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Abstract

Creating a massive spatial quantum superposition, such as the Schrodinger cat state, where the mass
and the superposition size within the range 10~"* — 10~ '*kgand Ax ~ 10 nm — 100 zm, isa
challenging task. The methods employed so far rely either on wavepacket expansion or on a quantum
ancilla, e.g. single spin dependent forces, which scale inversely with mass. In this paper, we present a
novel approach that combines gravitational acceleration and diamagnetic repulsion to generate a large
spatial superposition in a relatively short time. After first creating a modest initial spatial superposition
of 1 pum, achieved through techniques such as the Stern—Gerlach (SG) apparatus, we will show that we
can achieve an ~10°—10’ fold improvement to the spatial superposition size (1 m — 980 yim)
between the wave packets in less than 0.02 s by using the Earth’s gravitational acceleration and then the
diamagnetic repulsive scattering of the nanocrystal, neither of which depend on the object mass.
Finally, the wave packet trajectories can be closed so that spatial interference fringes can be observed.
Our findings highlight the potential of combining gravitational acceleration and diamagnetic
repulsion to create and manipulate large spatial superpositions, offering new insights into creating
macroscopic quantum superpositions.

1. Introduction

Creating large spatial superposition states on a macroscopic scale represents a cutting-edge frontier in
contemporary quantum research, intersecting theoretical exploration with experimental ingenuity. This pursuit
holds significant promise for testing the foundational principles of quantum mechanics in the presence of
gravity [ 1-5], investigating the equivalence principle [6, 7], realizing a Crystallized Schrédinger cat states [8—10],
placing bounds on decoherence mechanisms [11-17], and exploring applications in quantum sensors [18-201,
the detection of gravitational waves [19], and the probing of a potential fifth force [21].

The synthesis of two macroscopic matter-wave interferometers, relying on massive spatial superposition
states, offers a potential avenue for laboratory testing of the quantum nature of gravity [22—24]. For a
comprehensive understanding of the theoretical underpinnings, refer to [6, 19, 25-31]. It is noteworthy that the
creation of a substantial Gaussian state, designed for probing the quantum interactions with a photon, is feasible
[32]. However, in this study, we solely focus on creating non-Gaussian quantum state.

Despite routine observations of superpositions in microscopic particles like electrons and atoms, generating
superpositions in truly macroscopic objects remains a formidable challenge. To date, the heaviest masses placed
in a superposition of spatially distinct states are macromolecules with a mass on the order of 10~>* kg [33-35].

To unlock new opportunities for quantum-enhanced applications and gain insights into the quantum-to-
classical transition, various physical schemes have been proposed to achieve superposition sizes ranging from
10 nm to 1 ym for large masses (m ~ 10~ ** — 107" kg) [12, 13, 36—49]. More ambitious proposals aim at matter
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wave interferometers with masses up to 10~ '* kg delocalized from 1 yzm to 100 zm with a coherence time of
around 1 5[50, 51]. However, these schemes face diminishing effectiveness as mass increases due to a single spin-
dependent force.

Addressing this challenge, recent work has introduced a mass-independent scheme leveraging diamagnetic
repulsion to enhance spatial superposition from an initial size of 1 ;zm [52]. Nevertheless, two key challenges
impede the realization of this mass-independent approach. The first challenge involves establishing an initial
spatial superposition at approximately 1 ;sm, while the second revolves around imparting the superposition with
an initial velocity, crucial for achieving larger superposition sizes within a shorter runtime.

This current study focuses on addressing the latter challenge. We assume that the initial spatial superposition
splitting of O(1) pm has already been established through other known mechanisms [39, 43, 50, 51, 53]. We
discuss one of these mechanisms, specifically the utilization of a linear magnetic field combined with nitrogen-
vacancy (NV) centre spin to create the initial spatial separation, see appendix A. Unlike previous methods that
allowed the entire apparatus to free-fall to circumvent gravity [50, 51], our approach effectively utilizes gravity,
offering a comprehensive, mass-independent solution for enhancing spatial superposition. This gravity-
inclusive approach provides two significant advantages: it simplifies experimental design by eliminating the need
to drop the apparatus within a tower, conserving space and reducing design complexity, and it offers a mass-
independent mechanism for generating substantial initial velocities within a short time framea critical factor in
achieving large spatial superposition states.

