

1 **Secondary stroke prevention in patients with atrial fibrillation**

2

3 **Author list:**

4 Professor David J Seiffge¹, Virginia Cancelloni² MD, Professor Lorenz Räber³, Maurizio
5 Paciaroni², MD; Professor Andreas Metzner^{4,5}, Professor Paulus Kirchhof^{4,5,6}, Professor Urs
6 Fischer^{1,7}, Professor David J Werring⁸, Professor Ashkan Shoamanesh⁹, Professor Valeria
7 Caso²

8

9 1 Department of Neurology, Inselspital University Hospital Bern and University of Bern,
10 Switzerland

11 2 Stroke Unit, Santa Maria della Misericordia Hospital, University of Perugia, Perugia, Italy

12 3 Department of Cardiology, Inselspital University Hospital Bern and University of Bern,
13 Switzerland

14 4 Department of Cardiology, University Heart and Vascular Center Hamburg, University
15 Center Hamburg Eppendorf, Hamburg, Germany

16 5 German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck,
17 Germany

18 6 Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK

19 7 Department of Neurology, University Hospital Basel, Switzerland

20 8 Stroke Research Centre, UCL Queen Square Institute of Neurology, London, United
21 Kingdom

22 9 Department of Medicine (Division of Neurology), Population Health Research Institute /
23 McMaster University, Hamilton, Canada

24

25 **Corresponding author:**

26 Prof. Dr. David Seiffge

27 Department of Neurology

28 Inselspital, University Hospital Bern

29 Freiburgstrasse 18, CH-3010 Bern

30 Email: david.seiffge@insel.ch

31 Telefone: 0041-31-66 40 509

32

33

1 **Word count:**
2 Title: 64 characters
3 Abstract: 208 words
4 Manuscript: 5638
5 Tables: 4 + 4 panels
6 Figures: 4
7 References: 134
8
9 Key words: atrial fibrillation, ischaemic stroke, oral anticoagulation, rhythm control, left atrial
10 appendage

1 **Summary:**

2 Atrial fibrillation is one of the most frequent cardiac arrhythmias and a major cause of ischaemic
3 stroke. Secondary prevention aims to reduce the risk of recurrent ischaemic stroke using oral
4 anticoagulants, mainly direct oral anticoagulants. Recent findings indicate the importance of
5 atrial fibrillation burden (device-detected/subclinical - paroxysmal – persistent/permanent) and
6 whether atrial fibrillation was known before stroke onset or diagnosed after stroke for the risk
7 of recurrence.

8 In this review, we summarize and discuss advances in secondary prevention in patients with
9 ischaemic stroke and atrial fibrillation including the latest results from randomized controlled
10 trials assessing the optimal timing to introduce direct oral anticoagulant therapy after a recent
11 stroke. We further highlight promising developments regarding
12 early rhythm control, left atrial appendage occlusion and novel factor XI inhibitor oral
13 anticoagulants, which all have the potential to further reduce the risk of stroke.

14 We highlight an important clinical dilemma of secondary prevention in patients with atrial
15 fibrillation that have breakthrough strokes despite oral anticoagulation therapy. We discuss the
16 heterogeneous spectrum of causes and current approaches as well as future options for
17 secondary prevention in this vulnerable patient group. Finally, we report the latest data from
18 randomized controlled trials on stroke prevention in patients with atrial fibrillation and a history
19 of intracerebral haemorrhage.

20

1 **Introduction**

2 Atrial fibrillation is characterized by rapid and irregular beating of the atrial chambers of the
3 heart. It is one of the most frequent cardiac arrhythmias, which is consistently associated with
4 an increased risk of ischaemic stroke from cardioembolism¹. About 20% to 30% of all
5 ischaemic strokes are related to atrial fibrillation², which are more disabling than most other
6 ischemic stroke subtypes³. Secondary prevention in atrial fibrillation aims to prevent adverse
7 events from cardioembolism causing systemic embolism or ischemic stroke. In this review, we
8 provide an update on secondary prevention after stroke in patients with atrial fibrillation. We
9 will discuss recent advances in clinical management of secondary prevention after ischemic
10 stroke in patients with atrial fibrillation including timing of initiation of anticoagulant therapy
11 after a recent stroke, new pharmacological treatment options in the field of anticoagulation, the
12 strategy of early rhythm control and currently available mechanical treatment options (e.g. left
13 atrial appendage occlusion or permanent carotid filter). We will highlight two major unmet
14 medical need: the high risk of recurrence in patients with atrial fibrillation who have had a
15 breakthrough ischaemic stroke despite anticoagulant therapy and stroke prevention in patients
16 with atrial fibrillation and a history of intracerebral haemorrhage.

17

18 **Epidemiology and disease burden**

19 Atrial fibrillation is a global health priority with an estimate of 43.6 million individuals having
20 prevalent atrial fibrillation⁷. The annualized rate of ischaemic stroke in patients with atrial
21 fibrillation depends on the prevalence of concomitant vascular risk factors and comorbidities
22 (i.e. diabetes mellitus, arterial hypertension, congestive heart failure, peripheral artery disease
23 or myocardial infarction) ranging from 0.7% to 14.7% in the lowest and highest risk groups,
24 respectively⁸. The incidence of atrial fibrillation increases with age, so the incidence of atrial
25 fibrillation and related ischaemic strokes is expected to rise further in the next decades⁹. The
26 percentage of ischaemic stroke associated with atrial fibrillation is estimated to be about 20-
27 30% based on historical data¹⁰. It must be mentioned that most studies reported data on
28 ischaemic stroke associated with atrial fibrillation rather than attributable to atrial fibrillation,
29 as the latter is often difficult to prove in the presence of competing risk factors and aetiologies.
30 More recent data from stroke-unit based cohort studies in Switzerland (2014-2019)² and Canada
31 (2003-2013)¹¹ found 21% and 32% of incident cases of ischaemic stroke to be associated with
32 atrial fibrillation. Putting this in a global perspective, at least 2.4 million cases out of the
33 annually 12.2 million cases of ischaemic stroke worldwide¹² are related to atrial fibrillation. For
34 Europe, this would equal to at least 240 000 cases each year of atrial fibrillation-related

1 ischaemic stroke¹³. The majority of epidemiological data is from Europe and North America
2 and there is unfortunately a significant lack of knowledge outside these regions¹⁴. Prevalence
3 of atrial fibrillation seems to be lower in Africa, likely related to a younger population¹⁵ and
4 there are marked unexplained inter-regional variations in the occurrence of stroke and mortality
5 in patients with atrial fibrillation with higher rates in South America and Africa¹⁶.

6 Atrial fibrillation is known before onset of ischaemic stroke in the majority of patients¹¹.
7 Among those patients, a significant proportion are on anticoagulant therapy ranging from 16%
8 in the US¹⁷ up to 36% in Denmark¹⁸ and 38% in Switzerland². Up to a quarter of all atrial
9 fibrillation is detected after ischaemic stroke during cardiac diagnostic work-up¹⁹ (please see
10 panel 1 for current recommendations regarding cardiac monitoring). Atrial fibrillation detected
11 after stroke seems to be a distinguished condition, different from atrial fibrillation known before
12 stroke onset^{20,21}. Current evidence points towards the possibility that atrial fibrillation detected
13 after stroke may arise from the interplay between cardiac and neurogenic factors, has a lower
14 burden of vascular risk factors and is associated with a lower risk of recurrent ischaemic stroke
15 compared to atrial fibrillation known before stroke^{11,22,23}. This is closely related to the topic of
16 stroke-heart interactions and the stroke-heart syndrome. e^{24,25}. A novel classification for atrial
17 fibrillation detected after stroke has been recently proposed aiming to harmonize future research
18 in the field²¹.

19 Another important aspect is the duration or burden of paroxysmal atrial fibrillation as this seems
20 directly related to the risk of ischemic stroke and systemic embolism. The natural history of
21 paroxysmal atrial fibrillation burden has a lower stroke risk compared to persistent and
22 permanent atrial fibrillation (approximately 2%/year vs. 3%/year)²⁶ and the stroke rate in
23 patients with device-detected atrial fibrillation (also called “atrial high-rate episode”/AHRE or
24 “subclinical atrial fibrillation”/SCAF, consensus term *device detected*) is even lower
25 (1%/year)²⁷⁻²⁹.

26 .

27

28 **General aspects and guideline recommendations for secondary prevention treatment in** 29 **patients with atrial fibrillation and ischemic stroke**

30 The primary goal of secondary prevention therapy in patients with atrial fibrillation and
31 ischemic stroke is the prevention of further recurrent strokes by oral anticoagulation therapy as
32 recommended by major guidelines like those of the European Stroke Organisation³⁹, the
33 American Heart and Stroke Association⁴⁰ and the Canadian Best Practice guidelines⁴¹. Long-
34 term oral anticoagulation is a highly effective treatment to reduce the risk of ischaemic stroke

1 in patients with atrial fibrillation⁴. Since the early 2010s, direct oral anticoagulants (direct factor
2 Xa-inhibitors: apixaban, edoxaban and rivaroxaban; direct thrombin-inhibitor: dabigatran) have
3 largely replaced vitamin K antagonists (e.g. warfarin, marcoumar, acenocumarol,
4 phenprocoumon) as the mainstay of anticoagulation for ischaemic stroke prevention in patients
5 with non-valvular atrial fibrillation^{5 6}.

6 Beyond anticoagulation, European Society of Cardiology⁷ guidelines recommend a holistic
7 approach for integrated care in patients with atrial fibrillation, the Atrial fibrillation Better Care
8 (ABC) pathway ('A' Anticoagulation/Avoid stroke; 'B' Better symptom management; 'C'
9 Cardiovascular and Comorbidity optimization), regardless whether they have had a history of
10 ischaemic stroke or not. Further details on this useful pathway can be found in the specific
11 guidelines³⁷ including recommendations for the treatment of heart failure which is frequent in
12 patients with atrial fibrillation. Patients with rheumatic valve disease-related atrial fibrillation
13 are recommended to use vitamin K antagonists as rivaroxaban was associated with higher rates
14 of outcome events in these patients³⁸.

15

16 **Timing of oral anticoagulation therapy: balancing the risk of recurrent stroke and risk of 17 early haemorrhagic transformation**

18 Since the early 2010, direct oral anticoagulants (direct factor Xa inhibitors: apixaban, edoxaban,
19 rivaroxaban; the direct thrombin inhibitor dabigatran) have largely replaced vitamin K
20 antagonists treatment in patients with non-valvular atrial fibrillation⁵. Direct oral anticoagulants
21 were found to be associated with comparable rates of ischaemic stroke but half the risk of
22 symptomatic intracranial haemorrhage as compared to vitamin K antagonists⁵. Subgroup
23 analysis from the pivotal randomized controlled trials in patients with atrial fibrillation
24 comparing direct oral anticoagulants with vitamin K antagonists focussing on patients with a
25 history of ischaemic stroke confirmed their efficacy and safety in this vulnerable
26 subpopulation⁴²⁻⁴⁴. Further data from prospective observational studies also confirmed the
27 translation of these findings from randomized controlled trials to real-world stroke unit patients
28⁶. Contemporary guidelines from the European Stroke Organisation now recommend the use of
29 direct oral anticoagulants over vitamin K antagonists for secondary prevention therapy³⁹.

