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Abstract
Creating amassive spatial quantum superposition, such as the Schrödinger cat state, where themass
and the superposition size within the range 10−19− 10−14 kg andΔx∼ 10 nm− 100 μm, is a
challenging task. Themethods employed so far rely either onwavepacket expansion or on a quantum
ancilla, e.g. single spin dependent forces, which scale inversely withmass. In this paper, we present a
novel approach that combines gravitational acceleration and diamagnetic repulsion to generate a large
spatial superposition in a relatively short time. After first creating amodest initial spatial superposition
of 1 μm, achieved through techniques such as the Stern–Gerlach (SG) apparatus, wewill show that we
can achieve an∼102−103 fold improvement to the spatial superposition size (1 μm→ 980 μm)
between thewave packets in less than 0.02 s by using the Earth’s gravitational acceleration and then the
diamagnetic repulsive scattering of the nanocrystal, neither of which depend on the objectmass.
Finally, thewave packet trajectories can be closed so that spatial interference fringes can be observed.
Ourfindings highlight the potential of combining gravitational acceleration and diamagnetic
repulsion to create andmanipulate large spatial superpositions, offering new insights into creating
macroscopic quantum superpositions.

1. Introduction

Creating large spatial superposition states on amacroscopic scale represents a cutting-edge frontier in
contemporary quantum research, intersecting theoretical explorationwith experimental ingenuity. This pursuit
holds significant promise for testing the foundational principles of quantummechanics in the presence of
gravity [1–5], investigating the equivalence principle [6, 7], realizing aCrystallized Schrödinger cat states [8–10],
placing bounds on decoherencemechanisms [11–17], and exploring applications in quantum sensors [18–20],
the detection of gravitational waves [19], and the probing of a potential fifth force [21].

The synthesis of twomacroscopicmatter-wave interferometers, relying onmassive spatial superposition
states, offers a potential avenue for laboratory testing of the quantumnature of gravity [22–24]. For a
comprehensive understanding of the theoretical underpinnings, refer to [6, 19, 25–31]. It is noteworthy that the
creation of a substantial Gaussian state, designed for probing the quantum interactions with a photon, is feasible
[32]. However, in this study, we solely focus on creating non-Gaussian quantum state.

Despite routine observations of superpositions inmicroscopic particles like electrons and atoms, generating
superpositions in trulymacroscopic objects remains a formidable challenge. To date, the heaviestmasses placed
in a superposition of spatially distinct states aremacromolecules with amass on the order of 10−23 kg [33–35].

To unlock newopportunities for quantum-enhanced applications and gain insights into the quantum-to-
classical transition, various physical schemes have been proposed to achieve superposition sizes ranging from
10 nm to 1 μmfor largemasses (m∼ 10−19− 10−17 kg) [12, 13, 36–49].More ambitious proposals aim atmatter
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wave interferometers withmasses up to 10−15 kg delocalized from1 μmto 100 μmwith a coherence time of
around 1 s [50, 51]. However, these schemes face diminishing effectiveness asmass increases due to a single spin-
dependent force.

Addressing this challenge, recent work has introduced amass-independent scheme leveraging diamagnetic
repulsion to enhance spatial superposition froman initial size of 1 μm [52]. Nevertheless, two key challenges
impede the realization of thismass-independent approach. Thefirst challenge involves establishing an initial
spatial superposition at approximately 1 μm,while the second revolves around imparting the superpositionwith
an initial velocity, crucial for achieving larger superposition sizes within a shorter runtime.

This current study focuses on addressing the latter challenge.We assume that the initial spatial superposition
splitting of m( )1 m has already been established through other knownmechanisms [39, 43, 50, 51, 53].We
discuss one of thesemechanisms, specifically the utilization of a linearmagnetic field combinedwith nitrogen-
vacancy (NV) centre spin to create the initial spatial separation, see appendix A.Unlike previousmethods that
allowed the entire apparatus to free-fall to circumvent gravity [50, 51], our approach effectively utilizes gravity,
offering a comprehensive,mass-independent solution for enhancing spatial superposition. This gravity-
inclusive approach provides two significant advantages: it simplifies experimental design by eliminating the need
to drop the apparatus within a tower, conserving space and reducing design complexity, and it offers amass-
independentmechanism for generating substantial initial velocities within a short time framea critical factor in
achieving large spatial superposition states.

