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Risk behaviours are common in adolescent and persist into adulthood, people who engage in more
risk behaviours are more likely to have lower educational attainment. We applied genetic causal
inference methods to explore the causal relationship between adolescent risk behaviours and
educational achievement. Risk behaviours were phenotypically associated with educational
achievement at age16after adjusting for confounders (−0.11, 95%CI:−0.11,−0.09).Genomic-based
restricted maximum likelihood (GREML) results indicated that both traits were heritable and have a
shared genetic architecture (Risk h2 = 0.18, 95% CI: −0.11,0.47; education h2 = 0.60, 95%CI:
0.50,0.70). Consistent with the phenotypic results, genetic variation associated with risk behaviour
was negatively associated with education (rg =−0.51, 95%CI: −1.04,0.02). Lastly, the bidirectional
MR results indicate that educational achievement or a closely related trait is likely to affect risk
behaviours PGI (β=−1.04, 95% CI: −1.41, −0.67), but we found little evidence that the genetic
variation associated with risk behaviours affected educational achievement (β=0.00, 95% CI:
−0.24,0.24). The results suggest engagement in risk behaviour may be partly driven by educational
achievement or a closely related trait.

Risk behaviours like alcohol use, smoking and physical inactivity are often
first engaged in adolescence and persist into adulthood1 Adolescence is a
crucial formative period for an individual’s future well-being; the choices
made during this period can have important repercussions later in life2 For
example, greater engagement in risk behaviours at a young age is associated
with increased risk of injury, substance dependence and lower educational
attainment3,4 Evidence suggests that for each additional risk behaviour
adolescents partake in, the odds of attaining five A*-C grades (a common
marker of enrolment in further education and entry to skilled employment)
at age 16 are 23% lower. If causal, risk behaviours in adolescence could,
therefore, be a key target for interventions aiming to improve socio-
economic and health outcomes.

Risk behaviours tend to cluster and co-occur within individuals. This
clustering can occur because of various reasons. First, engagement in one
behaviour can lead to engagement in other risk behaviours, in a process
known as co-occurrence5 For example, alcohol use can increase the risk of

risky sexual behaviours via inhibition mechanisms affecting an individual’s
decision-making processes6 The aforementioned effect, where one beha-
viour causes the other, was also demonstrated by ref. 7, who observed that
early substance use was associated with an increased risk of engaging in
premature sexual activity in adolescent girls. Similarly, features of an ado-
lescent’s social and psychological environment, such as peers’ behaviour,
can simultaneously influence engagement in multiple risk behaviours
(environmental confounding)8 One source of environmental confounding
are indirect genetic effects ('dynastic' effects or 'genetic nurture'), which
occurs when relatives’ heritable traits affect children’s outcomes through
environmental pathways. This bias is particularly evident in genetic studies
of intergenerational transmission of education. Genetically influenced traits
associatedwith educational achievement in theparents’generationmay lead
to environmentswhichpromoteeducational achievement in children9. Such
passive gene-environment correlation can impact the children’s educational
achievement via environmental pathways, alongside any effects due todirect
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genetic inheritance, and inducing confounding through a correlation
between genotypes and phenotypes.

The literature has focused on the effect of risk behaviours on various
behavioural and social outcomes. These report associations between risk
behaviours in adolescence and socioeconomic position later in life10, adult
aggression11 and continuity of substance misuse12 However, it is unclear
whether risk behaviours causally affect educational achievement or if fea-
tures of the environment (confounding) influence both13 or educational
achievement influencing risk behaviours (reverse causation) 14,15. Geneti-
cally informed studies can help overcome these sources of bias and improve
our understanding of the causal relationships between education and risk
behaviours in adolescents.

This study assessed the bidirectional causal relationships between ado-
lescent risk behaviour and educational achievement. We applied genetic
methods to study the genetic architecture of risk behaviours and educational
achievement in an English cohort. We implemented a bidirectional Men-
delian randomisation (MR) to investigate the causal direction of associations
between these traits since a causal effect between education and risk is
plausible in either direction. Tominimise confounding and reverse causation,
we use a polygenic risk indices (PGI) to capture risk and education liability.

Results
Sample description
We began with the original ALSPAC sample of 15,645 pregnancies, which
was then restricted to those with genetic data and National Pupil Database
linkage available. We subsequently excluded participants with consent
withdrawals, participants not alive at 1 year, and those with no recorded sex
and no socioeconomic information (maternal education and housing
tenure).This process yielded afinal analytical sampleof 7695participants, of
whom 51% were male and 49% female. The phenotypic and MR analyses
were carried out using imputed data on these 7695 participants. Of these,
1583 participants had complete information on all risk behaviours and
covariates. This complete case sample was used for GREML analyses.
Table 1 in the supplementary material shows the differences across the risk
behaviour index and covariates between this complete case sample
(N = 1583) and the remainder of the original ALSPAC sample (N = 14,062).

