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Abstract

Background: The anti-IgE monoclonal antibody omalizumab is
widely used for severe asthma. This study aimed to identify
biomarkers that predict clinical improvement during 1 year of
omalizumab treatment.

Methods: One-year open-label Study of Mechanisms of action of
Omalizumab in Severe Asthma (SoMOSA) involving 216 patients
with severe (Global Initiative for Asthma step 4/5) uncontrolled
atopic asthma (at least two severe exacerbations in the previous
year) taking high-dose inhaled corticosteroids and long-acting
b-agonists with or without maintenance oral corticosteroids. It
had two phases: 0–16weeks, to assess early clinical improvement
by Global Evaluation of Therapeutic Effectiveness (GETE); and
16–52weeks, to assess late responses based on >50% reduction in
exacerbations or mOCS dose. All participants provided samples
(exhaled breath, blood, sputum, urine) before and after 16weeks
of omalizumab treatment.

Measurements and Main Results: A total of 191 patients
completed phase 1; 63% had early improvement. Of 173 who
completed phase 2, 69% had reduced exacerbations by >50% and
57% (37 of 65) taking mOCSs had reduced their dose by >50%.
The primary outcomes 2,3-dinor-11-b-PGF2a, GETE score, and
standard clinical biomarkers (blood and sputum eosinophils,
exhaled nitric oxide, serum IgE) did not predict either clinical
response. Five volatile organic compounds and five plasma lipid
biomarkers strongly predicted the >50% reduction in
exacerbations (receiver operating characteristic areas under the
curve of 0.780 and 0.922, respectively) and early responses (areas
under the curve of 0.835 and 0.949, respectively). In an
independent cohort, gas chromatography/mass spectrometry
biomarkers differentiated between severe and mild asthma.

Conclusions: This is the first discovery of omics biomarkers
that predict improvement in asthma with biologic agent
treatment. Prospective validation and development for clinical
use is justified.
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The anti-IgEmonoclonal antibody
omalizumab (Xolair) is widely used to reduce
asthma exacerbations and the need for oral
corticosteroids (OCSs) in severe allergic
asthma (1–3), but there is no reliable way to
predict its benefit. In current practice, patients
with at least two severe exacerbations in the
previous year requiringOCSs are given a
16-week therapeutic trial, and the response is
assessed using theGlobal Evaluation of
Treatment Effectiveness (GETE) (4), a clinical
tool based solely on the physician’s assessment.
GETE responders are then advised to continue
treatment and undergo review after 1 year of
treatment for a reduction in severe acute
asthma exacerbations or dose ofmaintenance
OCSs (mOCSs). Although usingGETE
enriches the responder population (4), a
significant proportion of selected patients do
not benefit in the long term, and theremay be
GETEnonresponders who show a response
later. Thus, there is an unmet need for
predictive biomarkers to optimize the use of
omalizumab.

Studies evaluating standard, simple-to-
measure clinical biomarkers as predictors of
clinical response to omalizumab have had
inconsistent results (5); none have assessed
biomarker combinations. To improve our
understanding of themechanisms of action of
omalizumab and identify predictive
biomarkers for clinical practice, we designed a
real-world Study ofMechanisms of action of
Omalizumab in Severe Asthma (SoMOSA). In
this article, the focus is on identifying
biomarkers that predict which patients show

improvement with treatment.We
hypothesized that omics biomarkers
(“breathomics,” proteomics, lipidomics) and
urine eicosanoids in readily obtained samples
(exhaled breath, blood, sputum, urine) can
predict early responses (usingGETE at 16wk)
and late responses (>50% reduction in acute
exacerbations ormOCS dose during the first
year of treatment), outcomes that are the
rationale for prescribing biologic agents.We
measuredmore than 1,400 omics variables
developed by theUnbiased Biomarkers
Predictive of RespiratoryDisease outcomes
(U-BIOPRED) program (6, 7), including the
prostaglandinD2metabolite 2,3-dinor-11b-
PGF2a and LTE4 (leukotriene E4), whose
concentrationswe have previously found to be
lower in patients with severe asthma treated
with omalizumab than in patients receiving
standard treatment (8). The predictive value of
omics biomarkers was comparedwithGETE
score and standard clinical practice
biomarkers (fractional exhaled nitric oxide
[FENO], blood and sputum eosinophil counts,
serum IgE). Evidence of the clinical relevance
of the identified predictive biomarkers was
then sought in datasets from two independent
cohorts: U-BIOPRED (6, 7) and the
Massachusetts General Brigham (MGB)
Biobank (9).

