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Abstract

Aiming to assess the progress and current challenges on the formidable problem of the prediction of solar energetic events since the
COSPAR/ International Living With a Star (ILWS) Roadmap paper of Schrijver et al. (2015), we attempt an overview of the current
status of global research efforts. By solar energetic events we refer to flares, coronal mass ejections (CMEs), and solar energetic particle
(SEP) events. The emphasis, therefore, is on the prediction methods of solar flares and eruptions, as well as their associated SEP man-
ifestations. This work complements the COSPAR International Space Weather Action Teams (ISWAT) review paper on the understand-
ing of solar eruptions by Linton et al. (2023) (hereafter, ISWAT review papers are conventionally referred to as ’Cluster’ papers, given
the ISWAT structure). Understanding solar flares and eruptions as instabilities occurring above the nominal background of solar activity
is a core solar physics problem. We show that effectively predicting them stands on two pillars: physics and statistics. With statistical
methods appearing at an increasing pace over the last 40 years, the last two decades have brought the critical realization that data science
needs to be involved, as well, as volumes of diverse ground- and space-based data give rise to a Big Data landscape that cannot be han-
dled, let alone processed, with conventional statistics. Dimensionality reduction in immense parameter spaces with the dual aim of both
interpreting and forecasting solar energetic events has brought artificial intelligence (AI) methodologies, in variants of machine and deep
learning, developed particularly for tackling Big Data problems. With interdisciplinarity firmly present, we outline an envisioned frame-
work on which statistical and AI methodologies should be verified in terms of performance and validated against each other. We empha-
size that a homogenized and streamlined method validation is another open challenge. The performance of the plethora of methods is
typically far from perfect, with physical reasons to blame, besides practical shortcomings: imperfect data, data gaps and a lack of mul-
tiple, and meaningful, vantage points of solar observations. We briefly discuss these issues, too, that shape our desired short- and long-
term objectives for an efficient future predictive capability. A central aim of this article is to trigger meaningful, targeted discussions that
will compel the community to adopt standards for performance verification and validation, which could be maintained and enriched by
institutions such as NASA’s Community Coordinated Modeling Center (CCMC) and the community-driven COSPAR/ISWAT
initiative.
� 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).

Keywords: International space weather action teams; Forecasting; Solar flares and eruptions; Methods – statistical; Methods – machine learning; Future
missions
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1. Introduction

For millennia, human curiosity has been captured by the
natural world and its phenomena, and this has led to a
quest to understand them, as far as our eyes, or our instru-
ments much later, could reach. As human society clustered
in communities living and acting jointly, it became clear
that several natural phenomena below and above ground
impact everyday life in such a way that humans had to
adapt and, to the extent possible, predict them to mitigate
3

their most adverse effects. Real-world problems with signif-
icant consequences to human life and well-being included
terrestrial weather, earthquakes, volcanic activity and ocea-
nic behavior. Each of them was witnessed to have its
extremes, from tornadoes and hurricanes to devastating
quakes, globe-affecting volcanic eruptions and tsunamis
occurring with or without a locally observed cause. With
physics and mathematics evolving, such phenomena were
attributed to complexity (see, e.g., Sharma et al., 2012,
and references therein), that came to be synonymous to



Fig. 1. Spatial and temporal span of the solar flare and eruption problem and their repercussions: in time, from the second timescales involved in magnetic
reconnection events that give rise to flares, to the week-long (� 6� 105 s) recovery time for Earth’s magnetosphere due to the passing of a fast, geoffective
CME, to the 11-year solar cycle modulation (� 3:5� 108 s). In space, from the km-size magnetic reconnection area to eruption transients propagating to 1
astronomical unit and beyond(� 1:5� 108 km).
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lack of predictability (Meyers, 2010), stochasticity and/or
chaotic behavior, from ’black swans’ to ’dragon kings’
(Taleb, 2007; Sornette, 2009, and references therein). In
recent decades, with our choice of robotic and human
exploration of space, space weather has been added to this
list of natural hazards (Hapgood et al., 2021).

The Sun’s influence sphere, known as heliosphere, can
be seen as a ‘system of systems’, where Sun’s continuously
variable magnetic forcing generates conditions amounting
to what is known as space weather (Schwenn, 2006;
Zhang et al., 2021; Temmer, 2021, and references
therein). Cosmic radiation from the galaxy also shapes
space weather conditions (Lockwood, 1971), acting antag-
onistically to solar activity (e.g., Cane, 2000, and references
therein). Hazardous space weather is caused by extreme
solar events (Cliver et al., 2022, and references therein) that
correspond to the higher end of the size distribution of
solar flares, coronal mass ejections (CMEs), and solar ener-
getic particle (SEP) events. For an overview of the physics
of these events and our present understanding, see Section 2
and the Cluster review by Linton et al. (2023). Flares are
operationally quantified mainly by means of their peak
photon flux in soft X-rays, with the most commonly used
scale being the Geostationary Operational Environmental
Satellites (GOES) flare scale, implemented by the National
Oceanic and Atmospheric Administration (NOAA). This is
logarithmic and coded by A, B, C, M, and X for peak

fluxes of n� 10�8W =m2 in 1� 8Å soft X-rays, with

n � f1; 10; 102; 103; and 104g, respectively. Each of these
flare classes has subdivisions from 1.0 to 9.9, with the
exception of the X-class that can exceed 10.0. CMEs are
4

quantified by their speed, mass, angular width, while SEP
(typically, proton) events by their peak flux, duration and
fluence. To effectively predict these phenomena, we need
to predict, in a timely manner, (i) time of arrival for CMEs
and SEP events in geospace, on top of the event character-
istics, and (ii) CME geoeffectiveness, i.e., their ability to
trigger geomagnetic storms. We note here that another
Cluster paper on the geomagnetic environment is in prepa-
ration, along the lines of Opgenoorth et al. (2019). For
CMEs, other heliospheric ejecta and SEP event forecasting,
see Cluster reviews by Temmer et al. (2023) and Whitman
et al. (2022), respectively.

For flares, with electromagnetic radiation signatures
moving at the speed of light, there is no early warning, so
flares must be forecast hours, ideally, before their occur-
rence on the Sun (e.g., Sawyer et al., 1986; Leka et al.,
2018; Georgoulis et al., 2021, and references therein).
Recent trends also place CME and SEP event forecasting
in this framework, namely, before events actually occur.
For a recent overview of SEP event forecast methods, see
also Malandraki and Crosby (2018), the Cluster review
by Whitman et al. (2022) and Section 3.3 below.

Predicting all of these energetic manifestations is a
daunting task, spanning � 8 orders of magnitude in space
and time (Fig. 1). At present, we are far from claiming or
even considering any success in dealing with all these prob-
lems simultaneously.

Solar eruptions of space weather significance primarily
occur from solar active regions, namely, accumulations of
intense magnetic flux in the solar atmosphere (e.g.,
Martres and Bruzek, 1977; Harvey and Zwaan, 1993; van



Fig. 2. Actual and projected science-grade data accumulation from
multiple ground- and space-based observatories devoted to heliophysics
(i.e., solar and inner heliosphere) over this and the previous three decades.
Credit: National Solar Observatory (NSO)/ K. Reardon.
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Driel-Gesztelyi and Green, 2015). Only a minority of active
regions give major (i.e., in excess of GOES M1.0) flares and
only a fraction of flares are eruptive, namely, associated
with a CME. A sub-class of flaring active regions, there-
fore, is called eruptive regions, if at least one of their flares
is eruptive. There is an increasing association between
flares and fast/wide CMEs (namely, those of relevance to
space weather), starting from approximately 1 : 3 (1
CME for 3 flares) for low C–class events and progressing
to a nearly one-to-one association for flares >X2.0
(Yashiro, 2005; Anastasiadis et al., 2017). A flare may be
eruptive or not (confined), but a CME originating from
an active region will be associated with a flare: potential
exceptions of this rule may refer to high-altitude CMEs
above active regions, at significant fractions of the solar
radius (O’Kane et al., 2019), or weak CMEs originating
from low altitudes at the periphery of active regions, poten-
tially as eruptions sympathetic to activity happening within
the regions (Yardley et al., 2021b). The study of flare –
CME association began in the 1970s with CME observa-
tions made by Skylab (Munro et al., 1979) and is still ongo-
ing, with substantial literature on the topic (see, e.g.
Harrison, 1995; Zhang et al., 2001; Zhang and Dere,
2006). Investigation focuses mostly on the repercussions
of the so-called standard flare model, otherwise known as
Carmichael-Sturrock-Hirayama-Kopp-Pneumann
(CSHKP) model. For reviews, see Forbes et al. (2006) and
the Cluster review by Linton et al. (2023).

Flares higher than GOES C–class occur exclusively in
active regions, as the quiet-Sun does not possess sufficient
magnetic energy density to produce them. CMEs may also
originate from remnant active regions that no longer dis-
play strong-field photospheric sunspots, and are typically
associated with unstable filaments and eruptive promi-
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nences visible in the chromosphere (Munro et al., 1979).
In some cases, however, low-atmospheric pre-CME signa-
tures are lacking, in which case these CMEs are called
‘stealth’ CMEs (e.g., Robbrecht et al., 2009; Howard and
Harrison, 2013; Nitta et al., 2021, for a review). CMEs
originating from weak-field solar regions, far from active
regions, be them stealth or otherwise (i.e., associated with
large-scale, quiet-Sun filament eruptions), have generally
less space weather interest, because of their relatively low
magnetic energy and speed (Gopalswamy et al., 2009).
Sheeley et al. (1999) found that CMEs with speeds higher
than 750 km/s correspond primarily to active regions.
These CMEs, with speeds higher than that of the fast solar
wind (i.e., � 800 km/s), are more capable of producing
shocks that give rise to SEP events in the heliosphere.
Therefore, we will not be focusing on quiet-Sun eruptions
in this review.

The first step towards predicting solar energetic events
(in a research – not necessarily operational – sense), is to
physically distinguish between two active region popula-
tions: flaring vs. non-flaring or eruptive vs. non-eruptive
ones. On this problem there is also substantial literature
(e.g., Hagyard et al., 1984a; Zirin and Liggett, 1987;
Sawyer et al., 1986; McIntosh, 1990; Leka and Barnes,
2003b; Abramenko, 2005; Chintzoglou and Zhang, 2013;
Pagano et al., 2019), with reviews by Green et al. (2018),
Toriumi and Wang (2019), Georgoulis et al. (2019),
Patsourakos et al. (2020) and references therein. The prac-
tical challenge is to achieve a clear separation between the
two populations in some meaningful one-dimensional or
multi-dimensional parameter space. A clear, non-
overlapping separation would allow a binary [YES/NO]
classification of sub-volumes of the parameter space that
would characterize the local population as flaring/eruptive
or non-flaring. In case of overlap, partial or full, a proba-
bility would be assigned as per the local densities of the dif-
ferent active-region populations.

The definition of the different parameters comprising the
parameter space is, therefore, critical to our ability to pre-
dict solar energetic phenomena. Virtually all of these
parameters are either directly physical or intuitively/semi-
empirically linked to some fundamental physical parame-
ter. Each parameter is either a scalar or a vector character-
izing the state of a certain active region at a certain time.
There have been hundreds of parameters proposed over
the last 20 years (Falconer et al., 2002; Leka and Barnes,
2003a; Abramenko, 2005; McAteer et al., 2005;
Georgoulis and Rust, 2007; Conlon et al., 2010; McAteer
et al., 2010; Mason and Hoeksema, 2010; Reinard et al.,
2010; Bobra et al., 2014; Korsós et al., 2015;
Kontogiannis et al., 2017; Guennou et al., 2017; Murray
et al., 2018; Park et al., 293(8),; Guerra et al., 2018;
Kontogiannis et al., 2019; Kusano et al., 2020;
Georgoulis et al., 2021; Leka et al., 2023, and others).
Parameters or properties with a potential predictive capa-
bility and their rationale are discussed in Section 2.3. In
the next Sections, we will be discussing potentially flare
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predictive and eruptivity parameters, too, with an emphasis
on the methods utilizing them; not necessarily on the
parameters themselves.

Scores of metadata parameters and immense parametric
spaces fulfill the requirements of a ‘Big Data’ ecosystem
(e.g., Chen et al., 2014; De Mauro et al., 2015) that clearly
brings interdisciplinarity into the solar eruption prediction
problem. Besides metadata, Big Data is also due to the
exponentially increasing volumes of ground- and space-
based data of Level 1.0 and above (for a description of data
levels, see NASA/EOSDIS Data Processing Levels online),
as can be seen in Fig. 2: from the tens of Gigabytes in the
1990s to the tens of Petabytes in the 2020s, 6+ orders of
magnitude apart. Subjecting these data to scientific pro-
cessing and assimilation calls for specialized data science
techniques and, naturally, for artificial intelligence (AI)
methodologies such as machine learning (ML; Mitchell,
1997; Jordan and Mitchell, 2015) and deep learning (DL;
LeCun et al., 2015; Goodfellow et al., 2016). As put
together eloquently by Mitchell (2006), ML aims to address
the question ‘‘How can we build computer systems that auto-

matically improve with experience, and what are the funda-
mental laws that govern all learning processes?”. This can
be achieved in three different ways: (i) a supervised

approach, in which an unknown input–output mapping is
approximated by means of learning (training) on known
(i.e., labeled) input–output samples. For space weather
applications, an example is flare prediction using active
region data as a testing sample, after training on a sample
that includes similar data of the past for which we know
the outcome. (ii) An unsupervised approach, in which data
structures are inferred from the data themselves typically
via a clustering process and by training on unlabeled data.
Finally, (iii) a hybrid approach, in which supervised and
unsupervised methodologies are combined between train-
ing and testing. For a discussion on these methodologies
for flare prediction, in particular, see Massone and Piana
(2018).

Deep learning (DL), on the other hand, as a subset of
ML, aims to imitate the human brain on the basis of the
rudimentary understanding we have about it. It represents
a given problem as a nested hierarchy of concepts, each of
which is described by a collection of simpler concepts, in a
neural network fashion. A comprehensive overview of DL
applications in solar astronomy was presented in Xu et al.
(2022). The concept and details of network design, experi-
mental results, and comparison with the state-of-the-art
were reported as a guide in that work. DL does not rely
on a priori extracted descriptors (even though it works
on labeled samples) and produces results by focusing on
automatically computed, generally unspecified, features of
the training sample. If performance is quantified, then
DL methodologies show a higher performance than plain
ML ones, under the major caveat of the availability of suf-
ficient training data. Goodfellow et al. (2016) mentions, in
particular, that as a rule of thumb, ‘‘a supervised deep learn-
ing algorithm will generally achieve acceptable performance
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with around 5,000 labeled examples per category and will

match or exceed human performance when trained with a

dataset containing at least 10 million labeled examples”.
This immediately triggers the question whether DL is
applicable for space weather forecasting applications, as
we are orders of magnitude below the millions of events
purportedly needed: we have been observing flares, CMEs
and SEPs events for a few decades and each typical 11-year
solar cycle includes a few tens of thousands of CMEs, sev-
eral hundred flares of GOES class M and above, and a cou-
ple of hundred SEP events, at best. This further implies
severely class-imbalanced training and testing samples with
the overwhelming majority belonging to the negative class
(i.e., no event) leading to the ‘‘black swan” or ‘‘dragon
king” (for extreme but understood and entirely not under-
stood, respectively) concepts already discussed.

As will be explained in Sections 3 and 4, the current per-
formance of even the most elaborate methodologies for
predicting solar energetic events is far from optimal. This
includes ML and DL methodologies, applied in spite of
the above looming assessment by Goodfellow et al.
(2016). Challenges notwithstanding, many of which are dis-
cussed in Camporeale (2019), space weather forecasting is a
central task of, and lack thereof can be a showstopper to,
future space exploration, particularly crewed expeditions
(e.g., Mertens and Slaba, 2019; Zaman et al., 2022). On
the surface of Earth, the economic and societal impacts
can be staggering (see, for example MacAlester and
Murtagh, 2014; Eastwood et al., 2017; Oughton et al.,
2018), prompting key space-faring nations to issue govern-
mental guidelines and emergency operation plans (EOP,
2016; EOP, 2019). This pressing need was the driving force
behind the Schrijver et al. (2015) review and roadmap
paper. Previously, a compelling case was made by the
2008 National Research Council’s Severe Space Weather

Events: Understanding Societal and Economic Impacts

Workshop Report (NRC, 2008). In the report’s Fig. 3.1,
economy and the societal structure with its various sectors
are presented as a series of domino blocks interconnected
in an inherently nonlinear manner, i.e., lacking a central
prior coordination. If any one block is disabled due to
space weather, either temporarily, or in a sustained time-
scale, consequences and repercussions can be unpre-
dictable. Impacts worsen in case where more than one
blocks are disabled. The severity and temporal length of
each disruption drive the societal and economic cost
upward.

The paper is structured as follows: in Section 2 we pre-
sent a brief discussion of the pre-eruption state in solar
active regions, pointing the reader to the dedicated Cluster
review of Linton et al. (2023). In Section 3 we review the
different methodologies applied so far for the prediction
of major solar eruptions, connecting also to the dedicated
Cluster reviews of Temmer et al. (2023) and Whitman
et al. (2022) on CME and SEP event prediction, respec-
tively. In Section 4 we outline the key principles of a possi-
ble eruption prediction framework that could be used to
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homogenize results from various methodologies, in this
way enabling a standard and streamlined comparison
between methods focused on a particular problem. Stan-
dardized performance verification and validation are at
the core of this discussion. In Section 5 we discuss the
immediate difficulties that need to be addressed in order
to facilitate effective space weather forecasting, while in
Section 6 we discuss what future needs and actions are
required to effectively address some of these challenges
and afford us access to information that is entirely inacces-
sible at present. Section 6 is complemented by Appendix A.
Section 7 summarizes the report by listing some of the top-
level conclusions, expectations and recommendations for
the future. Finally, Appendix B provides an auxiliary list
of the acronyms and abbreviations used in the article.

2. The preflare/ pre-eruption state

As mentioned already. 1 there is no early warning that a
flare is about to occur and, once initiated, it takes less that
8.5 minutes until its effects are felt at Earth. However, flare
forecasts are issued for the coming few days and rely upon
predictions made using the morphological features of
active regions or magnetic parameters defined from
white-light and photospheric magnetic field observations,
as well as Ha images of the chromosphere, historically
(Section 3).

Regarding CMEs, the Sun is constantly monitored for
their occurrence using mostly space-based coronagraphs.
Fig. 3. Convective flux emergence simulation for modeling an eruptive activ
(turquoise contours outline the penumbra), the vertical magnetic field strength
total field strength in the vertical slice of the simulation domain, normalized by
of speed, at the two selected times. The fourth column shows the magnetic fie
Figure reproduced from Toriumi and Hotta (2019) by permission of the AAS
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Once a CME is detected, prediction tools that model
CME propagation post-eruption (e.g. WSA-ENLIL/
EUHFORIA), based on input parameters from corona-
graph observations, are used to provide an estimated
CME arrival time at Earth. This leads to an advanced
warning of 1–3 days before the CME reaches geospace
(Mays et al., 2015). The problem is discussed in the Cluster
review of Temmer et al. (2023). Besides applicable uncer-
tainties, sometimes substantial, this lead time is often insuf-
ficient to help mitigate potential effects for our ground- and
space-based technological infrastructure. For example, UK
power grids require up to a 5-day warning of CME arrival
to protect their transmission systems (European
Commission, 2016). Therefore, accurate predictions prior
to eruption onset is a valuable asset to decisively improve
the capabilities of both forecasting of geoeffectiveness and
lead times. To predict the occurrence of solar eruptive phe-
nomena in advance, a sufficient understanding of the pre-
eruption state is required along with the determination of
the onset mechanism(s). Understanding this state in active
regions is the topic of the Cluster review of Linton et al.
(2023), but we briefly discuss some key concepts here.

2.1. Genesis and evolution of flare-productive solar active
regions

To better comprehend space weather and achieve effi-
cient and accurate forecasting, it is critically important to
understand and quantify the magnetic circumstances of
e region. From left to right, each column shows the emergent intensity
(Bz) in the photosphere (green arrows highlight the flux emergence), and
the local background plasma density ð4pqÞ1=2 and thus having dimensions
ld lines above the d-sunspot N2-P1, which exhibits a flux rope structure.
.
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solar eruptive phenomena in time and space, namely the
process by which magnetic flux emerges from the solar inte-
rior to form sunspots and active regions (van Driel-
Gesztelyi and Green, 2015; Toriumi and Wang, 2019).

Observations have shown that large flares tend to occur
in those sunspot groups that have complex shapes. The
most magnetically-complex sunspot configurations include
a ‘‘d-sunspot”, in which umbrae of opposite polarities are
enveloped within a common penumbra (Künzel, 1960;
McIntosh, 1990). d-sunspots are known to be the source
of some of the largest flares (Krall et al., 1982; Patty and
Hagyard, 1986; Zirin and Liggett, 1987; McIntosh, 1990;
Sammis et al., 2000). Flare-productive active regions are
formed via the emergence of twisted, current-carrying mag-
netic flux tubes and thus exhibit shearing and rotational
motions in the photosphere, which leads to the develop-
ment of sheared and twisted magnetic fields along magnetic
polarity inversion lines (PILs; Hagyard et al., 1984b; Zirin
and Liggett, 1987; Leka et al., 1996; López Fuentes et al.,
2000; Brown et al., 2003; Toriumi et al., 2017). This means
that as active regions evolve, non-potential (i.e., free,
caused by plasma-spawned electric currents) magnetic
energy is injected into the corona. Complementary to free
magnetic energy is magnetic helicity, namely a measure
of twist, writhe and linkage. Flares and eruptions, in gen-
eral, occur when free magnetic energy and helicity exist
in sufficient budgets (Leka and Barnes, 2003a; LaBonte
et al., 2007; LaBonte et al., 2007; Park et al., 2010;
Tziotziou et al., 2012; Liokati et al., 2022). Recent numer-
ical simulations (Toriumi et al., 2023) suggest that turbu-
lent convection in sub-photospheric layers also injects
magnetic helicity into the active region corona, albeit not
necessarily of the same sign (or of any consistent sign) to
the one that is dominant in the active region.

It is not possible to investigate the solar interior with
direct observations, so studies based on theory and numer-
ical simulations are also paramount in order to understand
the formation of active regions that become flare produc-
tive. A prime scenario proposed to explain the formation
of d-spots is the emergence of a strongly twisted flux tube
due to the kink instability (Tanaka, 1991; Linton et al.,
1996). Simulations of kink-unstable flux emergence suc-
cessfully reproduced the d-shaped sunspots with sheared
PILs and complex morphology (Fan et al., 1999;
Takasao et al., 2015; Knizhnik et al., 2018; Toriumi and
Takasao, 2017). Other scenarios for d-spot formation
include multiple flux tubes emerging simultaneously and
in close proximity (Murray and Hood, 2007; Jaeggli and
Norton, 2016) as well as multiple portions of a single flux
tube emerging and spots of opposite polarity colliding in
the photosphere (Toriumi et al., 2014; Fang and Fan,
2015; Syntelis et al., 2019). While it is challenging to com-
pletely understand the physical mechanisms responsible for
forming d-spots by only using photospheric observations, a
study by Norton et al. (2022) has recently used observed
photospheric quantities in order to distinguish between
the different proposed scenarios.
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In recent years, flux emergence simulations that take
into account the turbulent solar convection below the pho-
tosphere have enabled a more realistic modeling of eruptive
regions. Among others, Cheung et al. (2019) used the MPS/
University of Chicago Radiative MHD (MURaM) code to
model the emergence of a minor bipole in the vicinity of a
pre-existing sunspot, leading to a flare, as a reproduction of
the actual active region. A key feature of this simulation is
the inclusion of a corona, which allows for an eruptive flare
with a magnitude equivalent to a C–class (Cheung et al.,
2022). Using the R2D2 code, which covers the entire solar
convection zone, Toriumi and Hotta (2019) investigated
the process in which a large, deep convection cell elevates
the flux tube and spontaneously generates strongly-
packed bipolar sunspots (i.e. d-spots): see Fig. 3. Magnetic
flux ropes, namely complex twisted structures coiling
around a relatively untwisted core, were created above
the sheared PILs in the d-spots as a consequence of sunspot
rotation (Hotta and Toriumi, 2020; Kaneko et al., 2022).

