
1

Learning Algorithm Generalization Error Bounds
via Auxiliary Distributions

Gholamali Aminian?, Member, IEEE, Saeed Masiha?, Member, IEEE, Laura Toni, Senior Member, IEEE,
and Miguel R. D. Rodrigues, Fellow, IEEE

Abstract—Generalization error bounds are essential for com-
prehending how well machine learning models work. In this
work, we suggest a novel method, i.e., the Auxiliary Distribution
Method, that leads to new upper bounds on expected generaliza-
tion errors that are appropriate for supervised learning scenarios.
We show that our general upper bounds can be specialized
under some conditions to new bounds involving the α-Jensen-
Shannon, α-Rényi (0 < α < 1) information between a random
variable modeling the set of training samples and another random
variable modeling the set of hypotheses. Our upper bounds based
on α-Jensen-Shannon information are also finite. Additionally,
we demonstrate how our auxiliary distribution method can
be used to derive the upper bounds on excess risk of some
learning algorithms in the supervised learning context and the
generalization error under the distribution mismatch scenario in
supervised learning algorithms, where the distribution mismatch
is modeled as α-Jensen-Shannon or α-Rényi divergence between
the distribution of test and training data samples distributions.
We also outline the conditions for which our proposed upper
bounds might be tighter than other earlier upper bounds.

Index Terms—Expected Generalization Error Bounds, popula-
tion risk upper bound, Mutual Information, α-Jensen-Shannon
Information, α-Rényi Information, Distribution mismatch.

I. INTRODUCTION

NUMEROUS methods have been proposed in order to
describe the generalization error of learning algorithms.

These include VC-based bounds [2], algorithmic stability-based
bounds [3], algorithmic robustness-based bounds [4], PAC-
Bayesian bounds [5]. Nevertheless, for a number of reasons,
many of these generalization error bounds are unable to describe
how different machine-learning techniques can generalize: some
of the bounds depend only on the hypothesis class and not on
the learning algorithm; existing bounds do not easily exploit
dependencies between different hypotheses; or do not exploit
dependencies between the learning algorithm input and output.

More recently, methods that use information-theoretic tools
have also been developed to describe the generalization of
learning techniques. Such methods frequently incorporate
the many components related to the learning problem by
expressing the expected generalization error in terms of certain
information measurements between the learning algorithm
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input (the training dataset) and output (the hypothesis). In
particular, building upon pioneering work by Russo and Zou [6],
Xu and Raginsky [7] have derived expected generalization
error bounds involving the mutual information between the
training set and the hypothesis. Bu et al. [8] have derived
tighter expected generalization error bounds involving the
mutual information between each individual sample in the
training set and the hypothesis. Meanwhile, bounds using
chaining mutual information have been proposed in [9], [10].
Other authors have also constructed information-theoretic
based expected generalization error bounds based on other
information measures such as α-Rényi divergence for α > 1,
f -divergence, and maximal leakage [11]. In [12], an upper
bound based on α-Rényi divergence for 0 < α < 1 is
derived by using the variational representation of α-Rényi
divergence. Bounds based on the Wasserstein distance between
the training sample data and the output of a randomized
learning algorithm [13], [14] and Wasserstein distance between
distributions of an individual sample data and the output of the
learning algorithm is proposed in [15], and tighter upper bounds
via convexity of Wasserstein distance are proposed in [16].
Upper bounds based on conditional mutual information and
individual sample conditional mutual information are proposed
in [17] and [18], respectively. The combination of conditioning
and processing techniques can provide tighter expected gener-
alization error upper bounds [19]. An exact characterization of
the expected generalization error for the Gibbs algorithm in
terms of symmetrized KL information is provided in [20]. [21]
provides information-theoretic expected generalization error
upper bounds in the presence of training/test data distribution
mismatch, using rate-distortion theory.

Generalization error bounds have also been developed to ad-
dress scenarios where the training data distribution differs from
the test data distribution, known as Distribution Mismatch. This
scenario – which also links to out-of-distribution generalization
– has attracted various contributions in recent years, such as
[22]–[24]. In particular, Masiha et al. [21] provides information-
theoretic generalization error upper bounds in the presence of
training/test data distribution mismatch, using rate-distortion
theory.

In this work, we propose an auxiliary distribution method
(ADM) to characterize the expected generalization error upper
bound of supervised learning algorithms in terms of novel
information measures. Our new bounds offer two advantages
over existing ones: (1) Some of our bounds – such as the α-JS
information ones – are always finite, whereas conventional
mutual information ones (e.g., [7]) may not be; (2) In contrast
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to mutual information-based bounds, our bounds—such as
the α-Rényi information for 0 < α < 1—are finite for
some deterministic supervised learning algorithms; (3) We
also apply ADM to provide an upper bound on population risk
of supervised learning algorithms under a learning algorithm.

In summary, our main contributions are as follows:
1) We suggest a novel method, i.e., ADM, that uses auxiliary

distributions over the parameter and data sample spaces to
obtain upper bounds on the expected generalization error.

2) Using ADM, we derive new expected generalization error
bounds expressed via α-JS divergence, which is known
to be finite.

3) Using ADM, we offer an upper bound based on α-Rényi
divergence for 0 < α < 1 with the same convergence
rate as the mutual information-based upper bound. Fur-
thermore, in contrast to the mutual information-based
bounds, the α-Rényi divergence bounds for 0 < α < 1
can be finite when the hypothesis (output of the learning
algorithm) is a deterministic function of at least one data
sample.

4) Using our upper bounds on expected generalization
error, we also provide upper bounds on excess risk of
some learning algorithms as solutions to regularized
empirical risk minimization by α-Rényi or α-Jensen-
Shannon divergences.

5) Using ADM, we also provide generalization error upper
bound under training and test data distribution mismatch.
It turns out that training and test distribution mismatch is
captured in our upper bounds via α-Jensen-Shannon or
α-Rényi divergences.

It is noteworthy to add that, although the α-JS measure does
not appear to have been used to characterize the generalization
ability of learning algorithms, these information-theoretic
quantities as well as α-Rényi measure for 0 < α < 1, have
been employed to study some machine learning problems,
including the use of
• α-JS as a loss function under label noise scenario [25],

and Jensen-Shannon divergence ( α-JS divergence for α =
1/2) in adversarial learning [26] and active learning [27].

• α-Rényi divergence in feature extraction [28] and image
segmentation based on clustering [29].

II. PROBLEM FORMULATION

A. Notations

In this work, we adopt the following notation in the
sequel. Calligraphic letters denote spaces (e.g. Z), Upper-
case letters denote random variables (e.g., Z), and lower-
case letters denote a realization of random variable (e.g. z).
We denote the distribution of the random variable Z by PZ ,
the joint distribution of two random variables (Z1, Z2) by
PZ1,Z2

, and the α-convex combination of the joint distribution
PZ1,Z2

and the product of two marginals PZ1
⊗ PZ2

, i.e.
αPZ1

⊗ PZ2
+ (1− α)PZ1,Z2

for α ∈ (0, 1), by P (α)
Z1,Z2

. The
set of distributions ( measures) over a space X with is denoted
P(X ). We denote the derivative of a real-valued function f(x)
with respect to its argument x by f ′(·). We also adopt the
notion log(·) for the natural logarithm. The function f(x) is

Lf -Lipschitz if |f(x1)− f(x2)| ≤ Lf‖x1−x2‖2, where ‖ · ‖2
is L2-norm. Let N (a,B) denotes the Gaussian distribution
over Rd with mean a ∈ Rd and covariance matrix B ∈ Rd×d.

B. Framework of Statistical Learning

We analyze a standard supervised learning setting where we
wish to learn a hypothesis given a set of input-output examples
that can then be used to predict a new output given a new
input.

In particular, in order to formalize this setting, we model the
input data (also known as features) using a random variable
X ∈ X where X is the input space, and we model the output
data (also known as predictors or labels) using a random
variable Y ∈ Y where Y is the output space. We also model
input-output data pairs using a random variable Z = (X,Y ) ∈
Z = X × Y where Z is drawn from Z per some unknown
distribution µ. We also let S = {Zi}ni=1 be a training set
consisting of n input-output data points drawn i.i.d. from Z
according to µ.

Our goal is to learn a parameterized function, fW : X → Y ,
where the parameters are a random variable W ∈ W ⊂ Rd
and W is a parameter space. Finally, we represent a learning
algorithm via a Markov kernel that maps a given training set S
onto parameter W defined on the parameter spaceW according
to the probability law PW |S .

We introduce a (non-negative) loss function ` :W×Z → R+

that measures how well a hypothesis (parameterized function)
predicts an output given an input. We can define the population
risk and the empirical risk associated with a given hypothesis
as follows:

Lµ(w) :=

∫
Z
`(w, z)dµ(z), (1)

LE(w, s) :=
1

n

n∑
i=1

`(w, zi), (2)

respectively. We can also define the (expected) generalization
error,

gen(PW |S , µ) := EPW,S [gen(W,S, µ)], (3)

where gen(w, s, µ) := Lµ(w) − LE(w, s). This (expected)
generalization error quantifies by how much the population
risk deviates from the empirical risk. This quantity cannot be
computed directly because µ is unknown, but it can often be
(upper) bounded, thereby providing a means to gauge various
learning algorithms’ performance. We are also interested in
excess risk under the learning algorithm PW |S ,

Er(PW |S , µ) := EPW,S [Lµ(W )]− inf
w∈W

Lµ(w). (4)

Note that the excess risk can be decomposed as follows,

Er(PW |S , µ)

= gen(PW |S , µ) + EPW,S [LE(W,S)]− inf
w∈W

Lµ(w),

where the first term is expected generalization error and the
second is statistical excess risk.

Furthermore, we analyse a supervised learning scenario
under distribution mismatch ( a.k.a. out-of-distribution), where
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training and test data are drawn from different distributions (µ
and µ′, respectively). In particular, we define the population
risk based on test distribution µ′ as,

LP (w, µ′) ,
∫
Z
`(w, z)dµ′(z). (5)

We define the mismatched(expected) generalization error as

gen(PW |S , µ, µ
′) , EPW,S [gen(W,S, µ, µ′)], (6)

where gen(w, s, µ, µ′) , LP (w, µ′)− LE(w, s).
Our goal in the sequel will be to derive (upper) bounds on

the expected generalization errors (3) and the excess risk (4)
in terms of various information-theoretic measures.

