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ABSTRACT. We give an asymptotic evaluation for the number of automorphic characters of an
algebraic torus 7' with bounded analytic conductor. The analytic conductor is defined via the local
Langlands correspondence for tori by choosing a finite dimensional complex algebraic representation
of the L-group of T. Our results therefore fit into a general framework of counting automorphic
representations on reductive groups by analytic conductor.
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1. INTRODUCTION

1.1. Motivation and statement of results. A basic question in the analytic theory of automor-
phic forms is the following:

Question. Given a connected reductive algebraic group G over a global field k, how many irre-
ducible cuspidal automorphic representations of G are there?

To make sense of the Question, one needs to choose a positive real-valued invariant by which
to order the representations of G. Sarnak, Shin and Templier [SST16] have proposed using the
analytic conductor.

On the groups GL,,, the analytic conductor has a standard definition [[S00], but over more
general reductive groups it is less well understood. The most canonical (but not necessarily the
most practical) definition is through the local Langlands conjectures. Let r : “G' — GL,,(C) be
a finite dimensional algebraic representation of the complex L-group of GG. The local Langlands
conjectures predict the existence of maps

Tsw t Ay(G) = Ay(GLyp)

at every place v of k from the local unitary dual A, of G to that of GL,,. One then defines the
analytic conductor ¢(m,7) of an irreducible automorphic representation 7 with respect to r by

(1.1) o(m,r) = Hcy(r*ﬂﬂrv),

where the conductors on the right hand side are the “classical” local analytic conductors on GL,.

The universal counting Question seems to be quite difficult at the level of generality in which we
have stated it. Only very recently has there been progress in a few special cases. Over an arbitrary
number field, the cases G = GL1, GLs, as well GL,, for n > 3 under additional hypotheses, have
been resolved in a paper of Brumley and Mili¢evi¢ [BM23]. The case that G is a one-dimensional
non-split torus over Q splitting over an imaginary quadratic extension was treated in work of
Brooks and the author [BP18|], and Lesesvre has studied the case that G is the units group of a
quaternion algebra [Les20].

In this paper, we present an answer to the Question for G = T a torus over a number field &
and r an arbitrary complex algebraic representation of its L-group. Even though the groups we
are dealing with are abelian, our results are not easy, as we work with a very general notion of
conductor. Indeed, the difficulties involved are already evident in the intricacy of the statement of
the final result. As its reward, working with such a general notion of conductor reveals some of
the richness that any general answer to the Question must exhibit. For example, the power of X
in the asymptotic count of automorphic characters (see (1.4)) need not be an integer, but rather
is a positive rational with denominator at most m. Further, we find that arbitrary integer powers
of log X are possible in the asymptotic count (see example . Another interesting aspect of our
results is the resemblance of the automorphic counting question to the Manin conjecture, which we
present in section [1.3]

We make some precise definitions in order to give the statement of our result. Let T be an
algebraic torus over a number field k. Let A(T') denote the group of continuous unitary characters
of T(k)\T(A), where A is the adele ring of k. We call elements of A(T') automorphic characters;
they are the basic objects of study in this paper. Let K/k be the minimal Galois extension over
which T splits, and let G = Gal(K/k). Let X*(T') and X.(T) be the algebraic character and
cocharacter lattices of T, and T' = Hom(X,(T),C*) the complex dual torus. Each of these objects
admits a natural action of G. Let LT = T x G be the L-group of T, and pick r : “T" — GL,,(C) an
algebraic representation of “T'. Generally, we will write n = dim 7" and m = dimr. Pick v a Haar
measure on the locally compact group A(T).
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The main goal of this paper is to give an asymptotic formula for v({x € A(T) : ¢(x,r) < X}),
where ¢(x, ) is the analytic conductor (defined in section, as X tends to infinity. The statement
of the result requires a few more constructions. The restriction of r to T breaks up as a direct sum
of eigenspaces

(1.2) rla= @ Vi

peX*(T)

Let M be the multi-set of co-weights p of r, i.e. the underlying set of M is {u € X*(’f) : V, # 0} and
the multiplicity of p € M is dim V). Let S < M denote a subset of the co-weights with multiplicity
and S¢ its complement. For such an S, we define the complex group

(1.3) D(S) =[] kerpcT.
pesSe
The restriction 7|4 is faithful if and only if D(@) = {1}, and in that case we let
dim D(S) +

(1.4) A= A(T,r) :max{ L. sc M, D(s) # {1}}.

S|
Theorem 1.1. Suppose that |z is faithful. Then there exists a non-zero polynomial P = Pr,,
and ¢ = cryr > 0 such that

(1.5) v({x e A(T) : c(x,7) < X}) = XAP(log X) + O, (X* exp(—c(log X)*°(loglog X)~/?)).
If the Artin conjecture holds for the finitely many Artin L-functions specified in Theorem[5.4), then

the error term in (1.5) may be improved to OT7T7,,(XA_5) for some 6 = o7, > 0. If r\f 18 not
faithful, then the left hand side of (L.5)) is infinite for some finite X .

The dependence of P and the implicit constant on v is linear, since Haar measure is unique up
to scaling. Here is a simple corollary of Theorem

Corollary 1.2. Let T be a torus of dimension n, r an m-dimensional complex representation of
its L-group, and v a Haar measure on A(T). We have

v({x € A(T) : c(x,7) < X}) S0 X
If r|5 is faithful, then for all ¢ > 0 we have
v({x e A(T) : ¢(x,r) < X}) <eTprw X2te,

Proof. By Theorem it suffices to give uniform lower and upper bounds on A. For the lower
bound, note that D(M) = T which gives A > ™1 For the upper bound, observe that since r| is
faithful for any S € M we have dim D(S) < |S|, since dim D(@) = 0 and codimker x < 1 for any

|S|+1 9. 0

<
i€ M. Therefore A < max{w 1S # 0} <

We can give an expression for the degree of the polynomial P, but this requires a few more
definitions. Since M was formed from the restriction of a representation of “T', the group G acts
on M, and also on the power set 2" = {S: S € M}. This action preserves |S| as well as dim D(S),
so G also acts on the set

(1.6) zz{syézzcm%j?)“:/x}.
Let
(1.7) A = lemgey, [mo(D(5))],

where 7o(D(.S)) denotes the group of connected components of D(S). The group (Z/AZ)* acts on
70(D(S)) for each S € X by L.y = yf, y € mo(D(S)), £ € (Z/N\Z)*. Let () be a primitive Ath root of
3



unity, and let K = K(()) and G = Gal(f( /k). The enlarged group G acts on the fibered set with
base X given by

(1.8)

S ={(S.y):Se%, yem(D(S))}.

Indeed, we have inclusions

(1.9)

G — G x Gal(k((y)/k) = G x (Z/N\Z)*

given by restricting automorphisms to K and to Q(Cy). If g € G restricts to (G,7) € G x (Z/\Z)*,
then g acts on ¥ by

9-(S,y) = (gS,9y7).

Finally, let

(1.10)

S0 =2~ {(5,1) : dim D(S) = 0}.

Since the deleted set is preserved by the action of é, we also have that G acts on io.

Theorem 1.3. The polynomial P appearing in Theorem [1.1] satisfies

deg P = ’é\io‘ -1

Theorems|[L.1]and [L.3]settle a problem of Sarnak, Shin and Templier [SST16, (4)] for the universal
family of automorphic characters on a torus in the greatest possible generality.

Remarks. (1) The Weyl law for tori over number fields studied in this paper has a natural local-

to-global structure. To solve the global counting problem we first address the corresponding
local problem in sections [3] and [ of the paper. We obtain fairly complete results in the
unramified non-archimedean and archimedean cases, but only need a preliminary result (see
Theorem in the ramified non-archimedean case for our global application. A natural
further line of inquiry would be to more comprehensively investigate the local Weyl law for
tori that have a ramified non-archimedean splitting field. Similarly, it would be interesting
to investigate the counting problem over positive characteristic global fields.
We would also like to have an interpretation of the leading constant in the asymptotic
formula in Theorem in terms of the geometry or arithmetic of 7. While in principle
our method yields an expression for the leading constant, it is not so easy to write down
in explicit form. One difficulty is that we cannot exclude the possibility that there are
non-identity global units of T" that contribute to the leading term of the polynomial P (see
example . A second complication is our soft treatment of the local counting problem at
ramified primes, as indicated in the previous remark.
The invariant A in Theorem and the power of log X in Theorem are sufficiently
complicated as to suggest that any general answer to the Question at the beginning of this
paper would be quite onerous to state in full generality.
A key tool in our proof of Thereom for general r is a Brascamp-Lieb inequality due
to Barthe [Bar98]. To the author’s knowledge, this theorem from analysis has not been
used before in analytic number theory. We use the Brascamp-Lieb inequality in two places:
first in the local archimedean counting problem in section and then again in the global
counting problem in section In the first instance, the linear forms correspond to the
co-weights u € M, and in the second instance the linear forms are rows of the regulator
matrix of T. The use of the Brascamp-Lieb inequality suggests that the counting problem
for a general reductive group is difficult indeed, as already in the case of tori one needs to
go much beyond an explicit understanding of the local Langlands correspondence.
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(5) Another interpretation of the families of automorphic characters studied in this paper is the
following. Let T', K /k be as above, TV = Hom(X«(T), G,,) be the algebraic dual torus, and
S = Resg /i, Gm. Given a faithful irreducible algebraic representation r of LT one obtains
an injective morphism ¢ : TV — S by restriction of r. Such an injective map ¢ gives rise
to an L-homomorphism “T" — ©S, and so Langlands predicts that there exists a transfer
of automorphic characters i, : A(T/k) — A(GL; /K). Conversely, given ¢ : TV — S,
there exists a faithful irreducible algebraic representation r of “T extending i such that
L(s,x,r) = L(s,ixx) for all x € A(T), where the left hand side is the Langlands L-function
and right hand side is the Hecke L-function.

(6) The automorphic counting problem outlined at the beginning of this paper may have appli-
cations to the Ramanujan conjecture on general reductive groups (see the surveys [Sar05]
and [Sha04]). Outside the case G = GL,, the naive Ramanujan conjecture is known to
be false, but all automorphic forms for which it fails are expected to arise as functorial
transfers from lower rank groups. For analytic applications, one would like to show that the
Ramanujan conjecture cannot fail “too often” in a quantitative sense in terms of analytic
conductor. One way to do so would be to estimate the sizes of subfamilies of A(G) coming
from functorial transfers of automorphic characters of tori, and the so present paper paves
the way for putting the above program into action.

(7) The shape of the error term in Theorem comes from Vinogradov-Korobov-strength
zero-free regions for L-functions of Hecke characters due to Coleman [Col90], but these are
not essential to our method. This zero-free region is merely the best currently available
result in the literature, and e.g. using instead the classical zero-free region for Hecke L-
functions one obtains an asymptotic formula in Theorem with the weaker error term

Or, (X4 exp(—cy/log X)).
1.2. Examples.

Example 1.4. Let T' = GL; = G,;,. Then T = C* and G is trivial. We choose r = id = z : C* —
C* as representation of the L-group. Then A(T) is the set of primitive Hecke characters over k,
and c(y,r) is the standard notion of analytic conductor of a Hecke character, which we denote
by C(x) in all of the examples that follow. The multiset of co-weights is the singleton M = {z},
and 2#} = {& {z}}. We have D(@) = {1} and D({z}) = C*, so we have A = 2, and deg P = 0.
Therefore there are ~ ¢; X2 primitive Hecke characters of analytic conductor bounded by X for
some constant ¢; > 0. An inspection of Theorem [5.4 shows that the only Artin L-function relevant
to Theorem when T' = (5, and r = id is the Dedekind zeta function of k, so we obtain a power
saving error term in the asymptotic count. For general number fields k, already this result seems
to be new. A similar result with a modified notion of analytic conductor has been given recently
in a preprint of Brumley, Lesesvre, and Mili¢evi¢ [BLM21].

Example 1.5. Let T = GL; = G, as above, but take as representation the 1001-dimensional
representation r = @001 . C* — GL1go1(C). The set A(T) consists of Hecke characters x as
above, whereas r assigns to x the conductor C(x)!%°!. The multiset of co-weights is {z,..., z},
where z is repeated 1001 times, and only the full set has D(S) # {1}. Thus, A = 2/1001, and one
recovers that there are ~ ¢ , X 2/1001 Hecke characters of r-conductor less than X. This shows that
the power of X in Theorem can be arbitrarily small.

Example 1.6. Keep T = GL; = G,, as above, but take as representation r = 22 @ 2% : C* —
GL2(C). This is a 2-dimensional faithful representation of the L-group. The set A(T) is as in the
previous two examples, but now r assigns to x the conductor C(x?)C(x?). The set of co-weights
is {22, 2%}, and the subsets S and groups D(S) are

S=o, {2, {5, {25,
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D(@) ={1}, D({z*}) =ps, D({z%}) ==£1, D({z*2°})=C".
Therefore A = 1, and the maximum is attained on all S # @. We have the Galois group G = 1,
but the enlarged Galois group is G ~ (Z/6Z)*. We have

= {({(z"L 1), (Z°1 &), (271, G), (1 1), (2% D), (22,2 D),

i0 = {({22}7 C3>a ({22}76)7 ({zg}v _1)7 ({227 23}’ 1)}

The group G acts on 3 by swapping ({22}, (3) and ({22}, (3) and fixing ({23}, —1) and ({22, 23}, 1).
Therefore there exists a constant coz so that

v({x € A(GL1) : C(x*)C(x®) < X}) ~ 23X (log X)2.

Example 1.7. Let T = G,;, x G,,. This torus has L-group equal to C* x C*. Take the faithful
2-dimensional representation z; @ zo. Classically, this corresponds to counting pairs of primitive
Hecke characters (x1, x2) with the conductor C(x1)C(x2). There are ~ c12.X?log X pairs of Hecke
characters of conductor bounded by X, for some cj2 > 0.

For a general torus T, we will later see in Proposition that there is a term which potentially
contributes to the main term of v({x € A(T) : ¢(x,r) < X}) as X — oo for each global unit of
T. In the example T' = Gy, x Gy, over Q, there are four global units: (1,1), (1,—1), (—1,1) and
(—1,—1). Tt is interesting to note that the contribution of (1,1) is of size X?log X, each of (1, —1)
and (—1,1) make a contribution of size X2, and (—1,—1) contributes a smaller a power of X.

Example 1.8. Let f be an irreducible separable polynomial of degree m over a general field k.
Let a be a root of f and let K be the splitting field of f. Then k(«)/k is a degree m extension with
Galois closure K. Let G = Gal(K /k) and T' = (Resy(q)/x Gm)/Gm, where d : Gy, — Resy(q )k G,
is the diagonal embedding. Write H = Homy(k(«), k°P) for the set of embeddings of k(«) in its
separable closure that fix k. We have in particular that |H| = m. One has an identification

(1.11) X*(Resk(a)/k Gm) ~ ZH
sending (ay)sepn to the morphism x : Resy(a)/x Gm — G that is given on &*°P points by
X (ko) @, B)* — (kP)*

cRr— (H J(C)“") r
ceH

see [Mill7, Lem. 12.61]. Here, G acts on Z by permuting embeddings, i.e. by permuting coordi-
nates. Write ZY := {(a,) € Z : 3 _;; a, = 0}. We have the following commutative diagram with
exact rows and vertical maps given by ([1.11))

0 — X*(T) — X*(Resg(a)x Gm) —> X*(Gyp) —> 0

0 Zl zH 2o Z 0.

Thus the isomorphism restricts to X*(T) ~ Z}. The evaluation map gives a perfect pairing
X*(T)®z X« (T) — Z between character and cocharacter lattices, so that Hom (X, (T),Z) ~ X*(T)
and
T = Hom(X.(T),Z) ®z C* ~ X*(T) @z C* ~ {(25) € (C*)" : [ ] 20 = 1}.
oceH

See section for more on these standard isomorphisms.
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Now let us choose an enumeration o;, i = 1,...,m of the embeddings H. Define r : ‘T —
GL,,,(C) by setting r((1,--- ,1) x o) to be the permutation matrix in GL,,(C) defined by 0 € G <
S, and

Z1
r(zx1) =
Zm
The set of co-weights M is {z;}i—1,... m, where z — z; represents projection onto the i-th coordinate.
For any S € 2{%} we have

D(S) ={zef:zi=11fieSc and Hzizl},
€S
so that each D(5) is connected and dim D(S) = |S| —1if S # @. Therefore, A=1,X={S< M :
S#o}A=1andso G =G, X =%, and ¥y = {S < M : S| >2}.
Suppose now that k is a number field and G ~ §,,,. Then
G\Xo={{S:|5]=2},....{S:|S| =m}}

and so we have

v({x e A(T) : cr(x) < X}) ~ crr X (log X)™ 2.
This is an example of logarithms arising in the asymptotic formula for natural reasons, and answers
a question of Sarnak [Sar08, Question 1]. Also note that if e.g. [k(a) : k] = 4 and G # Sy the
asymptotic is ~ cg X (log X)? for some constants cg, whereas if G ~ Sy it is ~ g, X (log X)?. This
shows that the power of log X in the asymptotic formula is sensitive to the arithmetic of the torus.

1.3. Relation to the Manin conjecture. The automorphic counting Question introduced at
the outset of this paper is reminiscent of the Manin conjecture on the number of rational points of
bounded height on a Fano variety. We briefly review the latter to point out a few of its features.
For a more developed survey of the Manin conjecture, see e.g. [Pey02] or [Tsc03].

Let V be a Fano variety over k, and £ a very ample line bundle. Let sq, ..., sy, be global sections
of £ with no common zeros, and ¢ = ¢ 4 .., : V — P™ be the natural morphism associated to
these data. Let H(x) be the absolute exponential Weil height on P™ (k). Then hy(x) = h(p(x)) is

/

a height function on V (k) relative to £, s, ..., sm. If 53, ..., s}, is another choice of global sections

for the same £ with ¢' = ¢ o =V — P™, then hy(z) = hy(z) + O(1) as z € V (k) varies

[Sil86, Thm. 3.1]. Following BatyreT/—Manin [BM90], for U < V' a Zariski open let
Ny(L,X) =#{z e U(k) : hy(x) < X}.
Let N1 (V) be the closed cone of effective divisors.

Conjecture 1.9 (Batyrev-Manin Conj. C'). Let V be a Fano variety with canonical bundle wy not
effective. If U is sufficiently small, we have

Ny (L, X) ~ eX*F) (log X )HE)~1
as X — o for some positive constant c. Here,
a(L) = inf{\ e R: A\[£] + [wv] € N},
and t(L) is the codimension of the minimal face of ONY; containing a(£)[£] + [wy].

The analogy between the automorphic counting question and the Manin conjecture is as follows,
and should be viewed as an expression of the deep conjectures of Langlands. The role of the ambient
space is played by P (k) < A(GL,,), into which V (k) < A(G) embeds. The embedding is given
by the data £, sq, ..., Sy, on the Manin side, and (conjecturally) on the automorphic side by r :

LG — GL,(C). Indeed, £, sq, ..., s, determine a morphism V — P™ whereas the representation
7



r (conjecturally) determines r, : A(G) — A(GLy,). The absolute exponential Weil height H(x)
for x € P™(k) on the Manin side corresponds to the analytic conductor ¢(r), 7 € A(GLy,) on the
automorphic side. The height function hy(z) relative to ¢ corresponds to the analytic conductor
¢(m, ) relative to r as in (L.).

The invariant a(£) appearing in the Manin conjecture and the invariant A appearing in Theorem
both are expressible in terms of combinatorial geometry problems, see the computations with
matroids in section [£.2] of this paper.

At least in the special case of tori, Theorems and suggest that ¢(£) on the Manin side
corresponds to the set of orbits é\io. In both cases, the power of log comes from the possible
embeddings of V' or A(T) in ambient space that are “extremal” in the combinatorial geometry
problem defining a(£) or A.

The leading constant in Manin’s conjecture has been given a conjectural interpretation in terms
of adelic volumes by Peyre [Pey95] and Chambert-Loir and Tschinkel [CLT10]. For a discussion of
the significance of the leading constant in the automorphic counting problem, see [BM23, §1.5].

While the analogy presented here is striking, it only goes so far. In Manin’s conjecture, there is
a canonical choice of £, that is, one takes £ = —wy, the anti-canonical bundle. In the automorphic
setting, there is apparently no canonical choice of complex representation r of the L-group of G.
Moreover, in the setting of Manin’s conjecture the set of possible height functions corresponds to
the ample cone of V', whereas in the automorphic setting, the possible height functions correspond
to the set of faithful finite-dimensional complex representation of “G. The later takes into account
both the finite-dimensional representation theory of complex connected reductive groups and of
global Galois groups, so seems to afford a more intricate set of height functions. Lastly, we remark
that the invariant £(£) in Manin’s conjecture is an essentially global invariant of V. On the other
hand, é\io has a somewhat more local nature, as we shall see in section |5| of this paper.

1.4. Outline of the proof. In order to make direct use of the local to global nature of the counting
problem we work with the global conductor zeta function Z(s) of T,r, that is we define

Z(s) := Ll b dv(x).

(1) <O r)*
For ¢ > 0 let R = R(¢) = R(A, ¢) < C be the region

(L12)  R=R() =KAo ={r+iteCio> A o mpr o |

The main goal of this paper is to prove the following theorem.

Theorem 1.10. Suppose that r|s is faithful. The generating series Z(s) converges absolutely
for Re(s) > A and extends to a meromorphic function in the open half plane Re(s) > A —
min(27Y, m=2). There exists c = c(T,r) > 0 such that the function Z(s)

e has a pole at s = A of order |C~¥\§JO| and no other poles in R(c) (respectively, the half-plane
Re(s) > A —min(27, m~2) if the Artin conjecture holds),

o grows slowly in R; i.e. there exists J = J(T,r) >0 and 0 < ¢ = (T, r) < ¢ such that for
any s = o + it € R() avoiding any small neighborhood U of A we have

Z(o +it) <7, (log(|t| + 3))7,

and
e has moderate growth in a vertical strip if the Artin conjecture holds, i.e. there exists K =
K(T,r) > 0 such that for any s = o + it with 0 > A — min(27!,m~2) avoiding any small
neighborhood U of A we have Z(o + it) <700 (1 + [t])E.
8



Here and throughout the paper, when we ask that the Artin conjecture holds, we mean for the
finitely many representations appearing in Theorem[5.4, Theorems|[I.Iand [I.3|follow from Theorem
by an appropriate Tauberian argument, see [Ing90, Ch. IIT §11] or [CLT10, Thm. A.1].

An application of Poisson summation (Lemma decomposes Z(s) as a sum over global units
x € U(T) of generating series Z(s,x) that factor over places v of k, i.e.

(1.13) Z(s) = 2 Z(s,x) with Z(s,:c)=HAkv(s,$)HNkv(s,:n)

zeU(T) v|oo vfoo

for certain local archimedean and non-archimedean generating series Ay, = A, (s,x) and Ni, =
Ng, (s,z). See Proposition for the precise statement, which is a minor modification of .

The location and order of the rightmost pole of each Z(s,z) only depends on all but finitely
many of the Ng, (s, ), in particular, only on those v < oo which are unramified in the extension
K /k splitting T. A main idea of this paper is to perform the analysis of Ax, and Ny, on the Galois
side of the local Langlands correspondence for tori [Lan97], which is particularly simple when the
torus splits over an unramified extension of non-archimedean local fields, see Proposition [3.15

An outline of the argument in this paper is then as follows.

(1) Show for each place v of k that the local series Ny, and Ay, converge absolutely for Re(s) >
A —m™2, see sections and
(2) Compute N, for v unramified finely enough to obtain a group-theoretic description of its
leading terms as a local Dirichlet series, see section
(3) Compare the product over unramified places [ [, Nk, with a finite product of global Artin
L-functions and apply the Brauer induction theorem or Artin conjecture, see section
(4) Show that the leading Laurent series coefficients of Z(s,x) at s = A are positive for all
z € U(T), see Theorem [4.4|(3)), Theorem [5.3|{4) (5)), and Lemma
(5) Show that the sum over U(T) in converges absolutely, see section
As previously remarked, the Brascamp-Lieb inequality (Theorem enters the picture in step
for archimedean places, and leads to a problem in combinatorial optimization of convex polyhedra.
To resolve this problem, we use the theory of matroids, see section [£.2.2] especially Theorem [£.17]
Step is the heart of the paper. Here we use the detailed conductor analysis from section @,
group theory, some algebraic geometry, and Lang-Weil bounds. The group theoretic description of
the unramified terms thus obtained is crucial in their collection into Artin L-functions in step .
The most difficult part of step again turns out to be the archimedean places, see section
It is important for our method that the function z — (1 + |z|)~? on R (among others) has
a non-negative Fourier transform, where the 1 + |z| here arises from the Iwaniec-Sarnak definition
of the archimedean analytic conductor, see Lemmas [4.21] .22] and [£.23]
The Brascamp-Lieb inequality is used a second time in step of the proof, where it is applied
in a global context with respect to the regulator matrix of 7.

