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Abstract

This paper describes some statistical tests for comparing the predictive perfor-

mance of two or more prediction rules. It covers the cases of both quantitative

and qualitative predictions, that is, both regression and classification problems.

Worked examples are included for both cases.
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1 | INTRODUCTION

Many papers in the area of chemometrics compare two or more methods for generating prediction rules, usually with
the result that the new method developed by the authors is claimed to predict better than the ones it is compared with.
Sometimes the difference in predictive performance is so large that statistical methods are not really needed to back up
this claim. More often, the difference is small to modest, and it would be useful to have some reassurance that small dif-
ferences are not being over interpreted as meaningful. The aim of this paper is to describe some statistical approaches
to this problem in the cases of both quantitative and qualitative predictors, giving enough detail to enable the tests to
be implemented without the need to consult the cited references.

The distinction made here between a method, examples of which would be partial least squares regression (PLSR)
or linear discriminant analysis, and a prediction rule, which is used here to denote a fixed recipe for converting raw
input data into a quantitative or qualitative prediction, perhaps needs some elaboration. Using the method of PLSR on
near infrared (NIR) spectroscopic data, for example, a rule would typically comprise taking the data in a specified spec-
tral range, applying a specified spectral pretreatment and using a completely specified linear equation to convert this
treated data into a prediction. The step from method to rule is that of training. The point of making the distinction is
that the statistical tests described in what follows do not compare methods; they compare rules, and this should be
remembered when discussing results.

The context is the comparison of the performance of two or more prediction rules on a set of samples that have not
been used to train them. This might be achieved by predicting a completely separate test set of samples to those used
for training, or it might be achieved by cross-validation. In either case, the comparison is only valid if the predicted
samples have not been used at all in the tuning of the rules. It would be valid to use the tests described below as part of
tuning a rule, for example, to establish whether there really is any difference between the cross-validatory performance
with various candidate spectral pretreatments. However, once the cross-validation or separate test set has been used in
this way, it has become part of the training and cannot be used to compare the trained rule with another rule. It is par-
ticularly important not to make this mistake when methods of different complexity are compared. The method with
more adjustable parameters has more chance to adapt to data it has seen. Its rule will almost always win unless the
comparison with the rule produced by the simpler method is made on genuinely unseen samples.
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The statistical tests described below are all of traditional form, t-tests, F-tests and analysis of variance (ANOVA),
together with some nonparametric alternatives. What is not included are computer intensive tests involving permuta-
tions or Monte Carlo. The purpose of this paper is to encourage the use of tests in cases where performance improve-
ments are not clearly and obviously real ones by presenting some methods that can be used without a lot of extra work.

2 | QUANTITATIVE PREDICTIONS

When two rules make quantitative predictions for the same set of n samples, the raw data on which to compare their
performance consist of a set of n paired prediction errors, the two errors on each sample forming a pair. Let eij be the
error of rule i on sample j. At first sight, a tempting approach might be to compute the mean squared errors (MSEs) for
each of the rules separately, using

MSEi ¼
Pn

j¼1e
2
ij

n
, ð1Þ

and compare them by applying an F-test to their ratio, this being the standard way of testing equality of variances in
the case of normally distributed data.1 There are two problems with this approach. One is that if either or both of the
rules has a bias that contributes more than a very small part of the errors, then the ratio of their MSEs will not have an
F-distribution even if the errors are normally distributed. They need to be normally distributed about zero, not about
some nonzero bias, for the distribution to hold. The other is that the F-test requires two independent estimates of vari-
ance, and the pairing violates this assumption. These objections are not statistical nit-picking: The tests described below
will have more power for proving differences than an F-test of the MSEs, in some cases considerably more power.

2.1 | Test bias and variance separately

Fearn2 describes an approach in which bias and variance are tested separately, with the test for comparing variances
allowing for correlation between the two sets of errors. The first step is to separate the MSE into its two components:
bias and variance. Separately for each rule, we calculate its bias

bi ¼
Pn

j¼1eij
n

, ð2Þ

and variance

vi ¼
Pn

j¼1 eij�bi
� �2
n�1

: ð3Þ

These would combine to give the MSE in Equation (1) via

MSEi ¼ b2i þ
n�1
n

vi; ð4Þ

thus, MSE = bias squared + variance, give or take an ðn�1Þ=n.
A difference in biases between the two rules may be tested using a paired t-test.1 If we let dj ¼ e1j� e2j be the differ-

ence between the errors for sample j, then

d¼
Pn

j¼1dj
n

ð5Þ

is the difference in biases, b1�b2, and a t-statistic for testing whether the true difference is zero is
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tbias ¼
ffiffiffi
n

p
d

sd
, ð6Þ

where

sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1ðdj�dÞ2
n�1

s
ð7Þ

is the standard deviation of the dj. The statistic tbias should be compared with the percentage points of a t-distribution
on n�1 degrees of freedom to establish the significance level.

