PHYSICAL REVIEW D 109, 065028 (2024)

Entanglement entropy in scalar quantum electrodynamics
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We find the entanglement entropy of a subregion of the vacuum state in scalar quantum electrodynamics,
working perturbatively to the two-loop level. Doing so leads us to derive the Maxwell-Proca propagator in
conical Euclidean space. The area law of entanglement entropy is recovered in both the massive and
massless limits of the theory, as is expected. These results yield the renormalization group flow of
entanglement entropy, and we find that loop contributions suppress entanglement entropy. We highlight
these results in the light of the renormalization group flow of couplings and correlators, which are increased

in scalar quantum electrodynamics, so that the potential tension between the increase in correlations
between two points of spacetime and the decrease in entanglement entropy between two regions of
spacetime with energy is discussed. We indeed show that the vacuum of a subregion of spacetime purifies
with energy in scalar quantum electrodynamics, which is related to the concept of screening.
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I. INTRODUCTION

The tools of quantum information theory have continu-
ously brought insights into numerous seemingly unrelated
areas of physics. There is notably a growing interest in the
concepts of entanglement and entropy within the context of
high-energy physics and phenomenology, as well as in
condensed matter theory. More particularly, there have been
recent studies in the generation of entanglement in ordinary
local quantum field theories (QFTs) [1-10]; in the context of
holographic quantum field theories, see Refs. [11,12]; in the
context of area-law of entanglement entropy [13—15]; in
scattering processes of particles [16-27]; and within non-
local quantum field theory (NLQFT) [28,29]. In the present
paper, we focus on standard (local) QFT and consider the
properties of entanglement entropy within scalar quantum
electrodynamics (QED).

In the context of particle physics, neutrino oscillations
are being actively investigated using tools from quantum
information theory [30-34], where such methods can pro-
vide numerous insights into exotic mechanisms in rela-
tivistic settings. Moreover, a systematic inquiry of the
entanglement generated in 2 — 2 tree-level scatterings in
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spinor QED between helicity/polarization degrees of free-
dom has been undertaken, both for pure initial states [35]
and for general (potentially mixed) states [10], where the
generation of Von Neumann entropy was also discussed.
Here, we shall go beyond tree-level processes, allowing us
to delve into the renormalization of such quantum infor-
mation-theoretic properties and examine vacuum fluctua-
tions rather than scattering processes.

The dependence of entanglement entropy on the partition
size of the system in pure Maxwell theory (a conformal field
theory) has been the subject of some debate [36,37]. The
behavior of geometric entropy in the context of lattice gauge
theories has also been explored [1,38—43]. Interestingly, the
properties of entanglement entropy in ¢* and ¢* theories
have been studied by Hertzberg [4] up to two-loop orders,
and a tentative renormalization procedure has been under-
taken. Significant work has been conducted to understand
the renormalization of entropy in conformal field theory [44]
and in ¢* theory [45], as well as the regularization of
entropy in more general QFT settings [46]. A generalized
2PI formalism has also been used to approach similar topics
nonperturbatively, and the non-Gaussianity of entanglement
entropy induced by the Wilson renormalization group
procedure has been analyzed [47-49].

In this paper, we shall pursue such efforts by com-
puting the ground state entanglement entropy in scalar
QED perturbatively up to two-loop order. Doing so requires
us to work in conical Euclidean space—where the so-called
replica trick, detailed in Sec. II below, is used to recover the
flat spacetime limit [50]. Since the entropy depends on the
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propagators of the theory of interest in conical space, we
shall derive in Sec. III the Maxwell-Proca propagators in
such a setting. In Sec. IV we will show that the area law
of entanglement entropy is indeed obtained, as can be
expected, and we shall explore in Sec. V the renormalization
of vacuum entropy in such a context. We will further
consider the interplay between the renormalization of
couplings and correlators with that of entanglement entropy.