1.5. Index of notation.

] Notation \ Definition \ Location ‘
k a general field in §2 a number field in and [6] q1.1] [2.1]
AF the ring of adeles of a number field k, a local field §T.1, 2.3
T, n an algebraic torus over k or F' of dimension n §1.1} §2.1]
A(T),v the Pontryagin dual of T'(k)\T'(A), a Haar measure on it | §1.1
X*(T), X (T) groups of algebraic characters and coharacters of T’ qL.1} §2.1
K, L G the splitting field of T" over k, or over F, its Galois group | 1.1} §2.1
T the complex dual torus: Hom(X,(7"),C*) §L.1 (2.5)
L the L-group of T: T x G §1.1] Def
r,m an m-dimensional complex algebraic representation of X7 | §T.1 gﬂ
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] Notation \ Definition \ Location ‘
c(x,7) the (local or global) analytic conductor with respect to r Defsnv
w, M a co-weight of r, the multi-set of co-weights of r , Def
S, oM a subset of M, the set of all subsets of M ~
D(S) a complex diagonalizable subgroup of T ,
A the power of X in the main theorem
Y set of nonzero S € M which attain A (11.6)
- lemges;[70(D(S)) )

K, G K adjoin the Ath roots of unity, Gal(K/k) L.

5 a fibered set with base ¥ and fiber 7o(D(S))
S0 5. with the subset {(S,1) : dim D(S) = 0} deleted 1.10
C(x) the analytic conductor of a Hecke character x §1.2]
Resg/k restriction of scalars, i.e. “Weil restriction” 91.2
R(c) = R(A,c) a region of analytic continuation for Z(s), Y(s) or U(s,z) | (L.12)
k5P, G a separable closure of k, the absolute Galois group of & .1
X1 x5 Xo the fiber product of schemes X7, Xo over a base .S §2.1
A" the Pontryagin dual of a locally compact abelian group A | §2.3
Wg, Wik WEeil group and relative Weil group of a local field §2.3, (2.7
o the canonical map Wy /p — Gal(L/F) 23)

& p a cohomology class and a Langlands parameter ¢ = & x o | §2.3
o(T) the set of Langlands parameters of T’ §2.3
Hy, a polytope in RZ given by an m x n matrix M 2.13)), (2.14
qr the cardinality of the residue field of F 1]
c(o0), ¢(o) the Artin and abelian conductors of a representation o Def|3.2
cr(0) the conductor of a representation p wrt a filtration F Def [3.3]
c(x,r) “abelian” local analytic conductor Def|3.6
Op, Or, p, B, f, £ | integers, maximal ideals, and residue fields of F' and L §3.1.2
G, W7 IF higher ramification groups with upper-numbering §3.1.1
u, Og}) the standard filtration on O} P11
YE/F, OE/F the Hasse-Herbrand functions, see [Ser79, Ch. IV §3] §3.1.1
T the canonical integral model of a torus T" over a local field | §3.1.2
N the norm map, i.e. the product of Galois conjugates 3.4
ﬁ”(G, M) Tate cohomology groups of a G-module M §3.1.2
R the restriction to O map out of HI(WL/F, f) 3.8)
H(G, M) 1st group homology group of a G-module M 3.11
Np(s,z) local generating series for a non-archimedian field 3.21]
N the non-negative integers §3.2)
P<(c) a finite subgroup of Homg (07, IA’) 3.24
P_(c) a “sharp” subset of P<(c) 3.25
< (e, z), II-(c, z) | character sums over P<(c) and P—(c) 3.26
Dy(c) a generalization of D(S) 3.29)
p(V) the set of geometric components of a variety V

a(S,x) the number of Frobenius-fixed components of a~*(z) 3.36
a(S) a(S,1); the number of Frobenius-fixed points of mo(D(S)) | (3.38
Sred the maximal Galois-stable subset of S 3.40
T, ny, no, ng T(F)~T=RX)™ x (SH)" x (C*)"3, F arch. local 4.1
T A= (R™ x (Z/2Z)™) x Z" x (iR"3 x Z"3) 13
((w,€),a, (w',a’)) | a typical element of T §4.1]
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] Notation \ Definition \ Location

(a,c, (b)) an element of X, (Gy)™ x X, (ST)" x X, (Resc/r Gm)™ | §E1

M a matrix with entries in Z encoding the co-weights of r 4.1
A;,C, B;, B;f sub-block matrices of the co-weight matrix M 4.1
Ap(s,z) local generating series for an archimedian field 4.21
By, B 1/ inf{|z|w : © € Hyr}, a variant involving a factor of 1/2 4.27)), (4.28)
(N,J), r(S) a matroid, its rank function Def [4.10}, [4.12
Py, Py the matroid polytope and matroid base polytope Def |4.14
Fa(f) Fourier transform of a measure f on an abelian group G | §4.2.4]
v, w a valuation of k and a unique valuation of K extending it | §5.1

TOO Hv\w T(kv) §g
NT; [T NT(0) 6.1

Ty A Ty x NT} 5.3
Un(T) T(k) nTn A, called the global norm-units of 7' E
Cly(T) T(k)Tn a\T(A), called the norm-class group of T' 5.5

v {xeT{a x(x)=1forallzeUn(T)} 6.2)

Vi {Xw €Ty : Xo(x) =1 for all z € Un(T)} 6.7]

B set of places of k with (gg,,A) # 1 or v ramified .2

Ts an auxiliary torus attached to S € 2M §3.2
al(x) fibers of a map of tori a : Ts — T, see also Lem. §3.2, 5.4
K, L T field of def. of components of a~!(z) for all z, Gal(K'/k) | §5.4

PB’, Dy, Dy a prime of K’ above B, decomposition groups of 3, L’ .4

A equal up to an absolutely convergent Euler product Def 5.6
C a conjugacy class of I’ 5.13
»¥ subset of ¥ fixed by Dy 5.14

ac (S, x) the number of C-fixed components of o~ (x) 5.16
Xab set of S € 2™ such that dim D(S) = @ and |S| = b 5.19
ia,b similar to io, but with respect to X4 (15.21))
Vo = (—BiVi@mo’i permutation rep. of an orbit O of I' acting on ENJQJ, 5.22
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2. BACKGROUND AND NOTATION

2.1. Tori and groups of multiplicative type over a field. In this subsection we let k denote
an arbitrary field. We take an algebraic k-group to be as in [Mill7, Def. 1.1].
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Definition 2.1. An algebraic k-group T is called a torus if there exists a field K 2 k such
that the base change T xj Spec K of T is isomorphic to a finite product of copies of G,,, i.e.
T xj, Spec K ~ G, - for some non-negative integer n.

Definition 2.2. An algebraic k-group is called diagonalizable if it is isomorphic over k to a finite
product of copies of G, and groups of roots of unity u,.. More generally, an algebraic k-group U is
said to be of multiplicative type if there exists a field K 2 k such that the base change U xj Spec K
is isomorphic to a diagonalizable group over K.

Tori are the smooth connected groups of multiplicative type [Mill7, §12.f]. If a field K 2 k is
such that U xj Spec K is diagonalizable over K, then we say that U splits over K. In fact, any
k-group of multiplicative type splits over a finite separable extension of k [Mill7, Cor. 12.19] and
we call the minimal Galois extension of k over which U splits the splitting field of U.

Let k5P be a separable closure of k and Gy = Gal(k*P/K’) for any k < k' < k5P. For any group
of multiplicative type U over k, let X*(U) = Hom(U, G,,) be the group of algebraic characters of
U and X, (U) = Hom(G,,,,U) be group of algebraic cocharacters of U. They are finitely generated
abelian groups admitting continuous actions of Gi. These actions on X*(U) and X.(U) factor
through the action of the finite group G = Gal(K /k), where K is the splitting field of U. A group
of multiplicative type U is an affine scheme with coordinate ring kSP[X*(U)]% = K[X*(U)]C.

Lemma 2.3. The functor X™* is a contravariant equivalence of categories from the category of
algebraic k-groups of multiplicative type to the category of finitely generated abelian groups equipped
with a continuous action of Gi. The functor X* is exact, i.e. it sends short exact sequences to
short exact sequences.

Proof. See [Mill7, Thm. 12.23]. O

The equivalence of categories from Lemma given by the exact functor X™* restricts to an
equivalence of categories from the category of k-tori to the category of finitely-generated free Z-
modules equipped with a continuous action of Gy, see [Mill7, Rem. 12.5].

For any k € k' € kP and any k-group U of multiplicative type we have

(2.1) U(K') ~ Homg,, (X*(U), (K*P)*),

see [Mill7, Rem. 12.26]. The map in takes a continuous Gy-equivariant homomorphism £ :
X*(U) — (k%P)* and extends it to a k-algebra homomorphism u* : O(U) = (k*P)[X*(U)]» — K/,
which defines the &’-point u : Speck’ — U of U.

Let T be a k-torus. The evaluation pairing

(2.2) o XH(T)®z Xi(T) — Z

given by x o A : z — 20N is a perfect pairing between the character and cocharacter lattices.

The perfect pairing gives us another description for the k-rational points of a torus. Indeed,
we have X, (T) ~ Hom(X*(T),Z) and so X«(T) ®z K* ~ Hom(X*(T),Z) ®z K*. There is an
isomorphism

(2.3) ¢ : Hom(X*(T),Z) ®z K* ~ Hom(X™*(T), K*)

given on pure tensors by p(A®z) = (x — 22X)) for y € X*(T). (More generally, Hom(P, R) @ M ~
Hom(P, M) for any R-module M and finitely-generated projective R-module P.) Combining these
maps with (2.1)) we have

(2.4) T(K)~ X.(T)®z K* and T(k) ~ (X4(T) @z K*)°.
12



2.2. L-groups of tori and representations. For any k-torus T the group

(2.5) T := Hom(X4(T),C*) ~ X*(T) @z C*

is called the complex dual torus of T. As a group, T' ~ (C*)™ and carries an action of G = Gal(K /k)
through the Galois action on the cocharacter lattice X, (7). We shall also use the unit complex
dual torus R
T, = Hom(X,(T),S) ~ X*(T) ®z S*.

The affine k-scheme TV = Spec K[X,(T)]¢ is called the algebraic dual torus of T. There is
a natural isomorphism X, (7) ~ X*(TV) sending A € X.(T') to the x € X*(T"V) defined by
X* = (X — \) on coordinate rings x* : kSP[X, X 1] — kSP[X,(T)] (see e.g. [Mill7, §12.a, Lem.
12.4)). If k is a subfield of C, then T = TV (C) and

X*(T) := Homes(T, C*) = Hom(T", Gp) = X*(T"),

so in this case we obtain a natural identification X™*(7T") ~ X, (7).

Definition 2.4. Let T be a k-torus with splitting field K. We call the external semi-direct product
LT =T x G the L-group of T, where G = Gal(K /k).

The L-group of T is a complex algebraic group. We call the subgroup T, := fu x G of LT the
unit L-group of T'. Caution: more commonly in the literature on the Langlands correspondence the
L-group is defined using the absolute Galois group Gy, in lieu of the finite group G. While these two
definitions are ultimately equivalent, we work with finite Galois groups mainly because Langlands
does in his paper on the correspondence for tori [Lan97], and some computations in group co-
/homology become simpler when we work with finite groups. Of course, the cost of working with
finite GG is having to keep track of the splitting field of T'.

Let r : YT" — GL(V) be a finite-dimensional complex algebraic representation of “7". The
restriction of r to T admits a weight space decomposition

(2.6) rla= @ Vi

peX*(T)

where V), is the eigenspace of V' with character p.

Definition 2.5. The multi-set M = M, with underlying set {u € X *(f) : Vi # 0} and multiplicity
of pe M equal to dim V), is called the set of co-weights of .

Let S < M be a subset of co-weights with multiplicity. Recall the definitions of D(S) and A
from and , which make sense for general base fields.

The group G acts on the set of co-weights M via its action on X, (T) (or T). In the case that k
is an archimedean local field, we will, after choosing coordinates on T'(k) and r, associate to M an
m x n matrix (where m = dimr and n = dim7T’), which we also write M.

In this paper a k-variety is a reduced, separated k-scheme of finite type. In particular, we do not
assume that varieties are irreducible.

Lemma 2.6. Let o : T1 — T be a map of tori over a field k of characteristic 0. The number of
geometric components of the fiber a~t(z) is constant on {x € To(k) : a~Y(z) is non-empty}. For
any finitely-generated subgroup A of To(k), every component of a='(x) for all x € A is defined over
a single finite extension of k.

Proof. For the first assertion, if a~!(x) is empty, there is nothing to show, so suppose otherwise.
Recall [Mill7, Rem. 12.5] that the tori 77, T as well as the group of multiplicative type ker « are
all reduced k-schemes, since k has characteristic 0. If k is a perfect field and A and B are reduced
k-algebras, then A ®j, B is a reduced k-algebra, see [Bou03, Ch. V §15 5. Thm. 3(c) and 2. Prop.
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5]. Since Ty and Th are affine, it follows that a~!(x) is reduced, hence a closed subvariety of Tj.
As we have already remarked, the algebraic group ker « is reduced, thus y(ker «) is also a closed
subvariety of T for any fixed geometric point y € a~!(z)(K) for any finite extension K /k.

For any fixed algebralc closure k/k it is easy to check that a1 (k) = y(ker a)(k), so that by e.g.
[MiI17, Cor. 1.18], a~!(z) = y(ker ) as closed subschemes of Tj. Then, since y(ker a) ~x ker
(see e.g. [Mill7, Prop. 5.24]) and the formation of the group of connected (equivalently, irreducible)
components my commutes with base change [Mill7, Prop. 2.37(c)], we have that the number of
components of a~!(z) is independent of .

For the second assertion, say xi,...,z, are generators of A. Since T} is abelian, all of the
irreducible components of a~!(x) for z € A are defined over the finite extension of k obtained by
adjoining the coordinates of the y; corresponding to z; (if they exist) from the previous paragraph
to the field of definition of (ker av)°. O

2.3. Local Langlands correspondence. For a topological abelian group A, we henceforth denote
by Hom(A,C*) the group of continuous complex characters of A, and by A" the subgroup of
unitary characters, that is to say the Pontryagin dual. For M a G-module, H'(G, M) denotes the
first group cohomology group defined using continuous cocycles.

In this section we suppose that T is a torus over a local field F' with splitting field L and Galois
group G = Gal(L/F).

Following [Bor79], we define the local analytic conductors ¢(x,r) associated to a character y :
T(F) — C* and representation r of “T" by passing through the local Langlands correspondence
and taking the conductors from the Galois representation associated to x and r. To that end, we
now review the local Langlands correspondence for tori.

Recall the Weil group of a local field [Tat79, §1.1], which is a triple (Wg, ¢, {rg}), and the relative
WEeil group
Wp

(27) WL/F = m

The group Wi r has Wfb as a subgroup and so can be thought of as a group extension of G by
L*, i.e. there is a short exact sequence

(2.8) IHLXLWL/F—O>G—>1,

see [Tat79, §1.2]. If L, F' are non-archimedean local fields, then the map ry, is the Artin reciprocity
map of class field theory [Tat79, (1.4.1)].

Following [Lan97], we define a Langlands parameter to be a continuous group homomorphism
o:Wrp— LT for which the diagram

WL/FLLT

N

G

is commutative. Two Langlands parameters are said to be equivalent if they are f—conjugate. We
write ®(T") for the set of equivalence classes of Langlands parameters of T" as in [Bor79) §8]. The
local Langlands correspondence (LLC) for tori asserts that there is a canonical bijection

(2.9 Hom(T(F), C*) «— ®(T).
Given a Langlands parameter ¢ corresponding to x € Hom(7'(F'),C*), the composition

rog: W p— GL(V)
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only depends on the equivalence class of . We have thus associated a complex Galois representation
to the character y and the L-group representation r. We define the local L and e-factors associated
to finite dimensional complex Galois representations as in [Tat79l §3]. Later, we will define local
analytic conductor c(x,r) in terms of the e-factor of r o ¢ if F' is non-archimedean (see Definition
B.1), and in terms of the L-factor of r o ¢ if F is archimedean (see Definition [4.1]).

To make more explicit, we recall the the cohomological interpretation of the LLC for tori.
Given a Langlands parameter o, we write ¢(2) = §(2) x o(2) for z € Wy p, £(2) € T, and o(z) € G.
One sees that ¢ and ¢’ are equivalent if and only if & and & are cohomologous, i.e. we have a
bijection
(2.10) ®(T) «— H' (W5, T),

where Wy acts on T via the map o : Wy p — G of (2.8). Langlands proved [Lan97, Thm. 1]
that there is an isomorphism

(2.11) Hom(T(F),C*) ~ H'(Wyp, T)
and moreover (2.11)) restricts to
(212) T(F) ~ H Wy, ),

where T, = X,(T)". We will use when F is an archimedean local field.

Let dr be a Haar measure on F, 1 a non-trivial additive character of F', and dx’ the dual
Haar measure relative to ¢. Given a finite dimensional complex representation (o, V') of Wg, Tate
[Tat79, §3] defines the e-factor e(V,v,dz) = £(p,v,dx) attached to these data. When we give
the definition of the local analytic conductors in sections [3.1] and we will encounter the factor
(6(1p)dx/dx" )4 ™ (V)| This factor is explained in [Tat79, §3.4] and we do not need to elaborate on it
for the purposes of this paper.

2.4. Some tools. Let f denote an algebraic closure of a finite field f, and let V < 7" be a variety
over f of dimension r and degree d. The following is [LW54, Thm. 1].

Theorem 2.7 (Lang-Weil). If V is defined over f and irreducible as a variety over f, then
VA= 1+ Onan(|F71).

In fact, Lang and Weil give a more explicit bound on the implied constant in their Theorem
1, but we do not need this. We also have the following result of Lang and Weil under weaker
hypotheses [LW54), Lem. 1].

Lemma 2.8 (Lang-Weil). If V is defined over f, then
|V(f)‘ Ln,d,r |f|T

We need the following standard variant of the Lang-Weil bound that relaxes the geometric
irreducibility, definability over f, and reducedness hypotheses.

Corollary 2.9 (Lang-Weil, alternate form). Let V be a separated f-scheme of finite type. Then
one has

VOl = @(V) + Onar(| 17D
where p(V') is the number of geometrically irreducible components of V' of dimension r = dim(V)

that are invariant with respect to the Frobenius endomorphism x — z!fl associated to f.

If in fact the dimension of V' is zero, it is not hard to see that |V (f)| = p(V).
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Proof sketch following the blog post “The Lang-Weil bound” of T. Tao. We may assume without loss
of generality that V is an f-variety by working with the underlying reduced closed subscheme Vg,
which is an f-variety and satisfies Vieq(f) = V(f), since f has no nilpotents.

Decompose the variety V into geometrically irreducible components u;V;. For any V; of di-
mension < r we apply Lemma to subsume these components into the error term. If V; is
geometrically irreducible but not defined over f, then it is not fixed by the Frobenius endomor-
phism Fr. In this case, V; n Fr(V;) is a proper closed subvariety of the irreducible V;, so is of
strictly lower dimension. Since all the f-points of V; are contained in (V; n Fr(V;))(f), we again
use Lemma to subsume these components into the error term. Lastly, each of the components
V; that remain are geometrically irreducible and defined over f, to which we apply Theorem to
conclude the proof. O

Let M € My, «»(R) be an m x n matrix with real entries, m > n. Let us write a;, i = 1,...,m
for the rows of M. We define a convex polytope Hys = RZ by the the following inequalities:

(2.13) i T, =n
i=1

and
(2.14) Z x; < dim(span({a; : i € S}))
€S
for every subset S < {1,...,m}. Note that Hjs is non-empty if and only if M is full-rank.

The following Brascamp-Lieb inequality is due to Barthe [Bar98] and was re-stated in the form
below by [CLL04, §4]. We use it in a crucial way in section and then again in section

Theorem 2.10 (Brascamp-Lieb Inequality). Let aq, ..., am, be non-zero vectors in R™ which span
R", and let M be the m x n matriz whose rows are a;. Let p = (pfl,...,p;ll) € RYy. Let

f = (fi)i=1...m be an m-tuple of non-negative measurable functions f; : R — Rso. Then

fR [1#Can,29) o <mmnry | [ 1l
=1 i=1

if and only if p € Hy < RZy. Here the implied constant depends on m,n, M,p, but not on f.

We also have the following convenient version of the Brascamp-Lieb inequality on finitely gener-
ated abelian groups due to Bennett, Carbery, Christ and Tao [BCCT10, Thm. 2.4].

Theorem 2.11 (Discrete Brascamp-Lieb Inequality). Let G and {G; : 1 < i < m} be finitely
generated abelian groups. Let ¢; : G — G; be homomorphisms. Let p; € [1,00]. Then

(2.15) rank(H) < Zpi_l rank(p;(H)) for every subgroup H of G

if and only if there exists a constant C < o0 such that

(2.16) M Fcedw <C[[Ifilwicy forall fi: Gi — [0, ).
yeGi=1 i

We next recall some analytic results on L-functions of Hecke characters in t-aspect.

Lemma 2.12. For any Hecke character x over a number field there exists an effective constant
c(x) > 0 such that L(s,x) # 0 for all s € R(1,c(x)).
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Proof. A more general result of Coleman [Col90, Thm. 2] asserts that the lemma holds apart from a
possible exceptional real zero when the archimedean component of x is trivial and x? = 1. However,
Stark’s effective lower bounds on L(1, x) [Sta74, Thm. 1’] bound such a potential exceptional zero
away from s = 1 in terms of the discriminant of the field of definition of x, so that by adjusting
the value of ¢() accordingly one obtains the lemma without exceptions. ([l

Lemma 2.13. For any Hecke character x over a number field

(2.17) < (log(|t| + 3))%3(loglog(|t| + 16))'/?

L(o +1it, x)
uniformly for o + it € R(1, (x)) with an effective 0 < ¢/(x) < ¢(x).-
Proof. Given [Col90, Thm. 1 and §5] the proof essentially follows that of [TH-B86, Thm. 3.11] with

. . / loglog(|t|+16) 2/3
o(t) = ca(x) loglog(|t| + 16) where c2(x) is as in [Col90, Thm. 1] and 6(¢t) = /(x) (W)

(cf. [Hual9, Lem. 11 and Rem. 3)). O

Lemma 2.14 (Poisson Summation). Let H < G be locally compact commutative groups such that
the quotient G/H is compact. Let f € LY(G) and write f for its Fourier transform

Flw) = fG 1(9)6(g) dg.

If
(1) the restriction of f to (G/H)" is integrable,
(2) for all x € G the function y — f(xy) is integrable on H, and
(3) the map x — § f(xy) dy is continuous on G,

then for all x € G we have

~

1
fo@h)dh:Vol(G/H) 2) Fwye(e).

ve(G/H)"

Proof. See [Boul9, Ch.IT §1 7. Cor.], which does not assume that G/H is compact. This latter
hypothesis is only used to write the integral over (G/H)" as a sum above. O

Remark. There is also a more general version of Lemma without the hypothesis that G/H be
compact or the hypotheses and , but in which the conclusion only holds for almost every
x € G, see [Boul9, Ch. IT §1 7. Prop. 15].

3. LOCAL NON-ARCHIMEDEAN THEORY

3.1. Local Langlands correspondence, local conductors. We now restrict our attention to
non-archimedean local fields F'.

3.1.1. The Artin conductor. Let T be an F-torus and (Wg, ¢, {rg}) a Weil group for F. Let
r: T — GL(V) be a finite-dimensional complex representation of the L-group of T as in section
2.2] Recall the e-factors attached to finite-dimensional complex Galois representations of Wr from
section

Definition 3.1. If ¢ € ®(T) corresponds to x € Hom(T'(F), C*) under the local Langlands corre-
spondence ([2.9)), then the quantity

c(x,r) = le(r o @, v, dx)?

is called the local analytic conductor of x with respect to r.
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Tate [Tat79, §3.4.2] shows that £(V,v,dz) is additive, and in particular only depends on the
isomorphism class of V. If (9, V) is a unitary representation we have (see [Tat79l §3.4.7]) that

(3.1) le(V, 4, dm)|2 _ q;(g) (5(¢)dw/daj,)dim(v).