Methods

Study Design and Clinical Assessment
in the Core SoMOSA Study
This was an open-label, real-world study; all
participants received standard-of-care

omalizumab andmet current inclusion
criteria. After 16weeks of treatment (study
phase 1), patients were evaluated by GETE
score for early responses. At study end (52
wk), late responses were defined as a>50%
decrease in asthma exacerbations or dose of
mOCSs between 16 and 52weeks of
treatment (phase 2). Asthma severity and
control were assessed using the Asthma
Control Questionnaire 7, Asthma Control
Test, and Standardized Asthma Quality of
Life Questionnaire. In contrast to standard
practice, patients considered nonresponders
based on the GETE assessment were also
invited to continue treatment in phase 2. The
study protocol was approved by theWales
Research Ethics Committee 5, Bangor
(15-WA-0302), and patients provided
written informed consent.

Two independent cohorts, U-BIOPRED
and theMGB Biobank, provided data used to
seek additional clinical value of any identified
predictive biomarkers in SoMOSA.

Participants
For the core SoMOSA study in patients
from 17 tertiary severe asthma clinics, the
inclusion criteria were severe asthma (Global
Initiative for Asthma step 4/5) that was
uncontrolled (Asthma Control Questionnaire
score>1.5, atopic, at least two severe
exacerbations in the past year) despite high-
dose inhaled corticosteroids and long-acting
b-agonists with or without mOCSs, serum
total IgE concentration 30–1,500 IU/ml,
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and age 18–70years (see online supplement
for complete criteria).

Biomarker datasets from two
independent cohorts were identified as
suitable for additional analysis of the
biomarkers shown in the core SoMOSA
cohort as predictive of clinical responses to
omalizumab: the U-BIOPRED study (10) and
theMGB Biobank (see online supplement for
details of cohorts andmethods).

Standard and Omics Biomarkers
In the SoMOSA study, patients provided
exhaled breath, blood, induced sputum, and

morning urine samples before and after
16weeks of treatment. Four analytical omics
methods that are able to quantify large
numbers of biomarkers (6, 7) were applied
and compared for predictive efficacy with
biomarkers often used in clinics (blood and
sputum eosinophil counts and FENO) and
with the GETE-based early clinical response
tool. Ultra–high-performance liquid
chromatography (LC)–tandemmass
spectrometry (MS) measured urine
concentrations of 14 arachidonic acid–derived
eicosanoids (11). Exhaled breath was analyzed
by twomethods: 1) gas chromatography
(GC)–MS for individual volatile organic
compounds (VOCs) and 2) a combination of
electronic nose (eNose) cross-reactive sensors
(12) that produced signatures without VOC
identities. Intact lipids in sputum and plasma
were measured by ultra–high-performance
supercritical fluid chromatography–ion
mobility–tandemMS (13). Quantitative data-
independent LC/HDMSE (liquid
chromatography/high-definitionmass
spectrometry) was used to measure proteins
in sputum andmorning urine (7).

The omics methods applied in the
U-BIOPRED study were broadly the same as
those used in SoMOSA, with some technical
advances in the latter. Plasma samples from
theMGB Biobank underwent global
metabolomic profiling (Metabolon) using
untargeted LC-MS platforms, which includes
amines, amino acids, and polar and nonpolar
lipids (14). See online supplement for more
details of U-BIOPRED andMGB Biobank
analytical methods.

Power Calculation and Statistical
Analysis
The change in the urine prostaglandin D2

metabolite 2,3-dinor-11b-PGF2a from
baseline to 16weeks after the initiation of
omalizumab was the selected as the primary
outcome and for power calculation using
data from a U-BIOPRED study comparing
asthmatic subjects taking and not taking
omalizumab (8). Omics biomarkers were
prespecified as coprimary outcomes because
power calculations are not possible for
unbiased omics biomarkers. Assuming 66%
of participants would show a response
(2:1 ratio of responders to nonresponders),
194 completed participants were required,
with sample size adjustment allowed
depending on the final ratio of responders
to nonresponders. The same calculation
was used to compare exacerbation
responders and nonresponders. The same

participant number was assumed to
be required to test the hypothesis that
2,3-dinor-11b-PGF2a in urine would be
reduced in participants with a>50%
reduction in exacerbations (see online
supplement for more details).