In brief, understanding the formation of flare-
productive active regions through a combination of obser-
vation and modeling can conceivably help predict the
occurrence of flares over the course of active region evolu-
tion, from emergence to decay.

2.2. Pre-eruptive magnetic configuration and eruption onset

mechanisms

The emergence and evolution of strong active region
magnetic fields transports energy and magnetic flux into
the solar atmosphere, reconfigures the solar corona and
leads to the occurrence of solar flares and CMEs. Flares
and CMEs involve an energy storage-and-release process
as they are powered by the magnetic energy available due
to electric currents that flow along coronal magnetic field
lines (e.g. see Priest, 2014). Currents stress and distrort
the magnetic field, accumulating free magnetic energy until
a critical point is reached, beyond which equilibrium is lost
(Forbes, 2000; Forbes et al., 2006). The system pursues
relaxation, either via magnetic reconnection alone (con-
fined flare) or via shedding helicity and energy away
(CME; Low, 1994; Rust and Kumar, 1996) with the excess
free magnetic energy (i.e., the difference between that of
pre- and post-eruption states) converted into other forms.
The timescales over which the build-up of electric currents
occurs are relatively long, from less than 24 h to several
days, because the pertinent photospheric driving speeds
(K 1 km s�1) are much smaller than the Alfvén speed in
the corona (�1000 km s�1).

In the photosphere, the most conspicuous signature of
the build-up of electric currents is the presence of large,
high-gradient PILs (Krall et al., 1982; Zirin and Liggett,
1987; Ambastha et al., 1993; Wang et al., 1994) where
the photospheric magnetic field is highly ‘‘non-potential”,
meaning very different, in terms of vector orientation and
strength, from the current-free magnetic field applicable
to the same photospheric radial-field boundary. This often



Fig. 4. Examples of pre-eruptive magnetic structures: sheared magnetic arcades (first row), magnetic flux ropes (second row) and hybrid configuration
(third row). Magnetic field lines and the distribution of the normal to the photospheric magnetic field (in color contours) from MHD simulations reported
by DeVore and Antiochos (2000); Titov et al. (2014); Török et al. (856(1)); Zhou et al. (2018) are shown in all panels. This Figure is a modified version
taken from Patsourakos et al. (2020).
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manifests as the horizontal component of the magnetic
field being highly aligned to the PIL, or displaying
‘‘whirlpool” structures around sunspots. The chromo-
spheric/coronal counterpart of a highly sheared PIL is
called a filament channel, which appears as a filament or
prominence when cool and dense plasma is present, filling
the channel.

The build-up of currents in active region filament chan-
nels usually starts with magnetic flux emergence (e.g. Leka
et al., 1996; Sun et al., 2012; Tziotziou et al., 2013). Typi-
cally, the contribution of this mechanism to the final elec-
tric current budget of the active region is not large,
especially in the early stages of the flux emergence process.
As soon as the PIL starts to form, much of the electric cur-
rent budget is produced primarily by shearing motions
around the PIL (e.g. Ambastha et al., 1993; Chintzoglou
et al., 2015; Liokati et al., 2022). Strong, shear-ridden PILs
exclusively feature non-neutralized (i.e., net) electric cur-
rents that seem to add decisively to their complexity and
eruptive capability (Georgoulis et al., 2012; Török et al.,
2014). Later on, opposite magnetic polarities around the
PIL may approach each other, interact, and eventually dis-
appear. This can be explained by the magnetic flux cancel-
lation process (e.g. van Ballegooijen and Martens, 1989;
Green et al., 2011; Yardley et al., 2018a) that reflects
increased magnetic field complexity around the PIL.
Another mechanism of filament channel formation is helic-
ity condensation (Antiochos, 2013) whereby helicity is
injected locally into the corona via small-scale photo-
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spheric magnetic field motions and/or flux emergence.
Once injected, helicity is then transferred and condenses
onto large-scale PILs.

These physical processes (e.g., flux emergence, flux can-
cellation, formation of non-neutralized currents, helicity
condensation), not only accumulate free magnetic energy
over long timescales but can also act as triggers on shorter
timescales (days) to bring the pre-existing magnetic field
configuration to the point of eruption. Driver mechanisms,
which are ultimately responsible for the rapid expansion
and upward acceleration of the erupting configuration,
are limited to magnetic reconnection (Moore et al., 2001;
Aulanier et al., 2010; Karpen et al., 2012), loss of equilib-
rium (Forbes and Isenberg, 1991) or an ideal instability
(e.g. the kink or torus, see Sakurai, 1976; Török and
Kliem, 2005; Kliem and Török, 2006; Kliem et al., 2014).
Magnetic reconnection can form a vertical current sheet
below the eruptive configuration (e.g. Moore et al., 2001),
and/or in the external field above the eruptive configura-
tion (e.g. Antiochos et al., 1999). For a full list of trigger
and driver mechanisms see Table 1 in Green et al., 2018
and references therein).

A major pillar of research in solar eruptive phenomena,
inspired by both CME initiation models and observations,
focuses on analyzing the pre-eruptive state (e.g., see the
recent reviews on various aspects of this topic by
Schmieder et al., 2015; Cheng et al., 2017; Green et al.,
2018; Toriumi and Wang, 2019; Georgoulis et al., 2019;
Patsourakos et al., 2020). The pre-eruptive phase can be
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considered complete when the ascending and eventually
erupting structure reaches speeds of the order 100 km s
�1 (Fig. 1 and related discussion in Patsourakos et al.,
2020). This takes into account the kinematic behaviors of
both slow and fast CMEs.

The nature of the pre-eruptive magnetic configuration
has been a topic of fierce debate for many decades. Two
coronal magnetic field configurations can exist prior to
eruption: a sheared magnetic arcade (SMA), that can be
defined as loops whose planes deviate significantly from
the direction normal to the PIL on the horizontal field of
view (e.g., Amari et al., 1991; Moore and Roumeliotis,
1992; Antiochos et al., 1999; Lynch et al., 2008; Wyper
et al., 2017; Zhou et al., 2018), or a magnetic flux rope
(MFR), namely, twisted magnetic field lines winding
around a central axial field line (e.g., Forbes and
Isenberg, 1991; Fan and Gibson, 2004; Manchester et al.,
2004; Török and Kliem, 2007; Aulanier et al., 2010;
Amari et al., 2018). The top two rows of Fig. 4 show exam-
ples of pre-eruptive SMA and MFRs from MHD simula-
tions. Both configurations can sustain filament channels
above PILs and both have occasionally been recognized
as integral parts of the pre-eruptive configuration.

There is almost no debate regarding the nature of the
erupting magnetic configuration, which is a MFR, that is
either created during an eruption originating in a SMA
or an evolving destabilized MFR, as suggested by both
modeling and observations (e.g., Karpen et al., 2012;
Vourlidas et al., 2013; Török et al., 856(1)). Broadly speak-
ing, a SMA forms under the action of shearing motions at
the photospheric footpoints of a magnetic arcade (e.g.,
Antiochos et al., 1999; DeVore and Antiochos, 2000)
whereas an MFR forms in the solar atmosphere either
when a twisted flux tube fully emerges from the convection
zone (e.g., Fan and Gibson, 2004; MacTaggart and Hood,
2009) or by magnetic reconnection occurring in a SMA
(e.g., van Ballegooijen and Martens, 1989; Aulanier et al.,
2010; Archontis and Syntelis, 2019).

Given that specific conditions need to be met for a SMA
to give rise to a CME, for example magnetic reconnection
could occur between the SMA and an overlying magnetic
null (e.g., Antiochos et al., 1999; Karpen et al., 2012), or
ideal instability thresholds could be exceeded for an
MFR to destabilize and give rise to a CME, such as the
twist of a MFR or the decay index of the strapping mag-
netic field above a MFR (e.g., Török et al., 2004; Kliem
and Török, 2006). Identifying the pre-eruptive magnetic
configuration is an important milestone in our quest to pre-
dict CMEs with physics-based schemes. This is a formid-
able challenge at the same time, given several difficulties
arising on both observational and modelling fronts. For
example, the current lack of routine observations of vector
magnetic fields above the photosphere, or models employ-
ing ad hoc initial and boundary conditions. This prompted
the formation of an International Space Science Institute
(ISSI) Team in order to address this issue (Patsourakos
et al., 2020). A central conclusion of Patsourakos et al.
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(2020) was that observations and modeling could be better
reconciled if a hybrid, time-dependent magnetic configura-
tion encompassing both SMA and MFR segments i.e. a
pre-eruptive structure that continuously evolves from a
SMA to a MFR was considered (e.g., third row of Fig. 4).

2.3. Rationale and parameters for assessment of the pre-
eruption state

Detailed observations and empirical knowledge on solar
magnetic structures nearly coincided with pioneering appli-
cations of the Zeeman effect toward photospheric vector
magnetography. This eventually led to the identification
of photospheric features related to eruptive (at that time
it was only flaring) active regions. Künzel (1960) noticed
the formation of a common penumbra in umbrae of oppo-
site polarities, while Severny (1964) mentioned that flares
were occurring in complex active regions with enhanced
linear polarization signal, meaning strong transverse mag-
netic fields, or strong horizontal fields near disk center.
Major developments came along in the 1980s, with the con-
cept of the d-sunspot featuring a strong photospheric PIL
(Jaeggli and Norton, 2016; Zirin and Liggett, 1987). It
was then only a matter of time before such features were
quantified, in the framework of sunspot classification and
its probabilistic relation to flare occurrence (McIntosh,
1990; Bornmann and Shaw, 1994). An intriguing observa-
tion by Wang et al. (1994) firmly placed the shear observed
invariably along flux-massive photospheric PILs into play,
by showing a seemingly counter-intuitive result of shear
along the PIL increasing after a major flare. Between the
early 1990s and the early 2010s, an extended collection of
potentially predictive photospheric parameters, predomi-
nantly referring to one component (the line-of-sight
[LOS]) or the full photospheric magnetic field vector, were
proposed and tested as potentially efficient flare and erup-
tion predictors. An effort to classify these parameters was
made by Georgoulis (2012) who discussed fractal (mono-
scale) and multifractal (multiscale), pure morphological
and helioseismic parameters. More recent works in these
directions include Schunker et al. (2016) for helioseismol-
ogy and the photospheric electric fields of Kazachenko
et al. (2014) and Fisher et al. (2020), in terms of photo-
spheric morphology. Numerous parameters derived from
vector field data were collected (mostly based on prior
studies) and processed en masse by means of discriminant
analysis by Leka and Barnes (2003a,b) and LaBonte
et al. (2007), who found that the photospheric magnetic
status of an active region at any given instant in time pro-
vides useful but limited information on the ability of the
region to erupt. Still, this has led to a near-realtime flare
prediction facility by using the Discriminant Analysis Flare
Forecasting System (DAFFS; Leka et al., 2018). In paral-
lel, Falconer and collaborators, in a series of papers,
(Falconer, 2001; Falconer et al., 2002; Falconer et al.,
2003) connected the advance prediction of CMEs, along-
side flares, to photospheric magnetic field parameters
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exclusively related to PILs, such as their length and gradi-
ent. Later, a similar scheme implemented as the Magne-
togram Forecast (MAG4) model (Falconer et al., 2014)
(there is currently another variant of the model named
MagPy, a Python package that provides tools for geomag-
netic data analysis) issued predictions on all flares, eruptive
flares (CMEs) and SEP events.

The advent of the Helioseismic and Magnetic Imager
(HMI) (Scherrer et al., 2012; Schou et al., 2012) onboard
the Solar Dynamics Observatory (Pesnell et al., 2012), with
its daily 1.5 TB of high-cadence, constant-quality data ini-
tiated a new era of photospheric metadata inference. The
first relevant HMI data product was the HMI active region
patch (HARP; Hoeksema et al., 2014) that implemented a
pipeline providing timeseries of regions of interest (includ-
ing active and smaller magnetic regions, lacking sunspots
and hence a NOAA active region number) where the signal
was strong enough to allow inversion and azimuth disam-
biguation of the magnetic field vector for further process-
ing. In conjunction, a selection of Space-Weather Active
Region Patch (SHARP; Bobra et al., 2014) parameters,
judged from earlier works to be relevant to flare productiv-
ity (Leka and Barnes, 2007, and references therein) are pro-
vided as metadata calculated from the HARP data. A
similar reasoning led to the extension into the Michelson
Doppler Imager (MDI) (Scherrer et al., 1995) LOS magne-
togram database onboard the Solar and Heliospheric
Observatory (SOHO) and provided the Space Weather
MDI Active Region Patch (SMARP; Bobra et al., 2021)
pipeline that shares three parameters (out of seven in total)
with the SHARPs pipeline. In this way, there are common
predictive parameters (given, of course, the different instru-
mental specifications) extending over more than two solar
cycles (23 and 24) and nearly three decades. SDO data have
also been used in computer vision applications providing
meaningful object and event metadata, such as the Helio-
physics Events Knowledgebase (HEK; Martens et al.,
2012; Hurlburt et al., 2012) that has operated since the start
of the SDO mission and provides extensive sets of param-
eters to be used for forecasting and other purposes.

Further work has been performed in this respect, with a
major effort of generating metadata parameters undertaken
by the EU Flare Likelihood and Region Eruption Fore-
casting (FLARECAST) project. For an overview of the
project and the works it spawned, see Georgoulis et al.
(2021). The project generated a total of 209 parameters
relying on the near-realtime HARP data products,
intended for operational use. FLARECAST pledged to
incorporate virtually every parameter present in the litera-
ture. As a result, on top of the SHARPs and parameters
proposed independently, the FLARECAST property data-
base (accessible via an Application Programming Interface
[API]) included parameters proposed by Kontogiannis et
al., 2017, 2018; Korsós et al., 2015; Park et al., 2018
Korsós et al. (2015, 2017, 2018, 293(8)) that exploit addi-
tional proxies of magnetic energy, helicity, photospheric
electric currents and shear, primarily relevant to PILs.
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The search for predictive parameters of solar eruptions
is ongoing (see e.g., Green et al., 2018; Kontogiannis,
2023, for recent reviews). Efforts to model the morphology
of the pre-eruptive state of active regions have turned to
nonlinear force-free (NLFF) field extrapolations of the
photospheric magnetic field (e.g., Yan et al., 2001; Canou
et al., 2009; Chintzoglou et al., 2015; James et al., 2018;
Woods et al., 2020) due to the difficulties in directly mea-
suring the magnetic field in the corona. One widely adopted
approach is magnetofrictional relaxation (Yang et al.,
1986), which can be used to model the coronal magnetic
field, either globally (e.g., Mackay and van Ballegooijen,
2006a; Mackay and van Ballegooijen, 2006b), or at
active-region scales (e.g., Mackay et al., 2011; Cheung
and DeRosa, 2012). The magnetofrictional approach can
employ a time sequence of either line-of-sight or vector
magnetograms (see e.g., Mackay et al., 2011; Gibb et al.,
2014; Pomoell et al., 2019; Price et al., 2020) as the lower
boundary conditions to evolve the coronal magnetic field
through a continuous series of NLFF states. When used
to study active regions that were a priori known to be erup-
tive, the models show flux rope formation resulting from
the process of flux cancellation, and flux rope eruption
on a timescale roughly matching that of observed CMEs
(e.g., Yardley et al., 2018b; Yardley et al., 2021a). This
method can differentiate eruptive configurations from
non-eruptive configurations using a Lorentz force-related
metric that allows an eruption early warning time of up
to 16 h (Pagano et al., 2019; Pagano et al., 2019).

Another metric that has been proposed is the helicity
ratio of Pariat et al. (2017). The helicity ratio is the helicity
associated with the current-carrying part of the magnetic
field divided by the total helicity in the volume (i.e. the rel-
ative helicity in the corona). Once a threshold in this ratio
is reached, the magnetic configuration becomes ”prone” to
eruption. There are several studies now on this topic
including Moraitis et al. (2019); Thalmann et al. (2019);
Gupta et al. (2021); Green et al. (2022) that show promise
toward an enhnaced understanding of the eruption process.

Guided by the models discussed in Section 2.2, a MFR
is susceptible to the torus instability if the overlying, strap-
ping field decreases sufficiently rapidly. This has been
parameterized either in terms of the decay index itself, or
as the height at which a critical decay index is reached
(Liu, 2008; Wang et al., 2017; Baumgartner et al., 2018;
James et al., 2022). An extension of this is the rm parameter,
characterizing ratio of twist to overlying field, proposed by
Lin et al. (2020), and its extensions, namly the r- and
q-schemes (Lin et al., 2021). In the breakout model of
Antiochos et al. (1999), magnetic reconnection occurs at
a null point present in the external, overlying coronal field,
allowing an SMA to erupt. The existence of coronal null
points as compared to the occurrence of eruptions was
considered by Ugarte-Urra et al. (2007). Finally, for an
eruption to develop into a full-blown CME, as compared
to a failed eruption, it may be that access to open flux is
necessary, as considered by DeRosa and Barnes (2018).
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Further exploration of CME initiation models using
magnetofrictional and magnetohydrodynamic approaches
has recently been carried out by the NASA Living with a
Star Focused Science Team and is detailed in the review
by Linton et al. (2023). The team investigates the roles that
magnetic helicity and topology play in CME initiation via
shearing, MFR formation and magnetic flux emergence.
One of their main findings is that an ideal instability is
not necessary for CME onset: fast flare reconnection,
where the current sheet is formed due to breakout recon-
nection, could well be the driver mechanism responsible.

There are also ongoing efforts aiming toward an
unambiguous identification of short-term observational
eruption precursors. This search is mainly beyond the
optical wavelengths of photospheric observations and
involves EUV and soft X-ray parameters and proxies, as
discussed 2.4 below.

2.4. Precursors of eruptive activity

The difference between an eruption predictor and a
short-term eruption precursor is that the former can have
a predictive effect of several hours, or even days, whereas
the latter hints of an upcoming event within tens of minutes
to a few hours. Given that the characteristic flows and
respective timescales in the photosphere are much slower
than those of the overlying corona, mainly due to photo-
spheric line-tying and Alfvén time differences because of
different Alfvén speeds between the photosphere and the
corona, photospheric parameters are expected to be less
effective in indicating an imminent eruption. In the corona,
on the other hand, a number of effects have been proposed,
even though virtually none unambiguously. Ambiguity
stems from the fact that while proposed precursors seem-
ingly occur before eruptions, they cannot be readily ruled
out in quiescent intervals, lacking an eruption.

One of the safest precursors of a CME ascending in the
corona, before it appears in the coronagraph field of view,
is the transient coronal dimmings. Coronal dimmings are
temporary regions of strongly reduced emission in soft
X-rays and extreme-ultraviolet (EUV) wavelengths caused
by expansion and evacuation of plasma associated with
CMEs (e.g., Hudson et al., 1996; Thompson et al., 1997;
Aschwanden et al., 2009; Tian et al., 2012). They resemble
the evolution of the early CME propagation in the low
corona and it was shown that characteristic properties
derived from their analysis can yield useful information
(e.g., Thompson et al., 2000; Harrison and Lyons, 2000;
Zhukov and Auchère, 2004; Mason et al., 2016). For exam-
ple, Dissauer et al. (2019) recently found strong correla-
tions between dimming coverage and intensity with the
resulting CME’s mass, as well as strong correlations
between the dimming dynamics and the resulting CME’s
speed. For flares, this is less straightforward (see, however
Chen et al., 2019, for some potentially interesting results,
that are subject to further evaluation).
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Very recently, a large database of parameters based on
8.5 years of AIA images (specifically timeseries cut-outs
centered on HMI-defined HARPs; Dissauer et al., 2023)
were constructed and tested in the context of identifying
pre-flare signatures (Leka et al., 2023). Employing discrim-
inant analysis, statistical evidence showed that flare-
imminent regions were brighter in E/UV images (the ‘‘big
region” effect) but also that small-scale intense brightenings
were frequently present in the hours prior to solar flares.

Several observations of eruptions that are preceded by
weak transient brightenings at the active region’s core
(e.g. Moore et al., 2001; Chen et al., 2016; Xue et al.,
2017) have been interpreted in terms of magnetic reconnec-
tion between sheared loops in the active region’s core that
creates a flux rope which subsequently erupts (Mikic and
Linker, 1994; Jacobs et al., 2006). Events occurring in mul-
tipolar magnetic configurations (e.g. Ugarte-Urra et al.,
2007) or involving precursor transient brightenings appear-
ing away from the central PIL (e.g. Sterling and Moore,
2004) have been interpreted in terms of the expansion of
a sheared arcade which erupts after it disrupts the overlying
magnetic field by reconnection at a null point (e.g.
Antiochos et al., 1999; Lynch et al., 2008).

The existence of active region flux ropes is based on sev-
eral lines of observational evidence: (1) filaments showing
winding threads (e.g. Xue et al., 2016) or destabilizing to
straightforwardly connect to eruptive flares (Sinha et al.,
2019); (2) soft X-ray sigmoids whose middle part crosses
the PIL in the inverse direction (Green and Kliem, 2009;
Green et al., 2011) or whose apparent end-to-end twist is
very strong (Kliem et al., 2021); (3) flux-rope-like coherent
hot channels or hot blobs that appear in EUV passbands

(94 and 131 �A) that probe hot (�10 MK) flare plasmas,
but not in passbands that probe cooler (< 2 MK), quiet
coronal plasmas (e.g. Cheng et al., 2011; Cheng et al.,
2012; Cheng et al., 2014; Cheng et al., 2014; Cheng et al.,
2014; Zhang et al., 2012; Patsourakos et al., 2013;
Nindos et al., 2015; Nindos et al., 2020; Wang et al.,
2019; Yan et al., 2021). Most observations of hot channels
reveal that the flux rope forms a few minutes (e.g. Zhang
et al., 2012; Cheng et al., 2013; Cheng et al., 2015) to sev-
eral hours (up to more than 11) prior to the eruption (e.g.]
Patsourakos et al., 2013, Cheng et al., 2014b, James et al.,
2018, Nindos et al., 2008 although formations during erup
tions have also been reported (e.g. Song et al., 2014).
Patsourakos et al. (2020) provides a list of observational sig
natures of pre-eruptive SMAs and MFRs, but in most
cases it is difficult to identify the pre-eruptive configuration
as purely consisting of a SMA or a MFR.

As explained, photospheric magnetograms contain
direct information on the morphology of an active region
and, indirectly through magnetic field modeling, on the
amount of energy that is progressively stored before being
released during a flare. However, such measures have lim-
ited bearing on the physical processes that happen before
the eruption onset. An interesting finding was reported
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recently by Liu et al. (2023), in which the local average
twist parameter around the PIL showed consistent decrease
in magnitude < 10 hours prior to eruptive flares, followed
by an almost step-change increase immediately (1 - 2 h)
thereafter. Importantly, no such behavior is seen in con-
fined flares. While potentially hard to decipher on a case-
by-case basis, this pattern warrants further investigation,
both physical and operational, and might lead to a poten-
tially viable precursor of impending eruptive flares.

Thermodynamic processes, such as changes in the tem-
perature and density profiles of the plasma in the active
region that produces the flare, are also among the phenom-
ena that precede the onset of an event. Hence, considera-
tion of changes in the thermodynamic environment could
potentially boost the performance of flare prediction algo-
rithms. Such improved predictive capability is particularly
crucial in the case of near-realtime flare forecasting, where
the predictive window is only a few tens of minutes and the
prediction of both the size of the flare and its time of onset,
need to be precise to the extent possible. In this respect, dif-
ferent solar data, such as EUV observations and active
region emission spectra have been used in recent
approaches by Nishizuka et al. (2017) and Panos and
Kleint (2020), respectively.