In particular, since e(V, 1, dx) only depends on the isomorphism class of (o, V), it suffices for (3.1)
to hold that (g, V') be unitarizable. Here g is the cardinality of the residue field of F' and c¢(p) is
the Artin conductor of the representation (o, V).

In light of we next review the definition of the Artin conductor ¢(p) of a finite-dimensional
complex representation o : Wr — GL(V) of the Weil group of a non-archimedean local field. The
classical Artin conductor is an invariant of a finite dimensional complex representation of a finite
Galois group Gal(E/F). For more discussion of the classical Artin conductor see [Ser79, Ch.VI] or
[Ulm16), §4]. We give a slightly nonstandard definition of the Artin conductor of a finite-dimensional
complex representation of Wpp following [UIm16] (this goes back at least to [DDT97]).

Let ¢ : Wr < G be the inclusion given as part of the data of a Weil group (see [Tat79, §1.4.1]).
For any v € [—1,0), let W} be the inverse image of the (upper-numbering) higher ramification
group GY% by ¢ (see Serre [Ser79] for definitions, especially Ch. IV, §3, Remark 1). Let L/F be
a finite extension and W7} /P be the image of W by the canonical projection Wrp — Wr p. The

groups W/ P therefore define a descending filtration of Wp, p with index set [—1, ).

Proposition/Definition 3.2. For a finite dimensional complex representation ¢ : W /p — GL(V),
the number

o6}

c(o) = J codim(Vg(WL/F)) dv
-1

is called the Artin conductor of (o, V). The value of ¢(p) only depends on Q|W2/F, and extends the

notion of Artin conductor for complex representations of finite Galois groups.

Proof. Since there are no breaks in the upper-numbering filtration between —1 and 0, and the

upper-numbering is left-continuous (see [Ser79, Ch.4 §3]), it follows that the Artin conductor ¢(o)
only depends on the restriction of g to WLO I

Since WL0 P is compact and profinite and GL(V') has no small subgroups, it follows that H =
ker Q|W3/F is a finite index open subgroup of Wg JF We have that Q|W2/F then factors through
the finite quotient WLO /F/H . From this, the inverse image of H in ng also has finite index, and
contains [Wy,, W], thus (see Tate [Tat79, §1.4.5]) we have that H = W} s for some finite extension
L**/E/F. By Serre [Ser79, Ch. IV, Prop. 14] we have that

WLO/F _ WLO/FH _ (WL/F
H H Wik

and indeed, for all v € (—1,00) that

Wik WppH <WL/F

HﬁWij/F H WL/E

)O ~ Gal(E/F)°

)U ~ Gal(E/F)".

Therefore to Q|W2/F there is associated a finite extension E/F with F < L and p factors through

the representation ¢ : Gal(E/F) — GL(V) given by composing with the isomorphisms above. It
is shown in [Ulm16l §4] for finite dimensional complex representations of finite Galois groups that
the standard definition of the Artin conductor matches the one given in the Proposition/Definition
with the higher ramification groups GY(E/F) in place of the Weil group and ¢’ in place of p. O

The Artin conductor is a special case of the following more general notion of conductor.
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Definition 3.3. For G a group endowed with a descending filtration F = (G?)ye(—1,00) and 0 : G —
GL(V) a finite dimensional complex representation, we call

Q0
cr(0) = f codim V) dy
-1

the conductor of (o, V') with respect to F.

With G = Wp,p and J given by the upper-numbering filtration, c5(¢) the Artin conductor of
(0, V).

Next, we introduce an “abelian” conductor ¢(p). The Artin conductor of a representation (g, V)
is controlled by the abelian conductor, and in the case that the representation factors through Wy
for L/F an unramified extension, the abelian conductor is identical to the Artin conductor.

We denote for any v e (—1,00) the groups

(f)(v) B 1—+—7T[LU]OL ifv>0
L o if0>v>—1.

In particular the function v — (‘)S:v) is locally constant on (—1,00) — Z, and satisfies lim,,_,,,— (‘)%) =

(‘)(Ln) for n € Z, where lim,_,,,— denotes the one-sided limit from below.

Let ¢Yp/r and ¢p/r be the Hasse-Herbrand functions for an extension F /F of non-archimedean
local fields, see [Ser79, Ch. IV §3]. Recall the short exact sequence expressing Wy p as a
group extension of G = Gal(L/F).

Lemma 3.4. For any real number v > —1, the following diagram commutes and the horizontal
rows are short exact sequences:
1 O(LTZ)L/F(U))

WY, GV 1

L/F

L,

1 LX "L WL/FU;>G4>1

Proof. The Artin reciprocity homomorphism 7, maps the subgroup OEU) < L* onto the vth higher
ramification group Wfb’v of WP in the upper-numbering (see Serre [Ser79, Ch. XV, Thm. 2]). We
shall need an analogue of [Ser79, Ch. IV, Prop. 2] for the upper-numbering filtration of WP, so we
work with the Hasse-Herbrand functions. By definition of the upper-numbering filtration and the
transitivity of the function ¢ under field extensions (see [Ser79, Ch. IV Prop. 15]), we have

ab¥r)r(v)  11rab ab
WL - WLv"l)Lab/LowL/F(U) B WLquab/F(v) ’

By [Ser79, Ch. IV, Prop. 2] and converting back to the upper-numbering filtration, we have

ab ab v ab
Wb a5 ) = WL/ o) VWL = Wryp 0 WEP.
Therefore, Og)L/ r() ~ Wzb’%/ # () cwy P where the first ~ is the Artin map, so the left hand

square in the statement of the lemma commutes and all four maps are injections.
Next we compute the cokernel. By the foregoing,

Woe  Whe  WWi
Wb T Wy AW T W
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We apply [Ser79, Ch. IV, Prop. 14] with G = W p and H = Wb to see that

Wy Wit

= (Wee/Wi)

Finally, by the third group isomorphism theorem and [Tat79, §1.1] we conclude that

W Wab v ~ @GV
L/F/ L ~ G,
since the canonical inclusion ¢ : W < GF has dense image. [

We are ready to give a definition of the abelian conductor &(p).

Definition 3.5. Let (o,V) be a finite-dimensional complex representation of Wp p, Wg I L*, or
OF, where the latter two groups are viewed as subgroups of W, /r as in Lemma Let U be the
descending filtration defined by (O%))ve(—l,oo)' Then

&(e) = cu(o)
is called the abelian conductor of (o, V).

Remark: The abelian conductor ¢ is additive in the sense that if o = 01 @ 02, then é(p) =
(1) + ¢(02).

Definition 3.6. The abelian local analytic conductor ¢(x,r) attached to x, r is the complex number
€00r) = a7 (0()da/dal )0,
where ¢ € ®(T) corresponds to y € Hom(T'(F'),C*) under the LLC for tori (2.9).

Finally, we note that the abelian conductor controls the Artin conductor and vice-versa. Let
vo = inf{v : GY(L/F) = {1}}. For example, if L/F is unramified then vy = —1.

Lemma 3.7. We have
1

€L/F

é(o) < c(p) <é(p) + (vo+1)dim V.

In particular, if L/F is unramified, then ¢(o) = ¢(o0).

Proof. For the first inequality, we have from Lemma [3.4] that

(W p®) Y
codim(Ve©@: ")) < codim(VeWViir)),

Then, by [Ser79, Ch. IV, Props. 12, 13] we have

é(o) <

1 JOC codim(VQ(Ogu))) du — foo
€L/F -1 (Go:Gu) 1

codim(VQ(o(Lu)))¢’L/F (u) du

0 (P p @)
= f codim(V ez o ) dv < (o).
-1
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. . . . oWrL/F®) . JPN
For the second inequality, we use the fact that if v > vg then COdlm(VQ( L )) — codim(VeWie)),
We have
vo v Q0 .
o) = J codim(V4™Lr)) dy + f codim(VeWLP) dy
-1 v
x W ()
< (s -+ 1) codim(V ")) 4 J codim(v2O )Y ay
vo
* W p®)
< (v +1) COdim(Vg(Wg/F)) + f COdim(Vg(oL vE )) dv
-1
@ codim(VE’(O(Lu)))

= (vg + 1) codim VQ(WLO/F) +J du
o+ ) codimVEmEI T | G )

< (vo + 1) dimV + ¢(p).

Corollary 3.8. We have for r,x, vy as above and m = dimr that

S0 )M ey r) | ¢ ().

In particular, if L/F is unramified then ¢(x,r) = c¢(x, 7).

The reason we prefer the abelian conductor is the following. Recall from section [2.2] the set of
co-weights M associated to the representation r : “T" — GL(V) of dimension m.

Proposition 3.9. Let ¢ be a Langlands parameter of T. Then, p|qx € Homg(Oz,f) depends only
L

on the equivalence class of ¢ and writing £ = ¢|yx, we have
L

drop)= > c(uo),

neM
where on the right hand side ¢ = ¢y as in Deﬁnition with W being the standard filtration of OF .

Proof. We have that O; < L* maps to the trivial element of G (see (2.8)), so that O] acts trivially
on T. By definition, of a Langlands parameter 90|o§ takes values in T x 1 < LT, i.e. cp|oz = €|Of

for the £ € HI(WL/F, f’) corresponding to ¢ across the bijection (2.10)). Since O] acts trivially on
T, we have H 1((‘);,? ) = Homg((‘)z,f ) and the first assertion of the proposition follows.

By definition, the abelian local analytic conductor of 7o ¢ only depends on the restriction to O; .
We have that

TO(P‘@Z :r‘fO@‘oz = @ MO‘S‘()Z:
pneM

so that the second assertion of the proposition follows by the additivity of the abelian conductor. [

3.1.2. The canonical integral model of a torus and the norm map. We begin with a brief discussion
of the work of Voskresenskii [Vos98, §10.3] on the canonical integral model of a torus 7" over a non-
archimedean local field F'. Let L be the splitting field of T' with G = Gal(L/F). Let Op,Op, f,¢
be the rings of integers and residue fields in F), L, respectively.

Lemma 3.10 (Voskresenskii Theorem 1). Given an F-torus T, there ezists a faithfully flat Op-
algebra A of finite type endowed with a Hopf algebra structure such that T := Spec A is an Op-
integral model for T, i.e. T x o, Spec F' ~T.
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The affine group scheme T of Lemma [3.10] is called the canonical integral model of T. Voskre-
senskii showed that T is the unique integral model of T' that may be constructed by choosing an
F-linear embedding T" — GL(V') and an Op-lattice in the finite-dimensional F-vector space V' that
is stable by the action of the unique maximal compact subgroup of T'(F'). Moreover, for any finite
extension E/F one has that T(Op) is the unique maximal compact subgroup of T'(E), in particular

(3.2) T(O0p) ~Hom(X*(T),0r) and T(Op) ~Homg(X*(T),0p).
Compare (3.2) with . We introduce the following abuse of notation: define
(33) T(OL) = ‘T(OL) and T(OF) = rI(OF)

It is not in general true that the special fiber T x, Spec f is itself a torus over f. Nonetheless,
we do have the following result.

Lemma 3.11 (Voskresenskii Theorem 2). If T' splits over an unramified extension L/F, then the
canonical integral model T = Spec A of T is given by A = Op[X*(T)]¢ and T :=T xp, Spec f is
a torus over f.

If T splits over an unramified extension, we commit the abuse of notation T'(f) := T¢(f) = T(f).

Lemma 3.12. Let 11,15 be two tori over a non-archimedean local field F' both splitting over some

common unramified extension L/F with Galois group G. Let o : Ty — Ty and x € To(OF) be an

integer-valued point of Ty. Then, the fiber a='(x) € Ty of a over x admits an O p-integral model
-1

a”H(x)o.

Proof. The G-equivariant map o* : X*(Ty) — X*(T}) extends to a map of Op-algebras
OL[X*(T2)]7 — Or[X*(T1)]°.

Since L/F is unramified, by the explicit description of the canonical model in Lemma the map
a : T7 — T extends to a map of the integral models « : T — T over Op. The scheme-theoretic
fiber a~1(x)g of a : T3 — Ty over x € To(O) is an integral model for a~!(x). O

The local to global decomposition of Z(s) in section will lead us to restrict the local Langlands
correspondence to a compact subgroup of T'(F') which has finite index in the maximal compact
subgroup T'(OF). As we will soon see in section the natural choice is to restrict the Langlands
correspondence to the image of the norm map

(3.4) N :T(01) - T(Op)

defined by the product of Galois conjugates.
We will next prove an important lemma describing the image of N, which we write NT'(Op).
We begin with a preliminary but crucial result.

Lemma 3.13. Suppose L/F is unramified. The map N : T(Or) — T(OF) is surjective.
Proof. See [Ama69, Cor. of Thm. 1]. O

Lemma, will be used to deduce the last assertion of Proposition from the previous ones.
More generally, we have the following result.

Lemma 3.14. We have

T'(Op)

NT(Op) NT(L)

where e is the ramification index of L/F. Both quotients are finite groups.
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Proof. Applying the functor Hom(X*(T"), —) to the valuation exact sequence
1 of Lx Z 0

yields
(3.5) 1—T(0r) —T(L) —= Hom(X*(T),Z) — 0,

since X*(T) is a free abelian group, i.e. a projective Z-module (see e.g. [Wei94, Lemma 2.2.3]).
Taking G-invariants in (3.5)) and using (3.2) we have

| T(O) —= T(F) —> Homg(X*(T), Z) — H'(G,T(0))
and a commutative diagram
1——T(01) ——T(L) —— Hom(X*(T),Z) ——0
lN N lN
1——=T(0p) ——=T(F) —— Homg(X*(T), Z).
The rightmost map N above is given by
N : Hom(X*(T'),Z) — Hom(X™*(T), Z)

EHZW

oeG
where £9(x) = £(x° ). Let

R =ker(N : Hom(X*(T'),Z) — Hom(X™*(T),Z)) = {¢{ € Hom(X*(T),Z) : Z ° = 0}.
oeG
The middle map N (recall (2.1))) is given by

N : Hom(X™*(T), L*) — Homg(X*(T), L™)

v | ]ve,

oeG
where 17 is given by 17 (x) = ¥(x° ' )°. Let

Ty = ker(N : T(L) — T(F)) = {¢) € Hom(X*(T),L*) : [ [¢” = 1}.

oeG
Define the valuation map
v:T] — 8
P = o(h)
where v(1)(x) = v(¥(x)). The snake lemma gives us the exact sequence
v 5 T(OF) T(F
(3.6) T R s NT(g) :

We claim that

R dim T
—| <€ .
o(Th) ’ e
Indeed, let £ € & be arbitrary. We claim that ey r¢ € v(T1). The first claim follows from this second
claim on letting ¢ run through a Z-basis for K, so it suffices to show this. Now we show the second
claim. Choose 7 a uniformizer for F. For £ € R let

¢ € Hom(X*(T), L¥)
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be defined by

be(x) = w0,
Note that ) )
g 0'71 lo [ o 06‘77
[Terco=TTe ) =[[m ) =mpr™ ¥ =ap=1,

oeG oeG oeG
since £ € K. Therefore 1, € T1. Note also that

4
o)) = v(@(0) = v(rE) = gy L00):
Thus we have shown that for all £ € & we have ey /pl € v(T1), as claimed.
By the exact sequence (3.6) we have that

T(OF)
NT(O1)

. T(F) edimT
NT(L)| = WF

X

T(F) ’

]
o(Ty) NT(L)|"

For the second assertion, recall the definition of the Tate cohomology groups H" from e.g. [Ser79,
Ch.VIII]. We have
T(F)
NT(L)
and by the Nakayama-Tate theorem (see e.g. [PR94, Thm. 6.2])
HY(G.T) ~ H*(G, X*(T)).
Since X*(T) is a finitely generated abelian group, we have by e.g. [AW67, §6 Cor. 2] that

|H2(G, X*(T))| < oo,

= ﬁO(Ga T)a

T(F)
NT(L)

and so it follows that | | is finite. O

3.1.3. The Langlands pairing. The goal of this section is to restrict (2.11]) to the compact subgroup
NT(Op) of T(F). To do this, we re-formulate the Langlands correspondence [Lan97] as a perfect
pairing

(3.7) T(F)® H' (Wyp, T) — C*,

which we call the Langlands pairing. We write G° for the inertia subgroup of G. The following is
the main result of this section.

Proposition 3.15. Write R(H') for the image of the restriction to Of map
(3.8) R:H'(Wyp,T) — Homg (0}, T).

The subgroup R(H') of Homg(oz,f) is of index at most < |HY(GY,T)| - |H*(GY,T)|. The Lang-
lands pairing restricts to a perfect pairing

NT(0)® R(H') — C*.
In particular, if L/F is unramified, the Langlands pairing restricts to a perfect pairing
(3.9) T(0F) ® Homg (0, T) — C*.
Corollary 3.16. The abelian local analytic conductor ¢(x,r) only depends on x|n7(o,)-
Lemma 3.17. We have that Hi(GO,JA’) is a finite group for all i > 1.

Lemma [3.17] follows from a result of Cartan and Eilenberg, which we recall now since it will also

be useful for other purposes later. Recall the Tate cohomology groups H,, see e.g. [Ser79, Ch.VIII].
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Theorem 3.18 (Duality Theorem). Let G be a finite group, A a G-module and C' a divisible abelian
group. For any i € Z there exists a perfect pairing

U H{(G,A) @ H(G,Hom(A, C)) — C.
Proof. See [CE56] chapter XII, Theorems 4.1 and 6.4. d

Proof of Lemma[3.17. In Theorem we take G = G°, A = T, and C = C* to obtain for i > 1
that

(3.10) HY(G°,T)® Hi(G°, X+(T)) — C*

is a perfect pairing. Now, by [AW67, §6 Cor. 1] we have that Hi(GO,ZA“) is a group of finite
exponent. Furthermore, X, (7T) is a finitely-generated G°-module, so by [AW67, §6 Cor. 2] we have
that H;(G°, X.(T)) is a finite group. The result now follows from the duality theorem. O

In the unramified case, we also have the following version of the Langlands correspondence over
finite fields.

Proposition 3.19. If L/F is unramified, then the Langlands pairing restricts to a perfect pairing
T(f) ® Homg (¢, T) — C*.

We give the proof of Proposition [3.19] at the end of this section after first proving Proposition
0. 10l

To prepare for the proof of Proposition [3.15 we review the proof of the Langlands correspondence
(2.11). To do so, we recall the following explicit descriptions of group cohomology and homology
(the same exposition appeared in the appendix of [BP18]).

For this paragraph, let G be a group and M a left G-module. Computing via the inhomogeneous
resolution gives the usual description of group cohomology

1 _ {£: G — M|[&(gh) = &(9) + 9€(h)}
H(G, M) = {€:G— M|&(g9) = gm —m for some me M}

If @gN is a direct sum of copies of an abelian group N indexed by a set S, let d5(n) € ®sN be the
element which is n in the sth entry and 0 elsewhere. Computing via the inhomogeneous resolution
then gives the following description of group homology

{(mg)gec | Zg(gilmg —mg) = 0}
d(@GxGM) 7
where d(8,.,(m)) = 6p(g7'm) — dgn(m) + §4(m). If G is abelian and acts trivially on M, then we
have H1(G,M) ~ G ®z M.
If G’ < G is a finite index normal subgroup, there is an action of G/G" on H1(G’, M) by the rule
g *0g(m) = 0y95-1(gm). There also exists a natural map

(3.11) Hy(G, M) =

Trace : H1(G, M) — Hl(G/aM)G/G/v

which may be computed as follows: pick coset representatives g1, ga,...,gn for G/G’. Then any
g € G determines a permutation 7 € S, by the rule g;g = ¢'g,(;) (where ¢’ € G'), and

Trace(d4(m)) = 2 5gigg;(li) (gim).

Now we return to our review of the Langlands correspondence (2.11)). In particular, G =
Gal(L/F) again. Since L* is abelian and acts trivially (recall (2.8])) on X, (7T), we have from
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the “standard isomorphisms” ([2.1)) and (2.3)) and the above explicit description of group homology
that

(3.12) T(L) ~ H(L*,X.(T)) and T(F)=~ H(L*,X.(T))".

Langlands proves the following mild extension of the Duality Theorem Let « € Wpp,
X € X4«(T) such that d,(x) is a cycle representing a class in Hy(Wp g, X«(T)). Let £ be a cocycle
representing a class in H'(W, /P f) Langlands [Lan97, p. 233-234] shows that the pairing

(3.13) U Hy(Wyyp, Xo(T)) @ H (W p, T) — C*
defined by
U a(x) @€ = x(€(a))

is a perfect pairing.
The difficult part of Langlands’s proof of his correspondence (2.11)) is that the map

(3.14) Trace : Hy (W, p, X«(T)) — Hi(L*, X(T))“
is an isomorphism. Combining (3.12)), (3.14) and (3.13]), we obtain the Langlands pairing (3.7]).

We now discuss the connection between the Langlands pairing and the norm map. The Artin
map (see (2.8)) induces a map
(3.15) rrs Hi(L™, Xo(T)) — Hi(Wpp, Xu(T))
so that the triangle
Hy (L™, X4(T)) — Hy (L%, X (T))C

~
TL,%

Hy(Wpp, X«(T))

commutes. Here N is the norm map defined as a product of Galois conjugates, and the vertical
map is the trace map (3.14]). Composing with the isomorphisms (3.12)), we have that the norm
map N : T'(L) — T(F) factors through the homology group H1(Wp,p, X«(T)):

(3.16) (L) =

T(F)

\T:

Hi(Wpp, X«(T)).
Proof of Proposition [3.15, Let
Ann(NT(0r)) € H' (Wyp, T)

be the annihilator of NT'(Op) with respect to the Langlands pairing (3.7]). To prove the proposition,
it suffices to compute Ann(NT(Op)), and show that

H (Wpp, T)

Ann(NT(0,)) R(H'),
is as described in the statement of the proposition.
Lemma 3.20. Let
(3.17) R: H (Wyp,T) — Homg(0F,T)

be the restriction to OF map (recall OF acts trivially on f) Then we have

Ann(NT(0r)) = ker(R).
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Proof. Let
t: Hy(Wprp, Xu(T)) — T(F)
be the isomorphism obtained by composing the trace map with the isomorphism . The
first step is to give an explicit description for the inverse image ¢t~ (NT(0)) < Hi(Wpp, X+ (T)).
Later, we use the explicit description for the cup product pairing to compute Ann(NT(Op)).
The main trick to compute ¢t~ (NT(0p)) is to use the commuting triangle (3.16]), as the trace
map is difficult to work with directly. Restricting to the maximal compact of T'(L) we obtain

T(0) —~

NT(0)

S

t_l (NT(OL))7

where all arrows are surjective. Since we understand the diagonal arrow much better than the
vertical one, this yields a description for t=1(NT(O1)). In the above explicit description for group
homology, it is the subgroup of H1 (W p, X«(T')) generated by sums of all possible homology classes

da(X) as o runs over a € Of < Wy p.
We now use the description t~1(NT(0p)) = <5Q(X)>aeoz and compute the annihilator

Ann(NT(0r)) = Ann(t"H(NT(01))) € H (Wyp, T)
acCross .

First we prove Ann(NT(0pr)) 2 ker(R). Let & represent a class in ker(R). Then & vanishes on
O by definition, and we have & U d,(x) = 1 for all d,(x) with & € Of by the definition
of u. Tt follows from the description ¢t~ 1(NT(0p)) = <5a(X)>aeoz that £ U x = 1 for all 1-cycles
r et Y (NT(Or)). Therefore ker(R) € Ann(t~*(NT(01))).

