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A B S T R A C T

Supervised machine learning-based medical image computing applications necessitate expert label curation,
while unlabelled image data might be relatively abundant. Active learning methods aim to prioritise a subset
of available image data for expert annotation, for label-efficient model training. We develop a controller neural
network that measures priority of images in a sequence of batches, as in batch-mode active learning, for multi-
class segmentation tasks. The controller is optimised by rewarding positive task-specific performance gain,
within a Markov decision process (MDP) environment that also optimises the task predictor. In this work, the
task predictor is a segmentation network. A meta-reinforcement learning algorithm is proposed with multiple
MDPs, such that the pre-trained controller can be adapted to a new MDP that contains data from different
institutes and/or requires segmentation of different organs or structures within the abdomen. We present
experimental results using multiple CT datasets from more than one thousand patients, with segmentation tasks
of nine different abdominal organs, to demonstrate the efficacy of the learnt prioritisation controller function
and its cross-institute and cross-organ adaptability. We show that the proposed adaptable prioritisation metric
yields converging segmentation accuracy for a new kidney segmentation task, unseen in training, using between
approximately 40% to 60% of labels otherwise required with other heuristic or random prioritisation metrics.
For clinical datasets of limited size, the proposed adaptable prioritisation offers a performance improvement
of 22.6% and 10.2% in Dice score, for tasks of kidney and liver vessel segmentation, respectively, compared
to random prioritisation and alternative active sampling strategies.
1. Introduction

Medical imaging tasks are increasingly being automated using ma-
chine learning by utilising expert annotated data (Lee et al., 2017;
Erickson et al., 2017). Supervised learning using expert annotations
allows for reliable predictions from the trained model, however, this ex-
pert annotation may often be expensive. Applications such as complex
surgical planning thus become challenging to develop, due to the need
for many structures to be annotated at the voxel-level and different
regions of interest (ROIs) required by subsequent procedures, mandated
by local expertise and protocols. This is further complicated by the
now well-known problem of generalisation from deep models across
different institutions, all of which are often under data size constraints.
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Active learning (AL) aims to directly address the expensive data
labelling by prioritising a subset of available unlabelled data for an-
notation, such that the machine learning models trained with these
annotated data reach a predefined, or the same, performance level with
fewer labelled samples, as models trained with all data being labelled.
The efficiency of the performance convergence measures performance
of the AL methods, in terms of the quantity of annotated data, i.e. re-
quired number of AL iterations, often compared with random sampling
without prioritisation (Budd et al., 2021; Settles, 2009). Therefore, met-
rics that valuate how data samples affect AL convergence (hereinafter
referred to as prioritisation metrics) are the key to the goal of fast con-
vergence, i.e. using as few labelled samples as possible. Informativeness
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361-8415/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.media.2024.103181
Received 20 January 2023; Received in revised form 3 April 2024; Accepted 12 Ap
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ril 2024

https://www.elsevier.com/locate/media
https://www.elsevier.com/locate/media
mailto:shaheer.saeed.17@ucl.ac.uk
https://doi.org/10.1016/j.media.2024.103181
https://doi.org/10.1016/j.media.2024.103181
http://creativecommons.org/licenses/by/4.0/


Medical Image Analysis 95 (2024) 103181S.U. Saeed et al.

t

t
i
T
m
d
u
t
b
m
a
p
s
t
t
l
a
o
s
e
g
i
g
t
b
s
b
t

C
n
P
o

and representativeness are regarded as the main criteria in existing
prioritisation metrics (Budd et al., 2021).

Informativeness estimates information gained if a particular labelled
sample is added to training. Uncertainty with respect to the given
samples is often used to quantify the informativeness, as it measures the
amount of uncertain, therefore likely unknown, information that could
be learnt by including the samples. For tasks like image segmentation or
object boundary delineation, a summation of the lowest class probabili-
ties over all pixels can be used (Shannon, 1948; Lewis and Gale, 1994),
while high class probabilities are assumed high prediction confidence.
An ensemble of multiple models was proposed for quantifying uncer-
tainty (Settles, 2009; Czolbe et al., 2021). Monte-Carlo Dropout-based
uncertainty estimation (Gal and Ghahramani, 2016) was also proposed
and may be viewed as a special case of ensemble methods.

Representativeness measures the similarity between data samples,
such that an effective AL strategy can be designed for prioritising those
samples that can efficiently represent many others (Budd et al., 2021;
Zhou et al., 2017; Yoo and Kweon, 2019; Peng et al., 2022). Distances
between multiple images have been proposed, for example, based on
features extracted from a trained model for a different, usually unsu-
pervised, task such as self-reconstruction (Yang et al., 2017; Smailagic
et al., 2018; Ozdemir et al., 2018). Representativeness can also be
combined with informativeness measures (Yang et al., 2017; Smailagic
et al., 2018; Ozdemir et al., 2018).

However, general prioritisation metrics, such as Monte-Carlo Dropou
and ensemble, have shown limited improvements in the number of
iterations required for convergence compared to random sampling,
especially for recent medical imaging datasets (Czolbe et al., 2021).
Furthermore, we explore the efficacy of recent AL methods in Table 3.
The fixed and non-adaptive nature of these metrics could lead to
adverse consequences. For example, high uncertainty in samples may in
fact be a result of label error or inconsistency, due to manual annotation
difficulty (Czolbe et al., 2021). It has been speculated that not account-
ing for the impact of annotated samples, post annotation, and assuming
hat annotations are unambiguous and noise-free have led to the
neffective prioritisation metrics (Czolbe et al., 2021; Fang et al., 2017).
his has been consistent with our preliminary results in a task of seg-
enting kidney on 3D CT images (summarised in Fig. 3(d), with further
etails discussed in Section 3). In contrast, task-based prioritisation can
tilise task-specific feedback in formulating the prioritisation, such as
he performance of a trained model for the subsequent task. This task-
ased feedback enables post annotation impact to be measured during
odel training (Fang et al., 2017; Woodward and Finn, 2017) and may

lleviate the discussed limitations for individual tasks. As opposed to
revious works that utilise prioritisation informed by task-specific mea-
ures e.g., through uncertainty metrics computed from deep learning
ask networks (Yang et al., 2017) or through learning a metric from
he training set loss (Yoo and Kweon, 2019), our proposed framework
earns prioritisation based on task-specific feedback directly. This is
chieved using a reserved set of samples (see Section 2.4) for learning
r adapting the AL prioritisation metric, during AL itself. The reserved
et of samples, chosen randomly during training, is representative of the
ntire dataset. This formulation learns how performance is impacted
iven a particular selection of training data using reinforcement learn-
ng (RL), which utilises a reward based on performance impact of any
iven prioritisation, on this reserved reward computation set (referred
o as the validation or support-validation set). This, task-performance-
ased prioritisation metric, learnt with the help of randomly selected
amples allows us to capture the representativeness and the reward
ased on the task performance for this reserved set allows us to capture
he informativeness.

In this work, we focus on organ segmentation on 3D abdominal
T images. Multi-organ segmentation or boundary delineation has a
umber of clinical applications (Fu et al., 2021; Gibson et al., 2018).
lanning laparoscopic liver resection or liver surgery in general is
2

ne such example, in which localising the liver, liver vessels and
surrounding anatomy is necessary for existing inter-modality image
registration (Ramalhinho et al., 2022) and useful for subsequent navi-
gation (Fusaglia et al., 2016) during the procedure. Moreover, AL will
greatly benefit the development of automatic segmentation models for
different clinical requirements, because of the potentially diverging
protocol-specific needs, such as the types of vessels and/or organs
required for different registration algorithms and changing local image-
navigating procedures. We thus identify two aspects for a desirable AL
approach in this application: (1) prioritising CT images to be annotated
for the required ROI types (organs or anatomical structures), potentially
new and unseen in developing such prioritisation strategy, and (2) the
ability to adapt or generalise such prioritisation to image data from a
different and novel institute.