Accelerating objects becomes increasingly challenging as themass grows, and conventionalmethods, such as
laser pulses used for accelerating atoms [54], are unsuitable for heavier nanoparticles due to heat generation and
disruption of the superposition [55].

This paper aims to illustrate how amass-independent scheme of diamagnetic repulsion, incorporating
Earth’s gravitational acceleration, can achieve a substantial enhancement of superposition size, reaching

m( )980 m in 0.02 s. The proposed timescale closely alignswith existing experimental conditions, considering
that the longest spin coherence times achieved in the laboratory are on the order of ( )1 ms for nano-particles
with amass of approximately 10−15 kg [56, 57]. This coherence time can be extended further by employing purer
nano-particles [58] and lowering temperatures [59].While nano-particles are the focus of this study, our
approach theoretically applies to any substance with diamagnetic properties. The study begins with a theoretical
analysis of nanoparticlemotion in gravitational andmagnetic fields, followed by numerical verification of our
calculations.

2.Mass-independent acceleration under gravity

TheHamiltonian of a diamagneticmaterial like diamond crystal in the presence of an externalmagnetic field is
given by [39, 43, 50, 53]:
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= - +r ( )e
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m
mgzH
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2 2
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In equation (1), thefirst term represents the kinetic energy of the nano-particle, where p is themomentum and
m is themass of the nano-particle.4 The second term signifies themagnetic energy of a diamagneticmaterial
(nano-particle) in amagnetic field, withχρ=− 6.2× 10−9m3/kg as themass susceptibility andμ0 as the
vacuumpermeability. Thefinal termdenotes the gravitational potential energy, where g≈ 9.8m/s2 is the
gravitational acceleration, and ez is the unit vector along the positive z axis.

In this scheme, the initial state of the nano-particle is a spatial superposition state. For ease of description, we
denote the components of the superposition state bywave packets. The trajectory and velocity of thewave
packets then represent the classical trajectory and velocity of the components of the superposition state.

The potential energy experienced by thewave packets, according to theHamiltonian equation (1), is
expressed as:
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To facilitate the separation of wave packets through diamagnetic repulsion, we consider the centralmagnetic
field generated by a current-carryingwire, given by:

4
Note that the fundamental process we discuss is not exclusive to diamond crystals. Althoughwe employ properties of diamonds for our

numerical calculations, the scope of thismechanism extends further. The calculations we present are applicable to any type of diamagnetic
crystal.
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Here, I denotes the current carried by a straight wire, and r is the radial distance froma point in space to the
center of thewire. er represents the unit vector in the radial direction.

Combining equations (2) and (3), the acceleration of thewave packets is derived as:
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r
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Here,α=− χρμ0/4π
2 is defined.Notably, in equation (4), the acceleration is found to be independent of the

mass. This distinctive property offers an exceptional opportunity to achieve a significant superposition size for a
massive quantumobject. Assuming the straight wire is perpendicular to the x− z plane and considering the
scenariowhere thewave packets starts to fall from rest, themotion of thewave packets will be confined to the
x− z plane.

The physical picture presented here differs from the configuration described in our earlier work [52]. That
previous paper aspired to create a superpositionwhere the Earths gravitational potential is zero, a situation that
could potentially arise if the superposition is created in a diamagnetic trap [60]. However, the dynamics differ if
the goal is to create amacroscopic superposition under Earths gravity, as explained below.

3. Scattering processes

The experimental setup comprises two distinct stages, as illustrated infigure 1. In Stage-I, our primary objective
is tomaximize spatial superposition. Stage-II, on the other hand, focuses on converging the trajectories of the
wave packets.

Stage-I is further subdivided into two components. Thefirst component exploits themass-independent
acceleration due to gravity, allowing us to control thewave packet’s velocity by adjusting its initial height. The
second component leverages themass-independent diamagnetic acceleration, as expressed by the first termon
the right side of equation (4), tomodify the velocity vector of thewave packets. In scenarios where the initial
positions of the two superimposedwave packets symmetrically flank thewire, they exhibit opposite velocity
changes, facilitating significant spatial separation, as illustrated infigure 1.