Accelerating objects becomes increasingly challenging as the mass grows, and conventional methods, such as
laser pulses used for accelerating atoms [54], are unsuitable for heavier nanoparticles due to heat generation and
disruption of the superposition [55].

This paper aims to illustrate how a mass-independent scheme of diamagnetic repulsion, incorporating
Earth’s gravitational acceleration, can achieve a substantial enhancement of superposition size, reaching
O(980) um in 0.02 s. The proposed timescale closely aligns with existing experimental conditions, considering
that the longest spin coherence times achieved in the laboratory are on the order of O(1) ms for nano-particles
with a mass of approximately 10~ > kg [56, 57]. This coherence time can be extended further by employing purer
nano-particles [58] and lowering temperatures [59]. While nano-particles are the focus of this study, our
approach theoretically applies to any substance with diamagnetic properties. The study begins with a theoretical
analysis of nanoparticle motion in gravitational and magnetic fields, followed by numerical verification of our
calculations.

2. Mass-independent acceleration under gravity

The Hamiltonian of a diamagnetic material like diamond crystal in the presence of an external magnetic field is
given by [39, 43, 50, 53]:

2 m
H=2_ _ XP—BZ + mgze,. (1)
2m 21k

In equation (1), the first term represents the kinetic energy of the nano-particle, where p is the momentum and
m is the mass of the nano-particle.* The second term signifies the magnetic energy of a diamagnetic material
(nano-particle) in a magnetic field, with x , = — 6.2 x 10 °m?/ kg as the mass susceptibility and z as the
vacuum permeability. The final term denotes the gravitational potential energy, where ¢ ~ 9.8 m/s” is the
gravitational acceleration, and e, is the unit vector along the positive z axis.

In this scheme, the initial state of the nano-particle is a spatial superposition state. For ease of description, we
denote the components of the superposition state by wave packets. The trajectory and velocity of the wave
packets then represent the classical trajectory and velocity of the components of the superposition state.

The potential energy experienced by the wave packets, according to the Hamiltonian equation (1), is
expressed as:

2410

U=— B? + mgze,. 2)

To facilitate the separation of wave packets through diamagnetic repulsion, we consider the central magnetic
field generated by a current-carrying wire, given by:

4 . . . . . .

Note that the fundamental process we discuss is not exclusive to diamond crystals. Although we employ properties of diamonds for our
numerical calculations, the scope of this mechanism extends further. The calculations we present are applicable to any type of diamagnetic
crystal.
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Figure 1. Experimental scheme and numerical results for creating mass independent spatial superposition by solving equation (4).
The two wave packets with an initial spatial splitting of Ax, start falling, under Earth’s gravity acting along the —z direction, from the rest
and enter the magnetic field generated by the current-carrying wires. The purple points represent straight wires perpendicular to the

x — zplane. The wire at the origin is called the splitting wire located at (x = 0,z = 0). The wire on the left is called the left wire and the
wire on the right is called the right wire. The blue and orange solid lines are the numerical trajectories of the wave packets in the stage-I
and the black dashed lines are the numerical trajectories of the wave packets in stage-I1. The purple arrows indicate the direction of
motion of the wave packets. The sign b is the impact parameter and the initial separation Ax, = 2b = 1 um. The sign 6, is the
scattering angle. The total motion time is around 0.0195s.
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Here, I denotes the current carried by a straight wire, and r is the radial distance from a point in space to the
center of the wire. e, represents the unit vector in the radial direction.

Combining equations (2) and (3), the acceleration of the wave packets is derived as:

1 I?

ag, = ——VU= a—e, — ge,. 4)

m r
Here, oo = — X pito/ 47 is defined. Notably, in equation (4), the acceleration is found to be independent of the
mass. This distinctive property offers an exceptional opportunity to achieve a significant superposition size for a
massive quantum object. Assuming the straight wire is perpendicular to the x — z plane and considering the
scenario where the wave packets starts to fall from rest, the motion of the wave packets will be confined to the
x — zplane.