C. Auxiliary Distribution Method

We describe our main method to derive upper bounds on
the expected generalization error, i.e., the ADM. Consider P
and Q as two distributions defined on a measurable space X
and let f : X → R be a measurable function. Assume that we
can use an asymmetric information measure T (P‖Q) between
P and Q to construct the following upper bound:

|EP [f(X)]− EQ[f(X)]| ≤ F (T (P‖Q)), (7)

where F (·) is a given non-decreasing concave function.
Consider R as an auxiliary distribution on the same space

X . We can use the following upper bound instead of (7):

|EP [f(X)]− EQ[f(X)]| ≤
|EP [f(X)]− ER[f(X)]|+ |EQ[f(X)]− ER[f(X)]|
≤ F (T (P‖R)) + F (T (Q‖R)) (8)

From concavity of F , we have

F (T (P‖R)) + F (T (Q‖R)) ≤

2F

(
T (P‖R)/2 + T (Q‖R)/2

)
(9)

We assume that T satisfies a reverse triangle inequality as
follows:

min
R∈P(X)

T (P‖R) + T (Q‖R) ≤ T (P‖Q). (10)

Considering R∗ ∈ arg minR T (P‖R) + T (Q‖R), we have

|EP [f(X)]− EQ[f(X)]| ≤

2F

(
T (P‖R∗)/2 + T (Q‖R∗)/2

)
. (11)

We can also provide another upper bound based on T (R‖P )
and T (R‖Q) instead of T (P‖R) and T (Q‖R):

|EP [f(X)]− EQ[f(X)]| ≤
|ER[f(X)]− EP [f(X)]|+ |ER[f(X)]− EQ[f(X)]|
≤ F (T (R‖P )) + F (T (R‖Q)). (12)

Considering R̃ ∈ arg minR∈P(X) T (R‖P )+T (R‖Q), we have

|EP [f(X)]− EQ[f(X)]| ≤

2F

(
T (R̃‖P )/2 + T (R̃‖Q)/2

)
. (13)

Via this ADM approach – taking T (·‖·) to be a KL divergence
– we can derive expected generalization error upper bounds
involving KL divergences as follows:

αKL(PW,Zi‖P̂W,Zi) + (1− α)KL(PW ⊗ µ‖P̂W,Zi), (14)

αKL(P̂W,Zi‖PW,Zi) + (1− α)KL(P̂W,Zi‖PW ⊗ µ), (15)

where P̂W,Zi , PW,Zi and PW ⊗ µ are an auxiliary joint
distribution over the space Z ×W , the true joint distribution
of the random variables W and Zi and the product of marginal
distributions of random variables W and Zi, respectively.
Inspired by the ADM, we use the fact that KL divergence
is asymmetric and satisfies the reverse triangle inequality [30].
Hence, we can choose the auxiliary joint distribution, P̂W,Zi ,
to derive new upper bounds which are finite or tighter under
some conditions.

D. Information Measures

In our characterization of the expected generalization error
upper bounds, we will use the information measures between
two distributions PX and PX′ on a common measurable space
X , summarized in Table I. The last two divergences are α-JS
divergence1, α-Rényi divergence, which can be characterized
by (14) and (15), respectively (See their characterizations as
a convex combination of KL-divergences in Lemmas 2 and
3). They are the main divergences discussed in this paper and
defined in Table I. KL divergence, Symmetrized KL divergence,
Bhattacharyya distance, and Jensen-Shannon divergence can
be obtained as special cases of the first three divergences in
Table I.

In addition, in our expected generalization error charac-
terizations, we will also use various information measures
between two random variables X and X ′ with joint distribution
PXX′ and marginals PX and PX′ . These information measures
are summarized in Table II. Note that all these information
measures are zero if and only if the random variables X and
X ′ are independent.

E. Definitions

We offer some standard definitions that will guide our
analysis in the sequel.

Definition 1: The cumulant generating function (CGF) of a
random variable X is defined as

ΛX(λ) := logE[eλ(X−E[X])]. (16)

Assuming ΛX(λ) exists, it can be verified that ΛX(0) =
Λ′X(0) = 0, and that it is convex.

Definition 2: For a convex function ψ defined on the interval
[0, b), where 0 < b ≤ ∞, its Legendre dual ψ? is defined as

ψ?(x) := sup
λ∈[0,b)

(
λx− ψ(λ)

)
. (17)

The following lemma characterizes a useful property of the
Legendre dual and its inverse function.

Lemma 1: [40, Lemma 2.4] Assume that ψ(0) = ψ′(0) = 0.
Then, the Legendre dual ψ?(x) of ψ(x) defined above is a

1a.k.a. capacitory discrimination [31] for α = 1/2
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TABLE I
DIVERGENCE MEASURES DEFINITIONS

Divergence Measure Definition

KL divergence [32] KL(PX‖PX′) :=
∫
X PX(x) log

(
PX(x)
PX′ (x)

)
dx

α-JS divergence [33], [34]
JSα(PX′‖PX) :=

αKL (PX‖αPX + (1− α)PX′) + (1− α)KL (PX′‖αPX + (1− α)PX′)

Jensen-Shannon divergence [34]
JSD(PX′‖PX) := JS1/2(PX′‖PX)

= 1
2KL

(
PX

∣∣∣∣∣∣PX+PX′
2

)
+ 1

2KL
(
PX′

∣∣∣∣∣∣PX+PX′
2

)
α-Rényi divergence for α ∈ [0,∞) [35] Rα(PX′‖PX) := 1

α−1 log
(∫
X P

α
X(x)P 1−α

X′ (x)dx
)

Bhattacharyya distance [36]
DB(PX′‖PX) := R1/2(PX′‖PX)

= − log
(∫
X

√
PX(x)PX′(x)dx

)

TABLE II
INFORMATION MEASURES DEFINITIONS

Information Measure Definition

Mutual information I(X;X ′) := KL(PX,X′‖PX ⊗ PX′)
Lautum information [37] L(X;X ′) := KL(PX ⊗ PX′‖PX,X′)

α-JS information (0 < α < 1) IαJS(X;X ′) := JSα(PX,X′‖PX ⊗ PX′)
Jensen-Shannon information [38] IJS(X;X ′) := JSD(PX,X′‖PX ⊗ PX′)

α-Rényi information IαR(X;X ′) := Rα(PX,X′‖PX ⊗ PX′)
Sibson’s α-Mutual information [39] IαS (X;X ′) := minQX′ Rα(PX,X′‖PX ⊗QX′)

non-negative convex and non-decreasing function on [0,∞)
with ψ?(0) = 0. Moreover, its inverse function ψ?−1(y) =
inf{x ≥ 0 : ψ?(x) ≥ y} is concave, and can be written as

ψ?−1(y) = inf
λ∈[0,b)

(y + ψ(λ)

λ

)
, b > 0. (18)

Importantly, using these results, we can characterize the
tail behaviour of Sub-Gaussian random variables. A random
variable X is σ-sub-Gaussian, if ψ(λ) = σ2λ2

2 is an upper
bound on ΛX(λ), for λ ∈ R. Then by Lemma 1,

ψ?−1(y) =
√

2σ2y. (19)

The tail behaviour of sub-Exponential and sub-Gamma random
variables are introduced in [20].

III. UPPER BOUNDS ON THE EXPECTED GENERALIZATION
ERROR VIA ADM

We provide a series of bounds on the expected generalization
error of supervised learning algorithms based on different
information measures using the ADM coupled with KL
divergence.

A. α-Jensen-Shannon- based Upper Bound

In the following Theorem, we provide a new expected
generalization error upper bound based on KL divergence
by applying ADM and using KL divergences terms, KL(PW ⊗
µ‖P̂W,Zi) and KL(PW,Zi‖P̂W,Zi). All the proof details are
deferred to Appendix A.

Theorem 1: Assume that under an auxiliary joint distribution
P̂W,Zi ∈ P(W×Z) – Λ`(W,Zi)(λ) exists, it is upper bounded
by ψ+(λ) for λ ∈ [0, b+), 0 < b+ < +∞, and it is also
upper bounded by ψ−(−λ) for λ ∈ (b−, 0], ∀i = 1, · · · , n.
Also assume that ψ+(λ) and ψ−(λ) are convex functions and
ψ−(0) = ψ+(0) = ψ′+(0) = ψ′−(0) = 0. Then, it holds that:

gen(PW |S , µ) ≤ 1

n

n∑
i=1

(
ψ?−1

+ (Ai) + ψ?−1
− (Bi)

)
, (20)

−gen(PW |S , µ) ≤ 1

n

n∑
i=1

(
ψ?−1
− (Ai) + ψ?−1

+ (Bi)
)
, (21)

where Ai = KL(PW ⊗ µ‖P̂W,Zi), Bi = KL(PW,Zi‖P̂W,Zi),
ψ?−1
− (x) = infλ∈[0,−b−)

x+ψ−(λ)
λ and ψ?−1

+ (x) =

infλ∈[0,b+)
x+ψ+(λ)

λ .

Note that Theorem 1 can be applied to sub-Gaussian (19).
It can also sub-Exponential and sub-Gamma assumptions on
loss function CGF, introduced in [20].

We can utilize Theorem 1 to recover existing expected
generalization error bounds and offer new ones. For example,
we can immediately recover the mutual information bound [7]
from the following results.

Example 1: Choose P̂W,Zi = PW ⊗ µ for i = 1, · · · , n. It
follows immediately from Theorem 1 that:

gen(PW |S , µ) ≤ 1

n

n∑
i=1

ψ?−1
− (I(W ;Zi)), (22)
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−gen(PW |S , µ) ≤ 1

n

n∑
i=1

ψ?−1
+ (I(W ;Zi)). (23)

Example 2: Choose P̂W,Zi = PW,Zi for i = 1, · · · , n. It
also follows immediately from Theorem 1 that:

gen(PW |S , µ) ≤ 1

n

n∑
i=1

ψ?−1
+ (L(W ;Zi)), (24)

−gen(PW |S , µ) ≤ 1

n

n∑
i=1

ψ?−1
− (L(W ;Zi)). (25)

The result in Example 1 is the same as a result appearing in [8]
whereas the result in Example 2 extends the result appearing
in [41].

