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Neural Networks

Pros cons
v Neural networks are universal function approximator v" Neural networks are parametric models
v Neural networks can approximate the ill-defined function v Neural networks are black-box models by design
space with reasonable accuracy v Interpretation of neural networks’ predictions is an open-
v' Computational and memory requirements are reasonable challenge

Data Information integrated Neural Network

v Data Information integrated Neural Network (DINN) is a modified version of standard multi-layer perceptron-based algorithm

v The loss function is customized to include the Pearson Correlation Coefficient (PCC) information to guide the parameters update in the iterative
training of DINN:
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v' The parameters are updated using gradient descent with momentum algorithm:
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v 7 is the learning rate; f is momentum parameter; Vy,. is the velocity matrix w.r.t W; etc

v The stopping constraint checks the PCC computed in the model-simulated value after each epoch of training: min (|rx,p| — |rx,z|) < goal

Case Studies

v" The modelling performance of DINN is compared with those of v' The variables significance order for the power generation from the
artificial neural network (ANN) for energy efficiency cooling (ENC) and gas turbine Is established for DINN and ANN model by Monte Carlo
energy efficiency heating (ENH) technique

v DINN based variables significance order is better compliant with the
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Conclusions

v’ Better predictive performance of DINN over ANN for modelling power
generation from gas turbine (RMSE_DINN =1.51 MW < RMSE_ANN
=2.75 MW)

v" DINN presents lower mean RMSE for testing datasets (RMSE _ test
= 1.23%) in comparison with the ANN model (RMSE_test = 1.41%)
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and literature (RMSE_test = 1.63%) v' The PCC information improves the modelling and interpretation

nerformance of DINN
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