The physical picture presented here differs from the configuration described in our earlier work [52]. That
previous paper aspired to create a superposition where the Earths gravitational potential is zero, a situation that
could potentially arise if the superposition is created in a diamagnetic trap [60]. However, the dynamics differ if
the goal is to create a macroscopic superposition under Earths gravity, as explained below.

3. Scattering processes

The experimental setup comprises two distinct stages, as illustrated in figure 1. In Stage-I, our primary objective
is to maximize spatial superposition. Stage-1I, on the other hand, focuses on converging the trajectories of the
wave packets.

Stage-1 is further subdivided into two components. The first component exploits the mass-independent
acceleration due to gravity, allowing us to control the wave packet’s velocity by adjusting its initial height. The
second component leverages the mass-independent diamagnetic acceleration, as expressed by the first term on
the right side of equation (4), to modify the velocity vector of the wave packets. In scenarios where the initial
positions of the two superimposed wave packets symmetrically flank the wire, they exhibit opposite velocity
changes, facilitating significant spatial separation, as illustrated in figure 1.

In Stage-I1, these two wave packets undergo scattering and velocity redirection through a pair of symmetrical
wires, one on the left and one on the right, ultimately closing their trajectories.

To support our claims, we provide a detailed analytical exposition of the wave packet’s acceleration by the
gravitational field and its elastic scattering by the magnetic field generated by the current-carrying wire.
Additionally, we perform numerical simulations to validate our analytical findings.

3
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4. Analytical treatment

We assume that the wave packets is accelerated by gravity from the rest at a distance from the wire and the effect
of diamagnetic repulsion on the wave packets can be ignored at the initial stages of the free-fall. We set the
distance z; at which the wave packets is accelerated due to gravity. The initial velocity of the wave packets derived
by the gravitational acceleration is given by:

Vin = /2208 €;. (5)
The time for the wave packets to fall from its initial position to the splitting wire is:
220

tl = _—. (6)
g

We now consider the process of a wave packet incident at a velocity v;,,, and then scattered by the magnetic field
generated by the current-carrying wire. This scattering process can be solved analytically, see [52]. The scattering
angle of the wave packet scattered by the central magnetic field is given by [52]:

1
=11 - —|n, 7
( ﬁ) @

where

k:1+a22. (®

Here bis the impact parameter. The geometric picture of 6, and b is shown in figure 1. In order to obtain the
maximum superposition size in the shortest time, we set the scattering angle for the first time 6, = 7/2. We
assume that the wave packets are scattered for the second time at coordinates (£x,,, z;) with the left (right) wire,
and that the velocity direction after scattering is parallel to the x-axis. If x,,; = zo, by calculating the angle between
the incident and scatted velocities,” one can get the scattering angle for the second time 6, ~ 67/7. The time for
the wave packets to travel from the splitting wire to the left (right) wire is:

Xspl

2= ©
VX
v, is the component of the velocity of the wave packets along the x-axis. Since the scattering angle is 7/2,
therefore v, = v;,,. And then the time for the wave packets to travel from the left (right) wire to the z-axis is:
Xspl
ty= —— L (10)

Combining equations (5), (6), (9) and (10) gives a total evolution time of

totr =4 + 1 + 13,

220 Xspl Xspl
) i . (| (1)
4 220 Jazg + x;,l

It can be seen from equation (11) that when z, is fixed, the smaller the x,,;, the shorter the evolution time t,,,. We
have ignored the deceleration and acceleration of the wave packets as it approaches the wire in our calculations.
This is because the diamagnetic repulsion is inversely proportional to the third power of the distance and only
dominates when the wave packet is very close to the wire (~10 pm).