Phenotypic associations of risk behaviours and educational
achievement
Table 1 reports results from models where we regress the capped GCSE
score on the MRB Index using imputed data. The first column shows the
regression results of the capped GCSE score on the MRB Index unadjusted
for any covariate. A standard deviation increase in the MRB Index was
phenotypically associated with a 0.14 (95% CI: [0.12, 0.17]) standard
deviation decrease in capped GCSE score. After adjusting for sex, parental
socioeconomic position and maternal education, a standard deviation
increase in the MRB Index corresponds to a 0.12 (95% CI: [0.10, 0.14])
standard deviation decrease in capped GCSE score. This finding suggests
that engagement in risk behaviour is associated with lower capped GCSE
scores net of covariates. Likewise, results for the fully adjusted binary out-
comemodel suggested the odds of obtainingfive ormoreA*-CGCSEswere
19% (95% CI: [16, 23%]) lower per standard deviation increase (see sup-
plementary, Table 6).

Genotypic associations of risk behaviours and educational
achievement
The univariate GREMLmodels show associations between the phenotypes
of interest and the genotypic data (Table 2).Weobserved SNPheritability in
the educational achievement of 0.60 (95%CI: [0.50, 0.70]) for the capped
GCSE score (continuous measure). The estimated heritability of the MRB
Index was lower at 0.18 (95%CI: [−0.11, 0.47]), and the confidence interval
crossed the null. These results suggest that considerable variation in the
educational achievement measures can be explained by common genetic
variation and provide weaker evidence that some variation in the risk
behaviour index can be explained by common genetic variation.

The bivariate GREML models show a strong negative genetic corre-
lation between theMRB index and educational achievement of−0.51 (95%
CI: [−1.04, 0.02]) for the capped GCSE score. This result suggests con-
siderable genetic overlap between these traits and that genetic variation
associated with risk behaviours is also associated with lower educational
achievement.

Bidirectional Mendelian randomisation
Figure 1 shows associations between the genetically instrumented MRB
index and capped GCSE points score of young people. There was little
evidence of an impact of the genetically instrumented MRB Index (F-sta-
tistic = 3.44) on cappedGCSE score when adjusted for the sex and principal
ancestry components ( β̂ =−0.06, 95% CI: [−0.27,0.15]), or when addi-
tionally adjusted for thematernal risk PGI (β̂ = 0.00, 95%CI: [−0.24,0.24]).
The results for thebinaryoutcomewere similar; therewas little evidence that
risk behaviours influenced educational achievement adjusted for maternal
risk PGI (β̂ =−0.02, 95% CI: [−0.14, 0.10]) (Supplementary Fig. 1).

Figure 2 shows the association between the genetically instrumented
capped GCSE score and the MRB index of young people. There was a
negative association between genetically instrumented education (F-statis-
tic = 725.58) and MRB index (β̂ =−0.75, 95% CI: [−0.97, −0.54]) when
adjusting for the sex and principal components of ancestry and when
additionally adjusting for the mother’s education PGI (β̂ =−1.04, 95% CI:
[−1.41, −0.67]). Attenuation with adjustment for the mother’s education
PGI were similar for the binary outcome (Supplementary Fig. 2).

Discussion
In a cohort of adolescents, an index of multiple risk behaviours was phe-
notypically associated with educational achievement at 16 after adjustment
for confounders. Genetic analysis using GREML indicated that both traits
were heritable and shared genetic architecture, with considerable genetic
overlap between the two traits. Consistent with the results of phenotypic
models, genetic variation associated with risk behaviours was negatively
associated with educational achievement. Furthermore, bidirectional MR
suggested that educational achievement affects risk behaviours and that
engagement in risk behaviours may be partly driven by an individual’s
educational achievement or a closely related trait. In contrast, we found little
evidence that genetic variation associated with engagement in risk beha-
viours causally affected educational achievement, but these estimates were
less precise.