We first propose a prioritisation metric based on direct feedback
from the segmentation task using annotated samples, which is learnt
using reinforcement learning (RL) based meta-learning. Second, we
outline a mechanism, using the proposed meta-RL, to allow for the
metric to be adapted to new data distributions including data from new
institutes and for segmenting new ROI classes i.e. organs or structures
unseen in training. In our formulation, task-based feedback for AL
is delivered by means of a reward signal in the RL algorithm, in
order to learn a prioritisation metric function. The reward signal is
computed by measuring performance of a partially trained model on
a set of samples for which annotations are available. The meta-RL
further enables such prioritisation function to be useful across wider
domains than with ‘‘simple’’ RL (Duan et al., 2016; Wang et al., 2017;
Botvinick et al., 2019). In our framework, RL is used to first learn a
task-based prioritisation scheme based on data selection, where data
that leads to task performance gains is selected by the RL controller, for
task-predictor training. This non-differentiable data selection together
with demonstrated RL-based meta learning frameworks investigating
similar non-differentiable problems are the reasons for using RL-based
optimisation for our learnt AL metric. Meta-RL, with the use of a
recurrent neural network (RNN) controller equips the system with
adaptability over multiple downstream tasks, due to the ability of RNNs
to enable learning and inferring using potentially useful sequential
information, as demonstrated in Cotter and Conwell (1990), Santoro
et al. (2016), Younger et al. (1999), Prokhorov et al. (2002), Hochreiter
et al. (2001), Duan et al. (2016), Wang et al. (2017). Learning the
adaptable AL metric is the first stage in our framework which involves
learning optimal weights for the RNN controller using meta-RL. Once
learnt, these optimal weights may be fixed and used for AL, where the
controller adapts to any new task by utilising sequential information
presented over multiple time-steps to the RNN, rather than relying on
any weight updates, as explained further in Section 2.3.4.

It is important to highlight the difference between the proposed
prioritisation metrics for AL and few-shot learning, which requires
small number of annotated data from the novel classes and/or insti-
tutions during adaptation, e.g. Li et al. (2022), Feyjie et al. (2020). It
is also interesting to compare our proposed methods with recent image
quality assessment approaches. For example, although aiming for a dis-
tinct objective of prioritising data to label, the proposed prioritisation
metrics share technical similarities with previous work that quanti-
fies task amenability of samples using direct feedback from a clinical
task such as organ segmentation (Saeed et al., 2021a, 2022a, 2021b,
2022b). Moreover, the proposed AL strategy is designed for medical
images, as opposed to the language data used in previously proposed
AL approaches that also utilised RL, Fang et al. (2017) and Woodward
and Finn (2017). The algorithmic differences to these works (Pang
et al., 2018; Fang et al., 2017; Woodward and Finn, 2017) are sig-
nificant including problem definition, labelled example requirement,
reward formulation and training methodology using meta-RL (rather
than simple RL in previous works). Our work uses a reward based
on a simultaneously trained task predictor, assumes a dynamically
changing set for reward computation (offering potentially greater label

efficiency when compared to methods that use large labelled sets for
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rewards), can work for a number of machine learning problems such as
segmentation, and allows for batch-mode active learning by modelling
actions probabilistically, as opposed to the formulations presented in
previous works which are often application-specific or designed for
classification problems and may limit flexibility such as modelling
actions as binary decisions rather than probabilistically and thus not
allowing batch sampling or using large labelled sets for rewards (Pang
et al., 2018; Fang et al., 2017; Woodward and Finn, 2017). We propose,
for the first time, an adaptable AL training scheme where adaptability
is equipped to the outer-level controller using meta-RL and additionally
to the inner-level task predictor using Reptile, as outlined in Sec-
tion 2.3.4. Using these adaptable functions we formulate an adaptable
AL framework as outlined in Algo. 2, where we use part of the AL-
prioritised samples for adaptation of the learnt AL and part for training
the task predictor. Our proposed approach is an AL framework that
aids training new task-predictors by prioritising samples to-be-labelled
based on their predicted impact on the performed downstream task.
This formulation may be used in practice by annotating only small
subsets of high-priority samples, as determined by our proposed AL,
as opposed to annotating entire datasets. This is different from few-
shot meta-learning methods that focus on adapting the task-predictor
to new datasets or tasks using randomly sampled data, but do not focus
on determining sample priority. In-fact, AL approaches may be used in
the context of few-shot learning to determine which samples may lead
to the biggest performance gains, if used for adapting the task predictor.

The contributions of this work are summarised as follows: (1) We
proposed a task-based AL metric with task-specific feedback from the
targeted segmentation task; (2) We proposed to learn the prioritisation
metric using meta-RL with adaptability over different imaging institutes
and organ segmentation tasks; (3) We evaluated our proposed frame-
work using real patient CT images and including segmentation tasks
for anatomical structures such as liver, pancreas, spleen, liver vessels,
gallbladder, adrenal glands (left and right), major vessels (aorta, vena
cava and portal vein) and stomach; subsequently, the trained system
was evaluated, for AL, on holdout tasks for liver vessels and kidneys
for data from new institutes.

2. Methods

Pool sampling and stream sampling represent two typical cases
for sampling the unlabelled data (Settles, 2009), in which the data
that need annotation become available simultaneously or sequentially,
respectively. The sampling method is usually determined by the appli-
cation. For example, in many medical image segmentation tasks, there
are often more unlabelled images than labelled data. Considering the
pool sampling in this study, when an unlabelled dataset is available,
the so-called batch-mode sampling (Settles, 2009) provides additional
flexibility, with which the unlabelled images can be selected from
and labelled in batches, hereinafter referred to as AL batches, to allow
efficient and practical parallel processing and annotating, with the AL
batch size being an additional hyperparameter.

We outline the task-based prioritisation metric formulation, in Sec-
tion 2.2, where the segmentation performance is quantified for a pool
of images. We then outline an algorithm to equip adaptability to the
metric, in Section 2.3, such that it can be adapted to new datasets.
Finally, we describe the usage of the learnt metric for the batch-mode
AL, in Section 2.4, during which the prioritisation function is used to
select samples to label and train a task predictor for the new dataset.
A high-level summary of all stages is provided in Section 2.1.

2.1. Stage summary for the proposed method

We now provide a high-level overview of all the stages involved
including controller training (Algo. 1), AL (Algo. 2) and evaluation
3

using the holdout set.
The controller training stage involves the use of multiple MDP
environments, each with their own dataset. The dataset within each
MDP includes the controller-train and controller-validation sets. One
set of interactions with a single MDP environment or trial occurs when
a random batch of samples is sampled from the controller-train set and
passed to the controller to obtain prioritisation scores. Samples are then
selected for training the task predictor using these scores (as outlined
in Algo. 1 using Reptile). Once trained, the task predictor is evaluated
on the controller-weighted validation set (as described in Section 2.3.2
and Algo. 1). The performance metric obtained from this evaluation
is then used as a reward signal to update the controller. Then, a new
MDP is randomly sampled and the controller updates continue until
convergence. The controller is an RNN and the internal state is reset
after each trial. It is also noteworthy that the controller takes additional
inputs of the action, raw reward, and termination flag at the previous
time step, in addition to the observed current state (batch of samples
form the controller-train set) which makes it adaptable rather than
any update of the weights. This concept has been used and extensively
validated in RNN-based meta-learning in previous works (Duan et al.,
2016; Wang et al., 2017; Cotter and Conwell, 1990; Santoro et al.,
2016; Younger et al., 1999; Prokhorov et al., 2002; Hochreiter et al.,
2001). Since the controller is a function of the history leading up to
a sample, if the history up to the sample is modified, the controller
output may be modified, this is what makes the controller adaptable
with fixed weights. This adaptability allows the controller to be adapted
for new structures or even to adapt predictions for the same structure.
As a concrete example, if a high-priority sample (as determined by the
controller) is used for learning in AL and it impacts the performance
negatively (as measured by the reward), then this becomes a part of
the historic sequential data that is accessible to the controller. Based on
this historic data, the controller can then modify its future predictions
to prioritise any subsequent similar samples lower, since the meta-RL
controller is a function of the history leading up to a sample rather than
simply a function of the current sample, as in traditional RL.