Initial analysis of treatment effects on
patient-reported outcomes, FEV1%
predicted, FENO, and blood and sputum
eosinophil counts was performed with
analysis of covariance or quantile regression
models depending on the distribution of the
data. For the omics analysis, missing values
were addressed as previously described
(7, 13), excluding from analysis molecules
with detection rates across samples below
,40% for proteins and 60% for lipids.
Because of differences in methodology
between lipidomics and proteomics,
missingness was dealt with differently:
lipidomics data were imputed using 50% of
the lowest limit of detection, whereas, for
proteomics, we used median levels to
minimize identification of false-positive
markers. Data were batch-corrected for
location, defining GETE score and
exacerbations as outcomes of interest to
preserve variation. Features that detected
contaminants due to sample collection and/or
processing were removed. Data were then
split 50/50 into training and test cohorts; the
latter was analyzed after a final model was
produced on the training cohort. Feature
selection was performed on the training data.
The equal Gini estimator sought to identify
the top five predictive features for each omics
platform data set, which were then used to
train the final machine learning prediction
model using a random forest algorithm, with
fivefold cross-validation repeated three times.
After training, the prediction model was
tested on the test cohort, and the results were
plotted as receiver operating characteristic
(ROC) curves. Comparisons of identified
predictive biomarkers from the core
SoMOSA study were made using the
U-BIOPRED andMGB Biobank datasets
using two-sampleWilcoxon tests applied to
participants with severe andmild to moderate
asthma in the former and omalizumab
responders and nonresponders in the latter.
Sparse partial least squares discriminant
analysis was applied to the U-BIOPRED data
set to assess whether those groups of
biomarkers identified by random forest
analysis to predict clinical responses could
differentiate between those with severe and
mild/moderate asthma and between
patients taking omalizumab and not taking
omalizumab.

At a Glance Commentary

Scientific Knowledge on the
Subject: The mechanisms of action
of the anti-IgE biologic agent
omalizumab in asthma are poorly
understood, and commonly
measured biomarkers (exhaled nitric
oxide, serum IgE, eosinophils)
cannot reliably predict the clinical
response to treatment. In the age of
stratified medicine, the search for
reliable ways to predict clinical
responses to biologic agents must be
extended to the spectrum of omics
biomarkers that have transformed
our understanding of the
mechanisms of asthma.

What This Study Adds to the
Field: This is the first study to
provide proof of concept that omics
methods can prospectively identify
biomarkers that predict to a high
degree whether patients respond to
omalizumab based on a >50%
reduction in acute exacerbations.
This study offers a set of volatile
organic compounds as the most
promising biomarkers for the
prediction of clinical response and a
set of plasma biomarkers for which
laboratory methods to measure
individual biomarkers would be
needed. Prospective studies
comparing clinical responses in
patients selected by these
biomarkers with those selected
according to criteria used in current
practice are needed to validate the
candidate biomarkers identified in
our study for use in clinical practice.
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Results

Analysis of the SoMOSA Study Data
Of 811 initially assessed patients, 217 were
enrolled; 191 successfully completed phase 1,

173 completed phase 2, and 43 withdrew
(Figure 1 and Tables E1 and E2 in the online
supplement). In keeping with the
prespecified allowance to adjust the required
number of patients completing the study,

recruitment stopped after 191 patients
completed phase 1.

Clinical responses. Based on GETE
score at 16weeks, 121 of 191 patients (63%)
were classified as early responders (Table 1).

SoMOSA CONSORT Diagram

Enrollment

After 16 weeks of treatment

Primary Endpoint
Analysis

After 52 weeks of treatment

Assessed for eligibility (n=811)

Registered (n=216)

Excluded (n=595)
��Not meeting inclusion criteria (n=450)
� Declined to participate (n=90)
� Other reasons (n=2)
� Unknown (n=8)
� Eligible, not approached (n=44)
� Eligible, approached, consented but
 did not enter study (n=1)

Withdrawn (n=25)
��Protocol violation (n=1)
� Lost to follow-up (n=3)
� Withdrawal by participant (n=8)
� Clinician’s decision (n=3)
� Adverse event (n=4)
� Pregnancy (n=2)
� Other reasons (n=4)

