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Mireia Benito Montaner, Stephen T. Hilton 

 
Abstract 

 

Continuous flow processes have distinct advantages over batch chemistry when it 

comes to long-term sustainability in the chemical industry, and they are widely 

acknowledged as being a greener approach to synthesis. However, despite this, the 

high costs and complexity of current commercial systems act as barriers to entry in 

this key technology for new entrants, stymieing chemists transition to continuous flow. 

In this overview, we discuss how 3D printing has emerged as a transformative force 

for chemists seeking to move into continuous flow. Alongside the physical equipment 

and microreactors, recent reports on incorporation of catalysts into 3D-printed reactors 

offers great promise for recyclability and environmental sustainability and the 

combined convergence of 3D printing and catalysis represents a transformative shift 

towards environmentally conscious, efficient, and standardized chemical processes in 

continuous flow. 

 

Introduction 

 

The synthesis of small molecules and the scale-up syntheses of these are a key 

component of the United Nations Sustainable Development Goals (SDGs), to develop 

a more sustainable global future by 2030 [1]. As the chemistry community confronts 

an escalating demand for environmentally friendly solutions, innovative methodologies 

such as flow chemistry have emerged as transformative chemical processes over 

batch syntheses [2]. Unlike conventional batch processes, flow chemistry involves the 

continuous flow of reactants through a reactor [3], and offers improved safety, 

efficiency, and scalability while reducing environmental costs and waste production on 

a large scale. In accordance with the twelve principles of green chemistry outlined by 

Anastas and Warner, these attributes have positioned flow chemistry as an key tenet 

of sustainable chemical synthesis [4]. 

 

The introduction of 3D printing in the 1980s was a significant development for a range 

of scientific disciplines and is swiftly changing the way scientists carry out their 
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research. 3D printing involves the layer by layer building of physical objects from a 

digital computer aided design (CAD) model. With easily accessible modelling software, 

these objects can be rapidly accessed by anyone using low-cost devices, with little to 

no knowledge of the printers themselves [5]. Laboratories worldwide have rapidly 

realised the potential of 3D printing as an invaluable tool for rapid prototyping and 

creating complex laboratory apparatus that were previously challenging or costly to 

produce using traditional manufacturing methods. In recent years, the integration of 

3D printing with flow chemistry has driven innovation in reactor design and catalysis 

by leveraging the additive manufacturing precision to create custom flow reactors and 

system set ups tailored to the reaction requirements [6,7].  

 

The progress in 3D printing technologies, including Fused Modelling Deposition 

(FDM), Stereolithography (SLA), and Selective Laser Sintering (SLS), have facilitated 

the development of different types of reactors using a wide range of materials such as 

polymers, metals, and ceramics, making it possible to tailor specific reaction conditions 

to the required reactors [7–12]. This flexibility in material selection not only expands 

the possibilities for designing highly efficient and selective flow reactors, but also 

contributes to the development of greener chemical processes. Further advancements 

in this area have seen the incorporation of catalysts into 3D printed reactors for flow 

catalytic reactions [13]. The precision offered by 3D printing technology allows for the 

strategic placement of catalysts within the reactor, optimizing the interaction between 

reactants and catalysts. Exploiting the adaptability of this technology and the different 

ways in which a catalyst can be embedded within a 3D print has been crucial for 

developing catalytic systems that can withstand a wide range of operating conditions, 

whilst maintaining stability and activity.  
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Figure 1: Applications of 3D printing [14] 

This review explores the most innovative advancements in this interdisciplinary field 

over the past two to three years, highlighting some of the ongoing impactful and 

diverse contributions of 3D printed reactors applications to catalytic processes. It 

illustrates how the convergence of 3D printing and catalysis is reshaping the research 

landscape, not only by facilitating the swift prototyping of flow reactors but also by 

driving the creation of customised catalytic systems and greener catalytic processes. 