Now we prove Ann(NT(0r)) < ker(R). Suppose & € Hl(WL/F,f) does not represent any
class in ker(R). Then there exists a 3 € O for which {(8) # 1. Since £(8) # 1 there exists
X € X«(T) not vanishing on £(f8) € T. Since OF acts trivially on X,(T), we have that xz is
a cycle, and thus represents a homology class. Thus dz(x) € t 1 (NT(0)) and & U ds(x) #
1, 50 & ¢ Ann(t"1(NT(Or))). Therefore ker(R)¢ < Ann(t~}(NT(01)))¢, so we have ker(R) =
Amn(t~Y(NT(Oyp)). O

By Lemma [3.20] we have shown that
H'(Wyp,T)
ker(R)
is a perfect pairing. It now suffices to show that
H'(Wyp,T)
ker(R)
is of index at most < |[HY(G,T)| - |[H2(GP,T)|, as in the statement of Proposition [3.15|
Consider the inertia group Wg P acting on 7', and the exact sequence

X

NT(O0p)®

~ R(H") < Homg (0, T)

11— 05 HWE/FHG()Hl
as in Lemma We take the inflation-restriction-transgression exact sequence (see e.g. [NSWO0S|,
(1.6.7) Prop.]) attached to these data
(3.18) 1—— HY(G°,T) —> H\ (WY ,,, T) —"> Homgo (0}, T) —= H2(GO, T).
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These give

1—— HY GO, T) —= H\(W ., T) "> ker(g) —= 1,

where ker(g) is a subgroup of HomGo((‘)z,f’) of index at most |H2(G°,T)|. We take Frobenius
invariants of this to obtain a sequence

1 —— H'(GO, )%~ H'\(W} ., )% —"= ker(g)% — H'(Z, H'(G", 1)),

where 1 € Z acts by arithmetic Frobenius on T. Since a cocycle is determined by its value on a
generator, we have
|HY(Z, HY(G°,1))| < |[H'(G°,T)|.
Therefore r’(Hl(WLO/F,IA’)Z) has index at most |[H'(G?, T)| in ker(g)Z, and ker(g) has index at
most |[H2(GO,T)| in HomGo(Oz,f), so ker(g)% has index at most |H2(G%,T)| in Homg(Oz,f).
Thus T/(Hl(Wg/F,T)Z) has index &lt most |[H(G?,T)| - |[H*(G°, T)| in Homg (0}, T).
Consider again Wy p acting on T, and take the exact sequence

1—W)p Wrp Z 1.

Taking the inflation-restriction exact sequence associated to these we have

1| —= HY(2,79) " B (Wyp, T) —= H\(W) ., T)% —= 1.

Here the term H2(Z,TC") vanishes because the cohomological dimension of Z is one (see [Bro94,
Ch. VIII, §2]). We have that R(H') = (r' o #")(H'(WyF,T)), and by the above remarks we
conclude that R(H'!) has index at most \Hl(GO,f)] . ]HQ(GO,f)\ in Homg(Oz,f), as was to be
shown.

In the case that L/F is an unramified extension, we have G = {1}, so that the first part of
Proposition gives us that R(H') = Homg(0F,T). We have NT(O1) = T(OF) by Lemma
so that the Langlands pairing restricts to the perfect pairing (3.9)). O

Proof of Proposition[3.19. We again use the description of the local Langlands correspondence in
terms of group homology described above. First, recall [Ono61, Prop. 2.3.1] that we have an exact
sequence

1 —— Homg(X*(T),1 +P) — T(O) T(f) 1.

By the standard isomorphisms (3.2)), the left half of this exact sequence can be re-interpreted in
terms of group homology. That is, we have the following commutative diagram

Home (X*(T),1+PBr)—T(Op)

Hi(1+ B, Xo(T))¢—— H1(0F, X (T))°.

Recall in the course of the proof of Lemma [3.20, we showed that there is a commuting triangle

(3.19) H1(0}, X (T)) —= H1(0F, X4(T))¢
L ZTTrace
<5O< (X)>ae(‘)z ’
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where (04 (X)) g0} is the subgroup of Hy (W, X«(T)) generated by sums of all possible homology

classes dq(x) as a runs over OF, N is the norm map, Trace is the map defined in , and 7, «
is induced by the Artin reciprocity map 7y, (see (3.15))). Since L/F is unramified by hypothesis, N
is surjective by Lemma [3.13

We determine the inverse image of the subgroup Hy(1 + B, X.(T)) by the trace map. Set

Hy(T) := (ba(X))aet+p, S Hi(Wr/p, Xu(T))

to be the subgroup of Hy(Wp p, X«(T)) generated by sums of all possible homology classes d,(x)
as o runs over 1 + 7. We have that N1 (Hy(1 + P, X«(T))%) = Hi(1 + P, X« (T)) since L/F
is unramified [Ama69l, Prop. 1], so that

Trace : Hi(T) — Hy(1 + P, X«(T))°

is an isomorphism by chasing the diagram (|3.19]).
In summary, we have a short exact sequence

(3.20) 1 —— Hy(T) — T(OF) T(f) 1.

By exactness of the dual functor, we have the short exact sequence “on the automorphic side” of
the local Langlands correspondence

1 ——T(f)" —> T(Op)" —> Hom(H,(T),C*) — 1.

The strategy of the proof is now to write down another exact sequence “on the Galois side” of
the local Langlands correspondence, and by the five lemma, conclude the local Langlands corre-
spondence over finite fields. We start with the short exact sequence

1— =1+, 0% ¢ 1.

Since T is a divisible group, the functor Hom(—, C/A’) is exact [Wei94, Cor. 2.3.2, Lem. 2.3.4] and we
obtain the short exact sequence

1 —— Hom(¢*,T) — Hom(O}, T) — Hom(1 + P, T) — 1.

Taking the long exact sequence in cohomology we get

1 — Homg (£, T) — Homg (0, T) —> Homg(1 + By, 7).

Our goal now is to show that the image of the map R is isomorphic to Hom(H;(T),C*). Recall

the annihilator

Ann(H (T)) :={£ € Homg(oz,f) cxvué=1forall ze H(T)},
where U is Langlands’s cup product pairing . We claim that

Ann(H(T)) = ker(R).

Indeed, if £ is in the kernel of R, then ¢ is trivial on 1+‘B, and then for any cycle of the form 0, (x)
with a € 1+, we have £(a) = 1, so of course x(£(a)) = 1 for all x € Xy (T), i.e. £ € Ann(H(T)).
On the other hand, if £ € Ann(H;(T)), then we have that z v £ = 1 for all x € H;(T), so in

particular, x({(a)) =1 for all « € 1 + P and x € X*(YA’) This can only be the case if {(a) =1
for all a € 1 4+ By, i.e. £ € ker(R).

By the perfect pairing T(Or) ® Homg(Of,T) — C* of Proposition we have

Homg (07, T) ~ ~
Hom(H:(T),C") ~ ———L == ~ R(H 5, T)cH 1 T).

Om( 1( )7C ) Ann(Hl(T)) R( OmG(oL7 )) = OmG( +§BLa )
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Thus, we have a commutative diagram

L ———T(f)" 1

T(OF)" Hom(H;, C¥)

- :

1 —— Homg (0%, T) — Homg (0}, T) — R(Homg (0}, T)) — 1

with short exact rows, where the first vertical ~ is Proposition [3.15] and the second ~ is the one
just established. The Proposition now follows from the five lemma of homological algebra. O

3.2. Local conductor zeta function, unramified case. In this section T is a torus over a non-
archimedean local field F' with splitting field L and Galois group G = Gal(L/F). Let ‘B be the
prime ideal of Oy, ¢ the residue field of L, and char(¢) its characteristic. We assume throughout
this section that the representation r| is faithful.

Let 0 be a character of T'(F') that is trivial on the subgroup NT'(0r) and x € NT(Or). In this
section and the next, we consider the (twisted) generating series

(3.21) Np(s,z) = Y @)

XeENT(Op)» C(XH’ T)S

Now, and for the rest of section we assume that the extension L/F is unramified. Thus, the
results of section afford us several immediate reductions. We have NT'(0r) = T(OF) (Lemma

B.13), c¢(x8,r) = c(xb,r) (Corollary [B.8)), and ¢(x8,7) = ¢(x,r) (Corollary [3.16), so that
x
Np(s,z) = Z x(@)

= <
XGT(OF)A C(X, T)

Recall the local Langlands isomorphism on integral points from Proposition

(3.22) Homg (05, T) ~ T(OF)"

£ Xe-
Proposition then gives us a more hands-on way of working with the abelian conductor ¢(y,r)
in terms of characters on the Galois side of the integral local Langlands isomorphism. Changing

variables by (3.22) we have
(3.23) Nr(s,2) = (S()de/da’)y" Y xelw)gp =,
¢eHomg (05 ,T)

Recall the set M of co-weights of r from Definition Recall the set of non-negative integers
N, and let us index the coordinates of N™ by 1€ M. For each ¢ = (¢,)uenr € NM, consider the
following sets of Langlands parameters (restricted to O}):

(3.24) P<(c)={¢€ Homg(Oz,f) te(pof) <cy, forall pe M}
and
(3.25) P_(c)={¢€ Homg(Oz,f) ce(pof) =cy, forall pe M}

Since u: T — C* is a group homomorphism 1 o (£1.£2) = (po&).(no &) and P<(c) is an abelian
group. Since 7|5 is faithful the abelian group P<(c) is finite and so the subset P-(c) is finite as
well. Indeed, if £ € P<(c) then po &(1 + P ) =1 for all p e M, so that

rof(l+ R ) = [ | pog(l+Pmaon) = 1.
pneM
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Since 7|5 is faithful, we must have {(1 + Pm**%) = 1 for all £ € P<(c). Then, P<(c) is finite as

(Or/PBmaxc)* is finite and T has only finitely many elements of order dividing |(Op/pmaxen)|.
We consider the character sums over P<(c) and P—(c)

(3.26) lM<(c,x) = 2 Xxe(z) and  I_(c,z) = 2 xe ().
§eP<(c) §eP=(c)

For example, II<(c,1) = |P<(c)| and II_(¢, 1) = |P=(c)].
Writing |c| = 3}, ¢, the sums II_(c, ) are the coefficients of Np(s,z) as a local Dirichlet series,
ie.
II_(c,x
(3.27) Np(s,z) = (6(¢)dz/da’)™ " %

ceNM  qp

We begin our analysis with the sums Il<(c,z) in order to make use of the group structure of
P<(c). The two functions Il< (¢, z) and II_(c, x) are related by inclusion-exclusion:

(3.28) I_(c,z) = > (-1)PM<((c—b),2).

be{0,1}M

Recall that the set of co-weights M admits an action of G. We also let G act on N™ by permuting
coordinates and let Di(c) be the complex diagonalizable group defined by

(3.29) Dy (c) = ﬂ kerp < T,

pneM
cu<k

i.e. Di(c) = D(S) for S = {pe M : ¢, > k}. If ¢ is G-fixed then Dj(c) admits an action of G.
Note that Dg(c) is monotonic in ¢, i.e. if ¢/ < ¢ coordinate-wise then for any k& > 0 we have

Dk(cl) - Dk(c)

The main result of this section of the paper is the following.
Proposition 3.21. Suppose 7|4 is faithful, c € NM is G-fized, L/F is unramified, and (qr, \) = 1.
If xe(x) =1 for all § € P<(c), then

w .

I (c, z) = [Homg (€%, Do(c))| | | char(e)tmPe(e),

k=1

and if there exists § € P<(c) such that x¢(x) # 1 then I<(c,x) = 0.

Proof. Suppose that x¢(x) = 1 for all £ € P<(c). Then Il<(c,z) = |P<(c)| and it suffices to count
the latter set. Since r|s is faithful, we have Dy(c) = {1} for sufficiently large k € N, and so there
exists

ko = ko(c) = min{k € N : Di(c) = {1}}.

Thus the product in the statement of the proposition is finite, running up to kg — 1.
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We have

P<(c) = () {€ € Homg(0F,T) : c(uo€) < e}
pneM

= () ) {€ € Homg (05, T) - po£(1 +9*) = 1)
#EMc]Zzok

- ﬂ ﬂ {€e HomG(Oijf) (€1 -l-‘ﬁk) < ker p}
k=0 ,ue]\i

e @]
= ({€ € Homg (0}, T) : £(1 +B¥) < Di(c)}.
k=0
That is to say, a parameter £ € P<(c) if and only if (1 + B*) < Dy.(c) for all k € N. In particular,
every £ € P<(c) is trivial on 1 + %, We inductively construct all of the £ € P<(c) by extending
the trivial homomorphism 1 + %0 — T backwards along the standard filtration.

Consider two base cases: kg = 0 and kg = 1. If ¢ is such that kg = 0 then Dy(c) = {1} for
all k € N and P<(c) = {1}, so the formula in the statement of the proposition holds. If ¢ is such
that kg = 1 then (1 + ) = {1} for all £ € P<(c), and the possible extensions of £ to O] are
parametrized by

Homg (07 /(1 4+ B), Do(c)) = Homg(¢*, Dy(c)).
So the formula in the statement of the proposition holds.
Now suppose as the induction hypothesis that
ko—1
(3.30) |P<(c)| = [Homa (€%, Do(c))| [ | [Homa (¢, Dy(c))|
k=1
for all ¢ such that kg < K. Consider ¢ such that kg = K + 1. Then all £ € P<(c) satisfy
£(1 4+ PEFY) = {1}, and the possible extensions the trivial map 1 + L&+ — T to elements of
Homg (1 + PBX, Dk (c)) are parameterized by

Homg((1 + PBX) /(1 +PEY), D (e)) ~ Homg (4, Dg(c)),

since L/F is unramified. Therefore holds for ¢ such that ky = K + 1. By induction,
holds for all ¢ € NM,

By the normal basis theorem, there exists « € £ such that

5 [L:F]-1
{a, 097 Q7 . .. adF }

is a basis for ¢ over the residue field of F. A G-equivariant homomorphism in Homg (¢, Dg(c)) is
determined by its value on «, which is of additive order char(¢) in ¢. Since (qr, ) = 1, the element
a cannot map non-trivially into the component group of any Dy(c). There are

char(ﬁ)dimD’“(c)
elements of order dividing char(¢) in the connected component of the identity of Dy(c). Hence
|[Homg (¢, Dy.(c))| = char(¢)dm Pr(e),

and we have shown the first part of the Proposition.
If there exists £ € P<(c) such that x¢(z) # 1, then it immediately follows from orthogonality of
characters that II<(c, z) = 0, hence the second part of the proposition. ]
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Proposition is only valid for G-fixed ¢ € NM (since otherwise Dy (c) is not a G-module, and
G-equivariant homomorphisms into Dg(c) do not make any sense). However, we can always reduce
to the case that c is G-fixed by the following lemma.

Lemma 3.22. If ce NM s not G-fired, then TI_(c,x) = 0.

Proof. Suppose c is not fixed by G, so that |M| = 2. Without loss of generality suppose there
exists 0 € G such that u” = ' but that ¢,y > ¢,. Suppose for a contradiction that there exists
¢ € Homg (07, ) such that c(pof) = ¢, and c(p' 0&) = ¢, If z € OF then the Galois equivariance
of £ says

potloz) = o g(2).
If z € 14 PB%, then we also have oz € 1+ 9%, But then c¢(no¢) < ¢, implies that c(pofoo) < ¢y,
and c(p 0&) = c(po&oo),socy = c(p o&) < ¢y, contradiction. O

Before moving on, we include one more auxiliary result, which will be used in section to show
that only those ¢ € N™ with all entries either 0 or 1 will matter for the location and order of the
rightmost pole of the global generating series Z(s). For more details, see Lemma

Lemma 3.23. If ¢ = (c,) € NM s such that maxc, > 2 and II_(c,z) # 0 then dim Dy(c) > 1 for
allk =0,...,max, c, — 1.

Proof. Let us choose an ordering of the p € M, say p1, ..., pm, and write ¢; = ¢,;. We choose the
ordering such that ¢; is maximal among ¢y, ..., ¢y, thus ¢; = 2. By (3.28))
Z Z 2d2 m) (Hg(c—(0,d2,...,dm),l‘)—Hg(c—(l,dg,...,dm),l')).
do<ca dm<cm
Since II_(c,x) # 0 there exists ds, ..., d,, € {0,1} such that
(3.31) <(c—(0,dg,...,dp),x) # <(c— (1,da, ... ,dp),x).

We have by Proposition that

I<(c,x) = [Hompy, ((OL/%), Do(c))| | | char(0/p)dimPr(e),
k=1

Thus, since ¢; = 2 we have

T (c— (0,da, . .., dm))

M<(c—(1,da,...,dp))

By the quantity in is # 1. Since Dg/(c) is monotonic in ¢, we have
char(©)/p)dim Der -1 (e=(0,dz,..dm)) ~dim Dey -1 (e~ (Ldz,.wdm)) |

(332) _ Char(o/p)dimDCI,1(c—(O,dz,A..,dm))—dimDq,l(c—(l,dg,‘..,dm))‘

)

from which we conclude

1< dichl_l(C - (0, da, ... ,dm)) — dim Dcl_l(c - (1, da, ... ,dm))
< dim D¢, —1(c— (0,da, ...,dn)) < dim D¢, —1(c) < dim Dy(c)
foralll <k<ec —1. O
We spend the rest of the section devoting particular attention to the case that all of the entries
of ¢ are 0 or 1. Under this condition on ¢, the groups Dg(c) = {1} for all k£ > 1 by the faithfulness

of r|7. Therefore we restrict our attention to the case & = 0. We make a change of variables, and
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instead consider subsets S € M as in the introduction. The change of variables is given by the
G-equivariant bijection

(3.33) {0,1}™ ~ 2M
(3.34) ceS={u:c, =1},

with G acting on 2M as in the introduction. Define the quantities I1<(S, x) and II_(S,z) via the
above bijection ¢ < S in terms of I<(c,x) and II_(¢,z), and define D(S) = Dgy(c) as in the
introduction.

Let Fr € G denote the Frobenius element. By Lemma [3.22] it is no loss of generality to suppose
that Fr S = S. Define an F-torus T by taking its cocharacter lattice to be Z!5°! with coordinates
indexed by pu € S¢, and G acting by permuting these. We define a map of F-tori o : Tg — T by
the map of cocharacter lattices

oy 29T X (T)

(3.35) 0,...,1,...,0) — pu,
where the 1 is in the p-slot and the other coordinates are all 0, see Lemma and (2.2). The

construction of Ts and « is compatible with a global construction that we will be introduced in
section Bl

Let x € T(Or) and take the scheme-theoretic fiber a~!(x) of @ above 2. By Lemma the
fiber a~!(x) has an integral model over O, which we write a~!(x)o. We may take the base change
of a™!(x)o to the residue field f of F' to obtain a separated f-scheme of finite type a~1(z)s (which
may fail in general to be reduced). Let us abuse notation by writing o= (2)(f) = a™(z)¢(f) and
recall the abuses of notation T'(f) and Ts(f) from section Note by that we also have
T(f) ~ Homg(X*(T),€*) and Ts(f) ~ Homg(X*(Ts),£*) since X*(T') ~ X*(Ty) with the same
action by Gal(L/F) ~ Gal(¢/f) and similarly for T’s.

Let A be a finitely-generated subgroup of T(Op). (Later in section we will take A to be
a finite index subgroup of the global units of a torus over a number field.) Let L'/F be a Galois
extension with L < L’ such that all geometric components of a~!(z) for all x € A are defined
over I'. Let p(a~!(x)) be the finite set of geometric components. There is a continuous action of
Gal(L'/F) on p(a~!(x)). Let Fr’ € Gal(L'/F) denote a Frobenius automorphism, and write

(336) a(S,z) = #{y € pla” ! (2)) : B’y = y}.

The number a(S, z) does not depend on the choice of Fr/, since the inertia subgroup of Gal(L'/F)
acts trivially on a~!(z).
Lemma 3.24. Suppose FrS = S. Then
~1/2\\ dimD(S) ., ;. -
M(S, 2) = (a(S, z) + Ory(4p )) qp if dimD(S)>1
a(S, z) if D(S) 1s finite.

Proof. By definition of T' and Tg, we have exact sequences
1—=D(S) —>T ——>Ts

and
1 —— Homg(¢*, D(S)) — Homg (€%, T) — Homg (0%, Ts) .
By Pontryagin duality applied to « : Ts(f) — T'(f) we have an exact sequence

L ——(T(f)/e(Ts(f)) —=T())* —=Ts(f)" -
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The local Langlands correspondence for tori over finite fields Proposition [3.19] asserts that
T(f)" ~ Homg(£*,T),

and likewise for T, since they both split over L/F, which is unramified. Therefore we have a
commutative diagram

1 —— Homg(¢*, D(S)) — Homg(¢*, T) — Homg (€%, Ts)

-

1 —(T(f)/a(Ts(f)))" ——=T(f)" Ts(f)".

By the five lemma of homological algebra, we conclude that
Homg (¢*, D(S)) = (T'(f)/a(Ts(f)))"
By orthogonality of characters we have

_ _ | Homg (€%, D(S))| ifxea(Ts(f)) < T(f)
M= ), ))X’f(x) - {0 if « ¢ a(Ts(f)).

&eHomeg (€%,D(S
If z € a(Ts(f)), then

) ) _ Tl 1T
M<(S,2) = [Homa (¢, DS = 12 T = 175(f)]

In either case of x € a(Ts(f)) or not, we have that

WLy,
T @l

We use the Lang-Weil theorem in the form of Corollary to count the number of points on
the a~!(x) over finite fields. The quantities n, r, and d associated to a~(z); as in Theorem
are bounded uniformly as x varies over T'(Op), in terms of the degree of the equations cutting out
Ts and «, and dim T and dimr. Since there are only finitely many possibilities for S for a given
T,r, the error term in our application of Corollary only depends on 7', r.

By e.g. [Mill7, Thm. 1.72, Def. 1.73], the map « factors as a: Ts — «(Ts) — T, with the first
map faithfully flat and the second a closed immersion. For any point x € a(Ts), we have by e.g.
IMil17, A.73] that

| ker(a: Ts(f) = T(f))]-

(3.37) < (S, z)

x

dima~!(z) + dim (Ts) = dim T,
and by [Mill7, Rem. 5.42] that
dim D(S) = dim 7T — dim a(Ts).
Combining these, we have
dim T — dim Ts + dim o~ ! (z) = dim D(S).
Applying the Lang-Weil theorem (Corollary to , we conclude the lemma. U

In the special case that © = 1 we state the leading constant in Lemma |3.24]in a more convenient
fashion. Let Fr e G and

(3.38) a(S) = {y € mo(D(S)) : Fry?r = y}|.
Lemma 3.25. Suppose FrS = S. Then
(8,1) = a(S)gp™ P (14 Orp(pY))  if dimD(S) > 1
= a(S) if D(S) is finite.
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Proof. We give an alternate computation of | Homeg(£*,T)|. Let x denote a generator for the cyclic
group ¢*. Then Homg(¢*, D(S)) is in bijection with the set {z € D(S) : Frz = 297} of possible
images of x in D(S). This set is equal to the kernel J of the G-equivariant homomorphism

D(S) — D(S)

given by
zqF
Z— —

Frz’
We have an exact sequence of G-modules

X*(D(S)) = X*(D(8)) —= X*(J) —=1.
The map ¢ is given by ¢(x) = ¢rx — X', where we have written X*(D(S)) in additive notation.
Our goal is to compute the cardinality of X*(J), which equals the cardinality of J itself.

Write X = X*(D(S)), X; for the torsion subgroup, and Xy = X/X;. The map ¢ : X — X
induces maps X; — X; and Xy — Xy, both of which we also denote ¢. We write Q = X*(J)
for the cokernel of ¢ : X — X, Q; for the cokernel of ¢ : X; — X, and @y for the cokernel of
¢ : Xy — Xy. In summary, we have a commutative diagram

1 Xy X X 1
bl

1 X X "= Xy 1
Lk
Q—=Q—>0Q;

The map 7 is surjective since m and g are both surjective.

We show that the top right ¢ is injective. Indeed, let x € Xy satisfy ¢(x) = 0. Since ¢ is
G-equivariant, we also have ¢(x™") = 0, for all i. Since p(x) = 0 we have ¢grx = X', and so
X" = 0(mod gr). But similarly, since ¢(x!¥) = 0 we have that X = 0 (mod ¢%). Therefore
X = 0 (mod q‘ﬁl). Repeating this process ad infinitum, we conclude that x = 0 € Xy, so the top
right ¢ is injective.

Then by the snake lemma we have that Q; — @, and so the bottom row of the diagram forms
an exact sequence of finitely-generated abelian groups. We have that @ is finite if both Q; and Q
are, and in this case Q| = [Q¢||Qy|.

Let us begin with (). The map ¢ on Xy is given in matrices by grl — A, where A is some
matrix of integers for which Al¢l = I. Putting ¢zI — A in Smith normal form ¢z — A = UDV
with U, Ve GLdimD(S’)(Z)’ we have

Z Z
Qf M —— X X
d1Z ddim D(5)Z
with each d; is equal to gr + 1, and so |Qf| = qf;imD(S)(l +O(gp")) if dim D(S) = 1 and |Qy] = 1

if dim D(S) = 0.

Now we compute |Q;|. For any endomorphism of a finite abelian group f: A — A, we have that
| ker f| = | coker f|. Let J; be the kernel of ¢ : X; — X;, which therefore has the same cardinality
as ;. But the cardinality of J; is exactly the quantity a(S) defined above the statement of the
lemma.
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We have shown that |Q¢| = a(S) and

gimPE) (1 1 O(gpY))  if dim D(S) =
@l =19,

1
if dim D(S) = 0.