A possible explanation for these results is familial factors, such as
indirect genetic effects of parents on their children. Indirect genetic effects

Table 1 | Associations of capped GCSE score with the MRB index, based on imputed data (N = 7695)

Capped GCSE score Model 1a Model 2b Model 3c Model 4d

95% confidence intervals in brackets

MRB Index −0.14 [−0.17, −0.12] −0.12 [−0.14, −0.10] −0.12 [−0.13, −0.10] −0.11[−0.13, −0.09]
aModel 1 is unadjusted for any covariates.
bModel 2 is adjusted for parental socioeconomic position, maternal education (ref:<O level) and sex (ref: male).
cModel 3 is adjusted for parental socioeconomic position, maternal education (ref:<O level), sex (ref: male) and housing tenure (ref: owned).
dModel 4 is adjusted for parental socioeconomic position, maternal education (ref:<O level), sex (ref: male), housing tenure (ref: owned) and cognitive ability.
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can occur when the parents’ genetic variants affect the offspring through
environmental mechanisms (i.e. not via direct genetic transmission). For
example, ref. 16 found that parents’non-transmittedpolygenic indexeswere
associated with the educational achievement of their children 29.9% as
strongly (p = 1.6 × 10−14) as parents transmitted polygenic indexes17 This is
consistent with results found in Howe et al.’s (2022) within-sibship GWAS,
where the association of genetic variants with educational attainment and
phenotypes from population estimates, such as BMI and smoking, may be
inflated by indirect genetic effects. However, adjusting our analysis for
mothers’ polygenic indexes onlymodestly attenuated the effects. Additional
data is needed to investigate how indirect genetic effects influence these
relationships in genotyped mother–father–child trios18

The MRB index had a negative phenotypic association with educa-
tional achievement for both achievement measures. We showed a decrease
in the capped GCSE score of 0.14 SD (95% CI: [−0.17, −0.12]) per SD
higher engagement in riskybehaviours; these resultswere slightly attenuated
in the fullmodel when controlled for confounders. The fully adjustedmodel
showed anegative association in the cappedGCSE score of 0.12 SD (95%CI:
[−0.14, −0.10]). Similar results were observed when exploring the asso-
ciation between the MRB index and the probability of gaining five A*-C
grades at GCSE, including in English and Mathematics. These results are
consistent with previous results based on the ALSPAC cohort, where

multiple risk behaviours were negatively associated with education
achievement, presenting a reduction in test scores of 6.31 points (95% CI:
[−7.03, −5.58])4

Our estimates of the heritability of educational achievement are in line
with those reported by previous studies. Among many others, ref. 19 esti-
mated heritability for educational outcomes of 0.21 for GCSEMathematics,
0.15 for GCSE English and 0.17 for GCSE Science. Likewise, ref. 20 esti-
mated heritability of reading performance of 0.38 in a genetic study using
the Western Reserve Reading Project data in Ohio, USA. Krapohl and
Plomin21 estimated heritability of educational attainment of 0.31 in their
study of socioeconomic position and offspring education. Our results from
bivariate GREML also indicate that engagement in risk behaviours had a
strong negative genetic association with educational outcomes at 16 years,
with a genetic correlation of −0.51 (95%CI: −1.04, 0.02) for our capped
GCSE score and−0.82 (95%CI:−1.68, 0.04) for attaining 5 or more A*-C
grades in Mathematics and English.

Our MR results provided little evidence that risk behaviours affected
educational achievement (β̂ =−0.06, 95%CI: [−0.27,0.15]),withorwithout
adjustment for the maternal risk PGI. In contrast, there was evidence of a
causal effect of educational attainment on engagement in risk behaviours
(β̂ =−0.75, 95%CI: [−0.97,−0.54]). This may be because theMR estimate
of the effect of education on risk behaviours was considerably more precise,
reflecting an educational attainment PGI which was a much stronger
instrument than the PGI for risk behaviours.

The risk behaviour literature shows that the risk behaviours that we
considered frequently co-occur and tend to cluster during adolescence22,23.
Existing studies investigating clustered risk behaviours focus only on small
subsets of behaviours, such as alcohol use and smoking24, failing to account
for behaviours such as self-harm and criminal or delinquent behaviour.We
consider a wider range of clustered risk behaviours that allows us to capture
risk associations with education more comprehensively. While we had
insufficient power to draw firm conclusions about the effects of risk

Table 2 | GCTAestimates. h2: univariate heritability, rg: genetic
correlation

Univariate estimates n h2a SE 95% CI

MRB index 2171 0.18 0.15 −0.11 0.47

Capped GCSE score b 6646 0.60 0.05 0.50 0.70

Bivariate estimates n rg
c SE 95% CI

Capped GCSE score: MRB index 4409 −0.51 0.27 −1.04 0.02
ah2 shows the univariate heritability of each item.
bCapped GCSE is a continuous measure of educational achievement.
crg genetic correlation.