30 The pivotal phase-III randomized controlled trials excluded patients with a recent ischaemic
31 stroke⁴⁵ due to a feared increased risk of intracranial bleeding complications, leading to
32 substantial uncertainty about the optimal timing to initiate anticoagulant therapy post stroke.
33 Therefore, balancing the risk of recurrent ischaemic stroke against the risk of early
34 haemorrhagic transformation⁴⁶ of the infarcted brain tissue has been among the most

1 challenging clinical scenarios⁴⁷. Early anticoagulation is feared to increase haemorrhagic
2 transformation of the infarcted brain tissue resulting in additional neurological disability and
3 death^{46,48}. Early after stroke the blood-brain barrier breaks down and infarcted tissue is prone
4 to haemorrhagic transformation^{49,50}. Anticoagulation is feared to increase this risk by promoting
5 extravasation of blood and preventing clotting, but evidence to support this hypothesis is very
6 limited. Historical data suggested that the risk of early recurrent stroke may be as high as
7 1%/day in the first 10 days after a stroke without anticoagulation⁵¹. Therefore, the benefits of
8 anticoagulation are potentially high in this early and vulnerable phase as the absolute risk of
9 ischaemic stroke is high. In the absence of randomized controlled trials, emerging observational
10 data provided some guidance, ^{7,52, 53 6,54-58}. summarized in 2019⁴⁷. Taken together, these
11 observational studies suggested that a significant number of early recurrent ischaemic strokes
12 are presumably preventable by early anticoagulation and the observed risk of haemorrhagic
13 transformation seemed considerably lower than that perceived by physicians. Another
14 advantage of early anticoagulation is organisational as starting the treatment in the hospital
15 might lower the chance that anticoagulation is forgotten in the case of late anticoagulation start
16 recommendations made at discharge.

17 Triggered by this observational data, several investigator-initiated randomized trials have been
18 launched (table 1). Recently, the first two of these trials published results. TIMING (Timing of
19 Oral Anticoagulant Therapy in Acute Ischemic Stroke With Atrial Fibrillation,
20 NCT02961348)⁵⁹ was an open-label non-inferiority trial embedded in the Swedish national
21 stroke registry, the Riksstroke. Patients were randomized (1:1) to either early (≤ 4 days) or late
22 (5-10 days) start of direct oral anticoagulation therapy. The primary outcome was the composite
23 of recurrent ischaemic stroke, symptomatic intracerebral haemorrhage, or all-cause mortality at
24 90 days. The trial was stopped prematurely due to exhausted funding and lack of recruitment
25 related to COVID-19 and enrolled 888 of 3000 planned patients. The primary endpoint reached
26 the pre-specified 3% non-inferiority margin. Of interest, the rate of ischaemic stroke was 3.11%
27 in patients started early compared to 4.57% in patients started late and there were no patients in
28 either group that had symptomatic intracranial bleeding. The majority of the patients included
29 in this study had a low NIHSS indicating that early initiation of anticoagulants is safe in patients
30 with mild stroke. ELAN (Early versus Late initiation of direct oral Anticoagulants in post-
31 ischaemic stroke patients with atrial fibrillation, NCT03148457)^{60,61} was a randomized, open-
32 label trial assigning 2013 participants in a 1:1 ratio to early anticoagulation (within 48 hours
33 after a minor or moderate stroke or on day 6 or 7 after a major stroke) or later anticoagulation
34 (day 3 or 4 after a minor stroke, day 6 or 7 after a moderate stroke, or day 12, 13, or 14 after a

1 major stroke). The primary outcome was a composite of recurrent ischaemic stroke, systemic
2 embolism, major extracranial bleeding, symptomatic intracranial haemorrhage, or vascular
3 death within 30 days after randomisation. Secondary outcomes included the components of the
4 composite primary outcome at 30 and 90 days. The median NIHSS on admission was 5 and at
5 randomisation 3, and one fifth of the patients had a major stroke according to the ELAN imaging
6 classification. Furthermore, one fifth of the patients received thrombectomy and one third
7 thrombolysis prior randomisation. Patients with parenchymal haemorrhage type 1 and 2 (but
8 not those with haemorrhagic infarction type 1 and 2), or therapeutic anticoagulation at symptom
9 onset were excluded. A primary-outcome event occurred in 29 participants (2.9%) in the early-
10 treatment group and 41 participants (4.1%) in the later-treatment group (risk difference, -1.18
11 percentage points; 95% confidence interval [CI], -2.84 to 0.47) by 30 days. Recurrent ischaemic
12 stroke occurred in 14 participants (1.4%) in the early-treatment group and 25 participants
13 (2.5%) in the later-treatment group (odds ratio, 0.57; 95% CI, 0.29 to 1.07) by 30 days and in
14 18 participants (1.9%) and 30 participants (3.1%), respectively, by 90 days (odds ratio, 0.60;
15 95% CI, 0.33 to 1.06). Symptomatic intracranial haemorrhage occurred in 2 participants (0.2%)
16 in both groups by 30 days. The trial did not test a hypothesis but provided reasonable estimates
17 about the risks of ischaemic stroke or intracranial haemorrhage occurring after early versus late
18 initiation of anticoagulant therapy after a recent stroke. The major strengths of ELAN was the
19 use of baseline infarct size as a biologically plausible parameter to estimate bleeding risk and a
20 tailored approach according to infarct size categories. The fact that infarct size was estimated
21 by local investigators using a visual analogue scale using heterogeneous imaging modalities
22 provides additional reassurance about the validity and generalizability of the findings of this
23 trial in contrast to any central lab determined infarct size.

24 OPTIMAS (OPtimal TIMing of Anticoagulation After Acute Ischaemic Stroke,
25 NCT03759938)⁶² is a third ongoing large randomized trial, which aims to enrol at least 3478
26 participants randomized 1:1 to early (within 96 hours) or late (7-14 days) start after a recent
27 stroke. The trial is still recruiting (n=3114 by 2 July 2023). OPTIMAS is designed as a non-
28 inferiority trial, followed by a test for superiority if non-inferiority is established; it will include
29 patients with parenchymal haemorrhage type 1 (but not PH2), and ischaemic stroke occurring
30 under therapeutic oral anticoagulation at symptom onset.

31 The design of these trials varies but similar outcomes will allow an individual patient data meta-
32 analysis (CollAboration on the optimal Timing of anticoagulation after ischaemic stroke and
33 Atrial fibrillation: prospective individuaL participant data meta-analYsis (IPDMA) of
34 randomized controlled Trials (CATALYST), which is planned to seek stronger evidence for

1 noninferiority, safety and superiority, including highlighting important subgroups (i.e., infarct
2 volume, clinical stroke severity, pre-existing haemorrhagic transformation, or cerebral small
3 vessel disease).

4

5 **Rhythm control therapy**

6 Rhythm control therapy using anti-arrhythmic drugs or ablation has emerged as novel
7 therapeutic option on top of anticoagulation in patients with atrial fibrillation⁶³.

8 Although first studies produced neutral outcomes of prior “rhythm versus rate” trials including
9 AFFIRM⁶⁴ (Atrial Fibrillation Follow-up Investigation of Rhythm Management; 70% of
10 patients taking warfarin) and AF-CHF⁶⁵ (Atrial Fibrillation Follow-up Investigation of Rhythm
11 Management; 88% of patients taking warfarin), a mediator analysis of AFFIRM identified
12 presence of sinus rhythm as a key mediator of better outcomes, while withdrawal of
13 anticoagulation, commonly done at that time in patients undergoing rhythm control therapy,
14 mediated poor outcome⁶⁶. ATHENA trial (A Trial With Dronedarone to Prevent
15 Hospitalization or Death in Patients With Atrial Fibrillation; 60% of patients taking warfarin)
16 provided a first signal that rhythm control therapy using dronedarone, when delivered safely,
17 can improve outcomes in patients with atrial fibrillation⁶⁷, including a reduction in ischaemic
18 strokes in post hoc analysis⁶⁸. Conceptually, systematic and early initiation of rhythm control
19 therapy has the potential to deliver safe and effective secondary thromboembolic event
20 prevention as well as control of rhythm^{69,70}.

21 In 2020, the early treatment of atrial fibrillation for stroke prevention (EAST – AFNET 4,) trial⁷¹ revitalized rhythm control therapy by showing that systematic, early rhythm control
22 therapy reduced a composite of stroke, cardiovascular death, acute coronary syndrome and
23 hospitalization for heart failure compared to usual care in patients with recently diagnosed AF
24 at risk of stroke (table 2)⁷². Early rhythm control reduced ischaemic strokes⁷². A recent
25 mediator analysis looked at every feature that was different between randomized groups at the
26 one-year visit and analysed its association with events during the remaining follow-up in the
27 trial. The presence of sinus rhythm at 12 months explained 81% of the treatment effect
28 compared to usual care during the remainder of follow-up of 4.1 years. In patients not in sinus
29 rhythm at 12 months, early rhythm control did not reduce future cardiovascular outcomes (HR
30 0.94, 95% CI 0.65-1.67). Early rhythm control therapy as tested in EAST – AFNET 4 mainly
31 relied on antiarrhythmic drugs, with atrial fibrillation ablation providing an important second
32 line component. Atrial fibrillation ablation restores sinus rhythm more effectively than

1 antiarrhythmic drugs^{73,74} and improves quality of life⁷⁵, without a clear signal for improved
2 stroke prevention in completed trials^{73,76}.

3 The aforementioned trials were conducted in a general population of patients with atrial
4 fibrillation and were not specific to the setting of secondary prevention after ischaemic stroke.
5 A prespecified subgroup analysis of EAST-AFNET 4 participants with a history of ischaemic
6 stroke found consistent results with the main trial⁷⁷. The effect in the subgroup of patients with
7 a history of ischaemic stroke seemed larger than in the overall cohort. In EAST-AFNET 4, the
8 outcome-reducing effect of early rhythm control therapy was most pronounced in patients with
9 multiple comorbidities⁷⁸, a cohort that is not dissimilar to patients with atrial fibrillation and
10 acute stroke.

11 The RAFAS trial (Risks and Benefits of Early Rhythm Control in Patients With Acute Strokes
12 and Atrial Fibrillation: A Multicenter, Prospective, Randomized Study) was a randomized
13 controlled trial in patients with acute stroke and atrial fibrillation comparing early rhythm
14 control therapy (within 2 months of stroke) to usual care. The trial found lower rates of
15 ischaemic stroke at 12 months in patients with early rhythm control compared to those on usual
16 care. However, there was regarding broad spectrum of approaches for early rhythm control.

17 Anti-arrhythmic drugs were introduced with a mean delay of 9 days after stroke but invasive
18 interventions (i.e. electric cardioversion, ablation) were performed >3 months after stroke.