Since |Q| = |Q¢]|Q¢|, we conclude the lemma. O
Finally, we apply the foregoing results on II< (S, x) to derive the final results for II_(S, z). Let
1 ifi¢T
L eT) =
uie) {—1 ifiel.

The main tool is (3.28)), which we re-state for the sets S as

(3.39) I_(S,2) = Y p(leT)-- p(me T (S — T, ).
TS

For a set S we denote
(3.40) Sred = {n€ S :ope S forall o€ G}.
The set Sieq is now G-fixed, and by (3.39)) and Lemma we have
(3.41) < (S, z) = M<(Sred, x)-
Recall from ([1.4) that for faithful r|~ we defined A by
dim D(S) + 1

{lmé’H .S M,D(S) # {1}}.
Lemma 3.26. For any @ # S € M such that Fr'S = S, and

dim D(S) +1

S|

A = max

> A,

we have
(a(S,2) + Orp(gz®)) ™ P if dimD(S) > 1

(342)  TI-(S,%) = { a(S,2) — 1 if dim D(S) = 0 and D(S) # {1}
0 if D(S) = {1}.

If =1 then instances of a(S, 1) in may be replaced by a(S).

Proof. Suppose first that dim D(S) = 0 and a(S,z) # 0. Then for any 7' < S we also have
dim D(T') = 0 since D(T) < D(S). By (3.39) and (3.41]) we have

M(S,2) = 3 u(leT) -l & TIT((S — Tyeas ).
TS
Since a(S,z) # 0, we have by Lemma and Proposition that x¢(z) = 1 for all £ € P<(S5).
Then for any S’ < S we also have x¢(x) = 1 for all £ € P<(S"). Using Proposition and Lemma
3.24] again, we have

I_(S,2) =a(S,z)+ Y, pleT)-- p(meT)a((S = T)ied, 7).
o+£TCS
For any @ # T < S we have
dmD(T)+1 1 1 dimD(S) +1

- > = > A,
7| 7~ |S] S|
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thus D(T') = {1} by definition of A. For all T' # &, we have (S—T);eq & S. Thus, if (S—T)eq # 9,
then we have D((S — T)red) = {1}. On the other hand, if (S — T);ea = @, then we also have
D((S — T)rea) = {1} by the faithfulness of r|5. Therefore

M_(S,z) = a(S,z)+ >, p(leT)-- p(meT)

@#T<S
—a(S,2) =1+ > p(leT)-- u(meT)
TS
=a(S,x) —1,

since we assumed S # @&. Note that a(5,1) = a(S) by Lemmas and When dim D(S) = 0.

Now suppose that dim D(S) > 1 and a(S, x) # 0. As above, we have by (3.39) 1 -, Proposition
.21 and Lemma [3.24] that

M_(S,0) = 3 w1l eT) - pulm € TIIL((S — Threa, )
TS

(3.43) = ¢MmPE Q1 0@ 3 p(leT) - pu(me T)a((S — T)red, 7).

TCS
dim D((S—T)req)=dim D(S)
If x = 1 we may use Lemma in lieu of Lemma to obtain (3.43]) with a((S — T)yeq) in lieu
of a((S = T)reds 1).
Suppose that T is such that dim D((S — T');eq) = dim D(S). If (S — T)yeq = 9, then

1 <dimD(S) =dim D((S — T)red) = 0,

which contradicts the faithfulness of r|. Therefore we may assume that (S —T)eq # @. If T' # @
then
dim D((S — T)rea) +1  dim D(S) + 1 dim D(S)+1
(S = T)red (5~ Thedl 5]
Therefore D((S — T)rea) = {1}, and this is a contradiction with dim D((S — T)eq) = dim D(S).
Thus, the only 7" < S which satisfies dim D((S — T')eq) = dim D(S) is T = &, from which we
conclude the statement in the lemma.

Now suppose a(S,z) = 0, in particular x # 1. If dim D(S) > 1 then by , Lemma and
the triangle inequality, the statement of the lemma holds.

To finish the proof of lemma, it remains to consider the case that dim D(S) = 0. If D(S) = {1},
then we must have a(S, z) # 0, so suppose that dim D(S) = 0 and D(S) # {1}. Suppose |S| = 2 and
S is maximal such that dim D(S) = 0 and D(S) # {1}. There exists pu ¢ S, since D(M) = T. We
claim that dim D(S v p) > 1. Indeed, by maximality, either dim D(S U ) = 1 or D(S u p) = {1}.
But the second of these can’t happen since D(S) # {1} already, and D(-) is monotonic. So
dim D(S U p) > 1. But then

dimD(Suu)+1> 2 - 1
1S v pl TS+ 1 7S]
since |S| = 2. This is a contradiction with the definition of A. Hence, |S| = 1. Then we have

I_(S,2) = >, p(LeT) - p(me TY<((S — Trea, z)

> A.

> A,

TS
= Hg(S,I‘) - Hg(@7.’lj‘)
-1
Here, II< (S, ) = 0 by the assumption that there exists £ € P<(S) with x¢(x) # 1, and II<(@,z) = 1
since only the trivial character appears in the definition of II< (&, z). O
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3.3. Local conductor zeta function, ramified case. In this section, T is a torus over a non-
archimedean local field F' and splitting over a finite Galois extension L with ramification index
e = er/p not necessarily equal to 1. Let G = Gal(L/F) be the corresponding group. Let p, be
the maximal ideals of Op, O, and choose a uniformizer 7 of Op. Let NT(Or) be the image of the
norm map N : T(0r) — T(Op). Recall the definition of Ng(s,z) from (3.21).

Theorem 3.27. Suppose that |4 is faithful. For any x € NT(Or) and character 6 of T(F') that
is trivial on NT(Or), the series Np(s,xz) converges absolutely and uniformly on compacta in the
TEGLON

dim D(S5)
BT D(S) # {1}},

where S and D(S) are as in section [2.9 and formula (L.3).
Proof. By Corollary Corollary and Proposition 3.9 we have

Re(s) > max{

1
INp(s, )| < S S—
XeNTZ(OL)A [E(xB, r)[ReCIe

1
- X [€(x, ) [Rete)/e

XENT(O)"

N

m —Re(s) 25, c(no§)/e
(6(¢p)da/dx') o ap .
éeHomg (05, T)

The conductor ¢ appearing in the last line of (3.44) is in fact ¢ = ¢y as in Definition where U
is the standard filtration on O (see Deﬁnitio . Next, we construct yet another filtration and
compare it to U.

By the normal basis theorem, there exists an element « € L such that {a¢ : g € G} is a basis for
L/F. The {a9} all have the same valuation (e.g. [Ser79, Ch.2 Cor 3]), so by clearing numerators
or denominators, there exists § € O] such that {9 : g € G} is a basis for L. We define an injective
map of Op[G]-modules

(3.44)

f:0p[G] — O
by f(1) = 5. Its image has finite index in O, since {9} span L.
Let v = 1 be sufficiently large so that the B-adic exponential function

exp : P — 1+ B

is well-defined and an isomorphism. Then let g : Op[G] — O be defined as the composition of
the following sequence of injective O p[G]-module homomorphisms

g: Op[G]C Or ;y P 5 1 TPV 0f .

f
The homomorphism g has finite cokernel. Let V" = g(p"Or[G]) and V = (V") be the corresponding
filtration of O . We have for all n > 0 that
(3.45) v o olerten),
Indeed, if = € p"Op[G] then we write = as

x = Z aqg

geG

with a4 € p" for all g € G. So we have
fl@) =) agBtep™ =P,

geG
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so that f(p"Op[G]) < P".
Now let us consider the conductor cy of a character x of O with respect to the filtration V
(see Definition and compare ¢ and cy. If X|o(n> 1 then cy(x) < n, and if X\Om) # 1 then

Cu(X) n+ 1. Slmﬂarly, if x|yn = 1 then cy(x) < n, and if x|y» # 1 then cy(x) = n+ 1. Therefore

by (3.45) we have

culx) = ecy(x) +ev—e+ 1.
Then we have

—Re(s ey (pof)/e —Re(s)m(v— e —Re(s cy (pno
Z . (8) 2, cu(pot)/ <qFR()( 1+1/e) Z . (8) 2, v(uE)'

¢eHomg (0, T) ¢eHomg (0 ,T)

But now the summand only depends on the restriction of £ to V°. We have an exact sequence
1 —— Homg (0} /VO, T) — Homg (0}, T) — Homg(VO, T) —— - --

The kernel is a finite group, since O/ V0 is a finite group and T only has finitely many points of
order dividing the cardinality of this group. Thus we have

Z q;Re(S) 2, ev(pof) < Homg(Oz/VO,TZA’)‘ Z q;Re(S) 2 Cv(uOE)‘
¢eHomg (05,T) ¢eHome (VO,T)
But also
Homg(V?,T) ~ Homg(Op[G],T) ~ Hom(Op, T).

If ¢ & 7€ Hom(Op, ) across this isomorphism, then cy(po&) = cyw(p o 7), where the latter is the
conductor with respect to the filtration W = (p") of the additive group Op.
Therefore

[Ne(s, o) _ JRelem(v-141/e)
(6(¢)da/da")m = 7F

HOH’IG(OE/VO, j:v)‘ Z q;RE(S) Zp, CW(/»‘OT).
TeHom(OF,f)

Then one computes in a similar fashion as section Let (cf. (3.24))
< (c) = |{r € Hom(Op,T) : cw(por) < ¢, for all pe M}

Recall the complex diagonalizable groups Dy(c) from (3.29)). If | is faithful and c e NM is G-fixed
then

I ﬁ]Hom E1 /s, Dy(e))|

q;i;m Di(e)

l:]8 il

i

0

By the faithfulness of |+, the product is actually a finite product.
We have therefore that

dlmD c
INp(s,2)]  _  —Re(sym(v—1+1/c) k(€)

(0(¢)da/da’ym = IF

Homg((f)Z/Vo,f)‘(l— peeym Hk

ceNM

Therefore, R,(s,x) converges absolutely and uniformly on compacts for all

Re(s) > limsup |¢[ ™! Z dim Dg(c).
ceNM k=0
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Now, recall that for any positive real a,a’, b,t, with say a/b < o’ /b’ we have a/b < (a+a’)/(b+V) <
a'/bl. For any c € N we write

|e| = ZCM:Z#{M:6N>I€}'

peM k=0
Then,
dim D D D({p:
|C\_1 Z dim Dy (c) = Lizo dim De(c) <max—k(c) = max (e e > k}).
k>0 Duso M e >k T k=0 #{picy > kY k=0 #{p ey > kY
Thus,
dim D(S
limsup |¢|~* Z dim Dg(c) < max{lm‘SU 1 D(S) # {1}}.

ceNM k=0

4. LOCAL ARCHIMEDEAN THEORY

4.1. Local Langlands correspondence, local conductors. We assume in this section that F, L
are archimedean local fields, and T is an F-torus splitting over L. Let Tr(s) = 7~%?I'(s/2) and
Lc(s) = 2(2m)7°T'(s). If (o,V) is a complex Galois representation of the group W, then the L
factor of (o,V) is of the form

L(s,V) = [ [Tr(s + kpa),

where each F; = R, or C, dimV = ) [F; : F|, and k,; € C, see [De73| §3.7]. Recall the discussion
of the local Langlands correspondence for tori from section

Definition 4.1. Suppose F'is an archimedean local field. If ¢ is the Langlands parameter associ-
ated to x € Hom(T'(F),C*) by (2.9)), then the quantity

c(x,7) = | [(Iropil + DFRIE(¢)da/da’ )5

]

is called the archimedean local analytic conductor of x with respect to a finite-dimensional complex
representation r of LT

Note that our definition differs slightly from the standard definition in that the +1 above is
sometimes replaced by a +2 or +3. The reason some authors prefer +2 or +3 is to ensure that as
dim V' varies, there are only a finite number of representations of bounded conductor. Since we will
always consider dimr to be fixed in this paper, we prefer +1 as it makes some of the computations
in section more elegant.

The definition of the L-factor L(s, V') for archimedean places is given in [Tat79] sections 3.1.1,
3.1.2 and 3.3.1 in terms of the classification of the finite dimensional irreducible representations
of W given in loc. cit. section 2.2.2. Therefore, we must make explicit parameterizations of the
possible Langlands parameters ¢ : W p — LT as well as the possible representations r : YT —
GL(V), in order to be able to find their compositions among the classification [Tat79, §2.2.2].

We assume until further notice that F' = R and briefly discuss the easier case that F' = C at the
end of this section.

An F-torus splits over a quadratic extension L ~ C, and so G = Gal(L/F) is a group of order
two, whose elements we write {1,7}. Let us recall the explicit description of the Weil groups for
archimedean local fields. We have

Wg=L"1uL"j,
and
Wy =L",
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1

where we write elements of W as words in z and j and we have the rules jzj~' = 7z and j2 = —1.

We also have
W:WF/FZngzFX
where the isomorphism 7 is given by
m(z) = |z[*, and 7(j) = —1.

Also note that

Wi p=Wp.
Now we choose isomorphisms L ~ C and
(4.1) T(F)~T=(R*)" x (Sl)"2 x (C*)"s

so that dim T = n = n1 + ng + 2n3. By computing with the inflation-restriction exact sequence and
using facts about the group cohomology of finite cyclic groups, we have an explicit parameterization
of the L-equivalence classes of Langlands parameters ¢ : Wy, ,p — LT,. They are given by

|Z| aq |Z| Qg
(42) SO(Z) = <|Z|W1,-.-,|Z|w”1’ <Z geeey 7 s
|Z| o I |Z| —aof ., |Z| Qg , , |Z| —ap, , ,
(() it <) |z|w1—0<1),,,.,((> || “ns s <> 2| “ns %) | % 1
z z z z

and

@(J) = <<_1)617 ) (_1)6n17 1... ) 17 (17 (_1)0/1)7 RN (17 (_1)0413)) X T.
Here, w; € iR, € € {0,1}, oy € Z, o} € Z, and w, € C such that w, — o} € iR. We write
(4.3) T" = (iR™ x (Z/2Z)"") x Z™ x (iR x Z™),

so that Langlands parameters may be parametrized by ((w,€), «, (w',a’)) € T".

We also need an explicit description of the representation r. The representation r decomposes
into irreducible representations, and we can parameterize all irreducible representations of T by the
set of orbits G\ X™*(T') using Mackey theory (see [Ser77, §8.2]). We now study this parameterization
explicitly. Corresponding to we have an isomorphism of G-modules

(4.4) X*(T) ~ X = Xu(G)™ x X4 (S1)™2 x X, (Resg/r Gn)™

MIH:U?

where X, (G,,) = Z with G acting trivially, X,(S!) = Z with 7 € G acting by sending —1 to 1, and
X« (Resc /R G,,) = Z? with 7 € G acting by swapping the two factors. Each x € X is contained in
a G-orbit of size 1 or 2. We have the following three types of isomorphism classes of irreducible
representations of LT

la) If x is fixed by G, i.e. is in an orbit of size one, then pu, is an irreducible representation of
Lr.
1b) If z is fixed by G, i.e. is in an orbit of size one, then u,®(sign) is an irreducible representation
of IT.
2) If z is not fixed by G, i.e. is in an orbit of size two, then V, = Ind;T Lz is an irreducible
representation of dimension two of ZT". Tt only depends on the orbit of z. That is, V, ~ V;,

and this representation is not isomorphic to any other V,/, 2’ # x, Tx.
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Therefore we get a decomposition

mi mo ms3
rlep = @ pe; @D (Mx; ® (sign)) &P Vars
i=1 i=1 i=1

for some x;, 2} which are fixed by G and some 27 which are not fixed by G, and where m; + mg +
2ms =m = dimr.

To work out the archimedean L-factor for each Langlands parameter ¢ (as in (4.2)) and each irre-
ducible representation of “7T" (as in (1a),(1b),(2), above), we must compute these representations of
W explicitly enough to be able to recognize them in the classification of irreducible representations
given in [Tat79, §2.2.2].

la) Suppose z is fixed by G. Then we have

(4.5) x=(a1,...,an,,0,...,0,(b1,b1),..., (bng,bng))-
The representation of Wy, p associated to i, ¢ is
(112 0 9)( H | H| [ = (7 (z)) 3 ity aswt B bl —a)

(e o p)(j) = (= 1)21 1aietRd ajb (77(]))ZZ i€+ X2, afb
As a character of F'* this is
(|y|) i= 1a161+zz 1ogb ‘yﬁz?:llaiw¢+2?jlbi(wgfa’l).
Yy
Following [Tat79, §3.1.1], the L-function of this character of Wy, g is

L(s,puz0op) =TR (s + = Z a;w; + Z bi(w) — af) (i a;€; + f atb; (m0d2)>> .
=1 i=1

zl =1

Here and below, by (n (mod2)) we mean the integer 0 or 1 according to the value of n
modulo 2.

1b) Suppose z is fixed by G. Then z is as in (4.5), and we have the characters of Wp,
(s ® (sign) o H 2] H| [Pl = (m(2)) 5 Tz Rz (wmed)

(1o ® (sigm) 0 9)(j) = —(~1) T st X% b ()12 v 02
As a character of F'* this is

1+ i€i+
<’y|> Zz 1 @€ 27, 1 z |y‘%2?:11aiwi‘f‘zzglbi(w;—a&).
Yy

Following [Tat79, §3.1.1], the L-function of this character of Wy, g is

L(s, pz @ (sign) o ¢)
ni n3
=I'gr (s—i— Zazwl—i—Zb wi — o) + <1+Zaiei+2a;bi(mod2)>) .
i=1 i=1 i=1 i=1

2) Suppose z is not fixed by G. Then we have

T = (a1> <oy Qny,Cly ..., Cpy, (b17b/1)7 R (bTLB?b/ng)) ’
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where at least one of the ¢; # 0 or one of the b; # b,. Then we have

(1 0 9)(2) 0
(Veop)(z) = < 0 (pra 0 ©)(2) )

(Vo @)(3) = < P oo ) < Lo >

In order to find this representation in the classification of [Tat79, §2.2.2], we must recognize
it as the induction of some character. We have

qu ° (10 H |Z|(1szZ HZ o¢lcZ Z|oczcl Hz L (bi—bL) |Z|w (bi+b})—2b}c,

and
n3
(b © 9)( H |2 [ai H e e T [ 2240 | oh )2
i=1 i=1

The power of z in (uy 0 ¢)(z) is

—Zalcz—z al(b; — b))

i=1

and the power of z in (urz 0 p)(2) is

ni ns
Z ;¢ + Z a;(b;
i=1 i=1

Exactly one of these two is negative. Following Tate, the rule for recognizing which character
this representation is induced from is: choose (uz 0 ¢)(z) or (prz 0 ¢)(2) according to which
has a negative power of z. Then the representation is induced from that character.

The power of |z| in (uz o p)(2) is

a;w; + Y ouc; + (b + b)) —2 ) b
Z Z Z >

=2

and the power of |z| in (urz 0 ¢)(2) is

ni n9 ns n3
Z a;w; — Z aic; + Z wi(b; + b)) — 2 Z bl
i=1 i=1 i=1 i=2
Note that

D e —2 ) bial = (Z ajci + ) af(bi — b@)) — > i = ) i

and

_Zaici - QZbiOég = (—Z%‘Ci - Za;(bi - b;)) - Za;bi - Zagb;

Therefore if the power of z in (u, o ¢)(z) is negative we have that the power of |z| in it is

ni ns3 n2 n3
Zaiwi+2w;(b¢+bg)+ Z%’CH'ZOZ b; —
i=1 i=1 i=1 i=1
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and if the power of z in (-, o ¢)(2) is negative we get that the power of |z| in it is given
by exactly the same formula. So we find the representation V; o ¢ of W, p is induced from

the character of W, given by 27%|z|” where
and Zazwz—i—z (w) — o) (b; + b)) +

Ny n3
Z o;C; + Z a; b/
i=1 =1 =1 =1

Then by [Tat79, §3.3.1] we can conclude that

Cz-l-Z

a =

L(s,p, V) =T¢ (S—FZGZ’LUZ—FZ wi — o) (b; + b)) +
i=1 i=1

e+ Sl )

We now collect the above results in a more compact form. leen a representation r we determine
a 3 x 3 block matrix M = M(r) as follows. Take a decomposition

mi1 m2 m3
(46) T|LT = @ Ha; D @ (M:pi ® (Sign)> S @ Vxé’?
=1 =1 =1

where each z;, z; € X are fixed by the action of G and each z/ € X is in a G-orbit of cardinality 2.
We may write explicitly

(47) xXr; = (ail, Ai2y .« -« ,aml,O, N ,O, (bﬂ, bil), ceey (binS, bing)),
and similarly for z/. Likewise we may write
(48) .’L';/ = ((ai17 ai?) e >ain1 9 cilv ceey Cinz) (bi17 b;1)7 (b’LTL37 b;n3))
with at least one c;; # 0 or b;; # bgj. Now define the matrix

A 0 By
(4.9) M=M(r)=| A2 0 B3

As C Bsg

where: Ay € My, xn, (Z) is given by Ay = ((a;j)) with a;; as in ([1.7), B1 € My, xny(Z) is given by
By = ((bij)) where b;; is also as in . Next, Ao and By are defined similarly to A; and By but
using the coordinates for 2 instead of those of z; as in (4.7)). Finally, As € M, xn, (Z) is given by
(aij) where a;; are taken from (4.8)), C'€ My, xn,(Z) is given by C' = (c;;) where ¢;; are taken from
([4.8), and B € Myn,xny(Z x Z) is given by Bz = ((bij, b;;)), where (bij, b;;) is also taken from (4.8).
We can write the elements ¢ as length ny + ns + ng block column vectors, i.e. as
(w,e€)
! € (C™ x (Z/2)") x Z™ x (C™ x Z™).

(w',a’)
We define block-matrix multiplication as follows. Matrices of the form A multiplied on an element
(w,€) € (iR)™ x (Z/2)™ are defined to be

1
Aj(w,e) = §A1w + (A€ (mod 2)),

1
Asz(w,€) = §A2w + (Age (mod 2)),

and
A3(wa 6) = Azw,
where the products on the right hand sides are the usual matrix multiplication. A matrix of the
form C multiplied on an element («) € Z™2 is defined to by the standard matrix multiplication C'a.
We define also for elements (w’,a’) € C™ x Z"# the multiplication By (w’, /) = By(w’ — /) where
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on the right hand side we have usual matrix multiplication. We also define the multiplication of
Bs in exactly the same way. So, in summary,

(w, €)
(4.10) (A1|0|Bl) ( /oz /) = %Alw + Bl(w’ _ a/) + (Alﬁ + Bla/ (mOd 2)) € (ZR X {0, 1})m1
and

(w, €) 1
(411) (Aaf0[Bo) | @ | = SAww+ Balw' — ') + (Aze + Baa’ (mod2)) € (R x {0,1})"™.

(w',a)

Finally, we define the multiplication of (A3|C|Bs) on ((w,€),a, (w',a’)) as follows. Let By €
Minyxny(Z) be the matrix ((b;; + b;;)) formed from the entries of B and By € Mpyxn,(Z) the
matrix with entries ((b;; — b;;)). Then we define

(w,€)
(4.12) (45|C|Bs) ( a ; — Agw + Bf (w' — /) + Ca + By (o)) € (iR x Z)™.
w, o

The above multiplication rules for M define a continuous group homomorphism

M :T" - (iR x {0,1})"™ ™2 x (iR x Z)™*

(w, €) Ay 0 B (w,€)
(4.13) (0% — MQO = A2 0 B2 «
(w', o) As C Bs (w',a))

Let |- | moda2) : iR x Z — C be defined by

it if n is even,
it+1 if nis odd.

(¢, )] (moa 2) = {

Let | - |re : iR x Z — C be defined by |(it,n)|re = it + |n|. If M = M(r) is as above, and ¢ is a
Langlands parameter in the explicit form (4.2)), let (M¢); be the ith entry of My as in (4.13).

Proposition 4.2. Let F be a real archimedean local field. With notation and definitions as above,
the archimedean local Langlands L-function L(s, x,r) associated to a representation r and a unitary
character x € Hom(T(F), SY) is given in explicit terms by

my mi+mso
(4.14) L(s,mop) = HFR(S + (M)l (mod2)) H Fr(s + [(M@)i + (0,1)] (mod 2))
i=1 i=mat+1

mi+ma+ms3

<[] Tels+10Me)ile).

i=mi1+mo+1

where @ is the Langlands parameter corresponding to x by the local Langlands correspondence for

tori (2.9)).