The thermodynamic state of solar active region plasma
is manifested in the intensity of spectral lines emitted by
specific atomic species, each of which is formed over a rel-
atively narrow range of temperature. Thus, thermody-
namic changes can be detected through variations of
multi-spectral data such as those registered by the Atmo-
spheric Imaging Assembly on board the Solar Dynamics
Observatory (SDO/AIA; Lemen et al., 2012), which has
provided full–disk images of the Sun in seven different
EUV wavelengths every 12 s since its launch in 2010. The
intensity measured in each AIA channel (I i; i ¼ 1; . . . ; 7)
is related to the Differential Emission Measure (DEM;
Phillips et al., 2008) by the linear transformation

I iðx; y; tÞ ¼
Z

DEMðx; y; T; tÞGiðT ÞdT ; ð1Þ

where ðx; yÞ are the coordinates of a specific pixel in the
image plane, t is time, T is the temperature, and Gi is the
temperature response function of the i-th AIA channel
(although typically, six AIA channels are used, excluding

the 304 �A one). Thermodynamic changes in the plasma
state (and, hence, the DEM) produce variations of the
intensities of each AIA channel, per Eq. 1.

A potentially promising approach for near-realtime
solar flare prediction stems from Section 5 of Massa and
Emslie (2022): from a datacube of AIA images this study
produces a datacube of DEM inferences that can more
effectively (using less space) reveal features in frequency
space (e.g., changes in the characteristic size of objects in
the field of view) that would be less straightforward to
identify using spatial images. ML methods could play a
meaningful role in this case. Another effort that uses
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DEM for short-term flare predictions is that of
Gontikakis et al. (2020) who use statistical methods to
quantify the apparent increase of the DEM prior to a
major flare (Syntelis et al., 2016; Fletcher et al., 2011).

There are also multiple reports that radio observations
may show a potential to identify possible precursors of
eruptive activity (e.g. see the reviews by Klein et al.,
2018; Vourlidas et al., 2020; Klein, 2021a, 2021b). This is
because the most important drivers of space weather,
CMEs and flares, produce radio emission (e.g. see
Nindos et al., 2008, and references therein) in a frequency
range from tens of kHz (in the vicinity of Earth) to hun-
dreds of GHz (in the chromosphere).

Radio observations helped establish the picture that, in
gradual SEP events with energies ranging from a few hun-
dred keV to several tens of MeV, particles are primarily
accelerated by CME-driven shocks traced by type II bursts
(e.g. see Gopalswamy, 2022, and references therein). At
higher energies (> 1 GeV), the timing of relativistic SEP
events is more consistent with that of type IV bursts (i.e.
radio emission by electrons trapped in large-scale loops)
suggesting that coronal acceleration in the wake of the
CME has a major contribution to the energies of the par-
ticles (Klein, 2021).

Practically all SEP events are associated with type III
bursts generated by beams of electrons along open mag-
netic field lines. Type IIIs occur within minutes from the
impulsive phase of the flare and their use as CME precur-
sors has been questioned (Pohjolainen et al., 434(1),;
Aurass et al., 2013). However, they may provide informa-
tion about the travel path of the energetic particles and
in the case of simple, short events, they may also help in
the identification of the electron acceleration regions. Addi-
tionally, since type III bursts signify the presence of open
magnetic field lines, their existence suggests that SEPs are
possibly released from the solar corona and are injected
into the interplanetary medium. As a result, the timing of
Type III bursts provides an indication of the time the par-
ticles left the Sun.

Overall, identifying solar eruption precursors in multiple
non-optical wavelengths is an ongoing endeavor, and spec-
troscopic data have an important role to play. Expectations
of future EUV specroscopy missions such as the Multi-slit
Solar Explorer (MUSE) mission (De Pontieu et al., 2022),
for example, are such that it will be able to provide bulk
and non-thermal flow maps in entire active regions at
sub-arcsecond spatial scales and cadence of the order 10
s. Such observations should enlighten significantly both
the pre- and post-eruptive states.

3. Prediction of solar flares and eruptions

In Section 1 it was established that different solar ener-
getic events, from flares to CMEs to SEP events, have dif-
ferent spatiotemporal scales of relevance, dictating the
specifics of the different prediction efforts. In this review,
we discuss only prediction efforts relying on properties or



Table 1
A categorization attempt of solar flare prediction methodologies. Only methods that employ exclusively solar features and events are included. There are a
few duplicate references in different sub-categories, in case multiple prediction methods are employed and used in conjunction.

Solar flares

Prediction Method Input Data References (suggested)
Physics-based

Sandpile/Avalanche models Assimilation & synthetic data; GOES X-ray time series Bélanger et al. (2007), Strugarek and Charbonneau
(2014), Morales and Santos (2020), Thibeault et al.
(2022)

Statistical

Fractal/ Multifractal LOS magnetograms; McAteer et al. (2005), McAteer et al. (2010), Conlon
et al. (2010)

Bayesian Poisson probabilities; LOS magnetograms Wheatland (2004), Wheatland (2005), Georgoulis and
Rust (2007), Georgoulis (2012), Kontogiannis et al.
(2017)

Discriminant Analysis LOS magnetograms; SHARP metadata & HARP data
& NOAA/SWPC metadata & GONG Dopplergrams

Leka and Barnes (2003b); Barnes et al. (2007); Leka
et al. (2018); Komm et al. (2011); Welsch et al. (2009);
Barnes and Leka (2006)

Superposed Epoch Analysis LOS magnetograms Mason and Hoeksema (2010), Reinard et al. (2010)
Best fit Sunspot properties, HARP magnetograms, assimilation

& synthetic data from avalanche/ sandpile models
Bélanger et al. (2007), Strugarek and Charbonneau
(2014), Korsós et al. (2015), Korsós et al. (2020),
Morales and Santos (2020), Thibeault et al. (2022)

Decision boundary LOS magnetograms & NOAA/SWPC metadata Huang and Wang (2013)
Poisson Sunspot properties; NOAA/SWPC data; Forecaster in

the loop
Gallagher et al. (2002), Wheatland (2004), Wheatland
(2005), Berghmans et al. (2005), Bloomfield et al.
(2012), Crown (2012), Lee et al. (2012), Devos et al.
(2014), Murray et al. (2017), Kubo et al. (2017),
McCloskey et al. (2018), Falco et al. (2019)

Timeseries/ Evolution HMI magnetograms; SHARP metadata & HARP data
& NOAA/SWPC metadata, NOAA/SWPC metadata;
SHARP metadata & timeseries forest

Muranushi et al. (2015), McCloskey et al. (2018), Leka
et al. (2018), Cinto et al. (2020), Ji et al. (2020) (All
Clear)

Artificial Intelligence

Machine Learning

Supervised LOS magnetograms; LOS magnetograms &
continuum; LOS magnetograms & sunspot properties;
Solar Monitor metadata; SHARP metadata; NOAA/
SWPC metadata; HARP magnetograms; HARP
magnetograms & AIA images; SHARP metadata &
polar HMI magnetograms; IRIS data; LOS
magnetograms & AIA images; SHARP metadata,
HARP magnetograms & computational topology; LOS
magnetograms & sunspot properties

Qahwaji and Colak (2007), Colak and Qahwaji (2009),
Li et al. (2007), Song et al. (2009), Yu et al. (2009),
Yuan et al. (2010), Steward et al. (2011), Steward et al.
(2017), Ahmed et al. (2013), Lee et al. (2013), Bobra
and Couvidat (2015), Boucheron et al. (2015), Al-
Ghraibah et al. (2015), Raboonik et al. (2016),
Nishizuka et al. (2017), Liu et al. (2017), Barnes et al.
(2017), Florios et al. (2018), Campi et al. (2019),
Domijan et al. (2019), Alipour et al. (2019), Cinto et al.
(2020), Deshmukh et al. (2020), Abduallah et al. (2021),
Korsós et al. (2021), Aktukmak et al. (2022), Huwyler
and Melchior (2022), Sinha et al. (2022)

Hybrid (Supervised & Unsupervised) NOAA/SWPC metadata; SHARP metadata; HARP
magnetograms

Li et al. (2011), Benvenuto et al. (2018), Campi et al.
(2019), Deshmukh et al. (2022)

Deep Learning

Video Classification HARP magnetograms Guastavino et al. (2022)
Deep Neural Networks LOS magnetograms; Solar Monitor metadata; HARP

magnetograms & AIA images; Full-disk HMI images;
HARP magnetograms & Intensity; SHARP metadata
timeseries; SWPC GOES timeseries

Huang et al. (2018), Nishizuka et al. (2018), Zheng
et al. (2019), Domijan et al. (2019), Yi et al. (2020),
Nishizuka et al. (2020), Nishizuka et al. (2021), Abed
et al. (2021), Pandey et al. (2021), Pandey et al. (2022),
Chen et al. (2022), Abduallah et al. (2023)

Knowledge-informed Magnetogram Images Li et al. (2022)
DL model fusion HARP magnetograms & SHARP metadata; SHARP &

SMARP metadata; HMI and MDI images
Tang et al. (2021), Sun et al. (2022), Liu et al. (2022)

Long short-term memory network SHARP metadata with or without flare history Liu et al. (2019), Jiao et al. (2020), Wang et al. (2020)
Ensemble

Predictor teams LOS magnetograms Huang et al. (2010)
Combination of probabilistic

predictions from different methods
AR or full-disk probabilities & SWPC flare data; Guerra et al. (2015), Guerra et al. (2020)
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metadata from the photosphere and the lower solar corona
that aim to predict these energetic events before they occur.
Prediction of properties such as arrival time of CMEs and
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their potential geoeffectiveness are considered in the Clus-
ter review of Temmer et al. (2023). In addition, efforts to
predict SEP events in general are discussed in the Cluster



Table 2
Same as Table 1 but for solar flare-related prediction methodologies.

Solar flare-related

Prediction Method Input Data References (suggested)
Statistical

All Clear SHARP metadata Ji et al. (2020)
Flare index SHARP metadata Chen et al. (2021a), Zhang et al. (2022)
GOES X-ray timeseries Solar Monitor metadata features Higgins et al. (2011)
Validation/Evaluation of

Flare Forecasts
Different methods on common data of
operational methods

Barnes et al. (2016)

Leka et al. (2019), Leka et al. (2019), Park et al. (2020)
INCLUDING CORONAL MASS EJECTIONS

Statistical

Discriminant Analysis Filament descriptors; SHARP and
other metadata

Barnes et al. (2017), Lin et al. (2020), Lin et al. (2021)

Best fit LOS magnetograms; sunspot
properties; flare history

Falconer (2001), Falconer et al. (2003), Falconer et al. (2012)

Machine Learning

Supervised Filament descriptors; SHARP and
other metadata

Bobra and Ilonidis (2016), Barnes et al. (2017), Liu et al. (2020)

INCLUDING CMEs AND SEP EVENTS
Statistical

Bayesian LOS magnetograms Anastasiadis et al. (2017), Papaioannou et al. (2022)
Best fit LOS magnetograms; SWPC flare

metadata; CME properties
Falconer et al. (2014), Kahler and Ling (2015), Kahler et al. (2017),
Richardson et al. (2018) (just SEP events)

Timeseries/ Evolution SWPC flare & GOES proton data
(dynamic forecasting)

Kahler and Ling (2015), Paassilta et al. (2023) (just SEP events)

Machine Learning

Supervised SHARP metadata; SMARP metadata;
CME properties; SWPC flare metadata

Inceoglu et al. (2018), Papaioannou et al. (2022), Lavasa et al. (2021),
Kasapis et al. (2022), Torres et al. (2022), Abduallah et al. (2022) (just SEP
events)
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review of Whitman et al. (2022) and are summarized in
Section 3.3.

Here we focus on strategies and methodologies rather
than on each and every one of the prediction methods,
which would be impractical. These methodologies are
broadly categorized into four categories:

� Physics-based, typically involving data-driven models
constructed from first principles or empirically;

� Statistical, comprising different classical methods or
recent variants thereof, aiming to infer a probabilistic
prediction (0 < p < 1) by means of statistical correla-
tions between flaring activity and photospheric
information;

� Artificial Intelligence, comprising both ML and DL
methods. ML implementations include in principle
supervised (where input data is labeled, e.g., flaring or
not flaring), unsupervised (where input data is not
labeled) and hybrid methods. To our best understand-
ing, there are currently no purely unsupervised ML
methods applied to the prediction of space weather
events. DL methods are typically based on artificial neu-
ral networks. In the case of AI strategies, the result is
often binary, i.e., 1 (YES) or 0 (NO), besides the typical
probabilistic predictions;

� Ensemble, involving the combination of different predic-
tions or predictors. Two type of ensemble predictions
can be made: single-model or multi-model ensembles.
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The majority of these methodologies include data or
metadata with a physical standing, constructed from first
principles.

A reasonable attempt to put together all these methods
under the above categorization is presented in Tables 1 and
2. Table 1 covers methodologies for solar flare prediction
alone, while Table 2 covers flare-related prediction method-
ologies, including methodologies for CMEs and SEP
events.
3.1. Solar flares

Solar flare prediction is humanity’s first attempt to pre-
dict the adverse space weather. Hence, the larger number of
works in Table 1 compared to Table 2 reflects efforts to
predict flares in general, without distinguishing between
confined and eruptive events. Flare prediction efforts are
mostly probabilistic for the occurrence of a flare of certain
class or above over a certain period of time. Forecast win-
dows vary between a few hours (i.e., 6) and a few days (i.e.,
typically up to 3), although uncertainties increase toward
both ends. At shorter forecast windows, uncertainties are
due to the inherent stochasticity of the flare phenomenon
(e.g., Lu and Hamilton, 1991; Vlahos et al., 1995; Vlahos
and Georgoulis, 2004), owning to the unobservable spatial
scales at which a flare starts. At longer forecast windows,
uncertainties occur because this time span is significantly
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longer than characteristic timescales of the magnetic flux
evolution in active regions, that vary in the range of 10 –
20 h. This is the typical timescale of evolution within a
30 Mm supergranule (supergranules are viewed as the
building blocks of active regions; Bumba and Howard,
1965; van Driel-Gesztelyi and Green, 2015) under nominal
photospheric flows of the order 0.5 – 1 km/s.

Flares are nominally predicted for GOES classes C1.0
and above. Classes M1.0 and above are often characterized
as major flares, while X5.0 and above (X5+) are known as
great flares (Zirin and Liggett, 1987; Wang et al., 2006).
Flares closer to C1.0 have much better statistics (several
thousand over a typical solar cycle) but their occurrence
frequencies tend to be suppressed in periods of moderate
and high activity, when the GOES soft X-ray background
can routinely exceed C1.0 level (10�6 W =m2). Flares above
X5.0 occur a few times (up to a few tens, at most) in a typ-
ical solar cycle. The relatively weak solar cycle 24 produced
just five X5+ flares; cycle 23 before it produced 18. These
(un) characteristically poor statistics place X5+ flares into
the ‘‘black swan” category, for which methodologies such
as the extreme value theory (Griffiths et al., 2022) could
be a possibility.

The general methodological categories that apply to
flare prediction can be divided into further sub-categories
(i.e., Table 1). Physics-based methods are relatively unex-
plored, with the majority concentrated in exploring two-
dimensional avalanche models (e.g., Morales and Santos,
2020; Bélanger et al., 2007; Abramenko et al., 2003). How-
ever, only the methods listed in Table 1 have been properly
applied to observational data, resulting in predictions. On
the other hand, for statistical methods, there are (roughly
in terms of numbers of published papers):

� Poisson probabilities, applied to sunspot properties and
data that may be coming from lookup tables (e.g. histor-
ical flaring rates) and forecasters in the loop (in a pass-
ing comment, see the seminal work of Rosner and
Vaiana, 1978, on the potential origin of flares and
their statistical properties);

� Curve fitting (best fit), applied to metadata properties,
magnetogram- or synthetic-data-extracted parameters.
In this category we have included methods dealing with
synthetic data and stochastic self-organized critical
(sandpile) models;

� Fractal and multifractal methods, in which the spatial
and/or temporal scaling behavior of the photospheric
normal-to-surface (or LOS, alternatively) magnetic field
component is typically exploited;

� Bayesian methods, in which Bayes theorem, or a simpli-
fication thereof, such as Laplace’s rule of succession for
threshold-dependent probabilistic forecasting, are
applied to either Poisson probabilities of flares or to
metadata from LOS (or vector, possibly)
magnetograms;
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� Discriminant analysis, either linear or nonlinear, that is
applied to magnetograms, metadata thereof, or the
SWPC Solar Region Summary (SRS) metadata;

� Decision boundaries, that relies on a decision tree algo-
rithm and can have both classical and ML variants;

� Superposed epoch analysis, applied to photospheric
metadata, in one case referring to local helioseismology
results;

� Timeseries and evolution properties, studied on magne-
tograms, metadata thereof and SWPC metadata, most
notably the GOES soft X-ray timeseries.

The above methods typically apply to active-region
data, facilitated by either the SHARP or the more recent
(but corresponding mostly to solar cycle 23) SMARP data
product. There are methods (particularly those employing
GOES X-ray data), that refer to the entire Sun. Transform-
ing active-region based predictions to full-Sun (i.e., full-
disk) predictions is a mathematically straightforward –
but often marginal in practice – problem due to the prop-
agation of various applicable uncertainties in the local (ac-
tive region-scale) probabilities. ML methodologies have
also been applied to this problem (Pandey et al., 2022).

Methods that employ ML techniques can be classified in
the following sub-categories:

� Supervised methods, that clearly take the lion’s share in
ML solar flare prediction. They apply to virtually every
data or metadata available and often show promise over
traditional statistical methods, although this still has to
be determined robustly (see Section 4.2).

� Hybrid methods, that employ both supervised and unsu-
pervised methodologies, the former typically for testing
and the latter for training. This is a potentially appealing
variant of ML methods and a number of research
groups are experimenting on it.

We have not been able to find works that rely purely on
unsupervised ML methodologies.

For DL methodologies, most works employ the breadth
of the diverse types of deep neural networks. DL method-
ologies can also be implemented via long short-term mem-
ory (LSTM) networks, and these are also involved in
methods pursuing a fusion of models, in which multiple
DL models are combined in architectures of varying com-
plexity. In one case (Liu et al., 2019), external knowledge in
the form of prior flare history is infused into the DL
method to provide a so-called knowledge-informed deep
neural network for flare forecasting. In a recent study
(Abduallah et al., 2023), different prediction windows are
tested on a set of different flare thresholds with encouraging
results, by applying a transformer-based network to
SHARP metadata timeseries.

Ensemble methods for flares are believed to be capable
of improving the accuracy of predictions, at the same time
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providing applicable uncertainties (Knipp, 2016; Murray,
2018; Guerra et al., 2020). Multi-model methods typically
combine probabilities from various other methods, statisti-
cal and/or ML, to achieve a more robust and better-
constrained overall probability. Single-model methods cre-
ate ensemble predictions by either perturbation of the input
data or by combination of multiple predictors (i.e., multi-
ple linear regression). Despite their potential, some ensem-
ble methods for flare forecasting are yet to transition into
operational environments. However, community-driven
initiatives such as the Flare Scoreboard at the CCMC (Sec-
tion 4.3) provide an excellent platform for further develop-
ment, testing, and validation of these ensembles techniques.

We note that there is a handful of works that do not
focus on single flare prediction of a given GOES class
but, rather, on related tasks; these can be

� the All-Clear problem for solar flares, which is still a
challenge to tackle (see Section 5.1);

� the flare index (Abramenko, 2005), that provides the
cumulative flare productivity of a given active region;
and

� the NOAA GOES X-ray timeseries (Muranushi et al.,
2015), that can be then examined to detect whether a
flare of interest is projected in the future.

Finally, of all flare prediction methods listed in Table 1,
those that appear to be currently operational, namely, to
produce forecasts in near-realtime and at regular intervals
with no missing forecasts, are those validated in conjunc-
tion by Leka et al. 2019a, 2019b and Park et al. (2020).
We briefly discuss the outcome of these validation efforts
in Section 4.2.

In an important cautionary note, flare prediction meth-
ods applied to multi-year data should be aware of, and act
on, the recent calibration note issued by NOAA (Machol
et al., 2022), applicable to earlier GOES X-ray Sensor
(XRS) data between GOES-1 and GOES-15. This is a sig-

nificant correction as the 1–8 �A soft X-ray fluxes should be
divided by a factor of 0.7. This means, for example, that a
GOES-1/-15 M1.0 flare should actually be treated as a
M1.4 flare, or that a respective M5.0 flare should be treated
as a M7.1 one.

To our understanding, NOAA itself has started re-
calibrating the data, but it is important that any prediction
study uses a versioning method indicating the data was
accessed or whether the correction presented in Machol
et al. (2022) has been applied. Versioning will facilitate
reproducibility of results, although it is understood that
some efforts will suffer a bias if training or testing relies
on uncorrected data.
3.2. Eruptive flares: coronal mass ejections

A dominant majority of the prediction efforts pursues
CME kinematic properties such as the time-of-arrival
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problem and the CME geoeffectiveness. These works have
been captured in the Cluster review by Temmer et al.
(2023). A smaller amount of works aim at predicting erup-
tive flares the same way as flares in general, namely, before
they occur. Only a few methods that use statistical and ML
methodologies for CME prediction have been published.
DL has not been explored for this problem yet. Here, we
briefly discuss the main methods that have been imple-
mented in this direction.

In Statistical Methods, the curve fitting works of
Falconer et al. (2002) were the first to provide quantitative
forecast information on eruptive flares. This method
employs the same photospheric parameter (and flare his-
tory) as for ordinary flare prediction. The most recent
version of this method, MAG4/MagPy, has also been used
for SEP event forecasting on top of flares and CMEs, as
discussed in Section 4.3 – see also Whitman et al. (2022).

In ML methods, we were able to identify a handful or so
works that deal with supervised methodologies. Some
methods that also pertain to CME prediction are included
in the last section of Table 2 (namely, by Anastasiadis
et al., 2017; Inceoglu et al., 2018; Papaioannou et al.,
2022) because this part is intended to include methods
either considering all eruptive manifestations or focusing
specifically on SEP events. For the CME prediction, super-
vised ML methods use mainly SHARP metadata as input,
with exceptions using other metadata. Indeed, works such
as Kontogiannis et al. (2019) and Murray et al. (2018) have
shown that some parameters not included in the SHARP
list, and more importantly their time variation, might pro-
vide more relevant information for the AR CME
prediction.

3.3. Solar energetic particle events

3.3.1. Prediction before occurrence

Table 2 includes two types of SEP event prediction
methods acting before the eruptions happen: those that
include all eruption manifestations (flares, CMEs and
SEP events) and those that focus only on SEP events and
are indicated by the note ‘‘(just SEP events)”, following
each relevant reference.

Methods concerned with all eruption manifestations
involve both statistical and ML components. In the statis-
tical methodology class, Bayesian and best-fit methods rely
on LOS magnetograms and metadata thereof, either from
MDI or from HMI magnetograms. SWPC SRS flare meta-
data and potential CME properties are used in few models
that are only concerned with SEP event forecasting, namely
those by Kahler et al. (2015) and Richardson et al. (2018).
In one particular case, a so-called ‘‘dynamic” SEP forecast-
ing is attempted, in which the model keeps track of the
evolving situation in the Sun and continuously updates
the SEP event probabilities. In other solar eruption fore-
casting methodologies, this strategy is similar to a
prediction-update rate that is significantly shorter than
the prediction window.
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In ML methodologies, we find only supervised methods
that work with SHARP or SMARP metadata as input, as
well as with metadata reflecting the CME properties. Few
approaches in this category (Lavasa et al., 2021; Kasapis
et al., 2022; Torres et al., 2022) focus only on the prediction
of SEP events from photopsheric data without considering
any CME information.