The conclusion in Theorem 1 can be extended to many
auxiliary distributions by repeatedly using ADM. In this study,
we take into account just one auxiliary distribution and use
ADM just once.

Building upon Theorem 1, we are also able to provide an
expected generalization error upper bound based on a convex
combination of KL terms, i.e.,

αKL(PW ⊗ µ‖P̂W,Zi) + (1− α)KL(PW,Zi‖P̂W,Zi),

that relies on a certain σ-sub-Gaussian tail assumption.
Proposition 1: Assume that the loss function is σ̂-sub-

Gaussian– under the distribution P̂W,Zi ∀i = 1, · · · , n– Then,
it holds ∀α ∈ (0, 1) that:

|gen(PW |S , µ)| ≤ 1

n

n∑
i=1

√
2σ̂2

(αAi + (1− α)Bi)

α(1− α)
, (26)

where Ai = KL(PW,Zi‖P̂W,Zi) and Bi = KL(PW ⊗
µ‖P̂W,Zi) .

We propose a Lemma connecting certain KL divergences to
the α-JS information.

Lemma 2: Consider an auxiliary distribution P̂W,Zi ∈
P(W ×Z). Then, the following equality holds:

αKL(PW ⊗ µ‖P̂W,Zi) + (1− α)KL(PW,Zi‖P̂W,Zi) =

IαJS(W ;Zi) + KL(P
(α)
W,Zi
‖P̂W,Zi).

Note that the proof is inspired by [42].
Using the result in Proposition 1 and ADM we can provide

a tighter upper bound. For this purpose, Lemma 2 paves the
way to apply ADM and offer a tighter version of the expected
generalization error bound appearing in Proposition 1 based
on choosing an appropriate auxiliary distribution, as well as
recover existing ones.

Theorem 2: Assume that the loss function is σ(α)-sub-
Gaussian– under the distribution P (α)

W,Zi
∀i = 1, · · · , n– Then,

it holds ∀α ∈ (0, 1) that:

|gen(PW |S , µ)| ≤ 1

n

n∑
i=1

√
2σ2

(α)

IαJS(W ;Zi)

α(1− α)
, ∀α ∈ (0, 1).

The bound in Theorem 2 results from minimizing the term
αKL(PW ⊗ µ‖P̂W,Zi) + (1 − α)KL(PW,Zi‖P̂W,Zi), in the
upper bound (26), presented in Proposition 1, over the joint
auxiliary distribution P̂W,Zi . Such an optimal joint auxiliary

distribution is P (α)
W,Zi

:= αPWPZi + (1− α)PW,Zi . Note that,
the parameter of sub-Gaussianity, denoted as σ̂ in Proposition 1,
relies on P̂W,Zi . Consequently, the upper bound mentioned in
Theorem 2 is not the minimum of the upper bound presented
in Proposition 1. However, assuming a bounded loss function,
the upper bound in Theorem 2 becomes the minimum of the
upper bound in Proposition 1.

It turns out that we can immediately recover existing bounds
from Theorem 2 depending on how we choose α.

Remark 1 (Recovering upper bound based on Jensen-
Shannon information): The expected generalization error upper
bound based on Jensen-Shannon information in [1] can be
immediately recovered by considering α = 1

2 in Theorem 2.
Remark 2 (Recovering upper bounds based on mutual infor-

mation and lautum information): The expected generalization
error upper bound based on mutual information in [8] and
lautum information in [41] can be immediately recovered by
considering α→ 1 and α→ 0 in Theorem 2, respectively.
Note that we can also establish how the bound in Theorem 2
behaves as a function of the number of training samples. This
can be done by using P̂W,Zi = PW ⊗ µ in Lemma 2, leading
up to

(1− α)I(W ;Zi) = IαJS(W ;Zi) + KL(P
(α)
W,Zi
‖PW ⊗ µ).

(27)

and in turn to the following inequality

IαJS(W ;Zi) ≤ (1− α)I(W ;Zi), ∀α ∈ (0, 1). (28)

We prove the convergence rate of the upper bound in Theorem 2
using (28).

Proposition 2: Assume the hypothesis space is finite and the
data samples, {Zi}ni=1, are i.i.d. Then, the bound in Theorem 2
has a convergence rate of O( 1√

n
).

The value of this new proposed bound presented in The-
orem 2 in relation to existing bounds can also be further
appreciated by offering two additional results.

Proposition 3: Consider the assumptions in Theorem 2. Then,
it follows that:

|gen(PW |S , µ)| ≤ σ(α)

√
2

h(α)

α(1− α)
, ∀α ∈ (0, 1), (29)

where h(α) = −α log(α)− (1− α) log(1− α).
This proposition shows that, unlike the mutual information-
based and lautum information-based generalization bounds that
currently exist (e.g. [7], [8], [9], and [11]) the proposed α-
JS information generalization bound is always finite. We can
also optimize the bound in (29) with respect to α, where the
minimum is achieved at α = 1/2.

Corollary 1: Consider the assumptions in Theorem 2. Then,
it follows that:

|gen(PW |S , µ)| ≤ 2σ(1/2)

√
2 log(2). (30)

Also, this result applies independently of whether the loss
function is bounded or not. Naturally, it is possible to show
that the absolute value of the expected generalization error is
always upper bounded as follows |gen(PW |S , µ)| ≤ (b − a)
for any bounded loss function within the interval [a, b]. If we
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consider the bounded loss functions in the interval [a, b], then
our upper bound (30) would be

√
2 log(2)(b−a) which is less

than total variation constant upper bound, 2(b− a) presented
in [15], [43].

It is worthwhile to mention that our result cannot be
immediately recovered from existing approaches such as [11,
Theorem. 2]. For example, if we consider the upper bound based
on Jensen-Shannon information, then there exist f -divergence
based representations of the Jensen-Shannon information as
follows:

JSD(PX , PX′) =

∫
dPXf

(
dPX′

dPX

)
, (31)

with f(t) = t log(t) − (1 + t) log(1+t
2 ). However, [11, The-

orem. 2] requires that the function f(t) associated with the
f -divergence is non-decreasing within the interval [0,+∞),
but such a requirement is naturally violated by the function
f(t) = t log(t)− (1 + t) log(1+t

2 ) associated with the Jensen-
Shannon divergence.

B. α-Rényi-based Upper Bound

Next, we provide a new expected generalization error upper
bound based on KL divergence by applying ADM and using
the following KL divergences terms, KL(P̂W,Zi‖PW ⊗ µ)

and KL(P̂W,Zi‖PW,Zi). All the proof details are deferred to
Appendix B.

Proposition 4: Suppose that Λ`(W,Z)(λ) ≤ γ+(λ) and
Λ`(W,Zi)(λ) ≤ φ+(λ), i = 1, · · · , n for λ ∈ [0, a+),
0 < a+ < +∞ and λ ∈ [0, c+), 0 < c+ < +∞, under
PW ⊗µ and PW,Zi , resp. We also have Λ`(W,Z)(λ) ≤ γ−(−λ)
and Λ

`(W̃ ,Z̃i)
(λ) ≤ φ−(−λ), i = 1, · · · , n for λ ∈ (a−, 0],

−∞ < a− < 0 and λ ∈ (c−, 0], −∞ < c− < 0 under PW ⊗µ
and PW,Zi , resp. Assume that γ+(λ), φ+(λ), γ−(λ) and φ−(λ)
are convex functions, γ−(0) = γ+(0) = γ′+(0) = γ′−(0) = 0
and φ−(0) = φ+(0) = φ′+(0) = φ′−(0) = 0. Then, the
following upper bounds hold,

gen(PW |S , µ) ≤ 1

n

n∑
i=1

(
γ?−1
− (Di) + φ?−1

+ (Ci)
)
, (32)

− gen(PW |S , µ) ≤ 1

n

n∑
i=1

(
φ?−1
− (Ci) + γ?−1

+ (Di)
)
, (33)

where Di = KL(P̂W,Zi‖PW ⊗ µ), Ci = KL(P̂W,Zi‖PW,Zi),
γ?−1
− (x) = infλ∈[0,−a−)

x+γ−(λ)
λ ,

γ?−1
+ (x) = infλ∈[0,a+)

x+γ+(λ)
λ , φ?−1

− (x) =

infλ∈[0,−c−)
x+φ−(λ)

λ and φ?−1
+ (x) = infλ∈[0,c+)

x+φ+(λ)
λ .

Proof: The proof approach is similar to Theorem 1 by
considering different cumulant generating functions and their
upper bounds.

Inspired by the upper bound in Proposition 4, we can provide
an upper bound on expected generalization error instantly that
is dependent on the convex combination of KL divergence
terms, i.e.,

αKL(P̂W,Zi‖PW,Zi) + (1− α)KL(P̂W,Zi‖PW ⊗ µ),

and assuming σ-sub-Gaussian tail distribution.

Proposition 5 (Upper bound with Sub-Gaussian assumption):
Assume that the loss function is σ-sub-Gaussian under distribu-
tion PW ⊗ µ and γ-sub-Gaussian under PW,Zi ∀i = 1, · · · , n–
Then, it holds for ∀α ∈ (0, 1) that,

|gen(PW |S , µ)| ≤ (34)

1

n

n∑
i=1

√
2(ασ2 + (1− α)γ2)

(αCi + (1− α)Di)

α(1− α)
,

where Ci = KL(P̂W,Zi‖PW ⊗ µ) and Di =

KL(P̂W,Zi‖PW,Zi) .
Akin to Proposition 1, the result in Proposition 5 paves the
way to offer new tighter expected generalization error upper
bound by ADM. We next offer a Lemma connecting certain
KL divergences to the α-Rényi information [35, Theorem 30].