For the AL stage, the controller weights are fixed after controller
training and the internal state is reset before AL starts. Prior to AL, 𝛽0
samples are randomly selected from a pool of unlabelled samples to
initialise. These are labelled and split into support-train and support-
validation portions. The support-train portion is used to updated the
task predictor and the support validation portion is used to compute
the reward which will be used as the controller input for the first AL
iteration. The remaining samples in the pool of unlabelled samples (or
the query set) are passed to the controller to obtain priority scores. 𝛽
highest priority samples are then selected and labelled. These labelled
are then split into support-train and support-validation sets for the
iteration and added to the respective support sets from the previous
iteration, for their respective task predictor and reward updates. It
should be noted that the reward in this case is used as controller input
and not to update the controller weights as in the controller-training
stage. The reward serves as a signal to adapt the RNN internal state
which equips the system with adaptability without weight updates for
the controller. The AL iterations continue until either exhausting the
query set or convergence.

To evaluate the AL performance, we use the task-predictor trained
after AL. A holdout set, not used during the controller-training or AL
stages, is passed to the trained task predictor. The performance measure
is computed by comparing the task predictor predicted labels to the
ground truth labels, where the mean binary Dice score is reported in
our work.

Code available at: www.github.com/s-sd/task-amenability/tree/v2

2.2. Preliminary: bi-level optimisation for task-based prioritisation

In order to capture the task-specific performance for learning pri-
oritisation, we consider two functions: (1) a task predictor which per-
forms the segmentation task; and (2) a controller which predicts the

task-specific prioritisation.

http://www.github.com/s-sd/task-amenability/tree/v2
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Defining the image and label domains for the task as  and  ,
respectively, we can denote the image and joint image-label distribu-
tions as  and  with probability density functions 𝑝(𝑥) and 𝑝(𝑥, 𝑦),
respectively. Here 𝑥 ∈  and 𝑦 ∈  are the sampled image and
corresponding label. We can then define our two functions as follows.

The task predictor is assumed to be a parametric function: 𝑓 (⋅;𝑤) ∶
 →  , which outputs a prediction for the task 𝑦 ∈  given an input
image 𝑥 ∈  , with parameters 𝑤. The controller is also assumed to be
a parametric function: ℎ(⋅; 𝜃) ∶  → [0, 1], which outputs a task-specific
prioritisation score given an image sample 𝑥, with parameters 𝜃. To
optimise the task predictor, a loss function 𝐿𝑓 ∶  ×  → R≥0, which
measures task performance, weighted by controller outputs ℎ(𝑥; 𝜃), may
be minimised:

min
𝑤

E(𝑥,𝑦)∼𝑋𝑌
[𝐿𝑓 (𝑓 (𝑥;𝑤), 𝑦)ℎ(𝑥; 𝜃)] (1)

where, by weighting the loss using the controller outputs, the controller
is incentivised to assign low scores to samples with high loss values.

The controller may be optimised by minimising a metric function
𝐿ℎ ∶  ×  → R≥0 on the validation set, weighted by the controller
outputs for the validation set ℎ(𝑥; 𝜃):

min
𝜃

E(𝑥,𝑦)∼𝑋𝑌
[𝐿ℎ(𝑓 (𝑥;𝑤), 𝑦)ℎ(𝑥; 𝜃)], (2)

s.t. E𝑥∼𝑋
[ℎ(𝑥; 𝜃)] ≥ 𝐶 > 0. (3)

where, higher metric function values tend the controller towards lower
output values due to the weighted sum being minimised. The con-
straint, 𝐶, prevents ℎ ≡ 0 as a trivial solution.

We can thus pose the following bi-level optimisation:

min
𝜃

E(𝑥,𝑦)∼𝑋𝑌
[𝐿ℎ(𝑓 (𝑥;𝑤∗), 𝑦)ℎ(𝑥; 𝜃)], (4)

s.t. 𝑤∗ = argmin
𝑤

E(𝑥,𝑦)∼𝑋𝑌
[𝐿𝑓 (𝑓 (𝑥;𝑤), 𝑦)ℎ(𝑥; 𝜃)], (5)

E𝑥∼𝑋
[ℎ(𝑥; 𝜃)] ≥ 𝐶 > 0. (6)

Replacing the above functions weighted by the prioritisation scores
with functions that sample only the selected images, retaining the equal
expected function values, the optimisation problem becomes:

min
𝜃

E(𝑥,𝑦)∼ℎ
𝑋𝑌

[𝐿ℎ(𝑓 (𝑥;𝑤∗), 𝑦)], (7)

s.t. 𝑤∗ = argmin
𝑤

E(𝑥,𝑦)∼ℎ
𝑋𝑌

[𝐿𝑓 (𝑓 (𝑥;𝑤), 𝑦)], (8)

E𝑥∼ℎ
𝑋
[1] ≥ 𝐶 > 0. (9)

where 𝑥 and (𝑥, 𝑦) to be sampled from the controller-selected or -
sampled distributions ℎ

𝑋 and ℎ
𝑋𝑌 , with probability density functions

𝑝ℎ(𝑥) ∝ 𝑝(𝑥)ℎ(𝑥; 𝜃) and 𝑝ℎ(𝑥, 𝑦) ∝ 𝑝(𝑥, 𝑦)ℎ(𝑥; 𝜃), respectively.
RL algorithms, previously proposed for task-specific image quality

assessment (Saeed et al., 2021a) or data valuation (Yoon et al., 2020),
are adapted to optimise the task-based prioritisation metric. Building
on this formulation, this work proposes an extension as well as a
generalisation of such RL algorithms, a meta-RL approach for multiple
datasets, as described in the remainder sections.

Once the controller is trained, it serves as a prioritisation function
during AL. It is useful to clarify that, although the controller is denoted
for individual samples for the simplicity in notation, its implementation
includes a recurrent neural network (RNN), such that the episodic
controller training (Algo. 1) and the batch-mode sampling in AL stage
(Algo. 2) enable learning and inferring any potentially useful sequential
information, respectively. Such RNN-embedded RL agent has also been
adopted in other meta-RL approaches (Duan et al., 2016; Wang et al.,
2017; Botvinick et al., 2019; Robles and Vanschoren, 2019).

2.3. Controller training stage: learning the adaptable prioritisation metric

In this work, the adaptability over different segmentation problems
includes multi-organ adaptability as well as adaptability over differ-
ent institutes, using the meta-RL-based training scheme described as
4

follows.
2.3.1. Markov decision process environment
The above-outlined bi-level minimisation problem is modelled as

a finite-horizon Markov decision process (MDP), where the controller
interacts with an environment containing the task predictor and a
specific set of data for training. The MDP-contained data are drawn
from the distribution 𝑋𝑌 , a joint image-label distribution, defined as
𝑋𝑌 = 𝑋𝑌 |𝑋 , with the task predictor as 𝑓 (⋅;𝑤). A train set train =
{(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 is sampled from the distribution 𝑋𝑌 , where 𝑁 is the train
set size. The observed state of the environment 𝑠𝑡 = (𝑓 (⋅;𝑤𝑡),𝑡), at
time-step 𝑡, is composed of the task predictor 𝑓 (⋅;𝑤) and a mini-batch
of 𝑏 samples 𝑡 = {(𝑥𝑖, 𝑦𝑖)}𝑏𝑖=1 from the train set.

2.3.2. Learning the metric using reinforcement learning
Reinforcement learning learns the prioritisation metric, by optimis-

ing the weights 𝜃 for the controller function ℎ(𝑥; 𝜃). We define  as the
state space and  as the continuous action space. 𝑝 ∶  × × → [0, 1]
denotes the state transition distribution conditioned on state–actions,
e.g. 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) represents the probability of the next state 𝑠𝑡+1 ∈ 
given the current state 𝑠𝑡 ∈  and action 𝑎𝑡 ∈ . 𝑟 ∶  ×  → R is
the reward function such that 𝑅𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡) denotes the reward given
current state 𝑠𝑡 and action 𝑎𝑡.