 

Chemical catalysis 

While traditional methods like fixed-bed reactors and continuous stirred-tank reactors 

have been widely used for catalytic reactions in flow, they face constraints regarding 

design flexibility and the time-consuming process of catalyst recovery from the final 

product [15,16]. Customized 3D printed reactors can overcome these limitations, 

leading to higher catalyst performance and selectivity in flow chemical reactions 

[14,17]. 3D printed monoliths have garnered considerable attention for catalytic 

reactions owing to their distinctive features, encompassing tailored pore size, 

customized pattern design and improved heat and mass transfer capabilities [18–22].  

However, despite these advantages, achieving optimal efficiency and higher 

conversion rates compared to conventional packed bed and batch processes requires 

the optimization of the internal structures, as underscored by several authors [22–24].  
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Figure 2: Upper Section: Fabrication of Fe-containing supported monolithic catalysts using the micro-extrusion-

based direct-write 3D technique. Lower Section: Comparative assessment of the performance between 3D printed 

monoliths and their packed bed counterparts in the continuous flow reactor and batch reactor for the oxidation of 

benzyl alcohol [23] 

Beyond structural optimization, the selection of materials used in 3D printing and the 

reaction conditions significantly influence the performance of the flow reactors in 

catalytic applications and its environmental footprint [25]. The synergy between 

structural design and material choice is essential for attaining the desired catalytic 

outcomes. A study by Jaquot reported an improved sustainable monolith formulation 

in the oxidation of benzyl alcohol into benzaldehyde by substituting Cobalt and 

Palladium metals with less active but more environmentally abundant iron metal 

(Figure 2) [23]. This modification not only showcases the impact of material selection 

on catalytic performance but also exemplifies a shift towards more sustainable 

practices in catalysis. Significant enhancements were observed with the FePd@Al2O3 

configuration in XBA conversion, showcasing a 20% increase during the transition 

from a traditional packed bed reactor to 3D printed stacked monoliths reactor, along 

an improved Turnover Frequency (TOF) performance from 0.02 h-1 to 0.04 h-1. 

Moreover, molecular oxygen was utilized alongside an aqueous solvent, contributing 

to a greener process. The use of water as a solvent for catalytic reactions further 

contributes to the overarching goal of sustainability, as recently exemplified by Vega 

[24] and Zhakeyev [18]. Incorporating water as a solvent not only aligns with green 

chemistry principles but also contributes to the reduction of organic solvents, which 

are often associated with environmental and health concerns [26]. 

Jo
urn

al 
Pre-

pro
of



 

 

 

The functionalization of 3D printing material with a catalyst through 3D printing 

technology, whether through preloading or post-loading, enhances the recyclability of 

catalysts [27]. SLA 3D printing, in particular, facilitates the preloading of catalysts with 

polymerizable functional groups into the resin [28]. Zhakeyev demonstrated how vinyl 

groups within the St-BTZ photocatalyst can react with acrylate resin during the SLA 

photomolymerization process, enabling successful integration and the direct creation 

of functional catalysts in the resin matrix [29]. In an initial attempt to 3D print SLA 

microfluidic reactors [18], the authors encountered suboptimal irradiation to the 

reaction solution due to external surfaces containing photocatalyst, compromising the 

device effectiveness. Consequently, the challenge was addressed through the design 

of monolithic structures, enabling direct irradiation of the active surface for the 

photosensitisation of singlet oxygen. While pre-functionalization is a straightforward 

technique when embedding catalysts within reactors prior to initiating the SLA 3D 

printing process, the compatibility of certain catalysts presents limitations to its 

widespread application. In this context, Pellejero [30] applied the Au@POM/TiO2 

photocatalyst through dip-coating onto the ABS mold before the polymer casting 

process. Subsequently, the catalyst was assessed for its effectiveness in the reduction 

of 4-nitrophenol to 4-aminophenol, achieving a conversion rate exceeding 90%. These 

examples stand as promising techniques, not only in overcoming the challenges of 

irradiation encountered in photocatalytic processes but also in contributing to 

environmental wastewater remediation. Furthermore, recent publications in the field 

have also enhanced the use of 3D printed flow reactors for wastewater treatment and 

pollutant degradation [19,31–34]. 