4.1. Numerical results

We use the equation of motion, equation (4), to numerically solve for the trajectory of the wave packet. The
numerical results are shown in figure 1. We set the initial separation between wave packets Axo = 1 yum (b = 0.5
pm) and the initial coordinates of the classical positions of the two wave packets to be (0.5, 490) ym. The
coordinate of the splitting wire is (0, 0) and the current through it, which is determined by equation (7) with

05 = 7/2,1is6.04138 A. The coordinates of the left and right wires are (£491, —122.6) ym. We adjust the
currents in the left and right wires so that the velocity direction of the wave packet is approximately parallel to the
x-axis after the second scattering. The current through the left and right wires is 10 A. All three wires are switched
on during the experiment.

5 . . . . .
After the second scattering, the scattering angle 6, satisfies the relation tan(w — 6,) = v,/v, = 1/2, wherev,, v, are the horizontal and
vertical components of the velocity.
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Itis important to note that fluctuations in the current can affect the accuracy of the wave packet position
(expectation value) and thus the spatial interference fringe. We analysed the effect of current fluctuations on the
wave packet position and the limits imposed on current fluctuations in order to produce spatial interference in
appendix B.

With the parameters we have set, the total dynamical time agrees well between analytical and numerical
results (0.0194742 s versus 0.0194958 s). In the process of separating and then recombining the two wave
packets, the maximum superposition size reaches about 980 zm and the initial separation between the wave
packets is amplified by a factor of about 1000 in 0.02 s.

The closest distance of the wave packet trajectory to the splitting wire is 1.00081 pm, and the closest distance
of the wave packet to the left (right) wire is 1.32289 pm. If this minimum distance is considered (as an upper
limit) to be the maximum radius of the wire, then the current density is ~1.9 A/ umz for the splitting wire, and
~1.8 A/pum?® for the left (right) wire, which is currently achievable in a laboratory with carbon nanotubes and
graphene [61-63]. The current density through the wire, p.rens the incident velocity of the wave packets, v;,,,
and the impact parameter, b, satisfy the relation [52]

2
11 ok W)
md* bW+ aC?

Peurrent =

where C = I/band d are the closest distance of the wave packet trajectory to the centre of the wire. When the
scattering angle is 7/2, combining equations (7) and (12) and then we have

1 3
Peurrent = 4bn Evi”' (13)

From equation (13) it can be seen that the current density is linear with the incident velocity. Additionally, the
current density is also inversely proportional to the impact parameter b. This means that for a smaller initial
separation (Ax, = 2b), we need a larger current density to achieve the same superposition size.

5. Conclusion and discussion

In this paper, we have achieved ~100— 1000 times increment in the spatial superposition, from 1 ym — 980 ym
between the wave packets in 0.02 s by using gravitational acceleration and the repulsive, diamagnetic scattering
off the wave packets. There are three distinct advantages to this scheme. (1) The first is that the process of
enhancing the spatial superposition is mass independent. In the ideal situation, when all the known Standard
Model interactions are under control along with all the known sources of the decoherence, we can use this mass-
independent scheme to increase the spatial superposition between the wave packets O(10%) 1 m, or even
higher, provided that we can create an initial spatial superposition, even one as small as 1 gm. This scheme solves
some of the outstanding challenges of creating large spatial superposition, either using the wave packet
expansions [12, 33, 34, 45—-49] or spin-dependent forces [50, 51, 64]. In all the previous cases the efficacy is
reduced by any increase in the mass. (2) The second advantage is that the whole process takes a shorter time
(around 0.02 s) compared to previous schemes for creating large spatial superposition [43, 50, 51]. The shorter
time in which one experimental run is performed will reduce the time during which the environment can act to
decohere the system. This will also improve the total run-time of the experiment or conversely increase the
number of experimental runs performed which is essential for witnessing the entanglement induced by the
quantum nature of gravity [14, 15]. (3) The third advantage is that the experimental apparatus (wires) is fixed.
Compared to the previous scheme of creating spatial superposition [50—-52], where the experimental apparatus is
free falling in the gravitational field, this is easier to achieve in the laboratory. It is also possible to create spatial
superposition in optical or magnetic levitation systems [65, 66], but the levitation system itself limits the
superposition size that can be achieved.