Fig. 1 | Association between the young person’s genetically instrumented MRB
Index and their educational achievement. Error bars represent the 95% confidence
intervals.

Fig. 2 |Association between young people’s genetically instrumented educational
achievement (capped GCSE score, standardised) and theirMRB index. Error bars
represent the 95% confidence intervals.
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behaviours on educational attainment, our results do imply that educational
achievement, or a closely related trait, affects risk behaviours. This supports
current literature indicating that universal school-based interventions to
improve students’outcomesmayhave reduced the ratesof riskbehaviours25.
Findings therefore suggest that these interventions could improve student
outcomes and lessen the burden on public health services whilst reducing
adolescent risk behaviours.

However, there are some limitations to our analysis. Missing data on
risk behaviours and confounders reduced power (especially for GCTA
analysis, which did not use imputed data) and may have introduced bias.
Likewise, although the multiple risk behaviour index comprised a wide
range of behaviours, by assigning each risk behaviour the same weight, we
assumed that all risk behaviours contribute equally to associations with
educational achievement. Horizontal pleiotropy might also have affected
our results if genetic variants for educational attainment also affect other
traits influencing risk behaviour. It is challenging to investigate further as
most pleiotropy robust methods require GWAS summary data rather than
individual-level data as used in this study. Future work could, however,
employmultivariateMendelianRandomisation26 to study thedirect effect of
risk behaviour and educational achievement27. The lack of genetic data on
fathers meant we could not adjust for paternal genotype, and indirect
genetic effects involving fathersmight have influencedour results.However,
controlling for maternal genotype only modestly attenuated associations,
suggesting that indirect genetic effects were unlikely to explain our findings
fully. Nevertheless, assessment of these relationships using well-powered
familial analysis, likeM-GCTA26 and bigger samples, could shedmore light
on passive environmental confounding or indirect genetic effects, leading to
a better understanding of causation. Furthermore, some of the risk beha-
viours weremeasured via questionnaires, whichmay have introduced recall
and desirability biases, where participants might have underreported
socially perceived undesirable behaviours. Future work could investigate
whether some risk behaviours are more closely linked to education than
others. Our study only investigated the association of these phenotypeswith
common genetic variation, and future studies could investigate the impact
of rare genetic variation.

In summary, we explored the genetic architecture of risk behaviour
engagement in educational achievement and the bidirectional causal effect
of these traits.We found evidence that higher educational achievement, or a
closely related trait, will likely reduce risk behaviours. However, we found
little evidence that risk behaviours affected educational achievement,
although statistical power was limited. Our results add to existing evidence
that educational achievement may be an effective intervention target for
risky behaviours.

Methods
Study participants
The Avon Longitudinal Study of Parents and Children (ALSPAC) is a
prospective birth cohort based in the Bristol and Avon area in the UK.
ALSPAC invitedpregnantwomen to participate if theywere residents in the
area and had expected delivery dates from 1st April 1991 to 31st December
1992. From 14,541 pregnancies initially enrolled, 13,988 children were alive
at 1 year of age. When the oldest children were approximately seven, the
study attempted to include eligible caseswhodidnot originally participate in
the study.The total sample size for analyses using anydata collected after the
age of seven is 15,447 pregnancies, resulting in 15,658 foetuses. Of these,
14,901 childrenwere alive at one year of age.Details of the enrolment phases
are provided elsewhere28–30 Consent for biological samples was collected per
the Human Tissue Act (2004) (for full information on ALSPAC ethical
approval, please see: http://www.bristol.ac.uk/alspac/researchers/research-
ethics/). Informed consent for the use of data collected via questionnaires
and clinics was obtained from participants following the recommendations
of the ALSPACEthics and LawCommittee at the time. Ethical approval for
the study was obtained from the ALSPAC Law and Ethics Committee and
local research ethics committees (NHS Haydock REC: 10/H1010/70). This
studyhas been pre-registeredwithALSPACunder proposal numberB3557.

Completion of individual questionnaires was taken as consent for the data
from that questionnaire, with additional written permission from parents
for the use of clinic data. At age 16, young people and their parents gave
written informed consent for the use of the young person’s genetic infor-
mation. At age 18, study children were sent ‘fair processing’ materials
describing ALSPAC’s intended use of their health and administrative
records. Theywere given clearmeans to consent or object via awritten form.
Education datawere not extracted for participantswho objected orwere not
sent fair processing materials28,31 This project was registered with ALSPAC
under proposal number B3557. ALSPAC has a lower share of ethnic min-
ority participants than the UK population but was otherwise broadly
representative at baseline29. All ethical regulations relevant to human
research participants were followed.

