 0526 0704 0002 | 0.479 0362 059 0.283
Novel disease- -5 | 5915 0904 0985 - | 0796 0709 0882 -
class Signature
Herberg et al° 2 0909 0862 0957 0570 | 0.771 0677 0865 0.849
Qfl‘éH”gh et 4 0.850 0788 00913 0.203 | 0.690 0578 0.801 0.454
D\e/fi'rrglte Tang et al?’ 1 0914 0.869 0.960 0.615 | 0.749 0.647 0.850 0.726
28
Jersus \S/Vong et alt 5 0.821 0745 0.897 0151 | 0.694 0594 0.793 0.440 NA
Non- Izwgee”ey ¢ 7 0933 0.896 0970 0834 | 0.766 0669 0.862 0.819
Infectious aS ,
af;L“pSO” ¢ 4 0856 0785 0927 0277 | 0.752 0656 0.849 0.738
Li et al® 4 0.862 0797 0927 0280 | 0.726 0.623 0.829 0.604
(Lz'oeztlf;'sz 3 0.857 0795 00919 0233 | 0.754 0.659 0.848 0.744

* P-value for comparison between the AUCs for the Novel Signature and other reported signatures.

Table 3: Performance of novel severity signature in identifying organ dysfunction for different infection types, compared to previously
published host transcriptomic signatures. Areas under the Curve (AUC) with corresponding 95%-confidence intervals (CI) are shown. For
each tested phenotype, the best performing signature in terms of AUC is highlighted in red.

Phenotype

Sighature

Number Discovery (n=595) RAPIDS Validation (n=312) EUCLIDS Validation (n=362)

of genes 0 95% P- o 95% P- o 95% P-
in AUC 09|5|g°W cl value* | ayc Cg|5lg0w cl value* | ayc (35'?\,\/ c) Vvalue*

signature high high high




Novel disease-

severity 10 0924 0.892 0.956 - 0822 0763 0.881 -
Signature
Irwin et al® 3 0755 0.695 0815 0013 | 0772 0708 0.837 0571
;‘;‘ﬁaszemk' et 27 0870 0.831 0910 0295 | 0802 0742 0862 0.810
34
OD at 2ahrs | PENaeta 31 0865 0814 0917 0.333 | 0.750 0675 0.825 0.449 NA
Baghela et al*® 40 0892 0851 0933 0543 | 0.787 0724 0.849 0.681
Baghela etal - 8 0851 0798 00904 0242 | 0.724 0650 0.798 0.301
Severity
Ez%ﬂ‘e'a etal - 12 0.849 0.800 0.898 0204 | 0.846 0790 0902 0.767
'I\B/Iaghe'? etal - 10 0844 0798 0890 0.154 | 0.822 0765 0.879 0.997
ortality
Novel disease-
severity 10 0940 0.876  1.000 - 0905 0.833 0.976 -
Signature
Irwin et al® 3 0792 0711 0874 0150 | 0735 0593 0877 0.287
Lukaszewski et
. 27 887  0.82 . 561 | 0.761 0.624 O. 354
OD at 24hrsin | al® 0887 0820 00953 0561 | 0.761 0.6 0.899 0.35
Predicted | Pena et al®* 31 0942 0.897 0988 0972 | 0709 0559 0.860 0.241 NA
Bacterial | Baghela et al®® 40 0989 0977 1000 0439 | 0788 0.649 00928 0.457
Infection | gaghela et al -
-ae 8 0914 0844 0985 0.788 | 0713 0574 0852 0.218
Severity
2%%?9""‘ etal - 12 0909 0838 0980 0747 | 0859 0761 0956 0.704
Baghela et al - 10 0858 0775 00941 0432 | 0611 0409 0813 0.170
Mortality
2ahrs i Novel disease-
OD at24hrs in | oo\ erjty 10 0.944 0.885 1.000 - 0.947 0.879  1.000 -
PredictedViral Signature NA
Infection |/ yin et al®s 3 0847 0751 00943 0385 | 0895 0776 1000 0.683




