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Abstract

This dissertation probes the role of complex network theory in modelling multivari-

ate time-series systems, a vital aspect in a wide spectrum of contemporary science.

Our methodology counters many practical limitations by exploring the sparse topol-

ogy of time-series data.

Financial time series are marked by persistent discontinuities and low signal-

to-noise ratios. In this work, we propose two methodologies predicated on informa-

tion filtering networks—a noise filtering technique—to address these complexities.

These methodologies are subsequently extended to portfolio optimization problems.

Inverse Covariance Clustering, a multivariate temporal clustering method, is inte-

grated with contemporary portfolio optimization strategies with the aim of mitigat-

ing the impact of time-series discontinuities, colloquially termed as regime shifts

in finance. Statistically Robust Information Filtering Network represents a novel

framework designed to augment noise filtering in information filtering networks

and enhance the signal-to-noise ratio in processed financial time-series data, thereby

bolstering the diversification of portfolio construction.

Moreover, we explore the utilization of information filtering networks within

the domain of deep learning for modelling multivariate time series. We exhibit the

benefits of deploying a filtered, sparse graph predicated on the input time-series

network topology, as opposed to a fully connected graph in GNN. Further inspired

by this concept, we propose an innovative MLP-like sparse architecture that also

leverages network topology, and explicitly considers higher-order interactions. The

incorporation of this network topology into both proposed architectures has demon-

strated notable efficacy and efficiency in managing multivariate time-series data.
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Chapter 1

Introduction

Multivariate temporal sequences inherently form the core of numerous contempo-

rary scientific concepts, and the refinement of such intricate systems’ modelling

proves challenging due to its elevated dimensionality and interdependencies. How-

ever, its successful implementation carries rewards applicable to a multitude of

domains. This dissertation utilizes complex network theory as the foundational

approach to scrutinize multivariate temporal patterns and explore the interactions

between variables.

The first half of the thesis is concentrated on financial time-series data, char-

acterized by a conspicuous low signal-to-noise ratio and the prevalence of abrupt

jumps and shifts. Herein, we demonstrate the application of information filtering

networks - a network-based noise filtering mechanism - to substantially mitigate

noise within time-series modelling. Subsequently, we provide evidence that these

methods can be extrapolated to portfolio optimization problems, resulting in en-

hanced portfolio diversification and increased resilience to market regime fluctua-

tions.

Additionally, stimulated by the insights gained in the financial sector, we adopt

a broader perspective to examine the network topology of more general time-series

data. The sparse topology generated from the information filtering network based

on feature correlation provides the blueprint for innovative designs of neural net-

work architecture, which are concurrently sparse and efficient. The second half of

the thesis centres around the design analysis of the novel neural network architec-
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ture for time-series data processing.

The topic-related literature is reviewed in Chapter 2, including multivariate

market regimes and portfolio optimization in Sections 2.3 and 2.4, and deep learning

for multivariate time-series modelling in Section 2.5.

1.1 Financial Time-series Data for Portfolio Opti-

mization
misrepresents genuine underlying trends in the financial markets. It can be caused

by various factors and can lead to irrational or misleading investment decisions Fi-

nance experiences high noise due to the vast amount of data available, much of

which is irrelevant and misrepresents genuine underlying trends or fundamentals of

financial markets. Therefore, financial time-series data is characterized by a low

signal-to-noise ratio and a high frequency of discontinuities and shifts, which inher-

ently complicates the extraction of reliable statistical measures or the identification

of repetitive and significant patterns. Multivariate time-series problems often rely

on historical signals and interdependencies, expressed as correlation or covariance,

to make predictions for the future. Consequently, forecasting and modelling multi-

variate time series, particularly within the scope of financial data science, is excep-

tionally demanding. Portfolio optimization is an increasingly studied complex ap-

plication within this sphere, predominantly relying on historical statistical analysis.

As highlighted in Markowitz’s groundbreaking research [1], the optimal allocation

of assets in a portfolio is determined by the empirical covariance and mean returns

of assets. Therefore, the enhanced estimation and modelling of co-movements of

underlying assets inherently refine portfolio design. Inspired by Pozzi et al. [2],

we utilize a network to depict the asset universe, wherein each node symbolizes an

asset, and the edge connecting two nodes denotes a pairwise similarity measures,

such as correlation distance, between them. Further, in Chapter 3, we present a mul-

tivariate time-series clustering methodology to be amalgamated with contemporary

portfolio optimization strategies, aiming to diminish the impact of discontinuities

in time-series, colloquially referred to as regime shifts in finance. In Chapter 4,
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we propose a novel framework to augment noise filtering in information filtering

networks and bolster the signal-to-noise ratio in the processed financial time-series

data, thereby enhancing the diversification of portfolio construction.

Financial multivariate time series often exhibit non-stationarity, characterized

by constant jumps and shifts. Consequently, market conditions are perpetually dy-

namic, and accommodating this inherent non-stationarity within portfolio invest-

ment strategies presents a significant challenge. In Chapter 3, we introduce Inverse

Covariance Clustering-Portfolio Optimization (ICC-PO). At its core, ICC identifies

and clusters market states extrapolated from historical data analytics and predicts

the impending market state, which can subsequently be amalgamated with a vari-

ety of optimization strategies. Our comprehensive experiments conducted across

three distinct markets, namely NASDAQ, FTSE, and HS300, over a decade-long

period, underscore the benefits of our proposed algorithm. By applying an identi-

cal portfolio optimization technique to the data subset corresponding to a superior

cluster, rather than the entire training period, we demonstrate that portfolios can be

constructed with markedly elevated Sharpe Ratios, showcasing enhanced statisti-

cal robustness and resilience, with considerable diminutions in the maximum loss

in extreme scenarios. This effect persists across varying markets, periods, opti-

mization techniques, and portfolio asset selections, corroborating the ability of our

methodology to adequately account for the time-series shifts in historical empirical

data.

Financial data is rife with various noise sources, e.g., market sentiments, news

and media, hype and speculation, etc., which culminate in a remarkably low signal-

to-noise ratio. Consequently, time-series filtering and signal-processing techniques

are extensively employed in finance to extract a smooth and significant trendline

prior to further processing. Existing information filtering networks have proven

highly effective in de-noising the empirical correlation and covariance of multi-

variate time series. However, the construction process of such networks imposes

certain topological structures, which may inadvertently introduce forms of noise.

In Chapter 4, we propose the Statistically Robust Information Filtering Network
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(SR-IFN). This novel method is premised on bootstrapping and seeks to discard

redundant edges during the network formation process. We leverage SR-IFN to fur-

ther mitigate noise within financial data and subsequently construct portfolios based

on the filtered correlation topology. The portfolios generated in this manner have

been demonstrated to offer greater diversification with elevated returns and reduced

volatility across three countries, thereby substantiating the efficacy of SR-IFN in

processing multivariate time-series data.

1.2 Neural Network Designs Based on Time-series

Data Topology
In the first half of this thesis, we delve into two distinct methodologies for managing

discontinuities and low signal-to-noise ratios in multivariate financial time-series

data. Both approaches are predicated on the information filtering network, con-

structed from the correlation of the input data. The sparse topology extracted from

the resulting network effectively sieves out insignificant components while preserv-

ing critical information. Inspired by these outcomes, we strive to incorporate the

topology of the input data as a prior when designing and constructing neural net-

work architectures, specifically tailored for processing time-series data. In Chap-

ter 6, we leverage the information filtering network as a sparse graph to supplant

the commonly used Laplacian graph in Graph Neural Networks (GNNs), marking

our initial successful venture in combining information filtering networks with neu-

ral networks. Furthermore, encouraged by the success of this initial integration,

in Chapter 5, we utilize the simplicial levels of the input time-series’ correlation

topology to guide the design of a sparse Multi-Layer Perceptron (MLP)-like neural

network.

The scope of multivariate time-series prediction applications extends from ev-

eryday business tasks, such as sales volume forecasting and traffic prediction, to

more specialized domains like biostatistics and action recognition. Multivariate

time-series forecasting methodologies presuppose interdependencies among dy-

namically evolving variables, which help capture systematic trends. Specifically,
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the forecast for each variable depends not only on its historical temporal informa-

tion but also on other variables. Deep learning has leveraged spatio-temporal neural

network architecture to model and predict multivariate time series. The tempo-

ral component, exemplified by Long Short-Term Memory (LSTM) and Recurrent

Neural Networks (RNN), captures local patterns of individual time series. Simul-

taneously, the spatial element, represented by Graph Neural Networks (GNN) and

Convolutional Neural Networks (CNN), aggregates the interdependencies between

them. In Chapter 5, we integrate a filtering module into the spatio-temporal ar-

chitecture to generate a sparse topological graph based on the information filtering

network of the input data topology. This sparse graph is then fed into and sup-

plants the traditionally used Laplacian graph in the spatial component of a GNN. A

series of experiments demonstrate that this proposed sparse substitution offers supe-

rior performance. Furthermore, when compared with the state-of-the-art Diffusion

Convolutional Recurrent Neural Network (DCRNN), the results indicate that a com-

bination of a less complex GNN with graph sparsification and filtering can achieve

equal or superior efficiency than complicated state-of-the-art models in multivariate

time-series regression tasks.

Building upon the initial successful integration of the information filtering net-

work and the graph neural network, using the topology of input data, we proceed to

directly leverage this topology in the design phase of a sparse Multi-Layer Percep-

tron (MLP)-like neural network in Chapter 6. Utilizing sophisticated network-based

information filtering techniques, we succeed in identifying the simplicial struc-

tures inherent in the underlying input time-series data. Subsequently, we employ

each neural network layer to represent each order of simplex, with the connec-

tions between each layer representing the formation of a higher-order simplex by a

lower-order simplex. This results in an innovative neural network that constitutes

a sparse higher-order graphical architecture, independent of the message-passing

framework. The effectiveness of this novel approach is demonstrated in time-series

and tabular regression problems traditionally viewed as challenging for deep learn-

ing. The findings underscore the benefits of this innovative design, which can equal
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or exceed the performance of state-of-the-art machine learning and deep learning

models while utilizing a significantly reduced number of parameters.

Finally, we summarize the contributions in Chapter 7 and consider extensions

and potential future work.
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The main chapters of this thesis are based on published and publishing in-

progress works:

• Chapter 3: Wang, Y., & Aste, T. (2021). Dynamic portfolio optimization with

inverse covariance clustering. Expert Syst. Appl., 213, 118739.

• Chapter 4: Wang, Y., Briola, A., & Aste, T. (2023). Topological Portfolio

Selection and Optimization. Submitted to 12th International Conference on

Complex Networks & Their Applications.

• Chapter 5: Wang, Y., & Aste, T. (2022). Network Filtering of Spatial-

temporal GNN for Multivariate Time-series Prediction. Proceedings of the

Third ACM International Conference on AI in Finance.

• Chapter 6: Wang, Y., Briola, A., & Aste, T. (2023). Accepted in Proceedings

of the 2nd Annual Workshop on Topology, Algebra, and Geometry in Ma-

chine Learning (TAG-ML) at the 40th International Conference on Machine

Learning.



Chapter 2

Background Literature

2.1 Multivariate Time-series Modelling

Forecasting time-series data has been a cornerstone problem in the fields of statis-

tics, data science, and machine learning for an extended period. Techniques for this

have evolved from traditional pattern recognition to modern machine learning. Uni-

variate time-series forecasting concentrates on analyzing independent time series

by identifying temporal patterns rooted in historical behaviours. Techniques such

as the moving average (MA), the auto-regressive (AR), the auto-regressive moving

average (ARMA), and the autoregressive integrated moving average (ARIMA) [3]

exemplify these. The suitability of modern machine learning models, such as Long

Short-Term Memory (LSTM) units, for handling this problem has been demon-

strated in numerous studies, e.g., FC-LSTM [4] and SMF [5].

Multivariate forecasting, on the other hand, engages with a correlated set

of time series. The Vector Auto-Regressive model (VAR) and the Vector Auto-

Regressive Moving Average model (VARMA) [6, 7] extend the aforementioned lin-

ear models into a multivariate space by accounting for the interdependency among

time series. However, VAR solely relies on lagged data and doesn’t incorporate

exogenous variables or external factors that may affect the time series data. While

VARMA does incorporate additional moving average features, they both depend

on the assumption of stationarity and linearity and suffer from the curse of dimen-

sionality. Initial attempts at integrating Convolutional Neural Networks (CNN) and
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Recurrent Neural Networks (RNN) were directed at learning local spatial depen-

dencies and temporal patterns [8, 9]. The introduction of deep learning methods

add additional non-linearity power to model fitting and is more suitable for non-

stationary use cases. Further work involves the state space model in Deep-State

[10] and the matrix factorization approach in DeepGLO [11].

2.2 Sparse Correlation and Covariance Structure

Two computational method families employ sparse approximation techniques to

estimate the inverse covariance matrix. The sparsification is effective because the

least significant components in a covariance matrix are often largely prone to small

changes and can lead to instability. Sparsified models filter out these insignificant

components, and thus improve the model’s resilience to noise. As correlation is

a scaled form of covariance, filtering and sparsification methods are equivalently

applicable in both cases.

2.2.1 Graphical Models

A widely used approach for inverse covariance estimation is based on graph models.

Meinshausen and Buhlmann in 2006 [12] regard the zero entries in the inverse co-

variance matrix of a multi-variable normal distribution as conditional independence

between variables. These structural zeros can thus be obtained through neighbour-

hood selection with LASSO regression by fitting a LASSO to each variable and

using the others as predictors. Similar methods that maximize L1 penalized log-

likelihood have been studied by Yuan and Lin [13] and Banerjee et al. [14]. In

2008, Friedman et al. [15] developed an efficient Graphical LASSO that uses L1

norm regularization to control the sparsity in the precision matrix. The sparse in-

verse covariance matrix can be obtained by minimizing the regularized negative

log-likelihood [16]:

Σ
−1
glasso = min

Σ−1
(− logdetΣ

−1 +Tr(Σ̂−1
Σ
−1)+λ ||Σ−1||1) (2.1)
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where Σ̂−1 is the empirical inverse covariance, ||Σ−1||1 denotes the sum of the

absolute values of Σ−1, and λ is the regularization constant, optimised by cross-

validation.

2.2.2 Information Filtering Network

An alternative approach that uses information filtering networks has been shown

to deliver better results with lower computational burden and larger interpretability

[17]. In the past few years, information filtering network analysis of complex sys-

tem data has advanced significantly. It models interactions in a complex system as

a network structure of elements (vertices) and interactions (edges). The best-known

approach, the Minimum Spanning Tree (MST) was first introduced by Boruvka

in 1926 [18] and it can be solved exactly (see [19] and [20] for two common ap-

proaches). The MST reduces the structure to a connected tree which retains the

larger correlations. To better extract useful information, Tumminello et al. [21] and

Aste and Di Matteo [22] introduced the use of planar graphs in the Planar Max-

imally Filtered Graph (PMFG) algorithm. Recent studies have extended the ap-

proach to chordal graphs of variable sparsity [23, 24]. Research fields ranging from

finance [17] to neural systems [25] have applied this approach as a powerful tool

to understand high dimensional dependency and construct a sparse representation.

It was shown that for chordal information filtering networks, such as the Triangu-

lated Maximally Filtered Graph (TMFG) [23], one can obtain a sparse precision

matrix that is positively definite and has the structure of the network paving the

way for a proper L0-norm topological regularization [26], detailed algorithm see

Algorithm 1 Further study in Maximally Filtered Clique Forest (MFCF) [27] ex-

tends the generality of the method by applying it to different sizes of cliques. This

approach has proven to be computationally more efficient and stable than Graph-

ical LASSO [15] and covariance shrinkage methods [28, 29, 30], especially when

few data points are available [17, 22]. In addition to shrinkage-like sparsification

methods, Random Matrix Theory (RMT) offers an alternative approach to reduce

the impact of noise and irrelevant information in covariance matrices [31, 32, 33].

MT-based sparsification methods use insights from the theory to identify and retain
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significant eigenvalues and corresponding eigenvectors while discarding the less in-

formative ones. However, RMT-based methods are usually computationally heavier

and more sensitive to parameter selection (the impact of regime shifts is higher)

than shrinkage-based methods.

