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Abstract  

Psychosis represents a heterogeneous collection of biological and behavioural alterations that 

evolve over time. We propose a multiscale disease progression model of psychosis, in which 

hippocampal-cortical dysconnectivity precedes impaired episodic memory and social cognition, 

worsening negative symptoms and lowering functional outcome. In two cross-sectional datasets 

of first- and multi-episode psychosis (163 patients; 117 controls), we applied a recently developed 

machine-learning algorithm, SuStaIn, which uniquely integrates clustering and disease progression 

modeling. SuStaIn identified three patient subtypes, with Subtype 0 showing normalrange 

performance on all variables. In comparison, Subtype 1 showed lower episodic memory, social 

cognition, functional outcome, and higher negative symptoms, while Subtype 2 showed lower 

hippocampal-cortical connectivity. Subtype 1 deteriorated from (social) cognition to symptoms, 

functioning and hippocampal-cortical dysconnectivity, while Subtype 2 deteriorated from 

hippocampal-cortical dysconnectivity to (social) cognition, functioning and symptoms. This first 

application of SuStaIn in a multiscale model of psychiatry provides distinguishable disease 

trajectories of hippocampal-cortical connectivity, which might drive heterogeneous behavioural 

alterations in psychosis.   
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Introduction  

Schizophrenia and related psychotic disorders can be characterized along the three 

dimensions of positive, negative and cognitive symptoms (1, 2). Positive symptoms describe 

abnormal perceptions, thoughts, and behaviors (i.e., hallucinations, delusions, disorganization) 

while negative symptoms describe a significant reduction of typical behaviors and motivation (i.e., 

asociality) (1). Cognitive symptoms tend to arise before the onset of positive and negative 

symptomatology (3, 4) and are characterized by an overall deficit in neurocognitive functioning, 

and particularly in episodic memory (2). Due to its broad range of symptoms, psychosis is among 

the most disabling mental disorders and is a leading cause of disability worldwide (5). The most 

prominent measure of disability caused by psychotic disorders is functional outcome, which 

assesses the influence of disease on social and occupational functioning (6, 7). Within these two 

domains of functioning, affected individuals have been shown to have fewer stable friendships, 

lowered marriage rates and difficulties with social interactions (7). Further, psychosis is associated 

with high unemployment rates, decreased levels of productivity and an overall increase in 

occupational stress (7). Beyond the considerable impact on the affected individual and their social 

surroundings, psychosis also carries an immense economic burden caused by the often-persisting 

difficulties of maintaining employment following a first-episode of psychosis (FEP) (8, 9). 

Considering that employment is additionally linked to increased quality of life (10), identifying 

disease trajectories up to and including poor functional outcomes of psychosis is crucial.  

Multiscale neuroscience is a relatively novel framework which conceptualizes psychiatric 

disorders as the result of aberrant interactions within and across multiple biopsychosocial scales 

(11, 12). The smallest scale is the micro-scale, which covers the neurotransmitter systems and 

genetic vulnerabilities that are thought to be involved in disease pathophysiology. The next scale 
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is the meso-scale, which describes structural and functional brain organization in disease, including 

aberrant connectivity (i.e., interactions between brain regions). The manifest-scale covers 

behavioral components of mental illness, and most importantly the cognitive and clinical 

symptoms (e.g., impaired memory and negative symptoms). At the broadest level is the socialscale, 

which describes the degree of functional impairment caused by a disorder (12). The key 

assumption of multiscale neuroscience is that there exist natural bidirectional interactions between 

these scales, meaning that dysfunction in one scale influences and reflects functionality of higher 

and lower-order scales (11). In the context of functional outcomes of psychosis, multiscale 

neuroscience predicts that poor functional outcomes may be driven by aberrant cross-scale 

interactions that span the brain and behavioral levels. To formally test this idea, we propose a novel 

disease progression model of psychosis in which brain-level changes result in poor functional 

outcomes as mediated by specific cognitive and clinical symptoms.  

At the meso-scale, graph theoretical measures of connectivity identify the hippocampus as 

a key convergence zone for cortical input (13). Graph theory as applied to neuroscience 

conceptualizes the brain as consisting of nodes, representing distinct brain regions, which are 

connected through edges, representing (structural or functional) connections (14, 15). This 

technique has further shed light on multiscale interactions between the hippocampus and 

manifestscale measures in psychosis. By grouping nodes of the hippocampus together into a 

hippocampal module, Makowski et al. (16) showed that longitudinal structural covariance-based 

connectivity between the hippocampal module and large-scale brain networks (17) is significantly 

reduced in FEP in comparison to healthy controls. At the manifest-scale, such a reduction in 

hippocampalcortical connectivity was associated with more severe negative symptoms, as 

mediated by impaired episodic memory (16). Using longitudinal data, Makowski et al. (16) thus 
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characterized a multiscale disease progression from hippocampal-cortical dysconnectivity to 

episodic memory and negative symptoms for the first time. The association between episodic 

memory and negative symptoms has been robustly established cross-sectionally and longitudinally 

across the psychosis spectrum, spanning individuals at clinical high-risk (18), FEP (19) and chronic 

psychosis (2). Other findings within the manifest-scale have shown that this relationship between 

episodic memory and negative symptoms is mediated through social cognition (i.e., emotion 

recognition and theory of mind) (20), providing a link from cognitive impairments to negative 

symptoms. At the social-scale, sex differences in episodic memory impairments (21) and impaired 

social cognitive abilities (22, 23) have been shown to predict functional outcome, with both 

relationships being mediated by negative symptoms. Negative symptoms are further directly 

associated with impaired functioning (24, 25) and drive symptomatic relapses, which predict poor 

functional outcome (26).  