Sample
Attrition and patterns ofmissingness across variables reduced the complete
case analytical sample from 15,645 participants to 1583 (Fig. 3). Due to
attrition, a substantial number of participants originally included in
ALSPACdidnot have genetic data or linkage to theNational PupilDatabase
(NPD) (N = 7657). We further excluded consent withdrawals(n = 11),
participants not alive at 1 year (n = 5), participants with no sex information
(n = 135) and participants with no socioeconomic information available
(maternal education (n = 115) and housing tenure (n = 27). Thus, we
restricted the analytic sample to the 7695 participants alive at 1 yr with
genetic and NPD data, sex, and socioeconomic information from infancy
(maternal educational qualifications and housing tenure) who had not
withdrawnconsent.Within this sample,missingdata in remaining variables
(risk behaviours andother covariates)was imputed.Weperformedmultiple
imputation by chained equations32, with 50 imputed datasets created. We
used the imputed dataset for phenotypic analyses and bidirectional MR.
GREMLanalyses used the complete case sample of participantswith genetic
information and complete data on all exposures, outcomes, and covariates
(N = 1583). We carried out the phenotypic analysis and MR in both the
complete case sample and imputed datasets; we present results on the
imputed sample in the main manuscript with complete case analyses given
in the supplementary material (Supplementary Tables 3–7, 12–17 and
supplementary Figs. 3, 4). For the imputation model, we included marital
status, mother’s smoking status, maternal education, housing tenure and
parental social class as auxiliary variables. We used logistic regression to
impute the risk behaviours, linear and truncated regression for continuous
variables and ordered logistic regression to impute categorical variables.
Multiple imputation resulted in an imputed sample size of 7695.

Genotyping
ALSPAC children were genotyped using the Illumina HumanHap550
platform, and standard quality control procedureswere applied. Individuals
were then excluded based on sex mismatch, minimal or excessive hetero-
zygosity, disproportionate individual missingness (>3%) and insufficient
sample replication (UBD <0.8). During genetic quality controls, individuals
with non-European ancestry were removed, as is often done in genetic
studies, to minimise bias introduced by ancestral population stratification.
SNPS with a minor allele frequency is <1%, call rate of <95% or evidence of
Hardy-Weinberg disequilibrium (pval <5 × 107) were removed. Cryptic
relatedness was measured as the proportion of identity by descent (IBD
>0.1). Imputation was performed using impute v2.2.2 to the Haplotype
Reference Consortium (HRC) panel, and SNPs with poor imputation
quality (infoscore <0.08) removed.

Measures
Multiple risk behaviours (MRBs) at age 16. An index of multiple risk
behaviours (MRBs) was derived from two main data collections during
the participants’ adolescence: a self-completed questionnaire issued
during a clinic assessment at age 15 and a self-completed postal ques-
tionnaire at age 16. We coded 13 risk behaviours into binary format
(no = 0; yes = 1) following ref. 4 and then calculated anMRB index as the
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total number of risk behaviours each participant had engaged in. The
underlying risk behaviours that we used to construct the risk behaviour
index were largely already dichotomised (6 out of the 13 risk behaviours).
None of the underlying risk behaviours were continuous. This risk
behaviour index has been previously used in the literature4,10,33. We fur-
ther carried out extra analysis to check the consistency of the index; these
results are available in the supplementary information (Supplementary
Tables 8–11).We tested the internal consistency of the index based on the
Cronbach alpha and Pearson’s correlations, and also carried out a factor
analysis. The results based on an updated index excluding two items with
the lowest item-test correlation, and using the first factor as the exposure,

did not alter conclusions (Supplementary Tables 14–17 and Supple-
mentary Figs. 5–8).

The study website contains details of available data through a search-
able data dictionary and variable search tool: http://www.bristol.ac.uk/
alspac/researchers/our-data/.

The risk behaviours included in the index were:
Physical inactivity: Participant has typically exercised <5 times per

week over the past year.
TV viewing: Participant spent three or more hours watching TV on

average daily across the week.
Car passenger risk: The participant had been in a car passenger at least

once in their lifetimewhere the driver (1) had consumed alcohol, (2) did not
have a valid licence, or (3) the participant chose not to wear a seat belt last
time travelling in a car, van, or taxi.

Scooter risk: Participants reported that they had last ridden a scooter
within theprevious fourweeks andhadnotused ahelmeton themost recent
occasions.

Cycle helmet use: If the participant reported that they had last ridden a
bicycle within the previous 4 weeks and had not used a helmet on the most
recent occasion.

