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ABSTRACT: It has been debated whether CaCO3 nucleates classically with the attainment of
a critical cluster size or nonclassically with the restructuring of a prenucleation cluster (PNC).
Here, we determine from the nucleation kinetics of CaCO3 that the transition state is
composed of about 10 formula units, irrespective of the supersaturation. Crucially, the size of
the transition state is considerably smaller than the average PNC size estimated from
experimental characterization. This size discrepancy suggests the PNCs are uninvolved in
nucleation, and the kinetics indicate that if CaCO3 nucleates classically, the transition state
must be an abnormally unstable (antimagic) cluster.

The principles of classical nucleation theory were
challenged in 2008 when Gebauer et al.1 reported that

aqueous CaCO3 solutions contain populations of clusters
composed of dozens of formula units. These so-called
prenucleation clusters (PNCs) emerge even below saturation,
they lack a phase interface, their growth is bounded, and
simulation2 and X-ray scattering3,4 suggest that they have
chain-like structures. It has been argued that CaCO3 nucleates
not when a critical cluster size is attained, as in classical
nucleation theory, but when a PNC transforms from its chain-
like configuration into a more compact structure with a phase
interface.5,6 This nonclassical PNC pathway has been
contested,7−9 although the arguments against it have not
been unassailable.5

We determine here the number of formula units, n*, in the
transition state cluster. We first establish that n* can be
computed from the nucleation kinetics regardless of whether
CaCO3 nucleates classically or nonclassically. We then obtain
n* from existing experimental data and compare the results
with the predictions of both classical nucleation theory and the
nonclassical PNC pathway.

Central to our discussion is the first nucleation theorem,10

which relates n* to the nucleation kinetics:

* =n
d J

d
ln

(1)

where J is the nucleation rate, σ = ln(IAP/Ksp) is the saturation
index, IAP is the ion activity product, and Ksp is the solubility
product of the nucleating phase. Equation 1 was originally
derived by Kashchiev within the framework of classical
nucleation theory. The PNC pathway differs from classical
nucleation theory in that nonclassical nucleation is limited by
an event orthogonal to the cluster size variable: it is limited by

the structural transformation of a PNC. For this reason, the
original derivation of eq 1 does not strictly translate to the
PNC pathway. The derivation can nevertheless be adapted
with minor alteration, as we now show.

Suppose that each cluster in the solution is specified by both
its size n and an order parameter λ. The order parameter
distinguishes the chain-like PNC structure from the nucleating
phase. The work required to form a cluster (n, λ) in a solution
with a saturation index σ can be written in the form

= +W n nk T F n( , , ) ( , , )B (2)

where kB is the Boltzmann constant, T is the temperature, and
the excess free energy F defines the size distribution and
stability of all clusters in the reaction space. We do not need to
specify F.

Nucleation will be dominated by a particular pathway
through the (n, λ) reaction space, and the transition state will
correspond to the point (n*, λ*) along this pathway that
maximizes W (Figure 1a). The nucleation rate will then take
the form
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where the pre-exponential factor A will be independent of σ,
assuming as claimed11 that the PNCs are in equilibrium with
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the ions. Otherwise, A will have a near-linear dependence on
exp(σ) due to the kinetics of cluster formation.10 Note that A
implicitly captures all of the intricacies of barrier kinetics but
that only its relationship to σ will be of consequence.

Combining and rearranging eqs 2 and 3 gives
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where an asterisk denotes evaluation at the transition state, e.g.,
* * * *W n W n n/ / ( , , ). A step-by-step derivation of

eq 4 can be found in the Supporting Information. Given the
description of A above, the second term on the right-hand side
of eq 4 can be discarded with an error no greater than about
one formula unit. The third term can also be discarded because
the excess free energy F of a cluster in solution has a negligible
dependence on σ.10 Finally, the fourth term is zero because the
transition state corresponds to a saddle point of W,25 hence,
∂W*/∂n* = 0 and ∂W*/∂λ* = 0. In summary, eq 4 reduces to
eq 1, and the first nucleation theorem applies to the PNC
pathway. Our derivation may also apply to other nonclassical
nucleation mechanisms, like the two-step pathway observed in
metal clusters.26,27

(It so happens that the first nucleation theorem is violated
by the only other quantitative PNC model that we know of.
Specifically, a linear relationship has been derived between the
concentration of PNCs and the concentration of ion pairs,28

which if true, would yield d ln J/dσ = 1 no matter the actual
transition state size. This linear relationship, however, was
erroneously derived. For example, in ref 28, equations S11 and
S13 contradict each other and are in fact both wrong. The
claimed result also violates the law of mass action.)