Algorithm 1 TMFG built on the similarity matrix Ĉ to maximise the likelihood of
features’ relevance.
Input Similarity matrix Ĉ ∈ Rn,n from a set of observations
{x1,1, . . . ,xs,1},{x1,2, . . . ,xs,2} . . .{x1,n, . . . ,xs,n}.
Output Sparse adjacency matrix A describing the TMFG.

1: Initialize four empty sets: C (cliques), T (triangles), S (separators) and V
(vertices);

2: Initialize an adjacency matrix A ∈ Rn,n with all zeros;
3: C1 ← tetrahedron, {v1,v2,v3,v4}, obtained choosing the 4 entries of Ĉ max-

imising the similarity among features;
4: T ← the four triangular faces in C1 : {v1,v2,v3},{v1,v2,v4},
{v1,v3,v4},{v2,v3,v4};

5: V ← Assign to V the remaining n−4 vertices not in C1;
6: while V is not empty do
7: Find the combination of {va,vb,vc} ∈ T (i.e. t) and vd ∈ V which max-

imises MAXIMUMGAIN(Ĉ, V , t);
8: {va,vb,vc,vd} is a new 4-clique C , {va,vb,vc} becomes a separator S ,

three new triangular faces, {va,vb,vd}, {va,vc,vd} and {vb,vc,vd} are cre-
ated .

9: Remove vd from V ;
10: Remove {va,vb,vc} from T ;
11: Add {va,vb,vd}, {va,vc,vd} and {vb,vc,vd} to T ;
12: end while
13: For each pair of nodes i, j in C , set Ai, j = 1;
14: return A.

15: function MAXIMUMGAIN(Ĉ, V , t)
16: Initialize a vector of zeros g ∈ R1×n;
17: for j ∈ t do
18: for v /∈ V do
19: Ĉv, j = 0
20: end for
21: g = g⊕ Ĉv, j
22: end for
23: return max{g}.
24: end function
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2.3 Market Regimes

2.3.1 Fat-tails and asymmetric return distributions

Non-Gaussian probability distributions in financial returns are primarily caused by

the complex and dynamic nature of financial markets. Typical events like trad-

ing mechanisms and liquidity dynamics under market microstructure, time-varying

volatility (Heteroskedasticity), and volatility clustering all cause the market to ex-

hibit non-Gaussian behaviors. Hence, normal distributions do not represent well

the observed probability distribution of the financial market’s asset price returns.

Indeed, they instead have a larger number of small returns following Gaussian statis-

tics, but also a larger number of very large positive and negative returns of sizes that

would be impossible with Gaussian statistics [34, 35, 36]. They also have often

asymmetric distributions with larger negative returns (losses) more likely than large

positive ones (gains). Several alternative probability distributions have been used in

the literature, namely, Student-t [37, 38, 39], Laplace [40, 41, 42] and Pareto-Levy

[43, 44] distributions. In addition, alternative approaches to accounting for asym-

metry have been taken into account, with early works by Markowitz himself which

in 1959 [45] employed semi-covariance (the covariance from negative returns only)

as an alternative risk measure to better describe the downside market moves. Fur-

thermore, limited sample size is a critical contributing factor to estimation errors.

Yet, simply extending the sample size introduces data from events that happened far

in the past which are likely to be less representative of present market conditions.

Hence, methods ranging from shrinkage [28], to LASSO regularization [46, 47],

and Monte Carlo based re-sampling [48, 49] have been used to reduce this issue.

2.3.2 Non-stationarity

Assumptions regarding market stationarity and portfolio re-allocation are often con-

sidered together since multi-period investment is proven to be an effective solution

to mitigate the effect of Market turmoil. Several contributions have shown that dy-

namic reallocation brings improvements in the resilience to market volatility with

respect to the original single-period portfolio diversification methods [50, 51, 52].
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Nonetheless, such methods still fail to address structured market movements. In-

deed, accounting for such changes requires forecasting the future market state. Fur-

ther studies on market states have been proposed to model and predict the intrinsic

properties of these dynamics, and two main streams are discussed below. The first

one uses the Markov decision process to model the transition probability between

different market regimes. An approach based on Hidden Markov Model (HMM)

has demonstrated great efficiency and validity [53]. However, it often encounters

problems mainly associated with the curse of dimensionality, as the dimensional-

ity of hidden states is linear to the number of assets considered [54, 55]. Bayesian

methods help to mitigate HMM’s dimensionality issue, typical methods include

Markov Chain Monte Carlo (MCMC) methods [56, 57], such as Gibbs sampling

or Metropolis-Hastings used for parameter estimation in HMMs, Sequential Monte

Carlo (SMC) for state estimation in HMMs [58], and Nonparametric Bayesian mod-

els, like the Dirichlet Process, that can adaptively model the complexity of an HMM

without specifying the number of states beforehand [59]. On the other stream, re-

searchers believe that the market comprises mixed multivariate distributions, and

each state effectively corresponds to a distribution. Hence, temporal clustering

methods such as Gaussian Mixture Model (GMM) [60, 61, 62], K-Means Clustering

[63, 64, 65] have been applied for this purpose. Then, portfolios can be re-adjusted

according to the predicted state with a selected re-allocation period. Yet, these meth-

ods are often based on strong assumptions and they are not originally designed for

time series, which results in issues e.g., GMMs assume that each cluster follows a

Gaussian distribution, and K-Means may produce unequal cluster size due to noise

and extreme data. This is also to some extent the approach of the decision-theoretic

Bayesian methods [66, 67, 68], such as the Black-Litterman model [69, 70], which

includes in the optimization a Bayesian prior on the future state.

2.3.3 Market Regimes Clustering

After the initial pitfall of Markov-Model-based methods [53, 55, 54], mainly due

to the curse of dimensionality, literature has started to look for alternative methods

to cluster similar temporal data points into the same group based on certain com-
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parison criteria. Such temporal clustering methods can mostly be divided into two

approaches: subsequent clustering and point clustering. Subsequent clustering uses

a sliding window to capture a period of data points and analyze for recurrent pat-

terns [71, 72]. The four main methods of subsequent clustering are: (i) hierarchical

[73, 74, 75]; (ii) partitioning [76, 77]; (iii) density-based [78, 79, 80] and; (iv) pat-

tern discovery [81, 82, 83]. These methods have all shown applicability to financial

data analysis and portfolio construction. An alternative approach is point cluster-

ing that, instead of measuring spatial similarity between two slices of time series,

looks at each temporal point individually, and assigns this multivariate observation

to an appropriate cluster based on distance metrics [84, 85, 86]. Hence, in point

clustering, the choice of distance is core. In macroeconomics, the market states are

not the representation of solely upward or downward trends of the market, but also

the relative dynamics of equity prices, which naturally makes correlations a conve-

nient choice of collective dynamics. A stationary correlation structure was assumed

as the common approach in the industry in the 90s [70, 87], which was, however,

later shown to be overly presumptive [88, 89, 90]. Consequently, research has been

devoted to studying time-varying correlations. Models, such as Generalized Au-

toregressive Conditional Heteroskedasticity (GARCH) [91] and the Dynamic Con-

ditional Correlation (DCC) [92] have been proposed for simulating and predicting

this dynamical correlation. However, most of these models suffer from the curse of

dimensionality and can only be applied to a limited number of assets, as the number

of parameters increases super-linearly with the number of variables.

In 2017, Hallac et al. proposed the Toeplitz Inverse Covariance Clustering

(TICC) [93] algorithm, originally devised for electric vehicle action sensors. It

classifies states based on the likelihood measures of short subsequences of obser-

vations and corresponding sparse precision matrix. After clustering, the precision

matrix of each state is estimated under a Toeplitz constraint where each descending

diagonal of the covariance matrix from left to right is constant, i.e., and the covari-

ance structure between variables (or features) is assumed to be constant along the

diagonal. Inspired by TICC, Procacci and Aste in 2020 [94] proposed a closed-
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related methodology named Inverse Covariance Clustering (ICC). This approach

provides a point clustering of observations also enforcing temporal consistency by

penalizing switching between states. The ICC method also uses sparse precision

matrices but sparsification is attained via information filtering networks (see next

Subsection). One main advantage of ICC, compared to TICC, is its flexibility in the

selection of similarity measures. It was also stated in their original paper that differ-

ent clustering distances separate market states differently. For example, likelihood

distance distinguishes better with pre- and post-crisis periods, Euclidean distance

discriminates well between bull and bear states, and Mahalanobis distance detects

both crisis periods and bull/bear states.

2.4 Portfolio Optimization

2.4.1 Mean-variance Optimization

Despite the unquestionable merits and pioneering status of Markowitz’s mean-

variance optimization (MVO) approach, there are some major assumptions, and sev-

eral bad applications, that reduce its efficacy for practical implementations. Firstly,

MVO assumes that asset returns follow a finite-variance distribution and higher mo-

ments are monotonic with variance. Many financial theories simplify this assump-

tion by adopting a normal distribution, and consequently, the models that utilize

such theories do not account for extreme market situations. Moreover, the variance

of a normal distribution as a risk measure does not distinguish between upside and

downside moves in the market. Secondly, the MVO rely on the inversion of a co-

variance matrix and this operation makes the method highly sensitive to estimation

error especially when the covariance is estimated on a relatively short time period

and when such a past period is not representative of the future. Indeed, historical

financial market data is never a good representation of the true underlying distribu-

tion as the observations are often partial. Furthermore, most MVO implementations

are assuming market stationarity, which is that the mean and variance are assumed

constant in each asset, while the correlation is static between assets. MVO is de-

signed to avoid unsystematic risks by optimizing diversification. However, the sys-
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tematic risks from market movements are not addressed by the MVO methodology

and this is usually the most significant factor for investment decisions. Lastly, a

single-period investment will almost never work in reality. A constant reallocation

is vital to respond to the rapidly changing environment.

2.4.2 Dynamic Portfolio Allocation

The traditional Markowitz model optimizes on a single period only, and it relies

heavily on the assumption of constant asset mean vectors and covariance matrix.

Therefore, this static and long investment horizon is inadequate in a dynamic mar-

ketplace. Yet, the mean-variance criteria inspire the development of multi-period

dynamic portfolio construction. The dynamic portfolio optimization field currently

follows two main streams. A discrete-time model was proposed by Samuelson in

1969 [95] and developed since by Hakansson, Grauer and others [96, 97, 98]. It sep-

arates an investment horizon into discrete periods, and the portfolio can be reallo-

cated at the end of each period. In contrast, a continuous-time model was introduced

by Merton [99] in the same year, and together with further studies described the

continuous rebalancing of securities for a fixed planning horizon [100, 101, 102].

The two alternative assumptions that are often made in dynamic portfolio op-

timization problems are market completeness and investment horizon. A complete

market is an approximation to the real market where friction, transaction costs and

asset liquidity exist, and a dynamic portfolio has to consider those real-world fac-

tors [103, 104, 105, 106]. A more ideal scenario is instead the incomplete market

where some conditions are waived so that research can only focus on the dynamic

asset selection process and ignore some practical issues [107, 108, 109, 110]. Sim-

ilarly, an infinite horizon is a naive assumption to a finite horizon where investors

will withdraw investment with an exit time. The earlier pioneers [96, 100, 104] in

this field, such as Samuelson [95], Merton [99, 101], began with the infinite horizon

assumption, while later researchers in the 90s and the beginning of the millennium

[111, 112, 106, 110] led by He & Pearson [113] and Karatzas et.al [114] started to

introduce the finite horizon into the problem.
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2.4.3 Network-based Portfolio Optimization

Traditional methods of portfolio optimization largely rely on empirical covariance

and correlation, which predominantly capture linear dependencies among assets.

Nevertheless, financial market networks synthesized from historical data, tend to en-

capsulate the entire system’s complexity, including non-linearities, and often yield

superior outcomes in terms of portfolio construction. Pozzi et al. [2] in 2013 found

that risk is not uniformly distributed across the market, with peripheral assets of

a financial network demonstrating greater success in diversification and leading

to superior performance. This finding has subsequently led research to focus on

quantifying peripherality and constructing highly diversified, low-risk portfolios.

To quantify peripherality, a graph must be initially treated using network filtering

methodologies, such as information filtering networks, which transform the com-

plete graph constructed from the correlation matrix or other linear [115, 116, 117]

and non-linear [118, 119, 120] similarity measures to a sparse network retaining

only strongest relationships. Subsequently, different centrality measures, including

degree centrality, betweenness centrality, eccentricity, and closeness centrality, are

computed for each node. Nodes are then ranked in ascending order to be incorpo-

rated into the portfolio with equal or Markowitz weights [121, 2], or weights that are

calculated based on the centrality measures [122, 123]. Additional research includes

network-based allocation with machine learning [124], cross-sectional equity sector

portfolio construction [125, 126], and graph clustering-based portfolio construction

[127, 128, 129]. Other network-based analyses on practical portfolio execution have

been explored, e.g., liquidity [130] and transaction costs [?], however, such methods

have yet to be combined in the network-based portfolio construction process.
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2.5 Deep Learning for Multivariate Time-series

Modelling

2.5.1 Neural networks

2.5.1.1 Spatio-temporal Neural Networks

Existing research in multivariate time series forecasting can be broadly divided into

two primary categories: statistical methods and deep learning-based methods. Sta-

tistical approaches usually assume linear correlations among variables (i.e., time

series) and use their lagged dependency to forecast through a regression, as exempli-

fied by the vector auto-regressive model (VAR) [131] and Gaussian process model

(GP) [132]. In contrast, deep learning-based methods, such as LSTNet [133] and

TPA-LSTM [134], utilize Convolutional Neural Networks (CNN) to identify spa-

tial dependencies among variables and combine them with Long Short-Term Mem-

ory (LSTM) networks to process the temporal information. Although they have

been widely applied across various application domains, including finance [135]

and weather data [136], these architectures do not explicitly model dependency

structures among variables, being strongly limited on the interpretability side. Re-

cently, spatio-temporal graph neural networks (STGNNs) [137, 138] have attracted

interest reaching state-of-the-art performances, as exemplified by MTGNN [139].

STGNNs integrate graph convolutional networks and sequential recurrent models,

with the former addressing non-Euclidean dependencies among variables and the

latter capturing temporal patterns. The inclusion of advanced convolutional or ag-

gregational layers accounting for sparsity and higher-order interactions has resulted

in further improvements of STGNNs [140, 141, 142, 143, 144, 145, 146, 147].

2.5.1.2 Sparse Neural Networks

Recent advancements in artificial intelligence have exacerbated the challenges re-

lated to models’ computational and energy efficiency. To mitigate these issues,

researchers have proposed new architectures characterized by fewer parameters and

sparse structures. Some of them have successfully reduced the complexity of very

large models to drastically improve efficiency with negligible performance degrada-
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tion [148, 149, 150, 151, 152, 153, 154, 155]. Others have not only simplified the ar-

chitectures but also enhanced models’ efficacy, further demonstrating that fewer pa-

rameters yield better model generalization [139, 156, 157, 158, 159, 160, 161, 162].

Nonetheless, in the majority of literature, sparse topological connectivity is

pursued either after the training phase, which bears benefits only during the infer-

ence phase, or during the backpropagation phase which usually adds complexity and

run-time to the training. In contrast, network-inspired pruning methods incorporate

pruning at the earliest stage of the process, allowing for the establishment of a foun-

dational topological architecture that can then be elaborated upon [163, 164, 165].

2.5.2 Graph Neural Networks

2.5.2.1 Spatio-temporal GNNs

Spatio-temporal graph neural network has been proposed recently for multivariate

time-series problems. To capture the correlation between time-series in the spatial

component, each time-series is modelled as a node in a graph whereas the edge

between every two nodes represents their correlation. Early work applies spatio-

temporal GNN for traffic forecasting [166, 167, 168, 169, 145]. Further studies have

been extended to other fields, e.g., action recognition [170, 171] and bio-statistics

with many interesting works for COVID-19 [172, 173, 174]. For financial appli-

cations, Matsunaga et al. [175] is one of the first studies exploring the idea of in-

corporating company knowledge graphs directly into the predictive model by GNN.

