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Research in context 

Evidence before this study 

Sepsis remains one of the leading causes of childhood mortality and morbidity globally. While 

sepsis is defined as dysregulated host response to infection leading to organ dysfunction, 

criteria for sepsis remain based on physiological measures of organ dysfunction rather than 

biological markers of host response. The risk of overusing antimicrobials lends further urgency 

to develop and validate novel pathogen group-specific sepsis markers. There is thus an unmet 

need for point of care tests identifying host response specific to bacterial versus viral infection 

leading to organ dysfunction in children. Whole blood human transcriptomic analyses have 

emerged as a promising approach to characterize the host response, but most previous studies 

on septic patients included adults, were limited to differentiating bacterial versus viral 

infection, or focussed on mortality as an outcome in ICU patients. Furthermore, the majority 

of previous studies used multi-array rather than RNAseq, and the size of included cohorts was 

relatively small. We searched publications in English language in PubMed since January 2011 

with the terms “child OR paediatric”, “sepsis OR septic shock”, “infection”, “bacterial”, “viral” 

AND “transcriptomics OR multiarray OR RNAseq” to identify relevant previous studies. 

 



 

 
 

4 

Added value of this study 

In this large cohort investigating host gene expression signatures to identify sepsis in children, 

patients were recruited through a multicenter prospective Australian study, and split into a 

discovery (n=595) and a validation (n=312) cohort. An external validation cohort consisted of 

children with infection (n=362) recruited through a European consortium. We derived and 

validated two novel gene expression signatures – a 10-gene signature to discriminate bacterial 

from viral infection, and a 10-gene signature to identify the development of organ dysfunction.  

This novel sepsis signatures achieved an AUC of 90.5% (95%-CI 83.3% - 97.6%) and 94.7% 

(95%-CI 87.8% - 100.0%) in the validation dataset at identifying organ dysfunction within 24 

hours specific for bacterial, and viral infection, respectively. 

 

Implications of all the available evidence  

A novel host gene expression signature can identify type of infection and organ dysfunction in 

children evaluated for sepsis. Findings were robust across a number of severity outcomes, such 

as need for organ support, need for vasopressors, multi-organ failure, and organ failure remote 

from the organ of infection. In addition, we compared the performance of this novel 

transcriptomic signature to previously published infection-specific, or severity-specific 

signatures, providing for the first time independent validation of previously reported 

signatures. Whether the implementation of such signatures into point-of-care tests provides 

actionable information on treatable traits at the bedside, potentially leading to improved use of 

antibiotics, needs to be tested in future trials.  
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Abstract 

 

Background: Sepsis is defined as dysregulated host response to infection leading to life-

threatening organ dysfunction. Biomarkers characterising dysregulated host response in sepsis 

are lacking. We aimed to develop host gene expression signatures predicting organ dysfunction 

in children with bacterial versus viral infection.  

Methods: Prospective observational study in four Emergency Departments and Intensive Care 

Units in Australia. 907 children aged 1 month to 17 years evaluated for sepsis were recruited 

between September 2017 and October 2021. Patients were split into discovery (n=595) and 

validation (n=312) cohorts. An external validation cohort consisted of 362 children with 

infection. Whole blood RNA sequencing was performed using Illumina NovaSeq. Feature 

selection approaches were applied to discover novel gene signatures for infection type and 

organ dysfunction. The primary endpoint was the presence of organ dysfunction at 24 hours of 

sampling in the presence of confirmed bacterial, versus viral infection.  

Findings: We identified a novel 10-gene disease-class signature, which achieved an Area 

under the Curve (AUC) of 94.1% (95%-confidence interval [CI], 90.6% - 97.7%) to 

discriminate bacterial from viral infection in the validation cohort. We also identified a novel 

10-gene disease-severity signature to predict the development of organ dysfunction within 24 

hours with an AUC of 82.2% (95%-CI 76.3% - 88.1%) in the validation cohort. In combination, 

the disease-class and disease-severity signatures achieved an AUC of 90.5% (95%-CI 83.3% - 

97.6%) and 94.7% (95%-CI 87.8% - 100.0%) at predicting organ dysfunction within 24 hours 

of sampling in predicted bacterial, and viral infection, respectively. In the external dataset, the 

signatures achieved an AUC of 90.9% (95%-CI 85.0% - 96.9%) for bacterial/viral 

classification and an AUC of 70.1% (95%-CI 44.1% - 96.2%) for identifying organ dysfunction 

at time of sampling in patients with predicted bacterial infection. 
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Interpretation: In children evaluated for sepsis, novel host transcriptomic signatures specific 

for bacterial and viral infection can identify dysregulated host response leading to organ 

dysfunction. 

Funding: Medical Research Future Fund and several additional grants. 
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Introduction 

Sepsis is defined as a dysregulated host response to infection leading to life-threatening organ 

dysfunction1. Sepsis remains a leading cause of mortality in paediatric age groups with over 3 

million annual deaths attributable to sepsis2. In the United States alone, paediatric sepsis was 

estimated to account for $7.31 billion direct costs in 20163, and one in five survivors will 

develop new or progressive medical conditions after sepsis4. However, most paediatric 

infections are viral resulting in particular challenges in recognizing sepsis in this age group. 

Therefore, campaigns providing incentives for early administration of antimicrobials have been 

criticized as they may potentially encourage unnecessary use of antibiotics5.  Despite progress 

in microbiological diagnostics, their turnaround time and accuracy remains inadequate to guide 

initial empiric treatment and lacks the ability to predict disease severity. Rapid diagnostics have 

enormous potential to enhance timeliness and accuracy of sepsis treatment, as well as of 

reducing inadvertent antibiotic usage. 

 

To date, the mechanisms underpinning dysregulated host response(s) characterizing the 

progression from uncomplicated infection towards infection with organ dysfunction remain 

poorly elucidated6-8. There is an unmet need for diagnostic markers characterizing the 

progression of simple infection to one with organ dysfunction, specific for the type of infection. 

The ideal sepsis biomarker would yield information on the presence and type of the underlying 

infection (to guide decisions on antibiotics), as well as the likelihood of developing organ 

dysfunction (to guide decisions on treatment escalation and resuscitation, such as fluids, 

inotropes, and intensive care unit [ICU] admission), and be translatable into a point-of-care 

platform. Recently, host transcriptomic biomarkers have shown great promise in differentiating 

between viral and bacterial infections9,10.  
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We hypothesized that RNA sequencing of whole blood would identify distinct host response 

patterns characteristic for viral versus bacterial infection, and that these can be combined with 

specific patterns characterizing children developing infection-associated organ dysfunction 

versus those without organ dysfunction. Accordingly, we designed the Rapid Paediatric 

Infection Diagnosis in Sepsis (RAPIDS) multi-center prospective cohort, to develop and 

validate markers of the early host response in children evaluated for sepsis.  