In Stage-II, these twowave packets undergo scattering and velocity redirection through a pair of symmetrical
wires, one on the left and one on the right, ultimately closing their trajectories.

To support our claims, we provide a detailed analytical exposition of thewave packet’s acceleration by the
gravitational field and its elastic scattering by themagnetic field generated by the current-carryingwire.
Additionally, we performnumerical simulations to validate our analyticalfindings.

Figure 1.Experimental scheme and numerical results for creatingmass independent spatial superposition by solving equation (4).
The twowave packets with an initial spatial splitting ofΔx0 start falling, under Earth’s gravity acting along the−z direction, from the rest
and enter themagnetic field generated by the current-carryingwires. The purple points represent straight wires perpendicular to the
x − zplane. Thewire at the origin is called the splittingwire located at (x = 0, z = 0). Thewire on the left is called the left wire and the
wire on the right is called the right wire. The blue and orange solid lines are the numerical trajectories of thewave packets in the stage-I
and the black dashed lines are the numerical trajectories of thewave packets in stage-II. The purple arrows indicate the direction of
motion of thewave packets. The sign b is the impact parameter and the initial separationΔx0 = 2b = 1 μm.The sign θs is the
scattering angle. The totalmotion time is around 0.0195 s.
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4. Analytical treatment

Weassume that thewave packets is accelerated by gravity from the rest at a distance from thewire and the effect
of diamagnetic repulsion on thewave packets can be ignored at the initial stages of the free-fall.We set the
distance z0 at which thewave packets is accelerated due to gravity. The initial velocity of thewave packets derived
by the gravitational acceleration is given by:

= ( )v ez g2 . 5i zn 0

The time for thewave packets to fall from its initial position to the splitting wire is:

= ( )t
z

g

2
. 61

0

Wenow consider the process of awave packet incident at a velocity vin, and then scattered by themagnetic field
generated by the current-carryingwire. This scattering process can be solved analytically, see [52]. The scattering
angle of thewave packet scattered by the centralmagnetic field is given by [52]:
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Here b is the impact parameter. The geometric picture of θs and b is shown infigure 1. In order to obtain the
maximum superposition size in the shortest time, we set the scattering angle for the first time θs1= π/2.We
assume that thewave packets are scattered for the second time at coordinates (±xspl, z1)with the left (right)wire,
and that the velocity direction after scattering is parallel to the x-axis. If xspl= z0, by calculating the angle between
the incident and scatted velocities,5 one can get the scattering angle for the second time θs2≈ 6π/7. The time for
thewave packets to travel from the splittingwire to the left (right)wire is:

= ( )t
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v
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spl

x
2

vx is the component of the velocity of thewave packets along the x-axis. Since the scattering angle isπ/2,
therefore vx= vin. And then the time for thewave packets to travel from the left (right)wire to the z-axis is:
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Combining equations (5), (6), (9) and (10) gives a total evolution time of
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It can be seen from equation (11) that when z0 isfixed, the smaller the xspl, the shorter the evolution time ttot.We
have ignored the deceleration and acceleration of thewave packets as it approaches thewire in our calculations.
This is because the diamagnetic repulsion is inversely proportional to the third power of the distance and only
dominates when thewave packet is very close to thewire (∼10 μm).

4.1. Numerical results
Weuse the equation ofmotion, equation (4), to numerically solve for the trajectory of thewave packet. The
numerical results are shown infigure 1.We set the initial separation betweenwave packetsΔx0= 1μm (b= 0.5
μm) and the initial coordinates of the classical positions of the twowave packets to be (±0.5, 490)μm.The
coordinate of the splitting wire is (0, 0) and the current through it, which is determined by equation (7)with
θs1= π/2, is 6.04138A. The coordinates of the left and right wires are (±491,−122.6)μm.We adjust the
currents in the left and right wires so that the velocity direction of thewave packet is approximately parallel to the
x-axis after the second scattering. The current through the left and right wires is 10 A. All threewires are switched
on during the experiment.