Illicit drug use/solvent use: In the year since their 15th birthday, the
participant had either been a regular user (usedmore than five times) of one
ormore illicit drugs (excluding cannabis), including amphetamines, ecstasy,
lysergic acid diethylamide (LSD), cocaine, ketamine or inhalants including
aerosols, gas, solvents, and poppers.

Cannabis use: Participants who reported using cannabis ‘sometime,
but less often than once a week’ or more regular use were classified as
occasional users.

Regular tobacco use: Participant has never smoked and is regularly
smoking at least one cigarette per week.

Hazardous alcohol consumption: In the past year, participants had
scored eight or more on the Alcohol Use Disorders Identification Test
(AUDIT), indicating hazardous alcohol consumption.

Self-harm:Participant said theyhadpurposelyhurt themselves in some
way in their lifetime.

Penetrative sex before the age of 16: Participant reported having had
penetrative sex in thepreceding year and that theywereunder 16 at the time.

Unprotected sex: Participant engaged in penetrative sex without using
contraception on the last occasion they had had sex in the past year.

Criminal and delinquent behaviour: Participant reported that at least
once in the past year, they had undertaken at least one of the following:
carried a weapon; physically hurt someone on purpose; stolen something;
sold illicit substances to another person; damaged property belonging to
someone else either by using graffiti, setting fire to it, or destroying or
damaging it in another fashion; subjected someone to verbal or physical
racial abuse; or been rude/rowdy in a public place.

As each of the risk behaviours can be represented as a binary indicator
(seeTable 3 fordescriptives of individual risk behaviours),we candenote the
variable measuring engagement in risk behaviour j for each individual i by
the binary indicator as follows:

wij ¼
1if individual i engages in risk behaviour j;

0otherwise

�

Since we are looking at the overall engagement across a range of risk
behaviours rather than individual effects of each, we then create a new single
variable called the multiple risk behaviour index (MRBI), defined for each
individual i as the sum of all behaviours, as follows:

MRBIi ¼
P13
j¼1

wij

The new regressor MRBIi is our exposure of interest summarised in
Table 3.

Fig. 3 | STROBE diagram. The diagram describes the selection of the complete case
sample and the imputed sample.
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Educational achievement
Information on educational achievement was obtained via record linkage to
the National Pupil Database (NPD). Managed by the Department of Edu-
cation in England, the NPD includes data collected from school students
andhigher education students from2 to 21 years. This dataset comprises the
most complete and accurate record of compulsory educational achievement
available in England. Educational measures were based on participants’
General Certificate of Secondary Education (GCSE) qualifications, which
are taken during educational Key Stage 4 when pupils are aged between 14
and 16 years old. At the time, Key Stage 4 marked the end of compulsory
education in England. For this analysis, we used two measures of achieve-
ment. The first was the capped GCSE score, a continuous measure which
sums the student’s eight best grades to obtain a measure of overall
achievement commonly used in educational research. Individual GCSE
qualifications in each subject contribute 58 points for an A* through to 16
points for a G and 0 for aU (ungraded). Our secondmeasure of educational
achievement was a binary indicator of whether participants achieved five or
more A*-C grades at GCSEs. We used this as it is the qualification
requirement for entry to many post-16 education and training courses.

Polygenic indexes (PGI)
We used the largest existing genome-wide association studies (GWAS) to
identify single-nucleotide polymorphisms (SNPs) associated with risk
behaviours34 and educational achievement35. After sub-setting GWAS
results for bothphenotypes to SNPs thatwere available inALSPAC,we used
the MRInstruments R package to identify SNPs which were independently

associated (at p < 5 × 10−8) with the phenotypes (clumping parameters:
R2 = 0.01, 10,000 kb). This resulted in 303 SNPs associated with risk
behaviour and 3952 SNPs associated with educational achievement. PGIs
based on these SNPs were then derived in PLINK 1.9 by summing trait-
increasing alleles. SNPs were weighted by each allele’s regression coefficient
fromtheGWASso that genetic variantswithgreater effect contributedmore
to the scores. Finally, scores were standardised for analysis. The children’s
educational achievementPGI explained 9.83%of the variation in the capped
GCSE score (continuous outcome), while the children’s risk behaviour PGI
explained 0.05% of the variation in the MRB index. The mother’s educa-
tional achievement PGI explained 6.94% of children’s capped GCSE scores,
and the mothers' risk behaviour PGI explained 0.16% of the variation in
children’s risk behaviours.