Withdrawn (n=18)
��Withdrawal by participant (n=11)
� Clinician’s decision (n=1)
� Adverse event (n=1)
� Pregnancy (n=3)
� Other reasons (n=2)

��Reached Visit 7 (n=191)
� With primary endpoint available (n=187)

��Reached Visit 17 (n=173)

Exacerbation population
analyzed (n=169)

OCS population
analyzed (n=65)

GETE population
analyzed (n=191)

��Exacerbation population (n=4)
� OCS population (n=108)

Unable to assess response

Figure 1. Consolidated Standards of Reporting Trials diagram. OCS=oral corticosteroid.
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The majority (n=173; 91%) completed
phase 2; of those, 120 (71%) were late
responders based on a>50% reduction in
acute exacerbation (Table 1) unrelated to age,
sex, smoking history, or body mass index (see
Table E2). Of 65 patients takingmOCSs, 37
(57%) reduced the dose by>50% without
losing asthma control (Table 1). Among early
responders not taking mOCSs, 71.6% also
met late-responder criteria; similarly, 70.7%
of late responders not initially taking mOCSs
were also early responders. Among patients
takingmOCSs at enrolment, 80% of early
responders met the criteria for late responders
by acute exacerbations or mOCS use. Taking
these two late response criteria together, 62%
of late responders were also early responders,
whereas 63% of early non responders (44 of
70), who would normally be asked to stop
treatment, were shown in phase 2 to be late
responders based on reduced exacerbations,
reduction inmOCS use, or both. Thus, of 36
GETE nonresponders not takingmOCSs, 24
(67%) had a positive response in phase 2. Of
the 34 GETE nonresponders usingmOCSs

before treatment, 20 (59%) had a positive
response in phase 2.

The numbers of responders and
nonresponders based on exacerbation
reduction (120 and 49, respectively) or GETE
score (121 and 70, respectively) were deemed
sufficient to split the cohort into training and
test sets. In contrast, the numbers of
responders by mOCS reduction (37 and 28,
respectively) were too small for analysis.

Biomarker measurements. A total of
1,408 variables passed quality control.
Because individual biomarker molecules can
result in multiple MS variables that require
deconvolution to produce single variables,
the 1,408 variables were reduced to 14
eicosanoids, 70 breath VOCs, 112 sputum
proteins, and 147 urine proteins. A further
158 eNose variables provided signatures
without molecular identities. Of the 589 lipid
variables in plasma and 305 in sputum,
identities were determined only if
concentrations were different between
responders and nonresponders (86 in plasma
and 25 in sputum).

Baseline differences in biomarkers
between responders and nonresponders.
Baseline concentrations of 2,3-dinor-11b-
PGF2a (primary outcome) did not
differentiate early or late responders and
nonresponders (Figure 2 and Figure E1).
Even though baseline LTE4 was significantly
(P=0.018) higher in early responders, LTE4
and other eicosanoid levels did not
differentiate late responders and
nonresponders (Figure 2). The same was true
for FENO, blood and sputum eosinophil
counts, and IgE (Table 1). In contrast, a total
of 368 omics variables were different between
responders and nonresponders across the
four omics platforms (Figure 3): 103, 143,
and 122 when comparing responses by
GETE, exacerbation reduction, and mOCS
use reduction, respectively, 67 being different
for more than one outcome.

Prediction of clinical responses to oma-
lizumab by random forest analysis. The 2,3-
dinor-11b-PGF2a did not predict the early
GETE-based response (ROC AUC, 0.556)
or>50% exacerbation reduction during

Figure 2. Urine eicosanoids, 2,3-dinor-11-b-PGF2a, and LTE4 (leukotriene E4). (A) Baseline concentrations of 2,3-dinor-11b-PGF2a (primary
outcome) and LTE4 (pg/ml) in patients defined as responders or nonresponders based on Global Evaluation of Therapeutic Effectiveness score.
(B) Changes in concentrations of 2,3-dinor-11-b-PGF2a and LTE4 in the entire cohort (responders and nonresponders) from baseline to 16weeks
analyzed by Mann-Whitney U test. (C) Receiver operating characteristic area under the curve for 2,3-dinor-11b-PGF2a in respect to the
prediction of early (Global Evaluation of Therapeutic Effectiveness–based) and late (acute exacerbation–based) response to omalizumab.
AUC=area under the curve; GETE=Global Evaluation of Therapeutic Effectiveness; OCS=oral corticosteroid.
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phase 2 (ROCAUC, 0.542) (Figure 2),
nor did the other urine eicosanoids
(data not shown). Similarly, GETE, FENO,
blood or sputum eosinophil counts, and
serum IgE (Figure E2) did not predict
exacerbation reductions.

