
RESEARCH ARTICLE
www.fp-journal.org

A New 2D Formulation of Modified General Relativity

Christian G. Böhmer* and Erik Jensko

It is well known that the Einstein–Hilbert action in two dimensions is
topological and yields an identically vanishing Einstein tensor. Consequently
one is faced with difficulties when formulating a non-trivial gravity model. The
authors present a new, intrinsically two-dimensional, approach to this
problem based on the Einstein action. This yields a well defined variational
approach which results in new field equations that break diffeomorphism
invariance. This proposed approach does not require the introduction of
additional scalar fields, nor the use of conformal transformations. However,
how including conformal counter terms leads to equivalent results is shown.
In doing so, an explanation for why previous approaches worked can be
provided. Solutions to the field equations are briefly discussed.

1. Introduction

The Einstein field equations derived from the Einstein–Hilbert
action in two dimensions (2D) are problematic since the Ein-
stein tensor vanishes identically. This is because the action is
topological in 2D, leading to the identity R𝜌𝜎 = g𝜌𝜎R∕2 which re-
lates the Ricci tensor and the Ricci scalar. Many different ap-
proaches have been considered in the past to construct 2D gravi-
tational toy models, see ref. [1] and references therein. Of partic-
ular interest for the present work is the approach used in ref. [2]
where the authors used a conformal transformation to formu-
late an action in the limit D → 2. Ideas along these lines have
had a recent surge in interest when these were applied to what is
now called four-dimensional Einstein–Gauss–Bonnet Gravity,[3]

together with various comments and critiques.[4–6] Nonetheless
this model has attracted a substantial amount of interest, see ref.
[7] for a recent review. The limiting theory of thismodel is aHorn-
deski type theory.[8] There are also close connections between the
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equations presented below and 2D
Jackiw–Teitelboim gravity.[9,10] Similar
relations have also been found in other
D → 2 limits of gravity,[2,11,12] which we
refer to for comparison. An alternative
approach is to look beyond the Rieman-
nian framework, such as in Poincaré
gravity.[13,14]

Here will present a novel way to study
2D gravity within the standard Rieman-
nian geometry. Our approach is intrin-
sically 2D and hence does not require
the use of dimensional limits. Moreover,
we do not need to introduce a scalar
field via conformal transformations or
otherwise, nor do we have to subtract

certain counter terms to make things work. However, in our
model we are also able to show how conformal transformations
and scalar fields are related to our approach and provide an a pos-
teriori justification for their use and the specific counter terms
which have been used in previous works. This result gives an illu-
minating view of the role of conformal counter terms in these the-
ories.
Our approach explicitly breaks the diffeomorphism symmetry

present in standard gravitational theories. As a result of break-
ing this symmetry, additional non-trivial constraint equations are
generated, replacing the usual Bianchi identity associated with
the diffeomorphism invariance of General Relativity. These new
constraints are coordinate-dependent, and we show how they can
be satisfied by choosing appropriate coordinates for given solu-
tions of the theory. Crucially, this allows interesting non-trivial
solutions in 2D.

2. The Model and its Key Properties

Let us begin by recalling the well-known fact that the Einstein
field equations can be derived from the so-called Einstein action

SEinstein =
1
2𝜅 ∫ g𝜇𝜈(Γ𝜎

𝜆𝜇
Γ𝜆

𝜎𝜈
− Γ𝜎

𝜇𝜈
Γ𝜆

𝜎𝜆
)
√
−g d4x . (1)

This follows from the fact that this action differs from the usual
Einstein–Hilbert action by a boundary term which does not con-
tribute to the field equations. Specifically the Ricci scalar R can
be written as

R = g𝜇𝜈(Γ𝜎

𝜆𝜇
Γ𝜆

𝜎𝜈
− Γ𝜎

𝜇𝜈
Γ𝜆

𝜎𝜆
) + B (2)

where B is the said boundary term, see ref. [15, 16] for models
of modified gravity based on the Einstein action and the bound-
ary term. The Einstein action is not a true coordinate scalar; it is
pseudo-invariant, in the sense that it is diffeomorphism invariant
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up to a boundary term. This can be explicitly seen by performing a
general coordinate transformation and noting that the inhomo-
geneous terms take the form of a total derivative.[17] In 2D, the
action also takes the form of a total derivative, and a scalar-tensor
limit can be obtained from the theory.[18]