Based on these findings, we suggest a multiscale model in which hippocampal-cortical 

dysconnectivity leads to impaired episodic memory and social cognition, resulting in higher 

negative symptoms and, ultimately, poor functional outcome. However, taking into consideration 

the immensely heterogeneous nature of psychotic disorders, we recognize that this disease 

progression pattern may apply to only a sub-population of psychosis patients.  Prior cluster 

analyses showed that the degree of impairment experienced by affected individuals can best be 

defined along a continuum. While there typically is a patient subgroup which shows significant 

impairments in episodic memory, social cognition and negative symptoms, there also is a second 

subgroup of patients showing normal-range performance on those measures (27-30). These 

normal-range performing patient groups are equally characterized by the presence of positive 

symptoms (29), justifying their diagnoses, yet the degree to which they express (socio)cognitive 
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and negative symptoms appears to differ. On these grounds, we i) hypothesize that there may exist 

at least two patient subtypes, one subtype showing normal-range performance on the components 

of the model and one subtype showing impairments. In the impaired subtype, we ii) hypothesize a 

disease progression pattern from hippocampal-cortical dysconnectivity to impaired episodic 

memory and social cognition, higher negative symptoms and poorer functional outcome. See 

Figure 1 for a visualization of these hypotheses.  

To address the hypothesized disease progression in subtypes of the patient sample, we 

implemented a recently developed unsupervised machine-learning algorithm called Subtype and 

Stage Inference (SuStaIn) (31). SuStaIn uniquely combines the methodologies of disease 

progression modeling and clustering to infer longitudinal disease progressions from crosssectional 

data. By therefore clustering patient groups with shared common disease progression patterns, 

SuStaIn is excellently suited to address multiscale frameworks in samples as heterogeneous as 

psychosis. In the context of SuStaIn, the variables of our models are labeled markers, and SuStaIn 

chooses the disease progression of these markers independently, without the need to a priori define 

disease progression patterns. This allows identification of subgroups and their disease trajectories 

that fit the data most validly. So far, SuStaIn has been implemented in neurodegenerative diseases, 

such as Alzheimer's (31, 32), multiple sclerosis (33), frontotemporal dementia (34), Parkinson’s 

disease (35) and once in the field of psychosis (36). In psychosis, SuStaIn identified two disease 

trajectories of brain atrophy of which one commenced in the hippocampus and another one in the 

Broca’s area (36). To date, there is one other study to our knowledge that applied SuStaIn to a 

multiscale model (37), identifying four distinct temporal disease progression patterns of brain 

markers and cognitive functioning in disease subtypes of Alzheimer’s. Building on this important 
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work, our study will, for the first time, implement SuStaIn in a multiscale model of psychiatric 

disorders.   

One of the major clinical utilities of SuStaIn is that its staging approach provides a 

translational component to our data-driven model by directly allowing for patient stratification and 

disease prediction. This feature is of particular importance in the light of the current attention that 

clinical staging models, such as McGorry’s clinical stages (38), have been given (39). McGorry et 

al. (38) hypothesize a unidirectional clinical development of severe mental disorders, in which new 

stages represent a significant change in clinical status (i.e., from individuals at clinical highrisk to 

FEP, relapse and persistent psychosis (38, 39)). The key purpose of the clinical staging model is to 

guide treatment selection based on symptom severity, cognition, and functioning (39). In this work, 

we sampled across clinical stages by combining data from two independent datasets on first- and 

multi-episode psychosis. Based on the qualitative differences between clinical stages regarding 

symptoms, cognition and functioning, it was of further interest to explore how SuStaIn’s data-

driven and biologically-informed staging would stratify individuals from distinct clinical stages. 

To this end, we employed z-score SuStaIn (31), which assesses linear disease progression in 

accordance with z-score deviations from the mean, resembling the assumed unidirectional 

progression of McGorry’s clinical stages. Thus, applying z-score SuStaIn to two samples spanning 

the clinical staging model (first and multi-episode psychosis) uniquely allowed us to address 

whether the clinical thresholds by McGorry et al. (38) would correspond to the disease stages 

outlined by SuStaIn. To avoid any further ambiguity, we will from here onwards refer to  

McGorry’s stages as clinical stages and to SuStaIn’s stages as disease stages (as suggested by  

Young et al. (31)).  
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Methods  

Participants  

We sampled patient and control data from two independent datasets. Study 1 collected data 

in a FEP cohort and Study 2 collected data from a multi-episode psychosis (MEP) cohort (40). For 

Study 1, 100 patients and 60 non-clinical controls were recruited while Study 2 consisted of 166 

patients and 81 non-clinical controls (see Supplement F1 for inclusion and exclusion criteria). Both 

patient samples were recruited from the Douglas Research Centre, Montréal, Canada. FEP patients 

were recruited after being admitted to the prevention and early intervention program for psychosis 

(PEPP-Montréal) (41), while MEP patients were patients of the outpatient and inpatient units. The 

control samples were recruited from the same catchment area. After excluding participants (see  

Supplement F2 for the exclusion process), Study 1 consisted of 57 patients and 52 controls and  

Study 2 consisted of 106 patients and 65 controls, rendering our total sample size 163 patients and  

117 non-clinical controls. Ethical approval was granted by the Douglas Research Centre Ethics 

Board. Both studies were conducted in accordance with the Declaration of Helsinki and written 

informed consent was obtained prior to the study. Participants were compensated with monetary 

rewards.  

Power calculations in the SuStaIn literature are still an active topic of debate, although 

previous work has offered pragmatic guidelines for sample size estimation tailored to SuStaIn 

(32). These guidelines propose that the spatial dimensions (number of markers in the model) and 

the temporal dimensions (z-scores deviations) are multiplied, resulting in a total number of 

features. For each of these features, 10-20 observations should be included in the analysis. As we 

chose 6 markers (left and right hippocampal-cortical connectivity, episodic memory, social 
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cognition, negative symptoms, functional outcome) and 3 levels of z-scores (1, 2, 3), a sample 

size between 180 - 360 should therefore be sufficient to detect meaningful subtypes differences 

and their disease progressions.  

Data Collection  

In both studies, data including sex, age, duration of illness and medication were assessed 

throughout an interview with trained research staff. Episodic memory and social cognition were 

measured via the Cogstate Schizophrenia Battery (42), including the Shopping List Test and 

Social-Emotional Cognition Test. Negative and positive symptoms were assessed using the Scale 

for the Assessment of Negative Symptoms (SANS) (43) and the Scale for the Assessment of 

Positive Symptoms (SAPS) (44), respectively, while functional outcome was measured through 

the Social and Occupational Functional Assessment Scale (SOFAS, (6)). See Supplement S1 for 

scale and scoring descriptions. As the SOFAS was not administered in MEP patients of Study 2,  

SOFAS scores were reconstructed (see Supplement S2 and F7 for the reconstruction procedure).   