The policy, 𝜋(𝑎𝑡|𝑠𝑡) ∶  ×  ∈ [0, 1], represents the probability of
performing the action 𝑎𝑡 given the state 𝑠𝑡. This allows for the MDP
interaction to be summarised as a 5-tuple ( ,, 𝑝, 𝑟, 𝜋). A number of
interactions between the controller and the environments leads to a
trajectory over multiple time-steps (𝑠1, 𝑎1, 𝑅1, 𝑠2, 𝑎2, 𝑅2,… , 𝑠𝑇 , 𝑎𝑇 , 𝑅𝑇 ).
The goal in this reinforcement learning is to optimise the controller
parameters which maximise a cumulative reward over a trajectory.

In our work, we use a cumulative reward, starting from time-step
𝑡, of the form: 𝑄𝜋 (𝑠𝑡, 𝑎𝑡) =

∑𝑇
𝑘=0 𝛾

𝑘𝑅𝑡+𝑘, where the discount factor
𝛾 ∈ [0, 1] is used to discount future rewards. Here the policy is parame-
terised by 𝜃 and denoted as 𝜋𝜃 . The central optimisation problem then
is to find the optimal policy parameters 𝜃∗ = argmax𝜃E𝜋𝜃

[

𝑄𝜋 (𝑠𝑡, 𝑎𝑡)
]

Following Section 2.2, the controller outputs sampling probabilities
{ℎ(𝑥𝑖,𝑡, 𝜃)}𝑏𝑖=1 based on the input image batch. The action 𝑎𝑡 = {𝑎𝑖,𝑡}𝑏𝑖=1 ∈
{0, 1}𝑏 leads to a sample selection decision for task predictor training,
selected if 𝑎𝑖,𝑡 = 1. With 𝑎𝑖,𝑡 ∼ Bernoulli(ℎ(𝑥𝑖,𝑡; 𝜃)), the policy 𝜋𝜃(𝑎𝑡|𝑠𝑡) is
defined as:

log𝜋𝜃(𝑎𝑡|𝑠𝑡) =
𝑏
∑

𝑖=1
ℎ(𝑥𝑖,𝑡; 𝜃)𝑎𝑖,𝑡 + (1 − ℎ(𝑥𝑖,𝑡; 𝜃)(1 − 𝑎𝑖,𝑡)) (10)

The reward 𝑅𝑡 is based on the validation set val = {(𝑥𝑗 , 𝑦𝑗 )}𝑀𝑗=1
from the same distribution as the train set 𝑋𝑌 , where 𝑀 is the
validation set size. Here we consider the validation set to be ran-
domly sampled from the dataset, which is why it is considered to
be from the same distribution as the train set. Note that during AL,
described in Section 2.4, the role of the validation set is performed
using support-validation, with further details e.g., how these samples are
chosen, provided in Section 2.4. The performance for the validation set
is denoted as {𝑙𝑗,𝑡}𝑀𝑗=1 = {𝐿ℎ(𝑓 (𝑥𝑗 ;𝑤𝑡), 𝑦𝑗 )}𝑀𝑗=1 and is used to compute
the un-clipped reward, which is weighted by the prioritisation scores
ℎ𝑗 , 𝑅𝑡,un-clipped = − 1

𝑀
∑𝑀

𝑗=1 𝑙𝑗,𝑡ℎ𝑗 . It is then clipped using a moving
average, 𝑅𝑡 = 𝛼𝑅𝑅𝑡,clip + (1 − 𝛼𝑅)𝑅𝑡,un-clipped, where 𝛼𝑅 is a hyperpa-
rameter empirically set to 0.9. The final reward is then computed as
𝑅𝑡 = 𝑅𝑡,un-clipped − 𝑅𝑡,clip.

This reward definition over a validation set, consisting of multiple
samples, encourages a prioritisation metric to be learnt which promotes
generalisability to new samples; this, in effect, captures a form of
representativeness. At the same time, the task-specific nature of the re-
ward signal allows for informativeness to be captured in the computed

reward.
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2.3.3. A distribution of MDP environments
We denote a distribution of MDP environments as 𝑀 . An MDP en-

ironment sampled from this distribution is thus denoted as 𝑀𝑘 ∼ 𝑀 .
During training the controller, these MDP environments are collectively
considered as the ‘‘meta-train’’ environments. An MDP environment is
denoted using 𝑀𝑘 such that the joint image-label distribution and task
predictor within the environment can be denoted as 𝑋𝑌 ,𝑘 and 𝑓𝑘(⋅;𝑤𝑘),
respectively.

In this work, the task predictor is a single neural network-based
function approximator, shared across the MDP environments, denoted
as 𝑓 (⋅;𝑤) by omitting 𝑘. The task predictor network are ‘‘synced’’ each
time an environment is sampled, by updating the predictor parame-
ters using a gradient-based meta-learning update step, detailed in the
following section.

2.3.4. Meta-RL to learn the adaptable prioritisation function
Meta-RL aims to maximise the expected return over a distribution

of environments, such that the trained controller may effectively adapt
to new MDP environments sampled from the distribution (Wang et al.,
2017; Duan et al., 2016; Botvinick et al., 2019). The proposed episodic
meta-RL training differs from RL in four aspects: (1) The controller
is shared across multiple MDP environments sampled from 𝑀 ; (2)
Interaction of the controller with each MDP 𝑀𝑘 ∼ 𝑀 takes place
over multiple episodes and is referred to as a ‘trial’; (3) The controller
embeds a RNN with the internal memory shared across episodes within
the same trial. The RNN memory state is reset each time a new MDP
is sampled. This enables adaptability with fixed weights, since the
controller becomes a function of the history leading up to a sample
of sequential input data; (4) The action 𝑎𝑡, raw reward 𝑟𝑡, and termi-
nation flag 𝑑𝑡 at the previous time step are passed to the controller as
input, in addition to the observed current state 𝑠𝑡+1; the input denoted
as 𝜏𝑡 encompasses these additional inputs. For per-sample controller
operation, 𝑟𝑡 = 𝑅𝑡 at the episode end and zero otherwise, i.e. a sparse
reward (Duan et al., 2016; Wang et al., 2017).

An episode, as outlined in Algo. 1, encompasses an update of the
task predictor using controller selected samples, followed by a reward
computation and update of the controller.

In addition to an adaptable controller, the task predictor is shared
between different environments and is updated using the Reptile up-
date scheme (Nichol et al., 2018), in order to equip adaptability to the
task predictor as well. Whilst alternative gradient-based meta-learning
algorithm may also be applicable, the Reptile-based task predictor
update is efficient. The Reptile update is formed of two steps: (1)
Perform gradient descent for the task predictor 𝑓 (⋅;𝑤𝑡), starting with
weights 𝑤𝑡 and ending in weights 𝑤𝑡,new; (2) Update the task predictor
weights 𝑤𝑡 ← 𝑤𝑡 + 𝜖(𝑤𝑡,new − 𝑤𝑡). Where 𝜖 is set as 1.0 initially and
linearly annealed to 0.0 as trials progress (Nichol et al., 2018). We use
adaptive moment estimation (Kingma and Ba, 2017) as the gradient
descent algorithm. After each episode, the weights are synced for the
task predictor, between different sampled environments. The Reptile
update ensures that the task predictor also learns to be sample-efficient
when used for AL. The first step of the update is a simple gradient
descent on using a batch of samples, to compute 𝑤𝑡,new. Then in the
second step of the update, the weights of the task predictor are updated
using 𝑤𝑡 ← 𝑤𝑡 + 𝜖(𝑤𝑡,new − 𝑤𝑡), which is a weighted sum between the
new weights 𝑤𝑡,new and the old weights 𝑤𝑡.