19 Anticoagulation only has a weak stroke-preventing effect in patients with device-detected atrial
20 fibrillation, mainly due to an unexpected, low rate of stroke without anticoagulation in these
21 patients^{27,28,30}. This questions whether there is a net clinical benefit of anticoagulation in these
22 patients. Two recent randomized controlled trials assessed safety and efficacy of
23 anticoagulation with apixaban or edoxaban in patients with device-detected and short-lasting
24 episodes of atrial fibrillation detected by implantable cardiac devices^{27,28}. While one trial using
25 edoxaban (NOAH-AFNET 6)²⁸ did not find a reduction in ischaemic stroke or systemic
26 embolism compared to placebo, the other trial found a lower risk of stroke or systemic
27 embolism with apixaban over aspirin (ARTESiA)²⁷. These diverging findings came to a
28 surprise and might be related to the study setting and trial population. The low stroke rate in
29 patients with device-detected AF without anticoagulation is potentially the most consistent and
30 surprising finding of NOAH-AFNET 6 and ARTESiA. A meta-analysis including both trials
31 found a significant reduction in the risk of ischaemic stroke and systemic embolism with oral
32 anticoagulation with the results from both trials being consistent with each other³⁰. All
33 individual trials and the meta-analysis found an increase in the risk of major bleeding with
34 anticoagulation.

1 More research is needed, but the low rate of stroke may be related to the low arrhythmia burden
2 in patients with device-detected atrial fibrillation, but without ECG-documented atrial
3 fibrillation⁷⁹. This finding supports the notion that a low burden of atrial fibrillation – natural
4 history or achieved through rhythm control – is associated with a low risk of stroke.
5 Taken together, there is robust data that rhythm control therapy initiated early after diagnosis
6 of atrial fibrillation is safe and effective. Emerging data also suggest that this benefit is observed
7 in patients with a history of ischaemic stroke and might even be larger than in the general
8 population given the higher stroke risk early after a recent ischaemic stroke. Initial data from
9 RAFAS also provide reassuring evidence about safety and efficacy of rhythm control if initiated
10 early after recent ischaemic stroke. The optimal role and timing of early rhythm control after a
11 recent ischaemic stroke remains to be determined.

12
13

14 **Non-pharmacological interventions**

15 The occlusion of the left atrial appendage represents a mechanical option for the prevention of
16 stroke in patients with atrial fibrillation. The basic concept of left atrial appendage occlusion is
17 based on the observation that 90% of thrombi with potential to embolise are located in the left
18 appendage, an observation made in a cohort of patients with non-valvular atrial fibrillation
19 undergoing cardioversion⁸⁰. Recent evidence from cardiac CT in acute stroke patients
20 confirmed a high rate of cardiac thrombi located in the left atrial appendage⁸¹.

21 The occlusion can be achieved by surgical ligation or percutaneous occlusion most often with
22 the two FDA approved devices Amulet (Abbott) and Watchman (Boston Scientific). Left atrial
23 appendage occlusion has been primarily used as alternative treatment in patients with atrial
24 fibrillation unsuitable for oral anticoagulation⁷. However, it has been tested in three randomized
25 controlled trials in patients suitable for oral anticoagulation therapy (compared to vitamin k
26 antagonists^{82,83} in two trials and direct oral anticoagulants⁸⁴ in one trial) and found to be non-
27 inferior for efficacy⁸⁵ and superior for safety compared to vitamin K antagonists and non-
28 inferior compared to direct oral anticoagulants⁸⁶. No dedicated randomized controlled trial has
29 investigated so far whether surgical or percutaneous left atrial appendage occlusion lowers the
30 risk of recurrent stroke in atrial fibrillation patients with prior stroke despite oral
31 anticoagulation. However, in one large multicenter trial, the LAAOS III study (Left Atrial
32 Appendage Occlusion Study)⁸⁷ patients with atrial fibrillation and a CHA₂DS₂-VASc score of
33 at least 2 undergoing heart surgery for other indications such as valve replacement and coronary
34 artery bypass grafting were enrolled. A total of 4770 patients were randomly allocated to

1 undergo or not undergo surgical left atrial appendage occlusion on top of usual care, including
2 oral anticoagulation, during follow-up. The primary outcome was the occurrence of ischaemic
3 stroke or systemic embolism. After a mean of 3.8 years follow up duration, stroke or systemic
4 embolism occurred in 114 patients (4.8%) in the occlusion group and in 168 patients (7.0%) in
5 the non-occlusion group (HR 0.67; 95% CI, 0.53 to 0.85). The difference in stroke and systemic
6 embolism was amplified beyond the perioperative timeframe (HR 0.58; 95% CI, 0.42 to 0.80)
7 and occurred despite 75-80% of patients receiving oral anticoagulation in both treatment groups
8 throughout the study duration. This trial supports the concept that surgical exclusion of the left
9 atrial appendage can provide substantial reduction of stroke and systemic embolism when used
10 in addition to anticoagulation and highlights the promising potential of combining mechanical
11 and anticoagulant therapy as a strategy to optimize stroke prevention in patients with atrial
12 fibrillation who experience stroke despite anticoagulation. However, surgical left atrial
13 appendage occlusion is too invasive for patients without other indication for heart surgery and
14 will not be applicable to the majority of stroke patients. Percutaneous left atrial appendage
15 occlusion is a less invasive alternative to surgical ligation. Whether the results of LAAOS III
16 are applicable to percutaneous left atrial appendage occlusion is unclear. Potential drawbacks
17 of percutaneous left atrial appendage occlusion include direct periprocedural complications,
18 device related thrombus formation (2-5% of patients)⁸⁸ and residual leaks following device
19 implantation. Table 2 summarizes findings of completed left atrial appendage occlusion trials.
20 Future studies are needed to explore the potential role of percutaneous left atrial appendage
21 occlusion to reduce the recurrent stroke risk in patients with breakthrough stroke while treated
22 with anticoagulation. Currently ongoing randomized controlled studies focus on the efficacy of
23 percutaneous left atrial appendage occlusion in patients with stroke who have contraindications
24 to oral anticoagulation (including previous intracranial haemorrhage; see the section below for
25 a more detailed discussion of this group) (COMPARE LAAO⁸⁹, NCT04676880; STROKE-
26 CLOSE, NCT02830152) or as an alternative to direct oral anticoagulant therapy in a general
27 population (CHAMPION-AF, NCT04394546) or in patients after ablation (OPTION,
28 NCT03795298).

29 A different approach to protect the brain from central thromboembolism are novel permanent
30 carotid filter devices for percutaneous implantation⁹⁰, which have been developed recently.
31 Preclinical data seem promising with continuous improvement of the device and
32 implementation technique⁹¹. A first clinical study has been performed in patients unsuitable for
33 oral anticoagulation⁹². Based on this data, a large phase-III randomized controlled trial is
34 planned comparing percutaneous permanent carotid filter implantation on top of direct oral

1 anticoagulants with direct oral anticoagulants alone in a high-risk patient population with atrial
2 fibrillation and stroke (Carotid Implants for PreveNtion of STrokE ReCurRence From Large
3 Vessel Occlusion in Atrial Fibrillation Patients Treated With Oral Anticoagulation
4 (INTERCEPT), NCT05723926).

5

6 **Special considerations for secondary prevention in patients with stroke despite
7 anticoagulation**

8 Although oral anticoagulation is a highly effective treatment significantly reducing the risk of
9 ischaemic stroke in patients with atrial fibrillation by about two-thirds⁴, there is a residual risk
10 of ischaemic stroke while on anticoagulation therapy. Among patients enrolled in the pivotal
11 randomized controlled trials, the risk of ischaemic stroke in all participants (~35% with prior
12 history of stroke) was between 1-2% annually depending on the study and treatment⁹³⁻⁹⁶ (figure
13 1). Evidence from a large, nation-wide stroke-unit based prospective study from Switzerland
14 found that 38% of patients with atrial fibrillation who have an ischaemic stroke are on oral
15 anticoagulation therapy with a vitamin K antagonist or direct oral anticoagulant at the time of
16 stroke onset², not including patients where anticoagulation was stopped/paused for >2 days for
17 medical reasons (i.e. peri-interventional, due to bleeding complications). The spectrum of
18 anticoagulants changed over time reflecting the market share of direct oral anticoagulants with
19 the majority of patients now having a stroke despite direct oral anticoagulant therapy.
20 Independent observational studies found consistently high rates of recurrent ischaemic stroke
21 in patients with atrial fibrillation who had at least one index ischaemic stroke despite oral
22 anticoagulant therapy⁹⁷⁻⁹⁹ (figure 1). Therefore, this patient groups seems particularly
23 vulnerable and in need of better prevention strategies^{100,101}.

24 Aetiology of ischaemic stroke despite anticoagulation therapy in patients with atrial fibrillation
25 (excluding those patients in whom anticoagulation was stopped/paused for medical reasons) is
26 heterogeneous and may include causes related to atrial fibrillation (i.e. inadequate intensity of
27 anticoagulation due to under dosing, non-compliance, failure to account for food interaction
28 (particularly for rivaroxaban) or drug-drug interactions, inappropriate perioperative
29 management, and cardioembolism despite anticoagulation) and causes not-related to atrial
30 fibrillation (i.e. stroke caused by competing aetiology like large vessel arteriosclerosis, cerebral
31 small vessel disease, aortic arch disease and occult cancer¹⁰²). Based on expert consensus^{103,104},
32 it is currently classified into three categories: non-atrial fibrillation related stroke aetiology
33 (case study in panel 2), medication error (case study in panel 3) and cardioembolism despite
34 anticoagulation (case study in panel 4). A complete etiological work up is therefore

1 recommended (figure 2) assessing adequate drug dosing and adherence as well as presence of
2 competing stroke aetiologies unrelated to atrial fibrillation (figure 3). In particular, although
3 on-label dose reductions are required in selected patients with atrial fibrillation, the prevalent
4 inappropriate use of off-label lower doses of direct oral anticoagulants is emerging as a
5 significant modifiable risk factor for atrial fibrillation-related stroke in current practice¹⁰¹.
6 A survey among vascular neurologist in Germany found that the majority of physicians switch
7 the type of anticoagulation in a patient who had a stroke despite anticoagulant therapy, i.e.
8 change from a vitamin K antagonist to a direct oral anticoagulant or changing between different
9 direct oral anticoagulants¹⁰⁵. However, there is no evidence to support this strategy¹⁰⁶⁻¹⁰⁸.
10 Although expert opinion often suggest considering dabigatran 150 mg twice daily in this
11 population due to this regimen being the sole one amongst direct oral anticoagulants to
12 significantly reduce the risk of ischaemic stroke relative to warfarin in the RE-LY trial¹⁰⁹, there
13 is no head-to-head comparison with other direct oral anticoagulants to support this
14 recommendation. In addition, recent observational studies found no association between a
15 change of anticoagulation therapy and decreased risk of recurrent stroke^{98,101,106-108}. Additional
16 antiplatelet therapy – also often initiated in this setting on top of anticoagulation treatment - has
17 also been found to result in an increased risk of major haemorrhage and – paradoxically –
18 ischaemic stroke, possibly due to greater interruptions in antithrombotic treatment surrounding
19 bleeding events^{101,106,107,110}. Therefore, the optimal treatment of patients with atrial fibrillation
20 having a stroke despite anticoagulant therapy is currently unknown. This unmet medical need
21 triggered substantial efforts to investigate novel treatment approaches aimed to provide better
22 protection for patients with atrial fibrillation and ischaemic stroke despite anticoagulation
23 assessing permanent bilateral carotid filters (INTERCEPT, NCT05723926) or percutaneous left
24 atrial appendage occlusion (ELPASE, NCT05976685, funded by the Swiss National Science
25 Foundation) on top of direct oral anticoagulant therapy (table 3). Patients with breakthrough
26 stroke may also be enrolled in the Fourth Left Atrial Appendage Occlusion trial (LAAOS-4,
27 NCT05963698) among other patients at high risk of stroke despite anticoagulant therapy. These
28 trials are about to start recruitment and results are awaited in the next 4-5 years. In the absence
29 of randomized controlled trial evidence, a personalized approach assessing individual risk
30 profiles and targeting the most likely cause of stroke seems reasonable pending further trial data
31 (figure 4).