MRI Acquisition   

   MRI data were acquired with a 3T Siemens Magnetom Trio scanner, located at the Cerebral  

Imaging Centre of the Douglas Mental Health University Institute. For Study 1, a T1-weighted 

MPRAGE scan (voxel size = 1mm3, field of view (FOV) = 256mm, repetition time (TR) = 2300ms, 

echo time (TE) = 2.98ms, flip angle = 9°) was obtained, followed by a high-resolution T2-weighted 

image (voxel size = 0.64mm3, FOV = 206mm, TR = 2500ms, TE = 1.98ms). For the T2-weighted 

images a turbo spin echo sequence was used. Study 2 included a whole brain T1-weighted scan  

(voxel size = 1mm3, TR = 18ms, TE =10ms, flip angle=30°) for which a flow-compensated 3D  

RF-spoiled GRE sequence was used.  
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MRI Processing   

We used the high-performance computing resources available via the Digital Research 

Alliance of Canada (formerly Compute Canada) to extract cortical thickness and hippocampal 

volumes. See Figure 2 for a visualization of the processing steps. First, cortical thickness values 

were derived through CIVET, Version 2.1.1 (45), as run on CBRAIN (46), which were 

subsequently parcellated into the 62 Desikan-Killiany-Tourville (DKT) regions (47). To extract 

hippocampal volumes, we submitted the acquired T1-informed T2-weighted (Study 1) or 

T1weighted (Study 2) MRI images to the multiple automatically generated templates 

(MAGeT)Brain algorithm (48, 49), resulting in nine hippocampal and adjacent white matter 

regions per hemisphere. Following data extraction, we excluded participants with poor quality 

control values on CIVET and/or MAGeT and further performed data harmonization via 

neuroCombat (50) to account for different scanner parameters between studies (see Supplement 

S3 for a detailed explanation of these processing steps).  

Hippocampal-Cortical Connectivity  

Structural Covariance & Jackknife Bias Estimation Procedure  

To establish the structural covariance between the 80 brain regions (62 DKT and 18 

hippocampal), we performed full-sample correlations for the patient and the control sample 

separately (14). To further provide information about subject-specific contributions to structural 

covariance we then performed the jack-knife bias estimation procedure  (51, 52) on both matrices. 

The jack-knife bias estimation procedure recalculates the structural covariance matrix for the 

sample while leaving each participant out of the calculation once (leave-one-out procedure). By 

subtracting this leave-one-out structural covariance matrix from the full sample covariance matrix 

of the patient/control sample and taking absolute values, the individual’s contribution to structural 
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covariance is computed, resulting in a subject-specific structural covariance matrix. The code has 

been made publicly available on GitHub (https://github.com/katielavigne/jackknife_connectivity). 

Participation Coefficient  

The participation coefficient is a graph measure of centrality and evaluates the intermodular 

connectivity between nodes of one module and nodes of other modules (53). To establish the 

modules, we parcellated the cortical thickness values of the 62 DKT regions into the seven 

functional Yeo networks (17) while the volumes of the 18 hippocampal regions were grouped into 

one distinct hippocampal module, as first done by Makowski et al. (16). The participation 

coefficient was then calculated via the Brain Connectivity Toolbox in Python (bctpy; (53)). Higher 

participation coefficients indicate that the intermodular connectivity of a node is higher than the 

intramodular connectivity (53). For example, a high participation coefficient of a node within the 

hippocampal module (e.g., dentate gyrus region) would indicate that this region is more strongly 

connected to the cortical networks than to other regions of the hippocampus. For our analysis, the 

participation coefficients of the hippocampal regions were averaged for each hemisphere 

respectively; thus, higher values represented stronger lateralized hippocampal-cortical 

connectivity.    

Statistical Analysis   

Data Preparation  

Demographic data were compared through chi-square tests and independent samples ttests. 

We then performed a linear regression with sex, age and total brain volume as regressors on the 

input data. For the variables hippocampal-cortical connectivity, episodic memory and social 

cognition, regression was performed in relation to the control values. The negative symptom and 

https://github.com/katielavigne/jackknife_connectivity
https://github.com/katielavigne/jackknife_connectivity
https://github.com/katielavigne/jackknife_connectivity
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functional outcome variables were not sampled in the control groups of either dataset. Thus, the 

data was first z-scored in comparison to previously reported control values of the SANS (54) and 

the SOFAS (55), after which the values were regressed out relative to the patient samples 

themselves. Z-scores for the entire sample were calculated based on these residual values. All 

zscores except for negative symptoms were multiplied by -1 to model ascending disease 

progression, as required for SuStaIn.   

SuStaIn  

Z-score SuStaIn is a type of SuStaIn which places subjects at specific disease stages 

depending on their z-score deviation from normality (31). Through an estimation of maximum 

likelihood, SuStaIn assesses the temporal sequence of marker deterioration and employs purely 

cross-sectional data to infer common patterns of disease progression via a stage progression model. 

Z-score SuStaIn (31) was performed in python (pySuStaIn (56)). We set the threshold of z-scores 

to 1, 2 and 3 deviations from the mean for each biomarker, while reaching a maximum threshold 

of 5 z-scores at the end of the disease progression as in previous work (31, 57). Considering the 

absence of symptom and functional outcome data in controls, we ran SuStaIn on the patient data 

only. We then validated the resulting subtypes using 10-fold Markov Chain Monte Carlo (MCMC) 

iteration cross validation. Log-likelihood tests and the Cross-Validation Information Criterion 

(CVIC, (31)) were used to obtain an indication of the optimal number of subtypes. The code for 

the steps of data preparation and SuStaIn has been made publicly available on GitHub  

(https://github.com/janatotzek/2023-multiscale-markers-psychosis).  