To test for a difference between variances, we need to first calculate the squared correlation between the two sets of
errors

r2 ¼
Pn

j¼1ðe1j�b1Þðe2j�b2Þ
h i2

Pn
j¼1ðe1j�b1Þ2

Pn
j¼1ðe2j�b2Þ2

: ð8Þ

Then if F is the larger of the variance ratios v1=v2 and v2=v1, a t-statistic for testing equality of variances is given by

tvar ¼F�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�2

ð1� r2ÞF

s
: ð9Þ

The statistic tvar should be compared with the percentage points of a t-distribution on n�2 degrees of freedom. The
originator of this test of equality of correlated variances was Pitman.3 It is described by Snedecor and Cochran.4 The
treatment above differs from that in Fearn,2 where a confidence interval for the true ratio is presented, rather than a
test statistic, but the two versions are equivalent.

Both of these tests rely on assumptions of normal distributions. For the t-test, the differences should be normally
distributed; for the variance test, the errors should follow a bivariate normal distribution. The t-test is generally consid-
ered not to be particularly sensitive to departures from normality. Tests on variances are more easily affected by outliers
or other departures from normality. The biases could be tested avoiding the normality assumption by applying a non-
parametric alternative to the t-test, the Wilcoxon signed rank test,1 to the differences. There is no obvious nonparamet-
ric alternative to the F-test. The approach described in Section 2.2 does have nonparametric versions and would be
preferable if there is serious doubt about the normality assumption. The obvious ‘safe’ option of always using the non-
parametric test comes at the price of a loss of power, with a nonparametric test usually having a larger p-value than the
corresponding parametric test on the same data. Many statistical texts suggest that one should always carry out appro-
priate tests for normality before using any test that assumes normality. This approach is not without its problems. With
large amounts of data, tests of normality become very powerful and are quite likely to flag up departures from normal-
ity that have no practical importance. The author's personal preference is not to carry out routine normality tests but to
plot the data in some way; see, for example, the plots in Section 2.5 and check visually for any large outliers or unex-
pected patterns, on the grounds that if you cannot see it, it probably does not matter very much. Very large prediction
errors on one or two samples are the main problem to look out for. Not only would this invalidate the tests; the pres-
ence of these errors may be the main reason one rule appears better than another. If you do prefer to carry out tests of
normality, they are easy enough to find in statistical packages.

2.2 | Work with absolute or squared errors

An alternative approach, which sidesteps the bias issue and copes in a different way with the pairing, has been
described by Indahl and Næs5 and explored in more detail by Cederkvist et al.6 We begin by describing the case of two
rules, where this approach reduces to a paired t-test using either the absolute values of the errors or their squares.
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If we let dj ¼ je1jj� je2jj or dj ¼ e21j� e22j, then a t-test carried out using these differences and the formulas in
Equations 5–7 will test not for a difference in bias but for a difference in the average size of errors between the two
rules. This test has two advantages over the approach described in Section 2.1. It avoids having to separate bias and var-
iance, and it is simpler to calculate. The one possible drawback is that even if the errors themselves are normally dis-
tributed, the differences of absolute values or squares used to calculate t will not be. Cederkvist et al6 present some
evidence based on real data sets suggesting that using the absolute values of the errors is the preferred option for getting
closer to the correct distribution for t. If you were really nervous about violating distributional assumptions, you could
apply the Wilcoxon signed rank test1 to the differences.

2.3 | More than two rules

The approach of Section 2.1 does not generalise to the simultaneous comparison of multiple rules unless one is pre-
pared to assume that all the pairwise correlations between predictions are equal.7 The approach of Section 2.2 does and
indeed is presented in its general form in the two references cited. With r>2 rules, the statistical analysis becomes an
r�n two-way ANOVA on the either the absolute values jeijj or the squares e2ij of the errors, with the absolute values
being the preferred option.6 This analysis, available in almost any statistics package, will provide an overall F-test for
no difference between any of the r rules. When r¼ 2, this F-test is equivalent to the t-test described in Section 2.2.
There are no replicates, that is, there is just one prediction for each combination of sample and rule, so the analysis is a
two-way ANOVA with no interaction. What would have been the interaction sum of squares is used to estimate the var-
iance of what are assumed to be normally distributed random errors in the observations. Whether the sample effects
are regarded as fixed or random makes no difference to the test for rule effects in this situation.5,6 Most packages will
also offer a set of pairwise comparisons, typically adjusting the significance levels for the fact that multiple tests are
being carried out. Some packages will also offer to carry out appropriate tests of normality, in this case on the residuals
from an additive fit (mean+sample effect+rule effect) to the observed data. A simple alternative is to look at plots like
those in Section 2.5 for each of the rules and check for outliers. There is a nonparametric alternative, the Friedman
test,8 which is also supported by many statistical packages.