We will now introduce the new object

G := g𝜇𝜈
(
c1Γ𝜎

𝜆𝜇
Γ𝜆

𝜎𝜈
− c2Γ𝜎

𝜇𝜈
Γ𝜆

𝜎𝜆

)
, (3)

where c1 and c2 are two arbitrary constants. The object G is not
a true coordinate scalar unless c1 = c2 = 0, in which case G = 0,
which follows from the fact that the Christoffel symbol is not a
tensor. Moreover, it is no longer pseudo-invariant except when
c1 = c2. In the general case when c1 ≠ c2, a general coordinate
transformation introduces inhomogeneous terms that cannot be
written in the form of a total derivative. The object G is therefore
non-covariant and theories constructed from it will not be invari-
ant under diffeomorphisms. The explicit breaking of this sym-
metry will lead to additional constraints, which will be shown in
the following section.
Neglecting an overall scaling, the quantity G only depends

on one constant. To see this, we can factor out the constant c1,
thereby introducing the ratio c1∕c2 as the one free constant. As
the overall scaling of the action will not affect the model under
consideration, we will henceforth set c1 = 1 and c2 = 𝛼, with 𝛼

being the unique parameter of the model

G = g𝜇𝜈(Γ𝜎

𝜆𝜇
Γ𝜆

𝜎𝜈
− 𝛼 Γ𝜎

𝜇𝜈
Γ𝜆

𝜎𝜆
) . (4)

Next, we introduce the new modified action in 2D

Sc =
1
2𝜅 ∫ G

√
−g d2x , (5)

where 𝜅 = 8𝜋G(2) is the gravitational coupling constant and we
useG(2) to denote Newton’s 2D constant. When considering vari-
ations with respect to the metric, this action will produce non-
trivial field equation whenever 𝛼 ≠ 1. When 𝛼 = 1 one would
find the 2D Einstein tensor which vanishes identically. Note that
this model is intrinsically two-dimensional as no reference to
a higher-dimensional theory is made, nor are any additional
fields present.
One can now consider the following action

S = lim
𝛼→1

1
2𝜅 ∫

G
1 − 𝛼

√
−g d2x + Smatter , (6)

and study its metric variations, which will be well-defined in the
limit 𝛼 → 1. This is a straightforward exercise and gives

lim
𝛼→1

1
1 − 𝛼

[(
R𝜌𝜎 + 𝜕(𝜌Γ𝜆

𝜎)𝜆 −
1
2
g𝜌𝜎g

𝜂𝜈Γ𝛾

𝜇𝜈
Γ𝜇

𝛾𝜂

)

+ 𝛼

(
−1
2
g𝜌𝜎R − 𝜕(𝜌Γ𝜆

𝜎)𝜆 +
1
2
g𝜌𝜎g

𝜂𝜈Γ𝛾

𝜇𝜈
Γ𝜇

𝛾𝜂

)]
= 𝜅T𝜌𝜎 , (7)

In 2D we have the geometrical identity R𝜌𝜎 = g𝜌𝜎R∕2, which im-
plies the field equations reduce to

lim
𝛼→1

1
1 − 𝛼

[
(1 − 𝛼)

(1
2
Rg𝜌𝜎 + 𝜕(𝜌Γ𝜆

𝜎)𝜆 −
1
2
g𝜌𝜎g

𝜂𝜈Γ𝛾

𝜇𝜈
Γ𝜇

𝛾𝜂

)]
= 𝜅T𝜌𝜎 .

(8)

It is nowmeaningful to take the limit 𝛼 → 1 and to state the final
field equations of this model

E𝜌𝜎 := 𝜕𝜌Γ𝜆

𝜎𝜆
+ 1
2
g𝜌𝜎

(
R − g𝜂𝜈Γ𝛾

𝜇𝜈
Γ𝜇

𝛾𝜂

)
= 𝜅T𝜌𝜎 . (9)

The symmetrization brackets in the connection term have been
dropped since Γ𝜆

𝜎𝜆
= 𝜕𝜎 log

√
−g so that 𝜕𝜌Γ𝜆

𝜎𝜆
= 𝜕𝜌𝜕𝜎 log

√
−g is

automatically symmetric.
The final result of this derivation can be understood easily: the

first part gives rise to half of the Einstein tensor plus additional
non-covariant terms, whilst the 𝛼 part gives rise to the other half
and the same additional non-covariant terms with an overall mi-
nus sign. The usual limit of 𝛼 → 1 gives the Einstein tensor with
the additional terms mutually cancelling. However, the peculiar
division by (1 − 𝛼) gives something new, not previously studied.
This result is unique to 2D, as in any other dimension the limit
would give a singular contribution coming from the Einstein ten-
sor. Consequently, one would have to deal with these singular
terms in one way or another. Many of the previously mentioned
approaches introduced scalar fields to formulate dimensionally
reduced theories. Due to our geometrical formulation intrinsic
to 2D, there is no natural scalar present. Moreover, no counter
terms have to be introduced since our field equations are regular
in the limit.
However, we can rewrite our field equation slightly by viewing

the determinant of the metric as a scalar field, and this will later
be linked back to conformal transformations. To do sowe setΦ :=
log