II. SETTING AND PRELIMINARIES

We work in units # = 1, Feynman gauge £ = 1, and
Euclidean space with negative signature. We consider a
QFT (in our case, scalar QED), which lies on an infinitely
large and flat D = (1 + d)-dimensional spacetime Q.
Going to Euclidean time through a Wick rotation, we
divide Q into two regions Q = A U A through an (arbitrary)
cut on the real negative axis, such that the subspaces A and
A have a flat dividing boundary of dimension d, = d — 1.
The density matrix of the ground state of the QFT on the
subregion of interest A is obtained by tracing out the
degrees of freedom in the region A, that is, p4, = Tri(p).
The associated entanglement entropy of the correlations
between vacuum fluctuations is given by the Von Neumann
entropy of the reduced density matrix

Se(pa) = =Tr(paIn(ps)). (1)

We can rewrite this using the replica trick

Se(pa) = = -0 (Tr(p),. @

which involves n copies of p,. In general, for a thermal bath
with Hamiltonian A and temperature T, we have p ~ e~HIT
and partition function Z = Tr(p). Associating Euclidean
time with temperature, we can then relate periods of
Euclidean time to the partition function on a Riemann
surface, and, more generally, on an n-sheeted Riemann
surface, we have, in the ground state [1,4]

Telp}) = 57 < (Tr(") = n(Z,) = n nZ). ©)
In a general QFT setting, the entanglement entropy is that
of the correlations between the vacua of A and A and their
fluctuations, i.e. each order of the expansion in the relevant
couplings contributes to the entropy via vacuum diagrams.
We can then determine the entanglement entropy as an
expansion in powers of the couplings as

Se0) =S Sexl) 4
k=0

so that Egs. (2) and (3) now give

Se4lp) = =2 0(Z,) = n 0(Z e (5)

In practice, this is the flat space limit of the geometric
entropy [50,51] in conical space with deficit angle
6 =2x(1 —n). In coordinates x = {r,6,x, }, the conical
space metric is [52]

ds* = —dr* — n*r?d6* — dx% (6)

where r > 0, 0 € [0, 2x), and the x, are the usual Cartesian
coordinates on the d | -dimensional transverse space. We will
then want to expand the partition function perturbatively in
powers of the couplings

In(Z,) =In(Z,0) +In(Z, ;) +--- (7)

and determine each one individually to determine the entan-
glement entropy of vacuum fluctuations order by order. The
story here is as follows. We take the reduced density matrix of
a subregion of spacetime of the vacuum state of the QFT. This
exists in itself, and has a well-defined nonperturbative Von
Neumann entropy. As we expand this Von Neumann entropy
in powers of the couplings, what we are doing is that we are
setting a scale at which we are looking at this vacuum: at tree
level we are looking at p, at smaller energies (larger length
scales) than at the two-loop level, etc. This means that looking
at loop levels of the entropy gives us how it runs with energy
scales, which is the behavior that one expects when one
considers the renormalization group flow.

ITII. GREEN’S FUNCTIONS IN CONICAL SPACE

We consider scalar QED, that is, the theory of charged
scalar particles. The corresponding action in Euclidean
space in the Feynman gauge is [53]

$ip '] = [ aPx (= Fu =S (0,07

A
+ DD+ 02D (W) )

where the covariant derivative is D, =d, —ieA,. The
partition function on the cone is

Zh = / (DYDY DAJe=S44' 4] 9)

up to an overall normalization factor which we ignore.
In the free theory, the interaction terms vanish so that
the only contributions come from the photonic and
scalar propagators.

A. Massive scalar field

We have that the partition function at 0 temperature on
the cone of a single massive scalar field with Euclidean
action Sg[@] is
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2, = [ g (10)
so that
n(z?,) = —%ln(det[—A + m?]) (11)

is the partition function for the free theory [54]. Thus

0 1

" 1
Wln(zz’o) = —ETr(Gn) = —5/ G,(x,x)d’x  (12)

where

2zn 0
/dDXE/ dH/ rdr/ddixJ_. (13)
n 0 0

In Euclidean space, the scalar propagator satisfies
the equation

(=A +m?)G,(x,x") = 6°(x —x') (14)

where in flat space

Gl(X—X/):/(di !