Lukaszewski et

e 27 0.883 0795 0971 0559 | 0.865 0706 1.000 0.604
Pena et al** 31 0.864 0741 00988 0559 | 0.740 0541 0938 0.318
Baghela et al® 40 0917 0813 1000 0.803 | 0.877 0789 0965 0.512
Baghela et al - 8 0.843 0704 0982 0500 | 0758 0563 0952  0.353
Severity
g";‘g?e'a etal - 12 0920 0857 0983 0773 | 0837 0657 1000 0.546
Baghela et al - 10 | 0852 0760 0945 0400 | 0.824 0643 1000 0.514
Mortality
Novel disease-
severity 10 0852 0809 0895 - | 0775 0712 0838 - | 0775 0727 0823 -
Signature
Irwin et al® 3 0.725 0672 0777 0060 | 0.724 0656 0791 0580 | 0.786 0739 0.832 0.874
;‘;ﬁ‘aszeWSk' et 27 0806 0762 0850 0457 | 0771 0706 0836 0964 | 0.791 0745 0837 0.813
Obatonrs | Penaeta® 31 0.808 0763 0.852 0473 | 0770 0708 0831 0953 | 0.794 0748 0840 0.771
Baghela et al*® 40 0.825 0782 0868 0657 | 0.751 0686 0816 0793 | 0.821 0777 0864 0.481
g:ggﬁ:;fet al- 8 0785 0735 0834 0304 | 0725 0653 0797 0600 | 0.811 0766 0.855 0.584
g%%?e'a etal - 12 0772 0720 0823 0229 | 0715 0645 0786 0531 | 0.792 0746 0838 0.796
En?rrt]ae:ﬁyest@al ) 10 0744 0692 0796 0.109 | 0763 0.699 0828 0898 | 0.787 0740 0.833  0.860
Novel disease-
severity 10 0924 0867 0981 - | 0.88 0802 0970 - | 0701 0441 0962 -
OD at Ohrs in | Signature
Predicted | Irwin et al® 3 0.804 0721 0888 0236 | 0.748 0594 00901 0428 | 0771 0572 0970 0.832
m‘;tft':)‘i: aLI‘SJfaSZEWSk' et 27 0898 0837 0959 0754 | 0824 0701 00946 0674 | 0.667 0420 0913 0.923
Pena et al* 31 0903 0841 0964 0799 | 0.728 0572 0884 0372 | 0.708 0453 0964 0.985
Baghela et al** 40 0972 0944 1000 0456 | 0.728 0568 0888 0382 | 0.743 0522 0964 0.903




Baghela et al -

Soverity® 8 0.852 0766 00938 0484 | 0.782 0657 00907 0490 | 0.611 0341 0881 0.810
EE%?e'a etal- 12 0863 0784 0943 0535 | 0740 0603 0878 0365 | 0.660 0379 0940 0.913
a?r?:l'ﬁﬁea' ) 10 0857 0789 00926 0454 | 0707 0533 0881 0355 | 0.882 0722 1.000 0541
Novel disease-
severity 10 0.828 0753 0902 - | 0757 0588 0925 - | 0696 0531 0860 -
Signature
Irwin et al®® 3 0.729 0637 0821 0403 | 0.844 0676 1.000 0709 | 0.679 0509 0.849 0.944
aLI‘jﬁaszeWSk' et 27 0.803 0733 0874 0812 | 0779 0645 0914 0916 | 0.776 0630 0923 0.714
OB raetd?ggj'” Pena et al* 31 0.809 0721 0897 0872 | 0.804 0703 00905 0810 | 0781 0.644 0917 0.691
Viral Infection | Baghela et al® 40 0.869 0.802 00935 0683 | 0596 0409 0782 0522 | 0925 0.854 0997 0.201
533:5{33? al- 8 0784 0704 0864 0690 | 0723 0550 0.896 0.888 | 0.861 0752 0970 0.402
Saghelactal - 12 | 0732 0640 0824 0417 | 0.790 0639 0941 0884 | 0776 0636 0917 0709
'I\Bﬂafr?ael'ﬁ;%a' ) 10 0.741 0653 0828 0448 | 0.622 0404 0840 0.626 | 0.820 0.697 0943  0.546

* P-value for comparison between the AUCs for the Novel Signature and other reported signatures.