32

1 **Direct factor XI/XIa-inhibitors and ongoing trials**

2 There is an ongoing effort to further improve stroke prevention in patients with atrial
3 fibrillation. A novel generation of oral anticoagulants is currently being investigated in phase 2
4 and 3 randomized controlled trials. Direct factor XI/XIa-inhibitors target a key factor in the
5 coagulation cascade. Due to the primary role of factor XIa in thrombus amplification but its
6 lesser subsidiary role in haemostasis, it is hypothesized that inhibition of factor XI/XIa can
7 prevent pathologic thrombus formation with minimal associated increase in spontaneous major
8 bleeding events. Promising preclinical data, mendelian randomization analyses and
9 epidemiologic data demonstrating reduced rates of ischaemic stroke and venous
10 thromboembolism with reduced factor XI levels have led to the development of various
11 compounds targeting factor XI/XIa for clinical application. Asundexian¹¹¹ and milvexian¹¹² are
12 two small molecule oral direct inhibitors of factor XIa and Abelacimab is a highly selective,
13 fully human monoclonal antibody targeting factor XI administered once monthly
14 subcutaneously.). Recently, dose finding phase 2b randomized controlled trials testing these
15 medications for prevention of venous thromboembolism in patients undergoing total knee
16 arthroplasty (milvexian¹¹³), greater safety in patients with atrial fibrillation (asundexian)¹¹⁴,
17 reduction of major adverse cardiovascular events after acute myocardial infarction
18 (asundexian)¹¹⁵ and secondary stroke prevention following non-cardioembolic stroke
19 (asundexian¹¹⁶ and milvexian¹¹⁷) have been completed. In the PACIFIC-AF trial 876 patients
20 with atrial fibrillation were enrolled and randomly assigned to apixaban or two different doses
21 of the factor XI-inhibitor asundexian. Ratios of incidence proportions for the primary endpoint
22 of the composite of major or clinically relevant non-major bleeding according to International
23 Society on Thrombosis and Haemostasis criteria were 0·50 (90% CI 0·14–1·68) for asundexian
24 20 mg 0·16 (0·01–0·99) for asundexian 50 mg, and 0·33 (0·09–0·97) for pooled asundexian
25 arms versus apixaban. The rate of ischaemic events was similar in all three groups, albeit
26 underpowered with very few ischaemic vascular events occurring during study follow-up.
27 Based on these promising safety results, phase 3 stroke prevention in atrial fibrillation trials of
28 both asundexian (OCEANIC-AF, NCT05643573) and milvexian (LIBREXIA-AF,
29 NCT05757869) were launched but the trial testing asundexian was prematurely stopped after
30 interim analysis found a lack of efficacy. Abelacimab also reported promising results from a
31 phase 2b study with a 67% reduction in the primary endpoint of major or clinically relevant
32 non-major bleeding compared with rivaroxaban and is currently investigated in a study of
33 patients with atrial fibrillation deemed unsuitable for anticoagulation but patients with a recent
34 stroke are excluded from this trial (NCT05712200)

1

2 **Secondary prevention after intracerebral haemorrhage**

3 Atrial fibrillation is frequent in patients with intracerebral haemorrhage¹¹⁸, affecting around
4 25% of patients¹¹⁹ and probably mainly related to prevalence of overlapping risk factors (e.g.
5 arterial hypertension, age). Anticoagulation therapy is frequently withheld in patients with a
6 history of intracerebral haemorrhage due to the feared possibility that anticoagulation may
7 increase the risk of recurrent intracerebral haemorrhage in this population. In addition,
8 anticoagulation-associated intracerebral haemorrhage are reported to have greater rates of death
9 and disability^{120,121}. However, there is growing evidence that patients on oral anticoagulation
10 therapy are bleeding in the brain due to underlying cerebral small vessel disease and
11 anticoagulation is rather a complicating factor than a sufficient or necessary cause of
12 bleeding¹²². Further observational data consistently found that patients with intracerebral
13 haemorrhage in general and especially those with atrial fibrillation are at high risk of ischemic
14 events^{123,124}. The frequency of ischemic stroke usually exceeds that of recurrent intracerebral
15 haemorrhage. Further observational data suggest that resumption of anticoagulation might be
16 associated with satisfactory ischaemic stroke prevention without an accompanying increase in
17 intracranial haemorrhage, regardless of the underlying small vessel disease and haematoma
18 location, which are seen as predictors of future risk of recurrent intracerebral haemorrhage¹²⁵⁻
19 ¹²⁷. These observations have led to several randomized controlled trials investigating stroke
20 prevention strategies in patients with atrial fibrillation and a history of intracerebral
21 haemorrhage (table 4). Three trials have so far been completed but results are preliminary^{128,129}..
22 A recent individual patient data meta-analysis of completed early phase trials found that in
23 patients with a history of intracranial haemorrhage, the benefits of oral anticoagulation, i.e. the
24 significant reduction of ischaemic stroke and systemic embolism, is consistent with that
25 established in patients without intracranial hemorrhage¹³⁰. However, the number of patients was
26 insufficient to reliably estimate the risk of bleeding in this vulnerable patient population and
27 large adequately powered trials are needed. Adding to the complexity of this dilemma, the data
28 safety and monitoring board of the largest ongoing trial (ENRICH-AF) recently recommended
29 to stop the enrolment of patients with lobar intracerebral haemorrhage or isolated convexity
30 subarachnoid haemorrhage – both likely caused by bleeding-prone cerebral amyloid angiopathy
31 – due to an excess risk in recurrent haemorrhage with anticoagulation in this subgroup of
32 patients¹³¹. The results of these trials are eagerly awaited and planned collaborations for IPDMA
33 providing sufficient power for meaningful subgroup analysis are underway (COCROACH)¹³⁰.

1 **Conclusions and future directions**

2 Atrial fibrillation is a major cause of ischaemic stroke and associated with significant mortality
3 and morbidity. Based on current evidence, we propose an integrated pathway optimizing
4 diagnostic work-up and treatment (figure 2). Secondary prevention strategies include direct oral
5 anticoagulants and early initiation after a recent stroke appears to be safe and might reduce the
6 risk of early recurrence; further data from ongoing trials (e.g., OPTIMAS) and IPDMA
7 (CATALYST) are needed regarding key subgroups. Rhythm control reduces the risk of
8 ischaemic stroke on top of anticoagulation but the optimal timing and best approach (anti-
9 arrhythmic drugs, electric cardioversion, ablation) needs to be determined. Close collaboration
10 between neurologists and cardiologist seems key to offer this treatment to a broader group of
11 patients. Special consideration is required for patients with atrial fibrillation who have a stroke
12 despite anticoagulant therapy. In those patients, non-atrial fibrillation related causes should be
13 considered along with medication issues (non-adherence, inadequate dosing). Switching
14 anticoagulation seems ineffective based on observational data, and or adding antiplatelet
15 therapy on top of anticoagulation is harmful. Thus, the optimal treatment for this vulnerable
16 group of patients is still unknown. Additional non-pharmacological options include surgical or
17 percutaneous left atrial appendage occlusion and permanent carotid filter. There efficacy and
18 safety in secondary prevention after ischaemic stroke is currently studied in large randomized
19 controlled trials.. Novel pharmacological therapies targeting factor XI/XIa are currently being
20 tested in phase II/III randomized controlled trials and may provide similar efficacy with
21 enhanced safety relative to currently available direct oral anticoagulants. Stroke prevention in
22 patients with atrial fibrillation after intracerebral haemorrhage is currently investigated in
23 several randomized controlled trials involving different strategies (i.e. direct oral anticoagulants
24 and left atrial appendage occlusion).

1 **Search strategy:**
2 We searched the literature using pubmed/medline and relevant clinical trial registries (i.e.
3 clinicaltrials.gov or ISRCTN) for relevant literature or trials in English published between 2013
4 and June 2023. Based on expert opinion consensus among co-authors of this review, we focused
5 on papers in following fields of particular clinical interest for secondary prevention after stroke
6 in patients with atrial fibrillation: 1) Timing of anticoagulation after recent ischemic stroke, 2)
7 Early rhythm control 3) Left atrial appendage occlusion and other mechanical protection
8 devices, 4) ischemic stroke despite anticoagulation therapy, 5) novel anticoagulation strategies
9 including factor XI inhibitors, 6) stroke prevention in patients with a history of intracerebral
10 haemorrhage and atrial fibrillation. For each section, specific search strategies were used.
11 Literature search was amended by personal notes if applicable and results were selected
12 according to clinical relevance for this review paper.

13

14 **Acknowledgement:**

15 We thank Anja Giger, Department of Neurosurgery Inselspital Bern Switzerland for creating
16 the medical illustrations in figure 3 and 4.

17

18 **Contributions:**

19 DJS and VaC designed the review paper with inputs from all co-authors. DJS, ViC, MP, LR,
20 AM, AS, UF, PK and VaC performed the literature research.

21 DJS wrote the first draft with ViC, LR, MP, AM, PK, UF, DJW and AS writing each one
22 chapter. DJS, ViC and VaC created the figures with help from Anja Giger (medical
23 illustrations). All authors provided critical revisions to the final manuscript.