 

Methods 

Study design and oversight 

This prospective multi-center cohort was performed at four hospitals in Queensland, Australia 

(eMethods 1). The study reporting follows the Standards of Reporting of Diagnostic Accuracy 

Studies 2015 Update11. The institutional Human Research Ethics Committee approved the 

study (HREC/17/QRCH/85, June 9th 2017; eMethods 2). Written informed consent or delayed 

consent was obtained for all participants from their parents/carers (eMethods 3).  

 

Patients 

Children aged over 1 month to 17 years evaluated for sepsis at the participating Emergency 

Departments (ED) and ICUs were eligible if they underwent a diagnostic work-up for suspected 

sepsis, including blood cultures upon admission (eMethods 3).  

 

Study procedures 

We obtained 2.5mL blood in PAXgene RNA tubes (PreAnalytix GMBH, Switzerland) 

simultaneously with routine clinical testing including blood cultures, blood counts, C-reactive 

protein, and microbiological investigations such as nasopharyngeal swabs as indicated 

clinically. A REDCap study database12 prospectively captured information on demographics, 
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symptoms, comorbidities, microbiology results, antimicrobial treatment, and severity. Disease 

severity was assessed at baseline (time of blood sampling) and at 24 hours using clinical, 

laboratory, and organ support criteria for organ dysfunction defined by the 2005 International 

Pediatric Sepsis Definition Consensus Conference13,14. Accordingly, presence of organ 

dysfunction (cardiovascular, respiratory, neurologic, renal, hepatic, haematologic) was 

adjudicated. The infection status was categorized into definite bacterial (DB), definite viral 

(DV), probable bacterial (PB), probable viral (PV), combined bacterial and viral (CBV), non-

infectious (NI) and unknown based upon a previously validated approach9 (eFigure 1; 

eMethods 4). Two assessors experienced in paediatric critical care and infectious diseases 

independently verified the infection status using clinical records, microbiologic results, 

laboratory data and discharge reports. Adjudication of the final clinical phenotype required 

agreement of both assessors; in case of disagreement, a third senior assessor reviewed cases 

with the two assessors to ensure robust adjudication of clinical phenotypes (eMethods 5). 

 

Endpoints 

The primary outcomes were the presence of organ dysfunction at 24 hours of sampling in 

children with DB infection, and in children with DV infection. This outcome was constructed 

by combining the infection phenotype category (restricted to DB, DV, PB, PV, NI), with the 

adjudication by organ dysfunction at 24 hours (i.e. presence of any organ dysfunction versus 

no organ dysfunction at 24 hours). Given the lack of a gold standard for sepsis severity15, 

several secondary severity outcomes were defined: (i) organ dysfunction remote from the 

primary focus of infection (as a proxy of organ dysfunction caused by a systemic process 

related to infection16); (ii) need for organ support (invasive or non-invasive respiratory support, 

inotropes/vasopressors, renal replacement, extracorporeal membrane oxygenation); (iii) need 

for inotrope/vasopressors; (iv) multi-organ dysfunction; (v) presence of cardiovascular, 
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respiratory, or neurologic dysfunction15,17; and (vi) type of organ dysfunction. These outcomes 

were assessed at 24 hours from sampling, as well as at time of sampling; with an additional 

secondary severity outcome created by the dynamics within the first 24 hours (worsening or 

improving) (eFigure 2). 

 

RNA sequencing for discovery and validation cohort 

Samples were stored at -80οC until extraction. RNA was purified from samples using PAXgene 

Blood miRNA kits (PreAnalytix). Library preparation and sequencing were conducted at 

Institute for Molecular Biosciences Sequencing Facility (University of Queensland, Australia). 

The TruSeq RNA Ribo Zero Kit (Illumina) was used for ribosomal RNA depletion and 

sequencing library preparation. Libraries were sequenced on a NovaSeq Sequencer (Illumina) 

to generate at least 20 million sequencing reads per sample. The RNA sequencing configuration 

was 75bp single-end (50 samples), 100bp single-end (545 samples) and 100bp paired-end (316 

samples), respectively. FastQC18 and MultiQC19 were used to assess the quality of sequencing 

reads. The first two batches of samples were used for discovery (n=595) and the third batch 

was used for validation (n=316). For the discovery cohort, the sample size was based on power 

to detect differential gene expression between conditions with 1.2-fold change, assuming 20 

million reads per sample. According to RNASeqPower package in R, we required at least 78 

samples per condition to achieve 80% power. This was achieved for the majority of 

comparisons, including organ dysfunction, and definite bacterial vs definite viral. For the 

validation cohort, we used the methodology described in Burderer et al20 to estimate that a 

sample size of 315 would allow us to correctly estimate the sensitivity and specificity of the 

test within +/-0.05 at 95% confidence. Samples with completed phenotyping, monitoring, and 

RNA extraction by March 2020 were included in the discovery cohort, the rest of the samples 

which were recruited by October 2021 composed the validation cohort. Four samples in the 
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validation cohort failed quality assessment and were excluded from analysis, leaving 595 

samples in the discovery cohort, and 312 samples in the validation cohort. 

Sequencing reads were mapped to the human reference genome (version hg38) using STAR 

aligner (version 2.7.6a)21. GENCODE version 35 gene transcript annotation was used for the 

alignment. HTSeq count (version 0.13.5)22 was used to ascertain the number of reads mapped 

per gene. Principal component analysis (PCA) was performed to identify any outliers (eFigure 

3; eMethods 6). 

 

Differential Expression Analysis 

DESeq223 was used for differential expression analysis between different phenotypes (bacterial 

versus viral; with versus without organ dysfunction). Genes with <10 read counts were 

excluded from analyses. Genes which had absolute log2 fold-change (LFC) of >1 and adjusted 

p-value of <0.05 were considered as differentially expressed (eMethods 6).  

 

External Validation Cohort 

RNA sequencing gene expression count data were obtained from the European Childhood Life-

threatening Infectious Disease Study (EUCLIDS24,25, eMethods 1, n=362). This observational 

study recruited children with severe infection in nine European countries between 2012–2016. 

Patients were phenotyped based on the likelihood of bacterial or viral infection26 and 

considering severity at time of sampling.  

 

Signature Discovery and Evaluation with FSPLS 

Forward Selection Partial Least Squares (FSPLS, eMethods 6) was used to discover novel 

gene signatures to first distinguish infection types and to then predict presence of organ 
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dysfunction. The FSPLS approach enables simultaneous multiple comparisons to identify 

signatures which can be utilised to distinguish multiple phenotypes.  

For disease-class signature analysis, FSPLS was run with five different comparisons (DB 

versus DV; DB versus PV; DV versus PB; DB versus NI; DV versus NI). Combined infections 

and unknown infections were not included in signature discovery. For severity signature 

analysis, FSPLS was run with those with versus those without organ dysfunction at 24-hours 

post sampling, and with those with versus those without organ dysfunction at the time of 

sampling. Disease-class stratified severity weights were obtained by running FSPLS on 

datasets stratified by predicted disease-class (viral, bacterial or non-infectious). To predict 

sepsis, firstly we used the novel disease-class signature to predict the infection types as either 

DB or DV or NI, as these groups have well-defined phenotypes (eFigure 1; eMethods 6). 