5
After the second scattering, the scattering angle θs2 satisfies the relation p q- = =( ) v vtan 1 2s z x2 , where vx, vz are the horizontal and

vertical components of the velocity.
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It is important to note thatfluctuations in the current can affect the accuracy of thewave packet position
(expectation value) and thus the spatial interference fringe.We analysed the effect of current fluctuations on the
wave packet position and the limits imposed on currentfluctuations in order to produce spatial interference in
appendix B.

With the parameters we have set, the total dynamical time agrees well between analytical and numerical
results (0.0194742 s versus 0.0194958 s). In the process of separating and then recombining the twowave
packets, themaximum superposition size reaches about 980μmand the initial separation between thewave
packets is amplified by a factor of about 1000 in 0.02 s.

The closest distance of thewave packet trajectory to the splittingwire is 1.00081 μm, and the closest distance
of thewave packet to the left (right)wire is 1.32289 μm. If thisminimumdistance is considered (as an upper
limit) to be themaximum radius of thewire, then the current density is∼1.9 A/μm2 for the splittingwire, and
∼1.8 A/μm2 for the left (right)wire, which is currently achievable in a laboratory with carbon nanotubes and
graphene [61–63]. The current density through thewire, ρcurrent, the incident velocity of thewave packets, vin,
and the impact parameter, b, satisfy the relation [52]

r
p p a

= =
+( )

( )I

d b

Cv

v C

1
, 12current

in

in
2

2

2 2

whereC= I/b and d are the closest distance of thewave packet trajectory to the centre of thewire.When the
scattering angle isπ/2, combining equations (7) and (12) and thenwe have

r
p a

= ( )
b

v
1

4

3
. 13current in

From equation (13) it can be seen that the current density is linear with the incident velocity. Additionally, the
current density is also inversely proportional to the impact parameter b. Thismeans that for a smaller initial
separation (Δx0= 2b), we need a larger current density to achieve the same superposition size.

5. Conclusion anddiscussion

In this paper, we have achieved∼100−1000 times increment in the spatial superposition, from1 μm→ 980 μm
between thewave packets in 0.02 s by using gravitational acceleration and the repulsive, diamagnetic scattering
off thewave packets. There are three distinct advantages to this scheme. (1)Thefirst is that the process of
enhancing the spatial superposition ismass independent. In the ideal situation, when all the known Standard
Model interactions are under control alongwith all the known sources of the decoherence, we can use thismass-
independent scheme to increase the spatial superposition between thewave packets m( )10 m3 , or even
higher, provided thatwe can create an initial spatial superposition, even one as small as 1 μm.This scheme solves
some of the outstanding challenges of creating large spatial superposition, either using thewave packet
expansions [12, 33, 34, 45–49] or spin-dependent forces [50, 51, 64]. In all the previous cases the efficacy is
reduced by any increase in themass. (2)The second advantage is that thewhole process takes a shorter time
(around 0.02 s) compared to previous schemes for creating large spatial superposition [43, 50, 51]. The shorter
time inwhich one experimental run is performedwill reduce the time duringwhich the environment can act to
decohere the system. Thiswill also improve the total run-time of the experiment or conversely increase the
number of experimental runs performedwhich is essential for witnessing the entanglement induced by the
quantumnature of gravity [14, 15]. (3)The third advantage is that the experimental apparatus (wires) isfixed.
Compared to the previous scheme of creating spatial superposition [50–52], where the experimental apparatus is
free falling in the gravitational field, this is easier to achieve in the laboratory. It is also possible to create spatial
superposition in optical ormagnetic levitation systems [65, 66], but the levitation system itself limits the
superposition size that can be achieved.

It is important to note that although the process of enhancing the superposition size ismass independent,
there are three factors that limit themass of the nano-particle. Firstly, an initial spatial separation betweenwave
packets is required. If a spin-dependent force is employed for this purpose, the process of creating the initial
spatial separation is stillmass dependent [50, 51]. Secondly, the distance between the nano-particle and thewire
serves as a limiting factor for the nano-particle’smass. Assuming themaximum radius of the nano-particle to be
half theminimumdistance between the nano-particle and thewire (∼0.5μm), this results in amaximumnano-
particlemass of approximately 10−15 kg. Thirdly, the stability of the current and the spatial resolution of the
instrument impose further restrictions on the nano-particle’smass. Larger nano-particlemasses lead to a
narrowerwidth of thewave packet, escalating the requirements for current stability and instrument spatial
resolution to observe spatial interference fringes, see appendices B andC.