27)P p? + m?

eip.(x—x’) (15)

while in conical space this is solved by [1]

Foo d Jk/n(qr)‘]k/n(qr/)
x qaq—= 7] 2
0 q-+m”+ pj

_ 0
x <k9 €>eim-(n—xu) (16)

n

COS

where dy = 1, di>; = 2 and J is the Bessel function of the
first kind. Using the Euler-Maclaurin formula

+o00

+o0 1 y
; dyF(k) =2 /0 F(k)dk = < F'(0)
-2 i%ﬂw—l)(m (17)

where B,; are the Bernouilli numbers, we find that, in the
coincidence limit x’ — x, this becomes

Gu(x,X) = G1(0) + f,(r) (18)

where

1 1-n? [d%p 2 L.
fulr) = P (zﬂ)dt Ko(y/m2 + pir) + finite.

(19)
We have
im £,(r) =0 (20)
and the same behavior occurs for generic x and x’:
lim G,(x,x") =0 (21)

r—+o0

as can be expected: fields and propagators vanish at infinity.

B. Photon and proca fields

For a Proca field—a massive spin-1 field—the partition
function of the free theory is

In(Z/") = —In(det[~A + m?]) (22)

which reduces to ln(Z,Yl’.g))) = —In(det[—A]) [54] in the
smooth massless limit—note the factor of 2 difference with
the scalar case. In Euclidean space, the Proca propagator in
Feynman gauge is

(=A +m*)D¥

1 (X.X) = —g¥P (x —x')  (23)

which is solved by Fourier transform in flat space as

Dk 7
Dl (x =) = /—d 7

ik.(x—x’)_ 24
(27)P Kk? + m? ¢ 24)

Since the additional degree of freedom introduced by the
mass term completely decouples with the transverse
degrees of freedom in the massless limit, Maxwell-Proca
theory has a smooth limit into QED. Thus, we can deduce
the partition function in conical space for the free photon as

— ”llir_I}O— gﬂyD‘(‘y’:l)‘n(x,x)de. (25)
m,—0 4 n

It must be noted that this is not necessarily true for non-
Abelian QFTs, where Goldstone bosons associated to the
extra degrees of freedom form a nonlinear sigma model. In
the case of perturbative quantum gravity, this is exemplified
by the van Dam-Veltman-Zakharov discontinuity [55,56],
where massive quantum gravity disagrees with massless
quantum gravity even in the massless limit. We thus have

DI(%).n(X’ x') = —¢"G,(x,x') (26)

where, as for the scalar case, we have, in the coincidence
limit X' — x
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Diy 1 (%.X) = D)

1(0) =g fu(r) (27)

where f,(r) is given in Eq. (19). Likewise, for the photon propagator,

DY (x,x) =

Dy*(0)

- g”yfn,m,—»O(r)' (28)

IV. ENTANGLEMENT ENTROPY IN THE FREE THEORY

For the scalar field contribution to the entropy, we follow the work done by Hertzberg [4] to get

d 0 0
Wln(Tf(ﬂ?@,o)) = Wln(Zf’o) - ”Wln(zlfo) (29)
1
-1 [/G (x, X)de—n/G (0)dPx } (30)
1 — d;
& /ddel/ drr/ pl m —|—pl) (31)
1 —n? dip, 1
- _ A - 32
24n Tt / (2z)4 m? + p? (32)
where [d?:x; = A, and [° dyyK}(y) = 3. Thus, from (2),
@) 0 1 —n? / /d‘upl
Sy =—-—1- d 33
0 on [ 24n " W 1 p2 )|, (33)
1 1-n? dp,
— (=24, [Py, ¢ 34
(2 2 A [ G+ ) +eons] | e
1 d%p
_EAL/ 2n)- Lln(m + p%) + const (35)

Likewise, for the Proca field contribution to the entropy,
we use (27) to get

0 D(1 —n?) dp, 1
1 (Tr(p (y.m) 0)) 12n L/(Zn’)di m%-FPi_

om?
(36)

where we do not have a factor of % for the partition function
and the Proca and scalar propagators differ by a minus sign,
so that the photonic contribution to the tree-level ground
state entropy is obtained in the massless limit and yields