3.3.2. General prediction – a summary of Whitman et al.

(2022)

The prediction of SEP events involves the monitoring or
forecasting of a complex, intertwined sequence of phenom-
ena that include, besides eruptive flares and CMEs, the
suprathermal ”seed” particle population near the Sun, the
state of the solar wind and magnetic structures present
within it that determine the magnetic connectivity and par-
ticle transport in the inner heliosphere.

The intensity of SEP events correlates with the associ-
ated soft X-ray flare characteristics and speed of the
CME (Kahler et al., 1984; Cane et al., 2010), with stronger
flares and faster CMEs more likely to produce a strong,
energetic proton event. The development and intensity of
SEP events is influenced by the magnetic connectivity to
the particle source with western-located active regions
more likely to result in an event at Earth (Cane and
Lario, 2006; Richardson et al., 2014). Type II and III radio
bursts are strongly correlated with the occurrence of SEP
events (Laurenza et al., 2009; Richardson et al., 2014)
and the arrival of energetic electrons at Earth are known
precursors of energetic protons (Posner, 2007). While there
are strong associations between solar phenomena and SEP
event characteristics, individual SEP events vary widely
and the occurrence of a strong flare or fast CME does
not guarantee that a SEP event will be observed.
Papaioannou et al. (2016) found that out of 20,429 flares
PC1.0 over three solar cycles, 955 of which were reliably
paired with CMEs, only 314 were associated with solar par-
ticle events at geospace at proton energies of 7 MeV. There
remains significant difficulty in predicting SEP characteris-
tics on an event-by-event basis which can be attributed to
the complexity of the system that produces them and the
rarity of the phenomena. The latter, naturally, gives
ground to a significant imbalance in the datasets used for
the prediction of SEP events.

Whitman et al. (2022) summarized 36 SEP prediction
models that have been developed or are currently under
development in the community. These SEP models employ
assorted approaches and range from statistical to ML mod-
els aiming to produce fast forecasts ahead of the arrival of
SEPs at Earth, instead of computationally intensive
physics-based science models that aim to reproduce the
complete physical picture of particle acceleration and
transport to Earth. An overview of statistical, ML, and
physics-based SEP prediction model approaches is pro-
vided in the introductory material of (Whitman et al.,
2022), while detailed sunmaries of each model appear in
the main text. The SEP models surveyed perform many
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types of predictions, including probability of occurrence,
binary All Clear forecasts, and deterministic values such
as threshold crossing time, peak flux, event fluence, dura-
tion, and time profiles. Due to the large number of phe-
nomena associated with SEP events, models use one or
more of a wide variety of observational inputs, aiming to
capture the dominant drivers of SEP events. These obser-
vations include optical, EUV and X-ray imagery of the
solar photosphere to corona: magnetograms, radio obser-
vations, coronograph images, and in situ electron and pro-
ton measurements (e.g. Posner, 2007; Laurenza et al., 2009;
Marsh et al., 2015; Anastasiadis et al., 2017; Hu et al.,
2017; Papaioannou et al., 2018; Sadykov et al., 2021).

Out of the 36 models, Whitman et al. (2022) identified 12
that operate in near-real time. The transition of a SEP
model to operations requires more than the development
of an accurate prediction algorithm. Models must be able
to run continuously and robustly, ingesting only observa-
tions that are available in near-real time, and produce
forecasts within an actionable, useful time period. Further-
more, validation must demonstrate that predictions satisfy
the user’s needs, e.g., by forecasting quantities and thresh-
old crossings of interest to the end user. The transition
from research to operations (see Sections 4 and 5 below)
involves a substantial effort by both model developers
and end users, as well as by data providers, because the
observational data streams needed to run the models must
be readily and reliably available. To achieve all this, the
various institutions that hold stake in space weather fore-
casting must provide support.

Looking forward, SEP event prediction efforts would
benefit from reductions in forecasting overhead and delays
through minimizing model run times and latency in the
availability of real time measurements. Likewise, continued
development of science models that probe the physics of
SEP event phenomena is important to identify the key
physical parameters that determine the attributes of SEP
events. All efforts would benefit from improved observa-
tions of the Sun and inner heliosphere with better sampling
of the relevant physical systems related to SEPs, including
360 degree views of the Sun in EUV, radio, X-ray, and
magnetograms, coronagraphs at multiple vantage points
that observe lower down in the corona than current
space-based capabilities, and in situ observations of parti-
cles and fields nearer to the Sun and distributed throughout
the inner heliosphere. For a fairly detailed discussion of
these issues, see Sections 5 and 6.

4. A possible framework for solar eruption prediction

methodologies

4.1. Course of action

Given the immense importance different industry sec-
tors, governments, and the scientific community assign to
space weather forecasting, there is a plethora of basic
research works worldwide. A cursory search, say, at the



Fig. 5. A general concept applicable to space weather forecasting, starting with a hypothesis-based idea, or incentive, treated as a theory that needs data,
implementation into a forecast model and a robust verification process, that includes data, model, and performance at different stages (see legend). After
performance verification, a validation (i.e., comparison with similar forecast models relying on the same training and testing data) can be performed.
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NASA Astrophysics Data System (ADS) will show that
articles with the term ‘space weather’ in their abstract were
in single digits in the 1950s and 1960s, double digits in the
1970s and 1980s and then started increasing exponentially
to 3000 papers or more annually by 2020s. Homogenizing
all this information and assimilating it in a way that allows
targeted and traceable progress is a gargantuan task, par-
ticularly in cases where ML/DL methods are involved. This
prompts scientific journals to take steps and issue guideli-
nes for papers involving ML and DL methodologies to fol-
low certain principles and be able to demonstrate tangible
progress over previous works (see, for example Lugaz
et al., 2021).

In the following, we discuss a possible course of action
that could facilitate a practical comparison of the value
of different methods, including the potential progress they
bring. At the core of this proposal lies the classical notion
of a theory, namely, a set of rational ideas or concepts
based on observations, allowing a hypothesis, and leading
to testable predictions. Hypothesizing, for example, that
one or a vector of parameters has predictive value over a
space weather manifestation (flares, CMEs, SEP events,
or all of them) we need to test whether this can be proved
quantitatively. To this purpose, we need a prediction
method of any level of sophistication, as shown heuristi-
cally in Fig. 5.

The forecast model can be anything, virtually, including
ML or DL. The data sets used for training and testing,
however, should be well curated, following the basic prin-
ciples of a benchmark data set. A benchmark dataset is
an integral part of data mining (e.g., Chen et al., 1996;
Roiger, 2017) and is intended for tests and comparisons
between different methods or platforms on the exact same
basis, making sure that they are reproducible, effective
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and efficient. Comparing models on different positive/ neg-
ative event samples or non-benchmarked data sets is, in
fact, of little meaning (see, e.g., Nita et al., 2020, for a
white-paper discussion of this issue). Benchmark data sets
are well understood and tested in terms of the veracity of
their event labels (e.g., flare/ no flare, etc.). Data sets of
eruptive events with varying readiness levels that can be
used as benchmarks have been published for flares
(Barnes et al., 2016; Rotti et al., 2020; Angryk et al.,
2020; Georgoulis et al., 2021, combining SOHO, SDO
and NOAA/GOES databases), CMEs (Robbrecht et al.,
2009; Rodriguez et al., 2022, relying on science-grade
data from SOHO/LASCO and STEREO coronagraphic
observations), and SEP events (Vainio et al., 2013;
Crosby et al., 2015; Papaioannou et al., 2016; Rotti
et al., 2022, relying on the in situ proton detectors
onboard SOHO, ACE, Wind and the NOAA GOES
satellites). In some cases, the event labels are combined
with photospheric metadata parameters allowing methods
to use directly the metadata (Angryk et al., 2020;
Georgoulis et al., 2021), while in others the labels, time
stamps, and photospheric magnetograms are provided for
different methods to process, create their own metadata,
and test predictive skills (Barnes et al., 2016; Leka et al.,
2019). Near-realtime SDO/HMI data have been used for
methods implemented already in, or intended for, opera-
tional settings, while definitive data are used mainly for
testbed purposes and method development.

4.2. Data, model and performance verification

Following the data and the forecast model, the integral
task of verification includes all three different aspects: data,
model, and performance (Fig. 5). Data verification is essen-



Table 3
2� 2 contingency table of a binary forecasting

Observation Totals

YES NO
PREDICTION YES Hits (TP) False Alarms (FP) Predicted

NO Misses (FN) True Negative (TN) Not Predicted

TOTALS Observed Not Observed Grand Total (Ntot)
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tially making sure that one has a statistically significant
benchmark data set to work with, or that the event/ no-
event samples are statistically significant and verified. Suf-
ficient event sample generation is often a hurdle, given
extremely class-imbalanced samples of rare events (e.g.,
X-class flares or SEPs).

Model verification pertains to making sure that the
model works as expected. This generally implies a two-
tier verification, namely, one theoretical and one practical
(e.g., Thacker et al., 2004). In the theoretical aspect, one
confirms that the mathematical background and/or physi-
cal laws used by the model are implemented correctly. In
the practical aspect, one makes sure that the model itself
and its technical and algorithmic implementations are cor-
rect. Van Horn (1971), in an early but meaningful consid-
eration of model verification, listed the following four
steps: (i) participation of domain experts in the formulation
of the forecast model, (ii) testing the goodness of fit of
model predictions by implementing real observations, (iii)
implementation of Turing tests using real and synthetic
data, and (iv) comparison of model results with the ground
truth.

Performance verification examines whether a verified
forecast model trained and tested on a benchmark data
set performs as expected (i.e., it addresses the question
‘‘Does it work?”). It applies invariably to binary (YES/
NO) and probabilistic (0 < p < 1) forecasts (see discussion
in Leka et al. (2019)). To quantify performance verifica-
tion, a central concept is that of the skill score (SS) (e.g.,
Woodcock, 1976; Murphy and Epstein, 1989)

SS ¼ Spred � Sref

Sperfect � Sref

; ð2Þ

where Sxx; xx � fpred; ref ; perfectg is a metric (perceived as
a score) that reflects a property for the actual prediction, a
reference prediction or a perfect prediction, respectively.
Common implementations of score are the mean square
error (MSE) or the root mean square error (RMSE),
among others, between the prediction and the ground
truth, if and when available. A positive skill score
(SS > 0) corresponds to an overall performance across
the set of forecasts being evaluated as better than the set
of reference forecasts. A negative skill score (SS < 0) is per-
formance worse than the reference, and a zero skill score is
performance equal to the reference. Typically, the reference
prediction is a ‘‘naive” or moderately educated one, against
which the prediction method of interest is tested. In the
case of the evaluating scores being the MSE or RMSE,
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SSperfect ¼ 0 (no error), hence a very common form of the
skill score in this case is

SS ¼ 1� Spred

Sref

: ð3Þ

In binary (YES/NO) forecasting and the simplest case of a
two-category prediction (for example, flares of GOES class
M and above vs. flares below GOES M-class or no flares)
one can summarize the prediction outcome by populating
the contingency table (or confusion matrix) of Table 3.
This matrix identifies the possible outcome as hits or true
positives (TP; predicted and observed); false alarms or false
positives (FP; predicted but not observed); misses or false
negatives (FN; not predicted but observed); and true nega-
tives (TN; not predicted and not observed). The sums of the
two rows give the numbers of positive predictions and neg-
ative predictions, respectively, while the sums of the two
columns provide the numbers of positive observations
(event) and negative observations (no event), respectively.
The sum of all entries of the confusion matrix gives the
total number Ntot of times the prediction method was
applied.

The simple matrix of Table 3 gives rise to a wealth of
metrics, such as probabilities of detection and non-
detection, accuracy, false alarm ratio and rate, threat score,
equitable threat score, etc. The reader is referred to the
treatise of Jolliffe and Stephenson (2011) for the various
definitions, as well as to the excellent online resource of
the Joint Working Group on Forecast Verification
Research of the World Climate Research Program, avail-
able at https://www.cawcr.gov.au/projects/verification/
verif_web_page.html. ESA, on the other hand, has issued
a Technical Note on the Common Validation of its Space
Weather Service Network products (Tsagouri et al., 2020).

Let us now describe briefly some notable skill scores and
statistical metrics stemming from Table 3, with particular
applicability to the solar eruption prediction problem:

� The Heidke skill score (HSS; Heidke, 1926), in which the
reference forecast is randomness, i.e. the method is
tested against correct prediction due to random chance.
A convenient form of this skill score is,

HSS ¼ ðTP þ TNÞ � NtotRHSS

Ntotð1� RHSSÞ ; ð4Þ

where,

RHSS ¼ ðTP þ FNÞðTP þ FP Þ þ ðTN þ FNÞðTN þ FP Þ
Ntot

: ð5Þ
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This flows directly from the definition of the skill score
of Eq. 2, where the perfect score (the accuracy
ðTP þ TNÞ=Ntot) is 1, i.e., when the number of true pre-
dictions equals Ntot.

� The Appleman skill score (ApSS; Appleman, 1960), in
which the reference forecast is climatology, i.e. the mean
event rate in the evaluated period. This is expressed as
(Barnes et al., 2016),

RApSS ¼
TNþFP
Ntot

if TP þ FN < TN þ FP

TPþFN
Ntot

if TP þ FN > TN þ FP :

8><
>:

The first form of the reference occurs when the number
of event observations is smaller than the number of no-
event observations (that is a rule in statistically signifi-
cant data sets of rare events), while the second form
occurs in the opposite case. The forecast parameter then
being the accuracy ðTP þ TNÞ=Ntot, the perfect forecast
is, again, 1. Applying Eq. 2, we obtain,

ApSS ¼ ðTP þ TNÞ � NtotRApSS

N totð1� RApSSÞ : ð6Þ

An additional metric, which is not a skill score but a dis-
criminant (known as the Hanssen & Kuipers Discriminant;
Bloomfield et al., 2012; Barnes et al., 2016) and also known
as the True Skill Statistic (TSS), compares the probability
of detection with the probability of false detection, namely
(Bloomfield et al., 2012),

TSS ¼ TP
TP þ FN

� FP
FP þ TN

: ð7Þ

This metric penalizes false detections and is particularly
robust in class-imbalanced samples (Bloomfield et al.,
2012; Ahmadzadeh et al., 2021), which is a valuable trait,
unlike the behavior of HSS and ApSS.

In probabilistic forecasting, besides a forecast probabil-
ity pi; i � f1; . . .Ntotg, one has the ground-truth observa-
tion oi ¼ 1 (event) or oi ¼ 0 (no event). The MSE
between pi and oi provides the Brier Score (BS; Brier,
1950),

BS ¼ 1

Ntot

XNtot

i¼1

ðpi � oiÞ2 : ð8Þ

In case of a perfect probabilistic forecasting, oi ¼ pi and pi
becomes a binary (0/1), rather than a probability. There-
fore, perfect performance means SSperfect ¼ 0 in this frame-
work. The Brier skill Score (BSS) is then,

BSS ¼ 1� BS
BSref

; ð9Þ

in which case the reference is taken as,

BSref ¼ 1

Ntot

XNtot

i¼1

ðpi � �oÞ2 ; ð10Þ
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where �o ¼ PNtot
i¼1oi is the average of the binary event occur-

rences (i.e., the test period’s climatology). In practice, the,
BSS addresses the question of how close the probabilistic
prediction is to a binary prediction, penalizing probabilities
far from 0 or 1, along with erroneous 0 or 1.

While traditionally the flare forecasting research com-
munity has been using skill scores for performance verifica-
tion, in recent years there has been a shift towards other
visual measures more commonly used in operational terres-
trial weather forecasting (Sharpe and Murray, 2017). For
example, probabilistic forecasts allow the construction of
a so-called reliability diagram that correlates the forecast
probabilities f ¼ ff jg with the observed frequencies

o ¼ fojg under a suitable binning j � f1; . . . ;N bing with
Nbin number of bins. Reliability diagrams typically accom-
pany Relative Operating Characteristic (ROC) curves,
plotting probabilities of detection versus probabilities of
false detection by creating different contingency tables
(Table 3) for different probability thresholds. Departures
above the ROC diagonal imply better performance, with
differences at each probability threshold giving the TSS val-
ues as a function of threshold. This is a practical way of
translating a probabilistic forecasting into a threshold-
based binary forecasting. The area under [the ROC] curve
(AUC) also provides a useful measure of success of the pre-
diction, with a perfect prediction giving AUC = 1 and a
perfectly random forecast giving AUC = 0.5 (also implying
TSS = 0). Directly stemming from the AUC is the Gini
coefficient, GC ¼ 2� AUC � 1 that ranges between [-1, 1]
for AUC 2 ½0; 1�. For a purely random forecast of
AUC = 0.5, GC = 0. Negative GC values (AUC < 0:5)
imply a possibility to invert the outputs of the prediction
classifier, gaining forecasting skill in this respect.

There is also a rich statistical background stemming
from the reliability diagram, in which case a perfect prob-
abilistic forecast is achieved when all points fall on the
diagonal. Note that a perfect probabilistic forecast does
not imply a perfect Brier Score (BSS ¼ 1) if points are scat-
tered along the diagonal, as explained before. The classical
skill score of Murphy and Epstein (1989) using MSE or
RMSE as scores can quantify the departure of the proba-
bilistic forecast from the diagonal (SS = 1 in case of perfect
alignment, in spite of BSS – 1).

New evaluation methods can pinpoint performance in a
particular circumstance. For example, flare forecasting
methods routinely fail the ‘‘first flare/ last flare” challenge,
meaning the capability to predict when an evolving active
region will produce its first/ last significant flare. A new
graphics-based metric using radar plots was developed to
elucidate forecasting performance in this context (Park
et al., 2020). Invoking this new evaluation strategy can help
models identify and mitigate a large source of forecast
errors of both types.

Ongoing research on prediction assessment sometimes
adopts the idea that false alarms preceding actual events
may be more tolerable than false alarms occurring amidst
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consecutive non-event days/ periods. On the other hand,
missing isolated events may have a greater impact, or
value, than missing a single specific event that is part of a
chain of consecutive ones (Mylne, 2002). First applications
of value-weighted skill scores for binary prediction of flares
with ML seem to perform better than quality-weighted
approaches, particularly for the forecasting of M- and X-
class flares (Guastavino et al., 2022).
4.3. Ongoing efforts and initiatives

The metrics described in the previous section (along with
many more) have been used widely by the community in
verifying the performance of flare and eruption forecasting
methods, either in pioneering statistical or ML/DL studies
or in collaborative works (Balch, 2008; Crown, 2012;
Bobra and Couvidat, 2015; Barnes et al., 2016; Bobra
and Ilonidis, 2016; Kubo et al., 2017; Sharpe and
Murray, 2017; Leka et al., 2019; Leka et al., 2019; Park
et al., 2020). Some works optimise their forecasts to a par-
ticular metric, and ensemble techniques are particularly
useful in this case to tailor forecast outputs to specific
end-user needs (Guerra et al., 2020). Moving forward,
whatever technique is used, it is crucial for new methods
to be compared and evaluated consistently using the exact
same data sets (including event / no event samples), time
periods, and verification metrics, to maintain a clear view
of the concurrent state-of-the-art (see Section 4.1). Leka
et al. (2019) provided a useful starting point for this by
comparing operational (defined as ‘‘providing a forecast
on a routine, consistent basis using only data available
prior to the issuance time”) flare forecasts for the first time
against a 120-day prior climatological rate. It is clear from
the results of this recent comparison study and other oper-
ational performance evaluations (e.g., Crown, 2012; Devos
et al., 2014; Murray et al., 2017) that the current perfor-
mance of operational methods is sub-optimal, barely out-
performing climatology and requiring a human
‘‘forecaster-in-the-loop” (FITL) to use their expertise to
adjust automated outputs as necessary before issuing fore-
casts intended for end users.

The first systematic comparison of the performance of a
small subset of the methods outlined in Section 3 was
undertaken by Barnes et al. (2016). This study highlighted
the need for the use of consistent data sets in making mean-
ingful comparisons, and demonstrated that, when such
comparisons are made, the variation in the performance
across a wide range of methods is comparatively small; that
is, no one method clearly outperforms the others. The work
identified that a major factor in this is the correlation
among parameters, including ones that are not readily
related in a physical or mathematical sense, such as param-
eters characterizing the strong-gradient PILs and ones
characterizing the coronal magnetic connectivity. These
unexpected correlations likely limit the ability of even
highly sophisticated prediction methods to successfully
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determine when an event (a flare in this case) is likely to
occur.

This initial comparison was expanded upon by Leka
et al. (2019); Leka et al. (2019); Park et al. (2020), who
focused on operational flare forecasting methods. In addi-
tion to comparing the overall performance of a variety of
different methods (Leka et al., 2019), this investigation also
tried to determine the factors that were most important in
determining when a flare is imminent. The findings on
overall performance of the methods were similar to
Barnes et al. (2016), with no method clearly outperforming
the others and, by most metrics, showing moderate positive
skill. Leka et al. (2019) concluded that there was weak evi-
dence to support the idea that including prior flaring his-
tory (persistence) and having a human FITL improved
forecasting performance in comparison with methods that
did not include either. It was also found that, in an opera-
tional setting, the best results are obtained when methods
are not restricted to producing forecasts near disk center
(in the sense that they will not issue forecasts on targets
far from the central solar meridian and closer to the solar
limbs). Park et al. (2020) further identified and quantified
one particular failure mode common to most methods –
the challenges of the first flare and/or last flare. That is,
methods are more likely to miss predicting the first flare
in a sequence of flares and/or give a false alarm for the
interval following the final flare in a sequence when com-
pared with forecasting a flare in the middle of a sequence,
or a flare-quiet time not immediately following a flare.

There is significant pondering in the community over
how method development and comparison could be
streamlined and implemented to work better together to
improve upon the current state-of-the-art. Cinto et al.
(2020) proposed a framework in which flare prediction sys-
tems can be designed, trained, and verified/validated.
Modularity is key to this task, so that it allows different
data and/or models to be digested and processed/tested.
Engell et al. (2017) are implementing the SPRINTS (Space
Radiation Intelligent System) that aims to contribute to
SEP event forecasting starting all the way from the solar
sources, namely going through all the nominal course of
events, from flares, to CMEs to SEP events. The frame-
work works with the MAG4 model of Falconer et al.
(2014) and its MagPy extension. Involving solar sources
is an important course of action, self-consistent and phys-
ically sound that, however, must deal with the immense
span of spatial and temporal scales (Fig. 1) and the lack
of advance warning in flares, contrary to CMEs and SEP
events. Solar-source driven SEP forecast efforts also
include FORSPEF (Forecasting of Solar Particle Events
and Flares; Anastasiadis et al., 2017) and PROSPER
(Probabilistic Solar Particle Event Forecasting;
Papaioannou et al., 2022) that tap into databases and
near-realtime results from flare and CME prediction
metrics from ESA’s A-EFFort (Athens Effective Solar
Flare Forecasting; Georgoulis et al., 2016) and
FLARECAST (Georgoulis et al., 2021). These efforts have



Fig. 6. Two-tier (i.e., Watch and Warning) SEP forecasting concept involving activity sources and repercussions from the Sun’s photosphere to geospace.
Credit: Georgia State University/ Data Mining Lab (DMLab).