Then, we applied the novel disease-severity signature for each infection type to identify organ 

dysfunction (Figure 1).  

 

In order to benchmark the novel signatures, we used our dataset to refit previously published 

gene-expression signatures reported in patients with infection and sepsis (eMethods 6 and 7), 

specifically Herberg et al9, McHugh et al10, Tang et al27, Wong et al28, Sweeney et al29, Sampson 

et al30, Li et al31, Li et al32 for disease-class and  Lukaszewski et al33, Pena et al34, Irwin et al35 

and Baghela et al36 for disease-severity. As the weights of the genes in the signatures were not 

publicly available, we used our dataset to re-fit and generate the weights to use in the analysis. 

This allowed us to compare across all the signatures as they were all re-fitted similarly. We did 

not correct for multiple comparisons.  

 

Statistical Analysis: 
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All analyses were performed with Stata/SE version 17.0 (StataCorp Pty Ltd, College Station, 

Texas) and R (R version 4.0.2)37. We used the pROC package38 to calculate the AUCs to report 

the performance of signatures and the DeLong method39 to compare the AUC values between 

signatures.  

 

Results 

From January 2018 to October 2021, 907 children evaluated for sepsis were enrolled with 595 

constituting the discovery, and 312 the RAPIDS validation cohort (Table 1, eTable 1). Study 

samples were obtained at a median of 2.3 (interquartile range (IQR) 1.4, 4.1) hours, and 3.0 

(IQR 1.8, 7.5) hours after hospital admission in the discovery, and validation cohort, 

respectively. Overall, 87 (14.6%) patients in the discovery, and 65 (20.8%) in the validation 

cohort had organ dysfunction 24-hours after sampling (eFigure 2). Of these, 76 (87.4%) 

patients in the discovery cohort and 57 (87.7%) patients in the validation cohort had organ 

dysfunction at baseline sampling. 24 (27.6%) patients in the discovery, and 22 (33.8%) patients 

in the validation cohort developed new or additional organ dysfunction within 24 hours of 

sampling compared to sampling baseline. 172 (28.9%) and 110 (18.5%) patients in the 

discovery cohort had DB and DV infections, compared with 63 (20.2%) and 100 (32.1%) in 

the validation cohort (eTable 1 and eTable2).  

 

We assessed differential gene expression in the discovery cohort, first for disease-class, then 

for disease-severity. Differential expression analysis based on the infection type identified 886 

differentially expressed genes (adjusted p-value <0.05) between patients with DV and DB 

infections (eFigure 4A; eTable 3). Comparing patients with versus without organ dysfunction 

at 24 hours after sampling, 1028 genes were differentially expressed (eFigure 4B; eTable 3). 
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Differentially expressed genes differed based upon whether patients with organ dysfunction 

had DB or DV infections (eFigure 4C and 4D; eTable 3).  

 

Using FSPLS, we discovered a novel 10-gene disease-class signature to distinguish type of 

infection, which is comprised of USP18, NCF1B, BATF, CLC, S100A11, ZBED1, PTGES3, 

HLX, NOD2 and ICAM1 genes (Figure 2A). This disease-class signature achieved an AUC of 

93.5% (95%-CI: 90.5% - 96.6%) in distinguishing DB versus DV in the discovery cohort, an 

AUC of 94.1% (95%-CI: 90.6% - 97.7%) in the RAPIDS validation cohort (Figure 2C), and 

an AUC of 90.9% (95%-CI: 85.0% - 96.9%) in the EUCLIDS validation cohort (Table 2). 

Similar performances were achieved for other disease-class phenotype comparisons. Compared 

with previously reported disease-class signatures (eMethods 7), this novel signature 

demonstrated better performance for most classifications (Table 2, eTable 4). The disease-

class signature also distinguished patients with CBV infection and unknown infection status 

(eTable 5). Gene Ontology enrichment analysis of the novel disease-class signature genes 

showed enrichment of immune response GO terms (eMethods 8, eFigure 8). 

 

Using FSPLS, we discovered a novel 10-gene disease-severity signature to identify presence 

of organ dysfunction 24 hours after sampling which is comprised of AATBC, MAFG, VAV1, 

MS4A7, IGHA1, ATP6V0A1, RN7SL3, MPP7, DSC2 and PHACTR2 (Figure 2B). This 

signature achieved an AUC of 92.4% (95%-CI: 89.2% - 95.6%) in distinguishing patients with 

and without organ dysfunction at 24 hours in the discovery cohort and an AUC of 82.2% (95%-

CI: 76.3% - 88.1%) in the RAPIDS validation cohort (Figure 2D; Table 3). Compared with 

previously reported gene expression signatures for disease severity (eMethods 7) the novel 

signature demonstrated comparable or superior performance (Table 3, eTable 6). Gene 

Ontology enrichment analysis of the novel disease-severity signature genes showed enrichment 
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of immunoglobulin complex, signal recognition and proton transporting GO terms indicating 

biological pathways involved in the development of organ dysfunctions (eMethods 8, eFigure 

8). 

 

To enable prediction of sepsis, we used disease-class stratified severity weights which achieved 

an AUC of 90.5% (95%-CI 83.3% - 97.6%) and 94.7% (95%-CI 87.9% - 100.0%) in 

identifying organ dysfunction in patients with predicted DB infection, and predicted DV 

infection, respectively, in the RAPIDS validation cohort (Figure 2E and 2F; Table 3). We 

then assessed the disease-class and disease-severity signatures using the EUCLIDS cohort, 

however severity information was only available at the time of sampling. The disease-class 

stratified severity signatures achieved an AUC of 70.1% (95%-CI 44.1% - 96.2%), and 69.6% 

(95%-CI 53.1% - 86.0%) in identifying organ dysfunction in children with predicted DB and 

DV infection, respectively in the EUCLIDS cohort (Table 3).  

The novel severity signatures performed comparably with identifying secondary severity 

outcomes at baseline and within 24 hours of sampling, including organ dysfunction remote 

from the site of infection, type of organ dysfunction, need for organ support, and need for 

inotrope support (Table 4). In the RAPIDS validation cohort, the signatures identified 

progressive multi-organ dysfunction within 24 hours of sampling with an AUC of 75.8% (95% 

CI 67.3% - 84.3%) (Table 4).  