1 **Potential conflicts of interest (last 3 years):**

2 Dr Seiffge:

3 - Employed by Insel Gruppe AG (Inselspital University Hospital of Bern, Switzerland)
4 - Advisory board: Portola/Alexion, Bayer AG Switzerland, Javeline, Bioxodes, VarmX
5 (all fees paid to employer and used for academic research funding)
6 - Research funding: Bangerter Rhyner Foundation and Swiss National Science
7 Foundation (all paid to employer and used for academic research funding)

8 Dr. Caso:

9 - Advisory boards & speaker fees: Boehringer-Ingelheim, Pfizer/BMS, Bayer,
10 Mindmaze, Daiichi Sankyo, Ever-NeuroPharma (All fees paid to employer ARS UMBRIA)

11 Dr. Räber:

12 - Employed by Insel Gruppe AG (Inselspital University Hospital of Bern, Switzerland)
13 - Research grants to institution by Abbott, Biotronik, BostonScientific, Sanofi, Infraredx,
14 Regeneron, Swiss National Science Foundation
15 - Speaker fees by Abbott, Amgen, Occlutech, Medtronic, Novo Nordisc, Sanofi
16 - Stocks: Shockwave, Verve Therapeutics

17 Dr. Fischer:

18 - research support from the Swiss National Science Foundation and Swiss Heart
19 Foundation
20 - research grants from Medtronic, Stryker, Penumbra, Rapid Medical, Phenox,
21 Boehringer Ingelheim
22 - consultancies for Medtronic, Stryker, and CSL Behring (fees paid to institution).
23 - participation in an advisory board for Alexion/Portola and Boehringer Ingelheim (fees
24 paid to institution).
25 - member of a clinical event committee (CEC) of the COATING study (Phenox) and
26 member of the data and safety monitoring committee (DSMB) of the TITAN,
27 LATE_MT, RapidPulse and IN EXTREMIS trials.
28 - Advisory board: Alexion/Portola, Boehringer Ingelheim, Biogen, Acthera
29 - President of the Swiss Neurological Society

30 Dr. Werring:

31 - Honoraria (speaking) from Bayer 2022 (talks or debates on anticoagulants, intracerebral
32 haemorrhage, atrial fibrillation, dementia)
33 - Consultancy fees from Alnylam (2019), NovoNordisk (2021)

- Chief investigator OPTIMAS trial of early DOAC treatment after ischaemic stroke (BHF funded)

Dr. Shoamanesh:

- Advisory boards: AstraZeneca, Bayer AG, Daiichi Sankyo, Servier Canada,
- Research funding: Canadian Institute of Health Research, Heart and Stroke Foundation of Canada, Marta and Owen Boris Foundation, National Institutes of Aging, National Institutes of Health, AstraZeneca, Bayer AG, Daiichi Sankyo, Javelin Medical, Servier Canada, Bristol-Myers Squibb

Dr. Kirchhof:

- PK was partially supported by European Union AFFECT-AF (grant agreement 847770), BigData@Heart (grant agreement EU IMI 116074), and MAESTRIA (grant agreement 965286), British Heart Foundation (PG/20/22/35093; AA/18/2/34218), German Center for Cardiovascular Research supported by the German Ministry of Education and Research (DZHK, grant numbers DZHK FKZ 81X2800182, 81Z0710116, and 81Z0710110), and Leducq Foundation.
- PK receives research support for basic, translational, and clinical research projects from European Union, British Heart Foundation, Leducq Foundation, Medical Research Council (UK), and German Centre for Cardiovascular Research, from several drug and device companies active in atrial fibrillation
- PK is listed as inventor on two issued patents held by University of Hamburg (Atrial Fibrillation Therapy WO 2015140571, Markers for Atrial Fibrillation WO 2016012783).
- Board member European Society of Cardiology
- Speaker of the Board, AFNET
- PK receives research support for basic, translational, and clinical research projects from European Union, British Heart Foundation, Leducq Foundation, Medical Research Council (UK), and German Center for Cardiovascular Research, from several drug and device companies active in atrial fibrillation, and has received honoraria from several such companies in the past, but not in the last three years.
- PK receives research support for basic, translational, and clinical research projects from European Union, British Heart Foundation, Leducq Foundation, Medical Research Council (UK), and German Center for Cardiovascular Research, from several drug and

1 device companies active in atrial fibrillation, and has received honoraria from several
2 such companies in the past, but not in the last three years.

3 Dr. Paciaroni received honoraria as a member of the speaker bureau of Sanofi-Aventis,
4 BMS, Daiiki Sankyo, and Pfizer.

5

1 **Tables:**

2

3 Table 1: Randomized controlled trials assessing optimal timing of direct oral anticoagulant
4 treatment after a recent ischaemic stroke in patients with atrial fibrillation

5

6 Table 2: Summary details of trials investigating left atrial appendage occlusion or rhythm
7 control in patients with atrial fibrillation

8

9 Table 3: Planned/Ongoing trials recruiting patients with atrial fibrillation and breakthrough
10 strokes despite anticoagulant therapy

11

12 Table 4: Randomized controlled trials on stroke prevention in patients with atrial fibrillation
13 and a history of intracranial haemorrhage

1 **Panels:**

3 Panel 1: Detection of atrial fibrillation in patients with ischaemic stroke . Current
4 recommendations from the European Stroke Organisation (2023)¹³² recommend at least 48
5 hours of monitoring. While the effectiveness of prolonged cardiac monitoring using
6 implantable loop recorder (ILP) or continuous portable ECG monitoring is unclear, it increases
7 the chance to detect subclinical atrial fibrillation and many guideline recommend ILP¹³² or >2
8 weeks of portable ECT monitoring in patients with embolic stroke of unknown source⁴¹. The
9 blood biomarker Midregional pro-atrial natriuretic peptide (MR-proANP) may help to guide
10 the decision which patient should undergo prolonged monitoring¹³⁴.

13 Panel 2: Case study: Competing non-AF related aetiology in a patient with atrial fibrillation and
14 ischaemic stroke despite anticoagulation in a patient with atrial fibrillation

16 A 68-year-old female patient known for paroxysmal atrial fibrillation was admitted to the
17 hospital with two episodes of transient left hand weakness and numbness. MRI revealed several
18 small cortical DWI-lesions in the right side territory of the middle cerebral artery and a high-
19 grade stenosis of the ipsilateral internal carotid artery. The patient was on oral anticoagulation
20 therapy with apixaban 5mg BID with the last intake 8 hours before admission and the calibrated
21 anti-Xa activity was 140ng/ml. Carotid ultrasound and MR plaque imaging revealed a
22 vulnerable plaque with intra-plaque haemorrhage. The ipsilateral high-grade carotid artery
23 stenosis was deemed the most likely cause and the patient received carotid artery stenting 4
24 days after admission.

27 Panel 3: Case study: Medication error in a patient with atrial fibrillation and ischaemic stroke
28 despite anticoagulation

30 A 83-year-old male patient known for persistent atrial fibrillation was admitted to hospital for
31 acute right side hemianopsia. MRI revealed occlusion of the left posterior cerebral artery P2
32 segment and corresponding lesion on DWI and FLAIR. The patient was on oral anticoagulation
33 with apixaban 5mg twice daily without any interruption for medical reasons. The patient
34 confirmed that he regularly takes all pills from the blister, including this morning, 6 hours

1 before admission. Calibrated anti-Xa activity was not detectable (<30ng/ml). Advanced history
2 revealed that his wife was preparing medication blisters for the patient and no apixaban tablet
3 was found in the blister prepared for the upcoming days. His wife was recently diagnosed with
4 dementia. Patient was discharged on unchanged apixaban therapy and arrangements were made
5 that medication blisters are now prepared by the local pharmacy.

6

7 Panel 4: Case study: Cardioembolism despite sufficient anticoagulation in a patient with atrial
8 fibrillation

9

10 A 73-year-old male patient known for persistent atrial fibrillation was admitted to the hospital
11 with acute right side hemiparesis and aphasia. MRI revealed occlusion of the left middle
12 cerebral artery M2 segment. The patient was on oral anticoagulant therapy with rivaroxaban
13 20mg per day and last intake 12 hours before admission. Admission calibrated anti-Xa activity
14 was 90ng/ml. The patient received intravenous thrombolysis and mechanical thrombectomy
15 experiencing major improvements. Additional clinical exams did not provide any evidence for
16 competing non-AF stroke aetiology. Patient was continued on rivaroxaban. After
17 interdisciplinary discussion involving Neurology and Cardiology, the patient was offered
18 percutaneous left atrial appendage occlusion on an individual case decision on top of oral
19 anticoagulation with rivaroxaban. The intervention was performed 4 weeks after stroke onset,
20 the patient continued rivaroxaban treatment (with additional short-term clopidogrel 75mg for 6
21 weeks).

1 **Figures :**

2 Figure 1: Annualized rates of ischaemic stroke in randomized controlled trials comparing
3 vitamin K antagonists (blue bars) with different direct oral anticoagulants (red bars) and in
4 studies of patients with breakthrough strokes despite anticoagulant therapy

5

6

7 Figure 2: Clinical pathway for secondary prevention in patients with atrial fibrillation and
8 ischaemic stroke.

9

10 Disclaimer: Level of evidence for some recommendations in this figure is low.

11

12 Figure 3: Aetiology of stroke despite anticoagulation and frequent non-AF stroke aetiologies
13 (based on Polymeris et al.¹⁰⁷)

14

15 Figure 4:

16 Ischaemic stroke despite anticoagulant therapy in patients with atrial fibrillation: frequent
17 causes and potential secondary prevention strategies

18

19 Disclaimer: Level of evidence for some recommendations in this figure is low.

20

21

22

1 **References :**

2 1. Wolf PA, Dawber TR, Thomas HE, Jr., Kannel WB. Epidemiologic assessment of
3 chronic atrial fibrillation and risk of stroke: the Framingham study. *Neurology* 1978; **28**(10):
4 973-7.

5 2. Meinel TR, Branca M, De Marchis GM, et al. Prior Anticoagulation in Patients with
6 Ischemic Stroke and Atrial Fibrillation. *Annals of neurology* 2021; **89**(1): 42-53.

7 3. Adams HP, Jr., Davis PH, Leira EC, et al. Baseline NIH Stroke Scale score strongly
8 predicts outcome after stroke: A report of the Trial of Org 10172 in Acute Stroke Treatment
9 (TOAST). *Neurology* 1999; **53**(1): 126-31.

10 4. Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent
11 stroke in patients who have nonvalvular atrial fibrillation. *Ann Intern Med* 2007; **146**(12): 857-
12 67.

13 5. Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of
14 new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of
15 randomised trials. *Lancet* 2014; **383**(9921): 955-62.

16 6. Seiffge DJ, Paciaroni M, Wilson D, et al. Direct oral anticoagulants versus vitamin K
17 antagonists after recent ischemic stroke in patients with atrial fibrillation. *Annals of neurology*
18 2019; **85**(6): 823-34.

19 7. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and
20 management of atrial fibrillation developed in collaboration with the European Association for
21 Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial
22 fibrillation of the European Society of Cardiology (ESC) Developed with the special
23 contribution of the European Heart Rhythm Association (EHRA) of the ESC. *European heart
24 journal* 2021; **42**(5): 373-498.

25 8. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification
26 for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based
27 approach: the euro heart survey on atrial fibrillation. *Chest* 2010; **137**(2): 263-72.

28 9. Bejot Y, Ben Salem D, Osseby GV, et al. Epidemiology of ischemic stroke from atrial
29 fibrillation in Dijon, France, from 1985 to 2006. *Neurology* 2009; **72**(4): 346-53.

30 10. Grau AJ, Weimar C, Buggle F, et al. Risk factors, outcome, and treatment in subtypes
31 of ischemic stroke: the German stroke data bank. *Stroke* 2001; **32**(11): 2559-66.

32 11. Sposato LA, Cerasuolo JO, Cipriano LE, et al. Atrial fibrillation detected after stroke is
33 related to a low risk of ischemic stroke recurrence. *Neurology* 2018; **90**(11): e924-e31.