Let « € T(F'), which according to our chosen isomorphism (4.1)) we can express as

= (o mg,ah, . xh ) e (RX)™M X (SH2 % (C*)"s,
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where z; e R* for j = 1,...,ny, 3:; e St for j =1,...,n9, and a:;-’ € C* for j =1,...,n3. Then
if x € T(F)" corresponds to the Langlands parameter ¢ with parametrization (4.2)) across the
Langlands correspondence ([2.12]), we have that x is given explicitly by

‘wl 1., .., ©ng

n2

’ ’
" ay n an3
% ‘ml ’m//|w’1—o/1 o ﬂfn3| 2! |w%3 —a,
ﬂf” 1 :L,// ns *
1 n3

We briefly discuss the case that F' is a complex archimedean local field. We have Wr = F* and
Wgip = Wab = Wp. Let us choose isomorphisms F ~ C and T(F) ~ (C*)". The Langlands

parameters ¢ : Wp — fu are given explicitly by

(4.16) p(z) = (('j)al |21, ("z)% |z|w”_o‘”>

for some w; € C and o € Z with w; — a; € iR. We write T = (iR x Z)", so that Langlands
parameters are parametrized by (w,«) € T*. The irreducible algebraic representations are merely
the characters of T', i.e. X*(T) ~ X = Xy(Gp)" = Z". If r|; decomposes as

o [

(4.15)  x(x) = (sgna1)? -+ (sgnwn, )™ |21

m
(4.17) T’f = C—Bﬂxiv
=1
for ; = (bi1,...,bin) € X, then define the m x n matrix M = (b;;). Then M is a continuous group

homomorphism M : T" — (iR x Z)™ given by

n n
(4.18) (w,a) » Mp = M(w,«a) = (Z bij(wj — aj) + Z bijaj>
Jj=1 J=1 i=1,...m
Proposition 4.3. Let F' be a complex archimedean local field. With notation and definitions as

above, the archimedean local Langlands L-function L(s,x,r) associated to a representation r and a
unitary character x € Hom(T(F), S1) is given in explicit terms by

(4.19) L(s,rop) = [Tels + 1(Me)ilke),
i=1

where @ is the Langlands parameter corresponding to x by the local Langlands correspondence for
tori (2.9)).
Let z € T(F) corresponding to (x1,...,2,) € (C*)"™ by the chosen isomorphism T'(F') ~ (C*)™.

If x e T(F)" corresponds to a Langlands parameter ¢ with parameter (w, «) across the Langlands
correspondence (2.12)), then x is given by

(4.20) x(z) = p(z),
where the latter is expressible in explicit terms by (4.16]).

4.2. Local conductor zeta function, archimedean case. In this section F’ denotes an archimedean
local field and T" and F-torus. Choose a Haar measure v on the Pontryagin dual T'(F')". Let

(4.21) Ap(s,z) = JT(F)A c&(,i))s dv(x).

We assume that F' ~ R until further notice and briefly discuss the simpler case that F' ~ C at
the end of the section. Recall (4.1)) that we have chosen an isomorphism

(4.22) T(k,) ~T = (R*)™ x (§1)"2 x (C*)"
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z (T2l 2l ),
with z; € Rx,m;- e S, and l‘;’ e C*.
Theorem 4.4. Suppose that v|4 is faithful.
(1) The integral Ap(s,z) converges absolutely and uniformly on compacta in the domain
dim D(S)
5]

(2) For s in the above region of absolute convergence, we have

Re(s) > 09 = max{ cdim D(S) > 1}.

1 1
Ap(s,x) <7, _ —_
’ e Kl;[m 1+ [log |z;]| 1<1_<[n 1+ 2[log [zf]|’
with at most polynomial growth in s in vertical strips.
(3) For any real 09 < 0 < 2, we have that Ap(o,x) is non-negative real.

From part of Theorem we extract the following corollary.

Corollary 4.5. Let F' be an archimedean local field and v o Haar measure on the Pontryagin dual
T(F)" of the archimedean torus T(F). Suppose that |z is faithful. For any e > 0 we have

(4.23) v({x e T(F)" :c(x,7r) < X}) €Trpe Xoote,

The proof of Theorem [£.4) will occupy the remainder of section of this paper. In section
we reduce assertion to a problem in combinatorial geometry (see Proposition |4.8). The main
input in the proof of assertion is a Brascamp-Lieb inequality, see Theorems and In
section we give some background information on matroids and polymatroids, and in section
we solve the combinatorial geometry problem. Assertion follows immediately. Finally, in
section we prove assertion of Theorem

Recall that in section we worked out explicitly the local Langlands correspondence for tori
over archimedean local fields. Specifically, in (4.2) we explicitly parameterized (with respect to
choices K,, ~ C and ) equivalence classes of Langlands parameters ¢ : Wy p — LT, by

(4.24) (w,€), a, (w',a’)) € (iR™ x (Z/2Z)™) x Z"* x (iR x Z”3) =T".

Recall the definition (4.9) of the matrix M = M/(r), which glves by amap M : T" —
(iR x {0,1})™*™m2 x (4R x Z)™3. By Definition 4.1} (£.14), and we have for some constant
a depending only on the choice of v that

(4.25)
Xw,e,o,w’ a’(x) !
Ap(s,z) =a s dw dw’,
; ee{ozl}nl )T 000 + D T e (G + 1
w'eiR™3

where Xu c.a.u7 o 1S the unitary character of T = (R*)™ x (S1)"2 x (C*)"s that was given explicitly

in terms of w, e, a, w’, o’ in ([4.15)).
4.2.1. Convergence. We apply the triangle inequality to Ap(s,z). For i =1,...,mj + mg, we have
(Myp); € iR x {0, 1} by inspection of (4.10)), (4.11)). For such i we apply the inequality
1 1
Vaz+1+1 !a;| +1

Then we make the change of variables w; +— iw; and w —a;

i = dw}, so that x € T'(ky)" unitary

implies that wj, w e R.
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We introduce some notation to record the result (see (4.26])) of the aforementioned manipulations
of Ap(s,x). Let M;e denote the (m; + mg + m3) x (n1 + ng) matrix

A B
Mre = AQ BQ 5
Ay BY

were Ay, As, A3, By, B3, Bg’ were defined in section Such a matrix acts on w = (w,w’) € R™M "3
by the usual multiplication of matrices. Let also

Mint:(c Bg)»

where C and B3 were also defined in section The integral ms x (n2 + n3) matrix My, acts on
a = (a,a’) € Z"1"3 by the usual multiplication of matrices.
The result of our inequalities and changes of variable is

(4.26) Ap(s,z)

m1 +m2 1 m1+mo+ms3 1
Z ff _ )Re(s) H _ )2Re(s) dw.

acZn2tn3_ TeR™1+73 reU})i‘ +1 i=mi+mo+1 (((Mrew)? + (Mnta) )1/2 +1

Before proceeding with the estimation of (4.26]), we first describe a result in combinatorial
geometry. Let M € M,,«»(R) be an m x n matrix with real entries, m > n.

Definition 4.6. For any o > 8 > 1 we say that M is (a; 3)-biased if there exist a rows of M such
that any basis of R"™ formed from rows of M contains at least 3 of the distinguished « rows.

For example, note that any full-rank m x n matrix is (m;n)-biased.
We also have the following minor variation on («; /3)-bias.

Definition 4.7. Let M be an m x n matrix with real entries along with a partition of its rows
into two subsets Ry 11 Rs. For any aq,as = 0 and ( satisfying ag + ae = 8 = 1, we say that M is
(a1, a; B)-biased if there exists ay rows from Ry and g rows from Rs such that any basis of R”
formed from rows of M contains at least 5 of the distinguished a1 + a9 rows.

Recall the convex polytope H)s associated to a matrix M from section Write | - [, for the
L*-norm on R™, i.e. for x € R™ we set

[2]|oo = max(|z1], ..., |Tm]|)-
The norm | - |4 is a convex and piecewise-linear function on R™. Let
(4.27) By = Boo(M) = inf{||z|w : © € Har}.

Proposition 4.8. Let M be any full-rank m x n matrix with real entries. We have that
By = max{é : M is (o; B)-biased}.
o

The proof of Proposition will be given in section [4.2.3
We also need a version of Proposition for (aq, ae; f)-bias, and now spell this out in detail.
For x € R™ and a partition of the coordinates of R™ into two subsets Ry u Ra, let
. 1 .
|2hoo,1/2 = max({lai| : i € Ra} v {5 lzs] 2 5 € Re}).
The function || - |, 1/2 is a convex and piecewise-linear function on R™. Let

(4.28) By /o = Be1p(M) = inf{[[2] 012 : @ € Hu}.
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Proposition 4.9. Let M be any full-rank m x n matriz with real entries equipped with a partition
of its rows into two subsets Ry L Ry. We have that

By 172 = max{ : M is (a1, ag; B)-biased}.

a1 + 20

We now give the proof of assertion of Theorem assuming Propositions and
We begin to estimate Ap(s,x) by applying the Brascamp-Lieb inequality (see section [2.4]) to the

integral over w in (4.26). Let m = my + mo + m3, n = ny + ng and M = M,.. Partition the
rows of M into the first my + mo and the last mg rows, as in Definition and Proposition
The polytope Hjy,, is compact and non-empty, so the infimum in (4.28) is attained, say by

E = (Bl, e Bm1+m2+m3) € HMre'
We apply the Brascamp-Lieb Inequality Theorem to the interior integral of (4.26) with a;
equal to the rows of M = M., p = B,

1
fi(@) = = frmyama () = W’
and
1
ilx) = , for ¢ = 1,..., .
fi(x) ((xQ . (Mmta) e 1)2Re(s) or i =mq + mo + mi + meo + ms

With these choices, Theorem [2.10| shows that
(4.29) AF(S,.CC) LT

mi+ma mi+mao+ms3 2R ( )
[T (el +D)= @) Y [T (@ + M) +1) .
=1 ( )*ezn2+n3z mi1+mo+1 i (R)

Next we use the discrete Brascamp-Lieb inequality Theorem to bound the sum over @ in
(4.29). Since Miy is full-rank, the infimum in (4.27) is attained, say by B = (B}, o1+ - - > By motms) €

Hy,,, - Let a;, 1 =1,...,m3 denote the rows of M;,;. We have that x € Hyy, , if and only if
ms3

(4.30) Z T; = N2 + N3
=1

and

(4.31) Z z; < rank(spang({a; : i € S}))

€S

for every subset S < {1,...,ms}, by tensoring with R. Let ¢; : Z"2"3 — Z be given by x — (a;, x).
The discussion on [BCCTT0, p. 649] shows that (4.30) and (4.31]) imply that

ms3
(4.32) rank(H) < Z x;rank(p;(H)) for every subgroup H of Z"2*"3.
i=1

We apply Theorem with G = Z™*"s G, = Z, ¢; as above, p; = 32{717 and

fori=1,...,ms,
L m1+m2+z(R)

H \ /xZ + O[2 + 1)2Re s)
to obtain from (4.29) that

(4.33)
mi+ma m1+ma+msg
Ap(s,x) <p1 H (|| + 1)~ Re(®)

H( 22+ a2+ 1) 2Rl

Bf1 B.*1 —1 °
L% (R) t=mi+mo+1 L7 (R) eB; (z)
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The right hand side converges as soon as

1
(4.34) Re(s) > max( max (B; max —max(B;, B)))

i=1,....m1+ma 7i=ml+mQ+1,...,m1+mz+mg 2
1
= maX(BOO,l/Q(Mre)a iBw(Mint))~
Since 7"\7: is faithful, the matrices My, and My are full-rank and so by Propositions and

we have that Ap(s,x) converges absolutely when
(4.35)

1
Re(s) > max(max{ o f2a2 : Mye is (o, ag; §)-biased}, 3 max{g : Ming is (oy; B)-biased}).
Let
A 0 By By

A3 C Bj +Bj Bj—Bj
As —-C B —Bjy Bi +Bj
We claim that

(4.36) max(max{ : Mye is («, B)-biased}, % max{g : My, is (av, B)-biased}) < Beo(M').

a1 + 2ap
Indeed, suppose the first maximum on the left hand side is larger. Then there are o = a3 + a9
distinguished rows of M., a1 of which are among the first mj + me rows, and agy are among the
last m3 rows. Choose the corresponding aq rows of M’ among the first m; + mo rows, and the
corresponding 2as rows, i.e. aso pairs of rows of M’ from among the last 2mg rows. This set of
a1 +2ag rows of M’ shows that M’ is (g + 2ae, 3)-biased. So by another application of Proposition
48

_B
a1 + 2ap
Similarly, suppose the second maximum on the left hand side of is larger. Then there
are « distinguished rows of My, and we choose the corresponding 2« rows, i.e. « pairs of rows

from among the last 2m3 rows of M’. This distinguished set of 2« rows of M’ shows that M’ is
(2av, B)-biased. So

: My is (v, B)-biased} < By (M').

max{

%max{g : Myt is (v, B)-biased} < By (M),
which finishes the proof of .

Finally, there is a bijection between the rows of M’ and the co-weights of 7 via the isomorphism
(4.4). Under this isomorphism, sets of rows of M’ correspond bijectively to subsets S & M of co-
weights of r, and |S| = @ and dim D(S) = . This concludes the proof of assertion (/1) of Theorem
44

Assertion of Theorem follows immediately. Indeed, returning to equation , we
integrate by parts once in each variable w;, w,, and apply part of the theorem. We artificially
insert the factor of 2 on the complex places as | - |? is the natural absolute value on them from the
point of view of algebraic number theory. This factor of 2 serves to make the computations for final
estimate in section more elegant.

Before moving on to the purely matroid-theoretic sections and we remark that The-
orem also holds in the case that k, ~ C is a complex place upon taking n; = ng = 0
and m; = mg = 0, and n = n3 = dim7 and m = mg = dimr. Indeed, by (4.19) and (4.20) in
place of and , the generating series Ap(s,x) is equal to the expression in (4.25) with
n1 = no = 0 and m; = mo = 0, the matrix M as defined between and .
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Continuing as above, the integral that we need to bound is given by with My = Min, = M,
n1 = ng = 0, m; = mg = 0. Following the same steps as above, we have absolute convergence
when s satisfies with m; = mg = 0, which simply equals %BOC (M). Since 7| is faithful, the
matrix M is full-rank, so Proposition implies that Ap(s,z) converges absolutely whenever

Re(s) > max{g : M is (a; 5)-biased}).

Since there is a bijection between the rows of M and the co-weights of r via the isomorphism
X *(f ) ~ X (Gp)" = Z" (see the penultimate paragraph of section , we conclude the first
assertion of Theorem [£.4] as before. Note that we did not need to use the “variations” in Definition
or Proposition nor the paragraph containing the definition of M’ in the case that k, ~ C.

4.2.2. Background on matroids and polymatroids. The key observation in the proof of Proposition
is that the definition of («, 3)-bias makes sense more generally for matroids, and Hys is exactly
the matroid base polytope associated to the matroid M. To this end, we next recall some back-
ground on matroids and polymatroids. The following exposition was communicated to the author
by R. Zenklusen.

Definition 4.10 (Matroid). A matroid is a pair (N,J) where N is a finite set and J < 2V is a
family of “independent” subsets of NV satisfying the following axioms.

1) JT#0o

(2) IfIeJand J < I then J €.

(3) If I, J € J and |J| > |I| then there exists e € J . I such that I u {e} €J.

Example 4.11 (Linear Matroid). If NV is a finite set of vectors spanning a vector space, and J is
the set of linearly independent subsets of N, then (V,J) is a matroid. One calls such a matroid a
linear matroid.

If (N,J) is a matroid, then the set of bases B < J is the set of maximal subsets of J, ordered by
inclusion. If (N,J) is a linear matroid, then B consists of subsets of vectors which form a basis.

Definition 4.12. The rank function of a matroid is the function r : 2V — Z-( given by
r(S) =max{|I|: I€J, I < S}.

If (N,J) is a linear matroid, then r(S) is the dimension of the space spanned by the vectors in
S. By the definitions of B and r we have

={led:r(Il)=r(N)}

Lemma 4.13. The rank function of a matroid (N,J) satisfies the following properties.

er:2N 57

o 1 15 submodular:

r(A)+r(B)=r(AuB)+r(An B)

e 1 is monotone: 7(A) = r(B) forall B A< N

e r is non-negative: 7(A) =0 for all A< N
r satisfies r(A U {e}) <r(A) +1 for all A N and e N.
Ifr: 2N — Z is any function enjoying these five properties, then there exists a unique 3 < 2V such
that (N,J) is a matroid whose rank function is r.

Proof. See [Sch03, §39.7]. O

Let (N, J) be a matroid and let 1; € {0,1}" be the indicator function of I. If S is a finite set of
points in R, then we write conv(S) for the convex hull formed from those points.
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Definition 4.14. The matroid polytope of (N,J) is
Py=conv({l;: Te€J}) c RN
and the matroid base polytope is
Py = conv({1p : Be B}) c RV,

We can also express the matroid polytope and matroid base polytope in terms of the rank
function as follows. Let = € R]>V0a e € N and z. be the e-th component of . For a subset S € N
we set 2(S) = >,.cq Te. In terms of 2(5), we have (see [Sch03, Cor. 40.2b])

Py ={zeRY,:z(S) <r(S) for all S < N}.

Then Pg is one face of the matroid polytope Py given by a supporting hyperplane, i.e. we have (see
[Scho3l, Cor. 40.2d])

(4.37) Py = Pyn{zeRY :z(N) = r(N)}.

Theorem 4.15 (Matroid Intersection). Let (N,J1) and (N,Js) be two matroids on the same ground
set. Then we have
max{|I|: [ €J; n Iy} = Igni]r\lf{rl(A) +ro(N N A)}.
c

Proof. See [Sch03, Thm. 41.1]. O
In fact, we shall need the following polyhedral generalization of matroids.
Definition 4.16 (Polymatroid). A polymatroid on N is a polytope
Py ={zeREY,: 2(S) < f(S) for all S < N}
where f: 2V — Rxq is a submodular and monotone function.

Theorem 4.17 (Polymatroid intersection). Let fi, fo : 2V — Rsq be two submodular and mono-
tone functions. We have

sup((N) s 2 € Py, 0 P} = min{fi(4) + f2(N < A)}

Proof. See [Sch03], Cor. 46.1b]. O
The following definition generalizes Definition from linear matroids to matroids.

Definition 4.18 ((«; )-bias for matroids). We say a matroid (N, J) is («; 8)-biased if there exists
S € N with |S| = « such that
|IBnS|=p
for all bases B < N.
Similarly, if N is equipped with a partition N = R; u R, then we say that a matroid (V,J) is
(a1, ag; B)-biased if there exists S € N with |[Sn Ry| = aq, |S n Rz| = ag and such that |[Bn S| >
for all bases B < N.

Lemma 4.19. A subset S © N satisfies r(N) — r(N N\ S) = B if and only if for any basis B< N
we have |B n S| = B.

Proof. “Only if”: Let B € N be any basis. By the sub-modularity of the rank function we have
r(BnS)+r(N\S)=r((BnS)u(N\NS)).
Since B< (BnS)u (N \ S), we have

r(BnS)u(N~\S))=r(N).
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However, B n S is independent, so we have
IBNS|=r(BnS)=r(N)—r(N\S)=p.

“If”: Suppose that B € B is such that | BN S| is minimal as we range over all bases. Equivalently,
B is such that | B~ S| is maximal. We claim that B\ S is maximal by inclusion among independent
sets which are disjoint from S. From this claim it follows by definition of the rank function that

|IB~\ S| =r(N~\S),

and so (N) —r(N~\S) =|Bn S| = 0.
If the claim were false, then there would exist e ¢ S U B such that

(BNS)u{e}=(Bufe})~(BnS)
is an independent set, by matroid axiom (3). Since the set (B \ S) U {e} is independent and

~

r(B u {e}) = r(N), we can complete (B \ S) u {e} to a basis B < B u {e}. But then we have
(Bu{e})~(BnS)=B~S,
from which it follows that
IBNS|=|(Bu{e})~(BnS)=|B~S|+1.
This contradicts the minimality of |B n S| among all bases B € B. Therefore the claim is true. [

Corollary 4.20. A matroid (N,J) is (a; B)-biased if and only if there exists S < N with |S| = «
and r(N) —r(N ~\ S) = 8. A matroid (N,J) with a partition N = Ry U Ry is (a1, ae; 8)-biased if
and only if there exists S € N with |S n R1| = a1, |S N Re| = ay and r(N) —r(N N S) = f.

4.2.3. Proof of Propositions[{.8 and[{.9 We begin with the proof of Proposition Considering
the level sets of the L® norm, the By, defined in (4.27) becomes

By, = inf{A>0: Py n [0,\]V # @}

(Aside: compare this and (4.37)) to the discussion of the Manin conjecture in section ) From
the description (4.37)) of the matroid basis polytope in terms of the rank function, we have

By = inf{\ = 0 : sup{z(N) : z € P; n [0, \]V} = r(N)}.
Now we re-interpret [0, )\]N as the polymatroid defined by the function
f:2Y > Rxo
f(5) = AlS.
Then, by the polymatroid intersection theorem (Theorem , we have
sup{z(N) : z € Py n [0, A]V} = gléjt\lf{?“(A) + f(NNA)} = Igncir]\lf{r(A) + AN AL
Since this last min is always < (), to characterize By, it suffices to find the smallest A > 0 such
that for all A N
(4.38) r(A) + AIN N A| = r(N),
that is to say
By =inf{A=0:7(A) + A|N N A| =r(N) for all A < N}.
It changes nothing to swap A with N \ A, so
By =inf{A=>0:7(N~A)+AA| =7r(N) for all A< N}.
If A = @ then the inequality is satisfied for all A, so suppose not. We then have by Corollary

B, — fqnéﬁ{r(N) _‘TA(|N ~ 4) A # O} = rral’aﬂx{fé : (N, 9) is (a; B)-biased}.
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This concludes the proof of Proposition
The proof of Proposition is 1dent1(:al to that of Proposition [4.8 with the following substitu-
tions. The polytope [0, A]"Y should be replaced by the polytope

1 if
H [07 Ce)\], Where Ce = 1 [AS Rl
eeN 9 ifee Rz,

The corresponding function f : 2 — R is given by f(S) =AY, g ce. Instances of |A| or [N\ 4]
should be replaced by >, .. 4 ce Or Y 4 Ce, Tespectively.

4.2.4. Positivity. To prove assertion of Theorem we first establish one-variable versions of
the result.

Lemma 4.21. For all real 0 < o < 2 the Fourier transforms of the following functions are positive

or +00:
1 1 1

e T (S v N/ ST

Proof. When £ > 0 we have by contour shifting

~ 0 (§x) -OO—Tra: 1 1
f(g)zf_w(m+1)ad$:ZL€2§<(im+1)”_(—i\/x27—1+1)0>d$
i S (e - Ty

2

_ QJOO sin(o arctan v/z2 — 1)
1

:L»O'

e 2™ dp > 0.

The value f (0) is clearly positive if it converges, and if £ < 0 we follow the same steps as above,
shifting the contour up instead of down.
Now we show (&) is positive or +00. For a real parameter 0 < 8 < 1 define

© e(-t)
o AT B )

(4.39) 98(8) = dx,

so that §(€) = Go(¢) — §1(€)- We have

- O d . L e(—¢w)
(4.40) 9(§) = L @95(5) dB = UL ﬂfoo NN dz dB.

Suppose that & > 0. The interior integral has a branch cut from —i to —io0. To evaluate the
integral, we shift the contour around this branch. We have

[ (&) .
—w A2+ B2(n/22 4+ B2 + 1)‘7+1

fOO 6727r§x dr
3 <\/x2 _ 52(2'\/952 B2+ 1)o+1 \/x2 z\/xQ 2 +1 a+1>

0 —2néx
=2j ¢ ez cos((o + 1) arctan (V:BQ - ﬂ2>) dx

B 2 _ 52('%.2 62 + 1)
/2 —27r£\/tan2 0+32
=2 (cos 0)7 ! cos((o + 1)8) df.

0 A/tan%6 + B2
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Now we return to (4.40)), change order of integration, and change variables y/tan® + 32 — y to
find

7/2 rsect
= 2Uf f ~27EY dy(cos 0)° L cos((o + 1)0) db.
t

ano9

Let hy () be the anti-derivative of (cos#)° ! cos((c + 1)0). By integrating by parts we have
7 /2

9(6) = —20 fo g ((sin@)e?mEweet — eZ2EERN A, () df.
Observe that (sin §)e=2m¢secd _ g=2n&tand < () while h, () = 0 for all 0 < o < 2 and 0 < 0 < 7/2.
Thus g(&) = 0 for £ > 0. The case £ = 0 is obvious and £ < 0 follows by a similar calculation. [

It follows from Lemma [£.21] that the Fourier transforms of

1 1
and

1
(ol + 1) (el+ 17 (Va2 s it 1)e

are also everywhere positive or +oo0.