Later, Hou et al. [176] proposed to use a variational autoencoder (VAE) to process

stock fundamental information and cluster it into graph structure. This learned ad-

jacency matrix is then fed into a GCN-LSTM for further forecasting. Similar work

has been done by Pillay & Moodley [177] with a different model architecture called

Graph WaveNet. The most recent advancement is a spatio-temporal GNN for port-

folio/asset management proposed by Amudi [178]. They combine a stock sector

graph, a correlation graph and a supply-chain graph into one super graph and use

the multi-head attention in GAT as a sparsification method to select the meaningful

subgraph for prediction. In line with this work, we focus on filtered/sparsified (in-

verse) correlation graphs generated from matrix filtering/sparsification techniques.
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2.5.2.2 Sparse GNNs

Much literature has discussed graph sparsification in GNN. Some, by including reg-

ularization, reduce unnecessary edges, which can largely improve the efficiency and

efficacy of large-scale graph problems [141, 142]. Some leverage stochastic edge

pruning in graphs as a dropout-equivalent regularization to enhance the training pro-

cess [143, 144]. Others train the GNN to learn sparsification as an integrated part

before applying it to downstream tasks. NeuralSparse learns to sample k-neighbour

subgraph as input for GNN [145]. Luo proposes to prune task-irrelevant edges

[146]. Kim uses the disconnected edges of sparse graphs to guide attention in GAT

[147].



Chapter 3

Multivariate Time-series Clustering

for Dynamic Portfolio Optimization

3.1 Introduction

Multivariate time series are high-dimensional and usually require carefully designed

mathematical models to describe accurately. Especially, constant jumps and shifts

in financial time-series data require additional consideration and extensive parame-

ters to describe [179]. To identify the structural non-stationarity, many multivariate

time-series clustering methods have been proposed [76, 77, 78, 79, 80, 81, 82, 83].

In this chapter, we introduce a clustering method that is based on the sparse network

of inverse covariance of the underlying time series. Moreover, as an application, we

apply it to portfolio optimization problems.

In the field of asset management, the problem of portfolio allocation has gained

unprecedented popularity over the past few years. Constructing a good portfolio

combines the art and science of balancing between trade-offs and the aim of meet-

ing long-term financial goals. The simple core of any portfolio optimization is to

assign optimal weights to each portfolio’s component in order to minimize invest-

ment risk and maximize the return. In 1952, Markowitz [1] demonstrated that, by

assuming risk to be quantifiable by the variance of the portfolio’s returns, the op-

timal weights that minimize the portfolio’s variance at a given average portfolio’s

return can be computed with a simple and exact formula. However, Markowitz’s
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theoretical maximum is attained only in-sample, on the training dataset, whereas

off-sample, on the test set where investment is made, performances of Markowitz’s

portfolio can be largely sub-optimal, as the estimated means and variances of assets

from historical data are subject to estimation error. In off-sample periods, these er-

rors can lead to suboptimal allocations as the true parameters may differ. Namely,

it is essentially a product of in-sample data and may not capture the complexities of

future market dynamics, such as regime shifts, making historical optimization less

relevant in different market environments.

Markowitz’s modern portfolio theory is the foundation of modern quantitative

asset management. There are however two main limitations in Markowitz’s assump-

tions. The first limitation concerns the use of the portfolio’s variance as a measure

of risk. The variance (when defined) is indeed a measure of the width of the distri-

bution but there are other properties that are better measures of risk (e.g. the value at

risk) and might not be reducible to the variance from shifting and scaling transfor-

mations. The second limitation concerns the ability to estimate the (future) means

and covariance of the asset’s returns in the portfolio.

After Markowitz’s seminal work, many portfolio selection methodologies have

been introduced to cure the first limitation concerning the reliance on variance for

risk quantification and nowadays there are several well-established approaches that

go well beyond the use of variance as sole risk measure [180]. Furthermore, with

the enormous development of machine learning optimization techniques there are

presently virtually no limitations in constructing optimal portfolios based on any

kind of risk measure [181, 182, 183]. However, balancing the objective function and

loss between different risk measures is difficult to design and results in overfitting

and low interpretability.

Addressing the second limitation is harder. Indeed, normally, one does not

have information from the future that would allow one to set the future properties

of the asset’s multivariate distribution. Therefore, the reliance on past observa-

tions and the assumption that they will significantly represent the future is hard to

avoid. Nonetheless, markets are not stationary, it is common knowledge that they
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cyclically pass through bull and bear states and occasionally deepen into crisis pe-

riods. For each of these periods, the market prices’ returns have different statistical

properties and they are not describable by means of a unique multivariate proba-

bility distribution, and the longer the period, the less resembles it is to a Gaussian

distribution. This is especially relevant for factors that matter most to the manage-

ment of portfolio risk. A long investment horizon consists of many crisis periods,

and extreme crisis periods have a distribution with fatter tails and they tend to be

more asymmetrical with the left tail having a larger probability for large losses than

the right tail for equivalent gains. Portfolio constructions must take into account

these differences and devise different investment strategies for each market condi-

tion. This is indeed the ground basis for any dynamic asset allocation. However,

such a wise allocation would imply the knowledge of the future market state and

forecasting it from past observations is not an easy task.

Covariance is a Gaussian measurement of assets’ historical properties, which

suffers the aforementioned downside. However, it is mostly intuitive and simple

to work with and widely used in modern portfolio construction. Therefore, in this

chapter, we provide an algorithm termed Inverse Covariance Clustering-Portfolio

Optimization (ICC-PO) to address the non-stationarity problem, by identifying the

inherent market states and forecast the most likely future state. The Inverse Covari-

ance Clustering (ICC) [94] is a novel temporal clustering method for market states

clustering. In this chapter we propose to make use of this temporal clustering clas-

sification, constructing different optimal portfolios associated with two ICC market

state clusters. The clusters are constructed in the in-sample training set (the past)

and then are used separately to train the portfolio optimizer of choice which is then

tested on an off-sample period following the training set (the future). For the op-

timization, we used two approaches based on the classical Markowitz’s approach

but devised to have only positive weights (no short-sellings). They are the Sequen-

tial Least Square Quadratic Programming (SLS) and the Critical Line Algorithm

(CLA). Let us note, that the ICC-PO approach allows the use of any optimization

method of choice.
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We tested the approach with three extensive experiments with daily data, from

2010 to 2020, from three different markets: NASDAQ, FTSE and HS300. For each

market, we selected 100 largest market capitalization constituent stocks and quanti-

fied the off-sample performances of portfolios constructed from in-sample training

data using separately the two ICC-market states. We demonstrate that the differ-

ence in returns and risks (computed on the testing set) between the two optimal

portfolios, constructed from the two ICC-market states (on the training set), is very

large with Sharpe Ratios that more than double and with very large differences in

the likelihoods of large negative returns that can have up to three times smaller

quantiles (i.e. the value at risk). We provide a simple criteria to forecast the best

performing out-of-sample market state which we named ‘State 0’. Our results also

show that sparsification of the inverse covariance matrix through information fil-

tering networks [23, 17] improves the results, this is a confirmation of a previous

result [184] extended however in this chapter to a different dataset, different port-

folio optimizers and different markets. The robustness of the method is tested by

gathering statistics over 100 re-sampling of consecutive train-test sets randomly se-

lected across the 10 years period 2010 to 2020. Furthermore, reliance on portfolio

basket choices is tested by doing the same experiments with a random selection of

100 stocks instead of the 100 most capitalized. For simplicity and demonstration,

we use linear correlation/covariance in our experiments, further extension includes

rank correlation/covariance and copula which models the joint distribution of asset

returns and includes covariance.

The main contribution of this chapter consists of the demonstration that mar-

ket observations at different times can be classified into different states. Such

states have distinct statistical properties, and they continue to be separable in

log-likelihood after the in-sample training period showing temporal persistence.

Such persistence enables us to predict the best-performing state with a higher log-

likelihood in the off-sample investment period. Moreover, in this chapter we con-

firm the intuitive argument by Procacci & Aste [184] that a model with a larger

log-likelihood must perform better for portfolio optimization with respect to one
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with a lower log-likelihood.

3.2 Methodologies

In the present chapter, we combine ICC clustering with market state forecasting to

be used for portfolio optimization. Let us list in this Section the main methods we

use in our approach.

3.2.1 Inverse covariance temporal clustering for portfolio opti-

mization (ICC-PO)

Let’s consider a set of n assets with rt ∈ R1×n the vector of returns at time t. The

corresponding vector of their expected values is µ = E(rt) ∈ R1×n and their co-

variance matrix is Σ = E((rt − µ)⊤(rt − µ)) ∈ Rn×n. The ICC clustering method

depends on the choice of a gain function, Gt,k, which is a measure that qualifies

the gain when the time t returns, rt , are associated with cluster k. Indeed, the ICC

approach gathers together in cluster k observations that have the largest gain in such

a cluster with respect to any other cluster: Gt,k > Gt,h for all h ̸= k. For instance, in

[94] it was used

GEu
t,k =−(rt−µk)(rt−µk)

⊤ (3.1)

where µk is the sample mean return computed from the observations in cluster k.

This gain is minus the square of the Euclidean distance between the observation and

the centroid of cluster k. A distance associated with the likelihood for multivariate

normal distributions is instead

GNo
t,k =

1
2

ln |Σ̂−1
k |−n

d2
t,k

2
, (3.2)

with

d2
t,k = (rt− µ̂k)Σ̂

−1
k (rt− µ̂k)

⊤ (3.3)
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the Mahalanobis distance where Σ̂k is the sample covariance computed form the

observations in cluster k. While for the multivariate Student-t one has

GSt
t,k =

1
2

ln |Σ̂−1
k |−

ν +n
2

ln

(
1+

d2
t,k

ν

)
(3.4)

where, in this case, ν is the degree of freedom.

We extensively tested all these gain functions observing that GEu
t,k is particu-

larly efficient in selecting clusters with a prevalence of positive or negative returns

but it is performing poorly in the portfolio optimization problem. The normal and

Student-t likelihood-related gains have similar performances, but GSt
t,k turns out to be

on average larger and we adopted it for the experiments we present in this chapter.

We also tested an hybrid distance Gt,k = c1 ln |Σ̂−1
k |− c2d2

t,k with the two arbitrary

constants, c1 and c2, that allow to gauge between the effects of the natural log of de-

terminant of the covariance (as a part of entropy term up to a constant that depends

on the dimension of the Gaussian distribution) and the Mahalanobis distance term.

The measure of the determinant of covariance is an equivalent estimation of the dif-

ferential entropy of the multivariate system, while Mahalanobis distance measures

between points and distributions.

The ICC approach uses sparse inverse covariance that was shown to improve

considerably the results over the full covariance in terms of the increase of gains.

As a sparsification technique we used the sparse inverse constructed with TMFG

information filtering graphs [23] using the local-global (LoGo) inversion procedure

described in [17], where the elements of the inverse are computed by inverting local

sample covariance matrices from only four variables at the time and adding them

up. The result is a sparse inverse covariance with 3n− 6 non-zero entries in the

upper diagonal (instead of n(n−1)/2 in the full matrix). Such a matrix is positively

defined, if the number of observations is larger than four, independently of the size

of the whole matrix (n× n). Sparse portfolios are simply obtained by applying a

portfolio optimization method (see next subsection) with a sparse inverse covariance

instead of a full covariance as input.

A final key element of the ICC methodology is the temporal consistency of the
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cluster that is imposed by penalizing frequent switches between clusters. In this

chapter, the penalizer parameter γ is estimated in the train set through a grid search

so that the average cluster persistence is of a given length (30 days in this chapter).

The assignment of the temporal instance t to a cluster number, kt , is performed

iteratively starting from an initial random cluster assignment. Specifically, we eval-

uate the penalized gain

G̃t,kt = Gt,kt − γδkt−1,kt , (3.5)

and assign observation t to the cluster with the largest penalized gain. In the pre-

vious expression, δkt−1,kt is the Kronecker delta returning one if kt−1 = kt and zero

otherwise. After the assignment of the time-t observation to a given cluster kt , all

cluster parameters (means and covariances) are recomputed with the new cluster

assignments.

We then performed a mean-variance portfolio optimization method indepen-

dently for each ICC state. Obtaining optimal weights associated with each temporal

cluster. To apply effectively such optimized weights to the portfolio problem we

have to forecast the state that is most likely to be predominant in the future test set

where the investment is performed. For this purpose, we made use of the short-term

persistence of such states and we assigned as most likely future state the one that is

predominant in the last part of the train set. In this chapter, we consider two clusters

only.

3.2.2 Portfolio optimization methods

Our proposed methodology is made of three main stages. First, we use ICC for

the temporal clustering of the training dataset into two market states. Second, we

forecast which of the two states will be predominant in the future, test dataset, where

the investment is made. Third, we perform portfolio optimization using training

data from the forecasted predominant ICC state. Our approach is, to a large extent,

agnostic to the kind of optimization adopted. In this chapter, for the experiments,

we used two, mean-variance optimization methods: 1. the Sequential Least Squares

Quadratic Programming approach and; 2. the Critical Line Algorithm method. Let
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us briefly recall the basic elements of these two portfolio optimization methods.

For the experiments in this chapter Markowitz’s optimal weights can be com-

puted with the Python package ‘Numpy’ for direct matrix multiplication. The exact

solution is shown in Appendix A.1.5. In the literature, this solution is referred to

as ‘unconstrained’ because, besides the normalization and average conditions, the

weights have no other constraints. On the other hand, in some practical cases, one

might want to add further conditions to the weights. For instance, many real-world

situations do not allow short selling, which hence makes it necessary to impose only

positive weights in the range wi ∈ [0,1]. This constrained optimization problem is

expensive to be solved analytically and thus numerical optimization methods must

be adopted.

Two numerical optimization methods have been adopted in the experiment.

The sequential least square quadratic programming (SLS) [185, 186, 187] is

considered to be one of the most efficient computational methods to solve gen-

eral nonlinear constrained optimization problems. Jackson et al. and Cesarone

et al. demonstrate its effectiveness in finance [188, 189]. There is an easy-to-

use package implemented in Python’s SciPy.optimize library which we applied in

our experiments. The Critical Line Algorithm (CLA) is an efficient alternative

to the quadratic optimizer for the mean-variance model, as it is specifically de-

signed for inequality portfolio optimization. It was already originally introduced

in the Markowitz Portfolio Selection paper [1], and its computational implemen-

tation has become increasingly popular [190, 191]. CLA also solves constrained

problems with conditions in inequalities, but unlike SLS, it divides a constrained

problem into a series of unconstrained sub-problems. In our experiment, to com-

pute CLA optimization for portfolio selection, we leveraged the implementation

from the open-source portfoliolab Python library from Hudson and Thames [192].

A key drawback of CLA is called the Curse of Markowtitz, which is that a small

change can lead to a very unstable inverse covariance matrix calculation. Our em-

ployment of sparse inverse covariance matrices via an information filtering network

produces more robust results that are more resilient to the noise produced by small
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changes, and the overall model delivers better performances, in terms of Sharpe

ratio, annualized returns and volatility, with respect to the model with full inverse

covariance. Mathematical and algorithmic details of SLS and CLA are included in

Appendix A.1.5 for reference.

In summary, these two portfolio optimization methodologies output optimal

portfolio weights W from an input constituted of: (i) a set of observations rt ; (ii) a

vector of mean returns µ; (iii) a covariance Σ. As we shall see shortly, in our im-

plementation these inputs are provided in various combinations including selecting

from ICC states and sparsifying.

3.3 Implementation

3.3.1 Data

We carried out several experiments using historical financial time-series data from

three major capital markets: NASDAQ, FTSE and HS300. We selected 100 stocks

from each of these three markets during the trading period between 01/01/2010 and

01/01/2020. For each stock, we calculated the daily log-return, ri(t) = log(Pi(t))−

log(Pi(t−1)), using closing prices Pi of stock i at day t. For the 100 stocks, in the

main chapter, we selected the largest market capitalization constituents but in the

appendix, we repeat the experiments with random selection obtaining comparable

results.