Adaptation to a new MDP sampled from the distribution of MDPs,
𝑀𝑎 ∼ 𝑀 , is initiated by resetting the RNN internal state once at
the start of the adaptation. The controller network weights are fixed,
such that the adaptability comes from the RNN internal state updates
rather than updates of the weights. This proposed scheme adapts the
prioritisation metric to new datasets and, perhaps more importantly,
enables a ‘‘pre-trainable’’ weight-fixed controller for the subsequent AL
stage (Section 2.4).

During the adaptation, the controller is adapted using the validation
set for reward computation. The reward on the previous time-step is
passed as an input explicitly to the controller to aid the above discussed
adaptability. The detailed steps for leaning the adaptable task-based
5

prioritisation are summarised in Algo. 1 and illustrated in Fig. 1. a
Algorithm 1: Learning adaptable task-based prioritisation using
multiple environments
Data: Multiple MDPs 𝑀𝑘 ∼ 𝑀 .
Result: Controller ℎ(⋅; 𝜃).

while not converged do
Sample an MDP 𝑀𝑘 ∼ 𝑀 ;
Reset the internal state of controller ℎ;
for Each episode in all episodes do

for 𝑡 ← 1 to 𝑇 do
Sample a training mini-batch 𝑡 = {(𝑥𝑖,𝑡, 𝑦𝑖,𝑡)}𝑏𝑖=1;
Compute selection probabilities {ℎ𝑖,𝑡}𝑏𝑖=1 = {ℎ(𝜏𝑖,𝑡; 𝜃𝑡)}𝑏𝑖=1;
Sample actions 𝑎𝑡 = {𝑎𝑖,𝑡}𝑏𝑖=1 w.r.t. 𝑎𝑖,𝑡 ∼ Bernoulli(ℎ𝑖,𝑡);
Select samples 𝑡,selected from 𝑡;
Update predictor 𝑓 (⋅;𝑤𝑡) with 𝑡,selected;
Compute reward 𝑅𝑡;

end
Collect one episode {𝑡, 𝑎𝑡, 𝑅𝑡}𝑇𝑡=1;
Update controller ℎ(⋅; 𝜃) using the RL algorithm described
in Sec. 2.3;

end
nd

2.4. AL stage: using the pre-trained prioritisation function

The AL stage involves the use of a meta-test environment, 𝑀𝑎 ∼ 𝑀 ,
which contains images from the joint image-label domain 𝑋𝑌 , and is
illustrated in Fig. 2, with the algorithm summarised in Algo. 2. The
entire dataset  is unlabelled in the initial meta-test environment and
becomes labelled as AL iterates. The meta-train environments, however,
do have labels. For brevity, it is not indexed by time steps, where more
detailed data subsets are.

To initialise AL, we sample 𝛽0 images randomly from the dataset
 = {𝑥𝑖}𝑁+𝑀

𝑖=1 , which consists of a pool of unlabelled samples, where
sizes 𝑁 and 𝑀 are the intended sizes for the support-train1 and support-
validation sets, respectively, if the entire data pool is exhausted. These
sampled 𝛽0 images, labelled by an expert observer, form the ini-
ial support set support = {𝑥𝑖, 𝑦𝑖}

𝛽0
𝑖=1. This support set is split into

upport-train set support-train = {𝑥𝑖, 𝑦𝑖}
𝛽0×𝜙
𝑖=1 and a support-validation set

support-validation = {𝑥𝑖, 𝑦𝑖}
𝛽0×(1−𝜙)
𝑖=1 , using a ratio of 𝜙. The support-train

nd support-validation sets are used to update the task predictor 𝑓 (⋅;𝑤)
ntil convergence and to compute the reward, 𝑅𝑐 , to form 𝜏𝑐+1,⋅ which
s passed to the controller as an explicit input on the next iteration,
here 𝑐 = 0, respectively, in the initialisation step.

With the remainder 𝑁 + 𝑀 − 𝛽0 samples in the pool, the first AL
teration (𝑐 = 1 counts the iterations) computes prioritisation scores
sing the fixed-weight pre-trained controller, {ℎ(𝜏𝑖,𝑐 ; 𝜃∗)}

𝑁+𝑀−𝛽0
𝑖=1 where

𝜃∗ denotes pre-trained parameters, with only the RNN internal state
adaptable. Among these unlabelled images {𝑥𝑖}

𝑁+𝑀−𝛽0
𝑖=1 , the 𝛽 samples

hat are scored the highest by the prioritisation function are selected
nd labelled to form the support set at the iteration, 𝑐,support =

{𝑥𝑖, 𝑦𝑖}
𝛽
𝑖=1, which is then further split to form the current support-

train set 𝑐,support-train = {𝑥𝑖, 𝑦𝑖}
(𝛽0+𝛽)×(𝜙)
𝑖=1 and support-validation set

𝑐,support-validation = {𝑥𝑖, 𝑦𝑖}
(𝛽0+𝛽)×(1−𝜙)
𝑖=1 , and added into respective sup-

ort sets i.e. to support-train and support-validation. The task predictor

1 The ‘‘support-’’ prefix indicates the available datasets during AL stage
nd are processed by the weight-fixed controller. Readers familiar with meta-
earning terminology may notice the absence of the ‘‘query’’ set, however, in
ur formulation, query set may be thought of as the entire pool of data that
re available for AL, before any data annotation takes place, while increasing

nnotated samples are forming the growing support sets.
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Fig. 1. Learning an adaptable prioritisation function. Learning happens across multiple environments each with a different segmentation task and data contained within the
environment. Tasks are randomly sampled on each iteration for controller-environment interactions. Once an environment is sampled, a minibatch 𝑡 is sampled from the data
within the environment, which is passed to the controller in order to generate prioritisation scores/ selection probabilities for the samples. These are used to select samples (which
is the controller action) to form 𝑡,selected. 𝑡,selected is then used to update the task predictor. The reward used to train the controller comes from performance measured over the
validation set 𝑅𝑡,un-clipped = − 1

𝑀

∑𝑀
𝑗=1 𝑙𝑗,𝑡ℎ𝑗 . Another environment is then randomly sampled and the whole process is repeated. Eventually, the controller learns to prioritise samples

based on the task-specific feedback from the reward signal.
Fig. 2. AL. Pre-trained controller (fixed weights), acting as a prioritisation function,
outputs prioritisation scores. Highest priority samples are annotated by a human
observer and form the support-train and support-validation sets, used to update the
task predictor and internal state of the RNN-based controller for adaptation (using
reward on the support-validation set as an explicit input), respectively.

𝑓 (⋅;𝑤) and the reward 𝑅𝑐 are updated using the support-train and
support-validation sets, respectively, as described in the initialisation
step.

Thus in each subsequent 𝑐th iteration, 𝑁 + 𝑀 − 𝛽0 − (𝛽 × (𝑐 − 1))
images are available for prioritising and 𝛽0 + (𝛽 × 𝑐) are labelled. The
process is then repeated until the pool of unlabelled 𝑁 +𝑀 images is
exhausted or until AL convergence is reached.2 The number of samples
for initialising AL 𝛽0 may be different from 𝛽, since initialisation may
require more samples compared to a single AL iteration (Budd et al.,
2021).

3. Experiments

In this section, we describe experiments to assess the proposed
controller, by evaluating the segmentation performance for structures

2 AL convergence is different from the model convergence within each AL
iteration, and refers to the AL system converging at the highest performance
value across multiple AL iterations. In the context of AL with respect to the
predictor, an AL iteration is complete when the learning system has converged
to a performance value, given the data available at that particular instance.
6

such as kidney, liver vessels and liver tumours on abdominal CT im-
ages, as example anatomical structures for surgical planning interest.
The clinical datasets used for controller training are described in Sec-
tion 3.1; The AL scenarios and the datasets are described in Section 3.2;
The implementation is detailed in Section 3.3; And the remainder of
Section 3.4 describes the alternative prioritisation metrics for ablation
studies.