Follow-up Analyses  

Demographic data were compared between the resulting disease subtypes through 

chisquare and independent samples t-tests. To address how the identified subtypes differed on the 

https://github.com/janatotzek/2023-multiscale-markers-psychosis
https://github.com/janatotzek/2023-multiscale-markers-psychosis
https://github.com/janatotzek/2023-multiscale-markers-psychosis
https://github.com/janatotzek/2023-multiscale-markers-psychosis
https://github.com/janatotzek/2023-multiscale-markers-psychosis
https://github.com/janatotzek/2023-multiscale-markers-psychosis
https://github.com/janatotzek/2023-multiscale-markers-psychosis
https://github.com/janatotzek/2023-multiscale-markers-psychosis
https://github.com/janatotzek/2023-multiscale-markers-psychosis
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markers, a one-way ANOVA with Bonferroni-corrected independent sample t-tests were conducted 

as follow-up analyses. A significance threshold of alpha = 0.05 (two-tailed) was used. To establish 

marker deterioration, we compared the marker means for the resulting disease subtypes to the 

means of Subtype 0, which per definition included patients at disease stage 0 (31). We further 

compared the mean differences between disease subtypes to establish similarities and differences 

across disease subtypes. Stage inference was then performed by calculating at which disease stage 

the subtype mean reached n (1, 2, and 3) z-score deviations from the mean. These results were 

supported by visually examining the positional variance diagrams, indicating the likelihood of 

participants to deviate n z-scores from the mean at a specific disease stage of each disease subtype. 

A section on subtype and stage inference was further added to visualize the disease progression in 

each identified disease subtype based on mean values per subtype stage. Finally, to address 

distinctions between FEP and MEP, we split both samples into low versus high negative symptoms 

based on a mean split of z-scored negative symptoms which we calculated for each group (FEP 

and MEP) separately. Such a mean split allowed us to distinguish currently symptomatic (negative 

symptoms) vs. stable FEP and MEP patients and to address potential similarities and differences 

across both samples.   

Results  

Demographic Data   

A summary of demographic characteristics can be seen in Table 1. See Supplement F3 for 

a visualization of age and illness duration in both datasets.   
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Subtype Inference    

SuStaIn sorts all individuals which are assigned to disease stage 0 into a separate Subtype 

0, which is characterized by normal-range performance on the included markers. As our sample 

exclusively consists of psychosis patients, Subtype 0 thus consists of patients which, per definition, 

do not show z-score-based impairment on the included markers. To therefore differentiate Subtype 

0 from other patient subtypes which do show impairment, we will from here on refer to all subtypes 

except Subtype 0 as disease subtypes. We ran SuStaIn on a maximum of two disease subtypes, 

which resulted in a CVIC of 3342.68 (log-likelihood of –169.09) for one disease subtype and a 

CVIC of 3342.80 (log-likelihood of – 169.16) for two disease subtypes. Typically, lower CVIC 

scores suggest a better model fit (31), yet differences between models which are < 6 are not 

considered to be meaningful in the SuStaIn literature (58). As our results therefore seem to suggest 

a suitable fit of both models, we report the results for a model with two disease subtypes below 

(see Supplement S4 for results of the model with one disease subtype). In the model with two 

disease subtypes, 56 participants were categorized as belonging to Subtype 0. Of those 56 

participants, 26 were FEP patients and 30 were MEP patients. 86 participants were classified as 

belonging to Subtype 1, of whom 26 were FEP patients and 60 were MEP patients. 21 subjects 

were classified as belonging to Subtype 2, of whom 5 were FEP patients and 16 were MEP patients.   

The one-way between-subject ANOVA showed a significant main effect of Subtype on left 

(F(2, 160) = 65.42, p < .001, ηp
2  = 0.45) and right hippocampal-cortical connectivity (F(2, 160) = 

35.57, p < .001, ηp
2  = 0.31). Post-hoc independent samples t-tests revealed that Subtype 2 exhibited 

significantly lower bilateral hippocampal-cortical connectivity in comparison to Subtype 0 and 

Subtype 1. In contrast, Subtype 0 and Subtype 1 did not differ significantly on those measures, 

indicating that only patients in Subtype 2 were characterized by impaired hippocampal-cortical 
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connectivity when collapsing across stages. The main effect of Subtype on episodic memory was 

also significant (F(2, 160) = 76.36, p < .001, ηp
2  = 0.49) and follow-up analyses showed that 

Subtype 1 was characterized by significantly lower episodic memory performance than Subtype 0 

and Subtype 2, while Subtype 0 and Subtype 2 did not significantly differ in episodic memory 

performance. The same pattern was observed for social cognition (F(2, 160) = 15.12, p < .001, ηp
2  

= 0.16) and negative symptoms (F(2, 160) = 20.09, p < .001, ηp
2  = 0.20), suggesting that Subtype 

1 was impaired on memory, social cognition and negative symptoms. Regarding functional 

outcome (F(2, 160) = 7.22, p = .001, ηp
2  = 0.08), Subtype 1 was significantly impaired in 

comparison to Subtype 0, yet did not differ from Subtype 2, indicating that Subtype 1 scored lowest 

on functional outcome. See Figure 3 for a visualization of the follow-up independent samples ttests 

and Table 2 for demographic characteristics and statistical comparisons of the subtypes. Beyond 

the markers of our model, all three Subtypes did not differ on medication and illness duration, 

while Subtype 1 was characterized by significantly higher positive symptoms than  

Subtype 0.   