3.3.2 Experiments

The optimal portfolio weights are obtained from the data in the train set and perfor-

mances are measured over the test set where portfolio weights are left unchanged.

As performance indicators, we compute portfolio return, portfolio standard devia-

tion (i.e. volatility) and Sharpe ratio over the investment horizon (test period). We

report the annualized value of these quantities, estimated as the daily values multi-

plied by
√

252. For statistical robustness, for each market, we compute the above

portfolio performance indicators over 100 randomly chosen consecutive train-test

periods within the ten years dataset. Results are reported for the mean performances

and the 5%-95% quantile ranges over such re-sampling.
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The test set length (investment horizon) was established at 30 days which

is a reasonable value for practical applications, we however also report in the

appendix results for horizons of 10, 20 and 100 days found consistent results.

The train set length was established by performing experiments with train sets of

L= 0.5,1,2,3,4 years. Figure 3.1 reports the annualized average Sharpe Ratio com-

puted on the test set as a function of the train set length. One can observe from the

top figure that the lengths between one and two years yield consistently good per-

formances. We adopted the period of 2 years as the optimal compromise between

statistical robustness and best performances.

In the experiments, we first compute, on the training set, the ICC time clus-

ters assuming two states and Student-t log-likelihood, Eq.3.4 as gain function. The

choice of two states is for the sake of simplicity, we tested also 3 states obtain-

ing inferior but comparable results. We verified that Student-t likelihood is best

performing among the tested gain functions, in Appendix we report results also

for Normal log-likelihoods (Eq.3.2). The switching penalty parameter γ in ICC

was set so that the average cluster size is around 30 days, i.e. consistent with the

30-day investment horizon. This selection of average cluster size and investment

horizon is a somehow arbitrary choice based on the effective threshold of the port-

folio performance measured by the Sharpe Ratio. We then labelled ‘Sparse 0’ the

state that is most abundant among the last 20 days of observations at the end of the

train period. Conversely, we labelled ‘Sparse 1’ the other state. The term Sparse

is used to indicate that this portfolio uses sparse inverse covariance. To set such

a ‘prevalence period’ of 20 days we first performed a grid search over the combi-

nation of training duration L = 0.5,1,2,3,4 years, and using prevalence periods of

10,20,30,100,L/2,L days. This search confirmed that small values of prevalence

periods, of 10,20,30 days, provide better results than larger prevalence periods. We

therefore set a prevalence period of 20 days as it provides the most consistent results

across the grid search and it is also consistent with the length of the test set.

The bottom plot in Figure 3.1 reveals that Sparse 0 has consistently better per-

formances over Full, best results for training periods of one year. Let us notice
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that, having an ICC average cluster size of 30 days, it makes it hard to cluster well

in a small training period of six months, and often unbalanced clusters where one

cluster dominates the period are obtained. On the contrary, a large training duration

(4 years) makes the model prone to unnecessary patterns and noise, and in turn,

reduces performance. Thus we chose 1 year as the best compromise for the length

of the training set. In Appendix A.1.1 and A.1.3 we see that similar results are

obtained for the other two markets (FTSE, HS300).

Figure 3.1: Sharpe Ratio for portfolios with 100 largest market capitalization constituent
stocks of NASDAQ Composite optimized using different training set durations.
The top subplot reports the average Sharpe Ratios (SR) with error bars report-
ing 1 standard deviation, for Full, Sparse, Sparse 0 and 1, statistics on 100
training-testing periods chosen at random within the 10 years dataset. The bot-
tom subplot report instead the relative Sharpe Ratios between Sparse 0 and Full,
SRSparse0/SRFull .

We compute optimal portfolios using the two (SLS and CLA) optimization

methods. We trained each optimization method both on the whole train dataset and,

separately, on the two Sparse 0 and Sparse 1 states. We used the sample means for

each of the respective sets and either the ‘full’ sample covariances (Pearson’s esti-

mate) or the ‘sparse’ sample covariances (TMFG-LoGo estimate [23, 17]). There-
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fore, for each optimization method we have four optimized portfolios: two com-

puted on the whole training set and with full or sparse inverse covariance (named

‘Full’ and ’Sparse’ respectively); two computed on the two ICC market states and

with sparse inverse covariance (named ‘Sparse 0’ and ‘Sparse 1’). For benchmark-

ing, these portfolios are also compared to a portfolio with equal weights, wi = 1/n

named ‘Naive’. Overall, we have therefore 4×2 plus 1 differently optimized port-

folios that are recomputed 100 times over randomly sampled time periods. Such

optimized portfolio weights are applied, for each of the three markets, to the 100

most capitalized stocks. In the appendix, we repeat the experiments for randomly

selected stocks.

3.4 Results

3.4.1 Log-likelihood

We computed the daily Student-t log-likelihood, using Eq.(3.4), for each of the 30-

day investment horizons. Figure 3.2, reports the averages of the differences for each

day between the log-likelihood of Sparse 0 and full and also between Sparse 1 and

full. The average is taken over the 100 random re-samplings.

Figure 3.2, shows mostly positive gains for Sparse 0 indicating that, for most

days across the investment horizon, it has larger log-likelihoods than Full. Sparse

1 gain instead reveals mostly negative results against full. This therefore indicates

that while Sparse 0 is, on average, a better model to describe the multivariate na-

ture of the log returns in the test set with respect to Full; instead, Sparse 1 is in

average worst. Since both Sparse 0 and 1 were sparsified using TMFG, the differ-

ence between them must therefore be a consequence of clustering. One might note

that, even though some Sparse 1 log-likelihood gains are in the positive domain,

they anyway have smaller magnitudes than their Sparse 0 counterparts. This result

clearly shows the effectiveness and importance of considering market states.

Let us note that the two ICC clusters gather together observations that max-

imize in-sample log-likelihood in the respective clustered periods. The fact that

these models (i.e. in-sample means and covariance) from these clusters still corre-
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Figure 3.2: Student-t log-likelihood for 100 largest market capitalization constituent stocks
of NASDAQ Composite v.s. number of days in the test period after training.
Each bar represents the average gain of the Sparse 0 (green) or 1 (red) with
respect to the Full in each day. Averages are over 100 re-samplings.

spond to different log-likelihood performances in the off-sample test set indicates

that the states are still relevant off-sample. Further, the better off-sample perfor-

mances of the Sparse 0 state indicate predictability; i.e. if one state outperforms

another during the training period, it will remain better performing throughout the

test period. Furthermore, to illustrate the universality of the log-likelihood results,

we have included similar Student-t log-likelihood (Appendix A.1.1) as well as Nor-

mal log-likelihood (Appendix A.1.3) plots for random 100 stocks selections for all

three major indices (NASDAQ, FTSE, HS300), where similar patterns are observed.

3.4.2 Portfolio Performance

We tested portfolio performances over a 30-day investment horizon for the 100

largest market capitalization constituent stocks of NASDAQ Composite computed

with the four portfolio optimization methods, SLS and CLA and using as inputs

Full, Sparse, Sparse 0 and Sparse 1. We also report the 1/n Naive construction as

the benchmark. Tables 3.1 and 3.2 report portfolio performances for the combina-

tion of portfolio constructions (column ‘Solver’) and inputs (column ‘State’). Per-
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Solver State Return (%) (5,95)th
percentile

Volatility (%) (5,95)th
percentile

Sharpe (5,95)th
percentile

1/n Naive 14.46 (-36,55) 17.4 (14,28) 1.536 (-1.4,4.3)
SLS Full 22.71 (-28,96) 19.5 (14,28) 1.627 (-1.4,5.4)
SLS Sparse 21.81 (-23,74) 17.5 (14,26) 1.764 (-1.0,6.2)
SLS Sparse 0 29.04 (-6,66) 16.0 (12,25) 2.478∗∗∗ (-0.3,6.9)
SLS Sparse 1 5.35 (-49,57) 19.8 (14,34) 0.978 (-2.3,4.6)
CLA Full 21.97 (-69,97) 19.5 (14,31) 1.541 (-2.1,6.5)
CLA Sparse 22.27 (-32,85) 17.0 (12,27) 1.758 (-1.9,6.5)
CLA Sparse 0 28.73 (-27,76) 15.8 (11,26) 2.372∗∗∗ (-1.5,7.6)
CLA Sparse 1 12.48 (-57,86) 18.7 (12,32) 0.964 (-2.9,6.6)

Table 3.1: Portfolio performances were obtained by using Student-t log-likelihood for ICC
clustering. We report annualized return, annualized volatility and annualized
Sharpe Ratio computed on 30 30-day investment period after the 1 year training
set. The values are averages and 5th and 95th percentiles computed over a 30-
day investment horizon obtained from 100 re-sampling of consecutive training-
investment periods chosen at random within the 10-year dataset. The underlying
assets are 100 largest market capitalization constituent stocks of the NASDAQ
Composite. Highlight in bold are return, volatility and Sharpe Ratio indicating
the optimal state in each market solver combination, while highlights in the 5th
return and 95th volatility showcase the extreme behaviours (excluding the state
Market). The state 1/n Naive is the equally weighted un-optimised portfolio and
it is reported as a benchmark. A pairwise T-test has been performed, and the p-
values for the best-performing results against the second best-performing results
in Sharpe Ratio are highlighted next to the best-performing Sharpe Ratio, where
∗ denotes 5% significance, ∗∗ for 1% and ∗∗∗ for 0.1% respectively.

formances are quantified in terms of annualized portfolio return, annualized port-

folio standard deviation (volatility) and the annualized Sharpe ratio over a 30-day

investment horizon. We report the 5% and 95% quantiles and the means computed

from the 100 random resampling of consecutive training-investment periods chosen

at random within the 10-year dataset. The maximum returns and Sharpe Ratios, as

well as the minimum volatility, are highlighted in bold. Thus showing the best per-

former in each market-solver combination. In addition, we highlight the minimum

5th percentile returns to depict the state suffering the least loss, and the maximum

95th percentile volatility to showcase the most stable state in extreme market situa-

tions.

From the mean values reported in Tables 3.1 (Student-t log-likelihood), we

observe that Sparse 0 outperforms Full, and this supremacy dominates for the two

solvers. More specifically, Sparse 0 is on average 29.3%, 19.5% and 53.1% better
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Solver State Return (%) (5,95)th
percentile

Volatility (%) (5,95)th
percentile

Sharpe (5,95)th
percentile

1/n Naive 14.46 (-36,55) 17.4 (14,28) 1.536 (-1.4,4.3)
SLS Full 22.98 (-28,96) 19.3 (14,28) 1.667 (-1.4,5.4)
SLS Sparse 21.96 (-23,74) 17.3 (14,26) 1.787 (-1.0,6.2)
SLS Sparse 0 29.00 (-14,66) 15.9 (12,23) 2.260∗∗∗ (-0.8,4.6)
SLS Sparse 1 6.84 (-43,63) 19.5 (14,30) 0.845 (-1.8,4.6)
CLA Full 20.63 (-76,97) 19.5 (14,31) 1.456 (-3.0,6.5)
CLA Sparse 21.15 (-53,85) 17.0 (12,27) 1.678 (-2.1,6.5)
CLA Sparse 0 27.08 (-14,79) 15.6 (10,30) 2.175∗∗∗ (-0.7,6.6)
CLA Sparse 1 11.54 (-69,77) 18.6 (14,36) 1.028 (-2.6,5.6)

Table 3.2: Portfolio performances obtained by using Normal log-likelihood for ICC clus-
tering. We report annualized return, annualized volatility and annualized Sharpe
Ratio computed on 30 days investment period after the 1 year training set. The
values are averages and 5th and 95th percentiles computed over 30-day in-
vestment horizon from obtained from 100 re-sampling of consecutive training-
investment periods chosen at random within the 10 years dataset. The underlying
assets are 100 largest market capitalization constituent stocks of NASDAQ Com-
posite. Highlight in bold are return, volatility and Sharpe Ratio indicating the
optimal state in each market solver combination, while highlights in 5th return
and 95th volatility showcase the extreme behaviours (excluding the state Mar-
ket). The state 1/n Naive is the equally weighted un-optimised portfolio and
it is reported as benchmark. A pairwise T-test has been performed, and the p-
values for the best-performing results against the second best-performing results
in Sharpe Ratio are highlighted next to the best-performing Sharpe Ratio, where
∗ denotes 5% significance, ∗∗ for 1% and ∗∗∗ for 0.1% respectively.

in return, volatility and Sharpe Ratio than Full across all two solvers. We observe

instead that Sparse 1 is considerably worst than Full indicating therefore that the

significant gain of State 0 comes from filtering out the ‘disadvantageous’ Sparse 1

state rather than sparsification. This is indeed confirmed by the small observed gains

of Sparse over Full. these results are confirmed by the analysis of the 5th and 95th

quantiles where we notice that Sparse 0 consistently achieves the least minimum

extreme loss and the least maximum extreme risk. Specifically, Sparse 0 on average

loses 66.0% less and is 13.6% less volatile than Full on 5th percentile return and

95th percentile volatility respectively. In other words, the integrated clustering port-

folio optimization algorithm, ICC-PO, that we proposed can boost returns with less

risk than the traditional benchmark, as well as provide extra resilience in extreme

market situations.

To test the sensitivity of this method to the specific ICC clustering gain func-
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tion, we performed the same analysis using the normal log-likelihood gain function

for ICC clustering. Results are reported in Table 3.2. Consistently with the previ-

ous results, we observe 28.6%, 18.8% and 42.0% improvements in return, volatility

and Sharpe Ratio, with 73.1% and 10.2% gains in 5th percentile return and 95th

percentile volatility. The comparison illustrates a 11.1% Sharpe Ratio improve-

ment in Student-t log-likelihood and a 7.1% 5th percentile return advance in Nor-

mal log-likelihood. In other words, Student-t is a better model for the market and

boosts portfolio performance. However, Normal log-likelihood generates a higher

resilience to extreme loss. Since the average gain in return and volatility are simi-

lar in the two cases, the performance difference should mainly come from general

upward-shifted ranges in the Student-t Sharpe Ratio.

Similar tables of optimization results using 10, 20, 30 and 100-day investment

horizons, can be found in Appendix A.1.2 for Student-t log-likelihood and A.1.4

for Normal log-likelihood. These experiments were carried out over randomly se-

lected 100 stocks baskets (instead of the 100 most capitalized ones); the set of 100

random stocks was re-chosen for each of the 100 re-sampling. Most of the general

patterns found earlier still hold regardless of the length of the testing period and

underlying assets. The relative difference, namely, the gain between Sparse 0 and

Full remains roughly the same. This consistency further confirms the generality of

our ICC-PO model. In this case, we report only the percentiles of the performance

measures because being re-sampled on different constituents, mean values might be

misleading.

3.5 Discussion

The results presented in Section 3.4.1 quantitatively demonstrate an effective gain

in log-likelihood after applying temporal ICC clustering and computing the opti-

mized sparse portfolio associated with the most persistent ICC cluster in the last 20

days of training (the Sparse 0 portfolio). We highlighted that the additional gain

in the ICC-PO construction is mainly a consequence of the market states cluster-

ing and only partially a consequence of sparsification. These results are extremely
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robust showing comparable patterns across experiments conducted for three major

capital markets, using two different solving methodologies, adopting four invest-

ment horizons and using both Student-t and normal log-likelihoods gain functions

(Appendices A.1.2 and A.1.4). The results in Appendices A.1.2 and A.1.4 obtained

for 100 random stocks in the US, the UK and the Chinese markets show a broader

variability but overall well-aligned results. Our results also confirm the observa-

tion, by Procacci and Aste [184], that models with larger likelihood better solve the

portfolio optimization problem.

As for the analysis of the 100 NASDAQ’s most capitalized stocks, also for the

random selection and the three markets, we observe that the Normal log-likelihood,

Sparse 0 is 33.8% less than Full in the 5th percentile Return, whereas the Student-t

log-likelihood is only 20.4%, which illustrates that the Normal statistically loses

less money in extreme situations. Namely, it results that there are general advan-

tages in using Student-t over Normal log-likelihood, yet, the latter performs better

at limiting risks. The edge in three main performance matrices depicts the Student-

t’s better market modelling property as suggested in the literature, especially for

limited sample daily log-return. In contrast, the mere pitfall in risk measures may

probably come from the fat-tail nature of the Student-t distribution.