In this scheme, the separation and closing of thewave packet trajectories can be achieved using amodest
current density m( )1 A m2 . This capability allows for the effective recombination of wave packet trajectories
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using the SG apparatus, leading to the eventual restoration of spin coherence [50, 51]. However, a detailed
exploration of these latter aspects will be addressed independently. Additionally, several considerationsmerit
attention, including the coherence of spin in the presence of theNV center [67, 68], and the excitations of the
phonons [69]. Such considerations are left for future study. Since the diamagnetic enhancement does not
necessitate spin-basedmanipulation, theremay be a simpler candidate for creating the initial small spatial
splittingwithout grapplingwith rotation-related challenges [67, 68]. Nevertheless, it is likely that comparable
constraints will emerge to ensure the feasibility of coherent interference.
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AppendixA. Initial separation

The process of enlarging the spatial superposition size from1μmby a factor of 100 to 1000μm is, notably,mass-
independent. However, achieving the initial separation appears to be unavoidablymass-dependent, as explained
in themain text in the conclusion and discussion section. To obtain spatial superposition states for diamagnetic
nano-particles, a potentially effective approach involves leveraging the interaction of theNV spins embedded in
themwith themagnetic field. The correspondingHamiltonian, encompassing theNV spin-magnetic field
interaction, is expressed as follows [39, 43, 50, 53]:

m
c

m
= + - - +r

¢
ˆ ˆ ˆ ˆ · ˆ ( )p

zH
m

DS
m

mgB B
2 2

. 14z

2 2

0

2

Here, the second term represents the zero-field splitting of theNV center withD= (2π)× 2.8GHz, ÿ is the
reduced Planck constant, and ¢Ŝz is the spin component operator alignedwith theNV axis. The third term
denotes the interaction energy of theNV electron spinmagneticmoment with themagnetic fieldB. The spin
magneticmoment operatorm m= -ˆ Ŝgs B , where gs≈ 2 is the Landè g-factor,μB= eÿ/2me is the Bohr

magneton, and Ŝ is theNV spin operatorwith eigenstates denoted by {|+1〉, |−1〉, |0〉}.
Assuming the initial superposition state as + ñ + - ñ(∣ ∣ )1 1 2 , initially, the only factor separating the two

wave packets is theNV spin-magnetic field interaction term m̂ · B. The corresponding acceleration is given by:
m

=  ( )a
g

m
B, 15s B

where the subscript ‘±’ corresponds to the |+1〉 and |−1〉 states, respectively. From equation (15), it is evident
that the acceleration is inversely proportional to themass, implying that the initial spatial separation produced
using the spin-magnetic field interaction is also inversely proportional to themass. Assuming a linearmagnetic
field approximationB= ηx (η is themagnetic field gradient), the initial spatial separation betweenwave packets
with respect tomass is [53]:

m m
c h

w=
-

-
r

( ( ) ) ( )D
g

m
t

2 1
cos 1 , 16ini

s B 0

where

w
c

m
h=

- r ( )17
0

is the angular frequency. Notably, the initial separation in equation (17) is not only inversely proportional to the
mass but also to themagnetic field gradient. This implies that arbitrarily large spatial superposition sizes can be
achieved as long as themagnetic field gradient is sufficiently small. However, considering the periodicmotion of
diamagnetic nanoparticles in a linearmagnetic field, and accounting for decoherence effects, for a 10−15 kg
nanoparticle with a spin coherence time limited to 0.5 s, the requiredmagnetic field gradient at this point is
approximately 45T/m, corresponding to amaximum spatial separation of 0.2μm.Evenwith such a small initial
separation, the current density needed to enhance the spatial superposition size usingwires is within reasonable
limits of about 10A/μm2 [61–63].
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After obtaining the initial separation using theNV spin, two approaches can be employed to integrate it with
the enhanced spatial superposition size scheme. Thefirst approach involves retaining theNV spin and placing
the nano-particle into themagnetic field generated by thewire.However, in this case, the direction of the spin-
magnetic field interaction force on thewave packets with spin eigenstates |−1〉 and |+1〉 are in the direction of
and against themagnetic field gradient, respectively. This leads to asymmetrical trajectories for the twowave
packets, complicating the scattering process. To avoid this complexity, an alternativemethod is employed.
Initially, aπ/2 pulse is applied to transform the + ñ + - ñ(∣ ∣ )1 1 2 state into the |0〉 state [70, 71]. This
transformation renders the interaction of theNV spinwith themagnetic field negligible, reducing the
Hamiltonian to the form in equation (1).