√
−g and consider the trace of (9). One finds

g𝜇𝜈𝜕𝜇𝜕𝜈Φ + (R − g𝜂𝜈Γ𝛾

𝜇𝜈
Γ𝜇

𝛾𝜂
) = 𝜅T , (10)

where T = g𝜌𝜎T𝜌𝜎 is the trace of the energy-momentum tensor.
We also have the following form of the Ricci scalar

R = e−Φg𝜇𝜈𝜕𝛼(e
ΦΓ𝛼

𝜇𝜈
) − g𝜇𝜈𝜕𝜇𝜕𝜈Φ − g𝜇𝜈Γ𝛼

𝜇𝛽
Γ𝛽

𝜈𝛼
, (11)

which one could use to further rewrite the field equations. We
can now decompose the field equations into a trace-free equation
and a trace equation respectively as

𝜕𝜌𝜕𝜎Φ − 1
2
g𝜌𝜎(g

𝜇𝜈𝜕𝜇𝜕𝜈Φ) = 𝜅

(
T𝜌𝜎 −

1
2
g𝜌𝜎T

)
, (12)

g𝜇𝜈𝜕𝜇𝜕𝜈Φ + (R − g𝜂𝜈Γ𝛾

𝜇𝜈
Γ𝜇

𝛾𝜂
) = 𝜅T . (13)

One could replace the two partial derivatives with covariant ones
by also introducing compensating connection terms. However,
this does not seem to improve the conceptual understanding of
the equations. In contrast to ref. [2], for example, these equa-
tions do not decouple in the following sense. One cannot isolate
the scalar field, gravity or matter in such a way that its evolution
becomes independent of the other.

Fortschr. Phys. 2024, 2300216 2300216 (2 of 5) © 2024 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

 15213978, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.202300216 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [09/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

Let us now consider the conformal transformation g̃𝜇𝜈 =
e2𝜙g𝜇𝜈 , where a tilde will always denote the quantity in the con-
formal frame. A direct calculation gives the interesting result

√
−g̃G̃ −

√
−gG = (1 − 𝛼)

√
−gg𝛼𝛽Γ𝜎

𝛼𝛽
𝜕𝜎𝜙 , (14)

which means that upon division by (1 − 𝛼) one can derive, once
again, a well-defined limiting theory when 𝛼 → 1. Let us there-
fore define the following action with this additional regulariza-
tion counter term

S′ = lim
𝛼→1

1
(1 − 𝛼) ∫ (

√
−g̃G̃ −

√
−gG)d2x

= ∫ g𝛼𝛽Γ𝜎

𝛼𝛽
𝜕𝜎𝜙

√
−g d2x . (15)

This takes the form of an unusual gravitational theory with non-
minimally coupled scalar field. Containing an explicit connection
term, this action is clearly not invariant under infinitesimal coor-
dinate transformations. Let us thus treat action S′ as the starting
of a theoretical model and consider independent variations of the
scalar field 𝜙 and the metric tensor g𝛼𝛽 . This leads to what is per-
haps a most surprising result: the field equations when varying
𝜙 are identical to the trace of our field equation (9) while varia-
tions with respect to the metric yield the trace-free Equation (12).
It needs to be emphasized here that the scalar field of the confor-
mal transformation enters the theory as a true independent field
while the previously introduced Φ is related to the determinant
of the metric and thus carries no independent meaning.
One can somewhat reconcile these observations when going

back to (3). The 𝛼 term is given by

g𝜇𝜈Γ𝜎

𝜇𝜈
Γ𝜆

𝜎𝜆
= g𝜇𝜈Γ𝜎

𝜇𝜈
𝜕𝜎 log

√
−g = g𝜇𝜈Γ𝜎

𝜇𝜈
𝜕𝜎Φ , (16)

and hence is form equivalent to the term in the action (15). Since
the first term and the 𝛼 term both yield the same field equa-
tions in 2D, see (7), it now clear that S′ also must lead to those
same field equations. From our point of view it is most exciting
to see that we can demonstrate that the conformal approach used
previously can be well understood in an intrinsically 2D setting
without having to worry about limits. We view this as the a poste-
riori justification of why previous approaches have worked. This
approach can likely be extended to four-dimensional Einstein–
Gauss–Bonnet Gravity.