It is difficult to assess the efficiency of ICC-PO by direct comparison to the lit-

erature since our focused result is the relative difference between Sparse 0 from Full.

The most informative measurements of general performance used widely in the

field of portfolio management are Sharpe Ratio (the risk-adjusted return), Jensen’s

Alpha (the abnormal return over the theoretical expectation), Treynor Ratio (the

risk-adjusted excess return from a risk-free asset) and Roy Ratio (the risk-adjusted

excess return from the market index) [193]. Literature identifies that the Sharpe

Ratio at values around 1 is commonly considered as the boundary between a good

and bad investment strategy, while the Sharpe Ratio at values around 2 represents

an excellent standard, and 3 and above are more likely to be achieved in a High-

Frequency Trading (HFT) strategy [194, 195]. During the 10-year we investigated

the annualized Sharpe Ratio for NASDAQ-100, FTSE-250 and HS300 have been
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respectively equal to 1.77, 0.42 and 1.07 [196, 197, 198]. While our results for

the various portfolio construction combinations generally lie in a reasonable range

around these values, we note that the average Sharpe Ratio of the Sparse 0 based

on the 100 largest market capitalization stocks from NASDAQ is 2.425, as well as

100 random stocks from NASDAQ is 2.132, from FTSE is 1.682 and from HS300

is 1.814 greatly exceeding the index’s performances.

Apart from the Sharpe Ratio for general performance assessment, the risk is

often a critical consideration in portfolio investment due to the risk aversion nature

of investors and the quadratic utility function assumption. Two widely used risk

measures value at risk (VaR) [199] and probable maximum loss (PML) [200], are

interpreted as the minimum and the maximum loss expected in a portfolio over a

time period. As a proxy combination of VaR and PML, we reported the 5th per-

centile Return in the random re-sampling. The observed general 66.0%, 49.8%,

21.6% and 32.4% reductions in loss respectively for largest-market-capitalization

NASDAQ, NASDAQ, FTSE and HS300 are highly significant results indicating

likely large improvements of both VaR and PML.

Lastly, as ICC-PO is computationally very efficient, it can be easily re-run for

every allocation window making dynamic portfolio allocation easy.

3.6 Summary

In this chapter, we have successfully demonstrated the use of sparse networks in

multivariate time-series clustering and its application in portfolio optimization. This

clustering method is efficient and effective as the underlying sparse modelling of a

multivariate time-series network sufficiently improves the signal-to-noise ratio.

Portfolio optimization lies at the core of quantitative investment. Automation

in the dynamic allocation process is a challenging goal with a large community

of academics and practitioners dedicated to this task which requires a precise and

accurate modelling of the past market performance and a predictive inference of

the future market state. However, it is never an easy task to predict the future, not

to mention doing so constantly. Explanatory as they are, only certain signals pos-
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sess the forecasting ability and normally only for a limited period of time. Hence,

the results of our proposed algorithm ICC-PO are worth to be mentioned. Indeed,

we improve the equal weight benchmark by over 50% in Sharpe Ratio, obtaining

a statistically more robust and resilient investment performance, especially in the

extreme market situations with large reductions in losses.

In this chapter, we demonstrated that markets can be classified in different

states with distinct statistical properties. By using two states, classified and clus-

tered using log-likelihood as gain function and sparse inverse covariance estimation,

we have shown that the two clustered states continue to be distinguishable in log-

likelihood after the train (in-sample) period, with one having systematically larger

log-likelihood than the one computed from the whole, unclustered, training sam-

ple. We have shown that the state with a larger log-likelihood tends to be the one

with the largest likelihood in the last period of training, indicating temporal persis-

tence and providing a way for predictability of the best-performing state in the off-

sample investment period. Portfolios optimized with data from the best-performing

state’s cluster give significantly better results than portfolios constructed from the

full dataset or the other state. This also confirms the intuitive argument (see [184])

that a model with a larger likelihood must perform better for portfolio optimization

purposes than a model with a lower likelihood. These results were tested extensively

across a period of ten years, across three different markets, with portfolios from two

different optimizers, with clustering from two different log-likelihoods, and both by

using a selected group of most capitalized stocks as well as by randomly picking a

stock basket.

The choice of using two market states has been dictated by simplicity. Future

work will investigate the effect of the number of ICC clusters on the results. Our

results are based on a naive selection of stocks from major indices. Hence, with a

carefully designed portfolio basket, as commonly done in industrial practices, we

expect further improvement of the results. Also, a wider application in asset classes

is a straightforward extension of the method.



Chapter 4

Sparse Multivariate Time-series

Network for Portfolio Optimization

4.1 Introduction

In the preceding chapter, we substantiated the utilization of a sparse network

for modelling multivariate time series, resulting in considerable noise reduction.

Nonetheless, the filtration procedure involved in sparse network formation fre-

quently introduces noise due to the imposed graphical constraints, e.g., no-cycle

condition must be fulfilled for MST, despite including a cycle might further reduce

the sum of the weight of edges. In the present chapter, we introduce an innovative

bootstrapping framework specifically designed to amplify the signal-to-noise ra-

tio and provide an improved representation of interactions within multivariate time

series. Once more, we apply this proposed method in the realm of portfolio opti-

mization to showcase its potency.

The optimization of financial portfolios has long been a focal point of inves-

tigation within the domains of finance and quantitative trading. The first mathe-

matical formulation of the problem follows the seminal works of Markowitz in the

1950s [201, 1]. An optimal portfolio that minimizes a risk matrix (e.g., variance) for

a given expected return is to be found by solving a quadratic optimization problem

under linear constraint, and the closed-form solutions form the efficient frontier.

The minimum variance portfolio (MVP) lies on the efficient frontier line minimiz-
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ing the variance, and it is widely regarded and practised by academia and industry as

the most classic solution to the optimization problem. The MVP solution is simple

and elegant that is contingent solely on the covariance of assets’ historical return,

independent of the mean. The covariance captures the volatility of a single asset and

the interdependencies (correlation) between them. However, empirical covariance

is notably unstable, particularly within multivariate financial time series where the

signal-to-noise ratio is exceptionally low. Consequently, minor perturbations can

trigger significant deviations. Additionally, financial markets are frequently subject

to shifts and jumps, rendering the historical empirical covariance an unsatisfactory

predictor of future trends, and the prediction of future covariance a challenging

task. These factors unfortunately result in the mathematical optimality of the MVP

failing to persist in off-sample periods.

Recent progress in the realm of network science, especially in network filter-

ing, has provided alternatives to the traditional covariance-based methodologies.

The covariance and correlation matrices can be interpreted as a graph/network, and

can be condensed to essential information under certain graphical constraints, such

as the minimum spanning tree (MST). The resulting filtered matrix typically ex-

hibits sparsity with many structural zeroes, which correspond to statistically in-

significant network components, thereby enhancing the matrix’s robustness and

generality. The resulting sparse network has been demonstrated to be useful for

visualization and to aptly reflect market dynamics [202, 203]. Consequently, in-

vestment decisions, including portfolio selection and optimization, can be based on

this network. For instance, the positive-defined sparse inverse covariance matrix

from Triangulated Maximally Filtered Graph (TMFG) can directly substitute the

original empirical inverse covariance matrix in the Markowitz model, yielding sub-

stantial improvements [204, 205]. Other topological information, such as centrality

and peripherality, and community clusters, can be used as criteria for stock selection

and portfolio weight optimization.

Information Filtering Networks (IFN) represent a robust and computationally

efficient network filtering technique. However, due to certain topological con-
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straints necessary for network construction, superfluous edges need to be intro-

duced, which leads to slightly increasing the amount of noise. This chapter presents

a novel method, the Statistically Robust Information Filtering Network (SR-IFN),

which employs a statistically robust bootstrapping approach to mitigate the noise

introduced during the IFN’s building pipeline. In this method, the underlying mul-

tivariate time series is bootstrapped multiple times and transformed into sparse sub-

networks. These sub-networks are then ensembled, and only the key structures

that occur more frequently than a predefined threshold are retained. This strategy

prunes unnecessary components, increasing the informativeness of the remaining

edges and maximising the likelihood of the modelled system. This enhanced sparse

network is then used for portfolio selection based on connectivity, as a peripheral

portfolio is more diverse and entails lower risk. Further optimization can be carried

out using the centrality of assets as a measure for weight calculation. We conduct

experiments utilizing the component stocks of NASDAQ, FTSE, and HS300, rep-

resentative of the equity markets in the US, UK, and China, respectively, and we

include both scenarios with and without 20 basis point transaction costs.

4.2 Methodologies

4.2.1 Statistically Robust IFN (SR-IFN)

The application of Information Filtering Networks (IFNs) has been extensively ex-

plored within the field of finance, particularly for the purpose of correlation/covari-

ance sparsification and filtering. Nevertheless, given that IFNs specify a complete

network/graph under certain topological constraints, such as planarity for PMFG

and chordality for TMFG, the resultant network structure incorporates elements

that, while necessary to uphold these constraints, are irrelevant to the original in-

formation. This chapter introduces a Statistically Robust (SR) method aimed at en-

hancing the stability and performance of IFNs by endeavouring to eliminate these

constraint-related structures. Triangulated Maximally Filtered Graph (TMFG) is

employed as the core IFN for the purposes of the ensuing experiments.

The construction process for TMFG is outlined in Algorithm 1. It relies on
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Algorithm 2 Statistically Robust IFN (SR-IFN)
Input A set of observations x̂s,n ∈ Rs,n, the confidence level pcl , and the number of
repetitions tr
Output Sparse similarity matrix S.

1: Initialize an empty ensemble adjacency matrix A ∈ Rn,n with all zeros;
2: Initialize an empty final sparse similarity matrix S ∈ Rn,n with all zeros;
3: Calculate the original correlation matrix Ĉ ∈ Rn,n from x̂s,n;
4: for t← 1 to tr do
5: Randomly bootstrap x̂s,n in the first dimension and obtain bootstrapped x̂t

s,n;
6: Calculate the bootstrapped correlation Ĉt ∈ Rn,n from x̂t

s,n;
7: Obtain the bootstrapped sparse adjacency matrix At from Ĉt by TMFG in

Algorithm 1;
8: A+= At

9: end for
10: for each pair of nodes i, j in A do
11: if Ai, j

tr
> pcl then

12: Si, j = Ĉi, j;
13: end if
14: end for
15: return S.

a simple topological move that maintains both planarity and chordality. TMFG

has been demonstrated to be a computationally efficient model capable of generat-

ing sparse probabilistic modelling via topological regularization. However, it is not

without limitations: unnecessary edges may be added to satisfy the graph’s chordal-

ity, thereby introducing undesirable noise, a particular issue in fields characterized

by a low signal-to-noise ratio, such as finance. To address this limitation, we pro-

pose the Statistically Robust (SR) method, detailed in Algorithm 2.

Temporal sequential dependence is reduced by randomly bootstrapping the ob-

servations in each repetition, which also results in each bootstrapped sample pos-

sessing a distinct network structure. Therefore, superfluous edges will be added

differently in each case. By retaining structures that appear more frequently than

a certain threshold, we can discard unnecessary edges and noise as they lack sta-

tistical robustness and tend to occur randomly, hence infrequently, see Figure 4.1.

Algorithm 2 illustrates this process, introducing an ensemble adjacency matrix A,

which amalgamates all adjacency matrices from bootstrapped sub-TMFGs. After
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all repetitions, the occurrence probability of an edge between any pair is calculated,

and only if this probability exceeds the defined confidence level (ConfLv) thresh-

old, do we retain the edge. The final output S is a similarity matrix representing

the original correlation, but with many structural zeros from the discarded edges to

ensure sparsity.

Figure 4.1: Statistically robust bootstrapping process. Three sub-networks were generated
from one observation set with bootstrapping. Only edges that present more
than a two-thirds majority will be preserved in the resulting statistically robust
network.

4.2.2 Bootstrapped Centrality Measures

Subsequent experiments will utilize three centrality measures for portfolio weight

calculation, including Degree Centrality, Communicability Betweenness Centrality,

and Absolute Correlation.

Degree Centrality is one of the simplest and most common centrality measures

used to quantify the prominence of a node in a network. It is based on the idea that

nodes with more connections (edges) to other nodes are more central and influen-

tial within the network. For an undirected network, the degree centrality, cd
i of a

node i is calculated as the number of edges (connections) it has denoted by ki. The

normalized degree centrality is obtained by dividing ki by the maximum possible

number of connections, which is (n− 1), where n is the total number of nodes in

the network,

cd
i = ki/(n−1). (4.1)

This normalization allows for the comparison of centrality scores across different
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networks.

Communicability Betweenness Centrality (CBC) is an extension of the tradi-

tional betweenness centrality measure, which is based solely on the shortest paths

between nodes. While betweenness centrality focuses on the number of shortest

paths that pass through a given node, CBC takes into account the weighted sum of

all paths between nodes, where the weight of each path is inversely proportional

to its length. Mathematically, communicability between nodes i and j is calculated

using the exponential of the adjacency matrix elements, A, of the network. The

adjacency matrix is a square matrix whose element A j,k represents the connection

between nodes i and j. The communicability between nodes i and j is given by

the (j,k)-th element of the exponential of matrix element, denoted as exp(A j,k).

Communicability Betweenness Centrality is then calculated by summing the rela-

tive changes in communicability for all pairs of nodes when a node is removed from

the network. For node i, the CBC is computed as:

cCBC
i =

∑i ̸= j ̸=k exp(A j,k)− exp(A j,k−Ei)

exp(A j,k)
(4.2)

where Ei is a matrix with the same dimensions as A j,k, representing the connections

of node i (i.e., with 1s in the positions corresponding to the edges of node k and 0s

elsewhere), and (A j,k−Ei) represents a new adjacency matrix by removing node k

from the network. In this formula, the summation is over all pairs of nodes i and j,

excluding node k. The CBC quantifies the importance of node k by considering its

role in facilitating communication between all pairs of nodes in the network, taking

into account both direct and indirect paths.

The portfolio selection methods in the above section select assets with statisti-

cally significant decorrelation among the portfolio. Therefore an intuitive way for

weights optimization is directly using the sum of absolute pairwise correlation, as

the portfolio weight for each node/asset. Therefore, it is expressed as

ccorr
i = ∑

j,i̸= j
|ρi, j|, (4.3)
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where ρi, j represents the pairwise correlation between node i and node j.

A bootstrapping approach akin to Algorithm 2 is utilized for calculating statis-

tically robust centrality. In each repetition, a sub-centrality, ct , is determined within

the sub-network obtained from bootstrapped observations, and the overall centrality

is obtained by averaging all sub-centralities, as shown:

ci =
1
tr

tr

∑
t=1

ct
i (4.4)

where ci is the ensembled centrality, ct
i is the sub-centrality for node i, and tr is the

number of repetitions.

4.2.3 Portfolio Selection and Optimization

In our application of the Statistically Robust Information Filtering Network (SR-

IFN), we consider a total of N assets with T time-stamped historical observations.

The resultant sparse similarity matrix, S, represents the pairwise correlations be-

tween assets. Given the sparse nature of S, it allows for the division of assets into

two subsets: connected and disconnected. Disconnected assets lack any link to

other assets, while connected ones possess at least one such link. By adjusting

the confidence level (ConfLv) threshold within the SR-IFN, we can manipulate the

quantities of disconnected and connected assets. For the purpose of establishing

a portfolio with minimal correlation, we include all disconnected assets, while ex-

cluding the connected ones. More specifically, we select assets for which the sum

of pairwise correlations is zero, as expressed in the following equation:

∑
j,i ̸= j

Si, j = 0. (4.5)

This results in the selection of assets that exhibit a very low statistical correlation

with others within the portfolio.