Appendix B. Limitation on currentfluctuation for generating spatial interference

According to equation (4),fluctuations in the electrical current can introduce classical uncertainties in both the
position andmomentumof anobject. Thesefluctuations have the potential to impact various quantum
phenomena, including spatial interference [72],momentum interference [73], and spin coherence [74]between
wavepackets. In our specific scenario, awave packet undergoes elastic collisionswith a stationarywire.
Importantly,fluctuations in the current affect only the direction of thewavepacket’s velocity, not itsmagnitude.
Consequently, our primary focus here is on the perturbationof thewavepacket’s spatial position. For the sake of
simplicity,we assume that the classical position andmomentumof thewavepacket at its initial state are error-free.

In the subsequent analysis, we quantitatively assess how the trajectory of thewave packet deviates following
its interactions with thewire, both after the initial scattering and the subsequent scattering, while considering a
small currentfluctuation, denoted asΔI. To streamline our calculations, wemodel thewave packet’s trajectory
as comprising discrete line segments, eachwith afixed length L, as depicted infigure 2. Given the symmetry in
the trajectories of the left and right wave packets, we choose to illustrate the left trajectory (represented by the
blue line segment) for clarity.

Utilizing the scattering angle expression from equation (7) to differentiate with respect to both current and
impact parameter, we obtain

q
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whereΔθsI= βΔI/I represents the change in scattering angle due tofluctuations in current, and
Δθsb=−βΔb/b represents the change in scattering angle due tofluctuations in the impact parameter. Here,β is
a coefficient associatedwith the current I, incident velocity vin, and impact parameter bwith the expression

b p=
- ( )k

k

1
. 193

2

The expression for the parameter k is provided in equation (8). Specifically, for thefirst scattering event, where
θs1≈ π/2, we haveβ1= 3π/8. For the second scattering, where θs2≈ 6π/7, we haveβ2= 48π/343. According to
equation (18), we can express the classical trajectory deviation of thewave packet as it reaches point C as

q bD » D ´ =
D( ) ( )b L

I

I
LB . 20sI1 1

where the term ‘B’ in brackets denotesfluctuations in the scattering angle at point B, similarly thereafter. By
combining equation (18)with equation (20), we can determine the uncertainty in the scattering angle at the
second scattering event as follows

q q q

b b b

D = D + D

=
D

-
D

( ) ( ) ( )

( )I

I

I

I

L

b

C C C ,

. 21

s sI sb

2 1 2

Sinceβ1 is approximately equal to 1,when the condition L? bholds, it becomes evident thatΔθsI(C)=Δθsb(C).
Therefore, for the second scattering event,we focus solely onΔθsb(C).When thewavepacket reaches pointD, the
deviation in the classical trajectory canbe expressed as

q b bD » D ´ = -
D( ) ( )b C L

I

I

L

b
. 22s2 1 2

2
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Rewrite equation (22) as

b b
-
D

= D ( )I

I

b

L
b . 23

1 2
2 2

Toensure spatial interference at a specific point ¢( )D D , it is imperative thatΔb2 remains smaller than the
correspondingwavepacketwidth. This requirement imposes constraints on thefluctuations in the current. Based
on equation (23), wehave depicted the relationship between currentfluctuationΔI/I andpositiondeviationΔb2 in
figure 3.Notably,when thefinal requirement for positiondeviation remains constant, reducing the superposition
sizeLby anorder ofmagnitude alleviates the demand for current stability by twoorders ofmagnitude.