Stage Inference    

As Subtype 0 per definition implies no disease progression, SuStaIn exclusively infers 

disease progressions for the disease subtypes. For Subtypes 1 and 2, data are provided up to 

disease stage 9 and 6 in our sample respectively. Longitudinal inference as performed through 

SuStaIn then infers biomarker progression up until disease stage 18 (see Figure 4). Subtype 1 

shows an early deterioration of episodic memory, which deviates one z-score from the mean at 

disease stage 1, reaching two z-score deviations at disease stage 2 and three z-score deviations at 

disease stage 6. The second marker to deviate is social cognition, reaching one z-score deviation 



Longitudinal Inference in Psychosis    

     16  

from the mean at disease stage 3, two z-scores at disease stage 4 and three z-scores at disease 

stage 5. Negative symptoms and functional outcome then both reach one z-score deviation from 

the mean at disease stage 7, yet negative symptoms deteriorate faster by reaching two z-score 

deviations at disease stage 9. Negative symptoms and functional outcome then do not reach 

further z-score deviations in our sample. Left hippocampal-cortical connectivity reaches one 

zscore deviation from the mean at disease stage 9, while right hippocampal-cortical connectivity 

never substantially deviates from the mean in our sample. Nevertheless, the longitudinal inference 

of SuStaIn shows that it most likely starts deteriorating from disease stage 12 onwards, which is 

beyond the stages represented in our sample. Therefore, individuals in Subtype 1 progress from 

episodic memory to social cognition, negative symptoms, functional outcome, left 

hippocampalcortical connectivity and right hippocampal-cortical connectivity (see Figure 4a, 

Figure 5).  

Subtype 2 (Figure 4b) shows a deterioration of bilateral hippocampal-cortical connectivity 

by one z-score deviation from the mean at disease stage 1, with left connectivity reaching two 

zscore deviations at disease stage 3 and right connectivity at disease stage 4. Neither deteriorate 

further in our sample. The z-score means per stage (Figure 5) indicate that social cognition reaches 

one z-score deviation at disease stage 3, but then the mean scores diminish back to around 0 in 

the following disease stages. Episodic memory starts deviating from the mean by one z-score at 

disease stage 4 and reaches 3 deviations at disease stage 6. Given that social cognition and 

episodic memory therefore deteriorate at around the same stage, yet episodic memory continues 

to deteriorate while social cognition scores decrease again, we mention episodic memory before 

social cognition in our disease progression. Negative symptoms and functional outcome do not 

deviate substantially from the mean in our sample, yet the longitudinal inference of SuStaIn  
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(Figure 4b) shows that functional outcome starts deviating earlier than negative symptoms. 

Altogether, Subtype 2 progresses from left hippocampal-cortical connectivity to right 

hippocampal-cortical connectivity, episodic memory and social cognition, functional outcome, 

and negative symptoms.   

    

Subtype and Stage Inference   

  As visualized in Figure 5, SuStaIn identifies two disease subtypes in addition to Subtype 0. 

Subtype 1 is predominantly characterized by a deterioration of episodic memory, social cognition, 

functional outcome and higher negative symptoms and progresses from episodic memory to social 

cognition, negative symptoms, functional outcome, left hippocampal-cortical connectivity and 

right hippocampal-cortical connectivity. Subtype 2 is characterized by hippocampal-

dysconnectivity and progresses from left hippocampal-cortical connectivity to right hippocampal-

cortical connectivity, episodic memory and social cognition, functional outcome and negative 

symptoms.   

First- and Multi-Episode Psychosis  

When comparing demographic characteristics between both datasets, Table 1 shows that 

MEP patients are older and have significantly higher illness duration, medication dosage, total 

brain volume, negative and positive symptoms and significantly lower episodic memory and 

functional outcome than FEP. However, FEP and MEP patients are distributed equally across 

subtypes and disease stages (see Figure 5, right panels). When splitting the MEP and FEP sample 

into low versus high negative symptoms based the respective mean z-score of each sample, we see 

that FEP and MEP patients who score low on negative symptoms (FEP: n = 30; MEP: n = 53) do 

not differ significantly from each other on any of the markers (see Figure 6a). For FEP and MEP 
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with high negative symptoms (FEP: n = 27; MEP: n = 53), however, there are significant 

differences in functional outcome with MEP high showing significantly more impaired functional 

outcome than all other groups. In general, MEP patients with high negative symptoms show 

significantly lower episodic memory than FEP with low negative symptoms, and significantly 

lower functional outcome than any of the other groups. In addition, right hippocampal centrality 

is significantly higher in MEP with low negative symptoms than FEP with high negative 

symptoms. Particularly, the findings of episodic memory and functional outcome suggest that both 

markers are overall more affected in MEP versus FEP but that there are nevertheless MEP 

individuals who score comparably low to FEP. The distribution of high vs. low FEP and MEP 

across disease stages is seen in Figure 6b and 6c, visualizing that individuals with low negative 

symptoms tend to be grouped in earlier disease stages while individuals with high negative 

symptoms are distributed across all stages and dominate the later disease stages.   

Difference to One-Subtype Model  

 In a model with one disease subtype, Subtype 1 is characterized by significantly lower episodic 

memory, social cognition, higher negative symptoms, and poorer functional outcome in 

comparison to Subtype 0 (see Supplements S4, T1, F5) and progresses from episodic memory to 

social cognition, negative symptoms, functional outcome, left hippocampal-cortical connectivity 

and right hippocampal-cortical connectivity (see Supplement F6). These findings are congruent 

with Subtype 1 as identified in a model with two disease subtypes (described above). When 

comparing the results of both models (see Supplement S4), Subtype 2 of the two-subtypes model 

is equally distributed between Subtype 0 and Subtype 1 of the one-subtype model (see Supplement 

F4). Considering that Subtype 2 of the two-subtypes model shows marked deterioration of bilateral 

hippocampal-cortical connectivity, which was seen in neither Subtype 1 of the one- or two- 
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subtypes models, these deficits appear to be masked in the one-subtype model. While both models 

show a statistically similar fit for our data (as described under "Subtype Inference"), the 

twosubtypes model seems to uncover the importance of hippocampal-cortical connectivity in a 

part of the patient sample to predict cognition and symptom development.   

    

Discussion  

We set out to advance our understanding of poor functional outcomes of psychosis by 

proposing a multiscale model (spanning the brain, cognition, symptoms and functioning), and 

exploring heterogeneous disease trajectories across these markers. To these aims, we employed 

zscore SuStaIn to evaluate our multiscale model in a heterogeneous sample of first-episode and 

multi-episode psychosis patients. SuStaIn is a recently developed machine-learning algorithm 

which uniquely combines clustering and disease progression modeling (31). To our knowledge, 

this work is the first to implement SuStaIn in a multiscale model of psychiatric disorders. We 

identified two disease subtypes in addition to a patient subtype without impaired connectivity, 

(social) cognition, symptoms, or functioning. While both subtypes supported our proposed 

progression model in terms of episodic memory, social cognition, negative symptoms, and 

functional outcome, hippocampal-cortical connectivity only preceded these markers, consistent 

with our hypothesis, in Subtype 2. In Subtype 1, hippocampal-cortical connectivity deficits 

emerged following cognitive impairments and symptoms, rather than preceding them. This 

suggests that hippocampal-cortical dysconnectivity can but does not necessarily precede cognitive 

impairments. These results demonstrate how multiscale frameworks can offer important insights 

into the complex temporal nature of cross-scale interactions, while underlining the need to 

differentiate between patient subtypes in disorders as heterogeneous as psychosis.  