Analysis of all the omics platforms
showed that breathomics and plasma
lipidomics predicted early and late responses
(Figure 4), whereas the other omics
platforms had weak predictive value
(Table E3). One set of five exhaled breath
VOCs (benzothiazole, acetophenone, 2-
pentyl-furan, methylene chloride, 2-methyl-
butane) predicted early improvement (ROC
AUC, 0.835); another set of VOCs (2-ethyl-
1-hexanol, toluene, 2-pentene, nonanal, and
a VOC of unknown identity detected as
X79.175 by GC-MS) predicted a>50%
exacerbation reduction (ROCAUC, 0.780).
Two sets of five plasma lipids were highly
predictive of early and late clinical responses
(ROCAUCs, 0.949 and 0.922, respectively).
The plasma lipids that predicted early
responses consisted of four triglycerides
(TG[54:6], TG[56:7], TG[55:2], and

TG[52:3]) and a currently unidentified lipid.
A further set predicted exacerbation
reductions; of these, only one could be
identified in lipid databases or the wider
literature, namely the sphingomyelin peak
for SM(d40:2), likely comprising a
combination of SM(d18:2/22:0), SM(d16:1/
24:1), and SM(d18:1/22:1) molecular species
(15). Two further peaks were putatively
identified as TG52:3 and ceramide.

Effect of treatment on eicosanoids and
standard biomarkers. Urinary 2,3-dinor-11-
b-PGF2a decreased significantly (P=0.029)
after 16weeks of treatment, with no
difference between responders and
nonresponders (Figure 2). LTE4 was also
reduced (P, 0.001), but to a similar extent
in responders and nonresponders (Figure 2).
The other urine eicosanoids did not change
(data not shown).

In the entire cohort, omalizumab
reduced blood and sputum eosinophil
numbers during phase 1 (P, 0.001 and
P, 0.023, respectively) and FENO and blood
eosinophils during phase 2 (P=0.022,
P, 0.001, respectively), but these changes

were not related to treatment responses
except for FENO, which was reduced more in
early responders (P=0.014); however,
neither FENO nor any of the other standard
biomarkers discriminated late responders
and nonresponders by ROC analysis in
isolation or when combined (see Figure E2).
We also stratified patients according to FENO
and blood eosinophil count cutoff values
used by Hanania and colleagues (2) as
biomarker-high or -low when assessing their
clinical response to omalizumab. We found
that such stratification did not predict which
stratum of patients would respond to
omalizumab (Figure E3). Similarly, time to
the first protocol-defined asthma
exacerbation, as demonstrated by Kaplan-
Meier curves, was no different (Figure E4)
between these strata of patients.

Analysis of the identified predictive
biomarkers in the U-BIOPRED and MGB
Biobank. A search of the U-BIOPRED data
undertaken for matching VOCs and plasma
lipids showed that several of the candidate
biomarkers we found to be predictive of
responses to omalizumab were able to
differentiate between individuals with severe
atopic asthma andmild/moderate asthma
(see online supplement for full details) in the
U-BIOPRED cohort. In theMGB Biobank,
the concentrations of plasma sphingomyelin
(sphingomyelin d18:1/22:1, d18:2/22:0,
d16:1/24:1) were significantly (P=0.03)
lower in responders to omalizumab than in
nonresponders.

Discussion

To our knowledge, this is the first study to
use a multi-omics approach to identify
predictive biomarkers for severe asthma,
providing proof of concept that breathomics
and plasma lipidomics biomarkers can
predict who benefits from omalizumab
during the first 16weeks of treatment and
who shows a>50% reduction in
exacerbations during the first year of
treatment. In an independent cohort, the
biomarkers identified in SoMOSA were
shown to differentiate between
mild/moderate and severe asthma, including
those with more frequent exacerbations who
would be candidates for treatment with
omalizumab. Development of these
biomarkers has significant potential to give
patients, their medical teams, and payers
more certainty of achieving reduced
exacerbations with omalizumab, a key
objective of asthma treatment.