To further enhance the portfolio, we optimize the weights such that they are
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inversely proportional to the ensembled centrality measures,

wi =
1/(ci + ε)

∑ j 1/(c j + ε)
(4.6)

where wi is the weight, and ci represents the centrality for asset i in the portfolio, ε

is a regularization constant and ε << 1.

Figure 4.2: Portfolio weight is rolling rebalanced over the period. It is rebalanced every
trebalance-day with a tlookback days look-back window of history. Therefore, the
weights of the portfolio only change trebalance-day to avoid excessive trading
and transaction costs. The calculation of new weights depends on the historical
look-back window of tlookback days.

Dynamic allocation of the portfolio is achieved through rebalancing every

trebalance-day. The selection criteria in Equation 4.5 and weights in Equation 4.6

are re-calculated based on a tlookback days look-back window of history, see Figure

4.2.3.

4.3 Implementation

4.3.1 Data

A series of experiments were conducted utilizing historical financial time-series

data obtained from three principal capital markets: NSDAQ, FTSE, and HS300

(data obtained from Bloomberg), spanning the period from January 1, 2010, to

January 1, 2020. For each constituent stock, the daily log-return, denoted as

ri(t) = log(Pi(t))− log(Pi(t − 1)), was computed using closing prices. Detailed

statistics of the daily log-return distribution are furnished in Table 4.1 for subse-

quent comparison and discussion.
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NASDAQ FTSE HS300
Ann. Return 16.0% 5.8% 9.9%

Ann. Std.Dev. 17.5% 15.8% 23.2%
D. Skewness -0.44 -0.95 -0.89

Max. Drawdown -24.0% -43.5% -52.3%

Table 4.1: Statistics table for the log return distribution in NASDAQ, FTSE and HS300
between 01/01/2010 and 01/01/2020, including annualized return mean, annual-
ized return standard deviation, daily return skewness, and maximum drawdown.

The chosen indexes are emblematic of distinctly divergent market dynamics

during the designated period. NASDAQ was in a phase colloquially referred to as

its ‘golden ten years’, characterized by a substantial annualized mean return and

moderate volatility. The skewness of the return distribution is less negative com-

pared to the other indexes, indicating fewer extreme loss events and consequently,

a lower maximum drawdown throughout this period. In contrast, both FTSE and

HS300 exhibited a high negative skewness and substantial drawdown over the same

period. Additionally, the FTSE was more conservative, with a lower average return

and volatility, whereas the HS300 displayed considerably higher volatility.

4.3.2 Experiment Setup

This section is devoted to the selection of portfolios exclusively from an index com-

ponent stock pool. Consequently, the weights of the portfolio are maintained at 1/N,

where N represents the total number of assets in the chosen portfolio. The portfo-

lio undergoes rebalancing every trebalance days, with a historical look-back period

of tlookback days for the measurement of empirical correlation and other historical

statistical properties. Experiments are included both with and without transaction

costs of 20 basis points (bps) to simulate commission and bid-ask spread costs. The

complete period is partitioned into in-sample and out-of-sample periods before and

after 01/01/2017. A grid search over trebalance and tlookback is conducted in-sample

for analysis and optimization, and the optimal parameters are retained for the out-

of-sample period to showcase the persistence and significance of the method. In

addition, to demonstrate robustness and present statistics, all experiments across

the three markets are repeated and ensembled with varying starting dates.
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Figure 4.3: Grid search results in Sharpe Ratio across NASDAQ (top left), FTSE (top right)
and HS300 (bottom) over various rebalance frequencies and lookback window
sizes. The Left and right columns show results with and without 20bps transac-
tion costs. L/H represents the long-hold portfolio over the entire stock pool, and
1/N represents the simple equally weighted selected portfolio averaged over
other parameters. The grid search results of Confidence Levels of SR-IFN are
not shown as it is not optimized for the remaining experiments.
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Figure 4.3.2 portrays the grid search results over a range of rebalance frequen-

cies, trebalance, and lookback window sizes, tlookback. The results are averaged across

varying trebalance, tlookback and Confidence Levels of Statistically Robust Informa-

tion Filtering Network (SR-IFN, denoted as ConfLv), but the outcomes in relation

to ConfLv are not displayed as it is not optimized for the remaining experiments.

This grid search is executed in-sample from 01/01/2010 to 01/01/2017. While it is

safe to assume that tlookback is optimally at 126 days for all three markets, there is a

minor discrepancy among trebalance. Nonetheless, for simplicity and consistency, we

employ an 84-day trebalance for the remaining experiments.

4.4 Results

4.4.1 Topological Portfolio Selection

The Statistically Robust Information Filtering Network (SR-IFN), introduced in

Section 4.2.1, provides a statistically robust selection predicated on historical cor-

relation. The remaining correlated features, derived from the historical period, due

to their robustness, are anticipated to maintain their correlation for a brief future

period. This intrinsic ability to predict future correlation serves as a pivotal crite-

rion for numerous portfolio selection and optimization techniques, as their primary

objective is to identify the least correlated portfolio. In this section, we scrutinize

the influence of the peripheral portfolio over the central portfolio, as defined by the

correlation graph, and exhibit the supplemental gain from the SR-IFN peripheral

portfolio in comparison to a classic correlation-based portfolio.
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Figure 4.4: Portfolio selection results in Sharpe Ratio across NASDAQ (top left), FTSE
(top right) and HS300 (bottom). The selection is performed based on the SR-
IFN, and we report the central (orange) and peripheral (blue) portfolios as well
as a random subsampled (green) portfolio to showcase the efficacy of the pe-
ripheral one. For each subplot, the left, middle and right columns represent the
full, in-sample (before 2017) and off-sample (2017-2020) periods, and the top
and bottom (with symmetrical log scale) rows represent without and with 20bps
transaction fees. The rebalance window is fixed at 84 days and the lookback
window is fixed at 126 days, optimised in the in-sample period. The peripheral
and central portfolios do not have the exact same number of assets in compari-
son, as SR-IFN selects based on confidence level instead of an exact parameter.



4.4. RESULTS 63

Figure 4.4 showcases the results in terms of the Sharpe Ratio for NASDAQ,

FTSE, and HS300. The parameters trebalance = 84 and tlookback = 126 are fixed,

which are optimized in-sample from section 4.3.2, and the outcomes of the out-of-

sample period are presented. For each subplot, the top row and bottom row represent

experiments without and with 20bps transaction costs, with the bottom row being

displayed in a symmetrical log scale for enhanced visualization and comparison.

The Peripheral Topological Portfolio (PTP) in blue is the principal portfolio se-

lected by SR-IFN. By varying the ConfLv of SR-IFN, we illustrate the performance

with respect to different numbers of assets. Given that PTP is constructed from the

disconnected assets of the correlation graph, its counterpart, Central Topological

Portfolio (CTP) in yellow, represented by the connected assets from the correlation

graph, is also exhibited as a supplement to portray the nearly symmetrical gain and

loss. Since the number of assets is not a direct parameter in the algorithm but is con-

trolled by the ConfLv, PTP and CTP do not have the exact same number of assets

when comparing the two curves. Moreover, to showcase the efficacy of PTP, we

also present the results for a randomly sub-sampled portfolio with the same num-

ber of assets as PTP, denoted as Random Benchmark Portfolio (RBP) in green, a

Peripheral Benchmark Portfolio (PBP) in red that is constructed by selecting the as-

sets with the least sum of pairwise correlation, as well as a simple long hold strategy

represented by a dashed line.

In all three markets, the two peripheral portfolios, PTP and PBP, both yield

superior performance compared to RBP and CTP, suggesting a clear advantage in

adopting the peripheral portfolio as discussed in section 2.4.3. For out-of-sample

experiments, PTP surpasses PBP when the number of assets is relatively large with

no transaction cost, and if a 20bps transaction cost is applied, the range where PTP

outperforms PBP extends. These findings corroborate that PTP is superior to the

benchmark PBP with statistical significance and consistency across markets and

conditions. Specifically, SR-IFN provides a more robust mechanism to identify as-

sets with the most/least correlation than the simple empirical correlation method,

and this effect is more likely to persist in the future period. Furthermore, by con-



4.4. RESULTS 64

trasting PTP and CTP, the gains and losses are roughly symmetrical around the

Long/Hold dashed line, suggesting that the gain in PTP predominantly arises from

selecting the peripheral assets as opposed to other factors.

To further refine our discussion, we place a restriction on our portfolio size to

include more than 50 and less than 100 assets, aiming to mitigate the high variance

at the tail of the performance distribution. When examining the out-of-sample pe-

riod without transaction fees, the average Sharpe Ratio for NASDAQ is 1.10, while

with the inclusion of 20bps transaction fees, it marginally decreases to 1.08. This

is compared against a Long/Hold (L/H) benchmark of 1.07. In a similar vein, the

FTSE index records an average Sharpe Ratio of 0.28 without transaction fees and

0.24 with these fees, against an L/H benchmark of -0.09. The HS300 index exhibits

a Sharpe Ratio of 0.65 without transaction fees and 0.62 with the inclusion of 20bps

transaction fees, compared to an L/H benchmark of 0.47. Thus, the net gain in the

out-of-sample Sharpe Ratio equates to approximately 3% and 1% in the case of

NASDAQ, 411%, and 367% for FTSE, and 38% and 32% for HS300, without and

with transaction fees respectively.

The noteworthy performance observed in the FTSE and HS300 indices can

likely be attributed to the specific market dynamics during the chosen period, char-

acterized by a highly negative skew and a substantial maximum drawdown. For

instance, during the ’golden period’ of NASDAQ, a high beta and generally high

correlation among the index component stocks result in a low signal-to-noise ra-

tio when identifying the least correlated stocks. In contrast, in the more turbulent

and less bullish market dynamics observed in the FTSE and HS300 indices, where

the correlation among component stocks presents greater diversity, the underlying

SR-IFN results in more significant findings in terms of correlation filtering and in-

ference. In essence, SR-IFN for portfolio selection generally has a positive impact

on the selection of the least correlated assets, leading to improved portfolio perfor-

mance. This performance is more pronounced when the underlying market dynamic

is less bullish and subject to more extreme losses.
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Figure 4.5: Portfolio optimization results in Sharpe Ratio across NASDAQ (top left), FTSE
(top right) and HS300 (bottom) with 20bps transaction fee. We report the orig-
inal Peripheral Topological Portfolio of equal weights as the benchmark (blue),
and the optimised PTPs whose weights are inversely proportional to Degree
Centrality (yellow), Communicability Betweenness Centrality (green) and Ab-
solute Correlation (red). For each subplot, the left, middle and right columns
represent the full, in-sample (before 2017) and off-sample (2017-2020) peri-
ods. The rebalance window is fixed at 84 days and the lookback window is
fixed at 126 days, optimised in the in-sample period.
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4.4.2 Topological Portfolio Optimization

In the preceding section, we have demonstrated the significant advantage of a pe-

ripheral portfolio selection strategy in the context of high drawdown periods. This

strategy, founded on the least correlated portfolio, can be further refined by in-

corporating other topological properties to optimize the weighting of the selected

portfolio. Herein, we continue to underscore the merit of a more peripheral port-

folio, characterized by reduced correlation and superior performance, by assigning

weights that are inversely proportional to centrality measures within the previously

selected Peripheral Topological Portfolio (PTP). Degree Centrality, as one of the

simplest measures of centrality, and Communicability Betweenness Centrality, a

more complex but well-documented measure, are included in our study. Further-

more, given its intuitive nature and alignment with the overall theme of decorrela-

tion, Absolute Correlation is also incorporated into our experiments.

Figure 4.5 depicts the performance across the three markets in terms of the

Sharpe Ratio. Within each market, we plot PTP, serving as the benchmark, and three

optimised versions of PTP wherein weights are inversely proportional to central-

ity measures, including Degree Centrality (yellow), Communicability Betweenness

Centrality (green), and Absolute Correlation (red). Maintaining the same compara-

tive framework, we restrict our analysis to portfolios comprising more than 50 and

less than 100 assets, in order to mitigate the high variance at the tail of the perfor-

mance distribution. For brevity, we limit our analysis to experiments incorporating

20 bps transaction fees. For the NASDAQ index, the average Sharpe Ratio is im-

proved from 1.08 to 1.12, representing an approximate 4% improvement when op-

timized by Communicability Betweenness Centrality. Absolute Correlation yields

an equal 1.08, while Degree Centrality results in a slightly inferior 1.06. For the

FTSE index, Communicability Betweenness Centrality optimization improves the

Sharpe Ratio from 0.24 to 0.42, an impressive 75% enhancement, while Absolute

Correlation and Degree Centrality yield improvements to 0.31 (29%) and 0.25 (4%),

respectively. For the HS300 index, the average Sharpe Ratio improves from 0.62 to

0.65 (approximately 5%) when optimized by Communicability Betweenness Cen-
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trality, while remaining unchanged under the other two methods.

NASDAQ FTSE HS300
L/H PTP PTP+CBC L/H PTP PTP+CBC L/H PTP PTP+CBC

Ann. Return 16.6% 16.2% 15.7% -1.6% 1.1% 5.5% 8.7% 11.5% 12.1%
Ann. Std.Dev. 15.5% 15.0% 14.1% 18.4% 19.5% 17.7% 18.6% 18.7% 18.8%

Sharpe R. 1.07 1.08 1.12 -0.09 0.24 0.42 0.47 0.62 0.65
Max. Drawdown -23.2% -22.1% -18.1% -43.5% -48.5% -42.4% -30.0% -28.0% -29.0%

Table 4.2: Aggregated performance statistics of L/H benchmark, Peripheral Topological
Portfolio (PTP) and PTP optimised by Communicability Betweenness Central-
ity (CBC) in NASDAQ, FTSE and HS300. The table reports averaged statistics
for portfolios with a number of assets between 50 and 100, including the an-
nualized mean return, annualized return standard deviation, annualized Sharpe
Ratio, daily return skewness and maximum drawdown.

Furthermore in Table 4.2, we report the aggregated performance for the

Long/Hold benchmark (L/H), PTP and PTP optimised by CBC (PTP+CBC), the

statistics are averaged across portfolios with a number of assets between 50 and

100. Apart from a superior Sharpe Ratio, our PTP+CBC demonstrates significant

improvement in the risk matrices. PTP+CBC has reduced annualized return stan-

dard deviation by 1.4% in NASDAQ, 0.7% in FTSE and kept similar in HS300, as

well as shrank the maximum drawdown by 5.1% in NASDAQ, 1.1% in FTSE and

1% in HS300.

This section illustrates the impact of weighting the portfolio inversely propor-

tional to different centrality measures. We provide quantitative evidence of a ro-

bust improvement over the simple, equally-weighted PTP. Furthermore, Figure 4.5

demonstrates that, apart from the FTSE index where the effect is consistently dom-

inant across all asset numbers, the effect is particularly pronounced for portfolios

with larger asset numbers. One plausible explanation is that, for smaller PTPs, the

assets are already optimally selected and much of the topological information has

been extracted. As a result, additional optimization may suffer from a low signal-

to-noise ratio, as the application of infinitesimally small weights effectively equates

to deselection. This hypothesis aligns with the more pronounced effect observed in

the FTSE index, given its effectively larger pool of component stocks compared to

the other two indices.
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4.5 Summary

In this study, we presented a novel, statistically robust bootstrapping method de-

signed to enhance the information filtering network for modelling multivariate time

series, hereby referred to as the Statistically Robust Information Filtering Network

(SR-IFN). This method improves upon the existing Information Filtering Network

(IFN) by reducing redundant edges formed due to applied graphical constraints.

The SR-IFN accepts multivariate time-series observations as inputs and outputs a

sparse similarity matrix and a network, both of which are subsequently employed

for portfolio selection and optimization with constant rebalancing. Our experiments

spanned a decade-long history across three distinct markets, utilizing the first 70%

of the data to select parameters such as rebalancing frequency and lookback win-

dow size. The results reported are based on the off-sample data from the remaining

three years. Our in-sample grid search for parameter tuning demonstrated con-

sistent outperformance of the benchmark, mirroring the findings in the off-sample

period, thereby reinforcing the robustness of the proposed method in even the most

challenging financial applications.

