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Fig. 1. Proposed deep learning method for motion prediction of dynamic point clouds. Let: By sequentially processing

the point cloud at multiple resolutions, the neural network learns hierarchical features. Middle: The hierarchical features

correspond to hierarchical motions (from local to global). Right: To predict complex movements, hierarchical motions/features

are then combined in an adaptative fashion via learnable weights.

This paper focuses on motion prediction for point cloud sequences in the challenging case of deformable 3D objects, such as

human body motion. First, we investigate the challenges caused by deformable shapes and complex motions present in this

type of representation, with the ultimate goal of understanding the technical limitations of state-of-the-art models. From this

understanding, we propose an improved architecture for point cloud prediction of deformable 3D objects. Speciically, to

handle deformable shapes, we propose a graph-based approach that learns and exploits the spatial structure of point clouds to

extract more representative features. Then, we propose a module able to combine the learned features in a adaptative manner

according to the point cloud movements. The proposed adaptative module controls the composition of local and global

motions for each point, enabling the network to model complex motions in deformable 3D objects more efectively. We tested

the proposed method on the following datasets: MNIST moving digits, the Mixamo human bodies motions [15], JPEG [5]

and CWIPC-SXR [32] real-world dynamic bodies. Simulation results demonstrate that our method outperforms the current
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baseline methods given its improved ability to model complex movements as well as preserve point cloud shape. Furthermore,

we demonstrate the generalizability of the proposed framework for dynamic feature learning by testing the framework for

action recognition on the MSRAction3D dataset [19] and achieving results on par with state-of-the-art methods.

CCS Concepts: · Computing methodologies → Computer Vision; · Human-centered computing → Virtual reality; ·

Information systems → Multimedia streaming.

Additional Key Words and Phrases: Point Cloud, Graph Neural Network, Motion Prediction, Explainability

1 INTRODUCTION

Point cloud sequences are a lexible and rich geometric representation of volumetric content used in a wide

range of applications from autonomous driving [26, 30], robotics [24, 50] to virtual/mixed-reality services [4, 34].

Such sequences consist of consecutive point clouds, each composed of an unordered collection of 3D points

representing 3D scenes or 3D objects. Although the point cloud is a highly appealing representation impacting

multiple sectors, how to properly process it is still an open challenge. One of the most successful methodologies

was the development of neural networks able to learn directly from unstructured point cloud data. This approach

was pioneered by PointNet [6] architecture, which learns features by processing each point independently.

However, in such architecture, the local structures which contain key semantic information of 3D geometry are

not captured. PointNet++ [31] addresses this issue by considering neighbourhoods of points instead of acting

on each one independently. To this end, PointNet++ employs a hierarchical architecture that processes process

point neighbourhoods at increasingly larger scales along a multi-resolution hierarchy, as shown on the left side

of Fig.1. This approach groups the local features learned from small neighbourhoods into larger neighbourhoods

and processes them to learn higher-level features. By learning hierarchical features, the network can abstract the

multiple local-to-global structures within the data. Although PointNet++ hierarchical architecture was initially

designed for static point clouds, it has since been extended to the case of dynamic point clouds [22, 23]. In these

cases, instead of extracting features from neighbourhoods in a single point cloud, the network extracts dynamic

features from a hierarchy of spatio-temporal neighbourhoods across time. The learned dynamic features can be

applied to a wide range of downstream tasks, such as action classiication, motion prediction and segmentation. In

this paper, we focus on the point cloud prediction task. Speciically given a point cloud sequence P = {�1, . . . , �� },

composed of � frames with ��,� ∈ R
3 being the Euclidean coordinates of point � in point cloud �� ∈ R

�×3, our

goal is to predict the coordinates of future point clouds (�̂�+1, . . . , �̂�+� ), where � is the prediction horizon.

At the moment, point-based hierarchical methods can be considered the de-facto state-of-the-art approach for

point cloud prediction. However, while these methodologies have shown good performance when predicting

simple and rigid movements as translations in automobile scenes [3], they are often limited when predicting

the motion of 3D deformable objects. Addressing this limitation is the main goal of this paper. Predicting

deformable objects is challenging since the point cloud shape changes over time and performs highly complex

motions. For example, in a 3D representation of a football player running or a dancer performing during a

music event, their point cloud representations change over time following diferent postures. Moreover, the

performed movements are not rigid transformations but rather a combination of multiple and diverse local

motions. For instance, if we imagine the player raising the hand while running, their arm and hand will be

characterised by a combination of movements (i.e., local rising movement and the global forward translation).

Given their characteristics, processing 3D deformable objects presents two major challenges: (i) establishing

point correspondence across time and preserving the shape of the predicted point cloud; (ii) generating accurate

motion predictions that are a composition of multiple movements at diferent levels of resolution.

To address the above challenges, we must irst understand if the current state-of-art models are able to address

such challenges. Within this context, we irst demonstrate the model’s inability to establish precise temporal

correlations and preserve the predicted point cloud shape. This is because they fail to consider the structural

relationships between the points during the learning process. Then, to investigate the challenge of predicting
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complex motions, we employ the explainability techniques introduced in our previous work [12]. These techniques

demonstrated that the hierarchy of dynamic features corresponds to learning from local to global motions (in the

centre of Fig. 1). In this paper, we build upon this interpretation to identify the technical limitations of the current

framework approach. Speciically, we show that in most methodologies [7, 11, 22, 29] to generate predictions

of future motions, the hierarchical features are combined via learnable weights. Most critically, to preserve

permutation invariance, when combining hierarchical features, the same learned weights are applied to all points

across frames. However, in deformable objects, not all points beneit from the same combination of hierarchical

features. For example, some points can be described entirely by global motions, while other points are better

described by a combination of global and local motions. We show that this ixed combination of hierarchical

features is a key limitation to the network’s ability to predict complex motions.

Based on the limitations identiied above, we propose AGAR: an attention-based hierarchical graph-recurrent

neural network (RNN) for point cloud prediction of deformable objects. Our proposed architecture includes an

initial graph-based module that extracts the underlying geometric structure of the input point cloud as spatial

features. From the learned spatial features, we construct a spatio-temporal graph that forms more representative

neighbourhoods than current methods that neglect the point cloud structure. The graph is then processed by

sequential graph-RNN cells that take structural relations between points into account to learn dynamic features.

To address the limitation of the ixed combination of hierarchical features, we propose a novel module denoted as

Adaptative feature combination. The proposed module employs an attention mechanism to dynamically assign

diferent degrees of importance to each level of hierarchical features. As such, for each point, the network can

control the composition of the local and global motions that best describe the point behaviour. This concept is

illustrated in the right part of Fig. 1, where the network selects the regions that beneit from particular motions

(i.e. local, semi-local, global) instead of blindly combining all the motions learned in the multiple hierarchical

levels. Besides improving the prediction of complex motions, the Adaptative feature combination module is also

an explainability tool. The module allows us to visualize the inluence of each learned feature on the predicted

motion, providing a deeper understanding of the network’s internal workings.

The proposed method is trained in a self-supervised fashion, and it is tested on several datasets such as the

Mixamo synthetic human bodies activities dataset [15], JPEG [5] and CWIPC-SXR [32] real-world human bodies

datasets and compared against state-of-art methods. To extend such comparison, we also tested on a dataset of

rigid objects (moving MNIST point cloud dataset [7]) and a dataset of automobile scenes (Argoverse dataset [3]).

A powerful strength of our framework is the ability to extract the general dynamic behaviour of the point cloud as

dynamic features. Since such features are useful for downstream tasks, we also tested the proposed architecture

for the action recognition task on human bodies (MSRAction3D dataset [19]). The proposed method outperforms

the state-of-art methods in human bodies prediction and achieves on-par results for rigid objects and automobile

scene prediction as well as for the action recognition task. The results demonstrated that our proposed method

can leverage the structural relations between points to learn more accurate representations and preserve the

point cloud shape during prediction. The results further show that the proposed adaptative feature combination

module predicts complex motions in human bodies with more accuracy than the current state-of-art approaches.