To illustrate this concept with a practical example, let us consider a silicamicrosphere with amass of
10−15 kg trapped by amagnetic field oscillating at a frequency of 100 Hz [75]. The initial width of thewave
packet can be calculated as

d
w

d
w

= » ´

= » ´

-

- ( )/

x
m

p
m

2
2 10 m,

2
2.3 10 kg m s. 24

11

24





Figure 3.Current fluctuation versus position deviation of thewave packet (at pointD). The black dashed line corresponds to
L = 50 μmand the black solid line corresponds to L = 500 μm. L is defined in figure 2.We set b = 5 × 10−7m.

Figure 2. Illustration ofwavepacket trajectories. The diagramdepicts the trajectories of twowave packetswithblue andorange line
segments. Each trajectory consists of three segments, approximately of lengthL. Points ¢( )A A and ¢( )D D correspond to the initial and
final positions of thewavepacket trajectories. Points ¢( )B B and ¢( )C C indicate the positionswhere thewave packets scatter from thewire.
It is important tonote that the angles between the line segments in thefigure donot accurately represent the true scattering angles.
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For spatial interference to occur,Δb2must be smaller than δx. Combining equations (23) and (24), we derive the
following limits on currentfluctuations

m
m

D ´ =
´ =

-

-
 ⎧

⎨⎩
( )I

I

L

L

9 10 for 500 m,

9 10 for 50 m.
25

11

9

However, it is essential to acknowledge that as thewave packet evolves with time, the actual limits on current
fluctuationsmay be less stringent than those presented in equation (25).

AppendixC. The spreading ofwave packet

Here, we give the estimation of the change in thewidth of thewave packet in both the free evolution case and
after it has been scattered by thewire. The truewidth of thewave packet should lie between these two cases. This
discussion focuses on the one-dimensional scenario to simplify the analysis. Assuming that an initial state
represented by aGaussianwave packet, the probability density for free evolution is given by [76]:

r
p

d
d a

=
+

- - -d

d a+⎛
⎝

⎞
⎠

( ) ( )( )
x t

t
e,

1

2
. 26x

x

x x v t
2

4 2 2

x

x t
g

1
2 1

2

2

4 2 2 0
2

Here, x0 represents the initial classical position, and vg denotes the group velocity of thewave packet. The
probability density follows aGaussian distribution, and thewidth of theGaussian function is determined by:

d d
a
d

= +( ) ( )t
t

, 27x x
x

2
2 2

2

whereα= ÿ/2m is defined. For awave packet with amass ofm= 10−15 kg and an initial width of 2× 10−11 m
(as given in equation (24)), thewidth evolves after a time t= 0.02 s, yielding:

d » ´ -( ) ( )0.02 s 5.6 10 m. 28x
11

This result indicates that, after 0.02 s of free evolution, thewidth of thewave packet remains approximately
within the same order ofmagnitude as the initial width.

To give a rough order ofmagnitude estimate of the change in thewave packet width following scattering, we
invoke the uncertainty principle, expressed as:

d
d

 ( )x
p2

. 29


Setting the scattering time scale as δt= b/vin, we establish a lower bound on thewidth of thewave packet post-
scattering by placing the classical position of thewave packet at a distance of 1μmfrom thewire. This proximity
represents the point of the strongest interaction between thewave packet and themagnetic field in our scheme.
The change in velocity of thewave packet during scattering is given by:

d d=
» ´ - ( )

v a t,

3.6 10 m s. 30
dia

2

Considering amass of 10−15 kg, combining equations (29) and (30), we derive a lower bound on thewidth of the
wave packet after scattering:

d
d

» ´ -



( )

x
m v2

,

1.5 10 m. 3118



The implication of equation (31) is that thewave packet exhibitsmore particle-like characteristics after
scattering. This suggests that, for the generation and detection of spatial interferences, increased demands are
placed on the stability of the current (refer to equation (23)) and the spatial resolution of themeasurement
instrument. Two potentialmitigation strategies are identified. Thefirst involves reducing themass of the nano-
particle, for instance, to 10−22 kg, resulting in a position uncertainty δx� 1.5× 10−11 m. The secondmethod is
to apply amagnetic field to trap the nano-particle so that the spatial width of thewave packet spreads out rapidly,
as described in equation (24).
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