Lemma 3: Consider an arbitrary distribution P̂W,Zi . Then,
the following equality holds for ∀α ∈ (0, 1),

αKL(P̂W,Zi‖PW ⊗ µ) + (1− α)KL(P̂W,Zi‖PW,Zi) = (35)
(1− α)IαR(W ;Zi)

+ KL

(
P̂W,Zi‖

(PZi ⊗ PW )α(PW,Zi)
(1−α)∫

W×Z(dPZi ⊗ dPW )α(dPW,Zi)
(1−α)

)
.

A tighter version of the expected generalization error bound
appears in Proposition 5 via ADM and using Lemma 3.

Theorem 3 (Upper bound based on α-Rényi information):
Consider the same assumptions in Proposition 5. The following
upper bound for ∀α ∈ (0, 1) holds,

|gen(PW |S , µ)| ≤ 1

n

n∑
i=1

√
2(ασ2 + (1− α)γ2)

IαR(W ;Zi)

α
.

(36)

The bound in Theorem 3 results from minimizing the bound
in Proposition 5 over the joint auxiliary distribution P̂W,Zi ∈
P(W ×Z). Such an optimal joint auxiliary distribution is

P̂W,Zi =
(PZi ⊗ PW )α(PW,Zi)

(1−α)∫
W×Z(dPZi ⊗ dPW )α(dPW,Zi)

(1−α)
.

Remark 3 (Deterministic algorithms per sample): If the
parameter, W , is a deterministic function of data sample Zi,
then I(W ;Zi) is not well-defined as PW,Zi is not absolutely
continuous2 with respect to PWPZi . However, by considering
the α-Rényi information for α ∈ [0, 1), we do not need to
assume the absolute continuous.

Remark 4 (Upper bound based on the Bhattacharyya
distance): We can derive the expected generalization error
upper bound based on Bhattacharyya distance by considering
α = 1/2 in Theorem 3,

|gen(PW |S , µ)| ≤ 2

n

n∑
i=1

√
(σ2 + γ2)DB(PW,Zi‖PW ⊗ µ),

Remark 5 (Recovering the upper bound based on mutual
information and lautum information): We can recover the

2We say µ � ν, i.e., µ is absolutely continuous with respect to ν if
ν(A) = 0 for some A ∈ X , then µ(A) = 0.
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expected generalization error upper bound based on mutual in-
formation in [7] and lautum information in [41] by considering
α→ 1 and α→ 0 in Theorem 3, respectively.
By considering P̂W,Zi = PW,Zi , we have,

αI(W ;Zi) = (1− α)IαR(W ;Zi) (37)

+ KL

(
PW,Zi‖

(PZi ⊗ PW )α(PW,Zi)
(1−α)∫

W×Z(dPZi ⊗ dPW )α(dPW,Zi)
(1−α)

)
.

Since that KL divergence is non-negative, based on Lemma 3
and the monotonicity of Rα with respect to α, we have,

IαR(W ;Zi) ≤ min

{
1,

α

1− α

}
I(W ;Zi). (38)

The result in (38) implies that our expected generalization
error bound based on α-Rényi information in Theorem 3
exhibits the same convergence rate as upper bound based on
mutual information [7].

Proposition 6 (Convergence rate of upper bound based on
α-Rényi information): Assume the hypothesis space is finite
and the data samples are i.i.d. Then, the upper bounds based
on α-Rényi information in Theorem 3 have a convergence rate
of O( 1√

n
).

We can also provide an upper bound based on Sibson’s
α-mutual information.

Theorem 4 (Upper bound based on Sibson’s α mutual
information): Assume that the loss function is σ-sub-Gaussian
under distribution µ for all w ∈ W and γ-sub-Gaussian under
PW,Zi , ∀i = 1, · · · , n. Then, it holds that:

|gen(PW |S , µ)| ≤ 1

n

n∑
i=1

√
2(ασ2 + (1− α)γ2)

IαS (W ;Zi)

α
.

The upper bound based on α-Rényi divergence could also
be derived using the variational representation of α-Rényi
divergence in [44]. This approach is applied in [12] by
considering the sub-Gaussianity under PZi and PZi|W . Our
approach is more general, paving the way to offer an upper
bound based on α-Sibson’s mutual information in Theorem 4,
which is derived via ADM. Since that,

IαS (W ;Zi) = min
QW∈P(W)

Rα(PW,Zi‖QW ⊗ µ) (39)

≤ Rα(PW,Zi‖PW ⊗ µ) = IαR(W ;Zi), (40)

the upper bound in Theorem 4 is tighter than the upper bound
in Theorem 3. It is worthwhile mentioning that we assume
the loss function is σ-sub-Gaussian under PW ⊗ µ distribution
in Theorem 3. However, in Theorem 4, we consider the loss
function is σ-sub-Gaussian under µ distribution for all w ∈ W .

We can also apply generalized Pinsker’s inequality [35] to
bounded loss functions for bounding the expected generaliza-
tion error using the α-Rényi information between data samples,
S, and hypothesis, W .

Proposition 7: Consider `(w, z) be a bounded loss function
i.e. |`(w, z)| ≤ b. Then

|gen(PW |S , µ)| ≤ 1

n

n∑
i=1

√
2b2

α
IαR(W ;Zi), ∀α ∈ (0, 1].

(41)

Considering the bounded loss function can help to provide an
upper bound based on α-Sibson’s mutual information between
S and W in a similar approach to Proposition 7.

C. Comparison of Proposed Upper Bounds

A summary of upper bounds on expected generalization
error under various σ-sub-Gaussian assumptions is provided
in Table III.

Remark 6 (Bounded loss function): The bounded loss
function l : W × Z → [a, b] is ( b−a2 )-sub-Gaussian under
all distributions [7]. In fact, for bounded functions, we have,

σ = γ = σ(α) =
(b− a)

2
. (42)

We next compare the upper bounds based on α-JS infor-
mation, Theorem 2, with the upper bounds based on α-Rényi
information, Theorem 3. The next proposition showcases that
the α-JS information bound can be tighter than the α-Rényi
based upper bound under certain conditions. The proof details
are deferred to Appendix C.

Proposition 8 (Comparison of upper bounds based on α′-
Jensen-Shannon and α-Rényi information measures): Consider
the same assumptions in Theorem 2. Then, it follows that
α′-Jensen-Shannon bound given by:

|gen(PW |S , µ)| ≤ 1

n

n∑
i=1

√
2σ2

(α′)

Iα
′

JS(W ;Zi)

α′(1− α′)
, 0 ≤ α′ ≤ 1

(43)
is tighter than the α-Rényi based upper bound for 0 ≤ α ≤ 1,
given by,

|gen(PW |S , µ)| ≤ 1

n

n∑
i=1

√
2(ασ2 + (1− α)γ2)

IαR(W ;Zi)

α
,

(44)

provided that αh(α′)
(1−α′)α′ ≤ IαR(W ;Zi) holds for i = 1, · · · , n

and σ(α′) = σ = γ.
Remark 7: The condition in Proposition 8, i.e. αh(α′)

(1−α′)α′ ≤
IαR(W ;Zi), could be tightened by considering α′ = 1

2
and considering the upper bound based on Jensen-Shannon
information.

Remark 8: If we consider α→ 1 and α′ = 1
2 in Proposition 8,

then the upper bound based on Jensen-Shannon information
is tighter than ones based on mutual information [8] provided
that 4 log(2) ≤ I(W ;Zi) for all i = 1, · · · , n and σ = σJS .

IV. UPPER BOUNDS ON EXCESS RISK

This section provides upper bounds on excess risks for
regularized empirical risk minimization (ERM) by α-Rényi
divergence or α-JS divergence.

A. α-JS-Regularized ERM

It is interesting to consider the regularized ERM with α-JS
information between dataset S, and hypothesis W ,

min
PW |S

E[LE(W,S)] +
1

β
IαJS(W ;S), (45)
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TABLE III
EXPECTED GENERALIZATION ERROR UPPER BOUNDS. WE COMPARED OUR BOUNDS WITH MUTUAL INFORMATION AND LAUTUM INFORMATION BOUNDS

BASED ON THE FINITENESS AND THE ASSUMPTION NEEDED FOR SUB-GAUSSIANITY.

Upper Bound Measure
sub-Gaussian
Assumption Bound Is finite?

Mutual information ( [8]) PW ⊗ µ 1
n

∑n
i=1

√
2σ2I(W ;Zi) No

Lautum information ( [41])
PW,Zi ,

∀i = 1, . . . , n
1
n

∑n
i=1

√
2γ2L(W ;Zi) No

α-JS information
(Proposition 3)

P
(α)
W,Zi

,
∀i = 1, . . . , n

1
n

∑n
i=1

√
2σ2

(α)

IαJS(W ;Zi)

α(1−α)

Yes

(σ(α)

√
2 h(α)
α(1−α) )

α-Rényi information (0 ≤ α < 1)
(Theorem 3)

PW ⊗ µ and PW,Zi ,
∀i = 1, . . . , n

1
n

∑n
i=1

√
2(ασ2 + (1− α)γ2)

IαR(W ;Zi)

α No

where β > 0 is a parameter that balances fitting and
generalization. Since the optimization problem in (45) is
dependent on the data generating distribution, µ, we relax
the problem and replace α-JS information with the α-JS
divergence JSα(PW |S‖QW |PS), as follows,

min
PW |S

E[LE(W,S)] +
1

β
JSα(PW |S‖QW |PS), (46)

where QW ∈ P(W) is a prior distribution over parameter
space.

Lemma 4 (Solution existence of α-JS-regularized ERM): The
optimization problem in (46) is a convex optimization problem
and has a solution.

Proof: The first term in objective E[LE(W,S)] is linear
in term of PW |S and the second term 1

β JSα(PW |S‖QW |PS)
is convex in PW |S for 0 < α < 1 due to [45]. Therefore, a
solution exists.
Let us define the solution of (45),

P ?,β,JSα
W |S :=

arg min
PW |S∈P(W)

E[LE(W,S)] +
1

β
JSα(PW |S‖QW |PS).

In the following, we provide an upper bound on excess risk
under P ?,β,JSα

W |S as a learning algorithm.