Lastly, the code and datasets required to reproduce the work are made publicly available1.

In summary, the key contributions of our work are:

• Understanding of current state-of-the-art frameworks key limitation for generating motion low prediction.

We show how the current approach is equivalent to combining learned local and global motions without

regard to the point position in space and time and how this strategy fails to model the complex motions

present in deformable objects.

1https://github.com/pedro-dm-gomes/AGAR
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• A novel module that combines hierarchical features in an adaptative manner according to the scene context.

The proposed module dynamically controls the composition of local and global motions for each point,

allowing the network to predict complex motions with higher accuracy and lexibility. This also ofers an

explainability tool.

• A graph-based module that exploits the point cloud geometric structure to form spatio-temporal neighbour-

hoods from where the meaningful dynamic features can be extracted. The structural information is further

included in the learned dynamic features, reducing the deformation of the predicted point cloud shape.

The remainder of this article is organized as follows. In Section 2, we provide a state-of-art of research for

point cloud prediction. In Section 3, we study the hierarchical component and identify the limitations of the state-

of-art prediction framework. Based on the limitations identiied in Section 4, we propose AGAR, an improved

architecture with graph-RNN cells and a novel Adaptative feature combination module. Section 5 describes

implementation details. Finally, the experimental results and conclusion are presented in Section 6 and Section 7,

respectively.

2 BACKGROUND

This section provides an overview of the research in dynamic point cloud processing (Section 2.1), followed

by a detailed description of the current state-of-art point cloud prediction framework and the notation used

throughout this paper (Section 2.2).

2.1 Related Works:

In the current literature, dynamic cloud processing has been approached from multiple overlapping directions

related to motion prediction (e.g., segmentation and action recognition). These high-level tasks share a common

challenge: extraction of temporal correlations between sequential point cloud frames, challenged by the irregular

structure and by the lack of explicit point-to-point correspondence across time. In the following, we summarize

the approaches proposed in the literature to overcome such challenges and how they lead to the development of

the current state-of-the-art framework for point cloud prediction.

An initial approach to learn from irregularly structured data such as point cloud data was to convert them into

a regular representation such as 2D multi-view [27, 51] or 3D voxels [39, 43] and then process the converted

data with traditional neural networks. This approach, however, sufered from high memory consumption and

quantization errors. Within this context, the hierarchical architecture proposed in PointNet++ [31], able to

process raw point cloud data directly, has become a pillar of work for learning-based point cloud processing. The

PointNet++ hierarchical architecture has been extended to dynamic point clouds, by introducing spatio-temporal

neighbourhoods to extract dynamic features. The spatio-temporal neighbourhoods still lack explicit point-to-point

correspondence over time. However, by processing the neighbourhoods at multiple scales, the network can

capture temporal correlations that would otherwise be hidden. This hierarchical learning strategy has proved

to be highly successful at learning from point cloud sequences and has been widely adopted throughout the

literature [9, 10, 17, 22, 23, 28, 38, 45]. In PSTNet [9], a hierarchical architecture is used for the action classiication

of point cloud sequences. In PointPWC-Net [45], a hierarchical architecture learns motion in a course-to-ine

fashion by learning a motion low and a cost function between two adjacent frames at each hierarchical level.

More recently, attention-based mechanisms have been incorporated into hierarchical architectures [8, 37, 40, 42].

The use of attention allows the network to selectively focus on the most important parts of the point cloud.

Although attention mechanisms do not fully address point-to-point correspondence, they allow for a more

lexible construction of hierarchical neighbourhoods by enabling selective aggregation within the network. For

example, in [37], an attention mechanism is used to sample the most critical points, enabling the network to

better correspond points over time. In [8], attention is incorporated into the spatio-temporal point aggregation,
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assigning greater weight to points that are more similar to the target point during the feature aggregation. It is

worth noting these aforementioned attention-based works, learn the attention of a point relative to the features

of other points, with the goal of improving the extracted features. We, on the other hand, propose to learn the

attention of a point relative to the features of each hierarchical level with the goal of reining the predicted

motion.

Although the methods presented above have demonstrated their ability to extract features from point cloud

sequences, they sufer from several drawbacks when speciically applied to the point cloud prediction task,

which is the focus of this paper. For instance, methods such as PointPWC-Net [45] learn a motion low between

two adjacent frames instead of learning a future motion to predict the next frames, preventing the model from

capturing long-term movements. Other methods, such as PSTNet [9], are able to capture long-term correlations

by processing all the sequence frames simultaneously. While this is an efective approach for classiication or

segmentation tasks, the memory required to process all the frames simultaneously prevents this approach from

being scaled to long sequences or applied to iterative prediction tasks. These drawbacks led to the implementation

of point-based hierarchical architectures into RNNs or their variants, e.g., Long Short-term Memory (LSTM) and

Gated Recurrent Unit (GRU). These types of models are designed to model sequential data, taking only one frame

as input at each interaction. The key characteristic of RNNs is their hidden states that can act as a memory. The

states store information from prior inputs and are continuously updated. As a result, the output of RNNs depends

on the input but also the prior elements within the sequence. Pioneer in this framework, PointRNN [7] learns

dynamic features from spatio-temporal neighbourhoods between two adjacent frames. The learned dynamic

features are then used as states storing the point’s history of movements to learn the next interaction features as

well as to predict future movements. This methodology inherits the ability to capture the long-term dynamic

behaviour of sequential data from RNN models while having low memory requirements. Following this approach,

several works [7, 25, 44, 48, 49] combined RNN cells or its variants into hierarchical architectures to model point

cloud sequences. These point-based hierarchical RNN architectures have been highly successful in modelling all

types of irregular data sequences from traic networks [33] to point-of-interest in images [13] and are currently

the state-of-the-art approach for iterative point cloud prediction. However, the majority of current point-based

methods proposed in the literature are focused on predicting the motion of point clouds from rigid objects,

leaving the unique challenges associated with predicting point clouds from deformable objects overlooked.

It is worth noting that while deformable objects have been overlooked in point-based processing, they have been

widely studied in robotics [16, 21, 47] and physics simulations [20]. In these ields, a point cloud representation is

commonly used in conjunction with prior knowledge of the object’s physics or structure. In [16, 21, 47], human

body motions are modelled using a skeleton-based representation. In [20], luid and elastic object dynamics are

modelled by imposing physical behaviour. In our work, no prior knowledge is given. We are given neither the

skeleton representations of the human body nor the psychical laws on the points of behaviour. Our work aims

to address the gap in point cloud processing methods when handling deformable objects. To this end, we irst

identify the current challenges caused by such objects and develop models speciically designed to handle such

challenges.

2.2 Hierarchical Point-based RNN Architecture for Point Cloud Prediction

In this section, we present an architecture that characterizes the state-of-the-art hierarchical RNN framework used

for point cloud prediction. We will use this model to identify the key challenges of current state-of-art (Section 3)

and to highlight the novelty of the solutions proposed in this paper (Section 4). Table 1 summarizes the main

notation used throughout the paper. Without loss of generality, we describe the iterative prediction framework

depicted in Fig. 2. Given a point cloud sequence P, at each interaction, the network processes one input point

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 2. Generic state-of-art framework for point cloud prediction for interaction at time � . The architecture is composed

of a Dynamic Extraction (DE) phase, a Feature Propagation (FP) phase and a prediction phase.

Terminology Description

level network layer extracting dynamic features at a speciic resolution.

spatial features vectors describing the point’s local geometric structure.

dynamic features vectors describing the point’s dynamic behaviour.