 

Biocatalysis  

In the search for sustainable and environmentally benign chemical processes, 

biocatalysis has also emerged as a transformative new approach to continuous flow 

[35]. Using enzymes as natural catalysts, biocatalysis represents a green and effective 

alternative to metal-based catalysis in the production of APIs and fine chemicals, 

showcasing high activity under mild conditions and substrate specificity [36,37]. 

 

The exploration of enzyme immobilization has arisen as a response to challenges 

related to stability and reusability of enzymes in solution. Novel methods and designs 
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for enzyme immobilization to bioreactors have recently been investigated, contributing 

to the ongoing enhancement of their applicability to industrial processes [38–40]. 

Noteworthy advancements include surface modifications of 3D printed objects using 

FDM, achieved through coating methods. Examples of such innovations include 

Mussel-inspired polydopamine coating, as demonstrated by Sriwong for the 

immobilization of GcAPRD on a polypropylene (PP) reactor [41], and chitosan coating 

for immobilizing laccase on a poly-lactic acid (PLA) reactor, as explored by Shen [42]. 

Other methodologies encompass co-entrapment of two different enzymes in agarose 

gel by Croci [43] and the covalent binding of a decarboxylase into ceramic supports 

by Valotta [44]. 

 

Standardization of 3D printed Reactionware 

On-demand prototyping has been a remarkable development that has accelerated the 

rapid design of flow chemistry reactionware. This dynamic capability has significantly 

reduced the time and effort traditionally required for designing and iterating 

reactionware, allowing researchers and engineers to swiftly explore novel 

configurations in a cost-effective manner. This design flexibility has enhanced the 

development and optimization of greener chemical processes, particularly in research 

and development settings [45].  

 

Over the last decade, numerous papers have showcased the widespread adoption of 

3D printing to fabricate diverse components to integrate into the flow chemistry 

process [46]. These demonstrated the adaptability of 3D printing across various 

aspects of chemical synthesis, including the development of syringe pumps for 

controlled reagent delivery, customized flow reactors and mixers tailored to specific 

reaction conditions, and the successful integration of sensors for real-time monitoring 

of crucial parameters [7,47,48]. While these advancements in 3D printing have 

undoubtedly contributed to their success, reproducibility of reactions still remains a 

critical concern. The lack of comprehensive documentation regarding experimental 

setup, light source, or reaction parameters, poses a hurdle in achieving consistent and 

reliable outcomes across different laboratories and studies, especially in the domain 

of photochemistry [49–52]. Accurate reporting and monitoring of these, are essential 

for ensuring reproducibility, given their direct influence on the reaction rate and yield 
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(Figure 3). Addressing this challenge is pivotal for harnessing the full potential of 3D 

printing in advancing flow chemistry methodologies on a broader scale.  

 

 

Figure 3: Performance comparison of two photocatalytic reactions across four different photoreactors and set-ups over time, 
monitoring the reaction yields (%, dots) and reaction temperature (ºC, triangle). [52] 

Photochemical reactions have gained relevance as a sustainable approach due to 

their potential to drive chemical transformations using visible light as an abundant and 

renewable energy source [53]. This process offers numerous benefits such as reduced 

reliance on non-renewable energy sources, minimized environmental impact, and the 

ability to carry out reactions under mild conditions [54]. Therefore, it is crucial to 

establish standardized protocols to ensure the reproducibility of photochemical 

reactions, in order to continue promoting sustainable and greener chemistry practices 

[55]. Standardization presents significant challenges due to the wide range of light 

sources and array of experimental setups that have been used. Variations are caused 

by factors such as differences in heat emitted by lamps leading to reaction 

reproducibility problems, necessitating a standard for optimal distance between the 

lamp and reactor and accurate temperature control and monitoring. To address this, 

Schiel recently developed a simple and reproducible PETG 3D printed photoreactor 

and setup characterized by its ability to maintain a controlled temperature range 

between -20°C and +80°C through the insertion of thermoelectric coolers (TECs) into 

the chamber walls [56]. Furthermore, the reactor design incorporates an electronic 

control unit based on an Arduino microchip to ensure precise monitoring temperature 

control. The simplicity of this design addresses the limitations encountered in batch 

processes such as limited light penetration and temperature fluctuations associated 

with LED lights.  
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Fused modelling deposition (FDM) is a widely used additive manufacturing technique 

that is particularly well-suited for creating intricate and functional flow reactor designs. 