Theorem 5 (Upper bound on excess risk under P ?,β,JSα
W |S ):

Assume the bounded loss function, i.e., |`(w, z)| ≤ b for all
(w, z) ∈ W ×Z and L̃-Lipschitz. Then, the following upper
bound holds on the excess risk under P ?,β,JSα

W |S ,

Er(P ?,β,JSα
W |S , µ) ≤

√√√√ 2b2

nα(1− α)

n∑
i=1

IαJS(W ;Zi)

+
L̃
√
d

β
+

JSα(N (w?, β−1Id)‖Q)

β
,

where w? = arg minw∈W Lµ(w) and Id is identity matrix with
size d.

Corollary 2 (Convergence rate of excess risk for under
P ?,β,JSα
W |S ): Under the same assumptions in Theorem 5, assum-

ing that hypothesis space is finite and β is of order
√
n, the

following upper bound holds on excess risk of P ?,β,JSα
W |S with

convergence rate of O(n−1/2),

Er(P ?,β,JSα
W |S , µ) ≤

√√√√ 2b2

nα(1− α)

n∑
i=1

IαJS(W ;Zi)

+
L̃
√
d√
n

+
h(α)√
n
,

Remark 9 (Comparison to the Gibbs algorithm): Our
convergence rate of the upper bound on the excess risk under
P ?,β,JSα
W |S is less than the convergence rate of the upper bound

on excess risk under the Gibbs algorithm as the solution of
KL-regularized empirical which is O(n−1/4), [7, Corollary 3]
and [46].

B. α-Rényi-Regularized ERM

Similarly, it is interesting to consider the regularized ERM
with α-Rényi-information between dataset, S, and hypothesis,
W , for 0 < α < 1,

min
PW |S

E[L(W,S)] +
1

β
IαR(W ;S), (47)

where β > 0 is a parameter that balances fitting and
generalization.

Since the optimization problem in (47) is dependent on the
data generating distribution, µ, we propose to relax the problem
in (47) by replacing α-Rényi- information, i.e. IαR(W ;S), with
Rα(PW |S‖QW |PS) as follows,

min
PW |S

E[LE(W,S)] +
1

β
Rα(PW |S‖QW |PS), (48)

where QW ∈ P(W).
Lemma 5 (Solution existence of α-Rényi-regularized ERM):

The optimization problem considered in (48) is a convex
optimization problem.

Proof: The first term in objective E[LE(W,S)] is linear
in term of PW |S and the second term 1

βRα(PW |S‖QW |PS)
is convex in PW |S for 0 < α < 1 due to [35, Theorem 11].
Therefore, a solution exists.
Let us define

P ?,β,RαW |S := arg min
PW |S∈P(W)

E[LE(W,S)]+
1

β
Rα(PW |S‖QW |PS),
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as the solution of convex optimization problem (48).
Theorem 6 (Upper bound on excess risk under P ?,β,RαW |S ):

Assume the bounded loss function, i.e., |`(w, z)| ≤ b for all
(w, z) ∈ W ×Z and L̃-Lipschitz. Then, the following upper
bound holds on the excess risk under P ?,β,RαW |S ,

Er(P ?,β,RαW |S , µ) ≤

√√√√2b2

nα

n∑
i=1

IαR(W ;Zi)

+
L̃
√
d

β
+

Rα(N (w?, β−1Id)‖Q)

β
,

where w? = arg minw∈W Lµ(w) and Id is identity matrix with
size d.

Corollary 3 (Convergence rate of excess risk under P ?,β,RαW |S ):
Under the same assumptions in Theorem 6, assuming that
hypothesis space is finite and β is of order

√
n, the following

upper bound holds on the excess risk of P ?,β,RαW |S with
convergence rate of O(log(n)/

√
n),

Er(P ?,β,RαW |S , µ) ≤

√√√√2b2

nα

n∑
i=1

IαR(W ;Zi)

+
L̃
√
d√
n

+
1

2
√
n
‖w?‖22 +

d

4
√
n

log
(
n
)

+
d

2
√
n(1− α)

log
(
α
)
.

V. EXPECTED GENERALIZATION ERROR UPPER BOUNDS
UNDER DISTRIBUTION MISMATCH

In this section, we extend our results in Section III under
distribution mismatch, where the training data distribution
differs from the test data distribution. All the proof details are
deferred to Appendix E.

Proposition 9: Assume that the loss function is σ(α)-sub-
Gaussian – under the distributions P (α)

W,Zi
∀i = 1, · · · , n and

αµ + (1 − α)µ′ for all w ∈ W – Then under distribution
mismatch (6), it holds ∀α ∈ (0, 1) that:

|gen(PW |S , µ, µ
′)| ≤

√
2σ2

(α)

JSα(µ′‖µ)

α(1− α)
(49)

+
1

n

n∑
i=1

√
2σ2

(α)

IαJS(W ;Zi)

α(1− α)
, ∀α ∈ (0, 1).

Proposition 10: Assume that the loss function is σ-sub-
Gaussian under distributions µ and µ′ for all w ∈ W and also
γ-sub-Gaussian under PW,Zi ∀i = 1, · · · , n. The following
upper bound for ∀α ∈ (0, 1) holds,

|gen(PW |S , µ, µ
′)| ≤

√
2(ασ2 + (1− α)γ2)

Rα(µ′‖µ)

α
(50)

+
1

n

n∑
i=1

√
2(ασ2 + (1− α)γ2)

IαR(W ;Zi)

α
.

The mismatch between the test and training samples distri-
butions is characterised in [21, Theorem 5] as KL divergence
between test and training samples distributions, i.e., KL(µ′‖µ).
However, assuming that the loss function is σ(α)-sub-Gaussian
under αµ+ (1− α)µ′ for all w ∈ W , Proposition 9 allows us

to explain the distributional mismatch in terms of α-Jensen-
Shannon divergence, which is finite.

In Proposition 10, the distributional mismatch is presented
in terms of α-Rényi divergence, i.e., Rα(µ′‖µ). If µ′ is
not absolutely continuous with respect to µ, then we have
KL(µ′‖µ) =∞. However, for α-Rényi divergence (0 < α <
1), it suffices that the mutual singularity [35], i.e., µ′ ⊥⊥ µ,
does not hold, which is a less restrictive condition about µ′

compared to the absolutely continuity condition.
Similar to Remark 6, the sub-Gaussianity assumptions in

Propositions 9 and 10 hold for bounded loss functions.

VI. NUMERICAL EXAMPLE

In this section, we illustrate that some of our proposed
bounds can be tighter than existing ones in a simple toy
example. We consider the α-JS and α-Rényi information only.
Our example setting involves the estimation of the mean of a
Gaussian random variable Z ∼ N (β, σ2) based on two i.i.d.
samples Z1 and Z2. We consider the hypothesis (estimate) given
by W = tZ1 + (1− t)Z2 for 0 < t < 1. We also consider the
loss function given by `(w, z) = min((w − z)2, c2).

Due to the fact that the loss function is bounded within the
interval [0, c2], then it is c2

2 -sub-Gaussian under all distributions.
Therefore, we can apply the expected generalization error upper
bounds based on mutual information, α-JS information and
α-Rényi information ∀α ∈ (0, 1) as follows:

gen(PW |Z1,Z2
, PZ) ≤ c2

4

(√
2I(W ;Z1) +

√
2I(W ;Z2)

)
,

(51)

gen(PW |Z1,Z2
, PZ) ≤ c2

4

(√
2
IαJS(W ;Z1)

α(1− α)
+

√
2
IαJS(W ;Z2)

α(1− α)

)
,

(52)

gen(PW |Z1,Z2
, PZ) ≤ c2

4

(√
2
IαR (W ;Z1)

α
+

√
2
IαR (W ;Z2)

α

)
.

(53)

It can be immediately shown that W ∼ N (β, σ2(t2 +(1−t)2))
and (W,Z1) and (W,Z2) are jointly Gaussian with correlation
coefficients ρ1 = t√

t2+(1−t)2
and ρ2 = (1−t)√

t2+(1−t)2
. Therefore,

it can be shown that the mutual information appearing above
is given by I(W ;Z1) = − 1

2 log(1 − ρ2
1) and I(W ;Z2) =

− 1
2 log(1− ρ2

2). In contrast, the α-JS information appearing
above can be computed via an extension of entropic-based
formulation of the Jensen-Shannon measure as follows [34]:

IJS(W ;Zi) = (54)

h
(
P

(α)
W,Zi

)
− (αh(PW ) + αh(PZi) + (1− α)h(PZi,W )),

– with h(·) denoting the differential entropy – where

h(PZi) =
1

2
log(2πσ2),

h(PW ) =
1

2
log(2πσ2(t2 + (1− t)2)),

h(PW,Zi) = log(2πσ2(t2 + (1− t)2)(1− ρ2
i )),

whereas h
(
P

(α)
W,Zi

)
can be computed numerically.
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Fig.1 depicts the true generalization error, the mutual
information based bound in (51), and the α-JS information
based bound for α = 0.25, 0.5, 0.75 in (52) for values of
t ∈ (0, 0.5], considering σ2 = 1, 10, µ = 1, c = σ

4 .
It can be seen that for α = 0.75 the α-JS information bound

is tighter than the mutual information bound. For α = 0.5,
which is equal to traditional Jensen-Shannon information, if
we consider t < 0.25 then the Jensen-Shannon information
bound is tighter than the mutual information bound; in contrast,
for t > 0.25, the mutual information bound is slightly better
than the Jensen-Shannon information bound. This showcases
that our proposed bounds can be tighter than existing ones in
some regimes. Fig.2 also depicts the true generalization error,

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Fig. 1. True generalization error, α-JS based bound for α = 0.25, 0.5, 0.75,
and Mutual Information based bound.

the mutual information based bound in (51), and the α-Rényi
information based bound for α = 0.25, 0.5, 0.75 in (53). It can
be seen that the α-Rényi based bound is looser than the mutual
information based bound. In our experiment setup, when t→ 0
(or t → 1), we have I(W ;Z2) → ∞ (or I(W ;Z1) → ∞).
However, the α-Rényi based bound is finite.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fig. 2. True generalization error, α-Rényi based bound for α =
0.25, 0.5, 0.75, and Mutual Information based bound.