Longitudinal Inference in Psychosis    

     20  

In previous work, Makowski et al. (16) reported that reduced hippocampal-cortical 

connectivity predicts negative symptoms as mediated through episodic memory. Surprisingly, our 

results show that Subtype 1 exhibits higher negative symptoms and impairment in episodic 

memory, while Subtype 2 shows distinct deteriorations of hippocampal-cortical connectivity.  

However, none of the identified disease subtypes showed an impairment on all three markers 

simultaneously. A potential explanation for this discrepancy might lie in Makowski et al. (16) 

performing their analyses on the full sample while we made a specific effort to cluster disease 

subtypes. Performing analyses on the full sample might have resulted in obscured heterogeneity 

between the clusters, bearing the potential of pooling the impairments of hippocampal-cortical 

connectivity, episodic memory and negative symptoms across subtypes. Moreover, the previous 

study included longitudinal data, which is not yet possible with SuStaIn, and may have captured 

impairments at later timepoints. These findings are of particular importance when considering that 

the sample assessed in Makowski et al. (16) partially overlaps with the sample of Study 1.  

 An additional aspect to be addressed regarding the previous mediation model is the 

temporal disease progression from hippocampal-cortical connectivity to negative symptoms as 

mediated by episodic memory. On these grounds, we hypothesized hippocampal-cortical 

connectivity to precede impaired cognition and symptoms, which we found in Subtype 2. However, 

the identified disease trajectories of Subtype 1, in which hippocampal-cortical dysconnectivity 

follows deteriorations in memory and social cognition, hints towards the existence of other neural 

markers that drive socio-cognitive deficits in psychosis. In addition to other metrics of 

hippocampal-cortical connectivity (e.g., based on white matter structure or function), neural 

correlates of social cognition could be key, such as the amygdala (59), for which dorsomedial shape 

development has been shown to predict conversion to psychosis (60), while further being 
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associated with verbal memory performance (61) and low emotion recognition capacities (60). 

Beyond the association with social cognition, the amygdala and hippocampus have further been 

shown to be distinctly associated with negative symptoms (62). Thus, future work aiming to 

disentangle multiscale contributions to impaired social cognition and episodic memory may wish 

to consider the independent contributions of the amygdala and hippocampus as well as other 

measures of brain connectivity.   

We further identified an almost identical temporal development of negative symptoms and 

functional outcome in both disease subtypes. One explanation for this finding might lie in the 

pooling of SOFAS social and occupational functioning scores (6), which are used estimate overall 

functional outcome. With regard to the social functioning component, premorbid social 

functioning in particular has been shown to be predictive of negative symptom severity in later 

disease stages (63, 64). While premorbid social functioning and social outcomes of psychosis are 

two distinct constructs, considering premorbid functioning as a potential confounder may help to 

further disentangle the relationship between negative symptoms and functional outcomes. At this 

point, we would like to point out that our key objective was to propose a multiscale perspective on 

functional outcomes in psychosis, providing a link from the brain to functional outcomes through 

socio-cognitive deficits and symptoms. We did not intend to provide an exhaustive account of all 

factors influencing functional outcomes of psychosis (i.e., premorbid social functioning; IQ (65), 

etc.) and recommend future research considers these aspects in addition to the components of our 

model.   

Our findings further need to be discussed in the light of clinical staging models. McGorry 

et al. (38) hypothesize a unidirectional disease progression, in which new clinical stages represent 

a significant change in clinical status (i.e., from FEP to MEP; (38, 39)). By including patients from 



Longitudinal Inference in Psychosis    

     22  

two distinct clinical stages, FEP and MEP, and applying a machine-learning algorithm which 

models linear disease progression regardless of clinical staging, we were in the unique position to 

address whether these clinical stages can be mapped onto the disease stages identified by SuStaIn.  

As McGorry suggests, MEP, as a group, showed lower episodic memory and functioning and 

higher negative symptoms than FEP. Yet, when applying the longitudinal inference feature of 

SuStaIn, FEP and MEP participants were spread equally across disease subtypes and, most 

importantly, across disease stages. While this seems contradictory to McGorry’s clinical stages at 

first sight, it is important to differentiate between clinical stages and disease states. As outlined in 

the introduction, clinical stages carry qualitative value about patient history and inform treatment 

decisions. Disease states, however, are the patient’s scores on symptom severity, functioning and 

cognition at a specific point in time. SuStaIn therefore infers longitudinal disease stages from 

patient states which might explain why the clinical stages of McGorry and the disease progression 

as outlined by SuStaIn do not necessarily overlap. More precisely, z-score SuStaIn assesses z-score 

deviations from the mean. The algorithm thus places individuals with good state performance (i.e., 

low negative symptoms, high functioning, good episodic memory performance at assessment) in 

early disease stages and individuals with poor state performance (high negative symptoms, low 

functioning, poor episodic memory performance at assessment) in later disease stages. The 

assumption which underlies this modeling is the one of linearity, implying that individuals who 

currently have good state performance will later develop poorer state performance, with the degree 

of impairment and the order of deterioration differing between disease subtypes. By showing that 

MEP and FEP are placed in the same SuStaIn stages, we show that states across MEP and FEP are 

comparable, which demonstrates that states can vary significantly within clinical stages. Our 

results could therefore be considered a natural extension of McGorry’s clinical stages, potentially 
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explaining clinical variation seen within clinical stages. In this sense, our findings might contribute 

to a refining of stage-based frameworks by allowing for a fusion between clinical staging models 

and biomarker-informed disease trajectories.  