Parameter Description

P,� sequence of point clouds, and number of points clouds (frames) in sequence

�, �, � level, the total number of levels and points per neighbourhood.

�, � � original number of points and number of points at a level � .

��� ��,� ∈ �� point cloud and cartesian coordinates of point �

�̂�� �̂�,� ∈ �̂� predicted point cloud and cartesian coordinates of predicted point �

��� �
�
�,� ∈ ��� point cloud spatial features and spatial feature of point � .

��
� �

�
�,� ∈ ��

� point cloud dynamic features and dynamic feature of point � .

�� ,��,� ∈ �� point cloud motion vectors and motion vector of point � .

�Final
� �Final�,� ∈ �Final point cloud inal dynamic features and inal feature of point � .

ΘFP,ΘS,ΘD,ΘR,Θ� learnable network weights

�C
� ,�

ST,�
� coordinate and spatio-temporal graph.

��� attention value of point � to the feature of level � .

Table 1. Terminology & Notation

cloud �� ∈ R
�×3 and outputs the prediction of the point cloud at the next time step �̂�+1. The framework can be

described by three main phases:

(1) Dynamic Extraction (DE) phase: the network processes the input point cloud �� and extracts the point

cloud dynamic as multiple � levels of hierarchical features (�1
� , ..., �

�
� ).

(2) Feature Propagation (FP) phase: combines the learned features from multiple levels into a single inal

dynamic feature �Final
� ;

(3) Prediction phase: The inal features are converted via a fully-connected layer into motion vectors�� and

added to the input point �� cloud to predict the next point cloud �̂�+1.

We now describe the DE and FP phases in more detail. Being straightforward we omit the detailed description

of the prediction phase.

2.2.1 Dynamic extraction (DE) phase. Depicted on the left part of Fig. 2, the DE phase consists of multiple

sequential RNN cells, for a total of � levels (in the igure � = 3). Before being processed by each RNN cell,

the point cloud is downsampled by a Sampling and Grouping (SG) module, as described in [31]. At each RNN

cell, for each point, a dynamic feature is extracted by aggregating information from the point spatio-temporal

neighbourhood. In the majority of methods [22, 25, 29] the neighbourhood of each point is deined as the �

nearest neighbour (k-nn) points in the previous frame, where the proximity is measured using the Euclidean

distance between point 3D coordinates. The RNN cells are sequentially stacked in order to have the dynamic

features learned at an RNN cell be the input of the next RNN cell. It is worth noting that the subsequent sampling,

which results in a sparser point cloud at later levels/RNN cells, is responsible for the creation of hierarchical

neighbourhoods with a progressively larger geometric distance between points. Thus, the irst level (� = 1) learns

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 3. Example of matching points across time using geometric coordinates for three sequences: Running, Diving, Jumping

from [15] (These sequences are examples of particularly high motions for visualization purpose). The dashed circles show

a zoom-in of the regions where grouping using coordinates would create incorrect neighbourhoods. For example, in the

Running sequence, the points in the foot at time � are incorrectly matched with the points in lower-leg at � − 1.
local dynamic features �1

� from small-scale neighbourhoods, whereas the last level � = � learns global dynamic

features ��
� observing large-scale neighbourhoods.

2.2.2 Feature Propagation (FP) phase. Once the DE phase has learned the features from all the levels (�1
� , ..., �

�
� ),

the FP phase combines them into a single inal feature (������
� ). Currently, the most popular architecture for feature

combination is the original architecture proposed in PointNet++[31], which is also found in most state-of-art

methods without signiicant diferences. We will refer to this architecture as state-of-art Classic-FP (depicted in the

green side of Fig. 2). In the Classic-FP the features combination is done by hierarchically propagating the features

from the higher levels to the lower levels using several FP modules [31]. At each module, the sub-sampled features

from the higher level are irst interpolated to the same number of points as the lower level. The interpolation is

done by weighted aggregation of the features of the three closest � points in the sub-sampled point cloud as such:

�̃��,� =

∑3
�=1 ����� �,� × ��+1�,�
∑3

�=1 ����� �,�
, ����� �,� =

1

| |���,� − ��+1�,� | |
2

(1)

where �̃��,� ∈ �̃� is interpolated features from the number of points at level � + 1 to the number of points at level � .

The interpolated high-level features are then concatenated with a skip-linked connection to lower-level features

at the same number of points. The concatenation is processed by a point-based network that processes each point

independently via shared weights Θ�
��

as ��FP

� = ReLU (Θ�
��

{��
� ; �̃

�
� }). The process is repeated in a hierarchical

manner until the features from all the levels have been combined into inal features (�Final
� ).

3 CHALLENGES AND LIMITATIONS

The hierarchical point-based RNN framework, presented in the previous section, sufers several limitations when

facing the challenge of processing deformable objects such as human-body-like sequences. In this paper, we

explain why those challenges arise and how to overcome them. In the following, we disentangle the challenges

of current models as �) challenges in processing/predicting objects with deformable shapes (Section 3.1); ��)

challenges in predicting complex motions (Section 3.2). Taking advantage of the understanding built in this

section, in Section 4 we introduce our proposed method, built to overcome the main limitations identiied here.

3.1 Challenges in Processing Deformable Shapes

The main challenges encountered in processing and predicting objects with deformable shapes, such as clothing,

food, or human bodies are �) having a semantically-meaningful point-to-point correspondence (used to learn

dynamic features); ��) avoiding shape distortion (which is highly noticeable in 3D objects and therefore of high

negative impact on cloud prediction quality).

The challenge of establishing point-to-point correspondence is present in any point cloud processing, but it is

clearly exacerbated in the case of deformable 3D objects. The majority of current works follow the same strategy

as PointRNN [7] and assume that the points in the current frame are matched with points in close proximity in
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the previous frame. This proximity is built in the 3D Euclidean space. However, in 3D deformable objects, points

that are geometrically close in space are not necessarily semantically correlated and do not necessarily belong to

the same segment of the object. Fig. 3, shows three examples of how matching based on geometric proximity

can lead to the creation of misleading neighbourhoods. This means that point correspondence across time is

challenged by the mismatch between Euclidean proximity and semantically-meaningful proximity.

On the other hand, current methods often struggle to preserve the predicted point cloud shape. This is mainly

due to the fact that a separate motion vector is learned for every point with no clear semantic constraints. If these

motion vectors vary signiicantly among neighbouring points, the result is a prediction with a deformed shape.

This issue can be tackled by imposing hard shape constraints, such as learning a single motion vector for all the

points in a region. However, this strategy can only be applied to rigid objects. In deformable objects, the object

shape changes according to diferent postures, meaning points must be allowed to have separate motions. Thus,

it is important to strike a balance between preserving the shape and having enough per-point motion lexibility

to predict possible shape variations. The key to achieving this balance is to capture the underlying semantic

structure and take it into account as a soft shape constraint during the learning process.

Both challenges of point correspondence and shape deformation can be summarized in the following limitation:

Lack of structural relationship between points in point cloud prediction (Limitation 1). Learning and

exploiting this prior in the learning process is one of the novelties of our proposed model and it will be speciically

addressed by learning a semantically-meaningful graph and exploiting this graph when extracting features (via

graph-RNN cell).

3.2 Challenges in Processing Complex Motions

A second key challenge present in processing 3D dynamic objects as the human body is that the movement of

such objects is usually a complex motion. Complex motions refer to movements that involve a combination of

multiple degrees of freedom such as translation, rotation, and deformation, which are applied to diferent parts of

the object independently. This is typical of deformable objects or any 3D objects with disjoint components, each

of them with its own movement. As an example, consider a point cloud representing a human body running

forward (Fig.4 (a)-Man-Running). While the full body moves forward (translation), the person swings their arms

(rotation), and their hand bends from an open to a closed position (shape change). The complex nature of such

movements makes them challenging to be accurately captured and predicted. Based on a novel visualization

technique that we introduced in our previous work [12] on explainability, we now highlight key limitations of

the current architectures. Speciically, we show how complex motions can be seen as a sum of low-, medium- and

high-level motion leading to an understanding that the current model sufers from the following main limitation:

the ixed combination of hierarchical features in the prediction phase (Limitation 2). We now explain

this limitation in more detail.