2.4 | Ignore the problems and use the F-test anyway

Both of the above approaches require access to all of prediction errors, not just the usual summary statistics. These data are
not always available, the obvious example being when one wishes to assess the significance of results in a published paper.
Fearn9 discusses the implications of using a simple F-test on the ratio of either variances or MSEs in this situation.

The correlation between the two sets of errors is induced by the presence of common sources of variability, the most
obvious one being that there is usually a contribution from the error in the reference measurement with which both
predictions are compared. As a result, the correlation will typically be positive, and in this situation, the F-test on the
variances that ignores the correlation will be conservative, in the sense that it has less power than the correct test. That
is to say that if the simple F-test is significant, the test on variances in Section 2.1 would also have been significant, but
if the simple F-test is not significant, one does not know whether the other test would or would not have been. The loss
of power is analogous to that which usually occurs when a two-sample t-test is used instead of a paired t-test when the
latter is appropriate. If the simple F-test is all you can do, it is worth trying, but it may leave you with no firm
conclusion.

The statement in Fearn9 that the F-test applied to the ratio of MSEs will tend to be even more conservative is an
over simplification of what is quite a complicated situation. Applying the simple F-test to the MSEs is even more prob-
lematic than applying it to the variances and is best avoided unless one is confident that any biases present are very
small.

2.5 | Example

The corn data, a favourite example for algorithms seeking an application, may be downloaded from the Eigenvector
website.10 The data set comprises near infrared spectra measured on 80 corn samples on each of three instruments,
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together with four compositional variables for each sample. For this illustration, the first instrument (m5) and the first
compositional variable (moisture) were selected. The first 60 of the 80 samples were taken as a training set and the
remaining 20 as a prediction set. This is not a recommended way to split data; a random split would be preferable, but
this one is easy to reproduce. Two calibrations were made using the PLS Toolbox (Eigenvector Research, Manson WA,
USA), with the only pretreatment being mean centering of the X (spectral) data and with 10-fold cross-validation using
venetian blinds. One used PLSR,11 accepting the software's recommendation of six factors; the other used principal
component regression (PCR),11 this time accepting the software's recommendation of seven factors. These two calibra-
tions were then used to predict the 20 split off samples. The prediction errors for the two calibrations, rounded to four
decimal places, are shown in Table 1. The errors were calculated as predicted minus observed. Taking the difference
the other way round would change the signs of the errors and biases but nothing else.

Using these rounded errors and the formulas in Equations (1)–(3) gives the statistics in Table 2.
The PLSR predictions look better than the PCR predictions on all of these measures. This superiority may be seen

in the two scatterplots in Figure 1, where both the tendency for the PCR errors to be larger than those for PLSR and for
the PCR to predict a little low are visible. There are no obvious outliers that might invalidate the tests, so we proceed to
carry them out.

The t-statistic for comparing the biases is tbias ¼ 5:13, with 19 degrees of freedom and a p-value of 0.00006. To com-
pare the variances, we need their ratio, F ¼ 2:3919, and the squared correlation between the two sets of errors,
r2 ¼ 0:8884. Putting these into Equation (9) gives tvar ¼ 5:715 with 18 degrees of freedom and a p-value of 0.00002. The
observed differences in bias and variance are very unlikely to be due to chance. The paired t-test of Section 2.2 using
absolute values of the errors gives t¼ 2:46 with 19 degrees of freedom and a p-value of 0.024, larger than those from the
other approach but still strong evidence for a real difference in performance between the two calibrations. For com-
pleteness, comparing the variance ratio, F¼ 2:3919, with an F-distribution on 19 and 19 degrees of freedom give a
p-value of 0.065. As discussed in Section 2.4, ignoring the correlation between the two sets of errors leads to a loss of
power.