Fig. 7. The CCMC Flare Scoreboard frontend from January 13, 2023 at 15:00 UT. Shown are (left) the most important NOAA active regions and average
predicted 24-h full-disk probabilities for flares of GOES classes C, M, and X (the background image is a full-disk solar magnetogram); and (right) detailed
results and progression over the previous 5 days of the tens of operational flare prediction methods included in the Scoreboard and providing their results
on a regular basis.
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both forecasting and nowcasting components when CMEs
are involved. A SEP forecast concept by the Georgia State
University’s Data Mining Lab (DMLab) looks into the
problem of flare/ CME/ SEP event forecasting via a two-
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tier approach (Fig. 6) that accounts for a ”SEP Watch”
module (in case the conditions are ripe for a SEP-bearing
eruption) and an ”SEP Warning” module, indicating that
an eruption is on its way and projecting its repercussions



Fig. 8. A potential logic for predicting All Clear for the full visible solar disk. Variants of this scheme would be either the targeted prediction of the
negative (no event) class at flare or CME level, or the prediction of the positive class (event), with low event forecast probability or NO binary outcome,
implying All Clear. The pyramidal shape implies the degree of rarity from active regions to flares, to fast CMEs to SEP events at a certain heliospheric
location with the given view of the solar disk (nominally geospace). Actions within the dashed box are to be repeated for all solar active regions present in
the visible (nominally earthward) solar hemisphere.
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at geospace. The SEP Warning module incorporates now-
casting information such as flare magnitude, CME speed
and angular width.

NASA’s Community Coordinated Modeling Center
(CCMC) plays an important, grassroots role involving an
as wide as possible part of the global space weather fore-
casting community. Central among CCMC tasks are the
Scoreboard initiatives, aiming to collect all operational
forecasts in a uniform format that, first, allows viewing
of collective near-realtime results and, second, facilitates
seamless validation efforts at suitable times in the future.
Besides providing API access to all different results, the
Scoreboards aim to provide insightful visual information,
also in near-realtime. The first such scoreboard is the Flare
Scoreboard (accessible at https://ccmc.gsfc.nasa.gov/score
boards/flare/ - see also Fig. 7) while soon thereafter the
CME Scoreboard (accessible at https://ccmc.gsfc.nasa.go
v/scoreboards/cme/) and the SEP Scoreboard (accessible
at https://ccmc.gsfc.nasa.gov/scoreboards/sep/) followed.
A very recent development is the planned Interplanetary
Magnetic Field (IMF) Bz Scoreboard that will become
accessible at https://ccmc.gsfc.nasa.gov/scoreboards/imf-b
z/ and will aim to collect results forecasting the geoeffec-
tiveness of CMEs propagating in the inner heliosphere.
There is little doubt that more scoreboards will follow in
the future, fostering improved community efforts in model-
ing and verification.
5. Present challenges and objectives

Here we provide a condensed discussion of the most
important challenges, problems and caveats marring the
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efforts for solar eruption forecasting. For some of them,
proposed or envisioned remedies can be found in Section 6.

5.1. Predicting All Clear

The exact opposite to the prediction of a solar event is
All Clear prediction, namely, when a solar energetic mani-
festation is not predicted to occur. An All Clear prediction
would imply either a binary YES or a high All Clear prob-
ability PAC above a threshold, allowing a sufficiently low
complementary probability for an event. Considering a
solar event category of space-weather interest (flare,
CME, or SEP), All Clear could be the immediate target
of the prediction (see, e.g.,Ji et al., 2020, for flares), in
which case PAC is the main outcome, or it could be a by-
product, where PAC ¼ 1� PFD, when PFD is the full-disk
event probability. In case of different PACi for different solar
sources i � f1; . . . ;Nsourceg, the full-disk All Clear probabil-
ity is aggregated as expected, i.e.,

PAC ¼ 1�
YNsource

i¼1

ð1� PACiÞ : ð11Þ

If the prediction target is PFD, then the aggregated proba-
bility of Eq. (11) applies equivalently for PFDi . This is the
theoretical inference of the probability; in practice, though,
the propagation of uncertainties on these probabilities may
render the scheme of Eq. (11) impractical or infeasible. In
case of binary YES/NO All Clear forecasting, a full-disk
All Clear would be YES if all sources i have a YES All
Clear. The presence of a single NO for a given source i
would imply an overall NO All Clear.
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Fig. 8 provides an abstract visualization of the level of
complexity present in the All Clear problem: if a given
active region on the solar disk has an All Clear in effect
over a certain time interval for flares of a certain size, then
no fast CMEs are expected for this interval and the All
Clear can be propagated all the way to SEP events from
this source, namely PACi ’ 1 (ignoring, in this case, the pos-
sible flare-accelerated SEP events, short-lived and impul-
sive, that would require magnetic connectivity
information to predict (e.g.,Reames, 2015, and references
therein)). If a flare All Clear is not the case, then the target
shifts to whether there is an All Clear for fast CMEs. In
this case (All Clear for fast CMEs), the same PACi ’ 1
could be imposed for SEP events; otherwise, not All Clear
for fast CMEs would imply a not All Clear for SEP events,
too (PACi < 1 or PACi � 1).

In practice, the main goal of an All Clear prediction is to
minimize risk to tolerable levels for the interested stake-
holder. A practical way to achieve this is by minimizing
the number of missed events while keeping the number of
false alarms low. While the objective is the same with that
of the classical problem of event prediction, it may well be
infeasible to present it as the exact reverse problem. The
higher focus on missed events can result in the modification
of the cost function, which is minimized for the forecast.
Because many statistical and ML prediction algorithms
can be fine-tuned relative to a particular cost function,
All Clear prediction may require retraining the entire algo-
rithm from scratch.

The first systematic validation effort of flare prediction
methods, undertaken by Barnes et al. (2016), was originally
intended for an All Clear prediction but there was no con-
sensus on what All Clear should entail, hence the paper was
devoted to validation of flare prediction methods instead.
Investigation of ML capabilities on the flare benchmark
data set of Angryk et al. (2020) demonstrated better perfor-
mance of the Time Series Forest classifier compared to
other ML methods, such as decision trees, logistic regres-
sion, and support vector machines for flare All Clear (Ji
et al., 2020). That model was recently extended to a SEP
All Clear (Ji et al., 2021). Investigation of the potential of
a ML-driven algorithm to predict SEP events over solar
cycle 24 and the corresponding All Clear demonstrated
ability to capture all SEP events using statistical properties
of soft X-rays (Sadykov et al., 2021). However, in this case
the false positive rate reaches about 40% of the true nega-
tive rate (�500 daily false alarms for �1200 non-SEP days
in the test data set). A different approach was followed by
Torres et al. (2022) to predict SEP events from properties
of the preceding CMEs. Investigation of the false predic-
tion cases indicated that some false predictions could be
caused by inaccurate CME records assigned to the SEP
or by the cases representing weak or doubtful SEP events.

The comprehensive Whitman et al. (2022) review of the
SEP prediction models indicated that several other models
could potentially extend their capabilities to the All Clear
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prediction (e.g., Núñez, 23). The SEP Scoreboard (Sec-
tion 4.3) could also contribute meaningfully to this
objective.

Because (i) the missed instances and false alarm
instances are treated unequally in the All Clear prediction
problem, and (ii) the prediction models are often tuned
with respect to specific assessment metrics, dedicated train-
ing and assessment strategies may be required for All Clear
prediction. As an example, the daily probabilistic forecasts
of solar proton events by the SWPC (Bain et al., 2021)
result in satisfactory values of the BSS, TSS or HSS. How-
ever, Sadykov et al. (2021) noted that the same forecasts
had missed 14 of the solar proton events’ 101 days in solar
cycle 24, issuing very low probabilities for these days.
Sometimes there is no possibility to adjust the probabilistic
thresholds of event forecasts for All Clear ones. For the
forecast assessment, Sadykov et al. (2021) proposed the
Weighted True Skill Statistic (WTSS) metric that aims to
achieve an adjustable weighting indicating the ratio of
penalties for missed events and false alarms. Differentiating
between the two, as mentioned above, may spearhead All
Clear prediction efforts.

Summarizing, on the antipodes of event prediction,
practical All Clear forecasting may well require separate
attention. Similar to the event prediction, however, All
Clear periods are subject to the definition and timing prop-
erties initiated by the demand of each particular operator
(see Section 5.4 below). For example, operators interested
in spacecraft charging and human spaceflight safety may
have different requirements for the energies, fluxes, and
All Clear time SEP event windows. With constantly refined
requirements on the detection and impact of solar erup-
tions, operational All Clear becomes crucial and, above
all, it remains a challenge.

5.2. Class imbalance, climatology, timeseries and the like:

hurdles for training and testing

Existing forecast models face serious challenges imped-
ing their performance. These are discussed briefly below,
along with some efforts to address them:

5.2.1. Class imbalance

Increasing sizes of eruption thresholds for forecasting
makes the prediction problem increasingly more class-
imbalanced, given the increasingly dominant negative sam-
ple over the shrinking positive sample. For ML modeling,
this is a major issue to tackle. More specifically, class
imbalance refers to the situation where there is an imbal-
ance (skew) between the number of instances of different
classes. For example, the ratio between the flaring (class
M+) and non-flaring active region samples in the bench-
mark data set of Angryk et al. (2020) is approximately 60:1.

In performance verification, class imbalance invalidates
some well known metrics, such as the accuracy of forecasts
ðTP þ TNÞ=Ntot (Table 3). If the number of true negatives is
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overwhelmingly large (TN ’ Ntot), then accuracy ’ 1,
namely perfect performance that, however, is an artifact
(e.g., Leka et al., 2019). The HSS (Eq. 4) is also biased by
class imbalance, with often unreliable results. This is not
the case with TSS (Eq. 7) that is generally unbiased, which
adds to its appeal for forecasting rare events (Bloomfield
et al., 2012; Ahmadzadeh et al., 2021; Lavasa et al., 2021).
However, care should still be exercised because each minor-
ity class event (or no-event if ‘‘quiet” times are the rare
class) will have increasing influence on the overall TSS value
as the degree of class imbalance grows.

For ML methodologies, class imbalance is also a press-
ing problem that has been thoroughly investigated in the
computer science community (see, e.g., Kubat and
Matwin, 1997; Japkowicz, 2000; He and Garcia, 2009;
Krawczyk, 2016). The space weather forecasting commu-
nity is catching up over recent years, with a number of
treatments discussed in, e.g., flare prediction (see, e.g.,
Ahmadzadeh et al., 2021; Nita et al., 2022; Ahmadzadeh
et al., 2019; Ahmadzadeh et al., 2019), with some poten-
tially promising approaches proposed in general (Chen
et al., 2021b; Ahmadzadeh et al., 2023) and for the predic-
tion of SEP events (see Lavasa et al., 2021, and references
therein). Nonetheless, class imbalance directly affects the
obtained performance of a predictive model (i.e. the false
alarm rate) for SEPs (Stumpo et al., 2021).

Generally there are methods to augment the training
sample via oversampling (i.e., replicating) of the positive
sample, undersampling (i.e., cropping) of the negative sam-
ple, or misclassification weighting, that penalizes with lar-
ger weights the misclassification of the (minority) positive
sample. The latter seems to hold better promise
(Ahmadzadeh et al., 2021). Regardless of the training sam-
ple manipulation, however, the testing sample must be kept
untouched (i.e., class-imbalanced) in any case, as manipu-
lating it totally invalidates the performance verification
process. Manipulating the testing sample is a rather com-
mon mistake in a number of studies.

Another way to overcome the class imbalance is to nat-
urally increase sampling of larger flares by involving longer
periods of time. Many prediction tools rely on availability
of vector magnetograms. The most recent solar cycle 24
was relatively weak with few large flares, though it is the
only solar cycle in which consistent time-sequence vector
magnetograms have been available from SDO/HMI. LOS
magnetograms are available from SOHO/MDI in active
solar cycle 23 with many large flares. Jiang et al. (2023)
developed a new deep learning method to learn from com-
bined LOS magnetograms, Bx and By taken by SDO/HMI
along with H-alpha images, and to generate vector compo-
nents for MDI data. This development has potential to
provide synoptic vector magnetograms covering periods
from 1996 to present.

Finally, it is possible to design algorithms that generate
balanced training sets of active regions accounting for the
flare class rates associated to a specific solar phase
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(Guastavino et al., 2022). The training of ML and DL algo-
rithms based on the exploitation of such sets is primarily
intended for operational settings.

5.2.2. Varying climatology

Predicting solar energetic events via training and testing
on different sub-samples implies that these samples have a
statistical significance appropriate for the performance ver-
ification at hand. To achieve statistical significance, one
uses sizable fractions of the solar cycle for training (on
the order of several months or a few years), and typically
less for testing. However, training on one part of the solar
cycle and testing on another implies that training and test-
ing occur in different climatology conditions, as shown
clearly in Fig. 2 of Leka et al. (2019). In other words, the
mean occurrence frequency of eruption instances changes
significantly, impeding the models that should ideally train
and test on similar climatology conditions. While one
might think of remedies to this problem for proper training
practices (see Section 5.2.4), the data used for performance
verification should be carefully selected in order to
approach the true performance of the method in actual,
near-realtime operational settings.

5.2.3. Temporal coherence

Solar flares and eruptions eruptions occur above a con-
tinuously varying background of solar activity evolving
every magnetic feature in the Sun’s atmosphere at different
timescales. A dominant majority of the eruption prediction
methods of Tables 1 and 2 exercise ‘‘point-in-time” fore-
casting; namely, they collect apparent conditions at a given
instant and translate them into a forecasting over a certain
forecast window. A number of methods, however, indi-
cated separately in Tables 1 and 2, perform their forecasts
using timeseries as input. The part of the timeseries used to
sample the concurrent condition of the system is often
called the observation window. For example, a point-in-
time forecasting takes place at time t0 evaluating the snap-
shot conditions at time K t0 for a prediction window
DT pred with or without latency Dtlat, which specifies in
how much time does the specific forecast become effective
(for Dtlat ¼ 0, it is effective immediately at t0; otherwise, it
becomes effective at t0 þ Dtlat). A timeseries forecasting at
time t0 incorporates information over the time interval
t0 � Dtobs, with Dtobs being the observation window, and
issues a forecast for an interval DT pred, again with or with-
out latency Dtlat.

Timeseries forecasting is challenging particularly in case
the refresh time Dtrefr (i.e., the time until the next applica-
tion of the prediction method) is significantly shorter than
the observation window Dtobs. In this case, the timeseries
used to assess the conditions of the system at times t0
and t0 þ Dtrefr are largely identical. For Dtobs ¼ 12 hours
and Dtrefr ¼ 1 hour, for example, the two timeseries are
identical for Dtobs � Dtrefr ¼ 11 hours or �92% of their
length. While this may secure continuity and constrain
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erratic behavior in the forecasts, it is problematic for events
(e.g., flares) that have typical timescales < Dtrefr, let alone
the observation window. In this case, regardless of the fore-
cast method, the forecasts will not change. Ahmadzadeh
et al. (2021) have shown that this practice incurs an artifi-
cial clustering in the predictive parameter space (Fig. 3 of
that work) that may well mislead the prediction method.
Furthermore, complications can arise in verification of
forecast systems that have refresh time scales shorter than
their forecast windows because each resulting forecast is
not independent (a key tenet to many of the verification
metrics and skill scores). Note that this is not unique to
timeseries forecasting and applies equally to ‘‘point-in-
time” forecasting as well.

Again, some potential remedies are discussed in Sec-
tion 5.2.4 but this is a problem that needs to be tackled
in a systematic way. This is yet to be achieved decisively.

5.2.4. Proper training and testing practices

Performance verification of models, assuming that data
and model verification are complete (Fig. 5), is the last and
arguably most important part of the decision process on
whether a given prediction method should be transitioning
to operations.

The choice of proper verification metrics is crucial, as
explained in the previous sections. Even with the right met-
rics in place, however, one should make sure that training
and testing abide by certain standards; otherwise, the val-
ues of these metrics may be misleading.

First and foremost, there should be no overlapping
between training and testing samples. A method cannot
test on a sub-sample on which it has been trained on previ-
ously. This has led to some superficially high performance
verification metrics in the literature, particularly in case
ML methods are involved, because in this case the method
does not learn; it simply memorizes. Transitioning such a
trained method to operations will lead to very different
results when enough near real-time forecasts will be col-
lected to enable the first operational verification.

The process of randomizing the training and testing
samples at different times is risky, too. For example, having
a series of data from an active region (magnetograms,
EUV/X-ray images) and using different days (24-h blocks)
of the same active region for training and testing will also
very likely result in memorizing. In the series of studies
on which validation of operational flare forecasting meth-
ods was performed (Barnes et al., 2016; Leka et al.,
2019a, 2019b; Park et al., 2020) different time intervals
and event/no-event instances were implemented, similarly
for all methods. Campi et al. (2019) further showed the
impact of artificially leveraging the training process by
training and testing on samples of different active regions
(or HARP series) to show that verification results are more
realistic (lower) in this case compared to when different
time intervals of the same active regions are used. Solar
flare and eruption prediction focusing on active regions
facilitates this practice given the different NOAA or HARP
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numbers, although this is harder for HARPs as the near-
realtime (NRT) data product does not guarantee fixed
HARP numbers.

In case of multiparametric prediction, statistical or ML
regardless, it is meaningful to ensure that the different
indices highlight complementary, rather than similar,
insight of the training subject. In Barnes et al. (2016), for
example, it was shown that different metrics from the vali-
dated methods were highly correlating with each other,
some with correlation coefficients in excess of 0.9. Selecting
which parameters to use in a prediction method is an impor-
tant task that relies both on physical understanding of these
parameters and on numerical testing with the method(s) of
choice. It has been shown using multi-variable discriminant
analysis (Leka and Barnes, 2007) and by feature ranking in
several supervised ML cases (e.g., Bobra and Couvidat,
2015; Florios et al., 2018; Campi et al., 2019) that the values
of performance verification metrics tend to saturate after
more than a handful, or up to �10, predictive parameters
are used. In today’s capabilities of scores of predictive
parameters (the FLARECAST project made available 209
of them, for example, at different cadences), this feature
ranking should be performed systematically and compre-
hensively. This is also a question of the event definition
(or the prediction method per se), as there are cases (e.g.,
Campi et al., 2019) in which feature ranking for different
event definitions (i.e., different flare classes) is significantly
different. One needs a sufficient number of parameters to
identify patterns, find the few most consistent ones and
use them with the method of choice thereafter. To our
knowledge, this task is yet to be performed but can lead
to a valuable physical interpretation, particularly in case
of ML models (see Section 5.5 for further discussion).

The interplay between training and testing in supervised
methods can be systematically addressed by introducing
score-oriented loss (SOL) functions (Marchetti et al.,
2022). From a formal viewpoint, these functions can be
designed by using probabilistic confusion matrices and
can be applied in the training phase of ML and DL algo-
rithms to automatically and a priori maximize specific skill
scores.

Concluding, the training of ML methods, in particular,
entails a number of important tasks and challenges. While
a detailed discussion lies beyond the scope of the current
review, several works included in Tables 1 2 cite the impor-
tance of correctly tuning hyper-parameters used in the pre-
diction schemes. This could conceivably help both physical
understanding (as tuning may rely on important physics of
the problem at hand) and operational efficiency, in case
physics-inspired tuning leads to an improved or optimized
performance.

5.3. Missing data and ’photospheric-only’ forecasts

Photospheric magnetic fields are inferred from polarized
light, and are influenced by numerous radiative transfer
effects and assumptions applied during the data reduction.
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For LOS magnetographs, such as the MDI onboard SOHO
and the HMI line-of-sight data products, the LOS compo-
nent increasingly deviates from the radial component, espe-
cially in very inclined regions such as sunspot penumbrae
(Leka et al., 2017). Obvious problems become visible at
40o – 45o EW in central meridian distance, as the
cosðhÞcosð/Þ correction factor from LOS to the local radial
direction under the assumption that all fields are radially
directed (h;/ being the central meridian distance and helio-
graphic latitude, respectively), is significant. Some conser-
vative approaches (e.g., Falconer et al., 2006) limit
analysis to within 	30o from central meridian. Other meth-
ods that employ LOS magnetic fields utilize different
approaches that do not make the radial-field assumption,
in order to mitigate the projection effects (Leka et al., 2018).

For vector magnetographs, such as HMI onboard SDO,
the situation is somewhat less adverse as one can deproject
the full magnetic field vector to that of the heliographic ref-
erence system (Gary and Hagyard, 1990; Thompson, 2006)
once the inherent 180
 ambiguity has been resolved
(Hoeksema et al., 2014). Even in this case, though,
second-order curvature and foreshortening effects appear
after 50o – 55o, inhibiting the diagnostic capability of these
magnetograms (see, for example, Section 3.2 of Gary and
Hagyard, 1990). The HMI data become hardly usable after
70o EW, as explained by Bobra and Couvidat (2015) (Sec-
tion 2.1) – see also Falconer et al. (2016). Given that an
active region stays on the visible solar disk for approxi-
mately 14 days rotating a typical � 14o per day, approxi-
mately 22% of this time (or � 3 days) the active region
magnetograms are totally inaccessible. One should add to
this another 3 days when the active region will be in the
50o – 70o EW zone to realize that approximately 43% of
the time the active region rotates in the earthward solar
hemisphere, its magnetograms are either compromised or
simply non-existent. Numerous major flares and eruptions
have occurred when their source active regions were on or
close to the limbs, or ever slightly beyond them to the Sun’s
farside. Among them, the strongest flare of the space age
(or since the start of the NOAA records) of GOES class
X28 on October 28, 2003 (e.g., Manchester et al., 2004;
Jackson et al., 2006), the September 10, 2017 GOES X8.2
flare (e.g., Yang et al., 2017; Yardley et al., 2022), and even
very recently, on January 5, 2023, a flare classified as
GOES X1.2 observed when its source region (NOAA AR
13182) was partially beyond the eastern limb. We note that
in Park et al. (2020) an example of poor performance of
flare forecasting models is shown for flaring regions near
the limb due to limitations of magnetic field data as model
input. Currently there is no solution to this problem other
than potentially employing proxies from other wavelengths
(Section 2.4) or simply maintaining (i.e., ”freezing”) the
forecasts from before the active region entered the prob-
lematic zone, assuming that it rotates as a solid body, with-
out evolving. This oversimplification does not apply to
active regions rotating from the eastern solar limb; to those
moving toward the western limb, even pure translational
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rotation increases the probability of an acute SEP event.
The solution of continuous, operationally-oriented obser-
vations beyond the Sun-Earth line and even on the farside
of the Sun is discussed in Section 6.2.

In another recent development, the exclusive photo-
spheric nature of predictive parameters due to their reliance
on magnetograms was investigated by Korsós et al. (2020),
who performed potential-field extrapolations above the
photosphere and considered flare prediction on previously
tested parameters (Korsós et al., 2019) at different levels
using the extrapolated fields. They concluded that at alti-
tudes between 1� 1:8Mm above the apparent s ¼ 1 photo-
spheric layer, they could improve the predictions’ lead time
by 2� 8 hours. This is a potentially interesting finding, as
flares and eruptions occur slightly above the photosphere,
and points to a potentially promising combination between
photospheric or extrapolated magnetic field-based meta-
data and proxies from other wavelengths to further boost
predictive capabilities. The use of extrapolated magnetic
field information from higher atmospheric layers in erup-
tion prediction was also explored by Pagano et al.,
(2019a,b). They used a data-driven magnetofrictional
model to calculate a time- and space-dependent eruption
metric which is a combination of the magnetic field config-
uration (i.e. presence and location of magnetic flux ropes)
and the integral of the vertical component of the Lorentz
force acting outwards on the flux ropes as these are respon-
sible for triggering eruption onset. Aiming to adapt their
method to operational CME forecasting, they build on this
metric by including not only observed but projected mag-
netograms as the lower boundary condition in the mag-
netofrictional simulations, to provide a good indication
whether there is the risk of an eruption occurring over
the next 10� 16 hours. Finally, NLFF field extrapolations
of photospheric magnetograms were used by Lin et al.
(2020) to determine the ratio of the magnetic flux associ-
ated with high twist to that of the overlying magnetic flux.
The proposed quantity had limited predictive potential,
since it was also based on information of magnetic ribbons
to constrain the area related to flaring.