In our explainability work [12], we have demonstrated that motion vectors inferred by hierarchical architectures

(Fig.2) can be disentangled into individual motion vectors produced at each hierarchical level, as follows.

�� =

�︁

�

��
� , where��

� = ���������� (�
�
� ) (2)

Where��������
��

is the function that replicates the operation of the Classic-FP in a disentangle manner, converting

the learned feature at each level � to an individual motion vector��
� , and�� is the inal predicted motion vectors

outputted by the network. This leads to the interpretation that current approaches in the literature model

complex motions as a combination of local and global motions, which are learned as hierarchical dynamic

features. This is illustrated in Fig. 4, which depicts the dynamic features as motion vectors and the hierarchical

neighbourhoods given two point cloud sequences as input to a state-of-art prediction architecture (presented in

Fig.2) with three levels (� = 3) [12]. In both sequences, it can be seen that the lower level learns features only by

ACM Trans. Multimedia Comput. Commun. Appl.
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(a) Man-Running. (b)Woman-Running.

Fig. 4. Hierarchical of dynamic features as motion vectors given for two input sequences (Man-Running and Woman-

Running). For each sequence, the figure shows input dynamic point cloud, multi-scale neighbourhood at diferent levels,

and motion vectors learned at each level of the network.

looking at points in a small area (top gold squares in the igure). In contrast, the higher level learns features by

considering a sparser set of points in a large area (bottom blue squares in the igure). In the example in Fig.4 (a),

in which the runner’s foot performs a complex motion, it can be observed that the lowest level captures small

and diverse motions (e.g., rotation of the heel)�1
� , while the highest level learns the forward motion of the entire

body�3
� .

This interpretation of features as motion vectors can be generalized for the majority of current methods

because while they difer in the feature extraction process, they all share the Classic-FP strategy to perform

the motion reconstruction process. As such we elaborate on this explainability technique to identify current

state-of-art framework limitations to predict complex motions. Namely, the motion vector prediction is obtained

by combining the dynamic features from the diferent levels via a learned weighted combination. However, each

point motion is obtained using the same set of combination weights [Θ1
FP, . . . ,Θ

�
FP] for all points, frames, and

sequences. As a result for every point, regardless of its position space and time, the predicted motion is obtained

by the same ixed combination of local, medium and global motions. Based on this technique, we can understand

that �) diferent features can be associated with the diferent levels of motions forming the complex resultant

motion, and ��) knowing diferent parts of the objects might be subject to diferent types of movements highlights

the strong limitation in having the same combination of motion levels. Speciically, while a set of weights might

lead to the appropriate combination of the motion vectors in Fig.4 (a), in which a local movement is analysed

(foot), it does not hold in the case of the "Woman-Running sequence in Fig.4 (b), in which a more global movement

is highlighted (torso). The points in the lower torso perform a rigid movement forward corresponding to the

global motion of the body, while the lower part of the body performs a quite dynamic rotation of the foot. This

means that only the global motion vector (pointing forward) would be suicient to describe the movement of the

torso. However, local features (hence local motions) cannot be neglected since this would lead to neglecting the

local motions in parts with strong local movement, such as the foot. As a result, in Fig. 4 (b) local motion vectors

(�1
� ) clearly lose any motion interpretation and become instead random vectors mainly used to compensate for

the erroneous addition of multiple motion vectors in this part of the body.

It is worthmentioning that while this understandingmight appear straightforward, to the best of our knowledge,

this is the irst work explaining PointRNN and similar hierarchical architectures when processing 3D deformable

objects, showing the limitation in adopting a ixed combination of hierarchical features in the prediction phase.

In the next section, we propose an architecture that overcomes this limitation by introducing an attention-based

mechanism in the prediction phase.
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Fig. 5. ProposedAGARprediction architecture composed of DE, FP and prediction phase. In the DE phase, the architecture

consists of an SS-GNN module followed by graph-RNN cells. The SS-GNN module extracts spatial features from the point

cloud, which are then utilized by the graph-RNN cells to learn dynamic features. In the FP phase, the state-of-art FP modules

are replaced by a novel Adaptative feature combination module able to dynamically combine hierarchical features according

to the scene.

Fig. 6. Spatio-Temporal graph ��� , with some temporal edges colored in red; Dashed box depicts the diference between

building the ��� using spatial features or using point coordinates.

4 PROPOSED AGAR METHOD

To address the limitations identiied in the previous section, we now propose an improved architecture for

point cloud prediction, depicted in Fig. 5. The proposed architecture preserves the state-of-art global framework

composed of a DE, FP and prediction phase. However, we propose to replace current state-of-art modules with

improved versions to leverage the point cloud semantic structure during the DE phase and to perform an

adaptative combination of dynamic features in the FP phase.

4.1 Addressing Limitation 1: Inclusion of structural relationships between points

To overcome the lack of geometrical prior with meaningful spatial/semantic information, we propose an initial

graph neural network denoted by Spatial-Structure GNN (SS-GNN) that processes each frame to extract for each

point spatial features that carry local topological information. From the learned spatial features, we then construct

a spatio-temporal graph that incorporates the point structural/semantic information and uses that information to

build representative neighbourhoods of points. The spatio-temporal graph is processed by a proposed graph-RNN

cells that can extract point cloud behaviour as dynamic features. Below, we present each of the proposed modules

in detail.

4.1.1 Spatial-Structure GNN (SS-GNN). Given an input point cloud �� for each point � , the SS-GNN learns a

spatial feature ��,� describing the point’s local geometric structure. To learn these features SS-GNN starts by

constructing a coordinate graph G�
� = (�� , E

�
� ) by taking the points �� as vertices and by building directed edges

E�
� ∈ R

�×� between each point to its �-nearest neighbours based on Euclidean distance. The SS-GNN is composed

of three layers, each layer performs a graph message-passing convolution [46]. At the ℎ-th layer, for a target

point � , all its neighbouring points � ∈ E�
� exchange a message along the edge connecting the two points. The
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message between points is obtained by processing the concatenation between the target point spatial feature

at the previous layer �ℎ−1�,� ; the target point coordinates ��,� ; the geometry displacement between target points �

and it neighbours � (Δ�� � ). A symmetric function is then applied to aggregate all the messages into an updated

feature for the target node. More formally, the message between two nodes (�ℎ
��,� ) and the output spatial features

(�ℎ�,� ) are obtained as follows:

�ℎ
� �,� = Θ

ℎ
� (�

ℎ−1
�,� ; ���,� ;Δ�� � ) (3)

�ℎ�,� =
⊕

�∈E�

�

{

�ℎ+1
� �,�

}

(4)

where Θ
ℎ
�
is a set of learnable parameters at layer ℎ and ’;’ identiies the concatenation operation. The

⊕

represents an element-wise max pooling function that acts as an activation function by introducing non-linearity.

It is important to note that the above operation does not involve spatio-temporal aggregation. The SS-GNN

processes geometric relations between a point and its neighbourhood at the same time step to learn the point’s

local topology. This information is used to build the spatio-temporal graph processed by subsequent modules.

4.1.2 Graph-RNN. Each graph-RNN cell, at level � , takes as input the point coordinates, spatial and dynamic

features (��� �
�
� �

�
� ) and learns updated dynamic features ��+1

� describing the point’s dynamic behaviour. To this

end, using the output from its previous interaction at time � − 1 in a recurrent manner, the graph-RNN cell builds

a spatio-temporal graph GST, �
� = (��� , E

ST
� ) between the point clouds ��� and �

�
�−1. Unlike the coordinate graph,

which is built on geometric distances, the spatio-temporal graph is built based on the spatial features distance.