D d®p
S{) = gAJ_ /Wln(pi) + const. (37)

Hence, in the free scalar QED theory, the leading
contribution to the vacuum entropy is

S’/)J’ — ﬂ ddeL
0o - d
12 ] (2x)%

(2DIn(p?) —In(mg +p1)).  (38)

|
V. ENTANGLEMENT ENTROPY IN SCALAR QED

Let us now consider the full interacting theory of scalar
QED, given by the action (8) and corresponding partition
function (9). We then have

ln(Zf’y) = ln(ZfO) +1In(Z] ) + ln(Z,(:’ﬂ)) + ln(Zn[?I))
+ ln( ) + 02, ¢%) (39)
with

In(Tr(pf))) = In(Z,1) =n n(Z1,)  (40)

so that

Sp =80 48 4 5P 459 o2, ). (41)

We start with Fig. 1(a), where it is a priori nontrivial to
apply the momentum-space Feynman rules (given in
Appendix) of the 3-point scalar QED interaction to position
space. The diagram reads
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(@) (b) (©

FIG. 1. Vacuum contributions to the entropy from scalar QED to O(e?). (a) 3-point vertex (b) Scalar-scalar-photon-photon vertex
(c) ¢* vertex.

n(Z // {a(x P (X)AY(X)p(x'),p(x")) d"xdPx’ (42)
- 2/ / (A% (x)9, (¢ (x))A* (x' )0 (47 (x')) o d"xd"x' (43)
=5 [[ (@ memawinwx, (44

- < aﬂA”(X) ¢2(X)AD(X/)0L(¢2()(’))> )dDXdDX/ (45)
H,—/ 0
0 by Gupta-Bleuler

- %2/ / (0,4 (%)% (x)) 0, (A* ()2 (X)) " x "X’ (46)

2
7 / / (0,0, (4" (X)) (x) A (x') ¢ (X)) ) d”xdX’ (47)
// Aﬂ(x 452( ) ( /)¢2(X'))>0dDXde’ (48)
:E//n 0,0, (D (x,x')G,(x,x")?)d"xd"x'. )

This is a total derivative of propagators which vanish at infinity as was seen in Eq. (21), so the surface term contribution
will be finite and thus subleading to the order of interest at infinity. Thus, we only need to consider the coincidence limit
x’ — x for r — 0, i.e. the only boundary contribution at this order is that at the tip of the cone. By the divergence theorem,
and since the flux is n, = &;, i.e. we go away from the tip of the cone, we have

0’ dPx'dPx — d@’ d‘“x n, de - 2zne®ts’ | dPx 50
1 2

where we integrated at coincidence, so that

In(z\) = e / 3,(D™ (x,X)G,,(x, X)?)8,dPx (51)
e2els 0
=5 anyAL [T ODY(0) = g oG (O) + f () (52)
0
o2els
=5 @an)?’AL[r(DY(0) + frm~0(r)(G1(0) + £ (r))?]o™ (53)
eleds ©
=5 AL [T (DFO)+ fam oG (0) + (1)l (54)
0
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as g = —1. At r - oo, propagators go to 0 faster than linearly so that contribution vanishes, and note that lim,_orf,(r) ~
lim,_yrlog"(r) = 0 so the first term vanishes. The nonvanishing contribution comes from the integral term. Thus,

2.d,
In(Z\)) = -

(27n)’A, AM[DI’(O)Gl (0)? + frm,~0(r)G1(0)* +2D7(0)G,(0)f,,(r) (55)

+D’l‘r(0)fn(r)2 + zfn,myﬂO(r)fn(r)Gl (0) + fn,m7—>0fn(r)2]dr' (56)

The first term is just the flat space contribution, and the contributions to the entropy of the terms with (2zn)f,, () vanish when

we take the derivative with respect to n and set 7 =1 unless k=1. Moreover, Z[(2zn)>;L 1=