Another recent promising development was the advent
of EUV spectroscopic diagnostics, which supply access to
the magnitude of the magnetic field in the corona (e.g. for
an application to EIS/Hinode observations for a small flare,
Landi et al., 2021). Advanced data inversion methods,
benchmarked with sophisticated MHD simulations,
showed that the anticipated uncertainty in the coronal mag-
netic field for strong-field regions (> 250G) from the novel
diagnostic could be around 18% (Martı́nez-Sykora et al.,
2022). Application of these novel diagnostics to observa-
tions should shed light into their predictive capabilities.

5.4. Customizable forecasts for different stakeholder

communities and Research-to-Operations

Following a series of grassroots community meetings, it
became clear that different sectors have different needs and
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hence ‘‘one size does not fit all” in terms of space weather
forecasts. One of the first such meetings took place in 2009
at the premises of NWRA/ CoRA (NorthWest Research
Associates/Colorado Research Associates) in Boulder Col-
orado, USA, shortly after the former NOAA Space Envi-
ronment Center had evolved into the current Space
Weather Prediction Center (SWPC; 2007). The topic of
the workshop was ‘‘Forecasting the All Clear” (Barnes
et al., 2016) and was attended by experts of the aviation
industry and the defense sector, among others. There was
no consensus on what an ‘‘All Clear” means, but it became
clear that different space weather repercussions had differ-
ent weights for each of these sectors, and that there are sec-
tors less resilient (i.e., more vulnerable) to forecast misses
(False Negatives) contrary to others that are less resilient
to false alarms (False Positives; see Table 3). In the course
of the FLARECAST project there were two Stakeholders’
Workshops organized that were hosted by the Met Office,
UK and the European Space Weather Week, respectively
(see Sections 6.2, 6.3 and Appendix B of Georgoulis
et al., 2021). Ground-based, aviation, defense and satellite
industry representatives were present. On top of reiterating
the earlier finding of the 2009 NWRA/CoRA workshop, it
was revealed that different sectors need an actual person to
guide them through the details and, very often, the jargon
of the forecasts. The consensus was that the actual end-
users of the space weather forecasts were professional fore-
casters themselves. The need (and, at certain cases, noted
improvement of forecasts) for human FITL was one of
the conclusions of the Flare Prediction Workshop orga-
nized at Nagoya University, Japan (Leka et al., 2019). It
is worth noting that FITL may apparently limit or restrict
the complete automation of forecasts, unless FITL only
play a role in interpreting the automated forecasts. This
is a topic that remains to be resolved in the future.

Another key finding of the FLARECAST Stakeholders’
Workshops, encapsulated in a FLARECAST user survey
organized by the Met Office, was that the three most signif-
icant factors of successful forecasts, invariably for all sec-
tors, were, in decreasing order of significance: ‘‘timeliness
of data”; ‘‘accuracy”; ‘‘ease of use/ understanding”. Per-
haps not surprisingly, the least important factor out of 11
possibilities, was ‘‘scientific detail”. A rather puzzling find-
ing, possibly due to limited response statistics, was that
‘‘ability to tailor forecasts” scored toward the bottom in
terms of importance. Immediately following the three most
significant factors was ‘‘information on forecast
uncertainty”.

Transforming basic-research solar eruption forecasting
attempts into operational products or services (also known
as Research-to-Operations [R2O]) is a major task that must
be dealt with by the scientific community with the help of
all interested sectors and partners. All the issues discussed
in the previous subsections of Section 5, namely, missing
data and lack of crucial observations, pertain squarely to
this problem. In addition, operational forecasts imply oper-
ational missions, namely, missions that are either devoted
29
to near-realtime data provision (with known caveats, arti-
facts and the higher uncertainty of non-definitive data) or
have solar coverage at suitable spatial resolution and
cadence to be helpful to operations. SOHO and SDO were
flagship missions not a priori devoted to space weather but
effectively serving the need for near-realtime, high-cadence
and constant-quality observations. Parker Solar Probe and
Solar Orbiter are not such missions, even though their data
could crucially help future operational missions. A discus-
sion of future missions and concepts that have a stated
objective to assist in space weather forecasting efforts is
provided for completeness in Appendix A.

Steenburgh et al. (2013) provide a practical guide of the
R2O transition that, besides all of the above factors,
includes a platform hosting one (or more) prediction mod-
els, visualization and specification tools. Visualization
combined with near-realtime coverage allows for expedient
decision-making, while specification tools are used for
inferring eruption (CME, most notably) parameters and
deducing correlations between parameters in near-
realtime. This is another potential significance of FITL in
space weather forecasting. Moreover, Merceret et al.
(2013) describes the R2O transition drawing an analog
from terrestrial weather to space weather, given the
century-long experience and expertise of terrestrial weather
forecasting against the near-infancy stage of space weather
forecasting. Virtually all metrics discussed in Section 4.2
were first established for terrestrial weather forecasting
purposes and extremes thereof. Merceret et al. (2013) also
describes that the transition implements a ‘‘Valley of
Death”, where models that do not survive performance
verification and validation end up. As noted by Merceret
et al. (2013), however, this has been described elsewhere
(Robinson, 2012) as a ‘‘Valley of Opportunity”, given the
new capabilities for improvement via an osmosis of exper-
tise, collaboration and partnership.

The reverse process, known as Operations to Research
(O2R) refers to the benefits of operational results for lead-
ing to an improved physical understanding of the problem
at hand. And then perhaps using this understanding for a
new R2O iteration, more efficient than the previous. This
could potentially optimize the forecasting process and push
the state-of-the-art envelope. The challenge is most promi-
nent in ML and particularly DL applications, whose inter-
pretation is currently an active research task. This topic is
briefly discussed below.

5.5. Understanding: physical interpretation and interpretable

machine learning

A growing, important topic in AI is explainable, inter-
pretable models. For example, the neighboring field of
atmospheric science and weather prediction has seen a
large investment from NSF, under the relatively new vehi-
cle of the NSF AI Institute for Research on Trustworthy
AI in Weather, Climate, and Coastal Oceanography
(AI2ES, https://www.ai2es.org). Nevertheless, a criticism

https://www.ai2es.org
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often encountered in the use of AI for forecasting and,
eventually, decision making, is the opaque, black-box nat-
ure of ML and, in particular, DL models. By relying on
millions of learned parameters, these models offer no phys-
ical intuition on how and why a model gives a certain pre-
diction, or suggests a certain course of action. An
interpretable model is one that is deemed to be human
intelligible. The archetype of interpretability is perhaps lin-
ear regression, where the coefficients associated with each
input feature have a natural interpretation as the relative
importance of these inputs. The more complex a model
becomes, the less interpretable it is, so one is often posed
with a trade-off between interpretability, accuracy, simplic-
ity, and speed (Ivezić et al., 2014). When the number of fea-
tures becomes sufficiently large, or when they are derived in
a data-driven way, possibly as a nonlinear combination of
physical quantities (as is often the case in Generalized Lin-
ear Models), a straightforward interpretation of the model
is often not possible.

One class of interpretable models are decision or classi-
fication trees. Indeed, these can be analyzed in terms of
simple ”if-then” rules and the final outcome can be easily
tracked back in terms of input–output relationships. How-
ever, when decision trees are used in a more performance-
oriented way, possibly as weak learners in an ensemble
model, such interpretability is lost. From the viewpoint
of achieving reliable space weather prediction without com-
pletely losing control of the underlying decision process,
explainable models might be more appealing. By this one
means using a number of techniques that can help a poste-
riori to decipher and understand the inner mechanisms of a
ML model. This helps understanding if the model is guided
by information that has a physical meaning, or whether,
for instance, a good prediction was merely due to
coincidence.

Two popular techniques to extract information about
the inner workings of a ML model are Local Interpretable
Model-Agnostic Explanation (LIME) (Ribeiro et al., 2016)
and SHapley Additive exPlanations (SHAP) (Lundberg
et al., 2017). Both methods aim to estimate the relative
importance of each individual feature (i.e., quantities used
as inputs for a ML model). SHAP uses the concept of the
Shapley value, introduced in a game theory context as the
value that each player contributes to an outcome when they
are part of a team (Winter, 2002). SHAP provides a very
Table 4
Measurement and knowledge gaps and approaches to improve the prediction

Gaps Measurement Approac

Quantify the pre-eruption energy accumulation and
distribution over the PIL

SEL Multi-height vec
+ photospheric vecto

Separate triggers from pre-cursor activity Imaging of hot (> 10
wavelength EUV ima

Understand energy release via magnetic reconnection Imaging spectropolar
irradiance
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intuitive explanation that is additive, meaning that the
sum of SHAP values of all features adds up to 100%. On
the other hand, LIME builds a local (i.e. valid only within
a small neighborhood of input values) approximation of
the underlying model that is less complex and more inter-
pretable than the global model (for instance, a linear
model). Both LIME and SHAP have become extremely
popular tools and off-the-shelf Python libraries have made
their implementation exceptionally straightforward. Even-
tually, the aim of both interpretable and explainable mod-
els is to learn what physical quantities or processes are the
most important (or perhaps solely important) ones in order
to devise an accurate prediction model. In turn, this leads
to a better understanding of the underlying physics, hence
it can be seen as a data-driven approach to improve our
understanding.

Another set of tools to interpret the results of ML mod-
els such as convolutional neural networks, which use image
data as an input, include attribution methods (e.g.
Springenberg et al. (2014)). These methods identify spatial
features of an image and have the greatest impact on the
model output. Sun et al. (2022); Lv and Liu (2022);
Bhattacharjee et al. (2020); Yi et al. (2021) all used attribu-
tion methods for solar flare forecasting. Some attribution
methods deliberately eliminate a portion of the input image
to see how the missing data affects performance (e.g. occlu-
sion methods). Others use the differences between a refer-
ence image and real input data to identify how the
change in data affects performance (e.g., integrated gradi-
ents and DeepLIFT; Shrikumar et al., 2017). Other exam-
ples of interpretable models for solar flare forecasting
include, e.g., Sun et al. (2021); Jarolim et al. (2022).

Yet another set of promising interpretability tools
include physics-informed neural networks (PINNs), or
physics-informed ML, in general (Raissi et al., 2019;
Karniadakis et al., 2021). A very appealing feature of
physics-informed ML is its applicability to problems
including partial differential equations; the MHD equa-
tions dictating the evolution on the photosphere and above
are nothing but that. This methodology is yet to be imple-
mented in the forecasting of solar eruptions. The prelimi-
nary work of Jarolim et al. (2023), is our only known
example of a first attempt to use PINNs as solvers of the
force-free magnetic field equations. Such efforts, however
(see also the very recent physics-enhanced deep surrogate
of solar eruptive activity
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tor B, off-SEL EUV Imaging
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Magnetic Energy, Helicity

MK) plasmas, Multi-
ging
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imetry of PILs, off-SEL SXR free energy proxies, AR flaring history,
ML/AI training



Fig. 9. Graphic representation of the results of the NASA gap analysis with respect to solar and heliospheric observational gaps.’P&F grid’ represents
multipoint measurements of ’particles and fields’ that make up the in situ solar wind. Credit: Applied Physics Laboratory (APL)/ A. Vourlidas.
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(PEDS) method for partial differential equations Pestourie
et al., 2023), need to mature further to determine whether
tangible results can be achieved.
6. Future needs and outlook

6.1. Data gaps

Major solar flares and eruptions are the main agents of
severe-to-extreme Space Weather. As such, the prediction
of eruptive activity features is prominently among the top
concerns of the providers and users of space weather fore-
casts. Flare and CME prediction is primarily relevant to
medium-term (defined as hours to days) forecasting (e.g.
Vourlidas, 2021), although flare forecasting is currently
used to estimate SEP levels after an eruption with some
success (e.g. Laurenza et al., 2009; Kahler and Ling,
2018; Anastasiadis et al., 2019; Papaioannou et al., 2022).

It is well understood that solar eruptions comprise the
aftermath of the impulsive release of magnetic energy accu-
mulated in the corona over a PIL. The key to the accurate
prediction of an eruption, therefore, lies in better under-
standing how the magnetic energy is stored in the corona
and in measuring the distribution of that energy in space
and time so that the system (e.g. an active region) can be
monitored as it approaches the threshold to eruption.
Many of these issues were recently reviewed by
Patsourakos et al. (2020) from a research perspective and
the topic was revisited from a more space weather-
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focused perspective in the recent NASA Observational
Gap Analysis Report (Vourlidas et al., 2021).

The above report and analysis therein identified several
observing gaps and candidate measurement approaches for
closing them, in order to make eruption prediction viable
for operations. Table 4 provides a top-level summary of
those findings and shows that the problem of eruption pre-
diction can be decomposed to just three high-level knowl-
edge and measurement gaps. All three revolve around the
physical understanding and measurement of the magnetic
energy flow from the photosphere to the corona. The path
forward requires multi-height magnetic field measurements
along the Sun-Earth line (SEL), to capture the flow and
buildup of energy but also of helicity in the corona. How-
ever, SEL measurements are of use over a rather short
observing window of about 10 days (roughly the time an
active region spends within 	60
 from the central meridian,
when vector magnetograms are most reliable). To expand
this window, and hence the horizon for prediction, off-
SEL magnetic and EUV observations are required to unin-
terruptedly trace the evolution of an AR from emergence
to eruption and to constrain the 3D structure of the mag-
netic field (e.g., overall benefits shown in Fig. 10 of
Posner et al., 2021).
6.2. Solar observations beyond the Sun-Earth line

The measurement approaches in Table 4 flow naturally
into mission architectures at the Sun-Earth Lagrangian L4
and L5 points or thereabouts, as discussed in the recent



Fig. 10. The elliptical orbits of Earth and Mars around the Sun (yellow).
Here Mars (red) is ahead of the Earth (blue) and is exposed to SEPs
originating in an active region 90o further west in solar longitude (as
expected for a Parker spiral field). In this case the active region is not
visible from Earth or Mars or either of the L4 (orange) and L5 (green)
Lagrange points.
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LWS Architecture Committee Report (see online report at
Cohen et al., 2022) and shown graphically in Fig. 9. For an
L4 mission, the emphasis is on predicting SEP-productive
eruptions from magnetically-connected ARs to primarily
protect astronauts in the cislunar space (e.g. Vourlidas,
2015; Posner et al., 2021). This space weather concern
drives the need for reliable short- to medium-term forecast-
ing while an L5 mission will be primarily focused on the
lifetime and eruptive history of an AR rotating towards
Earth and hence medium-term forecasting. A more efficient
and effective strategy would require the development of a
tightly-coupled L1-L5-L4 mission system, as originally sug-
gested by Vourlidas (2015) and further emphasized in the
Gap Analysis and LWS Architecture reports.

Given that the above ideas address only short-to-
medium term forecasting needs, can we move past the
hour-to-day horizon and into creating meaningful eruption
forecasts for weeks, or even months, ahead? This capability
may sound overly ambitious but it is possible by mapping
and quantifying magnetic flux before it emerges on the
solar surface as magnetic flux tubes rise from the tacho-
cline. Already, we can create coarse maps of those mag-
netic bundles using helioseismology (e.g. Braun and
Lindsey, 2001) although a relationship between sub-
surface structures as inferred from helioseismology and
future flaring activity is largely lacking, with only few
attempts in this direction (Reinard et al., 2010; Komm
et al., 2011; Braun, 2016). The lack of multi-point helioseis-
mology measurements hinders further progress on this
issue. These measurements are required to increase the spa-
tial resolution of sub-surface mapping and to allow sam-
pling deeper into the convection zone. Both global and
local helioseismology techniques must be implemented
and hence measurements must be distributed in both longi-
tude and latitude.

The best way to acquire those measurements, while also
tracing the magnetic field above the surface, is through the
deployment of a multi-spacecraft constellation that pro-
vides a full, so-called 4p coverage of the solar surface and
atmosphere (Gibson et al., 2018; Vourlidas et al., 2018;
Vourlidas, 2021). The 4p mission requires a minimum of
four spacecraft and can be designed in various configura-
tions, i.e. all four or only two spacecraft in high inclination
orbits, depending on programmatic resources. A detailed
mission design study for a science-driven 4p concept, called
Firefly, was recently performed (Raouafi et al., 2022).
Other mission designs envisioning solar stereoscopic explo-
ration (Yang et al., 2023) with the Solar Polar-orbit Obser-
vatory (Deng et al., 2023) and the Solar Ring mission
(Wang et al., 2023), forming holistic observations of the
Sun, have also been proposed. The LWS Architecture
Report considered a similar but more space weather-
focused concept while the Gap Analysis concluded that
the 4p coverage of the Sun will lead several open opera-
tional and primarily knowledge gaps to closure.

The above are indeed supported by scientific, technolog-
ical and policy advances over the past twenty years. These
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have shown the importance and timeliness of monitoring,
ideally, the whole Sun and its surrounding magnetic and
plasma structures, not just those parts that can be viewed
from locations on the ground or in near-Earth space. The
value of observations off the SEL has been demonstrated
by several missions, in particular by the STEREO mission
(Kaiser et al., 2007). This has now provided observations
from all solar longitudes relative to Earth, despite the loss
of STEREO-B in 2014. Those observations have led to a
wealth of scientific results, including how off-SEL imaging
can improve measurements of CME velocity, acceleration
and deceleration, as well as the value of monitoring farside
regions to enhance awareness of active regions that will
soon start to affect Earth. These results have driven studies
to look at future off-SEL missions, both for new science
and as steps towards operational monitoring. The ESA
Vigil mission to L5 (Palomba and Luntama, 2022, see
also https://www.esa.int/Space_Safety/Vigil) is one con-
crete output of these studies, with the mission now moving
towards construction phase (phase C in the jargon of satel-
lite projects). Hopefully others will follow, e.g. missions to
L4. These are all excellent steps forward that will improve
our ability to monitor solar activity. But the long-term goal
should be to establish whole-Sun monitoring, not to trade
off between views from L1, L4, L5 and other locations. The
insights gained from these different locations must be com-
bined to provide robust monitoring of our star. In particu-
lar, whole-Sun monitoring will bring two strategic benefits:



Fig. 11. Emulation of observations of an active region from three different viepoints, namely L1 (middle), L5 (top) and L4 (bottom). Shown are the
photospheric continuum (leftmost column), coronagraphic EUV images (second from left), photosphetic magnetograms (second from right) and azimuth
measurements for inferring the coronal magnetic field vector (rightmost column). Adapted from Bemporad (2021).
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� It will reduce the risk of abrupt changes in forecasts of
solar activity when new regions come into view, espe-
cially if those regions have complex magnetic structures.
Such abrupt changes can confuse both forecasters and
end users and, most importantly, they could reduce user
confidence in forecasts. Whilst this might be partially
mitigated by reaching out to users to keep them better
informed, the best solution is to produce high quality
forecasts that evolve gradually and justifiably in
response to changing conditions everywhere on the Sun.

� Whole Sun monitoring will be essential when humans
travel to Mars, which now seems likely in the next few
decades. Space weather is an important factor for
human travel to Mars as discussed by Hapgood
(2019). Whilst good spacecraft design can reduce radia-
tion doses (e.g. from the background flux of very high
energy cosmic rays), the crew will also need more heavily
shielded sheltering when the spacecraft is exposed to
intense bursts of solar energetic particles. Thus the mit-
igation provided by good design must be complemented
by forecasts of eruptive activity that is likely to affect the
spacecraft. The crew can then reconfirm that the shelter
is ready for use, and be prepared to retreat when an
event is imminent, e.g. when onboard monitors detect
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relativistic electrons ahead of radiation storm protons
(Posner, 2007). However, the monitoring of solar active
regions with potential to erupt towards the spacecraft
requires a set of monitors that can cover all solar longi-
tudes and also provide system-level resilience (e.g.
robustness against the loss of one or two spacecraft).
It cannot rely on observations from Earth, L1, L4 and
L5, or on the spacecraft itself. As an example, Fig. 10
shows a worst case scenario where Mars is visible from
Earth, but magnetically connected to a farside active
region. An eruption here will endanger astronauts at
or near Mars, but will not be visible from Earth, Mars,
L4 or L5.

Complementarity in terms of crucial space weather
observations that would allow both a consistent study of
the heliospheric propagation of solar eruptive transients
and an improved fundamental understanding of the Sun
also calls for twin spacecraft for L4 and L5, as proposed
by Bemporad (2021). The concept of stereoscopic helioseis-
mology could help in the advance prediction of active
region emergence in the photosphere while stereoscopy
can also lead to increased reliability in the measurement
of coronal magnetic fields. Potentially interesting geometri-
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cal configurations, such as relative or quasi-quadrature
could greatly assist monitoring and operations, if both
spacecraft are equipped with identical in situ and remote
sensing instruments. Fig. 11 shows an emulation example
of photospheric and coronal observations from identical
instruments at L1, L4 and L5: in this example, three differ-
ent lines of sight observe the Sun in both local (i.e., active
region) and global spatial scales.

In summary, given the above discussion and building on
ideas noted by Schrijver et al. (2015), there is a long-term,
pressing need to develop and establish a resilient system of
whole-Sun monitoring: to protect societal activities on and
near Earth, to advance the science behind that protection,
and also to support future human missions to Mars.

Appendix A provides a brief account of future missions
that can have a transformative effect on the achievement of
the above goals, either by directly facilitating operational
forecasting or by providing key observations for modeling
in this direction. We note in passing that we focus exclu-
sively on space missions here as the only alternative base-
line for a minimal (i.e., with the above caveats and more)
R2O plan on space weather forecasting is global ground-
based networks such as the existing GONG (Hill, 2018)
and the envisioned SAMNet (Erdelyi et al., 2022).

7. Conclusions

In this review we have aimed to provide a contemporary
summary and cross-cut of solar eruption prediction meth-
ods since the COSPAR/ ILWS roadmap paper by
Schrijver et al. (2015). In these closing remarks, we aim
to list (i) the progress made since this landmark collabora-
tive work, (ii) some reasonably short-term (i.e., within the
next 5 years) recommendations, (iii) long-term recommen-
dations (i.e., within the next 10 + years) and, finally, some
of the key challenges that lie ahead, intercepting this path
to progress.

7.1. Current progress

In brief, the following progress has been achieved since
Schrijver et al. (2015):

� Soaring public interest. Global interest in solar energetic
phenomena and their prediction has skyrocketed and is
expected to increase further, as it has entered the every-
day, wider-public online media and tabloids. Dynamical
solar manifestations seem to cause a public sensation
that is further fueled by the anticipated crewed explo-
ration of the Moon in the USA, Europe and China,
and even more by the ultimate phase of the NASA/
ARTEMIS program that foresees the first humans on
Mars. It is in the community’s realm to ride this ‘‘wave
of excitement” and to communicate its progress respon-
sively to the public because public attention can lead to
increased funding for basic research, on top of
operations.
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� Increased community awareness toward synergistic and

collaborative studies. Albeit at a preliminary level, there
are clear signs that the solar and heliophysics communi-
ties have come closer to organizing joint comparisons
and validation of various prediction methodologies,
roughly along the lines of Section 4. These actions are
summarized in Section 4.3 and refer mostly to flare pre-
diction in this review, with similar efforts on CME and
SEP event prediction discussed in the Cluster reviews
of Temmer et al. (2023) and Whitman et al. (2022),
respectively. These activities have led to the realization
that the current state-of-the-art is still lagging over what
the community would have wished. As synergies high-
light the needs that we must address, it is synergies that
will signify progress, when it is achieved.

� Enhancement of interdisciplinarity. The scientific com-
munity itself has further embraced space weather and
its forecasting. In Schrijver et al. (2015), the approxi-
mately 900 papers per year with ‘‘space weather” present
in their abstract have more than tripled nowadays. This
is not necessarily due to an increase in the size of the
heliophysics community (which may indeed be the case
to some extent) but, rather, due to the involvement of
a significant part of the much larger data and computer
science community. This interdisciplinarity, mainly
bringing ML methods into the prediction problem, is a
much needed development. It was heralded since 2007
for flares with the first application by Qahwaji and
Colak (2007) and was further brought into spotlight
by the computer vision effort of Martens et al. (2012).
It is in the community’s best interests that such collabo-
rations be further fostered and enhanced. We hope that
by this and previous reviews it has become clear that the
prediction of solar energetic phenomena is too impor-
tant a topic to be left to heliophysicists alone.