Speciically, for each point � at time � , we calculate the distance between the point spatial feature ��,� and the

spatial feature from other points in the present frame � �,� and in the past frame � �,�−1. Each point � is connected

to its �-closest points in present time � and its �-closest in past time � − 1. By connecting points that share a

common local structure, we are able to establish correspondence between points that despite not being close in

the Euclidean space, they share semantic similarities and therefore they will most likely share motion vectors.

Fig. 6 depicts an example of a spatio-temporal graph constructed between two frames in a fast-moving sequence

of a person running (some edges are hidden for image clarity). The dashed boxes in Fig. 6 show the edges built for

the points in the foot when using spatial feature distance śour approachś (upper box, in red) and the edges built

if we had used coordinate distance śstate-of-art approach- (lower box, in blue). The edges built on spatial feature

similarity (in red) can correctly match points across time, while edges based on geometry proximity would lead

to incorrect grouping. As a result, the network learns dynamic features from neighbourhoods of points that share

similar semantic/structural properties.

Similarly to the SS-GNN, the graph-RNN extracts dynamic features by performing a message-passing convo-

lution between a point and its neighbourhoods in the spatio-temporal graph. For each target point, we learn a

message for each edge by processing the concatenation of the target point dynamic feature (���,� ); the neighbour

point dynamic feature (���,� ′ ) where �
′ can be either � or � − 1; the coordinates diference (Δ�� � ), spatial features

diference (Δ�� � ); temporal diferent (Δ�� � ) between the target and neighbour point. All the messages are aggregated

into a single representation to update the target point dynamic features ��+1�,� . The operation can be formalized as:

��
� �,� = Θ

�
� (�

�
�,� ; �

�
�,� ′ ; Δ�� � ; Δ�� � ; ;Δ�� � ) (5)

��+1�,� =

⊕

�∈EST
�

{

��
� �,�

}

(6)

The learned spatial features are used not only to connect points with similar spatial characteristics in both

the present and past frame but are also directly incorporated in the graph-RNN convolution. As a result, the
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Fig. 7. Adaptative Feature Combination Module. Given a framework with three hierarchical levels, the module takes as

input dynamic features �1
� , �

2
� , �

3
� and outputs a single final dynamic feature ������

graph-RNN learns a point dynamic behaviour taking into account structural relations to neighbourhood points.

This inclusion of point spatial features in the graph-RNN cell convolution, allows the network to learn more

representative dynamic features and helps to preserve the predicted point cloud shape.

4.2 Addressing Limitation 2: Adaptative Feature Combination

We now address the current framework limitation to generate complex motions caused by the ixed combination

of dynamic features in the FP phase. To overcome the issue, we propose to replace the FP modules with an

attention-based module denoted Adaptative feature combination represented in detail in Fig.7. Instead of using

a ixed combination, the proposed module dynamically assigns an attention value to each level based on the

learned features. This attention value determines the amount of inluence each level will have on the predicted

motion of the point.

In detail, given an architecture with L hierarchical levels (� = 3 in the example in Fig.7 ), the proposed

Adaptative Feature combination module takes as input the dynamic features (�1
� , �

2
� , ..., �

�
� ) learned in the DE

phase and combines them into a single inal dynamic feature (�Final
� ). However, we recall that each RNN cell is

preceded by a downsampling module, hence each feature needs to be up-sampled before being combined. To do

this, the proposed module irst interpolates the dynamic features to the same number of points as the irst level

and processes each independently through a reinement layer Θ�
�
to ensure the features are on a similar scale, as

follows:

� (��
�̃,�
) = �

(

Θ
�
� {��

�̃,�
}
)

(7)

where ��
�̃,�

are the interpolated features to original number of points,� (��
�̃,�
) are the outputted reined features and

� is the activation function. To learn scalar attention values ���,� , the network concatenates the reined features

from all levels and processes them through learnable parameters Θ�
� as follows.

���,� = �
(

Θ
�
� {� (�

1
�,� );� (�

2
�̃,�
);� (�3

�̃,�
)}
)

(8)

The reined dynamic features� (���,� ) are then multiplied by their respective attention value. Hence, the � value

relects the inluence that the learned feature has on the predicted motion, allowing the network to adjust the

contribution of each level to the predicted motion.

Ψ(���,� ) = � (���,� ) × ��
�̃,�

(9)
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(a)Man-Running. (b)Woman-Dancing.

Fig. 8. Adaptative Features Combination operation. Example of how the proposed module adaptatively combines local

and global motion for diferent points, and comparison with Classic-FP.

Lastly, the dynamic features post-attention module Ψ(���,� ) are combined by a single learnable layer (Θ�� ) into

the inal dynamic features �Final�,� ∈ �Final
� .

�������,� = �
(

Θ�� {Ψ(�
1
�,� ); · · · ;Ψ(�

�

�̃,�
)}
)

(10)

4.2.1 Explainablity of the Adaptative feature combination module. A key beneit of the Adaptative feature com-

bination module is that its underlying mechanism can be visualized and explained. This can be seen in Fig. 8,

which illustrates how the proposed module combines dynamic features to produce motion vectors given two

point cloud sequences (Man-Running and Woman-Dancing). For each sequence, Fig. 8 depicts the PCA of the

dynamic features learned at the DE phase; the learned attention values per point; the individual motion vectors2

produced at each level in the proposed Adaptative architecture and in the Classic-FP architecture (presented in

Section 2.2 and Fig.2).

In the Man-Running sequence depicted in Fig. 8 (a), at the irst level the network assigns high attention values

(�1
� ) to the arms and low attention values to the points in the rest of the body. As a result, the predicted motion of

the points in the arms is heavily inluenced by local motions, while in the rest of the body, the local motions

have a very small inluence on prediction. The network exhibits similar selective behaviour at the second level,

assigning higher attention to the points in the left foot, increasing the inluence of the dynamic features �2
� have

on the motion of the foot. In the third and inal level, the network learned non-zero attention values �3
� for the

majority of the body. As a result, in the Man-Running sequence, the global motion is the primary contributor to

the predicted motion of the points, with the exception of the arm and the foot regions, where the prediction is

given by a combination of motions from multiple levels.

Similar considerations can be derived from the second example Woman-Dancing, in which the learned global

motions are an accurate descriptor for the majority of the points, except for certain regions with more local

movements. The Adaptative feature combination module is able to distinguish between regions and combine

2For the sake of image clarity, the motion vectors were uniformly sampled
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properly the diferent levels of motions based on the distinction. It is worth noting that diferent attention

values are learned for the Man-Running andWoman-Dancing sequences, demonstrating the network’s ability

to adapt the attention according to the characteristics of the input data. In summary, the proposed Adaptative

feature combination module combines features in an adaptative manner, allowing it to control the composition

of global and local motions that best describes the motion of each point. This adaptative operation can be

understood and explained through visualization, which may be beneicial for future research on developing more

expressive architectures.

5 IMPLEMENTATION

In this section, we describe the datasets and implementation details of our proposed method.

5.1 Datasets

In our experiments, we considered the following datasets:

Mixamo Human Bodies Activities: Synthetically human motions generated following [36], using the online

service Mixamo [15] and Blender software [1]. Despite being synthetic, the dataset provides an accurate represen-

tation of real-world movements. We create 152 test sequences and 9, 375 training sequences (further augmented

by randomly changing movement direction, speed, and the body starting position during training). Each training

sequence consists of approximately 50 frames, and for each sequence, we sample � = 12 consecutive frames as

inputs to the model during training. Similarly, the testing sequences are composed of 12 frames. Each frame in

the dataset contains a point cloud consisting of 1, 000 points, which we found suicient for capturing a rich and

detailed representation of the human body.