Statistical analysis
In order to explore the association between theMRB index and educational
achievement, we carried out three types of analyses. First, we examined
phenotypic associations between the MRB index and the continuous and
binary measures for educational achievement in the ALSPAC cohort. Sec-
ondly, to explore the genetic underpinnings of engagement in riskbehaviour
and educational achievement, we performed univariate GREML to estimate
the heritability of both traits, and bivariate GREML to explore the genetic
correlation of these behaviours. GREML analysis was carried out in the
complete case sample, as GREML cannot be readily performed using
multiply imputed phenotype data. Third, given the possible confounding
bias which can affect estimates based on observational data, we used
bidirectional MR analyses to estimate causal associations between theMRB
index and educational measures in our imputed datasets. Below we expand
on these analytical methods.

Phenotypic associations. We used linear and logistic regression to
estimate the association of the MRB Index with capped GCSE score
(continuous outcome) and gaining five or more GCSE grade A*-C
(binary outcome). Basemodels adjusted for the young person’s sex. Since
other factors may confound the association of educational achievement
and the number of risk behaviours, we also estimated these associations
adjusted for the following potential socioeconomic confounders: parental
social class, maternal education, and housing tenure at the time of the
child’s birth. Lastly, we estimated a third set of associations adjusted for
the child’s cognitive ability. Table 4 shows the summary statistics for
these variables in the imputed sample (see supplementary Tables 1, 2 for
the complete case sample).

Genotypic associations. We conducted genomic-based restricted
maximum likelihood (GREML) to examine the genetic overlap between
theMRB Index and educational achievement. These models were carried
out using Genome-wide Trait Analysis (GCTA)36. GCTA uses a genomic
restricted maximum likelihood (GREML) method to estimate the pro-
portion of phenotypic variance that can be statistically explained by all
measured genome-wide single-nucleotide polymorphisms (SNPs),
known as the SNP-based heritability. GCTA estimates heritability by
comparing the genetic similarity of unrelated individuals to their phe-
notypic similarities. Unrelated participants (defined as more distantly
related than second cousins) were determined using Genetic Relatedness
Matrices (GRMs)36 If a phenotype can be (in part) explained by genetic
variation, thenwewould expectmore genetically similar individuals to be
more phenotypically similar37. We first estimated univariate models to
test the SNP heritability of the educational outcomes and MRB index,
specified as:

y ¼ Xβþ g þ ε

where y is the phenotype, X is a series of covariates, g is a normally dis-
tributed random effect with variance σ2g and ε is a residual error with
variance σ2ϵ . The SNP-based heritability can then be estimated as the

Table 3 | Descriptive statistics for educational achievement
measuresandMRB index in the imputedsampleand individual
multiple risk behaviours in the pre-imputed set

Continuous
variables

N Mean SD Min Max

Capped GCSE scorea 7695 331.19 90.16 −0.52 590.89

5 or more A*-C
GCSE’s including
English and Mathsb

7695 0.57 0.49 0 1

MRB index 7695 3.48 2.18 0 12.08

Binary variables

Multiple risk beha-
viours (MRBs)

Nc % Engaging

Physical inactivity 3556 74%

TV viewing 3584 21%

Car passenger risk 3547 30%

Scooter risk 3497 20%

Cycle helmet use 3227 24%

Illicit drug use/sol-
vent use

3512 8%

Cannabis use 3578 10%

Regular tobacco use 3579 12%

Hazardous alcohol
consumption

3399 36%

Self-harm 3582 19%

Penetrative sex
before the age of 16

3933 17%

Unprotected sex 3933 3%

Criminal and delin-
quent behaviours

4017 47%

aCapped GCSE is a continuous measure of educational achievement.
bAchieved 5 or more is a binary measure of educational achievement.
cPre-imputation sample analysis was restricted to unrelatedALSPACparticipants with genetic data
and linkedGCSE records, alive at 1 year, whohadnotwithdrawnconsent, complete sex information
and that had enough maternal socioeconomic information. Missing data were imputed using
multiple imputation by chained equation.
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proportion of total phenotypic variance that is attributable to a genotypic variance of the phenotype:

h2SNP ¼
σ2g

σ2g þ σ2ϵ
:

To control for differences between ancestral populations in allele dis-
tributions which could potentially bias the estimate, the first 20 principal
components of inferred population structure were included in the analyses
as covariates.