Adding clinical information such as C-reactive protein levels and leukocyte counts to the gene 

signatures failed to improve the prediction of disease-class and disease-severity, which was 

superior to routine clinical markers (eFigure 9). Both the disease-class and disease-severity 

signatures in the discovery and validation cohorts performed similarly across the age ranges 

included (eTable 7 and eTable 8).  
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Discussion 

In this multi-center prospective study involving 912 children evaluated for suspected sepsis, 

we derived and validated novel gene expression signatures to identify children with confirmed 

viral versus bacterial infection and organ dysfunction. The sepsis signatures provide actionable 

information on the likelihood of bacterial (versus viral) infection, and on the likelihood of life-

threatening organ dysfunction in 24 hours. Our approach demonstrates the potential of host 

transcriptomics to distinguish infection types and predict organ dysfunction, as a means to 

characterize sepsis in children.  

 

In the past years, several infectious disease studies in adult and paediatric patients have 

investigated host gene expression analyses to differentiate patients with bacterial versus viral 

infection9,32,40,41. At the same time, ICU-based studies revealed pathways and differentially 

regulated genes associated with mortality in critically ill patients, which may identify patients 

more likely to suffer harm from specific interventions such as corticosteroids42,43. Until 

recently, however, the integration of the two key dimensions which constitute sepsis (i.e. 

presence of infection and development of organ dysfunction1) by a unifying measure of 

dysregulated host response has been lacking. In contrast to most previous gene expression 

studies, which were based on microarray, we utilized RNASeq which provides substantially 

higher transcript resolution, and we included higher number of patients to increase power. We 

utilised the FS-PLS approach to find a minimal gene signature for disease class and severity. 

FS-PLS iteratively finds the next-most explanatory feature after removing the projection of 

features onto the space spanned by variables previously selected. FS-PLS tends to find smaller 

signatures than other commonly used approaches, such as LASSO. Furthermore, we enrolled 

children early upon presentation, with sampling performed at a median of <3 hours after 

presenting to hospital. Nonetheless, 87.5% of patients who met criteria for organ dysfunction 
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at 24 hours post admission already manifested at least single organ dysfunction at the time of 

sampling.  

 

 

Compared with eight previously reported signatures9,10,27-32 to diagnose the type of infection, 

the performance of the novel disease-class signature was similar or higher in terms of AUC in 

both validation cohorts. Our disease-class signature included 10 transcripts, a number which 

which has become feasible to implement in rapid point-of-care platforms. Compared with 

seven previously reported signatures33-36 to diagnose disease severity, the performance of our 

novel signature was higher in terms of AUCs in the RAPIDS validation cohort for organ 

dysfunction 24 hours after sampling associated with bacterial and viral infection. The novel 

signature was less complex (i.e., 10 genes versus 40 genes) than the best performing previously 

published severity signature36. When assessing other severity outcomes 24 hours after 

sampling, such as organ dysfunction remote from the site of infection, multi-organ dysfunction, 

or need for inotropes, the novel disease-severity signature performed well with AUCs above 

80%. In the EUCLIDS validation cohort, however, information was only available on organ 

dysfunction at the time of sampling, and overall AUCs were above 70%. The performance of 

the severity signature in the EUCLIDS validation may further relate to later sampling, cohort 

differences such as recruitment bias towards severe bacterial infections, restriction to 

community-acquired infections and differences in primary clinical focus (eTable 1).  

 

Overall, we observed a wider range in diagnostic performance of severity signatures across the 

discovery and validation cohorts compared with disease-class signatures. Notably, contrary to 

categorization on microbiologically confirmed bacterial versus viral infection, concepts of 

severity such as organ dysfunction inherently lack a true gold standard against which to 
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benchmark biomarkers. Accordingly, the clinical criteria used to define the primary outcome 

of severity may fall short of the underlying biological complexity, as shown by recent 

electronic health-record derived studies on sepsis phenotypes44-47. The heterogeneity of 

underlying causes, mechanisms, treatments, and trajectories characterizing critical illness 

syndromes thus fundamentally challenge the feasibility of a simple severity marker.  

 

Both disease-class and disease-severity gene signatures discovered in this study were shown to 

predict multiple phenotypes successfully. The disease-class signature identified the infection 

type in patients evaluated for sepsis. The disease-severity signature identified the presence of 

organ dysfunction and several other severity phenotypes including whether the organ 

dysfunction was likely to worsen within 24 hours of sampling. In combination, given the high 

negative predictive value (eTable 6), the information provided by this novel sepsis signatures 

has the potential to guide clinical decision-making (rule-out) on use of antimicrobials and 

escalation of care. 

Mortality and other severity outcomes in paediatric sepsis relate directly to delays between 

presentation and delivery of a sepsis treatment bundle48. Sepsis quality improvement programs 

usually focus on presumed infection in the presence of clinical indicators of altered physiology. 

However, it is well recognized that clinical features of sepsis are often subtle and non-specific, 

in particular in children where viral etiologies predominate. Therefore, initiatives to promote 

early treatment with intravenous antibiotics have been met with criticism as they risk 

inappropriate use of antibiotics, potentially promoting antimicrobial resistance. In this context, 

a direct marker of a dysregulated host response to bacterial versus viral infection remains 

highly desirable and can serve to identify treatable traits early upon presentation.  
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Several limitations of this study need to be considered. First, although the findings were 

validated in an a priori defined separate sequencing batch of patients, external validation using 

the EUCLIDS cohort was only partially feasible, given that 24-hour outcome data had not been 

collected in the latter. Second, patients were recruited in a high-income setting with a low 

mortality rate, with a predominance of Caucasian patients, and almost complete absence of 

fungal and parasitic infections, which may not be representative of patients in less resourced 

settings. Third, the study design excluded immunosuppressed patients and most included 

patients had community-acquired infections, implying the need to validate the signature in 

more comorbid cohorts with hospital-acquired infections. Finally, we did not perform RT-PCR 

validation of the novel signatures, and future replication using a point-of-care device will be 

required.  

 

In conclusion, in this large cohort of children evaluated for sepsis encompassing a broad range 

of disease severity, pathogens, and comorbidities, novel host transcriptomic signatures were 

able to discriminate patients with bacterial versus viral infection and those who were likely to 

manifest organ dysfunction within the next 24 hours at high accuracy. Whether such actionable 

information can direct therapy to patients who are most likely to benefit from timely delivery 

of a sepsis bundle while reducing unnecessary use of antibiotics, needs to be tested by 

interventional trials.  
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Figure Legends: 

Figure 1. Schematic workflow of the multi-phenotype signature discovery using 

transcriptomics data.  The discovery cohort was used for the novel signature discovery. The 

disease-class signature and disease-severity signature were discovered using the FSPLS 

method. These signatures were validated on two independent validation cohorts. First, the 

infection type of the sample was predicted using the disease-class signature, then the 

probability of developing organ dysfunction was predicted using the disease-severity signature. 

DB – Definite Bacterial; DV – Definite Viral; PV- Probable Viral; PB – Probable Bacterial; 

NI – Non-infectious; OD – Organ Dysfunction; ROC curve – Receiver Operating 

Characteristics curve; AUC – Area Under the Curve.  