Lemma 4.22. For all real 0 < 0 < 2, a € Z>1 and £ € R/Z, the Fourier series
D e(B8)
2 v alp)e

18 positive or +00.

Proof. Recall the Dirichlet and Fejér kernels

Dy(z) = Z e(nr) and F,(x)=

[n|<u k=0

By summing by parts twice we have

_ ey 1 - 1 1 i
Z (1+alB)7 HZ:: ((a(n—i— 2) +1)° 2(a(n+ 1)+ 1) * (an + 1)") (n 4 D Fnia(€).

BeZ 0

The factor inside the parentheses above is positive by the mean value theorem. The Fejér kernel is
also positive, and therefore the series is positive wherever it converges. O

Lemma 4.23. For all real 0 < 0 < 2, a € Z>1 and £ € C*, the function

3 <|£|> (—I¢]=)
BeZ 3 R (\/ x? + (aﬁ)z +1)°
18 positive or +00.

Proof. By summation by parts twice and the positivity of the Féjer kernel, it suffices to show that
the second forward difference in 5 of

e(—|&|x

78,6 = [ — AR
R (/2?2 + (aB)? +1)7

is positive. Recall the definition of gg(§) from (4.39)), in terms of which we have

B+1 d v+1 d

F(B+2.6) 208+ 1.6) + F(5.6) =J 4 n((€]) da dy.

g dyJy, da
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As in the proof of Lemma [4.21] we have

B+1 d v+1 0 o
= —aaf J aozf e( \§|x) dx dodry
8 d’}/ 0 \/$2 \/xQ _|_ 1)0’+1
B+1 /2 tan2 9-i-(¢w-i—1)2
= —QO'J J e~ 28 dy(cos 0)7 1 cos((o + 1)) df dvy
tan? 6+ (a)?

= —20a

B
w/2 rB+1 CL’}/ + 1 —2r|¢|4/tan? 0+ (ay+1)2 a,y€7271'|§\ tan2 0+ (a)?
J J \/tam2 0+ (ay + 1)2 tan? 0 + (avy)?

x (cos )7L cos((o + 1)6) db.
Recall h, () = 0 is defined to be the anti-derivative of (cos)°~! cos((o + 1)8). Let also
B+1 4 av + 1 6727T|§\«/tan2 0+(ay+1)2 a~ve—2ml¢l tan2 0+ (av)?
H(/6797£):J‘ d9<(’y ) 2 ) - 7 3 5 d’Y
8 v/tan2 0 + (ay + 1) tan” 0 + (a)
Then, by integrating by parts we have

/2
F(B+2.6)—2f(B+1,6) + F(B,€) = 20a L H(8,0,6)ho(60) do

To prove the lemma, it suffices to show that H(S,6,&) is non-negative for all 3 € N, a € Z>;,
e C*,and 0 < 6 < /2. Set

[ 2
N('Y,&g) _ 27r|§|\/tan29+’y tanesec 6 (27T‘£| tan” § + 7 + 1)
\/tan? 0 + ’y
so that
B+1
H(B,0,€) - L (N(a7,0,€) — N(ay +1,6,€)) dny
tan2 0+ (aB+1)2 tan? 04 (a(f+1)+1)2
(4.41) = a ' tanfsec? J\/ o —J\/ ey e~ 2mlely (W) dy.
4/tan? 0+ (aB)? tan2 0+ (a(B+1))2 Yy
Note that N
4 —2riely (27T|5|y * 1) e
dy y? Y

so that the difference of integrals in (4.41]) equals by the mean value theorem

Y2
—QWIE\/m(?W’f\\/erI n )

4.42
(4.42) tan20+ w2 ian20 t a2

for some y2 € [af,af + 1] and y; € [a(B + 1),a(B + 1) + 1]. Since the function of u in (4.42)) is
decreasing for all v > 0 we have that H(S,6,&) > 0. O

We assume that k, is real until further notice. Consider the Fourier dual pair
T = (R*)™ x (§1)™ x (C*)™ « (iR™ x (Z/2Z)™) x Z™ x (iR™ x Z"3) = T"
and the spaces of tempered distributions 8'(T) and 8'(T"). Recall M and M from section
Let 0 <o <2 and f; € 8'(T") be given for i = 1,...,m1 + mg by the function
1

N (TET S
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and for i = mi +mo + 1,...,m1 + ma + ms by the function
1
(I(Mp)| + 1)

where (M); denotes the ith entry of My (see (4.13)).

Let Fo(f) denote the Fourier transform of a bounded measure f on a locally-compact abelian
group G following [Boul9, Ch. IT §1 2. Déf. 3]. We have that the Fourier transform Fr.(f;) of
each of the functions f; € 8'(T") is also a tempered distribution, i.e. Fp.(f;) € 8'(T). Recall that
a tempered distribution L € 8'(T) is called positive if for all non-negative-valued ) € §(T') one has
L(y)) = 0. We shall next show that Fr. (f;) € 8'(T) are positive distributions.

Let K € T” be the kernel of the homomorphism

filw, e, ,w’,a’) =

iR x{0,1} ifi=1,...,m3+ mo
iR x7Z ifi=mi+me+1,...,m1 +mo+ ms.

(Mg); : T" — {
Then, for any non-negative-valued v € §(T) we have
T (B = | @@ de = [ 59 | Frw)ph dedp,
T TA/K K

Let Tk :={x € T : k(z) =1 for all k € K} so that by Poisson summation (see the remark following
Lemma [2.14) we have for almost every @ € T" /K that

| T ar = | ooz - 7o, 0)@)

Tg

Now let us consider the group T"/K. It is canonically isomorphic to the dual of Tx by Pon-
tryagin duality; also the map (Mp); identifies T"/K with a subgroup of iR x {0,1} or iR x Z.
The Fourier transform Fp. /i (f;) may then be considered as a tempered distribution on Tf. Since
|fi(®)] < 1forallp e T"/K, we have |Fpa /i (fi)(9)] < |gllo(Ty) for all g € §(Tk). By the Hahn-
Banach theorem Fp. /i (fi) extends to a linear functional on the continuous functions vanishing at
infinity Co(Tx) satisfying |Fpa/x (fi)(9)| < [gllpe(Ty) for all g € Co(Tk). By the Riesz-Markov-
Kakutani theorem (see e.g. [Rud87, 6.19 Thm.]), the tempered distribution Fp. /i (f:) is given by
integration against a regular Borel measure on T, which we continue to write Fpa /i (f;). Lemmas

and [4.23[ now show that the measure Fp. /i (f;) is non-negative and has total mass 1.
By the Plancherel theorem (see [Boul9, Ch. II §1 5. Prop. 13]) we have that

T ) = [ ST @@= [ Tr ()00

Tk

Therefore, the tempered distribution F(f;) itself is a positive distribution.
By applying the Hahn-Banach and Riesz-Markov-Kakutani theorems again to F (f;), we obtain
a regular non-negative Borel measure p; on T for each i = 1,...mj+ma+ms such that Fp. (f;)(g) =

§p 9(x) dpi(z) for all g € 8(T). By assertion (1]) of Theorem [4.4)and the formula ([4.25)) for Ap(s, x),
the (mq + mg + mg)-fold convolution of the measures p; is given by a function and in particular we

have
mi+ma+m
Ar(o.) = a (" TE ) @

i=
for all x € T, where a is the positive real factor appearing in . Since the convolution of non-
negative measures is non-negative, we have that Ap(o,x) takes non-negative values for oy < o < 2
and all x € T'(k,), as was to be shown.
The case that k, ~ C follows in an identical way taking ny = ny = m; = mo =0, ng = dim 7T,
and m3 = dimr.
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5. GLOBAL THEORY

5.1. Global analytic conductor. In this section, we return to the notation of the introduction.
That is, we are given a number field k and a k-torus 1" with splitting field K and Galois group
G = Gal(K/k). We choose a finite-dimensional complex algebraic representation r of the L-group
LT (see section for definitions). Let v be a place of k and denote by k, the completion of k
at v. Let T, = T xj Speck, be the base-change of T' to k,. For each v there exists a valuation
w of K extending v such that K, is the splitting field of T,,. We have that X*(T,) = X*(T) as
abelian groups, but where the Galois action on X*(T,) is given by restricting the action of G to
the embedded copy of Gal(K,,/k,). Thus, we obtain an embedding of L-groups *“T;, < T for each
place v of k. The representation r of “T" then determines representations of each LT}, by restriction.
An automorphic character y € A(T) admits a factorization

X =& xo
v
in which all but finitely many of the x, are trivial on the maximal compact subgroup of T'(k,).

Definition 5.1. The analytic conductor ¢(x, ) is an invariant of A(T) defined by
(5.1) c(x,r) = [ [ewlxws rlem,),

where ¢, (X, 7|z7,) are local analytic conductors (see Definitions [3.1f and , all but finitely many
of which are equal to 1.

5.2. Algebraic number theory for tori. We next review the standard theorems of algebraic
number theory in the context of tori. Let O, and O, be the rings of integers in K, and k,. Let
S be the set of archimedean places of k. Recall the notation

Ta =[] T(k) x [] T(00)
vESy V¢S
and the global units U(T) of the torus T" defined by
U(T):=T(k)nTa.
According to Dirichlet’s units theorem [Shy77], the abelian group U(T) is finitely generated. We
also have a short exact sequence of locally compact Hausdorff abelian groups
(5.2) 1——=T(k)Ta —=T(A) CIT) 1,

where the cokernel is by definition the (finite) class group of T [Ono61, Thm. 3.1].
Instead of U(T") and CI(T"), we need the following minor variants of these objects. Let NT'(O,)
be the image of the norm map N : T(0,) — T(0,). Let

(5.3) Tnai= || Tho) x ] NT(Ou).

’UESOO ’U¢Soo

We call the set
(5.4) Un(T) :=T(k) nTna

the global norm-units of the torus T'. Recall that for all unramified non-archimedean places of k we
have NT'(0y) = T(0,) by Lemma and for all ramified non-archimediean places we have that
NT(Oy) is a finite index subgroup of 7'(0,) by Lemma Thus, global norm-units Uy (T) is
a finite index subgroup of the global units of the torus U(T") and thus a finitely-generated abelian
group itself. We also have the short exact sequence

(5.5) 1 —T(k)ITna —T(A) —CIy(T) —1
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with finite cokernel Cly (7). We call Cly(T') the norm-class group of 7.

5.3. Global conductor zeta function. Recall the (twisted) local generating series Np and Ap

from and - Let
1
(5.6) Y(s) := Vol{Un (1)) Z Z H Ag, (s, ) H Ng, (s, )

0eCln (T)» zeUN(T) v€ESx v¢Sa
In sectionwe will prove that Y (s) equals the global generating series Z(s) of Theorem up to
a constant depending only on the choices of Haar measures on A(7") and T'(k,)" for v archimedean.
Recall A, G, %9, m = dimr from in section and R = R(c) from ([1.12)). The goal of this section
is the following theorem (cf. Theorem [1.10)).

Theorem 5.2. Suppose that |z is faithful. The series Y (s) converges absolutely for Re(s) > A

and extends to a meromorphic function in the open half plane Re(s) > A — min(27%,m=2). There
exists ¢ = ¢(T,r) > 0 such that the function Y (s)

e has a pole at s = A of order |(~?\§30\ and no other poles in R(c) (respectively, the half-plane
Re(s) > A —min(271, m=2) if the Artin conjecture holds),

e grows slowly in R; i.e. there exists J = J(T,r) >0 and 0 < ¢ = (T, r) < ¢ such that for
any s =o0 +1ite ZR( ") avoiding any small neighborhood U of A we have

Y (o +it) <y (log([t] +3))7,

and

e has moderate growth in a vertical strip if the Artin conjecture holds, i.e. there exists K =
K(T,r) > 0 such that for any s = o + it with 0 > A — min(27!,m~2) avoiding any small
neighborhood U of A we have Z(o + it) <10 (1 + [t])E

Convention: In Theorem and throughout the paper, whenever we say “the Artin conjecture
holds”, we mean that the finitely many (depending on T,7) Artin L-functions associated to the
complex Galois representations in the hypothesis of Theorem are entire (up to the possibility
of a pole at s = 1 in the case that the representation is trivial).

Following Tate [Tat79, §3.5] we take ¢ to be a non-trivial additive character of A/k and dz
the Haar measure on A such that SA/k dx = 1. Let ¢, be the local component of i at a place
v, drv =[], dx, be any factorization of dz into a product of local measures such that the ring of
integers O, at all but finitely many v gets measure 1, and §(¢,) be the function defined in [Tat79,
§3.4.5].

Recall the positive integer A\ from . We call the set of finite places v of k for which either

e v is ramified in K /k, or
d (A7 ka) 7& ]‘
the set of “bad” places, and denote that set by B. Let

U(s,z) = H (6(Yv)dy/dz},)"™ Ny, (s,2), R(s,z) = Z 1_[ (tpv)dy/day) ™™ Ny, (s, ),

v¢ BUSyn 0eCly (T)» veB

and

A(s,z) = [ ] (6(0)day/dal,)*™ Ay, (s, ).
V€S
Recalling (3.23)) that Ng, (s, x) does not depend on 6, when v is unramified, we have by definition
that

(5.7) Y(s) = VoI(U;;(T)) 1:[( (o) do/da) %% )A 5, 2)U (s, 2)R(s, 7).
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By [Tat79, §3.5] the product

[ [ (6(p0)day/dz)
does not depend on the factorization of the global dz, nor on the choice of global additive character
¥, but only on k. To determine the analytic properties of Y (s), it suffices therefore to determine
the analytic properties of A(s,z), U(s,z), and R(s,x), and to show that sum over z € Un(T) in

(5.7) converges absolutely.

5.4. Unramified places. Set
Unax(s) == sup |U(s,x)|.
mEUN(T)

Theorem 5.3. Suppose that 7|4 is faithful.

(1) The series U(s,x) converges absolutely and uniformly on compacta in the right half-plane
Re(s) > A. It admits a meromorphic continuation to {s : Re(s) > A —min(27, m~=2)} and
Umax(s) is finite whenever s is not equal to a pole of some U(s,x) for any v € Un(T).

(2) There exists an effective constant 0 < ¢ < min(2~!, m~2) depending on r, T but independent
of s,x such that the only pole of U(s,x) in the region R(c) is at s = A.

(3) There exist effective constants J > 0 and 0 < ¢ < ¢ depending on r,T but independent of s
such that for all s € R() avoiding a small neighborhood N surrounding A we have

Umax(8) <7,r.n (log(|Im(s)| + 3))”.

(4) The series U(s,1) has a pole at s = A of order |G\3o| with positive leading constant in its
Laurent series expansion.

(5) The possible pole of U(s,x) at s = A is of order < |G\o|, has positive leading coefficient,
and Laurent series expansion bounded by that of U(s,1) at s = A.

Theorem 5.4. Suppose that |5 is faithful and that the Artin L-functions of the irreducible repre-
sentations V; of ' = Gal(K'/k) that arise in are entire up to a possible pole at s = 1, where
K' is given in Definition [5.5
(1) The only pole of U(s,x) when Re(s) > A —min(271,m™2) is at s = A.
(2) There exists K = K(T,r) > 0 such that for all s with Re(s) > A — min(27!,m~?) and
avoiding a small neighborhood N surrounding A we have
Umax(S) LT r.N Re(s) (1 + |Im(8)|)K'
We devote the rest of this section to proving Theorem and Theorem
First, let us reintroduce some of the structures of section in our global context. Let M be
the multi-set of co-weights of r (recall deﬁnition and S be a subset of M. Let Gg = Stabg S
G = Gal(K/k). Then Gg acts on S, and also on its complement S¢. Let Kg be the intermediate
field in the extension K /k corresponding to Gg under the Galois correspondence.
Define the Kg-torus Tg by taking its cocharacter lattice to be Z!5°l, where the coordinates are
indexed by u € S¢ with Gg acting by permuting these. Let « : Tg — T be the map of Kg-tori
given by the map of cocharacter lattices

oy 2T X (T

(5.8) 0,...,1,...,0) > p,

where the 1 is in the pth entry and the other coordinates are all 0, see Lemma [2.3|and the evaluation
pairing (2.2). Given a Kg-point x of T, let o~ (x) be the fiber of o over z and let p(a!(x)) denote
its set of irreducible components. Recall the constant A from ((1.7)).
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Definition 5.5. Let K'/k be the minimal Galois extension over which all geometric components
of a=t(z) for all S and z € Un(T) are defined and which contains the Ath roots of unity.

Note that Lemma guarantees the existence of K’, and that the Galois extension K=K (1)
is contained in K’, where K is the splitting field of T and p) is the group of Ath roots of unity. Let
I' = Gal(K'/k). The finite group I acts on the set of irreducible components p(a~!(z)) for any z.
We will show later that if 2 = 1, the action of T on p(a!(1)) = mo(ker @) factors through I' — G.

Now let us consider a place v of k, which we assume for the rest of this section satisfies v ¢ Sy, U B.
To each such place there is associated a prime ideal p of k, and we have g, = N(p), the absolute
ideal norm of p. The valuation w extending v introduced in section determines a unique prime
B of K lying over p. If Frp € G fixes S, then since p is unramified we may base change the
Kg-tori Ts and T to k,, so that the results of section apply to Tsy,, Tk,, and a~(x)y, with
the decomposition group Dy € G at p playing the role of the local Galois group Gal(L/F).

For each such B we also choose a prime B’ of K’ lying over 8. The decomposition group
Dgy < T at p plays the role of the local Galois group Gal(L'/F) from section All of the
geometric components of a1 (z), for all z € Un(T) are defined over Ogy and can be base-changed
to the finite residue field of the completion Kfsg,

We have the restriction map I' — G under which Fryy — Frgy. When 2 = 1 € Un(T) we will also
use the map

(5.9) G — G x Gal(k(Cy)/k)

Fr‘B/ — (Frqg, N(p))a
where N(p) € Gal(k(¢y)/k) denotes the automorphism of k((\) sending a primitive Ath root of
unity () to C)]\V(p) (see (1.9)). In particular, the value of N(p) modulo A is determined by Fryy € G.

By we have
H Z s|c|

p¢B ceNM

Definition 5.6. If Fi(s) and Fy(s) are meromorphic functions defined in Re(s) > oy, i = 1,2
and there exists an analytic function G(s) given by an absolutely and uniformly convergent Euler
product in Re(s) > og such that Fi(s) = G(s)Fa(s), then we say that F equals F» up to an
absolutely convergent Euler product in Re(s) > o¢ and write F} ~ F» in Re(s) > oy.

Lemma 5.7. Suppose Fy and F3 are as in Definition [5.0,

(1) If F1 ~ F5 in Re(s) > og, then F| admits a meromorphic continuation to Re(s) >
max (o, min(oy,03)).

(2) The relation ~ defines an equivalence relation on meromorphic functions on Re(s) >
max (o, min(oy,03)).

(3) If Fy ~ Fy in Re(s) > o9, then F| and F» have the same poles to the same orders in the
domain Re(s) > max(cg, min(o, 02)).

The proofs are easy exercises, so we omit them. Since we do not give an expression for the
leading constant in Theorem it suffices to study U(s,x) up to the ~ equivalence.
Recall the change of variables ¢ <« S given by m m, and let

H Z s\S\
p¢B sem N

Lemma 5.8. We have U(s, ) ~ Ug(s, ) in Re(s) > A — (2m)~!.
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Proof. It suffices to show that the series

Deens I (¢, )N (p) I
p¢B Zce{O,l}M - (Cv x)N(p)isM

converges absolutely and uniformly on compacta in Re(s) > A — ﬁ

Consider p ¢ B with N(p) sufficiently large. The factor of the product (5.10) at p is

(5.10)

H_(c,z) II_(c,x) II_(c,x)
eI L N | & N || 2 N

max ¢, =2 max ¢, =2 c#0

We may assume that any ¢ € N appearing in one of the sums in (5.11)) is Dgp-fixed, since
otherwise II_ (¢, ) = 0 by Lemma|3.22] We have the trivial bounds |[II_ (¢, z)| < I-(¢, 1) < II<(c, 1)
and by Proposition [3.21] and Lemma the bound

ee]
M<(c,1) <pp | [ N(p)BmPele),

k=0
Note that
oe}
le| = Z {uweM:c, >k},
k=0
=)
I_(c2) 1 dim Dy () —s|{pzcu>k
) « N(p) 1m k(c) 3|{M-Cu> }|
N (p)slel ,EO

Therefore we have e.g. for the first sum in ((5.11)) that

II_(c,z) = ; sl
Z « Z HN(p)dlka(c) s{pm:cp>k}|

slel
ceNM N(p) c:maxcy, =2 k=0
max ¢y =2 II— (c,z)#0

By Lemma we have the product here has at least two non-one factors for each c in the outer
sum. Now we take the product of (5.11]) over p ¢ B, and find that (5.10)) converges absolutely and
uniformly on compacta in the region

dim D(S1) + -+ - + dim D(S;) + 1
12
(5.12) Re(s)>§;g§§1§%{ |S1] + -+ + ]S4

j=

. D(S;) # {1}}.

Lemma 5.9. Leti > 2. For any real numbers a1,...,a;, and any 1 < cq,...,¢; < m one has

ar +---a; +1 a; +1
AT T 0 < max { : }— (2m)~L
cr+--F¢ =151 &

a1+1 az+1
c1 = cy

Proof. 1t suffices to show the case that ¢ = 2. Suppose without loss of generality that
i.e. coa1 — c1ae + ¢ = ¢1. Then,

1 1 — 1
al + _a1+a2~|— _02-1-&162 cla2> Cc1 <

1 c1+e ci(cr+c)  ~ eiler+e)” 2m
O
By Lemma we conclude that ([5.10)) converges absolutely and uniformly in the region Re(s) >

A—(2m)~L. O
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We arrange the product Up(s,z) over (finitely many) conjugacy classes C' < I:

(5.13) Us(s,z) = [ [ D) T=(S.2)N(p)~*15l.
CQI‘FpgéBCSgM
rm/E

Lemma 5.10. Let
dim D(S) + 1

(5.14) P ={ScM:S#2, FrgS=S, 5

> A},

We have

Uo(s,z) ~ H H <1+ Z H_(S,;L»)N(p)—ss>

ccl' p¢B Sex¥
FI‘(B/ eC

in Re(s) > A —min(27, m™2).

Proof. By Lemma we have if Fry S # S then II_(S,2) = 0. Consider the sets @ # S < M
which satisfy Frp S = S, and take

2M < {o})Pr = 2F L ¥

Let
r@-T1 11 (1+ 5 n:<s,x>zv<p>—85>,
CcI' p¢B Sex®
Fl‘quC
and

Fs)=[] T] <1+ > H_(S,x)N(p)_SS).

Ccl' p¢B SexPBe
FI‘;D/EC

By Lemma [5.9] we have
[T IT X mSa)Ne) ™ ~ Fi(s)Fas)

Ccl' p¢B ScCM
FI‘;B/EC

in Re(s) > A — (2m)~!. Note that for any S € £¥° we have

(5.15) A— w >m2,
|5
since A and %S(‘S)H are two elements of the Farey sequence of order m. We have by the estimate

III_(S,x)| < II<(S,1), Lemma and (.15) that F5(s) converges absolutely and uniformly in
the region Re(s) = A —min(2~!,m~2). Thus, Uy(s,z) ~ Fi(s) in Re(s) > A —min(27!,m=2). O

Recall the quantity a(S,z) from (3.36)). Similarly, let

(5.16) ac(S,z) = #{y e p(ail(a:)) Py =y},
which only depends on the conjugacy class C' < I' of Fryy. Likewise, recall a(S) from (3.38) and let
(5.17) ac(S) = #{y € 7o(D(S)) : Frapy™®) =y},
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which as well only depends on the conjugacy class C < I' of (Frg, N(p)) via (5.9). We have by

Lemmas [5.8] [5.10] and [3.26]

DS S, z) if dim D(S) = 1
518)  U(s,z) ~ 11 S N(p)dimDE-sis ) 909,
(18) Ul ~ [ H( 2 M) ac(S,z) — 1 if dim D(S) = 0

ccl' peB Sex¥
Frm/EC

in Re(s) > A — min(27%,m~2), where we may replace ac(S,1) by ac(S) when x = 1. Note that
if %S('S)H > A then D(S) = {1} by the definition of A, and so ac(S,z) = 1 and the term

corresponding to S above vanishes.
We split up the sum in ([5.18) over the possible values of dim D(S), |S|. The parameter space is

1
P={(a,b):0<a<n,1<b<m,a—£ = A}.
Since the case a = 0 is different in ([5.18)), so we also introduce
1
Py = {(a,b)21<a<n,1<b<m,%=/l}.
If A=1, then P = Py u {(0,1)}, and otherwise P = Py. Let also
(5.19) Yop ={S€eX:dimD(S)=a, |S|=0},
so that
| ] Sas
(a,b)eP

Note that X /4 is non-empty only if A = 1. With this notation, we have that

(5.20) ~TT I Y G+Ne ) S T S (14 Ny

ccl' péB SEEO 1 (CL b)GPO SEEG b
FI‘;B/GC Frop S=S Frf_p S:S

in Re(s) > A — min(271, m™2), with optionally ac(S) in place of a(S,1) if x = 1. Let

& JHSy):SeXap vy e pla~l(x))} if (a,b) # (0,1)
(5.21) Yap = {{(S, y):SeXo1, yeplal(x)), y#1} if (a,b)=(0,1).