� Deep learning into play. The number of ML papers in
solar eruption forecasting have indeed increased precip-
itously, but the new development since 2015 is the
advent of DL methodologies into the problem. As
explained in Section 1, it is still an open question
whether DL methods are applicable to the ‘‘data-
starved” problems of solar events forecasting, despite a
good number of attempts already (Tables 1, 2). So far
we have not witnessed a transformative effect from the
application of DL methods and it remains to be seen
whether this will continue to be the case.

� Existing and envisioned dedicated space weather missions.
As discussed in Section 6.2 and Appendix A, various
space agencies worldwide are now seriously contemplat-
ing building and launching missions with space weather
forecasting firmly in their core objectives. In the case of
China’s ASO-S (A.2), the mission is already launched
and its data are widely anticipated. ISRO’s Aditya-L1
(A.3) was launched in September 2023, while ESA’s
Vigil L5 mission is currently in the stage of payload
selection. The notion of a spacecraft constellation
beyond the SEL (Sun-Earth line) and above/below the
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ecliptic has also matured and there are multiple mission
concepts pursuing these ideas. These elements largely
shape our recommendations for the next 10 + years.

7.2. Short-term recommendations (next 5 years)

A tentative list of short-term recommendations is as
follows:

� Streamline prediction research; enhance transparency and

openness. To develop a common, end-to-end framework
for forecasting solar eruptions, predicted either sepa-
rately (i.e., for flare, CME, or SEP event forecasting),
or in tandem, with the latter being preferable. The
framework should serve for the development of new,
and the improvement of existing, methods. The frame-
work should not be dependent on the actual prediction
problem and its specifics, but should be general and
clear enough to be easily digested by the community.
Fig. 5 and pertinent discussion makes such a case. Such
an action naturally calls for (i) creating open-access,
comprehensive benchmark data sets for a systematic
training and testing of methods; (ii) developing standard
training–testing practices; and (iii) defining a set of com-
mon (i.e., by community’s consensus) verification/ vali-
dation metrics for each problem. The CCMC
Scoreboards (Section 4.3) is an initiative heading clearly
in this direction. Benchmark data should abide by con-
temporary requirements, such as the FAIR set of princi-
ples (Findable, Accessible, Interoperable, and Reusable;
Wilkinson et al., 2016). Methods have different specifica-
tions and all methods may not be able to accommodate
all metrics. They should, at least, use a subset of these
metrics to allow direct comparison on identical training
and testing samples of positive (event) and negative (no
event) instances.

� Clear the scientific journal landscape. Related to the pre-
vious item, scientific journals should aim to control the
mounting influx of submitted manuscripts on solar event
prediction topics, particularly those employing AI tech-
niques, by issuing guidelines for publication acceptance.
Given the increased interest, the influx is inevitable.
However, these methods and results should be able to
demonstrate tangible progress over existing methods,
hopefully by aligning to a framework such as the one
discussed above. Journals are not agnostic to this issue
and there is already one such set of guidelines (Lugaz
et al., 2021). More should follow and this motion should
be supported.

� Facilitate space weather forecasting as a Sun-to-Earth

endeavor. Namely, establish the notion that forecasting
solar energetic events is a Sun-to-Earth, rather than an
inner-heliospheric, problem. Naturally there are chal-
lenges (Fig. 1), but the artificial splitting of the helio-
spheric ‘‘system of systems” into different subsystems
deprives methods of crucial information to assimilate
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and increases the impact of artificial ‘‘boundaries”,
besides impeding physical understanding in some cases.
The understanding of the processes and the operational
demands should go hand-in–hand. In this respect, inner
heliospheric modeling frameworks discussed in the Clus-
ter review of Temmer et al. (2023) are the designated
solution given the lack of inner heliospheric remote-
sensing and scarce in situ data. How these methods con-
nect with the models and results in the lower solar atmo-
sphere as boundary and initial conditions, or as
educated guesses at least, is a challenge that we need
to overcome. In the medium-to-long-term future, one
envisions a Sun-to-Earth forecasting framework that
addresses all partial problems (initiation, propagation,
geoeffectivenes) supported by data from multiple van-
tage points. Given the momentum, the seeds for this
process can be placed in the next five years.

� Determine applicability of deep learning methodologies.
This is a straightforward task to envision, albeit a for-
midable one to pursue. The question seems clear: are
there enough positive samples for DL methods to be
used for a credible prediction of solar events? Given
the high spatial resolution, constant quality and high
cadence of even present solar observations, DL methods
seem able to train on negative samples. Will they be able
to determine an instance of the positive sample when
they process it? Will synthetic data or manual oversam-
pling of the positive training sample be viable remedies
or recipes? Answers to these questions, however tenta-
tive, should become available in the next few years.

� Interpret unsupervised machine learning and deep learn-

ing. The interpretability issue is discussed at some detail
in Section 5.5 and it impedes progress in physical under-
standing and, equally importantly, in the envisioned
achievement of O2R in Section 5.4. The R2O leg, if suc-
cessful, will manage to provide forecast results to stake-
holders, who are less interested in scientific accuracy in
any case. However, O2R will not be feasible via these
methods unless interpretability is boosted, so that one
can see a successful, converging R2O - O2R loop toward
optimal forecasts. In ML, hybrid techniques may be able
to show progress in this direction but the question on a
large part of DL methods remains wide open. Recent
developments on knowledge-informed or physics-
informed machine learning provide hope but they are
still at their infancy (or perhaps, not even there) for
space weather forecasting applications.

� Achieve customized, and customizable, space weather

forecasts. This demand has emerged in multiple occa-
sions and it would be a meaningful practice for the com-
munity to start experimenting in this direction. This is
mentioned here because it also helps elaborate on
R2O, by means of diversification into the needs of differ-
ent sectors and due to the additional research we need to
devote into performance verification for this. This
important task cannot be achieved without the help of
space weather forecasting agencies; SWPC, ESA Space
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Safety Network, MOSWOC, ISES, NICT, KSWC, etc.
whose role, as demonstrated broadly in multiple meet-
ings, is to interface between stakeholders and the scien-
tific community.

7.3. Long-term recommendations (10 + years)

These are largely shaped by the discussion in Section 6.
We provide a summary of the main points below:

� Homogenize/ streamline prediction for the full set of prob-

lems. Assuming that the previous steps of streamlining
research and enhancing transparency are successful, we
should be considering bringing all problems concerned
with Sun-induced space weather under a common
framework. This implies flare, CME and SEP predic-
tion, CME propagation in the inner heliosphere, time
of arrival, as well as geoeffectiveness. Modularity is
key in this respect because such a framework will have
its testbeds and breadboards for the development, test-
ing, and/ or inclusion of new modules devoted to differ-
ent problems of the set. More such frameworks may
appear worldwide, but the adoption of generally
accepted streamlining rules will result in all of them
sharing largely similar (albeit not identical) principles
such as, say, the winning technologies prevalent in com-
modities such as aircraft, cars, or boats.

� Achieve observations beyond the Sun-Earth line and the

ecliptic. Missions to L4 and L5, in conjunction with
L1, should be implemented and launched in order to
achieve continuous operations-grade data beyond the
Sun-Earth line. Given existing legacies of space observa-
tories in orbit and at L1, one does not expect that mis-
sions dedicated to operations should entail new
technology developments for their payloads. In addi-
tion, a significant part of the community already believes
that the data of these missions will also be science-grade
and enable major leaps in physical understanding, at the
same time facilitating a successful R2O. Observations
beyond the ecliptic and at changing geometries should
be facilitated via the Firefly Constellation. The scientific
gain of non-space weather missions such as Parker Solar
Probe and Solar Orbiter, along with Ulysses in the past,
is evidence enough of the dual benefit of such mission
concepts, in terms of both cutting-edge science and facil-
itating future operations.

� Expand from terrestrial to planetary space weather.
Given ARTEMIS, with its lunar and martian phases,
MoonVillage, and even robotic exploration toward solar
system worlds featuring liquid oceans, the next decade
should see the foundations of a planetary space weather
forecasting network. Such a need is already envisioned
and well documented (Plainaki et al., 2016). Provided
that short-term recommendations about streamlining
and homogenization are successful, along with the
multi-messenger observations from different vantage
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points of the previous item, expanding circumterrestrial
and cislunar forecasting to deep space should not be, or
feel, like re-discovering the wheel. One or more modular
space weather forecasting systems should be able to pro-
vide forecasts beyond 1 AU, albeit exclusively via mod-
eling, as all our solar observers will be within, at the
limit, or slightly beyond, the inner heliosphere. Placing
space weather-oriented missions beyond 1 AU could
be considered as a (much) longer-term task, or accom-
modated to some degree alongside future solar system
exploration missions.
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Appendix A. Mission outlook

A.1. Firefly: The Need for a Wholistic View of the Sun and

its Environment

Critical knowledge gaps (see Fig. 12) exist in our under-
standing of how magnetic fields control solar (and, by
extension, stellar) activity on timescales from minutes to
years; filling these gaps will require a transformative obser-
vational approach of the Sun and its environment. We
know that solar activity drives space weather as the result
of dynamic magnetic fields that form in the solar interior
and evolve continuously until reaching levels of complexity
in the atmosphere that trigger eruptions. However, we do
not fully understand how solar and, more generally, stellar
magnetic fields are generated, or how they evolve through
the eruptive states.

Firefly is an innovative mission concept designed to
close these long-standing knowledge gaps in heliophysics.
A constellation of spacecraft will provide both remote sens-
ing and in situ observations of the Sun and heliosphere
from a full 4p-steradian field of view. This mission imple-
ments a holistic observational philosophy that extends
from the Sun’s interior, to the photosphere, through the
corona, and into the solar wind, simultaneously with mul-
Fig. 12. Example of the major knowledge gaps in our understanding of the Sun
conditions at high latitudes. (b) Example of the failure of Sun-Earth line mag
active region emerged within 12 h and produced an X1.5-class flare that could
shows the S/N limit for magnetogram data away from disk center. (c) Pho
measurements taken over a 27-day ”Carrington Rotation” (CR) during CR 221
to low signal-to-noise above 60o latitude and lack of visibility. Courtesy: Pred
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tiple spacecraft at multiple vantage points, optimized for
continual global coverage over much of a solar cycle. The
mission constellation includes two spacecraft in the ecliptic
plane and two flying above 70� solar latitude. The overar-
ching goal of the Firefly mission concept is to understand
the global structure and dynamics of the Sun’s interior,
the generation of solar magnetic fields, the origin of the
solar cycle, the causes of solar activity, and the structure
and dynamics of the corona as it creates the heliosphere.
To advance the scientific knowledge needed to characterize
the heliosphere, the Firefly mission concept has defined
four fundamental science objectives: (1) Understand how
surface and sub-surface flows combined with toroidal mag-
netic field instabilities produce the cyclic solar dynamo, the
root cause of solar activity; (2) Understand the conditions
leading to solar eruptive activity and the role of the large-
scale magnetic field; (3) Determine how solar wind condi-
tions vary with latitude and longitude both in response to
changing global solar conditions and throughout the solar
cycle; and (4) Understand how and where energetic parti-
cles are accelerated and transported through the
heliosphere.

The Firefly constellation offers ample opportunities for
cross-disciplinary science from viewpoints not accessible
before. It will provide significant insight into the dust struc-
ture of the zodiacal cloud, near-Earth hazardous objects,
comets, and objects inside 1 AU. The down-view of the
solar system from high latitudes beyond the ecliptic plane
is critical to all these research topics. Previous observations
could only offer a single viewpoint, that often suffers from
effects (e.g., projection, timeliness, and continuity of the
observations) that curtail access to important information
about not only space weather but also about cometary
objects and stealth asteroids in the inner heliosphere. This
information to be offered by Firefly and changing observa-
tion geometries is equally critical with space weather for
Earth’s safety. In addition, observing the solar planetary
system from different viewpoints offers essential informa-
tion about planetary alignment or misalignment to the path
of propagating solar transients. This is essential for our
understanding of exo-planetary space weather.
and the Heliosphere. (a) Global helioseismic modes that are insensitive to
netograms to capture a newly emerging active region near the limb. This
not be forecast due to lack of magnetic field data. The yellow dashed line
tospheric radial magnetic field daily-update ”synoptic map” built using
7 and 2218. Note that the polar regions are extrapolated and distorted due
ictive Sciences Inc. (PSI)/ Cooper Downs.
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A.2. The Advanced Space-Based Observatory – Solar

(ASO-S) mission

The ASO-S (Chinese nickname Kuafu-1, Gan et al.,
2019; Gan et al., 2022; Gan et al., 2023) mission was
launched in October 2022. It is the first Chinese compre-
hensive solar-dedicated observatory in space and aims at
exploring the relationship and physics between solar mag-
netic fields, solar flares and CMEs. Besides scientific objec-
tives, the mission is commissioned to provide operational
data support for forecasts of solar eruptions, especially
CMEs. To fulfill these major objectives, ASO-S has three
payloads onboard: the Full-disk vector MagnetoGraph
(FMG), the Hard X-ray Imager (HXI), and the Lyman-
alpha Solar Telescope (LST) dedicated to observe vector
magnetic fields, flares, and CMEs, respectively.

The space weather tasks of the ASO-S mission include
the development of an image browsing system for the
ASO-S observations, automatic detection and tracking of
solar eruptions, predictions of CME arrival time, flare fore-
casts, etc (Feng et al., 2020, for detailed information).
Major emphasis is placed on the CME arrival time predic-
tions (Alobaid et al., 2022). To enable such predictions, the
mission prioritizes the downlink of the LST coronagraph
(Solar Corona Imager, SCI) data. SCI observes the corona
from 1.1 to 2.5 R� in both white light and the H I Lyman-a
line. If the instrument works well, the classification of coro-
nagraph images with or without a CME could be done with
the inflight triggering algorithm of the SCI event mode (Lu
et al., 2020). The images with a CME will be distributed to
different space weather prediction centers in China for fur-
ther processing and forecasts once the Science Operation
and Data Center (SODC) of ASO-S receives the data from
the Science Mission Operation Center (SMOC). The auto-
matic detection and tracking (Wang et al., 2019), and three-
dimensional (3D) reconstructions of CMEs are imple-
mented to calculate the 3D CME parameters used as the
inputs for the CME propagation models (e.g. Wang
et al., 2018). Solar flare forecasting is still a challenging
task, given also the difficulty to locate an efficient precur-
sor. Huang et al. (2018) applied a deep learning method
to automatically extract forecasting patterns from the
line-of-sight magnetograms of active regions and soft X-
ray observations. The magnetograms are planned to be
provided by FMG. Supplemental information can be
acquired by HXI and LST.

A.3. The Aditya-L1 Solar Observatory

The Aditya-L1 mission is India’s first solar space mis-
sion, which recently launched in September 2023 (Seetha
and Megala, 2017). Aditya-L1 is a comprehensive solar
observatory, to be located at L1, which carries seven pay-
loads geared towards observing the origin of solar dynamic
activity and its manifestations at near-Earth space environ-
ment. Four payloads are remote sensing instruments while
three instruments focus on in situ measurements of solar
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wind and transients. The nominal mission lifetime is envis-
aged to be 5 years, but an extension is possible over the
completion of solar cycle 25 and into cycle 26.

The Solar Ultraviolet Imaging Telescope (SUIT; Ghosh
et al. (2016, 2017)) onboard Aditya-L1 will observe solar
dynamics (at the 200–400 nm wavelength range) from near
the photosphere to through the chromosphere in order to
understand the coupling of the solar atmosphere and
energy flow from the photosphere to the corona, as medi-
ated by magnetic fields and radiation. The instrument will
return full-disk images of the Sun across various layers of
the solar atmosphere. The Variable Emission Line Coron-
agraph (VELC; Raghavendra Prasad et al. (2017)) instru-
ment will observe the dynamics of the solar corona in
visible and infra-red channels and has capabilities for spec-
troscopy, imaging and magnetic field measurements for
coronal magnetometry. The goals of VELC are to under-
stand coronal heating, the initiation mechanisms and kine-
matics of CMEs and to constrain the magnetic structure of
the corona. With a targeted field of view between 1.05R�
and 3R�, VELC has the ambitious goal of capturing the
early initiation dynamics of CMEs in the inner corona.
The Solar Low Energy X-ray Spectrometer (SoLEXS)
and High Energy L1 Orbiting X-ray Spectrometer
(HEL1OS) will study the origin and dynamics leading to
solar flares, will characterize flare emission and will probe
the flare-associated acceleration mechanisms of solar ener-
getic particles (Sankarasubramanian et al., 2011;
Sankarasubramanian et al., 2017).

Other than these remote sensing instruments, there are
three in situ plasma and magnetic field diagnostics instru-
ments for the solar wind, transients, and CME flux ropes
before they impact Earth. The Aditya Solar Wind Particle
Experiment (ASPEX; Goyal et al. (2018)) and Plasma Ana-
lyzer Package for Aditya (PAPA; Thampi et al. (2014)) will
measure the solar wind speed, constrain its physical prop-
erties including its composition and particle distribution.
The Aditya Magnetometer Experiment (Yadav et al.,
2018) will characterize the magnetic field properties of the
solar wind, transient structures and CMEs at L1.

Taken together, it is expected that the suite of instru-
ments on the Indian Space Research Organisation (ISRO)
Aditya-L1 mission will continue and enhance the legacy of
great observatories such as ESA’s Solar and Heliospheric
Observatory (SOHO) and NASA’s Solar Dynamics Obser-
vatory (SDO). Specifically, the combination of remote
imaging, spectroscopy and in situ observations are envis-
aged to generate transformative information and knowl-
edge on the genesis and near-Earth impact of space
weather (Nandy et al., 2020).

A.4. Next-generation Solar-observing Satellite (SOLAR-C)

SOLAR-C (Shimizu et al., 2020: target launch in late
2020s) is JAXA’s next-generation solar-observing satellite,
designed to answer the question of ‘‘How does the inter-
play of magnetic fields and plasma drive solar activity?”
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with its onboard telescope EUVST (EUV High-throughput
Spectroscopic Telescope). The two primary science objec-
tives of SOLAR-C are:

� Understand how fundamental processes lead to the for-
mation of the solar atmosphere and the solar wind.

� Understand how the solar atmosphere becomes unsta-
ble, releasing the energy that drives solar flares and
eruptions.

Solar flare studies are frequently based on the magnetic
field measurements in the photosphere and on coronal field
extrapolations due to the instrumental and technological
constraints (see discussion in Section 5.3). However, to
truly understand how magnetic energy is accumulated in
the corona and initiates magnetic reconnection that trig-
gers the flare, it is critical to obtain information on the
active-region atmosphere and quantify its characteristics.
To this end, a sub-objective of SOLAR-C aims at under-
standing the fast magnetic reconnection process that
explains flare eruptions by temporally and spatially resolv-
ing the evolution of flare reconnection. Another sub-
objective seeks to understand the large-scale evolution of
flare-productive active regions over days by monitoring
the active-region atmosphere and identifying appropriate
spectroscopic signatures such as non-thermal upflows,
which may indicate the energy buildup. To achieve these
science objectives, SOLAR-C will take the following
approaches:

A. Seamlessly and simultaneously observe all the tem-
perature regimes of the solar atmosphere from the
chromosphere to the corona (logðT =½K�Þ ¼ 4–7),

B. Resolve elemental structures of the solar atmosphere
with high spatial resolution and cadence to track their
evolution (0.4 arcsec and 0.5 s), and,

C. Obtain spectroscopic information on the dynamics of
elementary processes taking place in the solar atmo-
sphere (EUV spectroscopy).

By taking full advantage of its spatial, temporal, and
spectral resolution, SOLAR-C measures the velocity field
around the flare-triggering site in active region at multiple
temperatures (i.e., multiple heights). Such observables help
to clarify the physical conditions and MHD instability
modes in flare eruptions, which may contribute to the flare
prediction, probably through comparisons with state-of-
the-art numerical simulations. In this regard, one of the
mission outcomes of SOLAR-C is defined to extend our
understanding to building the algorithms of flare predic-
tion and estimating the flare impact on terrestrial
environment.

SOLAR-C is a mission of international cooperation led
by Japan (JAXA) with participation from US (NASA) and
Europe (the European Space Agency and the space agen-
cies of Germany, France, Italy, and Switzerland). In April
2020, SOLAR-C was downselected at ISAS/JAXA for the
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4th Competitively-chosen Middle-class mission, to be
launched by the Epsilon S launch vehicle. SOLAR-C
passed the mission definition review in July 2022 and, in
November 2022, JAXA SOLAR-C Pre-Project Team was
officially established.

A.5. The Polarimeter to UNify the Corona and Heliosphere
(PUNCH)

The PUNCH mission (DeForest et al., 2022) is an in-
development Small Explorer mission to image the Sun’s
outer corona and the inner heliosphere, in 3D, as a single
unified system. PUNCH comprises four smallsats in low
Earth orbit, each carrying one primary instrument: one
”Narrow Field Imager” (NFI), a coronagraph whose field
of view spans from roughly 6 R� to 30 R� on the sky; and
three ”Wide Field Imagers” (WFIs), each of which is a
heliospheric imager whose field of view extends from
roughly 20 R� to 45o from the Sun. The four instruments
are synchronized and operate together as a single suite.
PUNCH images contain full linear polarization informa-
tion, enabling direct 3D imaging of space weather relevant
phenomena from a single vantage point (DeForest et al.,
2013; Howard et al., 2013). The mission is scheduled to
launch in 2025.

PUNCH data have the potential to greatly improve
near-term space weather forecasting, both by tracking
CMEs and providing updated estimates of arrival time
and impact angle, and also by delivering direct measure-
ments of the internal 3D structure (chirality) of their asso-
ciated flux ropes (DeForest et al., 2016). Chirality is an
indicator of the sign of the north/south component of the
magnetic field (Bz) at the leading edge of the CME. Bz

direction is the single strongest indicator of CME geoeffec-
tiveness, and is difficult to measure remotely with current
instrumentation (Möstl et al., 2014). Forecasting of CME
arrival currently requires direct extrapolation (modeling)
from coronagraph images (e.g., Webb et al., 2009; Gressl
et al., 2014), and major sources of uncertainty arise both
from ambiguities in 3D determination from unpolarized
imaging, and from the not-well-characterized physics of
CME propagation in the inner heliosphere. By eliminating
the need to extrapolate from the corona itself across 0.8
AU to Earth, PUNCH and similar instruments will greatly
improve prediction of arrival time and geoeffectiveness
once an event has occurred on the Sun, benefiting forecast-
ing on the time scale of 1–4 days.

A.6. The ASPIICS coronagraph onboard the PROBA-3

mission

PROBA-3 (PRoject for On-Board Autonomy) is a tech-
nology demonstration mission of the European Space
Agency (ESA). It consists of two spacecraft flying in a pre-
cise formation. The main spacecraft will host a telescope,
and the smaller spacecraft will carry a circular occulter.
Together the two spacecraft will form a giant solar coron-
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agraph called ASPIICS (Association of Spacecraft for
Polarimetric and Imaging Investigation of the Corona of
the Sun, see Lamy et al., 2010; Galano et al., 2018). The
separation between the spacecraft, approximately 144 m,
will allow observing the corona from around 1.1 R� with
very low straylight (e.g. Shestov et al., 2021). The launch
is scheduled in the second quarter of 2024.