2zn 6n ”n—>l =
- 22—” We further have that

(&) 71'2
/ Ko(kr)*dr = —. (57)
Thus,
a J a a
S = =2 In(Z8) ~ 1 (Z)]) 9
metedt /ddeJ_ ( Gl m —>0(O) Gl (0)>
=-2" " A.G,0 2— + >
12 1(0) (27)4 \" mg + p3 ri >

where, importantly, the area law is explicit and the overall contribution is negative. Furthermore, for Fig. 1(b),

(%)) = 2¢2 / (AR (%) A, (X)2(x)) ,dPx (60)
:2e2/gﬂbDﬁ”(x,x)Gn(x,x)de (61)
Y / G (D(0) = ¢ F o —0(7)(G1(0) + £,(r))dPx (62)

—nn(z})

_2DeA, (2n) [Gl,m,ﬁom) / ® f.(r)rdr + G, (0) / ™ Frm—or)rdr + / ™ Fam 0P fa(r)rdr | (63)

This last term vanishes when we differentiate with respect to n and set n = 1, and [§° Ko(kr)rdr = ﬁ so that
b J b b
$1) = = Iz, = n n(Z D] (64)
o [1—n? [d Gim-00) G,(0
:DeZAJ_—{ n / Pdl < 1,2 , 0(2> n 1g ))} (65)
on on (271') + m¢ + Pl Pl n—1
De? dp, (Gim-0(0) G0
:——eAL/ de< S lg)). (66)
3 Q@m)& N\ mg+pl Pl

For the ¢* two-loop Fig. 1(c), we have [4]
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¢ A
() = =3 [ @00
= —% G,(x,x)?dPx (67)

where the factor of 3 comes from Wick’s theorem. We have G,(x,x)? = G;(x — X') + 2G,(0)f,.(r) + f,(r)?, so that

c c 32
In(Z)) = n ln(Z(Ll)) =-7 {/ G,(x,x)%dPx — n/ Gl(X,X)dex:| (68)
31 +o0 2
= _EAJ_zﬂn [2G1(0)fn(r> +fn(r) ]rdr (69)
: 0
32 1-n? dp, 1 Foo
=——A |—G((0) | —————5+2 W(r)2rdr|. 70
a0 J_[ on 1<)/(2”)dLm§s+Pi+ | f(r)rr} (70)
The second term vanishes when we differentiate with respect to n and set n = 1. Thus, the ¢* two-loop contribution to the
entropy is
d
(© A d“p, 1
S =—-—A,G (0)/—7 (71)
1 4! 1Y1 (271’)31_ mé + pzl

Hence, putting everything together, we have

dis 1
se=a [ S0 [— (2D 1n(p2) —In(m3 + )

(27)ds

3,2 .d,
_(mee G
12

12
N >(2G1’m’*°(o) =2

my + p7 r1

where the area law is explicit at every order, as expected.
From this, one may straightforwardly deduce the € diver-
gences. In particular, in D =4 dimensions (d =3,
d, =?2), the momentum integral leads to a (subleading)
logarithmic divergence, and the Green’s functions at
coincidence are quadratically divergent in momentum
~A? where A is a momentum cutoff, so regulating in
position space we get G;(0) ~ 1, with S ~ A((e* + 2)/€?).
Importantly, we see that entanglement entropy is cutoff
dependent, i.e. it depends on the details of the micro-
physics. In particular, putting this theory on a lattice would
make entanglement entropy dependent on lattice spacing
and configurations.

Furthermore, we see that these loop contributions nec-
essarily reduce the entropy. How do we make sense of this
in light of the flow of the couplings? Indeed, to leading
order in A and e, we have [53]

3
Beled) = ——

4872’ (73)

1
ﬂj(@,ﬂ) = W (5/12 - 16),32 + 24@4). (74)
T

Deé? (Gl,m7—>0(0)
3

+G,(20)>+/1 G1(0)2>}+... (72)

mg + p3 P2 4tmy + pi

Both f functions are positive, so couplings increase with
energy (and so decrease with distance). In practice, this
means that the 2-point correlation functions of scalar QED
ought to increase with energy, i.e. as we “zoom in” to
smaller and smaller distances. In particular, this can be
done at the boundary between A and A, i.e. the correlations
between both regions increase as we zoom in—we expect
this to diverge at the Landau pole. However, the Von
Neumann entropy of region A—i.e. the entanglement
entropy—seems to decrease as we zoom in. On the one
hand, we seem to have that correlation between both
regions increases at the boundary; on the other hand, the
reduced density matrix p, becomes more and more pure, SO
entanglement between the two regions shrinks. How do we
solve this apparent contradiction?