Table 4: Performance of novel severity signature in identifying various severity outcomes. Areas under the Curve (AUC) with corresponding
95%-confidence intervals (CI) are shown for each outcome assessed 24 hours after study blood sampling (“24hrs”), and at time of study blood
sampling (“Ohrs”). Organ dysfunction was assessed using the 2005 International Pediatric Sepsis Consensus Conference criteria.

Discovery (n=595) RAPIDS Validation (n=312) EUCLIDS Validation (n=362)

Phenotype 95% ClI  95% ClI 95% ClI  95% CI 95% ClI  95% ClI

P AUC T ow high | V¢  low high | Y low high
OD remote to infection site 24hrs 0.927 0.894 0.959 0.820 0.759 0.882 NA
OD remote to infection site Ohrs 0.854 0.811 0.897 0.778 0.714 0.842 0.770 0.730 0.820
Need for organ support 24hrs 0.957 0.940 0.974 0.825 0.751 0.899 NA
Need for organ support Ohrs 0.925 0.895 0.954 0.781 0.709 0.853 0.780 0.740 0.830
Administration of Inotropes 24hrs 0.963 0.946 0.981 0.846 0.759 0.932 NA
Administration of Inotropes Ohrs 0.940 0.890 0.980 0.820 0.730 0.910 0.830 0.780 0.870
CVS, Resp, or CNS OD 24hrs® 0.962 0.943 0.980 0.828 0.732 0.924 NA
CVS, Resp, or CNS OD 0Ohrs” 0.919 0.874 0.963 0.852 0.757 0.947 0.730 0.660 0.814
MOD 24hrs 0.959 0.942 0.976 0.858 0.792 0.925 NA
MOD 0hrs 0.902 0.861 0.943 0.801 0.729 0.873 0.800 0.750 0.850
OD Better at 24hrs* 0.715 0.648 0.783 0.623 0.515 0.731 NA
OD Worse at 24hrs* 0.872 0.810 0.934 0.721 0.611 0.831 NA
MOD Better at 24hrs* 0.798 0.708 0.888 0.645 0.501 0.788 NA
MOD Worse at 24hrs* 0.896 0.851 0.941 0.758 0.673 0.843 NA
Cardiac OD 24hrs 0.958 0.937 0.978 0.811 0.736 0.886 NA
Cardiac OD Ohrs 0.837 0.783 0.892 0.789 0.705 0.872 0.810 0.770 0.860
Respiratory OD 24hrs 0.953 0.934 0.972 0.840 0.771 0.909 NA
Respiratory OD 0 hrs 0.914 0.882 0.947 0.782 0.705 0.860 0.760 0.700 0.810
Neurologic OD 24hrs 0.908 0.861 0.955 0.820 0.750 0.890 NA
Neurologic OD 0 hrs 0.885 0.840 0.930 0.806 0.737 0.875 0.680 0.610 0.750




Renal OD 24hrs

Renal OD Ohrs
Hematologic OD 24hrs
Hematologic OD 0Ohrs
Hepatic OD 24hrs
Hepatic OD Ohrs

0.890
0.864
0.945
0.869
0.950
0.749

0.777
0.773
0.906
0.800
0.887
0.410

1.000
0.955
0.985
0.938
1.000
1.000

0.692
0.692
0.735
0.793
0.678
0.600

0.366
0.462
0.594
0.650
0.102
0.279

1.000
0.921
0.876
0.935
1.000
0.921

0.760

0.700

0.720

NA
0.660
NA
0.580
NA
0.410

0.860

0.820

1.000

A Presence of either cardiac, respiratory or neurological organ dysfunction
# Compared to OD at time of sampling, OD increasing (worse) or decreasing (better) at 24-hours post sampling

* Compared to MOD at time of sampling, MOD increasing to >=2 (worse) or decreasing to 0/1 (better) at 24-hours post sampling
OD - organ dysfunction; CVS - cardiovascular; Resp - respiratory; CNS - central nervous system; MOD - multi organ dysfunction; AUC — Area
Under the Curve; CI — Confidence Interval

NA — data not available