Figure 3. Volcano plots of baseline concentrations of all biomarker variables in responders and
nonresponders. Responses shown include early response judged by GETE response (A) and late
response defined by >50% reduction in exacerbations (B). The red and blue biomarkers (all
P, 0.05) are labeled by numbers (see Table E4 for identities). Green and red dots represent greater
than onefold different biomarkers. The data are shown as the means of concentrations in the
responders from which the means of the concentrations in the nonresponders have been subtracted
(i.e., responder minus nonresponder). They are shown as log2-transformed data. The P values were
obtained by Mann-Whitney U test. GETE=Global Evaluation of Therapeutic Effectiveness.
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Consistent with previously reported
efficacy, 63% of patients showed
improvement within 16weeks of starting
treatment, which suggests that the enrolled
cohort is representative of the typical patient
considered for omalizumab. In our study,
GETE, the clinical tool widely used to assess
clinical response to omalizumab, did not
predict late improvement (see Figure E2);
indeed, many patients classified by GETE as
non–early responders had a late response
(i.e., reduced exacerbations or mOCS use).
Although 2,3-dinor-11B-PGF2a, the
coprimary outcome used for power
calculation, was reduced significantly with
treatment, the changes were similar in
responders and nonresponders, and baseline
concentrations did not predict early or late

improvement (Figure 2). Similarly, none of
the standard biomarkers currently used in
asthmamanagement (FENO, sputum and
blood eosinophil counts, and serum IgE) had
predictive value (see Figure E2).

Breathomics is a growing field in
medicine (16). There are several types of
eNoses that provide signatures, but not
identities of VOCs, andMSmethods like
GC-MS effectively predict clinical and
therapeutic outcomes. Whereas the
combination of eNose cross-reactive sensors
could not predict clinical improvement, five
VOCs (2-ethyl-1-hexanol, toluene,
2-pentene, and one unknown VOC) derived
by GC-MS confidently predicted the
reductions in exacerbations, whereas a
separate set of five GC-MS–derived VOCs

(benzothiazole, acetophenone, 2-pentyl-
furan, methylene chloride, and 2-methyl-
butane) predicted good early responses.
Together, these VOCs differentiated between
individuals with mild/moderate asthma and
atopic severe asthma (ROC AUC, 0.931) and
betweenmild/moderate asthma and severe
asthma prone to exacerbations (at least two
exacerbations per year), a cutoff for initiating
treatment with a biologic agent. Many of
these VOCs have been reported in
respiratory studies. Nonanal is associated
with neutrophilic asthma and smoking; it has
been able to predict exacerbations and
discriminate between allergic and nonallergic
asthma in children (17–19). Toluene, a
common organic solvent, is increased in
smokers (20), is related to environmental

Figure 4. Breath volatile organic compounds (VOCs) and plasma lipids that predict early or late clinical responses. (A) The biomarker identities
of the VOCs were derived from the variables detected by gas chromatography–mass spectrometry, whereas the identities of the plasma lipids
were derived from the variables detected by ultra–high-performance supercritical fluid chromatography–ion mobility–tandem mass spectrometry.
Receiver operating characteristic area under the curve figures show predictions by VOCs (B) and lipids (C) of early clinical responses judged
by GETE score and late responses by reduction in asthma exacerbations. See Table E3 for the receiver operating characteristic area under the
curve values for the other omics platforms (sputum lipids, sputum proteins, urine proteins, and eicosanoids). AUC=area under the curve;
GETE=Global Evaluation of Therapeutic Effectiveness
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exposure (21), and has also been associated
with asthma (22).We have previously found
nonanal within a group of exhaled breath
biomarkers in patients with cystic fibrosis with
sputumpositive for Pseudomonas aeruginosa
(23). The predictive set in our study also
included 2-ethyl-1-hexanol, for which there is
prior evidence of a role in asthma and in lung
cancer (reviewed by Sola-Martinez and
coworkers [24]). It is a known indoor
pollutant and themainmetabolite of di(2-
ehylhexyl)phthalate, a solvent and frequent
plasticizer of polyvinylchloride.
Concentrations of 2-ethyl-1-hexanol sampled
in ambient air are negligible comparedwith
those in exhaled breath (24), suggesting that, if
it is in part inhaled, it is concentrated in the
lungs. 2-ethyl-1-hexanol is produced in
greater quantities by cancer cells (25).Within
the lungs, it acts as an endocrine-disrupting
chemical and is associatedwith oxidative
stress andmodulation of immune responses
(26). The hydrocarbon 2-pentene, also a
solvent and known byproduct of thermal
cracking of petroleum, is found in ambient air.
It is also a volatile compound derived from
lipid peroxidation, with increased
concentrations found byGC-MS in the
headspace of bacterial cultures (27). Among
theGC-MS variables that predicted early
improvement, three have been reported in
respiratory conditions: acetophenone in
patients with cystic fibrosis with Pseudomonas
aeruginosa (23) and 2-pentylfurane in patients
withAspergillus fumigatus (28). Analysis of
VOCs in exhaled breath that diagnose
ventilator-associated pneumonia has proposed
a set of 12 predictive VOCs, among them 2-
methyl-butane (29).We could not find any
similar reports for benzothiazole.