An additional point to consider is the cyclical nature of psychotic symptomatology. Z-score 

SuStaIn is well-suited to mimic the linearity of the clinical staging model of McGorry et al. (38); 

however, progression patterns might deviate across the scales of our model. When, for example, 

looking at markers such as negative symptoms, prior research has shown that symptom severity 

might not increase over the course of disease progression, but can fluctuate in a subsample of 

patients (66). The fact that low and high negative symptoms are associated with distinct degrees 

of functional impairment and episodic memory speaks in favor of this hypothesis, by showing that 

the markers might fluctuate depending on symptomatic vs. remitted illness. Linking this back to 

our findings, SuStaIn likely sorted MEP patients who were in remission into early disease stages, 

as these remitting patient scores had similar mean scores to patients in early clinical stages (FEP). 

To explore this further and to better capture intra-individual fluctuations within clinical stages, 

future work should evaluate other disease progression models, such as the kernel density 

estimation model in event-based SuStaIn (35, 37, 67), which do not assume linear disease 

progression but rather assess the presence or absence of symptoms. Such an approach might allow 

for a more reliable modeling of McGorry’s clinical stages while acknowledging the variety of 

disease states within each clinical stage.   

Our findings have important implications for multiscale perspectives on psychosis. To our 

knowledge, our work addresses a multiscale model of psychiatric symptoms using SuStaIn for the 

first time. Notably, our findings show that, even within multiscale frameworks, the components of 
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clustering in combination with disease progression modeling are essential to fully capture the 

complex nature of psychosis. By implementing a mechanistic approach towards psychosis disease 

progression that integrates multiple levels of measurement, we therefore address the criticism of 

the current diagnostic classification systems which predominantly focus on symptom-based 

diagnostics (1). As z-score SuStaIn assigns individuals to distinct disease subtypes and stages, our 

results also provide clinical utility and translational opportunities for patient stratification and 

diagnostics based on machine-learning. A good example of clinical utility beyond the implications 

for McGorry’s clinical staging model (38) is the application of SuStaIn in psychosis by Jiang et al. 

(36), who found that one of their disease subtypes was related to higher antipsychotic medication 

efficacy. While we did not find any significant group differences in terms of medication, future 

studies in larger samples might benefit from this utility. Considering that hippocampal volume and 

episodic memory are also highly valuable in major depressive disorder (68), our findings might 

further allow for transdiagnostic applications predicting disease progression.   

Our study has several limitations which should be considered. The SOFAS scores of Study 

2 were reconstructed on the basis of the Personal and Social Performance (PSP) Scale (69), which 

is a novel procedure. While we have statistical support for this method (see Supplement S2 and 

F7), we nevertheless suggest the replication of this methodology in a larger sample. Further, the 

SOFAS (6) and SANS (43) were not sampled for the control group of both studies. For this reason, 

the SOFAS and the SANS data had to be z-scored relative to previously reported control data (54, 

55) and our SuStaIn analysis had to focus on patient data only, which rendered Subtype 0 our 

reference for follow-up analyses even though Subtype 0 in itself also consisted of patients. Through 

the future inclusion of a control group, which would most likely be almost entirely subtyped as 

Subtype 0 (31), it would be possible to compare the deterioration of markers to a more reliable 
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subtype. Having a control group which consists of non-clinical controls would further allow us to 

determine whether patients in Subtype 0 do factually show normal-range performance on the 

markers of the model, or whether they do show deviations from the norm. If deviations from the 

norm were seen on a continuum (with non-clinical controls and Subtype 1 & 2 as the extremes and 

Subtype 0 with intermediate scores), our results might be interpreted as Subtype 0 individuals 

merging into Subtype 1 or Subtype 2 at later disease stages. Additionally, we need to acknowledge 

the relatively small sample of our study, which only consists of 163 patients. In accordance with 

the guidelines for SuStaIn power estimates described above and in (32), our results may therefore 

be slightly underpowered, and we suggest a replication of our findings in a larger sample.  

To conclude, as the first investigation of multiscale disease progression in psychosis using 

SuStaIn, we identified two data-driven disease subtypes with distinct longitudinal disease 

trajectories. These findings are of particular importance for elucidating the complex and 

heterogeneous nature of psychosis even within multiscale models and further contribute to the 

neurobiological underpinnings of episodic memory in predicting poor functional outcomes. In 

addition, these are the first data-driven findings to complement traditional clinical staging models 

by inferring longitudinal disease trajectories across clinical stages. Further research should target 

broader measures of hippocampal-cortical connectivity through combining distinct neuroimaging 

modalities and implement machine-learning models which do not assume linear disease 

progression (e.g., event-based SuStaIn).   
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Figure 1.   

Visualization of Hypothesized Multiscale Model  

  

Note. This figure displays the subtyping and staging of our proposed multiscale model. We expected to identify at least 

two subtypes in our sample. In the impaired subtype (Subtype 1), we hypothesized a disease progression pattern in 

accordance with the proposed multiscale model (hippocampal-cortical dysconnectivity to impaired episodic memory 

to social cognitive deficits to negative symptoms to poor functional outcome). The curves indicating the marker 

development serve as a visualization of disease progression and are not a representative delineation of each marker’s 

individual development.    
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Figure 2.   

Methods Workflow   

  

Note. This figure displays the workflow of data processing, calculation of hippocampal-cortical connectivity and the application of SuStaIn.  
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Table 1.  