CWIPC-SXR Human motions [32]: Real-world human motions in social settings. The dataset consists of 21

dynamic sequences. The irst 60 frames of each sequence are sampled at 10 fps and to 1, 000 points, resulting in

21 sequences of 15 frames. Given its reduced size, this dataset is not used for training but only for testing.

JPEG Pleno Voxelized Full Bodies [5]: Real-world human bodies. The dataset is composed of four sequences

known as longdress, loot, redandblack, and soldier. Each sequence is downsampled to 12 frames and 1, 000 points.

This dataset is used only for testing.

Moving MNIST Point Cloud: Created by converting the MNIST dataset of handwritten digits into moving

point cloud, as previous works [7]. The sequences are generated by applying rigid motion at random to each

digit. Each sequence contains 20 frames (� = 20) with either 128 (1 digit) or 256 points (2 digits).

Argoverse [3]: Large scale automotive dataset. We use the same train and test data as in PointRNN [7]. The

dataset contains 910 training sequences and 209 test sequences. Each sequence contains 20 frames (� = 20), and

each frame is downsampled to 1024 points.

MSRAction3D [19]: Real-world human motion performing annotated actions. The dataset consists of 567 Kinect

depth videos with 20 action categories. We sampled each point cloud to 1024 points and used the same training

and test conditions as works [9, 23].

5.2 Benchmarking

This subsection outlines the tasks, as well as the state-of-the-art benchmark methods used for comparison.

5.2.1 Prediction Task. In the prediction task, we consider both short-term and long-term predictions. In short-

term prediction, at each iteration, the network takes as input the ground truth frame �� to predict the next

frame �̂�+1. At the following prediction step, the network will be predicting �̂�+2, having as input the ground

truth ��+1. This is repeated till the end of the sequence. In long-term prediction, the predicted frame from the

previous interaction �̂� is used as input to predict the next frame �̂�+1. In long-term prediction, only the later

half (� /2) of sequence is predicted using this strategy. For benchmarking, since point cloud prediction of human

bodies is mostly an unexplored topic, the range of possible choices of baseline methods to compare our work is
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limited. Moreover, many of the existing point-based RNN point cloud prediction methods designed for automobile

scenes do not provide the necessary materials to be replicated. Therefore, besides selecting the most related

works available, we adapted several methods that, while not originally designed for point cloud prediction, are

well-recognized in the ield of point cloud sequence processing. For the point cloud prediction task, we consider

the following as baseline models: (i) Copy-Last-input model, which simply copies the past point cloud frame

instead of predicting it; (ii) PointPWC-Net [45] a hierarchical point-based architecture to extract the motion low

between two frames; (iii) FlowStep3D [17] a hierarchical point-based architecture to extract learned motion low

between two frames via RNN cells; (iv) PSTNet [9] a hierarchical point-based architecture for action classiication

of human body sequences; (v) Monet [25], an LSTM point-based approach with an attention mechanism for

feature extraction; (vi) PointRNN [7] (�-NN): point-based RNN architecture presented in Section 2.2. Both

PointPWC-Net and FlowStep3D were originally designed to learn the motion low between two frames. To

extend these two models to the task of predicting future frames, we incorporate a prediction phase into their

architectures. This prediction phase reines the extracted motion low via fully connected layers and calculates a

predicted point cloud at the next time step. Similarly, the PST-Net architecture, designed for action classiication,

is adapted for the prediction task by adding an FP phase (with Classic-FP) to propagate the learned features to the

original number of points, followed by a prediction phase to generate a prediction of the point cloud at the next

timestep given the propagated features. To diferentiate the adapted models from their original counterparts, we

denote the adapted models for the prediction task as PointPWC-Net-pred, FlowStep3D-pred and PST-Net-pred

respectively.

5.2.2 Action Classification Task. To study the generalizability of the proposed AGAR framework for dynamic

feature learning, we extended its application to the classiication task. In this task, the AGAR takes a point cloud

sequence as input and outputs a classiication score. To adapt AGAR for the classiication task, we discarded the FP

phase and the prediction phase. Instead, the dynamic features from the last level are max-pooled to form a global

feature, which is used to generate the classiication score. We denoted this architecture adapted for classiication

tasks as AGAR-cls. Given human action classiication from point clouds sequences a well-studied problem we

compare AGAR-cls to well-established methods such as MeteorNet [23], PSTNet [9], P4Transformer [8] without

adaptations.

5.3 AGAR Architecture details

For the prediction and classiication tasks, we implemented AGAR and an AGAR-cls (adapted for classiication)

architectures with three hierarchical levels (� = 3) respectively. In both cases, the SS-GNN in the irst level

consists of three layers with 64, 128, and 128 dimensions, respectively. Before each level, the input point cloud

is downsampled to 250, 64, 16 points, respectively. The number of points at each level was selected through

experimentation. The pre-deined number of points means AGAR can efectively process high-resolution point

clouds since only the irst FPS operation is afected by the input size. Each level contains a graph-RNN cell that

learns dynamic features with 128 dimensions. The number of nearest neighbours (�) is 8 for all graph-RNN cells.

All the models are trained using the Adam optimizer, with a learning rate of 10−4 for 500, 000 interactions. In

the training phase, we utilize a batch size of 16 for the Mixamo Human Bodies dataset, 32 for the MNIST and

MSRAction3D dataset, 4 for the Argoverse dataset.

5.4 Training and Metrics

The AGAR architecture has multiple end-to-end parameters, trained in a self-supervised fashion by comparing

the predicted point cloud �̂�+1 with the target point cloud ��+1. Unlike supervised methods [17, 23, 41, 45], which

require the ground-truth motion low to train the network, in a self-supervised setting the ground-truth data can
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be obtained from the input data itself. This technique allows us to train on a dataset of deformable dynamic point

clouds, such as human bodies dataset [5, 15, 32], where annotated ground-truth motion vectors are not available.

5.4.1 Training Metrics. To measure the diference between the predicted point cloud and the ground-truth point

cloud during training, we employ the commonly used chamfer distance (CD) [14] and earth’s moving distance

(EMD) [2]. These metrics are deined as the following:

Chamfer distance (CD) : The CD measures the distance between each point in the predicted point cloud and its

closest target point in the reference point cloud, and vice-versa.

��� (�, �̂) =
1

�

︁

�∈�

min
�̂∈�̂

| |� − �̂ | |2 +
1

�

︁

�∈�̂

min
�∈�

| |�̂ − � | |2 (11)

Earth’s moving distance (EMD): The EMD solves an optimization problem, by inding the optimal point-wise

bijection mapping between two point clouds � : � −→ �̂ . The EMD distance is then given by the distance of the

points at both ends of this mapping, as follows:

���� (�, �̂) = min
� :�−→�̂

︁

�∈�

| |� − � (�) | |2. (12)

Although the EMD and CD metrics are commonly used in point cloud analysis, they may not always provide an

accurate measure of similarity. The CD only considers the nearest neighbour of a point and does not take into

account the global distribution of points. On the other hand, EMD tries to ind a unique mapping between two

point clouds. However, in most cases a unique mapping is realistically impossible, resulting in a measurement

that is rarely correct for all points. Since CD and EMD measure diferent notions of similarity with diferent

shortcomings, we use a combination of both metrics as the loss function in order to make the loss function more

robust.

5.4.2 Evaluation Metrics. To evaluate our model we used the CD and EMD metrics also used for training.

However, since CD and EMD measure the similarity between two point clouds by averaging the distance across

all points, they tend to latten their distance scores towards zero values. This is because in a point cloud, the

majority of points are perfectly predicted (either no motion or little motion), and most of the high prediction

errors are concentrated in small areas of high or complex motion. Therefore, to better evaluate the model’s ability

to predict complex motions, besides the CD and EMD, we also consider the following additional evaluation

metric.