3. Conservation Equations and Exact Solutions

Before studying the field equations explicitly, we will first con-
sider infinitesimal coordinate transformations of action (5). This
allows us to investigate the consequences of breaking diffeomor-
phism invariance in our modified action. The object G, which
can be seen as the Lagrangian of our action, has the following
transformation properties under infinitesimal coordinate trans-
formations

Ĝ(x̂) = G −M𝛼𝛽
𝛾𝜕𝛼𝜕𝛽𝜉

𝛾 , M𝛼𝛽
𝛾

= 2g𝜇(𝛼Γ𝛽)
𝜇𝛾

− 𝛼g𝛼𝛽Γ𝜆

𝜆𝛾
− 𝛼g𝜇𝜈𝛿(𝛽

𝛾
Γ𝛼)
𝜇𝜈
, (17)

which is in complete analogy to the results in ref. [15]. Follow-
ing the same approach one finds that the change in the action
generated by the vector field 𝜉 is

𝛿𝜉Sc = ∫ 𝜕𝛼𝜕𝛽 (
√
−gM𝛼𝛽

𝛾 )𝜉
𝛾d2x , (18)

up to boundary terms. When 𝛼 = 1 this becomes the twice-
contracted Bianchi identity in non-standard form. This reflects
the fact that the twice-contracted Bianchi identity is associated
with the diffeomorphism invariance of General Relativity. How-
ever, when 𝛼 ≠ 1 one arrives at

𝜕𝛼𝜕𝛽 (
√
−gM𝛼𝛽

𝛾 ) = (1 − 𝛼)N𝛾 , (19)

with N𝛾 given explicitly below. This is most interesting as it im-
plies that one can again divide by (1 − 𝛼) and arrive at some limit-
ing conservation equation which has no obvious analogue to pre-
viously studied equations. It is also not clear at this point whether
or not this limiting equation is meaningful.
One way to address this latter question is to compute ∇𝛼E

𝛼
𝛾
,

using the left-hand side of (9) and using the standard way to com-
pute the covariant derivative of a rank 2 object. Strictly speaking
one should not do this as the covariant derivative of a connection
is not well-defined and this left-hand side is not a rank 2 tensor.
However, it turns out that the resulting equation is indeed equiv-
alent to the above N𝛾 and one finds ∇𝛼E

𝛼
𝛾
= N𝛾 . Therefore, the

field equations and the action both give rise to the same ‘con-
servation’ equation which shows the internal consistency of this
model. The explicit form reads

N𝛾 = 𝜕𝛼E
𝛼

𝛾
+ Γ𝛼

𝛼𝜎
E𝜎

𝛾
− Γ𝜎

𝛼𝛾
E𝛼

𝜎
, (20)

with E𝛼
𝛽
given by the field Equation (9). Also see ref. [19], where a

similar result is obtained with diffeomorphism invariance being
dynamically reinstated.
In the absence of matter it would be somewhat natural to seek

only solutions satisfying N𝛾 = 0 while in the presence of matter
this condition is not required, strictly speaking. When matter is
present one could envisage a situation where∇𝛼T

𝛼
𝛾
= −N𝛾 so that

the total action would remain invariant under diffeomorphisms,
but the gravitational andmatter actions would not be invariant in-
dependently. However, one can equally well argue for a different
approach, namely, ignoring N𝛾 altogether. Since the field equa-
tions are non-tensorial one could simply neglect infinitesimal co-
ordinate transformations. This could also be seen as some restric-
tions on the allowed coordinates of this theory.[20] When studying
some explicit solutions of the field equations next, we will in fact
find thatN𝛾 = 0 for physically interesting solutions whichmeans
that these solution appear as if they were diffeomorphism invari-
ant. It will be useful to include a cosmological constant Λ in the
field equations, so in the following we will work with

𝜕𝜌Γ𝜆

𝜎𝜆
+ 1
2
g𝜌𝜎

(
R − g𝜂𝜈Γ𝛾

𝜇𝜈
Γ𝜇

𝛾𝜂

)
− Λg𝜌𝜎 = 𝜅T𝜌𝜎 . (21)