3.1. Controller training datasets

The training data for the adaptable model comes from multiple
institutes, summarised in Table 1. The datasets in the table which
have a cited reference as a source, are open-source datasets not re-
quiring approval for usage; further ethical approval details for original
acquisition may be found within the citations. Approval details for
other datasets are provided in Section 3.2. The datasets include organ
segmentation tasks for the liver, pancreas, spleen, liver vessels, gall-
bladder, adrenal gland (left and right), major vessels (aorta, vena cava,
portal and splenic veins), stomach and kidneys. Here, the ‘controller-’
prefix indicates the use of the dataset during the controller training
as outlined in Algo. 1. Two of the sets used for AL, i.e. those not
used during controller training, are in-house datasets that come from
UCL (University College London). It is noteworthy that the choice of
annotation types were motivated by the intervention planning such
as laparoscopic liver resection of interest in this study, as well as by
the availability of the open data sets, which may further assist the
reproducibility of the presented experimental results. As discussed in
Section 1, combination of the training and support class types varies
between applications and testing the ability to reduce the reliance
on specific classes to be annotated for a large amount of training
data is one of the focuses of the proposed cross-institute AL method.
Summarised in Table 1, there are datasets used for controller training,
this is the stage were our adaptable prioritisation metric is learnt and
there are datasets used for AL, which are datasets that we use for
evaluation of our proposed AL framework, these datasets were not used
for learning the adaptable prioritisation metric and remain unseen by
the controller or task predictor before AL.

3.2. Active learning tasks

The below described meta-test datasets were curated to represent
the AL scenarios found in clinical practice. These scenarios include
the segmentation of ROIs that are from a different institute and/or
completely unseen in controller-training. They are a mixture of openly
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Algorithm 2: AL using an adaptable prioritisation function (fixed controller weights)
Data: MDP environment over which AL is to be conducted 𝑀𝑎 ∼ 𝑀 .
Result: Task predictor 𝑓 (⋅;𝑤).

Reset the internal state of controller ℎ;
From the dataset  = {𝑥𝑖}𝑁+𝑀

𝑖=1 , randomly sample 𝛽0 images and label them to form support = {𝑥𝑖, 𝑦𝑖}
𝛽0
𝑖=1;

Split support into support-train and support-validation portions support-train = {𝑥𝑖, 𝑦𝑖}
𝛽0×(𝜙)
𝑖=1 and support-validation = {𝑥𝑖, 𝑦𝑖}

𝛽0×(1−𝜙)
𝑖=1 ;

pdate the task predictor 𝑓 (⋅;𝑤) using support-train;
Compute the reward 𝑅𝑐 used to form 𝜏𝑐+1,⋅ where 𝑐 = 0, using support-validation;
for each AL iteration 𝑐 in all AL iterations do

while not converged do
Compute prioritisation scores for the remaining samples in the dataset {ℎ(𝜏𝑖,𝑐 ; 𝜃∗)}

𝑁+𝑀−𝛽0−(𝛽×(𝑐−1))
𝑖=1 ;

Select 𝛽 high priority samples from the remaining samples in  i.e. from {𝑥𝑖}
𝑁+𝑀−𝛽0−(𝛽×(𝑐−1))
𝑖=1 , label them and use them to form

𝑐,support = {𝑥𝑖, 𝑦𝑖}
𝛽
𝑖=1;

Split 𝑐,support into support-train and support-validation portions 𝑐,support-train = {𝑥𝑖, 𝑦𝑖}
𝛽×(𝜙)
𝑖=1 and 𝑐,support-validation = {𝑥𝑖, 𝑦𝑖}

𝛽×(1−𝜙)
𝑖=1 and

add them to support-train and support-validation;
Update predictor 𝑓 (⋅;𝑤𝑐 ) using support-train;
Compute reward 𝑅𝑐 using support-validation and use it to form 𝜏𝑐+1,⋅;

end
nd
Table 1
Sources of training datasets used to form different environments. For the ‘Role’, ‘Training’ means that two
sets controller-train and controller-validation were created from the data; and ‘AL’ means that the data was
used to form the support-train and support-validation sets and another set called the holdout set, used to
evaluate the AL performance.
Source Properties mm (slice

thickness; resolution)
Structure Samples Role

Bilic et al. (2019), Antonelli et al. (2021) 0.8-4.0; 0.69–0.85 Liver 131 Training
Antonelli et al. (2021) NA; NA Pancreas 281 Training
Antonelli et al. (2021) NA; NA Spleen 41 Training
Antonelli et al. (2021) NA; NA Liver Vessels 303 Training
Synapse (2013) 2.5-5.0; 0.54–0.98 Gallbladder 30 Training
Synapse (2013) 2.5-5.0; 0.54–0.98 Adrenal Gland 30 Training
Synapse (2013) 2.5-5.0; 0.54–0.98 Major Vessels 30 Training
Synapse (2013) 2.5-5.0; 0.54–0.98 Stomach 30 Training
Rister et al. (2020) NA ; 0.56–1.00 Kidneys 119 AL
UCL NA; NA Kidneys 35 AL
UCL 0.8-0.8 ; 0.12–0.12 Liver Vessels 9 AL
Bilic et al. (2023) 0.45-6.00; 0.56–1.00 Liver Tumour 131 AL
accessible datasets from challenges and real-world clinical datasets
from our local hospitals, as described in Table 1. In particular, the
UCL data for vessel segmentation and kidney segmentation, Experi-
ment (c) and (b), were acquired from patients undergoing laparoscopic
liver resection surgery and interventional radiology for the kidneys,
respectively also discussed in Section 1. In these surgical and interven-
tional applications, the pre-operative data with the same acquisition
protocols are inherently scarce, due to the prevalence of the surgical
procedures at the local hospitals. Together with the other experiment
with a much larger dataset, these tasks were designed to reflect the
benefits, from the proposed prioritisation function, for scenarios with
variable unlabelled data availability. It should be noted that the 𝜙
parameter is simply the dataset split ratio of number of samples in
support-train:support-validation. This is set empirically depending on
the dataset size.

Cross-institute-and-organ kidney segmentation. Kidney segmentation data
from Rister et al. (2020) is used as the first dataset for evaluation.
This dataset contained 119 3D abdominal CT volumes with kidneys
segmented manually for each volume. The data was split into 95, 12
and 12 samples in support-train, support-validation and holdout sets
(𝜙 = 0.89).

Cross-institute kidney segmentation. A second kidney segmentation task
was used as another environment for evaluation, this dataset comprised
7

of 35 3D abdominal CT scans from patients who presented with re-
nal cancer and were undergoing renal cryoablation. Approval from
the local clinical governance committee was obtained prior to data
collection. Since this dataset is formed of CT scans for interventional
use, different imaging protocols have been used compared to other
sets used for training. The kidneys were segmented manually by a
trained biomedical engineering researcher. The data was split into 21,
7 and 7 samples in the support-train, support-validation and holdout
sets (𝜙 = 0.75).

Cross-institute liver vessel segmentation. The third task used for evalua-
tion is liver vessel segmentation. Nine 3D abdominal CT volumes (with
liver vessels segmented using a commercial service (Visible-Patient,
2022)) were acquired in accordance with ethical standards of the
institutional and/or national research committee and the 1964 Helsinki
declaration (and amendments), under the study [REC=14/LO/1264]
[IRAS=158321]. Data was split into 3, 3 and 3 samples in support-train,
support-validation and holdout sets (𝜙 = 0.5).

Cross-institute-and-structure liver tumour segmentation. Liver tumour seg-
mentation data from Bilic et al. (2023) is used for AL with 83, 24,
and 24 samples in support-train, support-validation and holdout sets
(𝜙 = 0.78).
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3.3. Algorithm implementation

A 3D U-Net (Çiçek et al., 2016) was used as the task predictor shared
between environments. Dice loss (i.e. 1 − Dice) was used for training
across all environments. The U-Net was formed of 4 down-sampling and
4 up-sampling layers where down-sampling modules consisted of two
convolutional layers with batch normalisation and ReLU activation, and
a max-pooling operation and de-convolution layers used in up-sampling
modules. Each convolution layer doubles the number of channels where
the number of channels for the first layer is 32. Encoding and decoding
parts were connected using skip connections.