Our findings indicate that the deployment of such an innovative approach re-

sults in a Sharpe Ratio improvement of 1%, 367%, and 32% with 20bps trans-

action costs for market indices. This is achieved by simply selecting a subset of

composite stocks in the US, UK, and China markets, respectively. Moreover, the

performance can be further amplified by optimizing the portfolio weights based on

the centrality measures of the output network, yielding additional improvements of

4%, 75%, and 5%. The cumulative improvement derived from both approaches

enhances the results by 5%, 567%, and 38% for the NASDAQ, FTSE, and HS300

indices, respectively. The disparities in the magnitude of improvement are likely

attributed to the market dynamics of the selected period. For instance, NASDAQ

was in its ’golden period’, while the other two markets underwent significant draw-

downs. Consequently, further improvement of an already efficient system (NAS-

DAQ) proved more challenging than the other two, which serves as a testament to

the method’s resilience under extreme market conditions. Furthermore, despite a
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marginal boost in the risk-adjusted reward in NASDAQ compared to the other two

markets, the risk metrics are notably reduced in both annualized standard deviation

of 1.4% and maximum drawdown of 5.1%. Additional findings reveal that the un-

derlying method performs well with large-dimension data (number of assets) with

computational efficiency.



Chapter 5

Network Filtering of

Spatial-temporal GNN for

Multivariate Time-series Prediction

5.1 Introduction

Intra-series temporal patterns and inter-series correlations are jointly the two cores

in multivariate time-series forecasting. Recent advancement in deep learning has

enabled strong temporal pattern mining. Recurrent Neural Network (RNN) [206],

Long Short-Term Memory (LSTM) network [207] and Gated Recurrent Units

(GRU) [208] demonstrate promising results in temporal modelling. Advanced work

with attention mechanism, e.g., transformer [209, 210], further improves the per-

formance and efficiency in temporal modelling by being able to prioritize certain

temporal sequence instead of the entire history while enabling parallel computation

in attention calculation [211]. However, existing methods don’t take into account

the correlation or other interdependencies matrices of time series explicitly, instead,

they aim to learn such a relationship from input data, e.g., via embeddings. Histor-

ical attempts have been made to input covariance/correlation structure into neural

networks, as these structures can be used as priors to reducing learning complexity.

Matrix-based neural networks have been discussed [212, 213], but this approach is

not specifically designed for the covariance/correlation matrix, and therefore fails to
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directly and explicitly address the dependency in the covariance/correlation struc-

ture inside the calculation.

A graph is a mathematical structure to model relations between objects. The

permutation-invariant, local connectivity and compositionality of graphs present a

perfect data structure to simulate the correlation/covariance matrix. In fact, net-

work science literature has long been including (sparse) covariance/correlation as a

special network for analysis [214, 215, 216], and many network properties of co-

variance/correlation matrix contribute greatly to analytical and predictive tasks in

the financial market [217, 218, 219]. Recently, graph neural networks (GNN) have

been leveraged to incorporate the topological structure between entities. Hence,

modeling inter-series correlation via graph learning is a natural extension to analyz-

ing covariance/correlation matrix from a network perspective. Each variable (series)

from a multivariate time series is a node in the graph, and the edge represents their

latent inter-dependency. By propagating information between neighboring nodes,

the graph neural network enables each time-series to be aware of correlated context.

Spatial-temporal graph neural network is the most used network structure for

multivariate time-series problems in the literature [220, 139], as the temporal part

extracts patterns in each uni-variate series with a LSTM/RNN/GRU, while the spa-

tial part (GNN) models the relationship between series with a pre-defined topology

or a graph representation learning algorithm. On one hand, existing GNNs heavily

utilize a pre-defined topology structure which is not explicit in multivariate time-

series, and does not reflect the temporal dynamical nature of time-series. On the

other hand, many graph representation learning methods focus more on generat-

ing node embeddings rather than topological structure, and most of the embeddings

depend on a pre-defined topological prior or attention mechanism [221, 220].

In this chapter, we propose an end-to-end framework termed Filtered Sparse

Spatial-temporal GNN (FSST-GNN) for sales volume prediction of 50 products in

10 stores. By integrating modern spatial-temporal GNN with traditional matrix

filtering/sparsification methods, we demonstrate the direct use of the (inverse) cor-

relation matrix in GNN. Correlation filtering techniques generate a sparse inverse
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correlation matrix from multivariate time-series, which can be inverted to a filtered

correlation matrix. Both the (inverse) correlation can be used as a pre-defined topo-

logical structure or prior for further representation learning. With the designed ar-

chitecture, we further illustrate that filtered graphs generates a positive impact in

multivariate time-series learning, and sparse graphs acts as a contributing prior to

guide attention mechanism in GNN.

5.2 Model Implementation

We first elaborate on the general framework of our model. As illustrated in Figure

5.1, the model consists of 5 main building blocks. A correlation graph genera-

tor is able to transform the multivariate time-series into a correlation graph where

each node represents a single time-series and each edge between two nodes denotes

their correlation. A standard transformation generates a full (inverse) correlation

graph with (inverse) correlation edges between each node. In addition, correlation-

filtering based transformation generates a full correlation graph with filtered correla-

tion edges, or a sparse inverse correlation graph. We employ covariance shrinkage,

graphical models and information filtering network as the three main correlation-

filtering based graph generators. The feature generator generates initial input fea-

tures for each node based on the multivariate time-series, and the details of the

feature generator in the specific case study will be discussed in Section 5.3.1. The

generated graph and the features from the two generators are then fed into a GNN to

learn meaningful node embeddings as the spatial information. Similarly, the multi-

variate time-series is also fed into a LSTM to extract temporal information. Then,

the spatial and temporal information are input in a multi-layer perceptron (MLP) as

the read-out layer for the final output, the predicted sales volume. As the feature

generator, LSTM and read-out MLP are general and based on standard settings, the

sections following focus on the correlation graph generator and the employed GNN.
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Figure 5.1: The overall model architecture, where X̂t represents the input multivariable time
series of t dimensions, Ŷ1 is the output of LSTM, Ŷ2 is the output of GNN, and
the final output Ŷ combined Ŷ1 and Ŷ2 through a MLP.

5.2.1 Correlation Graph Generator

5.2.1.1 Graphical LASSO

Graphical lasso is a statistical approach for deducing the structure of an undirected

Gaussian graphical model, focusing on the concentration or precision matrix, which

is the inverse of the covariance matrix. As a sparse penalized maximum likelihood

estimator, its goal is to maximize likelihood while ensuring the resulting matrix has

a high level of sparsity, characterized by a large number of zeros. This sparsity aids

in pinpointing the most crucial variable relationships.

In managing the number of non-zero elements in the precision matrix, graphi-

cal lasso utilizes l1 regularization, also known as lasso regularization. This method

introduces a penalty proportional to the absolute value of the coefficients, favoring

solutions with fewer non-zero elements. Consequently, graphical lasso is effec-

tive in unraveling a network’s structure by determining direct relationships between

variables, thus leading to a model that is both simpler and easier to understand.

Graphical LASSO is epressed in equation 2.1. We leverage Python’s

sklearn.covariance.GraphicalLasso library for implementation, and

sklearn.covariance.GraphicalLassoCV [222] for cross valiation and regulariza-

tion constant λ selection. Graphical LASSO sparsifies an inverse correlation matrix
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which can be directly transformed into a sparse inverse correlation graph, while a

full but filtered correlation graph can be obtained through the matrix inversion of

the inverse correlation.

5.2.1.2 Maximally Filtered Clique Forest

We implement Maximally Filtered Clique Forest (MFCF), an information filter-

ing network, for sparse precision matrix filtering. By setting the minimum and

maximum clique size to 4, we simplify our solution to a TMFG-equivalent model

discussed in Section 2.2.2. It generates sparse inverse correlation, which will under-

goes similar transformation as Graphical LASSO to obtain inverse correlation and

correlation graphs.

5.2.2 GNN

5.2.2.1 GCN

The Graph convolution network is proposed by Kipf and Welling in 2017 [223],

which generates embeddings for each node in the graph. It takes original features in

each node as the initial embeddings, then aggregates neighboring feature represen-

tations and updates the node embeddings through a message-passing-like network

with the adjacency matrix. The layer-wise propagation rule updates the node fea-

tures, which can be expressed as:

H(l+1) = φ

(
D(−1/2)AD(−1/2)HlWl

)
(5.1)

where H(l) ∈ RFl×N (where N is the number of nodes, and Fl is the number of

features at layer l) is the matrix of node features at layer l, Wl ∈ RFl+1×FL is the

weight matrix for layer l, φ is the non-linear activation function, A ∈ RN×N is the

adjacency matrix with added self-connections, and D is the diagonal degree matrix

of A.

In the experiments, we have replaced the graph information, adjacency ma-

trix, expressed in equation 5.1 by (inverse) correlation matrix, adjacency matrix and

Laplacian matrix obtained by thresholding the (inverse) correlation matrix. The em-
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pirical results suggest the superiority by simply employing the (inverse) correlation

matrix. It can be seen as weighted adjacency matrix, where correlation coefficients

are naturally scaled/normalized.

5.2.2.2 GAT

The implementation of GCN limits the model to be used only with static graphs.

The embedding update is static across time, which assumes non-stationarity in time-

series. Graph attention network uses masked multi-head attention mechanism to

solve this issue by dynamically assigning attention coefficients between nodes. The

normalized attention coefficient scalar ai j is computed for nodes i and j based on

their features (embeddings):

αi, j =
exp(LeakyReLU(â⊤[Whi||Wh j]))

∑k∈Ni exp(LeakyReLU(â⊤[Whi||Whk]))
(5.2)

where W ∈ RFl+1×Fl is the shared weight matrix defined similarly to GCN,

hi ∈ RFl , is the feature vector of node i in the graph, â ∈ RFl+1 is a learnable weight

vector representing the attention mechanism to perform self-attention on each node

and || represents concatenation operation, Ni is the set of neighboring nodes of node

i

The multi-head attention mechanism has been proposed by Vaswani et al.

[209] which demonstrates superior and robust performance in network training.

GAT incorporates the masked multi-head attention where attention is only com-

puted between neighbouring nodes, and the output feature representation is ex-

pressed as:

hl+1
i = φ

(
1
k

K

∑
k=1

( ∑
j∈Ni

αi, jWkhl
j)

)
(5.3)

where W ∈RFl+1×Fl is the shared weight matrix, hl+1
i ∈RFl+1 is the updated feature

vector for node i in layer l +1, and the final representation is averaged between the

K number of multi-head attention layers and applied a non-linearity φ .
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Graph Filtering RMSE MAE MAPE
FSST-GNN (GCN)

Cor Empirical 10.12 ± 0.53 7.77 ± 0.39 17.28%±1.18%
Cor Shrinkage 9.99 ± 0.17 7.72 ± 0.09 17.34%±0.61%
Cor GLASSO 9.76∗ ± 0.47 7.52∗ ± 0.39 16.96% ±1.49%
Cor MFCF 9.80 ± 0.61 7.66 ± 0.43 17.27%±1.13%
Inv Cor Empirical 11.74 ± 0.99 8.69 ± 0.46 20.08%±0.90%
Inv Cor Shrinkage 10.59 ± 1.04 8.26 ± 0.78 19.15%±2.21%
Inv Cor GLASSO 9.67∗∗∗ ±0.41 7.55∗∗ ±0.34 17.51%∗∗∗±1.54%
Inv Cor MFCF 10.07 ± 0.59 7.99 ± 0.44 17.87%±1.11%
Zeros / 13.51 ± 0.16 10.28 ± 0.12 22.04%±1.01%
Ones / 12.33 ± 1.12 10.00 ± 0.98 24.76%±2.33%
Identity / 11.78 ± 0.52 9.23 ± 0.46 21.01%±1.78%

LSTM
/ / 16.34 ± 0.44 12.56 ± 0.25 26.40%±0.98%

Table 5.1: Summary of forecasting results with different models, graphs and filtering meth-
ods. Highlighted in bold are the optimal RMSE, MAE and MAPE in each graph,
and underlined is the absolute optimal results in the table. A LSTM results is
attached as the baseline. A pairwise T-test has been performed, and the p-values
for the best-performing results in each graph against the empirical graph results
are highlighted next to the best-performing results, where ∗ denotes 5% signifi-
cance, ∗∗ for 1% and ∗∗∗ for 0.1% respectively.

5.3 Experiments

5.3.1 Setup

We test our model on a Kaggle playground code competition, Store Item Demand

Forecasting Challenge [224]. The dataset consists of 5-year sales time-series data

of 50 products in 10 different stores. For simplicity, we re-formulate the problem as

50 mini-problems, each focusing on 1 product in 10 different stores. At each time

stamp, the temporal component regresses each of the 10-time series individually

based on its historical value. The dependency between them is reflected by the final

embeddings generated from the spatial component. The outputs from each compo-

nent are subsequently concatenated and, by a read-out layer, to generate final daily

forecasting for the product. We assume stationarity in the time series, therefore, we

separate the training and testing data as 80% and 20% of the raw dataset.

The temporal component of the FSST-GNN is an LSTM, which has an input

size of (tlb, 10) where tlb = 14 is the look-back window size of historical sales,
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and 10 is the number of different stores. The feature generator produces node fea-

tures (initial embeddings). We employ the four moments (mean, standard deviation,

skewness and kurtosis) of the sales time-series distribution based on each 14-day

look back window. The correlation graph generator generates a graph with edges

that represents the correlation between any two of the 14-day sample time series in

the 10 stores. Then, the generated node features and edges are input into the GNN.

In the experiments, a GCN and a GAT have been used as the spatial component.

To understand the effect of filtering and sparsification for multivariate time-

series graph learning, we perform 4 sets of experiments: 1) FSST-GNN (GCN)

on different filtered correlation graphs; 2) FSST-GNN (GCN) on different filtered

inverse correlation graphs; 3) FSST-GNN (GCN) on GLASSO-filtered and MFCF-

filtered inverse correlation graph with different levels of sparsity; and 4) FSST-

GNN (GAT) on GLASSO-filtered and MFCF-filtered inverse correlation graph with

different levels of sparsity. Each experiment has been re-computed 10 times with

different random seeds, and the final results are averaged for statistical robustness.

Sparsity RMSE MAE MAPE Sparsity RMSE MAE MAPE
GLASSO MFCF

77.2% 10.24 ± 0.61 8.03± 0.47 18.89%±1.35% 76.6% 11.35 ± 0.76 8.76 ± 0.61 20.36%±1.97%
71.0% 10.34 ± 0.79 8.05 ± 0.58 18.66%±1.29% 72.3% 10.23 ± 0.26 8.06 ± 0.44 18.13%±1.14%
66.6% 9.80 ± 0.41 7.66 ± 0.33 17.75%±0.87% 68.6% 10.68 ± 0.80 8.32 ± 0.52 19.56%±1.30%
60.0% 9.67∗ ± 0.41 7.55∗± 0.34 17.51% ± 1.54% 61.3% 10.07∗∗ ± 0.59 7.99∗∗ ± 0.44 17.87%∗∗∗ ± 1.11%
56.5% 9.86 ± 0.58 7.74 ± 0.53 18.24%±1.66% 58.0% 10.19 ± 0.41 8.12 ± 0.29 18.29%±0.49%
51.3% 10.06 ± 0.57 7.86 ± 0.45 17.68%±1.20% 54.8% 10.31 ± 0.52 8.09 ± 0.39 18.22%±1.26%
43.3% 9.99 ± 0.27 7.88 ± 0.19 17.60%±0.47% 43.7% 10.75 ± 0.68 8.16 ± 0.40 18.44%±0.55%

Table 5.2: Summary of forecasting results of FSST-GNN (GCN) with different filtering
methods and sparsity on inverse correlation graph. Highlighted in bold are the
optimal RMSE, MAE and MAPE in each model-sparsity combination, and un-
derlined is the absolute optimal results in the table. A pairwise T-test has been
performed, and the p-values for the best-performing results in each graph against
the second-best-performing results are highlighted next to the best-performing
results, where ∗ denotes 5% significance, ∗∗ for 1% and ∗∗∗ for 0.1% respectively.