 

Figure 2: Performance of disease-class signature and disease-severity signature in 

distinguishing infection type and identifying organ dysfunction. Heat map showing the 

expression of (A) disease-class signature genes across patients in the discovery cohort with 

definite bacterial (n=172) and definite viral (n=110) infections; (B) disease-severity signature 

genes across patients in the discovery cohort with organ dysfunction (n=87) versus without 

organ dysfunction (n=508) at 24-hours after sampling; Receiver Operating Characteristics 

(ROC) curve for the performance of the signature in the discovery (red lines) and validation 

(blue lines) data to distinguish (C) definite bacterial versus definite viral infections; (D) with 

versus without organ dysfunction in all the patients; (E) with versus without organ dysfunction 

in patients with predicted definite bacterial infections; and (F) with versus without organ 

dysfunction in patients with predicted definite viral infections. Continuous red and blue lines 

indicate AUC and the dashed lines shows the respective 95% confidence interval.  



 

 

Table 1. Clinical, microbiological, and severity characteristics of the discovery and validation cohorts of children evaluated for sepsis. 

Characteristic Category Discovery 

N=595 

RAPIDS 

Validation 

N=312 

EUCLIDS 

Validation 

N=362 

Gender n (%) Female 278 (46.7) 124 (39.7) 189 (52.2) 

Age n (%) <1 year 156 (26.2) 43 (13.8) 99 (27.4) 

 1-5 years 217 (36.5) 159 (51.0) 152 (42.0) 

 5-10 years 119 (20.0) 56 (18.0) 60 (16.6) 

 10-18 years 103 (17.3) 54 (17.3) 51 (14.1) 

Age (years) median (IQR)  2.8 (1.0, 7.7) 3.4 (1.4, 7.3) 2.6 (0.8, 5.7) 

Chronic condition n (%) Any 132 (22.2) 92 (29.5)   - 

 Asthma 27 (4.5) 12 (3.9) - 

 Congenital Malformation 21 (3.5) 16 (5.1) - 

 Congenital Heart Defect 20 (3.4) 20 (6.4) - 

 Cerebral Palsy, Severe 

Encephalopathy 

18 (3.0) 14 (4.5) - 

 Syndrome or Genetic Disorder 0 (0) 22 (7.1) - 

 Other Chronic Condition 80 (13.5) 68 (21.8) - 

Symptoms at presentation n (%) Fever 464 (78.0) 242 (79.6) - 

 Rash 71 (11.9) 49 (16.1) - 

 Altered level of consciousness 56 (9.4) 38 (12.5) - 

 Irritability 92 (15.5) 35 (11.5) - 

 Seizures 34 (5.7) 25 (8.2) - 

 Pain 155 (26.1) 96 (31.6) - 

 Nausea/Vomiting 182 (30.6) 97 (31.9) - 

 Diarrhoea 72 (12.1) 28 (9.2) - 

 Respiratory distress/apnoea 141 (23.7) 63 (20.7) - 

 Cough 207 (34.8) 97 (31.9) - 

 Pale/cyanotic episode 49 (8.2) 27 ( 8.9) - 



 

 

Characteristic Category Discovery 

N=595 

RAPIDS 

Validation 

N=312 

EUCLIDS 

Validation 

N=362 

 Cold extremities 13 (2.2) 8 (2.6) - 

 Skin / wound infection 36 (6.1) 12 (4.0) - 

 Other 156 (26.2) 71 (23.4) - 

Primary clinical focus n (%) Sepsis without a source 165 (27.7) 94 (30.1) 58 (16.0) 

 Lower respiratory infection 183 (30.8) 86 (27.6) 105 (29.0) 

 Upper respiratory infection 46 (7.7) 32 (10.3) 4 (1.1) 

 Meningitis /Encephalitis 18 (3.0) 9 (2.9) 66 (18.2) 

 Urinary tract infection 47 (7.9) 20 (6.4) 13 (3.6) 

 Arthritis/ Osteomyelitis 15 (2.5) 3 (1.4) 17 (4.7) 

 Skin infection 28 (4.7) 7 (2.2) 25 (6.9) 

 Wound infection 15 (2.5) 5 (1.6) 0 

 Toxic shock syndrome 6 (1.0) 2 (0.6) 11 (3.0) 

 ENT infection/abscess 29 (4.9) 11 (3.5) 4 (1.1) 

 Gastroenteritis 18 (3.0) 18 (5.8) 5 (1.4) 

 Other 25 (4.2) 25 (8.0) 54 (14.9) 

Time from hospital admission to sampling (hours) 

median (IQR) 

 2.3 (1.4, 4.1) 3.0 (1.8, 7.5) - 

Admission to PICU n (%) Yes 173 (29.1) 92 (29.5) 212 (58.6) 

Patients with length of stay of under 24 hours n (%)  137 (23.0) 82 (26.3)  

Laboratory characteristics at baseline median (IQR) Base excess [mmol/l]  -2.1 (-4.7, -0.2) 

(N=379) 

-1.8 (-4.3, 0.2) 

(N=178) 

-4.4 (-7.1, -1.3) 

(N=192) 

 paO2 [mmHg]  99 (70, 130) 

(N=89) 

81 (69, 106) 

(N=55) 

97 (73, 139) 

(N=84) 

 pCO2 [mmHg]  38 (34, 45) 

(N=89) 

40 (36, 46) 

(N=109) 

45 (35, 56) 

(N=183) 

 Lactate [mmol/l]  1.5 (1.1, 2.3) 

(N=394) 

1.4 (1.0, 2.2) 

(N=207) 

1.4 (0.9, 2.3) 

(N=185) 



 

 

Characteristic Category Discovery 

N=595 

RAPIDS 

Validation 

N=312 

EUCLIDS 

Validation 

N=362 

 Creatinine [µmol/l]  30 (30, 44) 

(N=574) 

31 (30, 42) 

(N=283) 

36 (27, 49) 

(N=303) 

 Bilirubin [µmol/l]   7 (5, 12) 

(N=569) 

7 (5, 12) 

(N=287) 

6 (4, 100) 

(N=206) 

 International Normalized Ratio  1.3 (1.1, 1.6) 

(N=140) 

1.3 (1.2, 1.7) 

(N=69) 

1.4 (1.2, 1.9) 

(N=90) 

 Fibrinogen [g/L]  3.4 (2.6, 5.2) 

(N=137) 

3.3 (2.4, 4.1) 

(N=69) 

- 

 Platelets [*103/µL]  303 (219, 378) 

(N=564) 

270 (198, 363) 

(N=291) 

255 (163, 347) 

(N=338) 

 White Cell Count [*103/µL]  11.7 (7.9, 16.5) 

(N=583) 

10.7 (7.1, 15.9) 

(N=295) 

- 

 C-reactive protein [mg/L]  25 (7, 95) 

(N=531) 

34 (10, 89) 

(N=267) 

- 

Infection Type n (%) Definite Bacterial 172 (28.9) 63 (20.2) 190 (52.5) 