Using the Matlab Statistics and Machine Learning Toolbox, and with the two sets of prediction errors in 20�1 vec-
tors e1 and e2, the command [h,p,ci,stats]=ttest(abs(e1),abs(e2)) will return the value of the t-statistic (+2.46 or �2.46
depending on which set of errors is in which of the two vectors) as one of the contents of the structure stats and the
p-value, 0.024, in p. As an alternative, the command [p,tb]=anova2([abs(e1),abs(e2)],1) returns an ANOVA table in the

TABLE 1 Prediction errors for PLSR and PCR.

Sample 1 2 3 4 5 6 7 8

PLSR �0.0830 �0.1034 �0.0856 �0.1235 �0.1315 �0.1056 0.0955 0.0545

PCR �0.1809 �0.2683 �0.2631 �0.2820 �0.2709 �0.1872 0.1204 �0.0214

Sample 9 10 11 12 13 14 15 16

PLSR �0.0506 0.0181 0.0795 0.0588 0.0192 0.0241 0.1718 0.0643

PCR �0.1739 �0.0505 0.1287 0.0893 �0.0165 0.0126 0.1179 �0.0459

Sample 17 18 19 20

PLSR 0.1656 0.0751 0.0987 0.0145

PCR 0.1113 0.0229 0.0366 �0.1090

Abbreviations: PCR, principal component regression; PLSR, partial least squares regression.

TABLE 2 Prediction statistics for PLSR and PCR.

PLSR PCR

Bias 0.012825 �0.061495

Variance 0.008826 0.021111

MSE 0.008548 0.023837

Abbreviations: MSE, mean squared error; PCR, principal component regression; PLSR, partial least squares regression.
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cell array tb. The first row of this ANOVA table ends with the value, 6.05, of the F-statistic for testing for a difference in
performance between the two calibrations and the corresponding p-value, once again 0.024 because the t-test and F-test
are equivalent in the case of two rules. The F-statistic is the square of the t-statistic. With more than two rules, just add
more columns of errors, for example, [abs(e1),abs(e2),abs(e3)].

An additional comment on the data is that the cluster of samples that predict below the diagonal line for PLSR and
even further below for PCR are actually samples 1–6 of the test set of 20, so 61-66 of the set of 80. This suggests that
there is some structure in the data set and that the systematic split was indeed less than ideal.

The comparison above is one between one particular PLSR calibration and one particular PCR calibration, neither
of which has been optimised with great care and has little or nothing to contribute to the probably unresolvable ques-
tion as to whether one of these methods is to be preferred to the other in general.

3 | QUALITATIVE PREDICTIONS

The situation in which the prediction rules to be compared simply assign unknowns to one of two or more classes is
much easier to deal with. We begin with the case of two rules and two classes.

3.1 | Two rules and two classes

For the purpose of comparing the rules, the results may be summarised as in Table 3 below. The entries in the table are
the numbers of test samples falling in each category; for example, b is the number of samples correctly classified by rule
1 but incorrectly classified by rule 2.

It is the samples on which the rules disagree that provide the information for comparing them. If b¼ c, then the
error rates for the two rules will be identical. Usually b and c will not be exactly equal, but it is easy to test whether their
difference is larger than could reasonably be ascribed to chance. As the labelling of the two rules is arbitrary, we may
arrange that b is the smaller of b and c. In the case of no real difference, b will be a draw from random variable B with a
binomial distribution with index bþ c and probability 0.5. Then the probability that B≤ b is given by the cumulative dis-
tribution function (cdf) of the binomial distribution

FIGURE 1 Predicted versus reference values for moisture using PLS and PCR. PCR, principal component regression.
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pðB≤ bÞ¼
Xb
r¼0

bþ c

r

� �
0:5bþc, ð10Þ

which needs to be multiplied by two to give the two-tailed p-value. The formula for the binomial cdf is included here
for completeness, but it is widely available as a function in statistical packages, as well as in Excel. For example, the
Matlab command p=2*cdf(‘Binomial’,b,b+c,0.5) computes the two-tailed p-value using the cdf function in the Statistics
and Machine Learning Toolbox.

The days of publishing extensive statistical tables are over, but one short table does seem worth including here.
For values of bþ c up to 20, Table 4 shows bcrit, the largest value of b for which a significance level of p<0:05 is

achieved. These numbers may come as a surprise to readers accustomed to interpreting small differences in classifica-
tion accuracy as meaningful. It is not possible to achieve statistical significance at p<0:05 with fewer than six samples
on which the rules differ and even with 20 such samples, only a split as extreme as or more extreme than 5:15 achieves
such significance.