ASPIICS will observe the solar corona between 1.1 R�
and 3 R� in three spectral passbands. The main white-

light passband of 5350–5650 �A is dominated by the green
Thomson-scattered continuum and does not contain strong
spectral lines. The two narrow passbands centered on the

Fe XIV line at 5304 �A (coronal ‘‘green line”) and on the

He I D3 line at 5877 �A will be used to image the emission
of the hot (around 2 MK) corona and cold (a few tens of
thousand Kelvin) prominences respectively. The main
white-light passband will also be used for polarimetric
observations made with three linear polarizers oriented at
60
 with respect to each other. The spatial resolution is 2
arc sec per pixel (in the unvignetted zone), and the nominal
synoptic cadence is 1 min (Galano et al., 2018).

ASPIICS will not be used for real-time space weather
monitoring due to its duty cycle (on average, two orbits
per week will be dedicated to solar coronagraphy and
observations will be made during 6 h out of the 19.6 h
orbit) and data latency (days to weeks). However, besides
technology demonstration aspects, ASPIICS will give cru-
cial scientific insight into the physics of CMEs. The
ASPIICS observations will provide information on the
CME initiation in the low corona, and on CME-driven
shocks that will be often forming within the ASPIICS field
of view. ASPIICS will measure the increase of the height of
prominences during their slow rise, which is an important
eruption precursor (e.g. Filippov and Den, 2001). The mor-
phological evolution of coronal cavities, in particular their
‘‘necking” that correlates with the CME eruption (Gibson
et al., 2006), will be observed by ASPIICS as well.

The precise formation flying technology of the PROBA-
3 mission may be used in the future for improving the
design of coronagraphs dedicated to CME monitoring. In
particular, this could allow extending the coronagraph field
of view to lower heights without increasing the straylight.
This is important also for obtaining information on the
CME initiation in white light (i.e. showing the density
structure) virtually down to the CME source region, and
for providing seamless observations of the CME initiation
and propagation from low to high corona using a single
telescope.
A.7. Envisioning the Solar Stereoscopic Exploration

Solar Stereo Exploration (Yang et al., 2023) is envi-
sioned with the Solar Polar-orbit Observatory (SPO,
Deng et al. (2023)) to directly image the solar polar regions
conjugated with two spacecraft in an unprecedented way
by traveling around 1-AU distance in a large solar inclina-
40
tion angle (P80 degrees) and a small ellipticity, and Solar
Ring (SOR, Wang et al. (2023)) deploying three 120
-
separated spacecraft on the 1-AU orbit, or three spacecraft
locating at Sun-Earth Lagrangian points L3, L4, and L5
(Yang et al., 2023), to monitor and study the Sun and inner
heliosphere from a full 360o perspective on the ecliptic
plane.

Solar magnetic fields and related solar activity largely
determine the characterization of the heliospheric environ-
ment and shape space weather. The polar magnetic fields of
the Sun and its dynamic processes are especially vital in the
aspects of manifesting the internal dynamo of the Sun, and
shaping magnetic fields in the heliosphere for the space
weather and space climate. Up to now, almost all solar
observations have been limited in the vicinity of the ecliptic
plane, with the exception of Solar Orbiter that has a
slanted angle toward the solar poles later in the mission
and Ulysses that, however, had no remote-sensing observa-
tions. Due to projection effects, the polar regions remain
the least-known territories of the Sun.

Based on multi-band remote-sensing and in situ mea-
surements, SPO (Deng et al., 2023) aims to achieve break-
throughs on the following top-level scientific objectives: (1)
provide decisive observations to reveal the origin of the
solar magnetic activity that shapes the solar eruptivity,
space weather and space climate; (2) provide direct obser-
vational support for unveiling the origin, mechanism, and
effect of the ”primitive” high-speed solar wind that con-
nects the Sun and celestial bodies in the solar system; (3)
provide the necessary, complete, and self-consistent initial
and boundary conditions for creating a data-driven global
heliospheric numerical model that serves as the foundation
for space weather prediction.

SOR has its first spacecraft located 30
 upstream of the
Earth, the second spacecraft 90
 downstream, and the third
one 120
 apart (Wang et al., 2023). In Solar Stereo Explo-
ration three spacecraft located at Sun-Earth Lagrangian
points L3, L4, and L5 have been proposed (Yang et al.,
2023). With necessary science instruments, (e.g., the
Doppler-velocity and vector magnetic field imager, wide-
angle coronagraph, and in situ instruments), either mission
from a full 360
 perspective in the ecliptic plane will allow
us to establish unprecedented capabilities: (1) provide
simultaneous Doppler-velocity observations of the whole
solar surface to understand the solar interior, (2) provide
vector magnetograms of the whole photosphere—the inner
boundary of the solar atmosphere and the heliosphere, (3)
provide information on the full-lifetime evolution of solar
featured structures, and (4) provide a holistic view of solar
transients and their space weather repercussions in the
inner heliosphere.

The Solar Stereoscopic Exploration missions can over-
come the limitation of single-view observation, and access
to omni-directional & multi-element physical data, thus
contributing to finding solutions for major scientific prob-
lems in solar physics and space weather. By orbiting the
ecliptic and the omni-dimensional exploration of polar



Table B.5 (continued)

Acronym Meaning

FITL Forecaster in the loop
FLARECAST Flare Likelihood And Region Eruption

foreCASTing
FMG Full-disk vector MagnetoGraph
FN False Negative
FORSPEF Forecasting of Solar Particle Events and Flares
FP False Positive
GC Gini coefficient
GOES Geostationary Operational Environmental

Satellite
GONG Global Oscillations Network Group
HARP Helioseismic and Magnetic Imager Active Region
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regions, Solar Stereo Exploration realizes solar detection
from five vantage points, with the ability to detect the
Sun in all directions. The missions will provide high-
quality data for scientific research and space weather fore-
casting. The achievements will advance knowledge of the
Sun’s internal structure and the origin of the solar magnetic
field, the mechanism of solar activities and full heliospheric
space weather effects, at the same time boosting and facil-
itating novel space weather forecasting models.

Appendix B. Acronym List

See Table B.5.
Table B.5
A full list of acronyms used throughout this paper.

Acronym Meaning

A-EFFort Athens Effective Solar Flare Forecasting
AAS American Astronomical Society
ACE Advanced Composition Explorer
ADS Astrophysics Data System
AI Artificial Intelligence
AI2ES National Science Foundation Artificial

Intelligence Institute for Research on
Trustworthy Artificial Intelligence in Weather,
Climate, and Coastal Oceanography

AIA Atmospheric Imaging Assembly
API Application Programming Interface
ApSS Appleman Skill Score
ARCAFF Active Region Classification and Flare

Forecasting
ARDES Aerospace, Research, Development, and

Engineering Support Services
ASO-S Advanced Space-Based Observatory - Solar
ASPEX Aditya Solar Wind Particle Experiment
ASPIICS Association of Spacecraft for Polarimetric and

Imaging Investigation of the Corona of the Sun
AUC Area Under Curve
BELSPO Belgian Federal Science Policy Office
BS Brier Score
BSS Brier Skill Score
CCMC Community Coordinated Modeling Center
CME Coronal Mass Ejection
CoRA Colorado Research Associates
COSPAR Committee on Space Research
CSHKP Carmichael, Sturrock, Hirayama, Kopp,

Pneuman
DAFFS Discriminant Analysis Flare Forecasting System
DeepLIFT Deep Learning Important FeaTures
DEM Differential Emission Measure
DL Deep Learning
DMLab Data Mining Laboratory
EIS Extreme-ultraviolet Imaging Spectrometer
EOP Emergency Operation Plans
ESA European Space Agency
EUHFORIA EUropean Heliospheric FORecasting

Information Asset
EUV Extreme Ultraviolet
EUVST Extreme-ultraviolet High-throughput

Spectroscopic Telescope
EW East–West

Patches
HEL1OS High Energy Lagrange 1 Orbiting X-ray

Spectrometer
HMI Helioseismic and Magnetic Imager
HSS Heidke Skill Score
HXI Hard X-ray Imager
ILWS International Living With a Star
IMF Interplanetary Magnetic Field
IRIS Interface Region Imaging Spectrograph
ISAS Institute of Space and Astronautical Science
ISES International Space Environment Service
ISRO Indian Space Research Organisation
ISSI International Space Science Institute
ISWAT International Space Weather Action Teams
JAXA Japan Aerospace Exploration Agency
KSWC Korean Space Weather Center
L (1/4/5) Lagrange
LASCO Large Angle and Spectrometric Coronagraph
LIME Local Interpretable Model-Agnostic Explanation
LOS Line-of-sight
LST Lyman-alpha Solar Telescope
LSTM Long Short-Term Memory Networks
LWS Living With a Star
MAG4 Magnetogram forecast model
MagPy Python package that provides tools for

geomagnetic data analysis
MDI Michelson Doppler Imager
MFR Magnetic Flux Rope
MHD Magnetohydrodynamic
ML Machine Learning
MOSWOC Met Office Space Weather Operations Centre
MSE Mean Squared Error
MURaM Max Planck University of Chicago Radiative

Magnetohydrodynamic Model
MUSE Multi-Slit Solar Explorer
NASA National Aeronautics and Space Administration
NFI Narrow Field Imager
NICT National Institute of Information and

Communications Technology
NLFF Nonlinear force-free
NOAA National Oceanic and Atmospheric

Administration
NRC National Research Council
NRT Near-realtime
NSF National Science Foundation
NWRA NorthWest Research Associates
O2R Operations-to-Research
PAPA Plasma Analyzer Package for Aditya
PEDS Physics-Enhanced Deep Surrogate
PIL Polarity Inversion Line
PINN Physics-Informed Neural Network

(continued on next page)
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Table B.5 (continued)

Acronym Meaning

PROBA PRoject for On-Board Autonomy
PROSPER Probabilistic Solar Particle Event Forecasting
PUNCH Polarimeter to UNify the Corona and

Heliosphere
R2O Research-to-Operations
RMSE Root Mean Squared Error
ROC Relative Operating Characteristic
SAMNet Solar Acvivity Monitor Network
SCI Solar Corona Imager
SDO Solar Dynamics Observatory
SEL Sun-Earth line
SEP Solar Energetic Particle
SHAP SHapley Additive exPlanations
SHARP Space Weather Helioseismic and Magnetic

Imager Active Region Patches
SMA Sheared Magnetic Arcade
SMARP Space Weather Michelson Doppler Imager Active

Region Patch
SMOC Science Mission Operation Center
SODC Science Operation and Data Center
SOHO Solar and Heliospheric Observatory
SoLEXS Solar Low Energy X-ray Spectrometer
SOR Solar Ring
SPO Solar Polar-orbit Observatory
SPRINTS Space Radiation Intelligent System
SRS Solar Region Summary
SS Skill Score
STEREO Solar Terrestrial Relations Observatory
STFC Science and Technology Facilities Council
SUIT Solar Ultraviolet Imaging Telescope
SWATNET Space Weather Awareness Training Network
SWPC Space Weather Prediction Center
SXR Soft X-ray
TN True Negative
TP True Positive
TSS True Skill Statistic
UK United Kingdom
USA United States of America
VELC Variable Emission Line Coronagraph
WFI Wide Field Imager
WSA Wang Sheeley Arge
WTSS Weighted True Skill Statistic
XRS X-ray Sensor
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events observed at 1 au in 1996–2010. J. Space Weather Space Clim. 3,
A12. https://doi.org/10.1051/swsc/2013030.

van Ballegooijen, A.A., Martens, P.C.H., 1989. Formation and Eruption
of Solar Prominences. Astrophys J 343, 971. https://doi.org/10.1086/
167766.

Van Horn, R.L., 1971. Validation of simulation results. Manage. Sci. 17
(5), 247–258. https://doi.org/10.1287/mnsc.17.5.247.

Vlahos, L., Georgoulis, M., Kluiving, R., Paschos, P., 1995. The statistical
flare. Astron. Astrophys. 299, 897, URL: https://ui.adsabs.harvard.
edu/abs/1995A&A...299.897V.

Vlahos, L., Georgoulis, M.K., 2004. On the self-similarity of unstable
magnetic discontinuities in solar active regions. Astrophys J 603 (1),
L61. https://doi.org/10.1086/383032.

Vourlidas, A., 2015. Mission to the sun-earth lsub5/sublagrangian point:
An optimal platform for space weather research. Space. Weather 13
(4), 197–201. https://doi.org/10.1002/2015sw001173.

Vourlidas, A., 2021. Improving the medium-term forecasting of space
weather: A big picture review from a solar observer’s perspective.
Frontiers in Astronomy and Space Sciences 8. https://doi.org/10.3389/
fspas.2021.651527.

Vourlidas, A., Carley, E.P., Vilmer, N., 2020. Radio Observations of
Coronal Mass Ejections: Space Weather Aspects. Frontiers in
Astronomy and Space Sciences 7, 43. https://doi.org/10.3389/
fspas.2020.00043.

Vourlidas, A., Liewer, P.C., Velli, M., & Webb, D. (2018). Solar Polar
Diamond Explorer (SPDEx): Understanding the Origins of Solar
Activity Using a New Perspective. arXiv e-prints, (p.
arXiv:1805.04172). arXiv:1805.04172.

Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y., 2013. How Many
CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux
Ropes, and Prominences in Coronagraph Observations of CMEs. Sol.
Phys. 284 (1), 179–201. https://doi.org/10.1007/s11207-012-0084-8,
arXiv:1207.1599.

Vourlidas, A., Turner, D., Biesecker, D., Coster, A., Engell, A., Ho, G.,
Immel, T., Keys, C., Lanzerotti, L., Lu, G., Lugaz, N., Luhmann, J.,
56
Mays, L., O’Brien, P., Semones, E., Spence, H., Upton, L., & White, S.
(2021). Space weather science and observation gap analysis for the
national aeronautics and space administration. https://science.nasa.-
gov/science-pink/s3fs-public/atoms/files/GapAnalysisReport_full_f-
inal.pdf.

Wang, D., Liu, R., Wang, Y., Liu, K., Chen, J., Liu, J., Zhou, Z., Zhang,
M., 2017. Critical height of the torus instability in two-ribbon solar
flares. Astrophys. J. Lett. 843, L9. https://doi.org/10.3847/2041-8213/
aa79f0.

Wang, H., Ewell, J., M.W., Zirin, H., & Ai, G. (1994). Vector Magnetic
Field Changes Associated with X-Class Flares. The Astrophysical
Journal, 424, 436. doi:10.1086/173901.

Wang, H.-M., Song, H., Jing, J., Yurchyshyn, V., Deng, Y.-Y., Zhang,
H.-Q., Falconer, D., Li, J., 2006. The relationship between magnetic
gradient and magnetic shear in five super active regions producing
great flares. Chin. J. Astron. Astrophys. 6 (4), 477–488. https://doi.
org/10.1088/1009-9271/6/4/11.

Wang, J., Ao, X., Wang, Y., Wang, C., Cai, Y., Luo, B., Liu, S., Shen, C.,
Zhuang, B., Xue, X., et al., 2018. An operational solar wind prediction
system transitioning fundamental science to operations. J. Space
Weather Space Clim. 8, A39. https://doi.org/10.1051/swsc/2018025.

Wang, W., Zhu, C., Qiu, J., Liu, R., Yang, K.E., Hu, Q., 2019. Evolution
of a Magnetic Flux Rope toward Eruption. Astrophys J 871 (1), 25.
https://doi.org/10.3847/1538-4357/aaf3ba, arXiv:1812.03437.

Wang, X., Chen, Y., Toth, G., Manchester, W.B., Gombosi, T.I., Hero,
A.O., Jiao, Z., Sun, H., Jin, M., Liu, Y., 2020. Predicting solar flares
with machine learning: Investigating solar cycle dependence. Astro-
phys J 895 (1), 3. https://doi.org/10.3847/1538-4357/ab89ac.

Wang, Y., Bai, X., Chen, C., Chen, L., Cheng, X., Deng, L., Deng, L.,
Deng, Y., Feng, L., Gou, T., Guo, J., Guo, Y., Hao, X., He, J., Hou,
J., Huang, J., Huang, Z., Ji, H., Jiang, C., Jiang, J., Jin, C., Li, X., Li,
Y., Liu, J., Liu, K., Liu, L., Liu, R., Liu, R., Qiu, C., Shen, C., Shen,
F., Shen, Y., Shi, X., Su, J., Su, Y., Su, Y., Sun, M., Tan, B., Tian, H.,
Wang, Y., Xia, L., Xie, J., Xiong, M., Xu, M., Yan, X., Yan, Y.,
Yang, S., Yang, S., Zhang, S., Zhang, Q., Zhang, Y., Zhao, J., Zhou,
G., Zou, H., 2023. Solar ring mission: Building a panorama of the Sun
and inner-heliosphere. Adv. Space Res. 71 (1), 1146–1164. https://doi.
org/10.1016/j.asr.2022.10.04510.48550/arXiv.2210.10402.

Webb, D., Howard, T., Fry, C., Kuchar, T., Odstrcil, D., Jackson, B.,
Bisi, M., Harrison, R., Morrill, J., Howard, R., et al., 2009. Study of
cme propagation in the inner heliosphere: Soho lasco, smei and stereo
hi observations of the january 2007 events. Sol. Phys. 256, 239–267.
https://doi.org/10.1007/s11207-009-9351-8.

Welsch, B.T., Li, Y., Schuck, P.W., Fisher, G.H., 2009. What is the
Relationship Between Photospheric Flow Fields and Solar Flares?
Astrophys J 705 (1), 821–843. https://doi.org/10.1088/0004-637X/705/
1/821, arXiv:0905.0529.

Wheatland, M., 2004. A bayesian approach to solar flare prediction.
Astrophys J 609 (2), 1134. https://doi.org/10.1086/421261.

Wheatland, M., 2005. A statistical solar flare forecast method. Space.
Weather 3 (7). https://doi.org/10.1029/2004SW000131.

Whitman, K., Egeland, R., Richardson, I.G., Allison, C., Quinn, P., et al.,
2022. Review of solar energetic particle models. Adv. Space Res.
https://doi.org/10.1016/j.asr.2022.08.006, URL: https://www.sci-
encedirect.com/science/article/pii/S0273117722007244.

Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L.B.,
Bourne, P.E., Bouwman, J., Brookes, A.J., Clark, T., Crosas, M.,
Dillo, I., Dumon, O., Edmunds, S., Evelo, C.T., Finkers, R.,
Gonzalez-Beltran, A., Gray, A.J.G., Groth, P., Goble, C., Grethe, J.
S., Heringa, J., ’T Hoen, P.A.C., Hooft, R., Kuhn, T., Kok, R., Kok,
J., Lusher, S.J., Martone, M.E., Mons, A., Packer, A.L., Persson, B.,
Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes,
E., Sengstag, T., Slater, T., Strawn, G., Swertz, M.A., Thompson, M.,
van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A.,
Wittenburg, P., Wolstencroft, K., Zhao, J., & Mons, B. (2016). The
FAIR Guiding Principles for scientific data management and stew-
ardship. Scientific Data, 3, 160018. doi:10.1038/sdata.2016.18.

https://doi.org/10.1051/0004-6361:20031691
https://doi.org/10.1051/0004-6361:20031691
https://doi.org/10.1088/2041-8205/782/1/L10
https://doi.org/10.1029/2021sw002797
https://doi.org/10.1029/2021sw002797
https://doi.org/10.18520/cs/v113/i04/616-619
https://doi.org/10.18520/cs/v113/i04/616-619
https://doi.org/10.1088/0004-637X/772/2/115
https://doi.org/10.1088/0004-637X/772/2/115
https://doi.org/10.1088/2041-8205/759/1/L4
https://doi.org/10.1086/514814
https://doi.org/10.1051/swsc/2013030
https://doi.org/10.1086/167766
https://doi.org/10.1086/167766
https://doi.org/10.1287/mnsc.17.5.247
http://refhub.elsevier.com/S0273-1177(24)00173-X/h2275
http://refhub.elsevier.com/S0273-1177(24)00173-X/h2275
http://refhub.elsevier.com/S0273-1177(24)00173-X/h2275
https://doi.org/10.1086/383032
https://doi.org/10.1002/2015sw001173
https://doi.org/10.3389/fspas.2021.651527
https://doi.org/10.3389/fspas.2021.651527
https://doi.org/10.3389/fspas.2020.00043
https://doi.org/10.3389/fspas.2020.00043
https://doi.org/10.1007/s11207-012-0084-8
https://doi.org/10.3847/2041-8213/aa79f0
https://doi.org/10.3847/2041-8213/aa79f0
https://doi.org/10.1088/1009-9271/6/4/11
https://doi.org/10.1088/1009-9271/6/4/11
https://doi.org/10.1051/swsc/2018025
https://doi.org/10.3847/1538-4357/aaf3ba
https://doi.org/10.3847/1538-4357/ab89ac
https://doi.org/10.1016/j.asr.2022.10.04510.48550/arXiv.2210.10402
https://doi.org/10.1016/j.asr.2022.10.04510.48550/arXiv.2210.10402
https://doi.org/10.1007/s11207-009-9351-8
https://doi.org/10.1088/0004-637X/705/1/821
https://doi.org/10.1088/0004-637X/705/1/821
https://doi.org/10.1086/421261
https://doi.org/10.1029/2004SW000131
https://doi.org/10.1016/j.asr.2022.08.006


M.K. Georgoulis et al. Advances in Space Research xxx (xxxx) xxx
Winter, E. (2002). Chapter 53 the shapley value. (pp. 2025–2054). Elsevier
volume 3 of Handbook of Game Theory with Economic Applications.
URL: https://www.sciencedirect.com/science/article/pii/
S1574000502030163. doi: 10.1016/S1574-0005(02)03016-3.

Woodcock, F., 1976. The evaluation of yes/no forecasts for scientific and
administrative purposes. Mon. Weather Rev. 104 (10), 1209–1214.
https://doi.org/10.1175/1520-0493(1976)104<1209:TEOYFF>2.0.
CO;2.

Woods, M.M., Inoue, S., Harra, L.K., Matthews, S.A., Kusano, K., 2020.
Serial Flaring in an Active Region: Exploring Why Only One Flare Is
Eruptive. Astrophys J 890 (1), 84. https://doi.org/10.3847/1538-4357/
ab6bc8.

Wyper, P.F., Antiochos, S.K., DeVore, C.R., 2017. A universal model for
solar eruptions. Nature 544 (7651), 452–455. https://doi.org/
10.1038/nature22050.

Xu, L., Yan, Y., Huang, X., 2022. Deep Learning in Solar Astronomy.
Springer Singapore. https://doi.org/10.1007/978-981-19-2746-1.

Xue, Z., Yan, X., Cheng, X., Yang, L., Su, Y., Kliem, B., Zhang, J., Liu,
Z., Bi, Y., Xiang, Y., Yang, K., Zhao, L., 2016. Observing the release
of twist by magnetic reconnection in a solar filament eruption. Nat.
Commun. 7, 11837. https://doi.org/10.1038/ncomms11837.

Xue, Z., Yan, X., Yang, L., Wang, J., Zhao, L., 2017. Observing
Formation of Flux Rope by Tether-cutting Reconnection in the Sun.
Astrophys. J. Lett. 840 (2), L23. https://doi.org/10.3847/2041-8213/
aa7066.

Yadav, V.K., Srivastava, N., Ghosh, S., Srikar, P., Subhalakshmi, K.,
2018. Science objectives of the magnetic field experiment onboard
Aditya-L1 spacecraft. Adv. Space Res. 61 (2), 749–758. https://doi.
org/10.1016/j.asr.2017.11.008, URL: https://www.sciencedirect.-
com/science/article/pii/S0273117717308037.

Yan, X., Wang, J., Guo, Q., Xue, Z., Yang, L., Tan, B., 2021.
The Formation Process of the First Halo Coronal Mass Ejection in
Solar Cycle 25: Magnetic Cancellation, Bidirectional Jet, and Hot
Channel. Astrophys J 919 (1), 34. https://doi.org/10.3847/1538-4357/
ac116d.
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