34 12. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a
35 systematic analysis for the Global Burden of Disease Study 2019. *Lancet Neurol* 2021; **20**(10):
36 795-820.

37 13. Wafa HA, Wolfe CDA, Emmett E, Roth GA, Johnson CO, Wang Y. Burden of Stroke
38 in Europe: Thirty-Year Projections of Incidence, Prevalence, Deaths, and Disability-Adjusted
39 Life Years. *Stroke* 2020; **51**(8): 2418-27.

40 14. Lip GYH, Brechin CM, Lane DA. The global burden of atrial fibrillation and stroke: a
41 systematic review of the epidemiology of atrial fibrillation in regions outside North America
42 and Europe. *Chest* 2012; **142**(6): 1489-98.

43 15. Pitman BM, Chew SH, Wong CX, et al. Prevalence and risk factors for atrial fibrillation
44 in a semi-rural sub-Saharan African population: The hEart oF ethiopia: Focus on Atrial
45 Fibrillation (TEFF-AF) Study. *Heart Rhythm O2* 2022; **3**(6Part B): 839-46.

46 16. Healey JS, Oldgren J, Ezekowitz M, et al. Occurrence of death and stroke in patients in
47 47 countries 1 year after presenting with atrial fibrillation: a cohort study. *Lancet* 2016;
48 **388**(10050): 1161-9.

1 17. Xian Y, O'Brien EC, Liang L, et al. Association of Preceding Antithrombotic Treatment
2 With Acute Ischemic Stroke Severity and In-Hospital Outcomes Among Patients With Atrial
3 Fibrillation. *JAMA : the journal of the American Medical Association* 2017; **317**(10): 1057-67.

4 18. Gundlund A, Xian Y, Peterson ED, et al. Prestroke and Poststroke Antithrombotic
5 Therapy in Patients With Atrial Fibrillation: Results From a Nationwide Cohort. *JAMA Netw
6 Open* 2018; **1**(1): e180171.

7 19. Sposato LA, Cipriano LE, Saposnik G, Ruiz Vargas E, Riccio PM, Hachinski V.
8 Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review
9 and meta-analysis. *Lancet Neurol* 2015; **14**(4): 377-87.

10 20. Sposato LA, Chaturvedi S, Hsieh CY, Morillo CA, Kamel H. Atrial Fibrillation
11 Detected After Stroke and Transient Ischemic Attack: A Novel Clinical Concept Challenging
12 Current Views. *Stroke* 2022; **53**(3): e94-e103.

13 21. Sposato LA, Field TS, Schnabel RB, Wachter R, Andrade JG, Hill MD. Towards a new
14 classification of atrial fibrillation detected after a stroke or a transient ischaemic attack. *Lancet
15 Neurol* 2023.

16 22. Alvarado-Bolaños A, Ayan D, Khaw AV, et al. Differences in Stroke Recurrence Risk
17 Between Atrial Fibrillation Detected on ECG and 14-Day Cardiac Monitoring. *Stroke* 2023;
18 **54**(8): 2022-30.

19 23. Sposato LA, Cerasuolo JO, Cipriano LE, et al. Lower Risk of ischemic stroke recurrence
20 in patients with atrial fibrillation diagnosed after stroke. *Neurology* 2017.

21 24. Scheitz JF, Nolte CH, Doehner W, Hachinski V, Endres M. Stroke-heart syndrome:
22 clinical presentation and underlying mechanisms. *The Lancet Neurology* 2018; **17**(12): 1109-
23 20.

24 25. Scheitz JF, Sposato LA, Schulz-Menger J, Nolte CH, Backs J, Endres M. Stroke-Heart
25 Syndrome: Recent Advances and Challenges. *Journal of the American Heart Association* 2022;
26 **11**(17): e026528.

27 26. Vanassche T, Lauw MN, Eikelboom JW, et al. Risk of ischaemic stroke according to
28 pattern of atrial fibrillation: analysis of 6563 aspirin-treated patients in ACTIVE-A and
29 AVERROES. *European heart journal* 2015; **36**(5): 281-7a.

30 27. Healey JS, Lopes RD, Granger CB, et al. Apixaban for Stroke Prevention in Subclinical
31 Atrial Fibrillation. *N Engl J Med* 2023.

32 28. Kirchhof P, Toennis T, Goette A, et al. Anticoagulation with Edoxaban in Patients with
33 Atrial High-Rate Episodes. *N Engl J Med* 2023; **389**(13): 1167-79.

34 29. Becher N, Toennis T, Bertaglia E, et al. Anticoagulation with edoxaban in patients with
35 long Atrial High-Rate Episodes \geq 24 hours. *European heart journal* 2023.

36 30. McIntyre WF, Benz AP, Becher N, et al. Direct Oral Anticoagulants for Stroke
37 Prevention in Patients with Device-Detected Atrial Fibrillation: A Study-Level Meta-Analysis
38 of the NOAH-AFNET 6 and ARTESiA Trials. *Circulation* 2023.

39 31. Berge E, Whiteley W, Audebert H, et al. European Stroke Organisation (ESO)
40 guidelines on intravenous thrombolysis for acute ischaemic stroke. *Eur Stroke J* 2021; **6**(1): I-
41 Ixii.

42 32. Kam W, Holmes DN, Hernandez AF, et al. Association of Recent Use of Non-Vitamin
43 K Antagonist Oral Anticoagulants With Intracranial Hemorrhage Among Patients With Acute
44 Ischemic Stroke Treated With Alteplase. *JAMA : the journal of the American Medical
45 Association* 2022.

46 33. Meinel TR, Wilson D, Gensicke H, et al. Intravenous Thrombolysis in Patients With
47 Ischemic Stroke and Recent Ingestion of Direct Oral Anticoagulants. *JAMA neurology* 2023;
48 **80**(3): 233-43.

49 34. Seiffge DJ. Intravenous Thrombolytic Therapy for Treatment of Acute Ischemic Stroke
50 in Patients Taking Non-Vitamin K Antagonist Oral Anticoagulants. *JAMA : the journal of the
51 American Medical Association* 2022.

1 35. Seiffge DJ, Meinel T, Purrucker JC, et al. Recanalisation therapies for acute ischaemic
2 stroke in patients on direct oral anticoagulants. *Journal of neurology, neurosurgery, and*
3 *psychiatry* 2021.

4 36. Seiffge DJ, Wilson D, Wu TY. Administering Thrombolysis for Acute Ischemic Stroke
5 in Patients Taking Direct Oral Anticoagulants: To Treat or How to Treat. *JAMA neurology*
6 2021.

7 37. Romiti GF, Pastori D, Rivera-Caravaca JM, et al. Adherence to the 'Atrial Fibrillation
8 Better Care' Pathway in Patients with Atrial Fibrillation: Impact on Clinical Outcomes-A
9 Systematic Review and Meta-Analysis of 285,000 Patients. *Thromb Haemost* 2022; **122**(3):
10 406-14.

11 38. Connolly SJ, Karthikeyan G, Ntsekhe M, et al. Rivaroxaban in Rheumatic Heart
12 Disease-Associated Atrial Fibrillation. *N Engl J Med* 2022; **387**(11): 978-88.

13 39. Klijn CJ, Paciaroni M, Berge E, et al. Antithrombotic treatment for secondary
14 prevention of stroke and other thromboembolic events in patients with stroke or transient
15 ischemic attack and non-valvular atrial fibrillation: A European Stroke Organisation guideline.
16 *Eur Stroke J* 2019; **4**(3): 198-223.

17 40. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the Early Management of
18 Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early
19 Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the
20 American Heart Association/American Stroke Association. *Stroke* 2019; **50**(12): e344-e418.

21 41. Gladstone DJ, Lindsay MP, Douketis J, et al. Canadian Stroke Best Practice
22 Recommendations: Secondary Prevention of Stroke Update 2020. *The Canadian journal of*
23 *neurological sciences Le journal canadien des sciences neurologiques* 2022; **49**(3): 315-37.

24 42. Diener HC, Connolly SJ, Ezekowitz MD, et al. Dabigatran compared with warfarin in
25 patients with atrial fibrillation and previous transient ischaemic attack or stroke: a subgroup
26 analysis of the RE-LY trial. *The Lancet Neurology* 2010; **9**(12): 1157-63.

27 43. Diener HC, Eikelboom J, Connolly SJ, et al. Apixaban versus aspirin in patients with
28 atrial fibrillation and previous stroke or transient ischaemic attack: a predefined subgroup
29 analysis from AVERROES, a randomised trial. *The Lancet Neurology* 2012; **11**(3): 225-31.

30 44. Hankey GJ, Patel MR, Stevens SR, et al. Rivaroxaban compared with warfarin in
31 patients with atrial fibrillation and previous stroke or transient ischaemic attack: a subgroup
32 analysis of ROCKET AF. *The Lancet Neurology* 2012; **11**(4): 315-22.

33 45. Yoon CH, Park YK, Kim SJ, et al. Eligibility and Preference of New Oral
34 Anticoagulants in Patients With Atrial Fibrillation: Comparison Between Patients With Versus
35 Without Stroke. *Stroke* 2014; **45**(10): 2983-8.

36 46. Alvarez-Sabin J, Maisterra O, Santamarina E, Kase CS. Factors influencing
37 haemorrhagic transformation in ischaemic stroke. *Lancet Neurol* 2013; **12**(7): 689-705.

38 47. Seiffge DJ, Werring DJ, Paciaroni M, et al. Timing of anticoagulation after recent
39 ischaemic stroke in patients with atrial fibrillation. *Lancet Neurol* 2019; **18**(1): 117-26.

40 48. Paciaroni M, Bandini F, Agnelli G, et al. Hemorrhagic Transformation in Patients With
41 Acute Ischemic Stroke and Atrial Fibrillation: Time to Initiation of Oral Anticoagulant Therapy
42 and Outcomes. *J Am Heart Assoc* 2018; **7**(22): e010133.

43 49. Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ. Matrix
44 metalloproteinases increase very early during experimental focal cerebral ischemia. *Journal of*
45 *cerebral blood flow and metabolism : official journal of the International Society of Cerebral*
46 *Blood Flow and Metabolism* 1999; **19**(6): 624-33.

47 50. Montaner J, Molina CA, Monasterio J, et al. Matrix metalloproteinase-9 pretreatment
48 level predicts intracranial hemorrhagic complications after thrombolysis in human stroke.
49 *Circulation* 2003; **107**(4): 598-603.

50 51. Hart RG, Coull BM, Hart D. Early recurrent embolism associated with nonvalvular
51 atrial fibrillation: a retrospective study. *Stroke* 1983; **14**(5): 688-93.

1 52. Paciaroni M, Agnelli G, Falocci N, et al. Early Recurrence and Cerebral Bleeding in
2 Patients With Acute Ischemic Stroke and Atrial Fibrillation: Effect of Anticoagulation and Its
3 Timing: The RAF Study. *Stroke* 2015; **46**(8): 2175-82.

4 53. Kimura S, Toyoda K, Yoshimura S, et al. Practical "1-2-3-4-Day" Rule for Starting
5 Direct Oral Anticoagulants After Ischemic Stroke With Atrial Fibrillation: Combined Hospital-
6 Based Cohort Study. *Stroke; a journal of cerebral circulation* 2022; **53**(5): 1540-9.