Using the first nucleation theorem, we have determined n*
from published CaCO3 nucleation rates measured across a
wide range of experimental conditions (Figure 1b). The
collated data12−24 include the nucleation of both calcite15−17,24

and vaterite,12,13,20 heterogeneous nucleation on various
organic substrates,15,21−24 purported homogeneous nuclea-
tion,14,18 pHs as low as 716 and as high as 11,21 and
supersaturations ranging from far below the solubility of
amorphous calcium carbonate12−14 to far above it.18 These

measurements can be divided into two types depending on the
method used to establish J: either (1) the induction time J−1

was measured by detecting a change in pH, turbidity, etc.12−20

or (2) the number of crystals on a substrate, Jt, was counted as
a function of time t.21−24

Interpreting the induction time measurements requires some
care. In practice, the induction time ti is the average time
between the attainment of supersaturation and the detection of
nucleation. Because the crystals must grow to a sufficient size
to be registered, many nucleation events may occur before a
single event is detected.29 If this is the case, and if the crystal
size L increases over time according to a power law, L ∼ (Gt)ν,
it can be shown that30

* = +n
d t

d
d G

d
(1 3 )

ln lni
1

(5)

where G defines the growth rate, and the growth exponent is ν
≈ 0.5 for CaCO3 crystals as small as 10 nm over the range σ ≳
1 due to the limits of boundary layer diffusion.31 We
determined n* using eq 5 for all of the induction time data.
However, to avoid dispute over the form of G, we neglected
the final term in eq 5 and therefore erred on the side of slightly
overestimating n*.

Both the induction time and the crystal counting methods
produced values of n* ranging from a few formula units up to
15, with an average value of about 10 formula units, and with
no discernible dependence on σ. These results are surprising as
they do not align with our cursory expectations based on either
classical nucleation theory or the PNC pathway.

In classical nucleation theory, the function n*(σ) can be
derived by assigning a spherical geometry and a macroscopic
density and interfacial free energy to the clusters�i.e., by
making the capillarity approximation. This approximation leads
to the prediction that n* should increase dramatically as σ is
decreased toward saturation, as illustrated in Figure 1b for an
interfacial free energy of 120 mJ/m2.32 The lack of such a
dependence between n* and σ in the kinetics-derived data
rules out the capillarity approximation (successful applica-
tions22−24 of this approximation to CaCO3 have been confined
to saturation ranges too narrow to expose its limitations). This
does not rule out classical nucleation theory in general,
however, as the independence between n* and σ could be
attributed to a more complex excess free energy featuring an

Figure 1. (a) Illustrative examples of classical and nonclassical nucleation pathways through the reaction space. The order parameter distinguishes
the chain-like PNCs from the nucleating phase. (b) Solid lines show the transition state sizes in formula units determined from various nucleation
experiments. Each line spans the σ values sampled in the experiment. Labels identify the sources: A,12 B,13 C,14 D,15 E,16 F,17 G,18 H,19 I,20 J,21 K,22

L,23 M.24 Dashed lines are theoretical predictions based on other experimental characterization. The nonclassical prediction is deemed to be a
lower bound on n*.
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abnormally unstable cluster, that is, an antimagic cluster.33 We
note that the thermodynamics of CaCO3 clusters computed
using molecular simulation show no magic or antimagic
clusters up to four formula units.34

If instead the PNC pathway is responsible for nucleation,
then n* should be about the same size as the average PNC. (If
n* were much larger than this, nucleation would be classical,
and if n* were much smaller, the PNCs would implausibly have
to decrease in size while crossing the nucleation barrier.)
Small-angle X-ray scattering (SAXS) indicates that PNCs
hardly change in size across the saturation range depicted in
Figure 1b,3 consistent with the flat n*(σ) profile derived from
the kinetics. However, in contrast to n* ≈ 10 formula units, the
average PNC size has been estimated from analytical
ultracentrifugation (AUC) to be at least 35 formula units.11

In support of this number, the PNC radius of gyration was
determined using SAXS to be 3.5 nm under conditions
(undersaturation and a low pH of 7.5) that are known to
produce small PNCs.3 This radius of gyration would equate to
about 20 formula units if the PNCs were perfectly straight
chains, but the presence of branching and torsion, evidenced
by the same scattering data, would significantly increase this
size estimate.

Because the average PNC size determined from AUC and
SAXS is considerably larger than the kinetics-derived n*
(Figure 1b), we argue that either (1) the characterization
methods are overestimating the average PNC size or (2) the
PNCs are uninvolved in nucleation. In our view, the second
option is likely even if the first option is also true. This is
because some of the nucleation experiments exhibited
transition state sizes as small as only a few formula units,
which is difficult to reconcile with the PNC pathway in any
case.

Turning to matters of polymorph selection, the transition
state sizes reported here are probably too small to have
crystalline polymorphs attributed to them.35 The polymorph
must therefore be selected af ter nucleation, meaning that
crystals with distinct polymorphs will arise from indistinguish-
able nucleation events and then diverge structurally during
growth. Polymorph control should therefore not be interpreted
in terms of competitive nucleation. This would explain why, in
contrast to most inorganic materials, CaCO3 can form multiple
polymorphs in a single reaction solution (e.g., ref 36).

To conclude: the size of the transition state cluster for
CaCO3 nucleation is readily determinable from the kinetics,
and it provides a perspective that may well settle the
mechanism debate. The evidence highlighted here supports a
classical mechanism involving the creation of a critical
antimagic cluster, with PNCs merely spectating the event.
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