Lipidomic analysis of plasma also
identified two sets of predictive biomarkers.
Early improvement was predicted by four
triglycerides and one unknown lipid species.
In comparison to our understanding of the
roles of leukotrienes, knowledge of other
lipids in asthma is limited, although obesity
is strongly associated with asthma. Serum
triglyceride levels are higher in obese people
with asthma, even when adjusted for body
mass index, blood eosinophils, and statin
treatment (30). A recent lipidomics study
that identified more than 1,300 plasma lipid
species showed that triglyceride levels, albeit
different from the ones in our analysis,
differentiated asthma from health and were
related to asthma severity (31), with
ceramides being related to asthma severity, in
keeping with the findings in our study.

Ceramide exacerbates inflammation, mucus
production, and endoplasmic reticulum
stress, and increased levels are associated
with airway hyperresponsiveness, a key
feature of asthma (32). However, these lipids
were not good at differentiating between
severe andmild/moderate asthma and
asthma with frequent exacerbations in the
U-BIOPRED study; even though
concentrations of plasma triglyceride 52:3
and one unidentified lipid were significantly
higher in those with severe atopic asthma
and in those with at least two exacerbations
per year, the ROC AUC indicated weak
differentiation (see online supplement). Of
note, however, comparison of responders
and nonresponders to omalizumab (defined
by>50% reduction in exacerbations) in the
MGB cohort showed significantly lower
concentrations of sphingomyelin (d18:1/22:1,
d18:2/22:0, d16:1/24:1) in responders.

This study has limitations. It could be
argued that we should have used a classical
randomized controlled trial design, despite
ample precedent of similar study design in
oncology. Our discussions with the patient
advisory group strongly favored a real-world
study design, arguing that a placebo arm
would be unethical because it would deny
patients a drug known to improve a severe
condition and that recruitment into a placebo-
controlled trial would be difficult because
omalizumab is readily available and patients
expect to be treated. The fact that study
recruitment took 26months and required
engagement of 17 severe asthma centers with
exclusive rights to prescribe biologic agents
justified this decision. The other limitation of
the study is that there were too few patients in
whommOCS treatment was reduced by
>50%, a measure that is very relevant to
patients because of OCS side effects.

The identified biomarkers should be
viewed as candidate biomarkers that require
confirmation in a prospective study in which
treatment efficacy in patients selected based
on these biomarkers would be compared
with efficacy in patients selected based on
standard clinical criteria. Further studies are
also needed to elucidate how these
biomarkers are involved in asthma
pathogenesis. Prospective validation of the
candidate biomarkers should focus on
breathomics, an easy-to-apply platform,
possibly in combination with plasma lipid
measurements. In view of the cost of
developing routine analytical methods, the
development of single-platform assays is
likely to be easier, more acceptable to
patients, and less expensive. Although lipids

had greater predictive power (AUC.0.9)
than the VOC biomarkers (AUCs, 0.835 for
early and 0.780 for late responses),
breathomics is, in our view, a superior omics
platform because of easier sample collection,
more certainty about the VOC identities and,
most importantly, easier development of
point-of-care instruments for clinical use.
Further elucidation of the detected lipids
would likely be more complex and costly,
and, with uncertain outcomes, riskier.�
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