Itis important to note that although the process of enhancing the superposition size is mass independent,
there are three factors that limit the mass of the nano-particle. Firstly, an initial spatial separation between wave
packets is required. If a spin-dependent force is employed for this purpose, the process of creating the initial
spatial separation is still mass dependent [50, 51]. Secondly, the distance between the nano-particle and the wire
serves as a limiting factor for the nano-particle’s mass. Assuming the maximum radius of the nano-particle to be
half the minimum distance between the nano-particle and the wire (~0.51m), this results in a maximum nano-
particle mass of approximately 10~ '° kg, Thirdly, the stability of the current and the spatial resolution of the
instrument impose further restrictions on the nano-particle’s mass. Larger nano-particle masseslead to a
narrower width of the wave packet, escalating the requirements for current stability and instrument spatial
resolution to observe spatial interference fringes, see appendices B and C.

In this scheme, the separation and closing of the wave packet trajectories can be achieved using a modest
current density O(1) A/pm?. This capability allows for the effective recombination of wave packet trajectories
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using the SG apparatus, leading to the eventual restoration of spin coherence [50, 51]. However, a detailed
exploration of these latter aspects will be addressed independently. Additionally, several considerations merit
attention, including the coherence of spin in the presence of the NV center [67, 68], and the excitations of the
phonons [69]. Such considerations are left for future study. Since the diamagnetic enhancement does not
necessitate spin-based manipulation, there may be a simpler candidate for creating the initial small spatial
splitting without grappling with rotation-related challenges [67, 68]. Nevertheless, it is likely that comparable
constraints will emerge to ensure the feasibility of coherent interference.
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Appendix A. Initial separation

The process of enlarging the spatial superposition size from 1 m by a factor of 100 to 1000 xm is, notably, mass-
independent. However, achieving the initial separation appears to be unavoidably mass-dependent, as explained
in the main text in the conclusion and discussion section. To obtain spatial superposition states for diamagnetic
nano-particles, a potentially effective approach involves leveraging the interaction of the NV spins embedded in
them with the magnetic field. The corresponding Hamiltonian, encompassing the NV spin-magnetic field
interaction, is expressed as follows [39, 43, 50, 53]:

N p? R m
A= s pop-

B? + mgz. 14
2m 2 & (14

Here, the second term represents the zero-field splitting of the NV center with D = (27) x 2.8GHz, fiis the
reduced Planck constant, and S, is the spin component operator aligned with the NV axis. The third term
denotes the interaction energy of the NV electron spin magnetic moment with the magnetic field B. The spin
magnetic moment operator f1 = —g, 115, where g, & 2 is the Lande g-factor, 15 = efi/2m, is the Bohr
magneton, and § is the NV spin operator with eigenstates denoted by {| 4-1), | —1), |0)}.

Assuming the initial superposition stateas (|4+1) + | —1))/~/2, initially, the only factor separating the two
wave packets is the NV spin-magnetic field interaction term fi - B. The corresponding acceleration is given by:

ay = 33Byp, (15)
m

where the subscript ‘+’ corresponds to the | +1) and | —1) states, respectively. From equation (15), it is evident
that the acceleration is inversely proportional to the mass, implying that the initial spatial separation produced
using the spin-magnetic field interaction is also inversely proportional to the mass. Assuming a linear magnetic
field approximation B = nx (1) is the magnetic field gradient), the initial spatial separation between wave packets
with respect to mass is [53]:

2
Dy = BB 1 osur) — 1), (16)
E—
where
Ko

is the angular frequency. Notably, the initial separation in equation (17) is not only inversely proportional to the
mass but also to the magnetic field gradient. This implies that arbitrarily large spatial superposition sizes can be
achieved as long as the magnetic field gradient is sufficiently small. However, considering the periodic motion of
diamagnetic nanoparticles in a linear magnetic field, and accounting for decoherence effects, fora 10~ ' kg
nanoparticle with a spin coherence time limited to 0.5 s, the required magnetic field gradient at this point is
approximately 45 T/m, corresponding to a maximum spatial separation of 0.2 ;m. Even with such a small initial
separation, the current density needed to enhance the spatial superposition size using wires is within reasonable
limits of about 10 A/ um? [61—63].
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After obtaining the initial separation using the NV spin, two approaches can be employed to integrate it with
the enhanced spatial superposition size scheme. The first approach involves retaining the NV spin and placing
the nano-particle into the magnetic field generated by the wire. However, in this case, the direction of the spin-
magnetic field interaction force on the wave packets with spin eigenstates | —1) and | +1) are in the direction of
and against the magnetic field gradient, respectively. This leads to asymmetrical trajectories for the two wave
packets, complicating the scattering process. To avoid this complexity, an alternative method is employed.
Initially, a r/2 pulse is applied to transform the (|4+1) + | —1))/~/2 state into the |0) state [70, 71]. This
transformation renders the interaction of the NV spin with the magnetic field negligible, reducing the
Hamiltonian to the form in equation (1).

Appendix B. Limitation on current fluctuation for generating spatial interference

According to equation (4), fluctuations in the electrical current can introduce classical uncertainties in both the
position and momentum of an object. These fluctuations have the potential to impact various quantum
phenomena, including spatial interference [72], momentum interference [73], and spin coherence [74] between
wave packets. In our specific scenario, a wave packet undergoes elastic collisions with a stationary wire.
Importantly, fluctuations in the current affect only the direction of the wave packet’s velocity, not its magnitude.
Consequently, our primary focus here is on the perturbation of the wave packet’s spatial position. For the sake of
simplicity, we assume that the classical position and momentum of the wave packet at its initial state are error-free.

In the subsequent analysis, we quantitatively assess how the trajectory of the wave packet deviates following
its interactions with the wire, both after the initial scattering and the subsequent scattering, while consideringa
small current fluctuation, denoted as AL To streamline our calculations, we model the wave packet’s trajectory
as comprising discrete line segments, each with a fixed length L, as depicted in figure 2. Given the symmetry in
the trajectories of the left and right wave packets, we choose to illustrate the left trajectory (represented by the
blue line segment) for clarity.

Utilizing the scattering angle expression from equation (7) to differentiate with respect to both current and
impact parameter, we obtain

2
Ag = T2 (ZIAI 2 Ab)’

32
2 VAL B2 b’
EREY
I b))
= Aby + Aby, (18)
where A8 = BAI/Irepresents the change in scattering angle due to fluctuations in current, and
Aby, = —BAb/brepresents the change in scattering angle due to fluctuations in the impact parameter. Here, (is
a coefficient associated with the current I, incident velocity v;,,, and impact parameter b with the expression
k—1
f=——m (19)
k2

The expression for the parameter k is provided in equation (8). Specifically, for the first scattering event, where
05 = /2, wehave 3; = 371/8. For the second scattering, where 0, ~ 67/7, we have 3, = 487/343. According to
equation (18), we can express the classical trajectory deviation of the wave packet as it reaches point C as

Aby ~ A0g(B) x L = ﬁI%L. (20)

where the term ‘B’ in brackets denotes fluctuations in the scattering angle at point B, similarly thereafter. By
combining equation (18) with equation (20), we can determine the uncertainty in the scattering angle at the
second scattering event as follows

AG(C) = Abq(C) + Aby(C),
AT AI'L
= ﬂzT - 51ﬂ275-
Since (3, is approximately equal to 1, when the condition L >> b holds, it becomes evident that Af(C) < Afy(C).

Therefore, for the second scattering event, we focus solely on Afy,(C). When the wave packet reaches point D, the
deviation in the classical trajectory can be expressed as

(2]

2
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Figure 2. [llustration of wave packet trajectories. The diagram depicts the trajectories of two wave packets with blue and orange line
segments. Each trajectory consists of three segments, approximately of length L. Points A(A’) and D(D’) correspond to the initial and
final positions of the wave packet trajectories. Points B(B’) and C(C’) indicate the positions where the wave packets scatter from the wire.
Itis important to note that the angles between the line segments in the figure do not accurately represent the true scattering angles.