The algorithm used for training the controller was Proximal Pol-
icy Optimisation (PPO) (Schulman et al., 2017). The actor and critic
networks used in the PPO algorithm passes the image inputs via a 3-
layered convolutional encoder which then feed into 3 fully connected
layers, which embed an RNN. The reward used to train the controller
was based on the Dice metric computed on the validation set. Using
a single Nvidia Tesla V100 GPU, the controller training time was
approximately 96 h.

In this work AL experiments are set up as outlined in Section 2.4.
First, 𝛽0 samples are randomly chosen and labelled by an expert. Sub-
sequently, 𝛽 additional samples are chosen on each new AL iteration,
based on the prioritisation method used, and are labelled and used for
further training together with samples from the previous AL iterations.

3.4. Compared methods and ablation studies

We use two prioritisation schemes in this work: (1) the proposed pri-
oritisation scheme, which is the AL based adaptable prioritisation; and
(2) a random prioritisation. We also use Monte-Carlo (MC) Dropout-
based prioritisation to compare with our proposed prioritisation scheme
and highlight this where comparisons are made. We compare the
performance of the learning systems using t-tests and specify the AL
iteration at which the comparison is being made, where appropriate.

To evaluate the efficacy of the prioritisation metric, we perform an
ablation study where the proposed controller-based adaptable priori-
tisation scheme is ablated from the proposed framework. This means
that while the task predictor is the adaptable Reptile-based version, the
prioritisation using the controller is replaced with random prioritisation
or using an alternative prioritisation scheme. Results presented in
Fig. 3(d).

The reported performance is computed over a holdout set which is
not used for training. The Dice score is reported for the learning systems
over the holdout set. The settings for 𝛽0 and 𝛽 are specified in Section 4,
where appropriate. Note that if 𝛽 × (1 −𝜙) < 1.0 then samples need not
be added to the support-validation set on every AL iteration.

4. Results

Cross-institute and cross-organ adaptability for kidney segmentation. As
presented in Fig. 3(a), the proposed AL metric leads to faster conver-
gence compared to random baseline with convergence reached near
𝑐 = 6 for the proposed prioritisation scheme compared to 𝑐 = 12 for the
random prioritisation. It should be noted, however, that convergence
is reached at a similar Dice score between these two (𝑝 = 0.09, t-test at
𝛼=0.05). While no difference was found between the two, both at 𝑐 = 12
(𝑝 = 0.11), statistically significant difference was observed (𝑝 < 0.001)
between the random prioritisation with the proposed prioritisation
scheme both at 𝑐 = 6.

Cross-institute adaptability for kidney segmentation. For the second kid-
ney segmentation task, which demonstrates cross-institute-and-protocol
adaptability, the plot of segmentation performance against AL iteration
number is presented in Fig. 3(b). It appears as though convergence
is not reached for either of the prioritisation schemes, however, at
𝑐 = 6 we observed an improvement in the Dice score for the proposed
prioritisation scheme, with statistical significance (𝑝 < 0.001). However,
we observed higher Dice score for the proposed prioritisation metric for
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all values of 𝑐, with statistical significance (𝑝 < 0.001 for all).
Table 2
AL performance (Dice) measured over the holdout set for different prioritisation
methods. Dice scores over 88.0 are indicated in bold, which are approximately
considered as reached convergence, whereas the proposed method requires the least
active learning iterations (c=6), 46%–67%, compared to other methods (c=13, 10 and
9). It is important to note that improvement at the converged performance neither is
expected, nor a criterion for assessing AL algorithms.
𝑐 Proposed Random Random

(adaptable task
predictor)

MC Dropout
(adaptable task
predictor)

1 60.89 ± 2.12 40.51 ± 1.67 60.89 ± 2.12 60.89 ± 2.12
2 67.87 ± 1.87 45.78 ± 2.45 63.23 ± 2.46 64.10 ± 2.34
3 79.76 ± 1.74 47.23 ± 2.98 67.38 ± 2.16 65.29 ± 3.11
4 86.43 ± 3.21 52.54 ± 2.74 72.52 ± 1.87 69.89 ± 2.87
5 86.72 ± 1.90 54.23 ± 2.63 76.22 ± 1.82 75.68 ± 1.98
6 88.98 ± 2.43 60.79 ± 1.99 78.89 ± 2.79 80.32 ± 2.34
7 89.12 ± 2.76 63.23 ± 3.10 79.32 ± 3.11 85.09 ± 2.78
8 90.27 ± 1.98 67.10 ± 2.72 83.41 ± 1.83 87.70 ± 2.84
9 89.59 ± 2.33 71.96 ± 1.91 86.92 ± 2.49 89.93 ± 2.74
10 91.32 ± 2.64 74.10 ± 1.73 91.43 ± 2.85 90.12 ± 1.79
11 90.44 ± 2.83 82.18 ± 2.34 90.27 ± 2.60 91.21 ± 2.45
12 89.33 ± 1.85 84.01 ± 2.38 89.98 ± 2.46 89.87 ± 2.58
13 89.21 ± 1.96 88.10 ± 2.78 90.71 ± 3.10 89.21 ± 2.54
14 90.43 ± 2.14 89.43 ± 2.36 90.21 ± 1.84 90.81 ± 2.39
15 91.01 ± 2.87 90.53 ± 2.47 89.42 ± 1.94 91.41 ± 2.91
16 90.21 ± 2.32 91.24 ± 2.88 90.11 ± 2.39 90.87 ± 2.87
17 90.65 ± 1.71 91.21 ± 2.67 90.47 ± 2.98 89.10 ± 2.71
18 91.21 ± 2.13 90.50 ± 2.43 90.10 ± 2.35 88.98 ± 1.99
19 89.76 ± 2.47 89.83 ± 1.98 89.12 ± 2.73 89.78 ± 2.10
20 90.77 ± 2.82 89.24 ± 1.79 90.88 ± 2.28 91.13 ± 2.43
21 90.21 ± 1.89 89.10 ± 2.10 90.89 ± 1.98 90.10 ± 2.71

Cross-institute adaptability for liver vessel segmentation. For the liver
vessel experiments, we present the AL results in Fig. 3(c). For this set of
results, convergence may be considered inconclusive for either of the
prioritisation schemes with the available data, however, we observe
higher Dice score for the proposed prioritisation scheme, at 𝑐 = 5,
compared with random prioritisation, with statistical significance (𝑝 <
0.001). The proposed scheme results in higher performance compared
o the random prioritisation baseline for all values of 𝑐, with statistical
ignificance (𝑝 < 0.001 for all).

blation study for the kidney segmentation dataset. Comparing the ab-
ated version with random prioritisation, a higher performance was
een from the proposed method from 𝑐 = 2 to 𝑐 = 9, with statistical
ignificance (𝑝 < 0.001 for all). Similarly, the proposed method also
utperformed the Monte-Carlo Dropout-based prioritisation for 𝑐 = 2 to

𝑐 = 8, with statistical significance (𝑝 < 0.001 for all). Interestingly, we
found higher performance for the Monte-Carlo Dropout based scheme
compared to random sampling for 𝑐 = 7 and 𝑐 = 8. The results are
presented in Fig. 3(d). All models presented in this plot are initialised
using the adaptable model and a different prioritisation scheme is used
for each, subsequently. Additionally, numerical results are presented in
Table 2.

We also tested a variant where our RNN-controller was replaced
with a vision transformer (ViT-Base) from Dosovitskiy et al. (2021).
We observed scores over 88.0 Dice at 𝑐=5, which was the same as our
RNN-controller.