7 54. De Marchis GM, Seiffge DJ, Schaederlin S, et al. Early versus late start of direct oral
8 anticoagulants after acute ischaemic stroke linked to atrial fibrillation: an observational study
9 and individual patient data pooled analysis. *Journal of neurology, neurosurgery, and psychiatry*
10 2022; **93**(2): 119-25.

11 55. Seiffge DJ, Traenka C, Polymeris A, et al. Early start of DOAC after ischemic stroke:
12 Risk of intracranial hemorrhage and recurrent events. *Neurology* 2016; **87**(18): 1856-62.

13 56. Yaghi S, Mistry E, Liberman AL, et al. Anticoagulation Type and Early Recurrence in
14 Cardioembolic Stroke: The IAC Study. *Stroke; a journal of cerebral circulation* 2020; **51**(9):
15 2724-32.

16 57. Arihiro S, Todo K, Koga M, et al. Three-month risk-benefit profile of anticoagulation
17 after stroke with atrial fibrillation: The SAMURAI-Nonvalvular Atrial Fibrillation (NVAF)
18 study. *Int J Stroke* 2016; **11**(5): 565-74.

19 58. Macha K, Volbers B, Bobinger T, et al. Early Initiation of Anticoagulation with Direct
20 Oral Anticoagulants in Patients after Transient Ischemic Attack or Ischemic Stroke. *J Stroke*
21 *Cerebrovasc Dis* 2016; **25**(9): 2317-21.

22 59. Oldgren J, Åsberg S, Hijazi Z, Wester P, Bertilsson M, Norrving B. Early Versus
23 Delayed Non-Vitamin K Antagonist Oral Anticoagulant Therapy After Acute Ischemic Stroke
24 in Atrial Fibrillation (TIMING): A Registry-Based Randomized Controlled Noninferiority
25 Study. *Circulation* 2022; **146**(14): 1056-66.

26 60. Fischer U, Koga M, Strbjan D, et al. Early versus Later Anticoagulation for Stroke with
27 Atrial Fibrillation. *N Engl J Med* 2023.

28 61. Fischer U, Trelle S, Branca M, et al. Early versus Late initiation of direct oral
29 Anticoagulants in post-ischaemic stroke patients with atrial fibrillatioN (ELAN): Protocol for
30 an international, multicentre, randomised-controlled, two-arm, open, assessor-blinded trial. *Eur*
31 *Stroke J* 2022; **7**(4): 487-95.

32 62. Best JG, Arram L, Ahmed N, et al. Optimal timing of anticoagulation after acute
33 ischemic stroke with atrial fibrillation (OPTIMAS): Protocol for a randomized controlled trial.
34 *International journal of stroke : official journal of the International Stroke Society* 2022; **17**(5):
35 583-9.

36 63. Kirchhof P. The future of atrial fibrillation management: integrated care and stratified
37 therapy. *Lancet (London, England)* 2017; **390**(10105): 1873-87.

38 64. AFFIRM I. A comparison of rate control and rhythm control in patients with atrial
39 fibrillation. *The New England journal of medicine* 2002; **347**: 1825-33.

40 65. Roy D, Talajic M, Nattel S, et al. Rhythm control versus rate control for atrial fibrillation
41 and heart failure. *The New England journal of medicine* 2008; **358**(25): 2667-77.

42 66. Corley SD, Epstein AE, DiMarco JP, et al. Relationships between sinus rhythm,
43 treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of Rhythm
44 Management (AFFIRM) Study. *Circulation* 2004; **109**(12): 1509-13.

45 67. Hohnloser SH, Crijns HJ, van Eickels M, et al. Effect of dronedarone on cardiovascular
46 events in atrial fibrillation. *The New England journal of medicine* 2009; **360**(7): 668-78.

47 68. Connolly SJ, Crijns HJ, Torp-Pedersen C, et al. Analysis of stroke in ATHENA: a
48 placebo-controlled, double-blind, parallel-arm trial to assess the efficacy of dronedarone 400
49 mg BID for the prevention of cardiovascular hospitalization or death from any cause in patients
50 with atrial fibrillation/atrial flutter. *Circulation* 2009; **120**(13): 1174-80.

1 69. Kirchhof P, Bax J, Blomstrom-Lundquist C, et al. Early and comprehensive
2 management of atrial fibrillation: executive summary of the proceedings from the 2nd AFNET-
3 EHRA consensus conference 'research perspectives in AF'. *European heart journal* 2009;
4 **30**(24): 2969-77c.

5 70. Van Gelder IC, Haegeli LM, Brandes A, et al. Rationale and current perspective for
6 early rhythm control therapy in atrial fibrillation. *Europace : European pacing, arrhythmias,*
7 *and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias,*
8 *and cardiac cellular electrophysiology of the European Society of Cardiology* 2011; **13**(11):
9 1517-25.

10 71. Kirchhof P, Breithardt G, Camm AJ, et al. Improving outcomes in patients with atrial
11 fibrillation: rationale and design of the Early treatment of Atrial fibrillation for Stroke
12 prevention Trial. *Am Heart J* 2013; **166**(3): 442-8.

13 72. Kirchhof P, Camm AJ, Goette A, et al. Early Rhythm-Control Therapy in Patients with
14 Atrial Fibrillation. *The New England journal of medicine* 2020; **383**(14): 1305-16.

15 73. Packer DL, Mark DB, Robb RA, et al. Effect of Catheter Ablation vs Antiarrhythmic
16 Drug Therapy on Mortality, Stroke, Bleeding, and Cardiac Arrest Among Patients With Atrial
17 Fibrillation: The CABANA Randomized Clinical Trial. *JAMA* 2019; **321**(13): 1261-74.

18 74. Turagam MK, Musikantow D, Whang W, et al. Assessment of Catheter Ablation or
19 Antiarrhythmic Drugs for First-line Therapy of Atrial Fibrillation: A Meta-analysis of
20 Randomized Clinical Trials. *JAMA Cardiol* 2021; **6**(6): 697-705.

21 75. Mark DB, Anstrom KJ, Sheng S, et al. Effect of Catheter Ablation vs Medical Therapy
22 on Quality of Life Among Patients With Atrial Fibrillation: The CABANA Randomized
23 Clinical Trial. *JAMA* 2019; **321**(13): 1275-85.

24 76. Parkash R, Wells GA, Rouleau J, et al. Randomized Ablation-Based Rhythm-Control
25 Versus Rate-Control Trial in Patients With Heart Failure and Atrial Fibrillation: Results from
26 the RAFT-AF trial. *Circulation* 2022; **145**(23): 1693-704.

27 77. Jensen M, Suling A, Metzner A, et al. Early rhythm-control therapy for atrial fibrillation
28 in patients with a history of stroke: a subgroup analysis of the EAST-AFNET 4 trial. *The Lancet*
29 *Neurology* 2023; **22**(1): 45-54.

30 78. Rillig A, Borof K, Breithardt G, et al. Early Rhythm Control in Patients With Atrial
31 Fibrillation and High Comorbidity Burden. *Circulation* 2022;
32 101161CIRCULATIONAHA122060274.

33 79. Diederichsen SZ, Haugan KJ, Brandes A, et al. Natural History of
34 Subclinical Atrial Fibrillation Detected by Implanted Loop Recorders. *J Am Coll Cardiol* 2019;
35 **74**(22): 2771-81.

36 80. Cresti A, García-Fernández MA, Sievert H, et al. Prevalence of extra-appendage
37 thrombosis in non-valvular atrial fibrillation and atrial flutter in patients undergoing
38 cardioversion: a large transoesophageal echo study. *EuroIntervention : journal of EuroPCR in*
39 *collaboration with the Working Group on Interventional Cardiology of the European Society*
40 *of Cardiology* 2019; **15**(3): e225-e30.

41 81. Rinkel LA, Beemsterboer CF, Groeneveld NS, et al. Cardiac thrombi detected by CT in
42 patients with acute ischemic stroke: A substudy of Mind the Heart. *Eur Stroke J* 2023; **8**(1):
43 168-74.

44 82. Holmes DR, Jr., Kar S, Price MJ, et al. Prospective randomized evaluation of the
45 Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-
46 term warfarin therapy: the PREVAIL trial. *J Am Coll Cardiol* 2014; **64**(1): 1-12.

47 83. Reddy VY, Sievert H, Halperin J, et al. Percutaneous left atrial appendage closure vs
48 warfarin for atrial fibrillation: a randomized clinical trial. *JAMA : the journal of the American*
49 *Medical Association* 2014; **312**(19): 1988-98.

1 84. Osmancik P, Herman D, Neuzil P, et al. Left Atrial Appendage Closure Versus Direct
2 Oral Anticoagulants in High-Risk Patients With Atrial Fibrillation. *J Am Coll Cardiol* 2020;
3 **75**(25): 3122-35.

4 85. Reddy VY, Doshi SK, Kar S, et al. 5-Year Outcomes After Left Atrial Appendage
5 Closure: From the PREVAIL and PROTECT AF Trials. *Journal of the American College of
6 Cardiology* 2017; **70**(24): 2964-75.

7 86. Osmancik P, Herman D, Neuzil P, et al. 4-Year Outcomes After Left Atrial Appendage
8 Closure Versus Nonwarfarin Oral Anticoagulation for Atrial Fibrillation. *Journal of the
9 American College of Cardiology* 2022; **79**(1): 1-14.

10 87. Whitlock RP, Belley-Cote EP, Paparella D, et al. Left Atrial Appendage Occlusion
11 during Cardiac Surgery to Prevent Stroke. *The New England journal of medicine* 2021; **384**(22):
12 2081-91.

13 88. Simard TJ, Hibbert B, Alkhouri MA, Abraham NS, Holmes DR, Jr. Device-related
14 thrombus following left atrial appendage occlusion. *EuroIntervention* 2022; **18**(3): 224-32.

15 89. Huijboom M, Maarse M, Aarnink E, et al. COMPARE LAAO: Rationale and design of
16 the randomized controlled trial "COMPARing Effectiveness and safety of Left Atrial
17 Appendage Occlusion to standard of care for atrial fibrillation patients at high stroke risk and
18 ineligible to use oral anticoagulation therapy". *Am Heart J* 2022; **250**: 45-56.

19 90. De Potter T, Yodfat O, Shinar G, et al. Permanent Bilateral Carotid Filters for Stroke
20 Prevention in Atrial Fibrillation. *Current cardiology reports* 2020; **22**(11): 144.

21 91. Yodfat O, Shinar G, Neta A, et al. A Permanent Common Carotid Filter for Stroke
22 Prevention in Atrial Fibrillation: Ex Vivo and In Vivo Pre-Clinical Testing. *Cardiovascular
23 revascularization medicine : including molecular interventions* 2020; **21**(12): 1587-93.

24 92. Reddy VY, Neuzil P, de Potter T, et al. Permanent Percutaneous Carotid Artery Filter
25 to Prevent Stroke in Atrial Fibrillation Patients: The CAPTURE Trial. *J Am Coll Cardiol* 2019;
26 **74**(7): 829-39.