Chamfer distance of the top %5 worst points (CD Top %5): This metric returns the average CD distance of the 5% of

points with the worst predictions (i.e., points with the farthest distance to their closest point). We found that this

CD Top %5 focuses on the regions where the body performs complex motions and provides the best correlation

with the visual quality. To the best of our knowledge, we are the irst to work to present results using CD top 5%

metric.

6 EXPERIMENTAL RESULTS

In this section, we present and discuss the results of our proposed AGAR method, described in Section 4 for each

task and dataset. We begin by presenting and discussing the results of point cloud prediction of human body

motions, which is the main goal of this paper. Next, to study the robustness of the proposed method, we present

the experimental results for the prediction of rigid point clouds (i.e., moving digits and automobile scenes). This

is followed by the results for action classiication on human body motions. Lastly, we present an ablation study

on the prediction of human body motions.
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Fig. 9. Example of prediction of human body activities on the Mixamo dataset.

6.1 Prediction of Synthetic Human Bodies Motions - Mixamo human bodies

The short-term prediction results fromMixamo dataset of human body activities can be found in Table 2 and Fig. 9

depicts prediction examples for two sequences. In addition to evaluating the AGAR architecture with Adaptative

feature combination described in Section 4, we also evaluate a modiied AGAR architecture where the Adaptative

feature combination is replaced by Classic-FP. The results in Table 2 show PointRNN and both variations of the

AGAR architecture outperformed the remaining methods by a large margin, demonstrating the superiority of

the RNN architecture for interactive prediction. Furthermore, both AGAR architectures consistently outperform

PointRNN, achieving lower prediction error in all three metrics (CD, EMD, CD Top%5). Notably, the AGAR with

Adaptative feature combination) achieves an EMD error of 58.2, surpassing PointRNN’s EMD error of 68.0 with a

10.2 gain. This gain is especially signiicant for deformable objects since shape distortion has a high visual impact.

This is particularly noticeable in the last frame (� = 10) of the "Woman-Turning" sequence (in Fig. 9), where the

AGAR prediction sufers less deformation compared to the PointRNN prediction. In the following, we analyze the
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Mixamo

(Synthetic Human bodies dataset)

Model CD EMD
CD

Top 5%

Copy-last-input 0.01056 123.4 0.2691

PointPWC-Net-pred[45] 0.09358 118.5 0.2601

FlowStep3D-pred[17] 0.09153 115.6 0.2575

PSTNet-pred[9] 0.08984 114.1 0.2556

MoNet[25] 0.06486 75.7 0.1897

PointRNN[7] 0.00351 68.0 0.1593

AGAR
Classic-FP 0.00262 59.6 0.1412

Adaptative 0.00254 58.2 0.1346

Table 2. Point cloud prediction results on the Mixamo dataset

Mixamo

(Synthetic human bodies dataset)

Model Type of graph Spatial features CD EMD
CD

Top 5%

AGAR

(Classic-FP)

(i) spatio-temporal ✓ 0.00262 59.6 0.1410

(i) spatio-temporal × 0.00341 67.0 0.1602

(ii) only temporal ✓ 0.00266 60.0 0.1417

Table 3. Comparison of three variations of the AGAR framework demonstrating gain from the including structural relations

between points in the spatio-temporal graph.

improvement provided by each component of the proposed AGAR method to better understand the impact of

each limitation on the prediction task.

To understand the impact of combining features in an adaptative manner we compare the AGARwithAdaptative

feature combination and the AGAR with Classic-FP. Table 2 shows the AGAR with Adaptative feature combination

achieves a lower prediction error compared to the AGAR with Classic-FP. While the error improvement in terms

of CD and EMD is relatively small, the CD Top 5% metric, which is more sensitive to local distortion, shows a

clear improvement in the AGAR with Adaptative feature combination. The superior performance of adaptatively

combining dynamic features can also be seen by looking at the visual results in Fig.9. We can notice the AGAR

with Adaptative features combination predicts better speciic regions such as the hands and the legs, which involve

complex motions. This improvement is due to the module’s ability to generate reined motion predictions required

in these regions. These results show the clear advantage of adaptively combining dynamic features to

predict complex motions.

To understand the advantages of incorporating the structural relations between points when dynamic learning

features, in Table 3 we compare: i) an AGAR architecture; ii) an AGAR model that does not learn spatial features

(without the SS-GNN module). Hence does not take the structural relation between the point into account, when

learning dynamic features; iii) an AGAR model that learns spatial features, but builds only a temporal graph i.e.,

a k-nn graph is built only connecting each point of the frame � with points in frame � − 1 (the total number of

neighbours � = 8 remains the same for fairness). All three model variations have a Classic-FP phase. The results

show there is a relatively small gain in building a complete spatio-temporal graph but signiicant improvement

by learning spatial features. It is worth noticing, that the CD Top 5% (the most sensitive metric to point cloud

local shape distortion) is signiicantly lower in the model that learns spatial features compared to the model that

does not learn spatial features. This demonstrates that while both models are able to capture the overall motion,

the inclusion of spatial features in the DE phase signiicantly improves the accuracy and preservation

of the predicted point cloud’s shape.
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JPEG and CWIPC-SXR

Real-world human bodies dataset

Method
JPEG CWIPC-SXR

CD EMD
CD

Top 5%
CD EMD

CD

Top 5%

Copy Last Input 0.00118 42.0 0.09001 0.00295 43.2 0.12915

PointRNN 0.00109 41.3 0.083461 0.00157 43.4 0.10973

AGAR
Classic-FP 0.00101 38.6 0.08172 0.00150 40.8 0.10655

Adaptative 0.00095 37.4 0.07754 0.00155 39.8 0.10760

Table 4. Prediction error for the JPEG and CWIPC-SXR datasets.

Argoverse

Automobile scenes dataset

Method
Long-Term Prediction

CD EMD

Copy Last Input 0.5812 1092.3

PointRNN 0.2541 895.28

AGAR
Classic-FP 0.2680 875.22

Adaptative 0.2839 893.24

Table 5. Prediction error for the Argoverse

dataset.

Fig. 10. Long-term MNIST predictions examples.

MNIST

Dataset

Method

Long-Term prediction

1 digit 2 digits

CD EMD CD EMD

Copy Last Input 262.46 15.94 140.14 15.8

PointRNN 2.25 2.52 14.54 6.42

AGAR
Classic-FP 0.88 1.52 1.67 2.60

Adaptative 0.96 1.60 1.75 2.62

Table 6. Prediction error on the MNIST dataset.

6.2 Prediction of Real Human Bodies Motions - JPEG and CWIPC-SXR dataset

We now turn our focus to real-world human bodies datasets: the JPEG and CWIPC-SXR datasets. Since both

the JPEG and CWIPC-SXR datasets are too small to train models, they are only used for the evaluation of the

models trained on the Mixamo dataset. Table 4 depicts the short-term prediction results from real-world data

from the JPEG dataset, and the CWIPC-SXR dataset. It can be noted the Copy-last-input model has a signiicantly

lower prediction error (EMD of 42) in real-world datasets compared to the error on the Mixamo dataset (EMD of

123). In the JPEG and CWIPC-SXR datasets, the point clouds were acquired from real test subjects only allowed

to move in a small area, resulting in a lower magnitude of motion compared to the Mixamo dataset. As such,

real-world datasets are signiicantly easier to predict, and all tested models are able to make accurate predictions.

Among them, the AGAR model achieves the smallest prediction error across all metrics. However, given the low

magnitude of motion, the diferences between models are minimal. Importantly, these results demonstrate that

the AGAR model trained on synthetic human motion datasets can be efectively applied to real-world human

motion datasets despite the large disparity in motion magnitudes between the two datasets.