Cross-institute and cross-structure adaptability for liver tumour segmenta-
tion. For the liver tumour segmentation task, we present results in
Table 3 (𝛽0 = 24, 𝛽 = 4)

Exploring the impact of hyperparameters. Eight hyperparameter com-
binations (different values of 𝛽 and 𝛽0) were tested for the kidney
segmentation task for the proposed active sampling. Consistent conclu-
sions can be drawn with AL convergence being reached using nearly
the same number of labelled samples as in our experiments outlined
above. Detailed results are presented in Table 4. Fig. 4 illustrates final
performance and number of samples required to reach convergence,

relatively insensitive to varying hyperparameters.
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Fig. 3. AL performance over the holdout set.

Fig. 4. Total number of labelled samples for convergence against hyperparameter, with
fitted straight lines for reference.

Table 3
Comparisons to other AL methods using the liver tumour segmentation task.
Lower 𝑐 indicates convergence in fewer iterations. Kohl et al. (2018) and Settles
(2009) are the probabilistic U-Net and ensemble methods adapted from Czolbe
et al. (2021). Bold indicates statistical significance for t-test.
Method 𝑐 at 74.0 Dice Dice at 𝑐=21

Proposed 6 76.92 ± 2.43
Random 16 74.29 ± 2.53
MC Dropout 12 74.86 ± 2.10
Yang et al. (2017) 10 74.29 ± 2.37
Yoo and Kweon (2019) 9 74.66 ± 2.26
Kohl et al. (2018) 10 75.13 ± 1.95
Settles (2009) 9 74.52 ± 1.84

Analysis of the learnt selection strategies. To further analyse the selected
samples at any given iteration, the Maximum Mean Discrepancy (MMD)
was computed between support images selected by the two sampling
strategies i.e. random and the proposed prioritisation, with the MMD
value against the iteration number plotted in Fig. 5(a). MMD is also
computed between the support set at iteration 𝑐 and the entire pool
of available data, plotted in Fig. 5(b). The random and proposed
prioritisation follow a indistinguishable decreasing pattern, which may
suggest the inability of MMD itself to differentiate or prioritise. Finally,
9

Table 4
Hyperparameters tested for the kidney task.
𝛽0 𝛽 Dice 𝑐 at

convergence
Labelled
samples

24 4 88.98 ± 2.34 5 44
16 4 90.13 ± 1.83 8 48
8 4 91.02 ± 2.67 10 48
4 4 89.95 ± 1.94 12 52
24 2 88.87 ± 2.17 11 46
24 8 90.68 ± 1.75 4 56
16 2 89.40 ± 2.24 13 42
16 8 91.11 ± 1.99 4 48

Fig. 5. MMD against iteration number for analysing the AL iteration convergence using
the proposed method (see text in Section 4 for further details).

MMD computed between the support set at iteration 𝑐 and the holdout
set is presented in Fig. 5(c). In contrast, we observed faster decline
in MMD for the proposed scheme in this case. The more observable
difference may be due to the fact that the support is not a subset of
the holdout and thus the divergence can be estimated more accurately
using MMD. The difference itself may suggest a more representative
selection learnt from the proposed method.

Qualitative analysis of results. Fig. 6 shows examples of segmented kid-
neys from the holdout dataset. Fig. 7 presents 3D models of liver vessels
used as ground truth and corresponding prediction form the trained AL
model. Fig. 8 compares examples selected by the proposed and random
prioritisation schemes. It can be seen that randomly selected samples
may include ‘‘low quality’’ or less-representative examples, for example,
a sample with a missing label for one kidney (second) and a sample
with disconnections in labels (third), while these cases are much fewer
in samples selected by proposed prioritisation. Additionally, Fig. 9
compares samples deemed to be low priority by the proposed method
and random prioritisation. It can be seen that the proposed method
deems misaligned samples or samples with one kidney much smaller/
larger than the other, to be low priority. This may be because these
samples are rare in the dataset and thus offer low representativeness.

5. Discussion

Results from Section 4 show that the AL can effectively reduce
the number of samples required to reach convergence, or a higher
performance level, compared to random prioritisation. This means,
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Fig. 6. Samples of kidney segmentation with ground truth (blue) and prediction (red),
rows indicating same patients.

Fig. 7. 3D rendering of ground truth (blue) and overlaid prediction (red) for liver
vessel task, from two holdout patients.

to achieve the same performance, experts would need to label fewer
samples compared to annotating randomly sampled images. We demon-
strate this using CT datasets for tasks such as: kidney segmentation,
liver vessel segmentation and liver tumour segmentation. For kidney
segmentation, the adaptable prioritisation metric yields converging seg-
mentation accuracy using only 40%–60% of labels otherwise required
with other prioritisation metrics or random sampling. For datasets with
limited size, for kidney and liver vessel segmentation, the adaptable
prioritisation metric offers a performance improvement of 22.6% and
10.2% in Dice score, respectively, compared to random prioritisation.
This directly corresponds to savings in clinician time.

It is important to clarify that, based on the presented ablation re-
sults, the proposed adaptable prioritisation outperformed other schemes
in the number of AL iterations to convergence. The performance at
convergence, however, is comparable for all tested variants. Perfor-
mance improvement is arguably not the goal of AL. However, the
proposed adaptive AL has potential for a wider range of scenarios such
as adaptable AL metrics across different tasks, across different observers
and their labelling protocols, in addition to what are demonstrated in
this paper, for novel structures and imaging institutes.

We demonstrated efficacy of the proposed approach, where we
consider AL for CT scans from new institutes or for segmentation of
unseen structures, evaluating under a variety of scenarios plausible
in clinical settings. For example, labelling a relatively high object-to-
background contrast anatomical structure and using this to train an
10
Fig. 8. Example samples selected by the proposed (green) and random prioritisation
(yellow) for the kidney task (𝑐 = 5).

Fig. 9. Example samples deemed low-priority by the proposed (red) and random
prioritisation (blue) for the kidney task (𝑐 = 5).

adaptable segmentation AL system, such as for liver segmentation, to
aid the AL for a relatively low-contrast structure such as liver tumours
may be a clinically plausible scenario. This is especially useful due to
the potentially lower annotation burden of contouring anatomies vs
pathologies, due to the relatively uniform appearances of anatomical
structures vs the low object-to-background contrast, ambiguous bound-
aries and non-uniform appearances of pathologies such as tumours.
We also demonstrated adapting the AL system to completely new
datasets from unseen institutes, and for segmenting unseen structures,
for kidney or liver vessel segmentation, which may be other clinically
plausible scenarios for AL. Cross-image-modality adaptability or AL
was, however, not evaluated due to additional challenges for high
field-of-view scans such as magnetic resonance (MR) images. This is
because MR images may be highly variable, dependent on the imaging
sequences or protocols or institute-specific expertise and equipment.
This could potentially be a direction for future investigation where
cross-modality adaptability is investigated or multi-modality datasets
are used for training, to aid the cross-modality adaptation.

It is also interesting to note that prioritisation for medical images
may also indicate the clinical difficulty of the downstream tasks and
therefore may aid the human annotator, e.g., challenging or low-
priority samples may be passed to expert clinicians to segment rather
than relying on automated segmentation. However, exploring this is
beyond the scope of this work, where we focus on data efficiency.

6. Conclusion

This work introduces an adaptable AL metric learnt using a meta-RL
approach which uses direct task-specific feedback for labelling priori-
tisation. The proposed method leads to faster convergence compared
to random prioritisation and the widely used Monte-Carlo Dropout-
based method. We demonstrated the applicability of the proposed
approach on three segmentation tasks using multi-organ multi-institute
CT data, in which the proposed prioritisation methods effectively
provided approximately 40%–60% efficiency in using labelled data,
over the alternative methods, to achieve the equivalent segmentation
performance.
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Fig. 10. A high-level overview of the controller training, AL and evaluation stages (solid arrows indicate the train set pathway and dashed arrows indicate the validation set
pathway).
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Appendix

Overview of methodology

An overview of the methodology and the stages involved is pre-
sented in Fig. 10.
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