VII. CONCLUSION AND FUTURE WORKS

We have presented the Auxiliary Distribution Method,
a novel approach for deriving information-theoretic upper
bounds on the generalization error within the context of
supervised learning problems. Our method offers the flexibility
to recover existing bounds while also enabling the derivation
of new bounds grounded in the α-JS and α-Rényi information
measures. Notably, our upper bounds, which are rooted in the
α-JS information measure, are finite, in contrast to mutual
information-based bounds. Moreover, our upper bound based
on α-Rényi information, for α ∈ (0, 1), remains finite when
considering a deterministic learning process. An intriguing
observation is that our newly introduced α-JS information
measure can, in certain regimes, yield tighter bounds compared
to existing approaches. We also discuss the existence of
algorithms under α-JS-regularized and α-Rényi-regularized
empirical risk minimization problems and provide upper bounds
on excess risk of these algorithms, where the upper bound
on the excess risk under α-JS-regularized empirical risk
minimization is tighter than other well-known upper bounds
on excess risk. Furthermore, we provide an upper bound
on generalization error in a mismatch scenario, where the
distributions of test and training datasets are different, via our
auxiliary distribution method.

As a direction for future research, we propose extending our
bounds to the PAC-Bayesian framework, leveraging the α-JS
and α-Rényi divergences for 0 < α < 1. Additionally, the
conditional technique based on individual sample measures, as
described in [18], could be applied to improve the effectiveness
of our upper bounds.
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APPENDIX A
PROOF OF SECTION III-A

Proof of Theorem 1: The proofs of the bounds to
gen(PW |S , µ) and −gen(PW |S , µ) are similar. Therefore, we
focus on the latter.

Let us consider the Donsker–Varadhan variational represen-
tation of KL divergence between two probability distributions
α and β on a common space Ψ given by [47]:

KL(α‖β) = sup
f

∫
Ψ

fdα− log

∫
Ψ

efdβ, (55)

where f ∈ F = {f : Ψ→ R s.t. Eβ [ef ] <∞}.
Using the Donsker-Varadhan representation to bound

KL(PW,Zi‖P̂W,Zi) for λ ∈ (b−, 0] as follows:

KL(PW,Zi‖P̂W,Zi) ≥ (56)

EPW,Zi [λ`(W,Zi)]− logEP̂W,Zi [e
λ`(W,Zi)] ≥

λ(EPW,Zi [`(W,Zi)]− EP̂W,Zi [`(W,Zi)])− ψ−(−λ), (57)
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where the last inequality is due to:

Λ`(W,Zi)(λ) = (58)

log
(
EP̂W,Zi [e

λ(`(W,Zi)−EP̂W,Zi
[`(W,Zi)])

]
)
≤ ψ−(−λ).

It can then be shown from (57) that the following holds for
λ ∈ (b−, 0]:

EP̂W,Zi [`(W,Zi)]− EPW,Zi [`(W,Zi)] ≤ (59)

inf
λ∈[0,−b−)

KL(PW,Zi‖P̂W,Zi) + ψ−(λ)

λ
=

ψ?−1
− (KL(PW,Zi‖P̂W,Zi)). (60)

It can likewise also be shown by adopting similar steps that
the following holds for λ ∈ [0, b+):

EPW,Zi [`(W,Zi)]− EP̂W,Zi [`(W,Zi)] ≤ (61)

inf
λ∈[0,b+)

KL(PW,Zi‖P̂W,Zi) + ψ(λ)

λ
=

ψ?−1
+ (KL(PW,Zi‖P̂W,Zi)). (62)

We can similarly show using an identical procedure that:

EPW⊗µ[`(W,Zi)]− EP̂W,Zi [`(W, Ẑi)]

≤ ψ?−1
+ (KL(PW ⊗ µ‖P̂W,Zi)) (63)

EP̂W,Zi [`(W, Ẑi)]− EPW⊗µ[`(W,Zi)]

≤ ψ?−1
− (KL(PW ⊗ µ‖P̂W,Zi)). (64)

Finally, we can immediately bound the expected generaliza-
tion error by leveraging (63) and (59) as follows:

gen(PW |S , µ) =
1

n

n∑
i=1

EPW⊗µ[`(W,Zi)]− EPW,Zi [`(W,Zi)]

=
1

n

n∑
i=1

EPW⊗µ[`(W,Zi)]− EP̂W,Zi [`(W,Zi)]+

EP̂W,Zi [`(W,Zi)]− EPW,Zi [`(W,Zi)]

≤ 1

n

n∑
i=1

(
ψ?−1

+ (Ai) + ψ?−1
− (Bi)

)
,

where Ai = KL(PW ⊗ µ‖P̂W,Zi) and Bi =

KL(PW,Zi‖P̂W,Zi).

Proof of Proposition 1:
The assumption that the loss function is σ-sub-Gaussian un-

der the distribution P̂W,Zi implies that ψ?−1
− (y) = ψ?−1

+ (y) =√
2σ2y, [8].
Consider arbitrary auxiliary distributions {P̂W,Zi}ni=1 defined

on W ×Z .

gen(µ, PW |S) = EPWPS [LE(W,S)]− EPW,S [LE(W,S)]

=
1

n

n∑
i=1

EPWPZi [`(W,Zi)]− EPWZi
[`(W,Zi)] (65)

≤ 1

n

n∑
i=1

∣∣EPWPZi [`(W,Zi)]− EPWZi
[`(W,Zi)]

∣∣ (66)

Using the assumption that the loss function `(w, zi) is σ̂2-
sub-Gaussian under distribution P̂W,Zi and Donsker-Varadhan
representation for KL(PWZi‖P̂W,Zi), we have:

λ
(
EPW,Zi [`(W,Zi)]− EP̂W,Zi [`(W,Zi)]

)
≤ (67)

KL(PWZi‖P̂W,Zi) +
λ2σ̂2

2
. ∀λ ∈ R

Using the assumption loss that the function `(w, zi) is σ̂2-
sub-Gaussian under distribution P̂W,Zi and Donsker-Varadhan
representation for KL(P̂W,Zi‖PWPZi), we have:

λ′
(
EPWPZi [`(W,Zi)]− EP̂W,Zi [`(W,Zi)]

)
≤ (68)

KL(PWPZi‖P̂W,Zi) +
λ′

2
σ̂2

2
. ∀λ′ ∈ R

Now if we consider λ < 0, then we can choose λ′ = α
α−1λ.

Hence we have:

EP̂W,Zi [`(W,Zi)]− EPW,Zi [`(W,Zi)] ≤ (69)

KL(PW,Zi‖P̂W,Zi)
|λ|

+
|λ|σ̂2

2
. ∀λ ∈ R−

and,

EPWPZi [`(W,Zi)]− EP̂W,Zi [`(W,Zi)] ≤ (70)

KL(PWPZi‖P̂W,Zi)
λ′

+
λ′σ̂2

2
. ∀λ′ ∈ R+

Now sum up two Inequalities (69) and (70).

EPWPZi [`(W,Zi)]− EPWZi
[`(W,Zi)] ≤ (71)

αKL(PW,Zi‖P̂W,Zi) + (1− α)KL(PWPZi‖P̂W,Zi)
α|λ|

+

|λ|σ̂2

2
+
|λ| α1−α σ̂

2

2
, ∀λ ∈ R−.

Similarly, using an identical approach, we also obtain:

−
(
EPWPZi [`(W,Zi)]− EPWZi

[`(W,Zi)]
)
≤ (72)

αKL(PW,Zi‖P̂W,Zi) + (1− α)KL(PWPZi‖P̂W,Zi)
αλ

+

λσ̂2

2
+
λ α

1−α σ̂
2

2
, ∀λ ∈ R+.

Considering (71) and (72), we have a nonnegative parabola
in λ, whose discriminant must be nonpositive, and we have
∀α ∈ (0, 1):∣∣EPWPZi [`(W,Zi)]− EPWZi

[`(W,Zi)]
∣∣2 ≤ (73)

2σ̂2

(
αKL(PW,Zi‖P̂W,Zi) + (1− α)KL(PWPZi‖P̂W,Zi)

)
α(1− α)

.

Now using (65), we prove the claim.

Proof of Lemma 2:

αKL(PW ⊗ PZi‖P̂W,Zi) + (1− α)KL(PW,Zi‖P̂W,Zi) (74)

=

∫
W×Z

α(dPW ⊗ dPZi) log(dPW ⊗ dPZi) (75)
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+

∫
W×Z

(1− α)dPW,Zi log(dPW,Zi)

−
∫
W×Z

((α(dPW ⊗ dPZi) + (1− α)dPW,Zi) log(dP̂W,Zi))

=

∫
W×Z

α(dPW ⊗ dPZi) log(dPW ⊗ dPZi) (76)

+

∫
W×Z

(1− α)dPW,Zi log(dPW,Zi)− dP
(α)
W,Zi

log(dP̂W,Zi)

+

∫
W×Z

dP
(α)
W,Zi

log(dP
(α)
W,Zi

)− dP
(α)
W,Zi

log(dP
(α)
W,Zi

)

= IαJS(W ;Zi) + KL(P
(α)
W,Zi
‖P̂W,Zi). (77)

Proof of Theorem 2: As shown in [48], and by considering
the Lemma 2 we have

min
P̂W,Zi

αKL(PW ⊗ µ‖P̂W,Zi) + (1− α)KL(PW,Zi‖P̂W,Zi) =

(78)

min
P̂W,Zi

IαJS(W ;Zi) + KL(P
(α)
W,Zi
‖P̂W,Zi).

As we have 0 ≤ KL(P
(α)
W,Zi
‖P̂W,Zi), therefore, the minimum

of (26) is achieved with P̂W,Zi = P
(α)
W,Zi

. Now, considering
P̂W,Zi = P

(α)
W,Zi

in Proposition 1, completes the proof.
Proof of Proposition 2:

Using (27),

IαJS(W ;Zi) ≤ (1− α)I(W ;Zi), (79)

we have:

|gen(PW |S , µ)| ≤ 1

n

n∑
i=1

√
2σ2

(α)

IαJS(W ;Zi)

α(1− α)
(80)

≤ 1

n

n∑
i=1

√
2σ2

(α)

I(W ;Zi)

α
(81)

≤
√

2σ2
(α)

∑n
i=1 I(W ;Zi)

αn
(82)

≤
√

2σ2
(α)

I(W ;S)

αn
(83)

≤
√

2σ2
(α)

H(W )

αn
, (84)

where the final result would follow from the finite hypothesis
space.