The group I' acts on each f)a,b through G' on S and through its Galois action on p(a~!(z)).
If x = 1, the action factors through the action of (g,v) € G x (Z/A\Z)* on elements (S,y) with
y € mo(D(S)) and is given by (g,7).y = gy”.

Let us further decompose the action of I' on f)a,b into orbits ia,b =|]O. Let Vy be the permu-
tation representation of I' acting (transitively) on O. Let 1¢¢ be its character and C' a conjugacy
class of I'. Then v (C') is the number of Fryy-fixed points on O. In these terms, we have

1—[ 1—[ 1—[ 1—[ (1+N abs)wo(c)‘

CcI' p¢B  (a,b)eP 93
FI‘;D/GC =Sab

Now we decompose Vjy into irreducible representations V; of I' so that
(5.22) Vo=@V and o = Y. met
i i
for some mg; € N, where v; is the character of V;. Then we have

~TIIT IT IT TT(+wonee )™

ocel p¢B _(ab)eP ocs,, ¢
Frmle
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in Re(s) > A —min(27, m™2).
Moving the products over C and p to the inside, we have

(523) U(S,LU) ~ H 1_[ 1_[ L(B) (bS —a, ‘/i)mo’i

(a,b)EP Ogimb i

in Re(s) > A — min(2~', m~2), where L(®)(bs — a, V;) denotes the Artin L-function attached to V;
with archimedean primes and primes in B omitted.

By Lemma the group I is finite and does not depend on x € U (7). Therefore there are only
finitely many irreducible representations V; of I', and so the product over i in (5.23|) has finitely
many factors, bounded uniformly in terms of z. By the first part of Lemma [2.6] the dimension
of Vi is uniformly bounded in terms of x. Therefore, the multiplicities mg; as well as the degree
and conductor of the (partial) Artin L-functions on the right hand side of remain uniformly
bounded as z varies over Uy (T") (but depend on r and T, of course).

By the Brauer induction theorem and class field theory, for each V; there exist finitely many
intermediate fields £ < K; < K’, Hecke characters x; of K; and multiplicities m; € Z, j = 1,...
such that

(5.24) L(s,V;) = HL(S, X;)™.

Part of Theorem now follows from the analytic continuation of Hecke L-functions and the
uniformity statements of the preceding paragraph.

Although it is expected that the critical zeros of any L(s,x;) appearing in with m; <0
cancel with the critical zeros of some L(s, x;) in with mj > 0 (the Artin conjecture), at
present we cannot exclude the possibility that those j with m; < 0 contribute infinitely many poles
to L(s,V;) inside the critical strip. The hypothesis in Theorem asserts that precisely such a
possibility does not occur, in which case assertion of Theorem is immediate.

Applying (5.24) to , assertion (2f) of Theorem follows from the zero-free region for Hecke
L-functions in Lemma [2.12| upon taking

. . 1 . . -1 _9

(5.25) c= mm{(;g;gp blogh 1) ném]rrrnljlgo c(xj),27,m "},
which is in particular independent of z. Moreover, applying the lower bounds of Lemma [2.13]to any
L(s,x;)™ with m; < 0 and the upper bounds of [Col90, Thm. 1] to any L(s, x;)" with m; > 0
in (5.24), we obtain assertion (3) of Theorem [5.3 with ¢’ constructed from ¢/(x;) as in (5.25).

Since L(1,x) # 0 for any Hecke characters x (see Lemma , the number of poles at s = A
appearing in is equal to the number of trivial representations appearing among the represen-
tations V;, counted with multiplicity. By e.g. Serre [Ser77), §2.3 exercise 2.6], the number of trivial
characters is equal to the number of orbits

Z |F\ia,b

a,be P

If 2 = 1 then this matches |G\%g| as defined in the introduction. Thus we have established part

of Theorem
For s with Re(s) > A we have that |U(s,z)| < U(Re(s),1). Therefore

> M\Eas] < [\
a,be P
for any x € Uy (T), and the Laurent series expansion of U (s, z) around s = A is bounded in absolute
value by that of U(s,1). By e.g. (5.20]), the leading constant in the Laurent expansion is positive

real. This establishes part of Theorem
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Lastly, if the Artin conjecture holds, the Phragmen-Lindel6f convexity principle applied to the
strip —1 < Re(s) < 2, say, asserts that the L-functions L(s, V;) have at most polynomial growth in
their critical strips. Therefore, there exists K = K(r,T) > 0 independent of x so that when s has
Re(s) > A —min(27!,m~2) and s avoids a small neighborhood N around s = A, we have

(5.26) U(s, %) <1pnRe(s) (14 [Tm(s)])",

establishing assertion of Theorem

5.5. Ramified places.

Lemma 5.11. Suppose that r|z is faithful. The function R(s, ) converges absolutely and uniformly
on compacta in the region Re(s) > A —m™2. It takes a positive value at the point s = A.

Proof. Recall that

(5.27) R(s,x) = Z H (1y)dxy/daly)™™ Ny, (s, z).

0eCly (T)» veB

We saw in section for each v € B that (6(¢,)dz,/dz))*™ N, (s,z) converges absolutely and
uniformly on compacta in

Re<s>>max{(hm‘§‘(” D(S) # (1)} > A—m,

a region which includes the point s = A. Since the sum over class group characters in is
finite and B consists of finitely many places, the function R(s,z) converges absolutely absolutely
and uniformly on compacta in the region Re(s) > A —m™2. The first statement of holds.

We now show the second assertion of Lemma The product over v € B is a finite product.
Let us enumerate the places appearing as v1,...,vs. Let us denote by

c||B*

the set of all positive integers ¢ of the form qul -~q2:, for ny,...,ns € N. In this paragraph, we

write u(d) for the Mobius function defined with respect to numbers d | [B|*, that is, where gy,
plays the role of the primes. For ¢ | |B|* we let

r vvav'
H::{(97XU17”-7XU)ECIN HNT ;v(xl l)ZC},
veB =1 '

where ¢, is the Artin conductor associated to xu,0,, via . We also define
T v-ev-
= {(0, X015+ -, Xv,) € CIn(T)" x [ [ NT (0w H gvfxz D o,
vEB i=1

The set H. is a group. We have the relations

Ho=\ g, and  H? = | Ju(d) Hyp
dle

where the unions are over integers d||B|* which also divide ¢, and p(d) is defined as before.
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In terms of these definitions, we have

Rso)= Y = Y @ xw @)

C
CHBloo (97Xv17 5 Xvs )EHZX‘

> Zu > Xon () -+ X, ()

CHB'OO d|C (Q:lew-,Xvs)GHc/d
-1
1 1
(i) 2t ¥ weewe
CHB'OO CHB'OO (97XU17-~'yXUs)€HC

The first factor is evidently positive real for all s > 0, since it is a product over finitely many
“primes”. By orthogonality of characters, the second is a Dirichlet series with non-negative integer
coefficients, hence it takes a positive real value wherever it converges absolutely. O

5.6. Global convergence. In this section, we prove Theorem First we show that the sum in
(5.7) converges absolutely and uniformly on compacta in Re(s) > A — min(27, m=2).
For each v € Sy, let

(R*)™ x (SHm2 x (C*)™  if v real

:T(k T =
ou: T(k) = { c)m if v complex

be the corresponding embedding. Let S1 . and Sz be the set of real and complex archimedean

places, respectively. By formula (5.7]), Theorems and Lemma we have for any s not
coinciding with any pole of any U(s,z) and with Re(s) > A — min(2~!,m~2) that

(5.28) Y(s) <rrw >, |U(s,2)||R(s,z)]
JZEUN(T)

H H1+|log]0w) I

’UGSl

ni+n2+n3

1+2|10g]0w H H1+2|log\av)|]

j=ni+n2+1

Let J denote the set of pairs (v, j) appearing on the right hand side of (5.28)), i.e.

U (@i :i=1. . onmi+ne+1,.om4na+nzto | {(vi):5=1,....,n}

vEST, 0 vES2 o0

For any (v,7) € J, we set

R* ifveSiwandj=1,...,m
§f =prjoo,:T(k) > {C* ifveS pandj=n1+ny+1,...,n1 +ng+ns
C* ifveSypandj=1,...,n

to be the composition of o, with the projection to the jth entry of T.

Since R(s,z) is a finite sum, we have the bound |R(s, :1:)| < R(o,1), where s = o +it. By
positivity, we extend the sum over Uy(T) in - to U(T). Since roots of unity have absolute
value 1, the summand only depends on U ( )/U (T )tors, S0 we reduce to this at the cost of a factor
depending only on T. Thus for s with Re(s) > A — min(271,m~2)

1
(5.29) Y (5) <r7w Unax(s)R(0, 1) 3 11 1 |
weU(T)/U(T)tors (’U,j)EJ + ’ Og |€] (x)|v‘
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The set {£] : (v,j) € J} forms a basis for [[,cq X*(T)%v. Following standard notation, we
write ro, = |J| for the rank of this finite-rank free abelian group, i.e.

ron = rank H X*(T)C%% = Z rank X*(T)% = |8} oo|(n1 + n2) + |S2,0n-

VESy VESy

Similarly, let rj, = rank X*(T)“*. By Dirichlet’s units theorem for tori [Shy77], we have rank U(T') =
T —Tk. Accordingly, let {e1, ..., €, —r, } be a Z-basis for U(T)/U(T)tors- The 7o X (1op —71) matrix

= (log ‘g})(67;)|’U)(U,j)€],i:1,...,7’oof7"k
is called the regqulator matrixz of T.

It is a key fact in what follows that any choice of 7o, —rp rows among the ro, rows of the regulator
matrix ® yields a non-singular square matrix. As observed by M.H. Tran in his Thesis [Tral5l Def.
7.2.2], this fact follows from the proof of Dirichlet’s units theorem for tori [Shy77], and goes back
to [Ono61l, §3.8] in the case k = Q. The absolute value of the determinant of any such square
submatrix of ® is by definition the regulator Ry of T' as appears in the class number formula for
T, see [Tral7, Thm. 1.3].

Writing @7 for the (v, 7)th row of the regulator matrix ®, the bound ( m ) becomes

(5.30) Y () <70 Unax(s)R(0,1) Z H +|<<p )|

neZ™o "k (v,5)e

with (-, -) the standard inner product on R™» ™",

If T is anisotropic, then U(T) is finite so the sum/product in is trivial, and the first
assertion of Theorem follows immediately.

Suppose then that T is isotropic. For 2 € R one has (1 + |2])~! < (1 + 22)7'/2 and the latter is

smooth. Since the summand )
(v,7)ed A/ 1+ <(I);)7 n>2

has well-controlled partial derivatives, we may bound the sum in ([5.30)) by an integral to obtain

1
(5.31) Y (5) <o Une(s)R (0, 1) J M ——
vERTETIE (4 jes A/ 1+ <‘I’}’, z)?

Now, we are in a position to apply the Brascamp-Lieb inequality to . We apply Theorem
with m = re, n = 7 — 71, the matrix M = ® the regulator matr1x Wlth rows a? = ®¥, and
Y(z) = (1 4+ 22)~Y2 for all (v,j) € J. Recall the definition of the polytope Hg from and
. Since ® is full-rank, Hg is compact. Then, there exists a point in Hg, say (d}?)(v7j)ej € Hy,
for which the infimum
By (®) = inf{|z|x : x € Hp}
is attained (recall (4.27)). Applying Theorem with p = (d;‘))(v,j)e 7 and the other parameters
chosen as above, we obtain

v

1 1 !
o L Tt (Lt )
TRk (e g A/ 1+ (@Y, 2)? (wies \JR (1+22)!/%6

Now, to show that the sum over Uy (T') in (5.7)) converges absolutely it suffices now to show that
min{l/d;? : (v,j) € J} > 1. Since rnm{l/d” c(v,j) e J} = BOO( )~! by definition of (d )(w,j)ets it
suffices to show that By (®) < 1. We have (recall Proposition and Definition [4.6) that

By (®) = max{g : @ is («; B)-biased}.
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Suppose that «, § are such that ® is («; )-biased, i.e. there is a distinguished set, say A, of rows
of ® with |A| = a such that any basis of R™ ™" contains at least 8 of the « distinguished rows.
We aim to show that § < « for any such configuration.

If « > roo — 7y, then we would have o > rop — 7 = 5. Suppose a < ro — 7. We shall construct
a basis of R™ "¢ from the rows of ® that uses at most max (0, — r) of the rows in A. Thus,
we will have that § < max(0,a — rg), and since T is isotropic we get 8 < a. Recall the key
fact that any ro — ri rows of the regulator matrix ® form a basis for R™~"%. So, to construct
the promised basis, choose the min(ry, — rg, ro — @) rows of ® that are not in A along with any
Too — I — min(re — rg, reo — @) = max(0, « — r) rows from A. This proves the first assertion of
Theorem in the isotropic case.

By Theorem , Theorem , and Lemma the leading coefficient in the Laurent
series expansion of U(s,x)R(s,x)A(s,x) at s = A is positive for each z € Uy(T'). Therefore, there
can be no cancellation in the leading order Laurent coefficients in the sum over Un(T') of these in
formula . The assertion in the first bullet point of Theorem follows from this along with
Theorems and .

The second and third bullet points of Theorem follow from Theorems and , and
the previously established absolute convergence of the integral in .

6. FINAL COUNTING
6.1. Local to global and proof of Theorem [1.10

Proposition 6.1. Suppose that |z is faithful. There exists c € Rxo depending only on choices of
Haar measures so that

1 c
2(s) = f S 00 L [T Ar(5:2) T N(s.)
Aqry €06 T) Vol(Un(T)") 0cCln (T)* 2eln (T) vES0 v S0s

for all s with Re(s) sufficiently large, where Ay, (s,x) and Ny, (s,z) are local archimedean and
non-archimedean generating series defined in (4.21)) and (3.21)), respectively.

Proof. Recall (see section the short exact sequence of locally compact Hausdorff topological
abelian groups

(6.1) 1—— Un(T)\Tn,a — T(k)\T(A) — Cly(T) — 1.
Let
(6.2) VA ={xeTya:x(x)=1foralzeUy(T)}

By Pontryagin duality, we have the dual short exact sequence

(6.3) 1 —= Cly(T)" A(T) VA 1.

Recall that we have chosen a Haar measure v on A(T). The finite group Cly(7T)" naturally
takes the counting measure, so these determine a quotient Haar measure 7 on V*. Let us write
Ty = T(kp) = [oes, T(ko) and T = T(k)* = e, T(ko)".

We work a bit more generally than necessary for the time being. Let ¢ be an integrable function
on A(T) that satisfies the following factorization property: there exist functions co, on T and ¢y
on T'(Agyn)" such that if x = xoo ® X With xo € T(Fip)” and x € T(Agn)", then

c(x) = Cf(Xf)Coo (Xe0)-

For such a function ¢ we decompose its integral over A(T') using the quotient measure, i.e. we apply
e.g. [Bou04, Ch. VII §2 7. Prop. 10| with G = A(T'), G' = Cly(T)", G” = V", 7 the restriction
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map 7 : A(T) - V", a = v, o equal to counting measure, and o’ = 7 to obtain

(6.4) L(T) fv c(0x) dv(x).

0eCly
Let
)= D, by,

QECIN(T)/\
which only depends on 7(x) € V*. Since 6 is trivial on T (see (5.5))), we have for x = xo ® X7
by the factorization property of ¢ that
(6.5) e(x) = co(Xw) Z cr(O0xy) =: coo(xo0)Tr(Xy)-
9eCly (T) 7

Now let NT} = Hv)[oo NT(Oy)". It is a discrete group, so we give it the counting measure. We
decompose the integral of ¢ over V* as an iterated integral

(6.6) L(T)C(x)dV(x)= | codto= ¥ et | e sl it

XfeNTfA X fXoo(x)=1VY zeUn (T)

where 7 is the quotient Haar measure of 7 by the counting measure on N TfA. Let

(6.7) Vi ={xw €Ty : Xxao(x) =1 for all x € Un(T)}
so that
(6.8) XJTIVOQ ={Xw €Ty : XfXo(x) =1 for all x € Un(T),

where on the left hand side of Xfl means any element of 7y that takes the same values as

XJTI on all x € Uy(T). Then, by a change of variables (using the invariance of the Haar measure)
we have

(69) o 0800 = 3 ) | enloG ) do00)

XfENT} @

We want to apply Poisson summation (Lemma [2.14]) to the interior integral on the right hand
side of . We have the following two dual short exact sequences of locally compact Hausdorff
topological abelian groups:

1—— Un(T) Toe Vo 1

and by Pontryagin duality

1 V) T Un(T)® —=1.

Recall (section [5.2)) that Uy (T) is discrete so that Uy (T)" is compact. It is also convenient to note
that the interior integral on the right hand side of only depends the image of XJTI e Ty in
Un(T)".

Now we invoke Lemma with G =T, H =V, f = ¢y where

1
Coo (Xoo) 1= H m for  xeo = ® Xv»

’UES@ ’UESOO

and x = X;l e Un(T)". Note that ¢y € L*(T) by Theorem .
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We check the hypotheses , and of Lemma In section we only used the trivial
bounds U(s,z) « (log(|t| + 3))’ and |R(s,x)| < R(0,1), so that the proof there in fact shows that

2

CIZEUN (T)

f o0 (xXo0) X0 @) oo | < 0
T3

for all s € C with Re(s) sufficiently large and any choice of Haar measure, so that hypothesis
of Lemma is satisfied. Next, recall that T'(k,)" ~ T" where T" is given explicitly in (4.3).
Then, indexing several copies of T" by v € Sy, T, is isomorphic to Hv‘ « Ty and V] is a subgroup
of this with compact quotient. For x' € T

(6.10) fw e (XX 4 (xo0)

is an integral of the form [ [ g Ak, (0, 1) with o € R~ sufficiently large and Ay, (0,1) given as in
, but with the integration restricted to the aforementioned compact quotient coset isomorphic
to X'V.). Applying the inequality (14 |z|)~" < (1+22)~Y? if necessary, one sees that the integrand
has well-controlled derivatives, and thus (6.10) converges for any x’' € T} by integral comparison
with the integral over T, and Theorem so hypothesis of Lemma is satisfied. Lastly,
hypothesis of Lemma follows directly from hypothesis by the dominated convergence
theorem since ¢y is itself a continuous function on 77;.
The result of Lemma 2.14] is that

(6.11) fvog ¢ (X Xoo) d7(Xo0) = VOI(U;(T)A)xez%(T) v;[oo A, (s, 2)xs(2),

for some constant ¢ depending only on the choices of Haar measures involved. Finally, the function
c(x,r) % on A(T) given in Deﬁnition clearly satisfies the factorization property and is integrable

for Re(s) sufficiently large by the convergence of (6.11]), Theorem , Lemma and .
Combining ([6.11)) and formula (6.9)), rearranging and pulling the finite sum over Cly(T) to the

outside, we obtain the formula in Proposition [6.1 O

Finally, Proposition and Theorem together imply Theorem [1.10, which in term implies
the first assertion of Theorem following [Ing90, Ch. IIT §11] with instances of —%’(s) replaced
by Z(s) and [Ing90, Thm. 20] replaced by the second bullet point of Theorem The second
assertion of Theorem on the power-saving error term follows from Theorem by [CLT10,
Thm. A.1].

6.2. Proof of last assertion of Theorem [I.1l
Theorem 6.2. If r|s is not faithful, then v({x € A(T) : c(x,r) < X}) = o0 for some finite X.

Proof. We use the notation introduced in the course of the proof of Proposition Recall the
exact sequence (6.3), and in particular the cokernel

V™ ={(Xoo, Xf) : Xeo(x)xf(x) = 1 for all x € Un(T)},

where xo, € T3 and xy € N TfA. For prove Theorem it suffices to construct a subset of V" of
infinite Haar measure on which the analytic conductor remains bounded.

By hypothesis we have that {1} < kerr|;. Let So denote the set of unramified places of k which
split completely in K/k, and for which gk, = 1 (mod |mg(ker7|7)|). By the Chebotarev density
theorem, |Sp| = 0. For any v € Sy we have by Lemma and Proposition that

NT(0,)" = T(0,)" ~Homg(0X,T).
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Write £ for the residue field of K. By construction of Sp, we have | Homg (€%, kerr|2)| = 2 for any

v € Sp, and therefore | Homg (0, kerr|4)| > 2 as well. All £ € Homg (O, kerr|z) < Homg(03,7)
have r o ¢ of trivial Artin conductor, where ¢ € ®(T') is such that § = ¢[yx as in (2.10). For

any v € Sg let T(0,)§ be the subset of T'(0,)" corresponding to Homg(O;;, kerr|s) across the
restricted Langlands perfect pairing (3.9). Let NT 7o S NT} be given by

NTH =[] T x ] {1

vESH v¢SouUSy
Then NTY, is an infinite set such that every x = (xv)vgs,, € NT}) satisfies

[] colxorr) =1

U¢Soc

To Construct a subset of V" of infinite measure on which ¢(x, ) is bounded, it suffices to extend
each xy € NT7 to V(T). Recall the notation
ijlvog ={Xw €Ty : Xo(x)xf(x) = 1 for all x € Un(T)}.

Lemma 6.3. There exist constants K,e > 0 and a subset X (xf) < XJTIVOQ for each xy € NTP
such that v(X(xyf)) > € and

sup{ [ [ co(xv:7) i xoo € X(xp)} < K

VESw
for all x5 € NTfA.

Proof. We give an explicit description of the sets X;1VOQ in terms of the corresponding Langlands

parameters across (2.12)). Let z1, ..., x5 be generators for Uy (T"). Recall T from (4.1]). For v € Sy,
let oy : Un(T) — T'(ky) ~ T be the corresponding embedding. As in section we write

OuTi = (o y Dy e e vy Ty oo ey Ty -),s

r Yy »v))
where z,;; € R*, x m] e S1, and :c” e C*.

Let us index several copies of TA (see (4.3)) by v € S, so that T ~ []
image of X;1V03 across the map

(6.12) [] Tk — ]] T

VESy VES

T, . Consider the

v]oo

We write elements of [ [, ., T as ((wo, €), o, (W, &))ves,- Then the image of XJTIVOQ across
(6.12) is an affine hyperplane in Hvlw T, cut out by

ni ' ' no |CL' O/ 3
(6.13) [T [ Tsen i) laos | | |t ™ H ( mzm ) | = xp ()7,

V€S j=1 j=1 j=1 vij

for all generators z;, i = 1,...,s of Ux(T). Since x¢(x;) € S! for all x; and z;, the affine hyperplane
in ]_[v‘ « T, described by intersects a fixed (independent of x r) compact set around the origin,
say Up, in a set of positive measure bounded below independently of x.

For each v € Sy, the set {x € T'(ky)" : ¢,(x,7) < X} is in bijection under the local Langlands
correspondence with

m1+mao m1+ma+m3
(6.14) Hy={p: [] (Meul+1) ] ((Me)l+1)*<X}
=1 i=mi1+ma+1
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by the results of section Let

mi+mo mi+mo+ms3
LX) ={p: X, (I((Me)l+1) > ((Me)i| +1)* < (mq + mg + mg) X H/(miFmatms)y,
=1 i=mi+mo+1

By the am-gm inequality, we have L,(X) < H,(X). If X is sufficiently large, then L,(X) contains
any fixed compact set in T", and in particular Uy < [, Su L,(X). Taking K = X 150l the lemma
is proved. ]

The fibered set NT7; x X (xf) € V" is our candidate for a set of infinite measure and bounded
analytic conductor. By Lemma [6.3] and additivity of measure we have

V(NTfy x X(xp)) = v | {0 xs) : xo0 € X ()} | = Dov ({(xoos xp) £ X0 € X (x1)}) = 0,
Xf Xf

yet ¢(x,r) is uniformly bounded for any x = (X, Xf) € NT}, % X (xf)- O
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