3.2 | Example

The Fisher iris data12,13 are perhaps the most famous classification example data set. Taking just two of the three iris
species, Versicolour and Virginica, gives a data set with n¼ 100 samples, 50 of each species, and 4 predictor variables.
Linear discriminant analysis (LDA)12 gets 95/100 predictions correct using 10-fold venetian blinds cross-validation,
while partial least squares discriminant analysis (PLSDA)14 with my choice of two factors beats this with 98/100 correct.
Is 98% really better than 95% here?

Examining the predictions, 95 of the 100 samples are classified correctly by both rules, and two Versicolour samples
(21 and 34) are incorrectly classified as Virginica by both rules. PLSDA make no further errors, but LDA misclassifies a
further two Versicolor samples (19 and 23) and one Virginica sample (84). These results are shown in Table 5. Note that
the table shows numbers of samples. These happen to be equal to the percentages for this particular data set, because
n¼ 100, but this is not true in general, and it is the numbers of samples that are needed, not the percentages.

Comparing this with Table 3, we have bþ c¼ 3 and b¼ 0, so

TABLE 3 Classification success for two rules.

Rule 2

Rule 1 Correct Error

Correct a b

Error c d

TABLE 4 Critical values for binomial test.

bþ c 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

bcrit 0 0 0 1 1 1 2 2 2 3 3 4 4 4 5

TABLE 5 Classification success for LDA and PLSDA on the iris data.

LDA

PLSDA Correct Error

Correct 95 3

Error 0 2

Abbreviations: LDA, Linear discriminant analysis; PLSDA, partial least squares discriminant analysis.
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pðB≤ 0Þ¼
X0
r¼0

3

r

� �
0:53 ¼ 3

0

� �
0:53 ¼ 0:125, ð11Þ

and doubling this gives a p-value of 0.25. Thus, a 0:3 or 3:0 split of the samples on which the rules disagree would not
be at all surprising if the rules were equally accurate, and to claim that PLSDA is truly better than LDA here would be
to overinterpret a difference that may well be due to chance.

3.3 | More than two classes

When there are more than two classes, the overall performance of two rules can be compared exactly as above, because
Table 3 can still be constructed. Alternatively, it would be possible to focus on any one class by pooling the other classes
after the classification results are computed, thus constructing Table 3 by counting a prediction of a sample not from
the class of interest as correct so long as it assigns the sample to any one of the other classes.

3.4 | More than two rules

It is not obvious, to this author at least, how to extend the above approach to the comparison of several rules, except by
carrying out multiple pairwise comparisons. If this is done, consideration should be given to adjusting significance
levels to account for the multiple testing. The simplest way to do this is to multiply the achieved p-values by the number
of tests carried out. This approach, the so-called Bonferroni correction,1 protects against the worst case of independent
tests and so is generally rather conservative. If you do not make any formal adjustment to the p-values, you should at
least be aware that if you carry out 20 significance tests, you could reasonably expect one of them to be significant at
p<0:05 just by chance.

3.5 | Other comments

When bþ c is large enough, greater than 30 say, an alternative test may be applied to the data in Table 3. McNemar's
test,1 essentially a chi-squared goodness of fit test of the binomial distribution with probability 0.5, compares

χ2 ¼ðb� cÞ2
bþ c

ð12Þ

with the percentage points of a chi-squared distribution on one degree of freedom. This test is approximate, and
there seems little value in preferring it to the exact binomial calculation unless access to the binomial cdf is not
available.

The fact that both rules predict the same samples means that the seemingly obvious option of directly comparing
the overall accuracies of the rules is not valid. The usual tests for this require independent, not paired, predictions. This
is the discrete analogy of the issue of correlated predictions that complicates the quantitative case. For this reason,
assessing the significance of differences in performance in a published paper is not usually possible if the author has
not done this. Unless one rule has 100% success, it is not possible to construct Table 3 from the two overall accuracies
alone.

There are some implications here for experimental design. It is the borderline samples that distinguish between
rules, not the easy or the impossible ones. Including quite a few borderline samples in a validation set may reduce the
reported overall accuracy of your novel classification method, but it will improve your chance of demonstrating its
superiority over the standard approach it is compared with, assuming of course that it really is superior. The other point
to note is that classification rules need to be compared on large numbers of samples to have any chance of demonstrat-
ing the superiority of one over another.
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4 | A FINAL COMMENT

The aim in presenting this tutorial was not to propose that chemometric papers should be peppered with p-values but
to encourage researchers to think twice before making claims that are not supported by the evidence and to provide
some appropriate tools for checking the validity of those claims.
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