27 93. Eikelboom JW, Connolly SJ, Brueckmann M, et al. Dabigatran versus warfarin in
28 patients with mechanical heart valves. *The New England journal of medicine* 2013; **369**(13):
29 1206-14.

30 94. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus warfarin in patients with
31 atrial fibrillation. *N Engl J Med* 2013; **369**(22): 2093-104.

32 95. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients
33 with atrial fibrillation. *The New England journal of medicine* 2011; **365**(11): 981-92.

34 96. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular
35 atrial fibrillation. *The New England journal of medicine* 2011; **365**(10): 883-91.

36 97. Tanaka K, Koga M, Lee KJ, et al. Atrial Fibrillation-Associated Ischemic Stroke
37 Patients With Prior Anticoagulation Have Higher Risk for Recurrent Stroke. *Stroke* 2020;
38 **51**(4): 1150-7.

39 98. Yaghi S, Henninger N, Giles JA, et al. Ischaemic stroke on anticoagulation therapy and
40 early recurrence in acute cardioembolic stroke: the IAC study. *Journal of neurology,
41 neurosurgery, and psychiatry* 2021; **92**(10): 1062-7.

42 99. Seiffge DJ, De Marchis GM, Koga M, et al. Ischemic Stroke despite Oral Anticoagulant
43 Therapy in Patients with Atrial Fibrillation. *Annals of neurology* 2020; **87**(5): 677-87.

44 100. Paciaroni M, Agnelli G, Caso V, et al. Causes and Risk Factors of Cerebral Ischemic
45 Events in Patients With Atrial Fibrillation Treated With Non-Vitamin K Antagonist Oral
46 Anticoagulants for Stroke Prevention. *Stroke* 2019; **50**(8): 2168-74.

47 101. Paciaroni M, Caso V, Agnelli G, et al. Recurrent Ischemic Stroke and Bleeding in
48 Patients With Atrial Fibrillation Who Suffered an Acute Stroke While on Treatment With
49 Nonvitamin K Antagonist Oral Anticoagulants: The RENO-EXTEND Study. *Stroke; a journal
50 of cerebral circulation* 2022; **53**(8): 2620-7.

1 102. Du H, Wilson D, Ambler G, et al. Small Vessel Disease and Ischemic Stroke Risk
2 During Anticoagulation for Atrial Fibrillation After Cerebral Ischemia. *Stroke* 2021; **52**(1): 91-
3 9.

4 103. Best JG, Cardus B, Klijn CJM, et al. Antithrombotic dilemmas in stroke medicine: new
5 data, unsolved challenges. *Journal of neurology, neurosurgery, and psychiatry* 2022.

6 104. Stretz C, Wu TY, Wilson D, et al. Ischaemic stroke in anticoagulated patients with atrial
7 fibrillation. *Journal of neurology, neurosurgery, and psychiatry* 2021; **92**(11): 1164-72.

8 105. Fastner C, Szabo K, Samartzi M, et al. Treatment standards for direct oral anticoagulants
9 in patients with acute ischemic stroke and non-valvular atrial fibrillation: A survey among
10 German stroke units. *PLoS One* 2022; **17**(2): e0264122.

11 106. Bonaventure Ip YM, Lau KK, Ko H, et al. Association of Alternative Anticoagulation
12 Strategies and Outcomes in Patients With Ischemic Stroke While Taking a Direct Oral
13 Anticoagulant. *Neurology* 2023.

14 107. Polymeris AA, Meinel TR, Oehler H, et al. Aetiology, secondary prevention strategies
15 and outcomes of ischaemic stroke despite oral anticoagulant therapy in patients with atrial
16 fibrillation. *Journal of neurology, neurosurgery, and psychiatry* 2022; **93**(6): 588-98.

17 108. Seiffge DJ, De Marchis GM, Koga M, et al. Ischemic Stroke despite Oral Anticoagulant
18 Therapy in Patients with Atrial Fibrillation. *Annals of neurology* 2020.

19 109. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with
20 atrial fibrillation. *The New England journal of medicine* 2009; **361**(12): 1139-51.

21 110. Benz AP, Johansson I, Dewilde WJM, et al. Antiplatelet therapy in patients with atrial
22 fibrillation: a systematic review and meta-analysis of randomized trials. *Eur Heart J
Cardiovasc Pharmacother* 2022; **8**(7): 648-59.

24 111. Heitmeier S, Visser M, Tersteegen A, et al. Pharmacological profile of asundexian, a
25 novel, orally bioavailable inhibitor of factor XIa. *J Thromb Haemost* 2022; **20**(6): 1400-11.

26 112. Wong PC, Crain EJ, Bozarth JM, et al. Milvexian, an orally bioavailable, small-
27 molecule, reversible, direct inhibitor of factor XIa: In vitro studies and in vivo evaluation in
28 experimental thrombosis in rabbits. *J Thromb Haemost* 2022; **20**(2): 399-408.

29 113. Weitz JI, Strony J, Ageno W, et al. Milvexian for the Prevention of Venous
30 Thromboembolism. *The New England journal of medicine* 2021; **385**(23): 2161-72.

31 114. Piccini JP, Caso V, Connolly SJ, et al. Safety of the oral factor XIa inhibitor asundexian
32 compared with apixaban in patients with atrial fibrillation (PACIFIC-AF): a multicentre,
33 randomised, double-blind, double-dummy, dose-finding phase 2 study. *Lancet (London,
34 England)* 2022; **399**(10333): 1383-90.

35 115. Rao SV, Kirsch B, Bhatt DL, et al. A Multicenter, Phase 2, Randomized, Placebo-
36 Controlled, Double-Blind, Parallel-Group, Dose-Finding Trial of the Oral Factor XIa Inhibitor
37 Asundexian to Prevent Adverse Cardiovascular Outcomes After Acute Myocardial Infarction.
38 *Circulation* 2022; **146**(16): 1196-206.

39 116. Shoamanesh A, Mundl H, Smith EE, et al. Factor XIa inhibition with asundexian after
40 acute non-cardioembolic ischaemic stroke (PACIFIC-Stroke): an international, randomised,
41 double-blind, placebo-controlled, phase 2b trial. *Lancet* 2022; **400**(10357): 997-1007.

42 117. Sharma M, Molina CA, Toyoda K, et al. Rationale and design of the AXIOMATIC-SSP
43 phase II trial: Antithrombotic treatment with factor XIa inhibition to Optimize Management of
44 Acute Thromboembolic events for Secondary Stroke Prevention. *J Stroke Cerebrovasc Dis*
45 2022; **31**(10): 106742.

46 118. Horstmann S, Rizos T, Jenetzky E, Gumbinger C, Hacke W, Veltkamp R. Prevalence
47 of atrial fibrillation in intracerebral hemorrhage. *European journal of neurology : the official
48 journal of the European Federation of Neurological Societies* 2014; **21**(4): 570-6.

49 119. Gabet A, Olié V, Béjot Y. Atrial Fibrillation in Spontaneous Intracerebral Hemorrhage,
50 Dijon Stroke Registry (2006-2017). *Journal of the American Heart Association* 2021; **10**(17):
51 e020040.

1 120. Goeldlin MB, Mueller A, Siepen BM, et al. Etiology, 3-Month Functional Outcome and
2 Recurrent Events in Non-Traumatic Intracerebral Hemorrhage. *J Stroke* 2022; **24**(2): 266-77.

3 121. Seiffge DJ, Goeldlin MB, Tatlisumak T, et al. Meta-analysis of haematoma volume,
4 haematoma expansion and mortality in intracerebral haemorrhage associated with oral
5 anticoagulant use. *Journal of neurology* 2019.

6 122. Seiffge DJ, Wilson D, Ambler G, et al. Small vessel disease burden and intracerebral
7 haemorrhage in patients taking oral anticoagulants. *Journal of neurology, neurosurgery, and*
8 *psychiatry* 2021.

9 123. Li L, Poon MTC, Samarasekera NE, et al. Risks of recurrent stroke and all serious
10 vascular events after spontaneous intracerebral haemorrhage: pooled analyses of two
11 population-based studies. *Lancet Neurol* 2021; **20**(6): 437-47.

12 124. Murthy SB, Zhang C, Diaz I, et al. Association Between Intracerebral Hemorrhage and
13 Subsequent Arterial Ischemic Events in Participants From 4 Population-Based Cohort Studies.
14 *JAMA neurology* 2021.

15 125. Biffi A, Kuramatsu JB, Leisure A, et al. Oral Anticoagulation and Functional Outcome
16 after Intracerebral Hemorrhage. *Annals of neurology* 2017.

17 126. Biffi A, Urday S, Kubiszewski P, et al. Combining Imaging and Genetics to Predict
18 Recurrence of Anticoagulation-Associated Intracerebral Hemorrhage. *Stroke* 2020; **51**(7):
19 2153-60.

20 127. Kuramatsu JB, Gerner ST, Schellinger PD, et al. Anticoagulant reversal, blood pressure
21 levels, and anticoagulant resumption in patients with anticoagulation-related intracerebral
22 hemorrhage. *JAMA : the journal of the American Medical Association* 2015; **313**(8): 824-36.

23 128. Effects of oral anticoagulation for atrial fibrillation after spontaneous intracranial
24 haemorrhage in the UK: a randomised, open-label, assessor-masked, pilot-phase, non-
25 inferiority trial. *Lancet Neurol* 2021; **20**(10): 842-53.

26 129. Schreuder F, van Nieuwenhuizen KM, Hofmeijer J, et al. Apixaban versus no
27 anticoagulation after anticoagulation-associated intracerebral haemorrhage in patients with
28 atrial fibrillation in the Netherlands (APACHE-AF): a randomised, open-label, phase 2 trial.
29 *Lancet Neurol* 2021; **20**(11): 907-16.

30 130. Al-Shahi Salman R, Stephen J, Tierney JF, et al. Effects of oral anticoagulation in people
31 with atrial fibrillation after spontaneous intracranial haemorrhage (COCROACH): prospective,
32 individual participant data meta-analysis of randomised trials. *Lancet Neurol* 2023.

33 131. Shoamanesh A. Anticoagulation in patients with cerebral amyloid angiopathy. *Lancet*
34 2023; **402**(10411): 1418-9.

35 132. Rubiera M, Aires A, Antonenko K, et al. European Stroke Organisation (ESO) guideline
36 on screening for subclinical atrial fibrillation after stroke or transient ischaemic attack of
37 undetermined origin. *Eur Stroke J* 2022; **7**(3): Vi.

38 133. Schnabel RB, Camen S, Knebel F, et al. Expert opinion paper on cardiac imaging after
39 ischemic stroke. *Clinical research in cardiology : official journal of the German Cardiac*
40 *Society* 2021; **110**(7): 938-58.

41 134. Schweizer J, Arnold M, König IR, et al. Measurement of Midregional Pro-Atrial
42 Natriuretic Peptide to Discover Atrial Fibrillation in Patients With Ischemic Stroke. *J Am Coll*
43 *Cardiol* 2022; **79**(14): 1369-81.

44