The sign of the Λ term was chosen so that Λ > 0 corresponds to
de Sitter space, as will be seen. Let us now discuss two interesting
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types of solutions. Firstly, we consider the cosmological metric

ds2 = −dt2 + a2(t)dx2 , (22)

where the lapse function was set to one. This line element gives
N𝛾 = 0 which means that this class of solutions satisfies the con-
servation equation. The field equations with a cosmological term
are

ȧ2

2a2
− Λ = 0 , ä

a
− ȧ2

2a2
− Λ = 0 , (23)

which have the solution a(t) = a0 exp(±
√
2Λt), where a0 is the

constant of integration. This is the usual de Sitter solution with
Ricci scalar R = 4Λ, see ref. [21], justifying the previous choice of
sign in Equation (21).
Secondly, turning our interests to black hole solutions, let us

therefore consider the line element

ds2 = −e2A(x)dt2 + e2B(x)dx2 . (24)

The vacuum field equations with (negative) cosmological con-
stant Λ = −1∕𝓁2 are given by

A′′ + 1
2
(A′2 + B′2) − A′B′ − 1

𝓁2
e2B = 0 , (25)

B′′ − 1
2
(A′2 + B′2) + A′B′ + 1

𝓁2
e2B = 0 , (26)

where one immediately notes that summing both equa-
tions yields A′′ = −B′′. This implies the result A = −B + b1 +
b2x. Since the line element is static, we can always rescale the
time coordinate to eliminate the constant b1. This means we are
free to choose b1 = 0. Substituting this result into either of the
two field equations gives

B′′ − 2B′2 + 2b2B
′ −

(b2)
2

2
+ 1

𝓁2
e2B = 0 , (27)

and can be solved explicitly. We find two types of solutions

e−2B = x2

𝓁2
+ c1x + c2 , if b2 = 0 , (28)

e−2B = 2
(b22)𝓁

2
+ e−b2x(c3x + c4) , if b2 ≠ 0 . (29)

Here the ci are constants of integration. It is clear that these two
types of solutions are distinct.
For the b2 = 0 solution, setting the other integration constant

to zero, b1 = 0, leads to the simple relation between the metric
functions A(x) = −B(x). Additionally setting the constant c1 = 0
leads to the following convenient form

e−2B = e2A = x2 − 2

𝓁2
, (30)

where we have defined c2 = −∕𝓁2 with  a new constant of in-
tegration.
The most remarkable feature of this solution is that this takes

the form of the famous Bañados-Teitelboim-Zanelli (BTZ) black

hole solution.[22] It satisfies R = −2∕𝓁2 as expected for this so-
lution. This choice of constants of integration also ensure that
e−2B = e2A, as in the Schwarzschild solution, for example. We also
note thatN𝛾 = 0 for this solution and remark that these solutions
are analogous to those discussed in refs. [23, 24]. This is perhaps
unsurprising as, after all, two-dimensional geometries are rather
simple as the Riemann curvature tensor has only one indepen-
dent component.
Finally, let us briefly comment on the b2 ≠ 0 solution (29). It

does not satisfy the often found condition e−2B = e2A, it also does
not give rise to a constant Ricci scalar which is expected for a vac-
uum solution in the presence of a cosmological constant. There-
fore we regard this solution as less interesting and conclude that
b2 = 0 is the natural choice.

4. Conclusions

Using the original Einstein action as a starting point, we were
able to construct an intrinsically 2D approach to formulate a the-
ory of gravity in 2D. This is achieved without introducing addi-
tional fields into the theory. Ourmodel sharesmany features with
previously studied approaches but also shows distinct features. In
general, our model will break diffeomorphism invariance, how-
ever, in a somewhat subtle way. When considering black hole so-
lutions or cosmological solutions, for example, these appear as
if the were invariant, which can be related back to the particular
choice of coordinates employed. It should be noted that diffeo-
morphism invariance could be formally restored via the Stueck-
elberg trick, explicitly introducing new degrees of freedom asso-
ciated with the broken symmetries, again see.[17] From this per-
spective, the above theory is simply gauge-fixed by construction,
but still completely legitimate from a mathematical standpoint.
It would then be interesting to use this approach in the future to
determine the exact number of dynamical degrees of freedom of
this model. In the formulation presented here, however, choos-
ing appropriate coordinates ensures the consistency of themodel
and its solutions. Again, this can be viewed as a form of gauge fix-
ing.
Interestingly, we found that the determinant of the metric

takes on the role of an unusual scalar that is non-minimally cou-
pled to gravity. This was further expanded by using conformal
transformations, which showed the equivalence of both meth-
ods. While there are many possible approaches to construct a 2D
gravity model, our approach appears to provide a genuinely new
angle to an old problem.
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