We estimated genetic correlations between the MRB Index and both
measures of educational achievement using bivariate GCTA38. Genetic
correlations allow us to quantify the overlap in SNPs associated with mul-
tiple phenotypes. Specifically for this study, the genetic correlation shows the
proportion of the phenotypic correlation between the MRB index and
education that is explained by common variation. Genetic correlations are
estimated as:

rg ¼
covg ðA;BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varg Að ÞvargðBÞ

q

where rg is the genetic correlation between phenotypes A and B, varg ðAÞ is
the genetic variance of phenotype A, and covg ðA;BÞ is the genetic covar-
iance between phenotypes A and B. Genetic correlations reflect common
genetic architecture, where two phenotypes are influenced by the same
SNPs. GCTA does not support GREML usingmultiply imputed phenotype
data, so these analyses were performed in the subset of the analytic sample
who had complete phenotypic information (N = 1735).

Fig. 4 | Directed acyclic graph of a bidirectional MR presenting the relationship
between the MRB Index and educational achievement. Panel A depicts the rela-
tionship between the MRB index and educational achievement, while Panel

B illustrates the bidirectional association between educational achievement and the
MRB index. PGI refers to polygenic index and MRBI stands for multiple risk
behaviour index.

Table 4 | Summary statistics of parental social class, housing
tenure, maternal education, and participants’ sex

Variables N %

Parental social class (N = 7695)

Professional 1113 14.5

Managerial and technical 3316 43.4

Skilled non-manual 1929 25.2

Skilled manual 923 12

Partially unskilled 365 4.74

Unskilled 48 0.63

Housing tenure (N = 7695)

Owned 6127 79.6

Council rented 782 10.2

Privately rented 786 10.2

Maternal education (N = 7695)

<O level 1943 25.3

O level 2674 34.8

A level 1897 24.7

Degree 1182 15.4

Participant’s Sex (N = 7695)

Female 3945 51.3

Male 3750 48.7
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Bidirectional Mendelian randomisation (MR). Mendelian randomi-
sation (MR) is a statistical method which can evaluate causal effects
between purported exposures and outcomes in observational data by
using genetic variants as instrumental variables for exposures. MR relies
on the random assortment of alleles from parents to children which
occurs during gamete formation and conception39. Since the genetic
variants associated with the exposure do not change in response to a
person’s health or environmental circumstances, associations between
exposure-associated genetic variants and the outcome are not affected
by classical confounding or reverse causation, which often affects esti-
mates from observational studies40. For MR estimates to be valid, the
genetic instruments must meet three assumptions: (1) relevance, it must
associate with the exposure, (2) independence, there must be nothing
that causes both the instrument and the outcome, and (3) exclusion, the
association of the instrument and the outcome must be entirely medi-
ated via the exposure41 We tested the first assumption using partial
F-statistics.

For educational and risk behaviours, a causal effect in either direction is
plausible, sowe used bidirectionalMR. BidirectionalMR is an extension of a
standardMR analysis which attempts to differentiate whether the exposure
is a cause of the outcome, a consequence of the outcome, or if there is a true
bidirectional causal effect between them (Fig. 4)42

First, we usedMR to estimate the effect of educational achievement
on risk behaviours. We used a two-stage least squares instrumental
variable model (Stata’s ivreg2) with the risk behaviours index as the
outcome and instrumented educational achievement using a polygenic
index of SNPs previously associated with years of schooling35 Next, we
used MR to estimate the effect of risk behaviours on educational
achievement by reversing the outcome and exposure. In this second
analysis, the capped GCSE points score was the outcome, and we
instrumented the risk behaviours index using a polygenic index of SNPs
previously associated with risk-taking behaviour34. For each outcome,
two sets of models were run: one which adjusted for the young person’s
sex and their first 20 principal components of ancestry, and a model
which also adjusted for factors associated with maternal genotype by
including the mother’s polygenic index. Likewise, for the binary out-
come of obtaining five or more A*-C GCSEs, we used a two-stage least
squares instrumental variable model, and again instrumented the risk
behaviours index using a polygenic index of SNPs previously associated
with risk-taking behaviour.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The informed consent obtained from ALSPAC participants does not allow
the data to be made freely available through any third-party maintained
public repository. Data used for this submission can be made available on
request to the ALSPAC Executive. The ALSPAC data management plan
describes in detail the policy regarding data sharing, which is through a
systemofmanagedopenaccess. Full instructions for applying fordata access
can be found here: http://www.bristol.ac.uk/alspac/researchers/access/. The
GWAS summary statistics for both risk behaviours and educational
attainment used in the analyses are available through the Social Science
Genetic Association Consortium (SSGAC). Available through the SSGAC
website: https://www.thessgac.org/.

Code availability
All the code used to clean and analyse the data for this study is available:
https://github.com/MichelleSpano/Risk-behaviours
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