Demographic Characteristics  

                                                                            Study 1.                                                Study 2.                                             Full Dataset                                                          

Contr. (n = 52)       FEP (n = 57)           Contr. (n = 65)    MEP (n = 106)       Contr. (n = 117)  Pat. (n = 163)   

_________________________________________________________________________________________  

Sex (male/female)                                 (34 / 18)                 (36 / 21)                  (45 / 20)             (80 / 26)                    (79 / 38)          (116 / 47)  

                                                          Mean (SD)            Mean (SD)              Mean (SD)          Mean (SD)              Mean (SD)       Mean (SD)   

Age                                                    24.70 (4.30)          25.02 (4.14)            33.77 (8.93)c***   35.24 (8.26)c***         29.73 (8.52)      31.66 (8.61)   

TBVa                                                   1.32 (0.13)            1.30 (0.12)              1.54 (0.05)c***     1.49 (0.06)b***c***    1.44 (0.14)        1.42 (0.12)  

Left Hippocampal Centrality  0.80 (0.04)        0.80 (0.04)     0.81 (0.03)          0.79 (0.04)b*             0.80 (0.04)        0.79 (0.04)  

Right Hippocampal Centrality  0.79 (0.03)            0.80 (0.03)     0.80 (0.04)          0.80 (0.03)                0.80 (0.03)        0.80 (0.03)  

Episodic Memory              19.00 (2.36)      15.63 (3.12)b***       17.65 (2.78)c**     13.85 (3.52)b***c**    18.25 (2.68)      14.47 (3.48)d***  

Social Cognition               1.14 (0.17)               1.05 (0.19)b*            1.14 (0.14)          1.03 (0.21)b**             1.14 (0.15)     1.04 (0.20)d**  

Negative Symptoms               2.58 (3.13)e      12.74 (8.96)b***         2.58 (3.13)e       22.15 (9.88)b***c***         2.58 (3.13)e     18.86 (10.55)d***  

Functional Outcome             84.00 (5.16)e     57.11 (17.76)b***          84.00 (5.16)e     45.69 (13.04)b***c**   84.00 (5.16)e        49.68 (15.78)d***  

Positive Symptomsf               -               12.39 (13.88)            -               18.18 (17.71)c*         -             16.18 (16.67)  

Illness Duration (years)f                             -                   0.73 (0.93)                      -                 13.08 (7.82)c***              -                 9.64 (8.67)  

CPZ Adherenceg                -           285.23 (236.30)             -           636.91 (600.14)c**              -         479.26 (502.92)  

  

Note. aTBV = Total Brain Volume, reported in million decimals, b p < 0.05 when comparing controls vs. patients within each dataset, c p < 0.05 when comparing patients between 

datasets and controls between datasets, d p < 0.05 when comparing controls and patients of both datasets combined, e Control mean and SD for negative symptoms are taken 

from Oruç et al. (54) and for functional outcome from Agid et al. (55), ffor positive symptoms FEP (n = 56), MEP (n= 106); for duration of illness FEP (n = 41), MEP (n= 106); 
g CPZ adherence = chlorpromazine equivalent dose weighted by adherence, FEP (n = 52), MEP (n= 64); *Cohen’s  d  => |0.2|, ** Cohen’s d => |0.5|, ***Cohen’s d => |0.8|   
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Figure 3.  

Comparison between Subtypes 

  

Note. This figure shows the mean comparisons between subtypes on the six markers of our model. ** p < .001, * p 

< .05  
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Table 2.  

Demographic Characteristics of Subtypes  

                Subtype 0. (N = 56)             Subtype 1. (N = 86)               Subtype 2. (N = 21)  

Sex (male/female)      

  

    (41 / 15)              (61 / 25)              (14 / 7)  

 
  Mean (SD)            Mean (SD)                     Mean (SD)  

Age           30.76 (8.60)          31.59 (8.77)                    34.35 (7.76)  

TBVa            1.43 (0.12)            1.41 (0.12)                      1.43 (0.13)  

Left Hippocampal Centrality      0.81 (0.03)           0.80 (0.03)                                0.73 (0.03)ce  

Right Hippocampal Centrality     0.81 (0.03)           0.80 (0.03)                                0.75 (0.03)ce  

Episodic Memory       17.24 (2.10)         12.36 (2.90)c                       15.76 (2.84)ce  

Social Cognition         1.13 (0.13)           0.96 (0.22)c                               1.09 (0.15)cd  

Negative Symptoms      13.93 (9.06)       22.90 (10.33)c                             15.48 (8.48)cd  

Functional Outcome              55.21 (16.47)        45.81 (13.89)b                   50.76 (17.36)  

Positive Symptomsf              12.16 (13.43)        19.19 (18.76)b                  14.38 (13.02)  

Illness Duration (years)g       7.64 (8.39)          10.17 (8.97)                     12.73 (7.17)    

CPZ Adherenceh           403.76 (368.30)              537.22 (581.96)               451.21 (478.73)  

Note. aTBV = Total Brain Volume, reported in million decimals  b p < .05,  c p < .001 when compared to Subtype 0, d p < 

.05, e p < .001when comparing Subtype 1. with Subtype 2. f n positive symptoms Subtype 0 (FEP = 25, MEP = 30), 

Subtype 1 (FEP = 26, MEP = 60), Subtype 2 (FEP = 5, MEP = 16) g n duration of illness Subtype 0 (FEP = 20, MEP = 30), 

Subtype 1 (FEP = 18, MEP = 60), Subtype 2 (FEP = 3, MEP = 16)  
h CPZ Adherence = chlorpromazine equivalent dose weighted by adherence, Subtype 0 ((FEP = 23, MEP = 19),  Subtype 

1 (FEP = 24, MEP = 37), Subtype 2 (FEP = 5, MEP = 8)  
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Figure 4.   

Disease Progression in both Disease Subtypes  

a)  

b)  

 
Note. This figure shows the disease progression of the markers in both disease subtypes respectively. The color 

coding indicates a deviation from normality by one z-score in red, by two z- scores in pink and by three z-

scores in blue. The stronger the color the higher the probability of individuals at that stage to deviate by one z-

score, two z-scores etc. 
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Figure 5.   

Subtype and Stage Inference  

  

Note. This figure shows how patients are first subtyped into Subtype 0 (white), disease Subtype 1 (yellow), and disease Subtype 2 (blue) and how the disease progression of the 

respective disease subtypes is then inferred by placing the patients onto a disease stage of this subtype. The table on the right indicates the amount of FEP and MEP patients in each 

subtype. 
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Figure  6.  

FEP and MEP along low and high Negative Symptoms    

  

Note. This figure shows the comparison between FEP and MEP who score low and high on negative symptoms on the markers of our model (a) and their distribution across the 

stages of our disease subtype 1 (b) and 2 (c). ** p < .001, * p < .05    
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