There are several ways to see this. The particle physics
way is to consider that at higher energies, the contributions to
the local physics are getting increasingly local, i.e. long-
distance contributions are subleading to local fluctuations—
this is reminiscent of the concept of screening in QED. As
one probes the vacuum to higher and higher energies (smaller
and smaller distances), one gets more and more vacuum
fluctuations, so the physics will look more and more local.
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At the Landau pole, the local physics completely dominates,
and A is entirely independent of A with no entanglement
between the two regions.

Thus, the local vacuum purifies with increasing energy.
From the point of view of quantum information theory, this
is in agreement with the general trait of entanglement
“monogamy”’ [57,58]—whereby a subsystem strongly
interacting and thus entangled with a second subsystem
cannot be strongly entangled with a third one.

VI. CONCLUSIONS AND OUTLOOK

For the usual spinor QED, we expect to see the same
behavior. For perturbative (asymptotically safe) quantum
gravity, we also expect this. For quantum chromodynamics
(QCD), however, it would be interesting to explore how
asymptotic freedom and the negative beta functions influ-
ence the flow of entanglement entropy and whether
antiscreening has the opposite effect on entropy at high
energies. We indeed conjecture that the beta function and
RG flow of couplings dictate the flow of the entanglement
entropy. Thus, we expect the entanglement entropy to be
scale invariant in supersymmetric theories where loop
contributions cancel out precisely and beta functions
are zero.

This work may also be straightforwardly expanded to
consider entropy and entanglement renormalization within
NLQFT, as has recently been done for ¢p* theory [28], where
entanglement entropy was shown to be free of UV diver-
gences. This result is expected to carry on to scalar QED.

The methods and results obtained may also be contrasted
to those obtained in condensed matter systems. Indeed,
there has recently been a lot of interest in understanding the
area law of entanglement entropy in such contexts—e.g.
see Refs. [59,60] and references therein. For instance,
(spinor) QED in D =1+ 2 dimensions is related to the
spin-1/2 Heisenberg antiferromagnet, and the RG flow
of couplings in such a discretized system has been
studied [61], where it was found that for generic disorder
the flow led to strong couplings. It may thus be insightful to

analyze the flow of entanglement entropy in such systems,
which may be readily compared with our results by
regularizing the quantum field theory, and see whether
entanglement entropy also follows an opposite behavior to
that of couplings under the renormalization group.

This paper constitutes an early investigation of entan-
gling behaviors in somewhat realistic QFTs, which may be
extended to non-Abelian theories such as QCD and
perturbative quantum gravity. However, in such cases,
deriving the partition function from Green’s function might
be more tricky as Green’s functions of the massive non-
Abelian theories do not reduce to those of the massless
theories in the limit m — 0. This becomes an issue because
there is then nothing to differentiate with respect to in, say,
Eq. (22). Thus, the tree-level (leading) contributions might
not be determined using this approach, but the flow of
entanglement entropy is independent of these considera-
tions and may be examined. This interesting problem will
be tackled in a future paper.
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APPENDIX: FEYNMAN RULES OF SCALAR QED

Here we recall the Feynman rules of interest in Fourier
space for scalar QED in Euclidean spacetime:

(1) For each scalar-scalar-photon  vertex, write
—e(k+K),.
(2) For each scalar-scalar-photon-photon  vertex,

write Zezg,w.

(3) For each ¢* vertex, write —A. )

(4) For each internal photon, write % (in Feynman
gauge).

(5) For each internal scalar, write -

kK +m?”
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