 Probable Bacterial 64 (10.8) 39 (12.5) 60 (16.6) 

 Definite Viral 110 (18.5) 100 (32.1) 39 (10.8) 

 Probable Viral 87 (14.6) 32 (10.3) 12 (3.3) 

 Combined Bacterial /Viral 

Infection 

64 (10.8) 30 (9.6) 1 (0.3) 

 Non-Infectious Illness 45 (7.6) 36 (11.9) - 

 Unknown 53 (8.9) 9 (2.9) 60 (16.6) 

Deceased n (%) Death 6 (1.0) 4 (1.3) 9 (2.5) 

At least one organ dysfunction n (%) Baseline 134 (22.5) 76 (24.4) 200 (55.3) 

 24 hours 87 (14.6) 65 (20.8)  

Organ dysfunction remote from the primary site of 

infection n (%) 

Baseline 132 (22.11) 74 (23.7) 179 (49.5) 

 24 hours 86 (14.4) 61 (19.6)  



 

 

Characteristic Category Discovery 

N=595 

RAPIDS 

Validation 

N=312 

EUCLIDS 

Validation 

N=362 

Any organ support n (%) Baseline 74 (12.4) 51 (16.4) 164 (45.3) 

 24 hours 69 (11.6) 41 (13.1)  

 Any Inotropes n (%) Baseline 41 (6.9) 28 (9.0) 111 (30.7) 

 24 hours 46 (7.7) 26 (8.3)  

Multi-organ dysfunction n (%) Baseline 81 (13.6) 50 (16.0) 136 (37.6) 

 24 hours 68 (11.4) 40 (12.8)  

Table 2: Performance of the novel disease-class gene expression signature in distinguishing infection types, compared to previously 

published host transcriptomic signatures. Areas under the Curve (AUC) with corresponding 95%-confidence intervals (CI) are shown. For 

each tested phenotype, the best performing signature in terms of AUC is highlighted in red.  

 

Phenotype Signature 

Number 

of genes 

in 

signature 

Discovery (n=595) RAPIDS Validation (n=312) EUCLIDS Validation (n=362) 

AUC 

95% 

CI 

low 

95% 

CI 

high 

P-

value

* 

AUC 

95% 

CI 

low 

95% 

CI 

high 

P-

value

* 

AUC 
95% 

CI low 

95% 

CI 

high 

P-

value* 

Definite 

Bacterial 

versus 

Definite 

Viral 

Novel disease-

class Signature 
10 0.935 0.905 0.966 - 0.941 0.906 0.977 - 0.909 0.850 0.969 - 

Herberg et al9 2 0.861 0.815 0.908 0.183 0.900 0.856 0.945 0.475 0.923 0.887 0.959 0.848 

McHugh et 

al10 
4 0.788 0.733 0.843 0.019 0.750 0.673 0.827 0.024 0.738 0.646 0.831 0.120 

Tang et al27 1 0.894 0.857 0.931 0.391 0.883 0.830 0.936 0.362 0.895 0.843 0.948 0.858 

Wong et al28 5 0.828 0.779 0.876 0.060 0.773 0.699 0.848 0.041 0.687 0.591 0.784 0.503 

Sweeney et 

al29 
7 0.924 0.894 0.953 0.779 0.911 0.865 0.956 0.594 0.911 0.862 0.960 0.980 

Sampson et 

al30 
4 0.894 0.853 0.935 0.414 0.894 0.845 0.944 0.438 0.921 0.875 0.966 0.880 

Li et al31 4 0.691 0.627 0.754 0.001 0.668 0.576 0.761 0.006 0.800 0.731 0.870 0.235 

Li et al 

(2021)32 
3 0.881 0.837 0.925 0.307 0.907 0.860 0.954 0.555 0.906 0.855 0.956 0.964 



 

 

Definite 

Bacterial 

versus 

Probable 

Viral 

Novel disease-

class Signature 
10 0.912 0.876 0.948 - 0.863 0.771 0.954 - 0.935 0.899 0.972 - 

Herberg et al9 2 0.794 0.738 0.849 0.072 0.872 0.785 0.959 0.940 0.887 0.811 0.963 0.565 

McHugh et 

al10 
4 0.788 0.730 0.846 0.069 0.712 0.596 0.829 0.311 0.696 0.526 0.866 0.168 

Tang et al27 1 0.722 0.656 0.788 0.011 0.788 0.682 0.893 0.592 0.726 0.588 0.864 0.142 

Wong et al28 5 0.770 0.711 0.830 0.040 0.829 0.739 0.919 0.793 0.838 0.750 0.926 0.309 

Sweeney et 

al29 
7 0.862 0.817 0.908 0.390 0.850 0.764 0.935 0.918 0.770 0.642 0.899 0.216 

Sampson et 

al30 
4 0.760 0.696 0.824 0.038 0.852 0.761 0.943 0.935 0.831 0.697 0.964 0.450 

Li et al31 4 0.708 0.643 0.773 0.006 0.779 0.677 0.881 0.540 0.754 0.597 0.911 0.262 

Li et al 

(2021)32 
3 0.810 0.755 0.866 0.122 0.851 0.757 0.944 0.927 0.844 0.737 0.951 0.421 

Definite 

Viral 

versus 

Probable 

Bacterial 

Novel disease-

class Signature 
10 0.909 0.864 0.953 - 0.856 0.784 0.929 - 0.793 0.695 0.891 - 

Herberg et al9 2 0.805 0.736 0.873 0.201 0.827 0.756 0.898 0.772 0.762 0.668 0.855 0.816 

McHugh et 

al10 
4 0.741 0.666 0.817 0.057 0.765 0.666 0.865 0.460 0.668 0.554 0.782 0.404 

Tang et al27 1 0.833 0.768 0.897 0.333 0.797 0.707 0.887 0.607 0.877 0.810 0.944 0.480 

Wong et al28 5 0.780 0.709 0.850 0.122 0.686 0.592 0.781 0.154 0.544 0.422 0.665 0.109 

Sweeney et 

al29 
7 0.869 0.810 0.927 0.588 0.839 0.763 0.915 0.871 0.889 0.824 0.954 0.414 

Sampson et 

al30 
4 0.838 0.777 0.900 0.352 0.836 0.762 0.910 0.845 0.807 0.720 0.894 0.917 

Li et al31 4 0.603 0.517 0.690 0.002 0.564 0.452 0.677 0.029 0.578 0.465 0.691 0.150 

Li et al 

(2021)32 
3 0.828 0.764 0.892 0.303 0.841 0.767 0.916 0.885 0.774 0.680 0.868 0.887 

Definite 

Bacterial 

versus 

Non-

Infectious 

Novel disease-

class Signature 
10 0.917 0.879 0.954 - 0.654 0.540 0.768 - 

NA 
Herberg et al9 2 0.775 0.704 0.847 0.081 0.571 0.454 0.689 0.614 

McHugh et 

al10 
4 0.830 0.766 0.893 0.239 0.663 0.554 0.771 0.957 

Tang et al27 1 0.598 0.504 0.691 0.002 0.462 0.346 0.578 0.239 



 