Proof of Proposition 3: This proposition follows from
the fact that IαJS(W,Zi) ≤ h(α) for i = 1, · · · , n.

We prove that IαJS(W,Zi) ≤ h(α).

IαJS(W,Zi) = (85)

αKL(PW ⊗ PZi‖P
(α)
W,Zi

) + (1− α)KL(PW,Zi‖P
(α)
W,Zi

)

= α

∫
W×Z

dPW ⊗ dPZi log

(
dPW ⊗ dPZi

dP
(α)
W,Zi

)
(86)

+ (1− α)

∫
W×Z

dPW,Zi log

(
dPW,Zi

dP
(α)
W,Zi

)

≤ α
∫
W×Z

dPW ⊗ dPZi log

(
dPW ⊗ dPZi

α(dPW ⊗ dPZi)

)
(87)

+ (1− α)

∫
W×Z

dPW,Zi log

(
dPW,Zi

(1− α)dPW,Zi

)
= −α log(α)− (1− α) log(1− α) (88)
= h(α). (89)

Proof of Corollary 1: We first compute the derivative of
h(α)

α(1−α) with respect to α ∈ (0, 1)

d h(α)
α(1−α)

dα
=

log(1− α)

α2
− log(α)

(1− α)2
. (90)

Now for α = 1
2 , we have

d
h(α)
α(1−α)

dα = 0.

APPENDIX B
PROOFS OF SECTION III-B

Proof of Proposition 5: Consider arbitrary auxiliary
distributions {P̂W,Zi}ni=1 defined on W ×Z . Then,

gen(PW |S , µ) = EPWPS [LE(W,S)]− EPW,S [LE(W,S)]

=
1

n

n∑
i=1

EPWPZi [`(W,Zi)]− EPWZi
[`(W,Zi)] (91)

≤ 1

n

n∑
i=1

∣∣EPWPZi [`(W,Zi)]− EPWZi
[`(W,Zi)]

∣∣ (92)

≤ 1

n

n∑
i=1

∣∣EP̂W,Zi [`(W,Zi)]− EPWZi
[`(W,Zi)]

∣∣ (93)

+
∣∣EP̂W,Zi [`(W,Zi)]− EPWPZi [`(W,Zi)]

∣∣.
Using the assumption that loss function `(w, zi) is γ2-

sub-Gaussian under distribution PW,Zi and Donsker-Varadhan
representation we have:

λ
(
EP̂W,Zi [`(W,Zi)]− EPWZi

[`(W,Zi)]
)
≤ (94)

KL(P̂W,Zi‖PWZi) +
λ2γ2

2
, ∀λ ∈ R.

Using the assumption that `(w,Z) is σ2-sub-Gaussian under
PW ⊗ PZi , and again Donsker-Varadhan representation we
have:

λ′
(
EP̂W,Zi [`(W,Zi)]− EPWPZi [`(W,Zi)]

)
≤ (95)

KL(P̂W,Zi‖PWPZi) +
λ′

2
σ2

2
. ∀λ′ ∈ R

Note that EPWPZi [`(W,Zi)− EPZi [`(W,Zi)]] = 0.
Now if we consider λ > 0, then we choose λ′ = α

α−1λ.
Hence we have

EP̂W,Zi [`(W,Zi)− EPW,Zi [`(W,Zi)]] ≤ (96)

KL(P̂W,Zi‖PWZi)

λ
+
λγ2

2
, ∀λ ∈ R+.
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Using the assumption that `(w,Z) is σ2-sub-Gaussian and
again Donsker-Varadhan representation,

− EP̂W,Zi [`(W,Zi)− EPWPZi [`(W,Zi)]] ≤ (97)

KL(P̂W,Zi‖PWPZi)
|λ′|

+
|λ′|σ2

2
, ∀λ′ ∈ R−.

Now sum up two Inequalities (96) and (97), to obtain

EPWPZi [`(W,Zi)]− EPWZi
[`(W,Zi)] ≤ (98)

αKL(P̂W,Zi‖PW,Zi) + (1− α)KL(P̂W,Zi‖QWPZi)
αλ

+

λγ2

2
+
λ α

1−ασ
2

2
, ∀λ ∈ R+.

Considering (98), we have a nonnegative parabola in λ, whose
discriminant must be nonpositive, and we have:∣∣EPWPZi [`(W,Zi)]− EPWZi

[`(W,Zi)]
∣∣ ≤ (99)√

2(ασ2 + (1− α)γ2)
(αCi + (1− α)Di)

α(1− α)
,

where Ci = KL(P̂W,Zi‖PW ⊗ µ) and Di =

KL(P̂W,Zi‖PW,Zi) . Finally, we prove the claim using
(91).

Proof of Theorem 3: Using Lemma 3, we have:

min
P̂W,Zi

αKL(P̂W,Zi‖PW ⊗ µ) + (1− α)KL(P̂W,Zi‖PW,Zi) =

(1− α)IαR(W ;Zi)

+ min
P̂W,Zi

KL

(
P̂W,Zi‖

(PZi ⊗ PW )α(PW,Zi)
(1−α)∫

W×Z(dPZi ⊗ dPW )α(dPW,Zi)
(1−α)

)
.

Now by considering the dP̂W,Zi =
(dPZi⊗dPW )α(dPW,Zi )

(1−α)∫
W×Z(dPZi⊗dPW )α(dPW,Zi )

(1−α) , the KL term would be
equal to zero. The final result holds by using Proposition 5.

Proof of Lemma 3:

Our proof is based on [35, Theorem 30]. For 0 ≤ α ≤ 1,
we have:

αKL(P̂W,Zi‖PW ⊗ µ) + (1− α)KL(P̂W,Zi‖PW,Zi) (100)

=

∫
W×Z

dP̂W,Zi log(dP̂W,Zi) (101)

−
∫
W×Z

P̂W,Zi log((dPW ⊗ dPZi)
α(dPW,Zi)

(1−α))

=

∫
W×Z

dP̂W,Zi log(dP̂W,Zi) (102)

−
∫
W×Z

dP̂W,Zi log
(
(dPW ⊗ dPZi)

α(dPW,Zi)
(1−α)

)
+ log

(∫
W×Z

(dPW ⊗ dPZi)
α(dPW,Zi)

(1−α)
)

− log

(∫
W×Z

(dPW ⊗ dPZi)
α(dPW,Zi)

(1−α)
)

= − log

(∫
W×Z

(PW ⊗ dPZi)
α(dPW,Zi)

(1−α)
)

(103)

+

∫
W×Z

dP̂W,Zi log(dP̂W,Zi)

−
∫
W×Z

dP̂W,Zi log

(
(dPW ⊗ dPZi)

α(dPW,Zi)
(1−α)∫

W×Z(dPW ⊗ dPZi)
α(dPW,Zi)

(1−α)

)
= (1− α)IαR(W ;Zi) (104)

+KL

(
P̂W,Zi‖

(PZi ⊗ PW )α(PW,Zi)
(1−α)∫

W×Z(dPZi ⊗ dPW )α(dPW,Zi)
(1−α)

)
.

Proof of Proposition 6: Using (38),

IαR(W ;Zi) ≤
α

1− α
I(W ;Zi), (105)

and considering the hypothesis space is finite and the upper
bound in Theorem 3, we have:

|gen(PW |S , µ)| ≤ 1

n

n∑
i=1

√
2(ασ2 + (1− α)γ2)

IαR(W ;Zi)

α

(106)

≤ 1

n

n∑
i=1

√
2(ασ2 + (1− α)γ2) min

{
1

α
,

1

1− α

}
I(W ;Zi)

(107)

≤

√
2(ασ2 + (1− α)γ2) min

{
1

α
,

1

1− α

} ∑n
i=1 I(W ;Zi)

n

(108)

≤

√
2(ασ2 + (1− α)γ2) min

{
1

α
,

1

1− α

}
I(W ;S)

n
(109)

≤

√
2(ασ2 + (1− α)γ2) min

{
1

α
,

1

1− α

}
H(W )

n
(110)

≤

√
2(ασ2 + (1− α)γ2) min

{
1

α
,

1

1− α

}
log(k)

n
,

where (108) follows from Jensen inequality and (109) follows
from i.i.d assumption for Zi’s.

Proof of Theorem 4: Consider arbitrary auxiliary distri-
butions {P̃W,Zi}ni=1 defined on W ×Z .

gen(PW |S , µ) = EPWPS [LE(W,S)]− EPW,S [LE(W,S)]

=
1

n

n∑
i=1

EPWPZi [`(W,Zi)]− EPWZi
[`(W,Zi)] (111)

≤ 1

n

n∑
i=1

∣∣EPWPZi [`(W,Zi)]− EPWZi
[`(W,Zi)]

∣∣ . (112)

Using the assumption centered loss function `(w, zi) −
EPZi [`(w,Zi)] is γ2-sub-Gaussian under distribution PW,Zi
and Donsker-Varadhan representation by considering function
`(w, zi)− EPZi [`(w,Zi)] we have:

λ

(
EP̃W,Zi [`(W,Zi)− EPZi [`(W,Zi)]] (113)

− EPWZi
[`(W,Zi)− EPZi [`(W,Zi)]]

)
≤ KL(P̃W,Zi‖PWZi) +

λ2γ2

2
. ∀λ ∈ R

Note that EPWZi
[`(W,Zi) − EPZi [`(W,Zi)]] =

EPWZi
[`(W,Zi)]− EPWPZi [`(W,Zi)].
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Using the assumption that `(w,Z) is σ2-sub-Gaussian under
PZi for all w ∈ W , and again Donsker-Varadhan representation
by considering function `(w, zi)− EPZi [`(w,Zi)] we have:

λ′
(
EP̃W,Zi [`(W,Zi)− EPZi [`(W,Zi)]] (114)

− EQWPZi [`(W,Zi)− EPZi [`(W,Zi)]]
)

≤ KL(P̃W,Zi‖QWPZi) +
λ′

2
σ2

2
. ∀λ′ ∈ R

Note that EQWPZi [`(W,Zi)− EPZi [`(W,Zi)]] = 0.
Now if we consider λ > 0, then we choose λ′ = α

α−1λ.
Hence we have

EP̃W,Zi [`(W,Zi)− EPZi [`(W,Zi)]] (115)

− EPWZi
[`(W,Zi)− EPZi [`(W,Zi)]]

≤ KL(P̃W,Zi‖PWZi)

λ
+
λγ2

2
, ∀λ ∈ R+.