Current fluctuation -Al/I
S
>

10712

g ---- L=50 ym

F —— L =500 um

1071 107" 10712 10" 10710 107°
Position deviation Ab, (m)

10—13,

Figure 3. Current fluctuation versus position deviation of the wave packet (at point D). The black dashed line corresponds to
L = 50 pm and the black solid line corresponds to L = 500 pm. Lis defined in figure 2. Wesetb = 5 x 10™" m.

Rewrite equation (22) as
AL b

b,.
I 618, 1 ?

To ensure spatial interference at a specific point D(D’), it is imperative that Ab, remains smaller than the

(23)

corresponding wave packet width. This requirement imposes constraints on the fluctuations in the current. Based
on equation (23), we have depicted the relationship between current fluctuation AI/I and position deviation Ab, in
figure 3. Notably, when the final requirement for position deviation remains constant, reducing the superposition

size L by an order of magnitude alleviates the demand for current stability by two orders of magnitude.

To illustrate this concept with a practical example, let us consider a silica microsphere with a mass of
10~ kg trapped by a magnetic field oscillating at a frequency of 100 Hz [75]. The initial width of the wave

packet can be calculated as

Sx = e ~2x 10 1m,
2mw
Jamw o4
op = - ~ 2.3 x 107*kgm/s.

(24)
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For spatial interference to occur, Ab, must be smaller than éx. Combining equations (23) and (24), we derive the

following limits on current fluctuations

Al 9 x 107! for L = 500 um,

Al . a (25)
I 9 x 107° for L = 50 um.

However, it is essential to acknowledge that as the wave packet evolves with time, the actual limits on current

fluctuations may be less stringent than those presented in equation (25).

Appendix C. The spreading of wave packet

Here, we give the estimation of the change in the width of the wave packet in both the free evolution case and
after it has been scattered by the wire. The true width of the wave packet should lie between these two cases. This
discussion focuses on the one-dimensional scenario to simplify the analysis. Assuming that an initial state
represented by a Gaussian wave packet, the probability density for free evolution is given by [76]:

1 > >
o) = (L) [ gt 26)
P 2 ) \ 6% + o?t? ) '

Here, x, represents the initial classical position, and v, denotes the group velocity of the wave packet. The
probability density follows a Gaussian distribution, and the width of the Gaussian function is determined by:

2 Oéztz
bu(t) = |8+ S, @7)

where o = /i/2m is defined. For a wave packet with a mass of m = 10~ kg and an initial width of 2 x 10" m
(as given in equation (24)), the width evolves after a time t = 0.02 s, yielding:

6,(0.025) ~ 5.6 x 107" m. (28)
This result indicates that, after 0.02 s of free evolution, the width of the wave packet remains approximately
within the same order of magnitude as the initial width.

To give arough order of magnitude estimate of the change in the wave packet width following scattering, we
invoke the uncertainty principle, expressed as:

bx > %

= o ¢ 29
35 (29)

Setting the scattering time scale as 6t = b/v;,,, we establish a lower bound on the width of the wave packet post-
scattering by placing the classical position of the wave packet at a distance of 1 um from the wire. This proximity
represents the point of the strongest interaction between the wave packet and the magnetic field in our scheme.
The change in velocity of the wave packet during scattering is given by:

ov = ag, 0t,
~3.6 x 1072m/s. (30)

Considering a mass of 10~ kg, combining equations (29) and (30), we derive alower bound on the width of the
wave packet after scattering:
V2

2méy’

~ 1.5 x 1078 m. (31)
The implication of equation (31) is that the wave packet exhibits more particle-like characteristics after
scattering. This suggests that, for the generation and detection of spatial interferences, increased demands are
placed on the stability of the current (refer to equation (23)) and the spatial resolution of the measurement
instrument. Two potential mitigation strategies are identified. The first involves reducing the mass of the nano-
particle, for instance, to 10722 kg, resulting in a position uncertainty éx > 1.5 x 10~ ' m. The second method is
to apply a magnetic field to trap the nano-particle so that the spatial width of the wave packet spreads out rapidly,
as described in equation (24).

ox >
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