 

Wong et al28 5 0.702 0.617 0.787 0.021 0.712 0.607 0.817 0.709 

Sweeney et 

al29 
7 0.841 0.773 0.909 0.332 0.678 0.574 0.783 0.874 

Sampson et 

al30 
4 0.701 0.612 0.790 0.026 0.551 0.434 0.668 0.529 

Li et al31 4 0.786 0.716 0.857 0.104 0.713 0.609 0.818 0.701 

Li et al 

(2021)32 
3 0.615 0.526 0.704 0.002 0.479 0.362 0.596 0.283 

Definite 

Viral 

versus 

Non-

Infectious 

Novel disease-

class Signature 
10 0.945 0.904 0.985 - 0.796 0.709 0.882 - 

NA 

Herberg et al9 2 0.909 0.862 0.957 0.570 0.771 0.677 0.865 0.849 

McHugh et 

al10 
4 0.850 0.788 0.913 0.203 0.690 0.578 0.801 0.454 

Tang et al27 1 0.914 0.869 0.960 0.615 0.749 0.647 0.850 0.726 

Wong et al28 5 0.821 0.745 0.897 0.151 0.694 0.594 0.793 0.440 

Sweeney et 

al29 
7 0.933 0.896 0.970 0.834 0.766 0.669 0.862 0.819 

Sampson et 

al30 
4 0.856 0.785 0.927 0.277 0.752 0.656 0.849 0.738 

Li et al31 4 0.862 0.797 0.927 0.280 0.726 0.623 0.829 0.604 

Li et al 

(2021)32 
3 0.857 0.795 0.919 0.233 0.754 0.659 0.848 0.744 

* P-value for comparison between the AUCs for the Novel Signature and other reported signatures.  

 

Table 3: Performance of novel severity signature in identifying organ dysfunction for different infection types, compared to previously 

published host transcriptomic signatures. Areas under the Curve (AUC) with corresponding 95%-confidence intervals (CI) are shown. For 

each tested phenotype, the best performing signature in terms of AUC is highlighted in red. 

 

Phenotype Signature 

Number 

of genes 

in 

signature 

Discovery (n=595) RAPIDS Validation (n=312) EUCLIDS Validation (n=362) 

AUC 
95% 

CI low 

95% 

CI 

high 

P-

value* 

 

AUC 
95% 

CI low 

95% 

CI 

high 

P-

value* 

 

AUC 
95% 

CI low 

95% 

CI 

high 

P-

value* 

 



 

 

OD at 24hrs 

Novel disease-

severity 

Signature 

10 0.924 0.892 0.956 - 0.822 0.763 0.881 - 

NA 

Irwin et al35 3 0.755 0.695 0.815 0.013 0.772 0.708 0.837 0.571 

Lukaszewski et 

al33 
27 0.870 0.831 0.910 0.295 0.802 0.742 0.862 0.810 

Pena et al34 31 0.865 0.814 0.917 0.333 0.750 0.675 0.825 0.449 

Baghela et al36 40 0.892 0.851 0.933 0.543 0.787 0.724 0.849 0.681 

Baghela et al - 

Severity36 
8 0.851 0.798 0.904 0.242 0.724 0.650 0.798 0.301 

Baghela et al - 

CR36 
12 0.849 0.800 0.898 0.204 0.846 0.790 0.902 0.767 

Baghela et al - 

Mortality36 
10 0.844 0.798 0.890 0.154 0.822 0.765 0.879 0.997 

OD at 24hrs in 

Predicted 

Bacterial 

Infection 

Novel disease-

severity 

Signature 

10 0.940 0.876 1.000 - 0.905 0.833 0.976 - 

NA 

Irwin et al35 3 0.792 0.711 0.874 0.150 0.735 0.593 0.877 0.287 

Lukaszewski et 

al33 
27 0.887 0.820 0.953 0.561 0.761 0.624 0.899 0.354 

Pena et al34 31 0.942 0.897 0.988 0.972 0.709 0.559 0.860 0.241 

Baghela et al36 40 0.989 0.977 1.000 0.439 0.788 0.649 0.928 0.457 

Baghela et al - 

Severity36 
8 0.914 0.844 0.985 0.788 0.713 0.574 0.852 0.218 

Baghela et al - 

CR36 
12 0.909 0.838 0.980 0.747 0.859 0.761 0.956 0.704 

Baghela et al - 

Mortality36 
10 0.858 0.775 0.941 0.432 0.611 0.409 0.813 0.170 

OD at 24hrs in 

PredictedViral 

Infection 

Novel disease-

severity 

Signature 

10 0.944 0.885 1.000 - 0.947 0.879 1.000 - 
NA 

Irwin et al35 3 0.847 0.751 0.943 0.385 0.895 0.776 1.000 0.683 



 

 

Lukaszewski et 

al33 
27 0.883 0.795 0.971 0.559 0.865 0.706 1.000 0.604 

Pena et al34 31 0.864 0.741 0.988 0.559 0.740 0.541 0.938 0.318 

Baghela et al36 40 0.917 0.813 1.000 0.803 0.877 0.789 0.965 0.512 

Baghela et al - 

Severity36 
8 0.843 0.704 0.982 0.500 0.758 0.563 0.952 0.353 

Baghela et al - 

CR36 
12 0.920 0.857 0.983 0.773 0.837 0.657 1.000 0.546 

Baghela et al - 

Mortality36 
10 0.852 0.760 0.945 0.400 0.824 0.643 1.000 0.514 

OD at 0hrs 

Novel disease-

severity 

Signature 

10 0.852 0.809 0.895 - 0.775 0.712 0.838 - 0.775 0.727 0.823 - 

Irwin et al35 3 0.725 0.672 0.777 0.060 0.724 0.656 0.791 0.580 0.786 0.739 0.832 0.874 

Lukaszewski et 

al33 
27 0.806 0.762 0.850 0.457 0.771 0.706 0.836 0.964 0.791 0.745 0.837 0.813 

Pena et al34 31 0.808 0.763 0.852 0.473 0.770 0.708 0.831 0.953 0.794 0.748 0.840 0.771 

Baghela et al36 40 0.825 0.782 0.868 0.657 0.751 0.686 0.816 0.793 0.821 0.777 0.864 0.481 

Baghela et al - 

Severity36 
8 0.785 0.735 0.834 0.304 0.725 0.653 0.797 0.600 0.811 0.766 0.855 0.584 

Baghela et al - 

CR36 
12 0.772 0.720 0.823 0.229 0.715 0.645 0.786 0.531 0.792 0.746 0.838 0.796 

Baghela et al - 

Mortality36 
10 0.744 0.692 0.796 0.109 0.763 0.699 0.828 0.898 0.787 0.740 0.833 0.860 