Using the assumption `(w,Z) is σ2-sub-Gaussian and again
Donsker-Varadhan representation,

− EP̃W,Zi [`(W,Zi)− EPZi [`(W,Zi)]] ≤ (116)

KL(P̃W,Zi‖QWPZi)
|λ′|

+
|λ′|σ2

2
, ∀λ′ ∈ R−.

Now sum up the two Inequalities (115) and (116) to obtain,

EPWPZi [`(W,Zi)]− EPWZi
[`(W,Zi)] ≤ (117)

αKL(P̃W,Zi‖PW,Zi) + (1− α)KL(P̃W,Zi‖QWPZi)
αλ

+

λγ2

2
+
λ α

1−ασ
2

2
, ∀λ ∈ R+.

Taking infimum on P̃W,Zi and using [35, Theorem 30] that
states

(1−α)Rα(P1‖P2) = inf
R
{αKL(R‖P1) + (1−α)KL(R‖P2)}

Now, we have:

(1− α)Rα(PW,Zi‖QWPZi) = (118)

inf
P̃W,Zi

{αKL(P̃W,Zi‖PW,Zi) + (1− α)KL(P̃W,Zi‖QWPZi)}

and taking infimum on QW , we have:

inf
QW

Rα(PW,Zi‖QWPZi) = IαS (Zi;W ). (119)

Using (119) in (117), we get:

EPWPZi [`(W,Zi)]− EPWZi
[`(W,Zi)] ≤ (120)

(1− α)Isα(Zi;W )

λα
+
λγ2

2
+
λ α

1−ασ
2

2
∀λ ∈ R+.

Using the same approach for λ ∈ R−, we have:

EPWZi
[`(W,Zi)]− EPWPZi [`(W,Zi)] ≤ (121)

(1− α)Isα(Zi;W )

|λ|α
+
|λ|γ2

2
+
|λ| α1−ασ

2

2
, ∀λ ∈ R−.

Considering (120) and (121), we have a non-negative parabola
in λ, whose discriminant must be non-positive, and we have:∣∣EPWPZi [`(W,Zi)]− EPWZi

[`(W,Zi)]
∣∣ ≤ (122)√

2(ασ2 + (1− α)γ2)
IαS (Zi;W )

α
.

We prove the claim using (91).

Proof of Proposition 7: The Generalized Pinsker’s
inequality is introduced in [35], as follows,

TV(P,Q)2 ≤ 2

α
Rα(P‖Q), α ∈ (0, 1], (123)

where TV(P,Q) =
∫
X |P (dx)−Q(dx)|. Denote f : X → R

a bounded function |f | ≤ L, then

EP [f(X)]− EQ[f(X)] = (124)∫
f(x)(P (dx)−Q(dx)) ≤

sup
x
f(x) ·

∫
|P (dx)−Q(dx)| ≤ L

√
2

α
Rα(P‖Q).

Let P = PW,Z , Q = PWPZ and f(w, z) = Lµ(w)−LE(w, z).
Then, we have the final result,

gen(PW |S , µ) =
1

n

n∑
i=1

E[Lµ(W )− LE(W,Zi)]

≤ 1

n

n∑
i=1

√
2b2

α
Rα(PW,Zi‖PWPZi).

APPENDIX C
PROOF OF SECTION III-C

Proof of Proposition 8: It follows from

IαJS(W ;Zi) ≤
h(α′)

α′(1− α′)
,

that if we have αh(α′)
α′(1−α′) ≤ IαR(W ;Zi) for all i = 1, · · · , n,

then the results holds for σ = γ = σJS .

APPENDIX D
PROOFS OF SECTION IV

Proof of Theorem 5: Let us define PN := N (w?, β−1Id)
and w? := arg infw∈W Lµ(w).

Er(P ?,β,JSα
W |S , µ)

≤
∣∣gen(P ?,β,JSα

W |S , µ)
∣∣+ EPS⊗P?,β,JSαW |S

[LE(W,S)]− Lµ(w?)

≤

√√√√ 2b2

nα(1− α)

n∑
i=1

IαJS(W ;Zi) + EPS⊗PN [LE(W,S)]− Lµ(w?)

+
JSα(N (w?, β−1Id)‖Q)

β

≤

√√√√ 2b2

nα(1− α)

n∑
i=1

IαJS(W ;Zi) + EPN [Lµ(W )]− Lµ(w?)
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+
JSα(N (w?, β−1Id)‖Q)

β

≤

√√√√ 2b2

nα(1− α)

n∑
i=1

IαJS(W ;Zi) + EPN [Lµ(w?)

+ L̃‖W − w?‖2]− Lµ(w?) +
JSα(N (w?, β−1Id)‖Q)

β

≤

√√√√ 2b2

nα(1− α)

n∑
i=1

IαJS(W ;Zi) +
L̃
√
d

β

+
JSα(N (w?, β−1Id)‖Q)

β
,

Note that L̃EPN [‖W − w?‖2] = L̃d
β .

Proof of Theorem 6: The proof is similar to Proof
of Theorem 5, by replacing the second inequality with the
following inequality,

Er(P ?,β,RαW |S , µ) ≤
∣∣gen(P ?,β,RαW |S , µ)

∣∣
+ EPS⊗P?,β,JSαW |S

[LE(W,S)]− Lµ(w?)

≤

√√√√ 2b2

nα(1− α)

n∑
i=1

IαR(W ;Zi)

+ EPS⊗PN [LE(W,S)]− Lµ(w?) +
Rα(N (w?, β−1Id)‖Q)

β

Proof of Corollary 2: Using the boundedness of α-JS
divergence in Theorem 5, we have,

Er(P ?,β,JSα
W |S , µ) ≤

√√√√2b2

nα

n∑
i=1

IαR(W ;Zi) +
L̃
√
d

β
+
h(α)

β
,

where h(α) = −α log(α) − (1 − α) log(1 − α). Therefore,
by setting β = n1/2, the convergence rate of excess risk is
O(1/

√
n).

Proof of Corollary 3:

We consider the normal distribution as prior, i.e., Q =
N (0, Id), in Theorem 6. Then, we can compute the α-Rényi di-
vergence between two multivariate Gaussian distributions [49],

Rα(N (w?, β−1Id)‖N (0, Id)) =
α

2
‖w?‖22(α+ (1− α)β−1)−1

+
d

2(α− 1)
log
( βα−1

α+ (1− α)β−1

)
.

Then, the following upper bound holds on the excess risk under

P ?,β,RαW |S ,

Er(P ?,β,RαW |S , µ) ≤

√√√√2b2

nα

n∑
i=1

IαR(W ;Zi) +
L̃
√
d

β

+
α

2β
‖w?‖22(α+ (1− α)β−1)−1

+
d

2β(α− 1)
log
( β(α−1)

α+ (1− α)β−1

)
≤

√√√√2b2

nα

n∑
i=1

IαR(W ;Zi) +
L̃
√
d

β

+
1

2β
‖w?‖22 +

d

2β
log
(
β
)

+
d

2β(1− α)
log
(
α
)
.

APPENDIX E
PROOFS OF SECTION V

We first propose the following Lemma to provide an upper
bound on the expected generalization error under distribution
mismatch.

Lemma 6: The following upper bound holds on expected
generalization error under distribution mismatch between the
test and training distributions:

|gen(PW |S , µ, µ
′)| ≤ (125)

|gen(PW |S , µ)|+ |EPW⊗µ′ [`(W,Z)]− EPW⊗µ[`(W,Z)]|.

Proof: We have:

|gen(PW |S , µ, µ
′)| (126)

= |EPW,S [LP (W,µ′)− LP (W,µ) + LP (W,µ)− LE(E,S)]|
≤ |EPW,S [LP (W,µ′)− LP (W,µ)]|+ |gen(PW |S , µ)|
= |EPW⊗µ′ [`(W,Z)]− EPW⊗µ[`(W,Z)]|+ |gen(PW |S , µ)|

Proof of Proposition 9: In Lemma 6, the generalization
error under distribution mismatch can be upper bounded
by two terms. Considering Theorem 2, we can provide the
upper bound based on α-Jensen-Shannon information over
|gen(PW |S , µ)|. We can also provide an upper bound on the
term |EPW⊗µ′ [`(W,Z)] − EPW⊗µ[`(W,Z)]| in Lemma 6 by
applying ADM using a similar approach as in Theorem 2 and
using the α-Jensen-Shannon divergence as follows:

|EPW⊗µ′ [`(W,Z)]− EPW⊗µ[`(W,Z)]| (127)

≤

√
2σ2

(α)

JSα(PW ⊗ µ′‖PW ⊗ µ)

α(1− α)
(128)

=

√
2σ2

(α)

JSα(µ′‖µ)

α(1− α)
. (129)

Proof of Proposition 10: Based on Lemma 6, the
generalization error is upper bounded by two terms (See
Equation (125)). We can provide the upper bound based
on α-Rényi information over |gen(PW |S , µ)| using Theo-
rem 3. We can also provide an upper bound on the term
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|EPW⊗µ′ [`(W,Z)] − EPW⊗µ[`(W,Z)]| by applying ADM
using a similar approach as in Theorem 3 and using α-Rényi
divergence as follows:

|EPW⊗µ′ [`(W,Z)]− EPW⊗µ[`(W,Z)]| (130)

≤
√

2(ασ2 + (1− α)γ2)
Rα(PW ⊗ µ′‖PW ⊗ µ)

α
(131)

=

√
2(ασ2 + (1− α)γ2)

Rα(µ′‖µ)

α
. (132)
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