6.3 Prediction of Rigid Object - MNIST dataset Moving Digits

The simplicity of representation and movements performed by the MNIST dataset makes it the ideal dataset to

test the long-term prediction of the proposed AGAR method. Long-term prediction is when the network uses its

output predictions at a time-step as input for the subsequent time-step. We present the prediction results for

the MNIST dataset in Table 6, and prediction examples in Fig.10. Table 6 shows the AGAR model has superior

prediction performance compared to the PointRNN model. This performance gap is particularly large for point

clouds containing two digits. In two-digits, the Point-RNN CD prediction error is 14.54 whereas the AGAR

(Classic-FP) CD error is 1.67. This large gain is due to the AGAR’s ability to learn spatial features, which allows it

to understand the structure to discern the two distinct shapes. This improvement can be seen in Figure 10, where

all the evaluated models exhibit a progressive loss of shape. However, the AGAR model sufers from signiicantly

less deformation compared to Point-RNN. This visualization demonstrates that the AGAR is better at preserving
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MSR Action

Method Input

Accuracy

#Frames

1 4 8 12 16 18 20 24

Vieira et al. [35]
depth

78.20

Klaser et al. [18] 81.43

PointNet++ [31]

point

61.61

MeteorNet [23] 78.11 81.14 86.53 88.21 88.50

PSTNet [9] 81.14 83.50 87.88 89.90 91.20

P4Transfomer [8] 80.13 83.17 87.54 89.56 90.94

AGAR-cls 81.48 87.20 88.21 88.55 90.09

Table 7. Action recognition accuracy (%) on the MSR-Action3D dataset for 4, 8, 12, 16, 24 frames as input.

the spatial structure over time, a direct efect of learning the point cloud spatial structure. Lastly, it can be noted

the AGAR model with adaptative feature combination and with the Classic-FP have a similar prediction error,

also seen in the example in Fig. 10. The reason being in the moving digits dataset there are no complex motions

(i.e, the digits perform simple rigid translation), as such the control over the motion provided by the Adaptative

features combination module is just unnecessary parameterization and does not translate into more accurate

predictions.

6.4 Prediction of Automobile scenes- Argoverse dataset

Table 5 shows the results of training and evaluating the AGAR model and the PointRNN baseline with the

Argoverse automobile dataset. Not surprisingly, both methods achieved similar prediction errors. This was

an expected result, as the characteristics of deformable bodies on which AGAR relies are not present in the

automobile dataset. More speciically the structural information in the data is not informative and reliable enough

for the SS-GNN module to leverage when learning features. Similarly, the data does not perform complex motions

that would require Adaptative features combinationmodule. Hence, the inclusion of both modules is not translated

into a meaningful gain. However, despite being designed for deformable objects, the results demonstrate that

the proposed AGAR is still capable to process and capturing the overall correct movement from point clouds of

automobile scenes.

6.5 Action Recognition of Human Motions - MSR3DAction Dataset

Table 7 presents the results of the action recognition task on the MSRAction dataset. As described in Section 5.2,

here we compare the AGAR-cls with multiple well-known methodologies optimized for action classiication. In

the table, we provide the accuracy of diferent methods given input point cloud sequences of 4, 8, 12, 16, 24 frames.

When looking at a shorter sequence (less than 12 frames), the proposed AGAR-cls outperformed state-of-art

methods. Notably, for sequences of 8 frames, the AGAR-cls achieved 87.2% accuracy a 5% improvement over the

PSTNet and P4Transfomer. However, such relative gain is lost for sequences longer than 12 frames, where both

PSTNet and P4Transformer are slightly better than AGAR-cls. The reason for this performance decline in relation

to state-of-art can be attributed to the RNN architecture of the AGAR-cls framework. Accurate action recognition

requires the model to retain information about early movements throughout the entire sequence. In the AGAR-cls

this information is retained in RNN hidden states. However, these states are continuously updated each iteration,

as a result, the older information is not eiciently retained as PSTNet which processes all frames simultaneously.

Despite this limitation, the results demonstrate the AGAR-cls ability to capture complex motions from human

body point clouds, making it a promising model for action recognition tasks, especially for shorter sequences.

Furthermore, the understanding of the dynamic feature’s role in capturing complex human motions presented in

Section 3, can also provide valuable insight for action recognition. Understanding how the composition of local

and global motions leads to a class prediction can help explain why certain actions are misclassiied, leading to

the design of more accurate architectures.
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Mixamo

(Synthetic human bodies dataset)

Number of

levels
CD EMD

CD

Top 5%

1 0.00296 65.4 0.166

2 0.00276 61.2 0.1461

3 0.00262 59.6 0.1412

4 0.00290 62.0 0.14745

Table 8. Efect of the number of levels.

Mixamo

(Synthetic human bodies dataset)

Number of

neigborhoods
CD EMD

CD

Top 5%

4 0.00290 62.8 0.1489

8 0.00262 59.6 0.1412

12 0.00264 58.9 0.1407

Table 9. Efect of the number of neigh-

bours.

Mixamo

(Synthetic human bodies dataset)

Down-sampling

factor
CD EMD

CD

Top 5%

1 0.00314 65.0 0.160

2 0.00259 58.7 0.138

4 0.00262 59.6 0.1412

Table 10. Efect of the downsampling

factor.

6.6 Ablation Study

To gain a deeper understanding of our proposed architecture, an ablation study is conducted on the Mixamo

dataset for short-term prediction.

The number of levels (Table 8): The best results were achieved with architecture with three hierarchical levels

(� = 3), showing that increasing the number of levels does not necessarily lead to superior performance. However,

a minimum number of levels does impact positively the accuracy, conirming the importance of hierarchical

learning.

Neighborhood size (Table 9): The results show an increasing number of neighbours points (�) improves the

model performance. However, increasing neighbours also signiicantly increases the memory required to train

the model. This illustrates one of the main limitations of the current deep learning frameworks, which is the high

GPU memory requirements. This limitation was not addressed in this paper.

The downsampling factor (Table 10): Given a point cloud with 1, 000 points, a down-sample by a factor of 2 for

each level leads to the best results. Using a downsampling factor of 1 (i.e, no sampling between layers) resulted in

the worst performance, similar to the performance obtained using a single level (� = 1). This demonstrates that

the improvement gained from using hierarchical architecture is due to learning features from neighbourhoods at

diferent scales.

7 CONCLUSION

The goal of this paper is to improve current prediction frameworks for point clouds representing deformable

3D objects, with a focus on human bodies motions. To reach this goal, we investigated the current state-of-the-

art point-based RNN prediction framework and identiied its limitations when processing deformable shapes

and complex motions present in deformable objects. To overcome these limitations, we propose an improved

architecture for dynamic point cloud processing. This architecture includes an initial graph-based module that

learns the structural relations of point clouds as spatial features. From the spatial features, we then construct

spatio-temporal graphs. This module is followed by a hierarchy of graph-RNN cells, to extract dynamics features

from the spatio-temporal graphs taking the learned structural relations between points into account. Lastly,

as a key novelty, we propose a module able to combine dynamic features learned by the graph-RNN cells in

a adaptative manner Our proposed module assigns a level of attention to each hierarchical feature in order to

control the composition of local and global motion that best describes each point motion. Notably, the adaptative

combination module inner-working can be visualized and understood, opening the door to future research to

gain insights to develop more expressive architectures. Our experimental results demonstrate the superiority

of the proposed architecture in motion prediction and in action classiication of deformable objects. We also

showed this improvement is due to the method’s ability to exploit the spatial structure of the point cloud to

extract more representative dynamic features, as well as the adaptative combination of the dynamic features to

predict complex motions.
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