FDM involves heating and extruding thermoplastic materials layer by layer to build up 

the desired 3D structure. These polymers are chosen for their ability to withstand the 

chemical and thermal conditions present in photochemical reactions while offering 

durability and cost-effectiveness [7]. To address the challenges of a lack of 

reproducibility and standardization of continuous flow chemistry, the Hilton group 

developed a 3D printed PLA flow system and selected polypropylene as their primary 

material for developing standardized flow and photochemical flow reactors [57,58]. 

Initially, stereolithography was used for development of photochemical reactors due 

to the clear appearance of the final prints. However, challenges related to heat led to 

the transition to the use of PP, which is also transparent to UV light. The dimensions 

of the reactor internal channels were optimised along with the distance of the lamp 

from the reactor in order to develop a standard housing for LED lamps that could be 

utilized in conjunction with 3D printed flow photochemistry (Figure 4).  

 

Figure 4: Proposed continuous flow photochemistry system designed to work seamlessly with existing Kessil lamps 

(depicted on the left). A detailed view (shown on the right) provides an illustration of the suggested lamp setup 

positioned above the 3D-printed reactor [57]. 

The system developed by the group was further commercialized in partnership with 

IKA in 2021 enabling the readily adoption by laboratories and industries worldwide and 

incorporates 3D printed polypropylene and PVDF reactors at its core demonstrating 

the potential of 3D printing of commercial reactors [63]. The effectiveness of the 

system was first demonstrated in the bromination of various toluenes, achieving a 

productivity of 75 mmol h-1. The 3D printed PP photoreactors were further adapted by 

the group in order to gain an understanding of temperature fluctuations over time and 

its correlation with the distance of the lamp and light intensity [59]. These studies 

enabled greater standardisation over the photochemical reaction and led to the 
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development of a low cost fully automated 3D printed flow chemistry system for real-

time monitoring of key reaction parameters through a PC-interface platform [60]. 

Recent advancements in the utilization of this system have been published for the 

development of a novel synthetic pathway aimed at synthesizing heterocycles 

containing CHF2 through intramolecular oxy-difluoromethylation of alkenes [61]. The 

adoption of the flow system facilitated a substantial reduction in reaction time, 

decreasing it from several hours to 20 minutes. A range of products were synthesised 

resulting in yields ranging from moderate to excellent with favourable stereo- and 

regioselectivity. Furthermore, the scalability of this method was successfully 

demonstrated, maintaining consistent yields as the reaction was scaled up from 42 mg 

to 0.186 g. The IKA flow system has also been recently used for the rapid modification 

of nucleosides via Suzuki-Miyaura coupling, resulting in significant reductions in both 

reaction time and solvent usage, alongside column-free product isolation [62]. This 

methodology was applied to the synthesis of Brivudine, an antiviral drug, achieving an 

isolated yield of 85%. The synthesis was conducted in a one-pot procedure without 

intermediate isolation, employing milder reaction conditions and reducing the time 

required from 2 days to just 3 hours compared to conventional processes. These 

recent developments represent a noteworthy step forward in achieving a more 

standardized flow chemistry approach with 3D printed systems, contributing to 

improved optimization and increased efficiency. 

 

Conclusion 

In summary, the integration of 3D printed reactors in catalytic processes has emerged 

as a transformative force, significantly enhancing the development of greener 

chemical processes. As further research and development continues, it is evident that 

these reactors allow for precision and customization, optimizing the overall efficiency 

of catalytic reactions. By tailoring the design of the reactors, incorporating green 

solvents, optimizing the loading of catalysts, and standardizing the reaction setup, 3D 

printed reactors are driving the evolution towards a more environmentally conscious 

and efficient future in chemical processes. 
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