OD at 0hrs in 

Predicted 

Bacterial 

Infection 

Novel disease-

severity 

Signature 

10 0.924 0.867 0.981 - 0.886 0.802 0.970 - 0.701 0.441 0.962 - 

Irwin et al35 3 0.804 0.721 0.888 0.236 0.748 0.594 0.901 0.428 0.771 0.572 0.970 0.832 

Lukaszewski et 

al33 
27 0.898 0.837 0.959 0.754 0.824 0.701 0.946 0.674 0.667 0.420 0.913 0.923 

Pena et al34 31 0.903 0.841 0.964 0.799 0.728 0.572 0.884 0.372 0.708 0.453 0.964 0.985 

Baghela et al36 40 0.972 0.944 1.000 0.456 0.728 0.568 0.888 0.382 0.743 0.522 0.964 0.903 



 

 

Baghela et al - 

Severity36 
8 0.852 0.766 0.938 0.484 0.782 0.657 0.907 0.490 0.611 0.341 0.881 0.810 

Baghela et al - 

CR36 
12 0.863 0.784 0.943 0.535 0.740 0.603 0.878 0.365 0.660 0.379 0.940 0.913 

Baghela et al - 

Mortality36 
10 0.857 0.789 0.926 0.454 0.707 0.533 0.881 0.355 0.882 0.722 1.000 0.541 

OD at 0hrs in 

Predicted 

Viral Infection 

Novel disease-

severity 

Signature 

10 0.828 0.753 0.902 - 0.757 0.588 0.925 - 0.696 0.531 0.860 - 

Irwin et al35 3 0.729 0.637 0.821 0.403 0.844 0.676 1.000 0.709 0.679 0.509 0.849 0.944 

Lukaszewski et 

al33 
27 0.803 0.733 0.874 0.812 0.779 0.645 0.914 0.916 0.776 0.630 0.923 0.714 

Pena et al34 31 0.809 0.721 0.897 0.872 0.804 0.703 0.905 0.810 0.781 0.644 0.917 0.691 

Baghela et al36 40 0.869 0.802 0.935 0.683 0.596 0.409 0.782 0.522 0.925 0.854 0.997 0.201 

Baghela et al - 

Severity36 
8 0.784 0.704 0.864 0.690 0.723 0.550 0.896 0.888 0.861 0.752 0.970 0.402 

Baghela et al - 

CR36 
12 0.732 0.640 0.824 0.417 0.790 0.639 0.941 0.884 0.776 0.636 0.917 0.709 

Baghela et al - 

Mortality36 
10 0.741 0.653 0.828 0.448 0.622 0.404 0.840 0.626 0.820 0.697 0.943 0.546 

* P-value for comparison between the AUCs for the Novel Signature and other reported signatures.  

  



 

 

Table 4: Performance of novel severity signature in identifying various severity outcomes. Areas under the Curve (AUC) with corresponding 

95%-confidence intervals (CI) are shown for each outcome assessed 24 hours after study blood sampling (“24hrs”), and at time of study blood 

sampling (“0hrs”). Organ dysfunction was assessed using the 2005 International Pediatric Sepsis Consensus Conference criteria. 

 

Phenotype 

Discovery (n=595) RAPIDS Validation (n=312) EUCLIDS Validation (n=362) 

AUC 
95% CI 

low 

95% CI 

high 
AUC 

95% CI 

low 

95% CI 

high 
AUC 

95% CI 

low 

95% CI 

high 

OD remote to infection site 24hrs  0.927 0.894 0.959 0.820 0.759 0.882 NA 

OD remote to infection site 0hrs  0.854 0.811 0.897 0.778 0.714 0.842 0.770 0.730 0.820 

Need for organ support 24hrs 0.957 0.940 0.974 0.825 0.751 0.899 NA 

Need for organ support 0hrs 0.925 0.895 0.954 0.781 0.709 0.853 0.780 0.740 0.830 

Administration of Inotropes 24hrs 0.963 0.946 0.981 0.846 0.759 0.932 NA 

Administration of Inotropes 0hrs 0.940 0.890 0.980 0.820 0.730 0.910 0.830 0.780 0.870 

CVS, Resp, or CNS OD 24hrs^ 0.962 0.943 0.980 0.828 0.732 0.924 NA 

CVS, Resp, or CNS OD 0hrs^ 0.919 0.874 0.963 0.852 0.757 0.947 0.730 0.660 0.814 

MOD 24hrs 0.959 0.942 0.976 0.858 0.792 0.925 NA 

MOD 0hrs 0.902 0.861 0.943 0.801 0.729 0.873 0.800 0.750 0.850 

OD Better at 24hrs# 0.715 0.648 0.783 0.623 0.515 0.731 NA 

OD Worse at 24hrs# 0.872 0.810 0.934 0.721 0.611 0.831 NA 

MOD Better at 24hrs* 0.798 0.708 0.888 0.645 0.501 0.788 NA 

NA MOD Worse at 24hrs* 0.896 0.851 0.941 0.758 0.673 0.843 

Cardiac OD 24hrs 0.958 0.937 0.978 0.811 0.736 0.886 NA 

Cardiac OD 0hrs 0.837 0.783 0.892 0.789 0.705 0.872 0.810 0.770 0.860 

Respiratory OD 24hrs 0.953 0.934 0.972 0.840 0.771 0.909 NA 

Respiratory OD 0 hrs 0.914 0.882 0.947 0.782 0.705 0.860 0.760 0.700 0.810 

Neurologic OD 24hrs 0.908 0.861 0.955 0.820 0.750 0.890 NA 

Neurologic OD 0 hrs 0.885 0.840 0.930 0.806 0.737 0.875 0.680 0.610 0.750 



 

 

Renal OD 24hrs 0.890 0.777 1.000 0.692 0.366 1.000 NA 

Renal OD 0hrs 0.864 0.773 0.955 0.692 0.462 0.921 0.760 0.660 0.860 

Hematologic OD 24hrs 0.945 0.906 0.985 0.735 0.594 0.876 NA 

Hematologic OD 0hrs 0.869 0.800 0.938 0.793 0.650 0.935 0.700 0.580 0.820 

Hepatic OD 24hrs 0.950 0.887 1.000 0.678 0.102 1.000 NA 

Hepatic OD 0hrs 0.749 0.410 1.000 0.600 0.279 0.921 0.720 0.410 1.000 

 

^ Presence of either cardiac, respiratory or neurological organ dysfunction 

# Compared to OD at time of sampling, OD increasing (worse) or decreasing (better) at 24-hours post sampling 

* Compared to MOD at time of sampling, MOD increasing to >=2 (worse) or decreasing to 0/1 (better) at 24-hours post sampling 

OD - organ dysfunction; CVS - cardiovascular; Resp - respiratory; CNS - central nervous system; MOD - multi organ dysfunction; AUC – Area 

Under the Curve; CI – Confidence Interval 

NA – data not available 