5.3.2 Results

We compute the root mean square error (RMSE), mean average error (MAE) and

mean average percentage error (MAPE) of the predicted sales number of all 50

products in 10 stores with the ground truth label in Table 5.1 as the evaluation ma-

trix to analyze the effectiveness of filtering methods over FSST-GNN with GCN on
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Sparsity RMSE MAE MAPE Sparsity RMSE MAE MAPE
GLASSO MFCF

77.2% 9.88 ± 0.59 7.58 ± 0.43 16.17%±0.53% 76.6% 10.47 ± 0.75 8.09 ± 0.68 17.61%±2.64%
71.0% 10.03 ± 0.65 7.73 ± 0.52 16.56%±1.07% 72.3% 10.27 ± 0.62 7.86 ± 0.46 17.24%±0.99%
66.6% 9.63 ± 0.36 7.42 ± 0.25 15.82%±0.25% 68.6% 9.90 ± 1.17 7.60 ± 0.95 16.01%±1.78%
60.0% 9.58∗ ± 0.31 7.37± 0.20 15.62%∗ ± 0.26% 61.3% 9.46∗ ± 0.68 7.31∗∗ ± 0.45 15.44%∗∗∗ ± 0.19%
56.5% 9.64 ± 0.34 7.41 ± 0.23 15.80%±0.47% 58.0% 9.65 ± 0.46 7.53 ± 0.32 15.63%±0.54%
51.3% 9.75 ± 0.33 7.55 ± 0.31 17.28%±1.18% 54.8% 9.81 ± 0.53 7.53 ± 0.37 16.03%±0.54%
43.3% 10.12 ± 0.53 7.77 ± 0.39 17.28%±1.18% 43.7% 9.90 ± 0.38 7.63 ± 0.30 16.31%±0.92%

Table 5.3: Summary of forecasting results of FSST-GNN (GAT) with different filtering
methods and sparsity on inverse correlation graph. Highlighted in bold are the
optimal RMSE, MAE and MAPE in each model-sparsity combination, and un-
derlined is the absolute optimal results in the table. A pairwise T-test has been
performed, and the p-values for the best-performing results in each graph against
the empirical graph results are highlighted next to the best-performing results,
where ∗ denotes 5% significance, ∗∗ for 1% and ∗∗∗ for 0.1% respectively.

the correlation and inverse correlation graph respectively. Since all filtering meth-

ods are parametric, the table reports the optimal results from covariance shrinkage

(Shrinkage), graphical LASSO (GLASSO) and MFCF, which are obtained through

grid-search. We also include a fully connected graph of a matrix of ones, two fully

disconnected graphs of a matrix of zeros and an identity matrix as benchmarks for

comparison. In addition, a plain LSTM is also presented as the baseline model

where no graphical/spatial information is input.

In Table 5.1, it is evident that all FSST-GNN (GCN) outperforms the plain

LSTM, which confirms the efficacy of considering the spatial information in mul-

tivariate time-series problems. Other benchmarks of fully connected/disconnected

graphs are also presented, and their results in all three measurements are effectively

inferior to any (inverse) correlation-based graph methods. These results further as-

sert the information gain from meaningful spatial graphs. The significance in the

inverse correlation graph may also suggest that the local and global patterns cap-

tured by inverse covariance would result a more effective filtering and sparsification

in relative to the local effect of correlation graph.

Highlighted in each column of Table 5.1 are the best results in first two exper-

iment: 1) FSST-GNN (GCN) on the correlation graph; 2) FSST-GNN (GCN) on

the inverse correlation graph. In correlation graph cases, filtered correlation graphs

demonstrate superior results than the original Empirical correlation graph. Both

MFCF and GLASSO filtering are operated on the inverse correlation for sparsifi-
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cation, and then inverted back to a full correlation graph, while Shrinkage operates

directly on correlation. Therefore, the superior results in MFCF and GLASSO than

Shrinkage may suggest a stronger filtering effect behind graph/network-based meth-

ods, and inversion does not affect filtering.

To understand the effect in filtering and sparsification, results from the same

setup with inverse correlation graphs are compared, where full and Shrinkage-

filtered inverse correlation graphs are full graphs and GLASSO-filtered and MFCF-

filtered graphs are sparse graphs. In this case, Shrinkage filters a correlation and in-

verts it to an inverse correlation. Comparably to the correlation graph case, Shrink-

age consistently yields better result than the Empirical, which further validates that

the filtering mechanism is hardly impacted by inversion operation. Furthermore, we

observe even more significant results from two sparse graphs filtered by GLASSO

and MFCF. This advantage could possibly come from both the filtering, the sparsi-

fication, as well as their combined effect. To further investigate the sole efficacy of

sparsification, we perform the third and fourth sets of experiments: 3) FSST-GNN

(GCN) on GLASSO-filtered and MFCF-filtered inverse correlation graph with dif-

ferent levels of sparsity; and 4) FSST-GNN (GAT) on GLASSO-filtered and MFCF-

filtered inverse correlation graph with different levels of sparsity.

Presented in Table 5.2 and Table 5.3 are the results with different levels of

sparsity. We select the parameter to match the sparsity level between GLASSO

and MFCF for comparison. It is seen that at around 60% sparsity, the highlighted

best results are achieved for both MFCF and GLASSO in FSST-GNN (GCN) and

FSST-GNN (GAT) models. Moreover, as the sparsity deviates away from this local

minimum, the three errors start to increase, which may suggest an optimal sparsity

structure of the inverse correlation graph in our experimental case. In addition, this

optimal structure is independent of the chosen model. Furthermore, as illustrated in

equation 5.3, GAT by default does not account for edge weights in weighted graphs

(correlation graphs) as GCN. Hence, the sparse inverse correlation graph serves

as a thresholded adjacency matrix, where 0 entries are interpreted as disconnection

between nodes. Then, attention, which is only calculated between linked nodes, acts
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as the edge weights. Namely, the superior performance in Table 5.2 is a mixture of

filtering and sparsity, but the performance in Table 5.3 is merely determined by the

sparsity of the input graph without a filtering mechanism.

5.4 Summary

The academic literature has presented many GNN-based graph sparsification meth-

ods. However, none of them explicitly addresses the filtering and sparsification

from a time-series perspective. In small sample time-series problems, especially

in finance, graph structure learning models, e.g., graph representation learning, are

highly prone to noise. In this chapter, we designed an end-to-end filtered sparse

spatial-temporal graph neural network for time-series forecasting. Our model lever-

ages and integrates traditional matrix filtering methods with modern graph neural

networks to achieve robust results, and show the use of a simple and efficient archi-

tecture. We employed three different matrix filtering methods, covariance shrink-

age, graphical LASSO and information filtering network-maximally filtered clique

forest to show a positive gain in graph filtering to graph learning. The results from

the three methods surpass all of the benchmark approaches, including an LSTM

with no graphical information, the same FSST-GNN architecture with fully con-

nected, disconnected graphs and unfiltered graphs.

In the experiments, we found the sparse graph in GAT serves only as an in-

dication of which pairs of nodes require attention calculation, and the advantages

from sparsity are significant. The filtered correlation matrix in GCN is interpreted

and used as a weighted adjacency matrix for direct graph convolution, where the

efficacy of filtering is also obvious. Furthermore, the optimal combined effect of fil-

tering and sparsification in FSST-GNN (GCN) with inverse correlation implies the

two contributing factors are complementary. Therefore, by incorporating weighted

graphs in GAT like Grassia & Mangioni [225], we may further improve the perfor-

mance of attention-based graph neural networks.

Current work is based on a synthetic dataset from a Kaggle competition for

sales prediction. Further work will be applied with real-world financial data for
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practical problems, e.g., portfolio optimization, risk management and price fore-

casting. The temporal and spatial components of the current architecture are de-

signed to compute in parallel and combined in the end. Therefore, temporal infor-

mation does not directly contribute to the spatial filtered graph generation or graph

node feature generation. In the next phase of this study, we aim to develop a stacked

architecture, where temporal signals contribute to spatial graph filtering/sparsifica-

tion.



Chapter 6

Homological Neural Networks: A

Sparse Architecture for Multivariate

Time-series

6.1 Introduction

In this work, we propose a novel deep learning architecture that can be used for

multivariate time-series prediction that keeps into account higher-order interactions

in the dependency structure as topological priors. Higher-order graphs are networks

that connect not only vertices with edges (i.e. low-order 1-dimensional simplices)

but also higher-order simplices ( A N-simplex is a shape in N-dimensional space

formed by connecting N + 1 vertices, e.g., 0-simplex is a point, 1-simplex is an

edge, 2-simplex is a triangle, and 3-simplex is a tetrahedron) [226]. Indeed, any

higher-order component can be described as a combination of lower-order compo-

nents (i.e. edges connecting two vertices, triangles connecting three edges, . . .). The

transformation between a network representation in terms of a set of lower-order

components to a set of higher-order components is called homology. In this work,

we propose a novel multi-layer deep learning unit capable of fully representing

the homological structure of data and dub it Homological Neural Network (HNN).

This is a feed-forward unit where the first layer represents the vertices, the second

the edges, the third the triangles, and so on. Each layer connects with the next
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homological level accordingly to the network’s topology representing dependency

structures of the underlying input dataset. Information only flows between con-

nected structures at different order levels, and homological computations are thus

obtained. Neurons in each layer have a residual connection to a post-processing

readout unit. The HNN’s weights are updated through backward propagation us-

ing a standard gradient descent approach. Given the higher-order representation of

the dependency structure in the data, this unit should provide better computational

performances than those of fully connected multi-layer architectures. Furthermore,

given the network representation’s intrinsic sparsity, this unit should be computa-

tionally more efficient, and results should be more intuitive to interpret. We test

these hypotheses by evaluating the HNN unit on two application domains tradition-

ally challenging for deep learning models: tabular data and time series regression

problems.

This work builds upon a vast literature concerning complex network represen-

tation of data dependency structures [227, 228]. Networks are excellent tools for

representing complex systems both mathematically and visually, they can be used

for both qualitatively describing the system and quantitatively modeling the system

properties. A dense graph with everything connected with everything else (com-

plete graph) does not carry any information, conversely, too sparse representations

are oversimplifications of the important relations. There is a growing recognition

that, in most practical cases, a good representation is provided by structures that are

locally dense and globally sparse. In this chapter we use a family of network rep-

resentations, named Information Filtering Networks (IFNs), that have been proven

to be particularly useful in data-driven modeling [229, 17, 230]. The proposed

methodology exploits the power of a specific class of IFNs, namely the Triangulated

Maximally Filtered Graph (TMFG), which is a maximally planar chordal graph with

a clique-three structure made of tetrahedra [231]. The TMFG is a good compromise

between sparsity and density and it is computationally efficient to construct. It has

the further advantage of being chordal (every cycle of four or more vertices has a

chord) which makes it possible to directly implement probabilistic graphical mod-
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eling on its structure (chordal graph is decomposable, easily factorizable, and easier

to compute marginal distributions and conditional probabilities from a joint distri-

bution) [17].

6.2 A novel representation for higher order networks

and its use for HNN construction
The representation of undirected graphs explicitly accounts for the vertices and

their connections through edges and, instead, does not explicitly account for other,

higher-order, structures such as triangles, tetrahedra, and, in general, d-dimensional

simplexes. Indeed, usually, an undirected graph is represented as a pair of sets,

G = {V,E}: the vertex set V = {v1, ...,vp} and the edge set E which is made of

pairs of edges V = {vi,v j}. The associated graphical representation is a network

where vertices, represented as points, are connected through edges, represented as

segments. This encoding of the structure accounts only for the edges skeleton of

the network. However, in many real-world scenarios, higher-order sub-structures

are crucial for the functional properties of the network and it is therefore convenient

– and sometimes essential – to use a representation that accounts for them explicitly.
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Figure 6.1: (a) Visual example of a higher order network made of 7 vertices, 11 edges, 6 triangles,
and 1 tetrahedron. (b) This higher-order network is a clique tree made of four cliques
(maximal cliques highlighted in the circles) connected through three separators (the
tick red edges). One can observe that the separator constituted by the vertex ‘4’ has
multiplicity 1, while the separator constituted of the edge ‘4-6’ has multiplicity 2 and
indeed it appears twice.

A simple higher-order representation can be obtained by adding triplets (tri-

angles), quadruplets (tetrahedra), etc. to the sets in G . However, the associated

higher-order network is hard to handle both visually and computationally. In this
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chapter, we propose an alternative approach, which consists of a layered represen-

tation that explicitly takes into account the higher-order sub-structures and their

interconnections. Such a representation is very simple, highly intuitive, of practical

applicability as computational architecture, and, to the best of our knowledge, it has

never been proposed before.

The proposed methodology is entirely based on a special class of networks:

chordal graphs. These networks are constituted only of cliques organized in a higher

order tree-like structure (also referred to as ‘clique tree’). This class of networks

is very broad and it has many useful applications, in particular for probabilistic

modelling [26]. A visual example of a higher-order chordal network (a clique-tree),

with 7 vertices, 11 edges, 6 triangles, and 1 tetrahedron, is provided in Figure 6.1. In

the figure, the maximal cliques (largest fully-connected subgraphs) are highlighted

and reported, in the right panel, as clique-tree nodes. Such nodes are connected

to each other with links that are sub-cliques called separators. Separators have

the property that, if removed from the network, they disconnect it into a number

of components equal to the multiplicity of the separator minus one. In higher-

order networks, cliques are the edge skeletons of simplexes. A 2-clique is a 1-

dimensional simplex (an edge); 3-clique is a 2-dimensional simplex (a triangle);

and so on with (d +1)-cliques being the skeleton of d-dimensional simplexes.

To represent the complexity of a higher-order network we propose to adopt a

layered structure where nodes in layer d represent d-dimensional simplexes. The

structures start with the vertices in layer 0; then a couple of vertices connect to edges

represented in layer 1; edges connect to triangles in layer 2; triangles connect into

tetrahedra in layer 3, and so on. This is illustrated in Figure 6.2. Such representation

has a one-to-one correspondence with the original network but shows explicitly the

simplexes and sub-simplexes and their interconnection in the structure. All informa-

tion about the network at all dimensions is explicitly encoded in this representation

including elements such as maximal cliques, separators, and their multiplicity (see

caption of Figure 6.2).

It is worth noting the resemblance of this layered structure with the layered
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Figure 6.2: Higher order homological representation of the chordal graph in Figure 6.1 (repro-
duced in (a)). (b) Nodes in each layer, Ld , represent the d-dimensional simplexes in
the structure. The links between nodes in layers d and d + 1 are the connections be-
tween d to d + 1 simplexes in the network. The degree on the left of nodes in Ld is
always equal to d. The degree on the right of nodes in Ld can instead vary. The d-
dimensional simplexes with no connections towards d + 1 are the maximal cliques in
the network (i.e. the nodes in the clique tree in Figure 6.1(b)).

Figure 6.3: The Homological Neural Network (HNN) unit is constructed by using as input layer
0 of the homological representation of the dependency structure (see Figure 6.2(b))
and then feeding forward through the homological layers. The output is produced by
a readout unit that connects all neurons in the layers. The HNN is essentially a sparse
MLP unit with residual connections.

architecture of deep neural networks. Indeed, we leverage this novel higher-order

network representation as the neural network architecture of the HNN unit. In our
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experiments, the HNN is implemented from the TMFG generated from correla-

tions. TMFG is computationally efficient, and can thus be used to dynamically

re-configure the HNN according to changeable system conditions [140]. The HNN

architecture is illustrated in Figure 6.3. Essentially it is made by the layered rep-

resentation of Figure 6.2 with the addition of the residual connections linking each

neuron in each simplex layer to a final read-out layer. Such HNN is a sparse MLP-

like neural network with extra residual connections and it can be employed as a

modular unit. It can directly replace fully connected MLP layers in several neural

network architectures. In this chapter, the HNN unit is implemented using the stan-

dard PyTorch deep learning framework, while the sparse connection between layers

is obtained thorugh the “sparselinear”1 PyTorch library.

6.3 Design of neural network architectures with

HNN units for time series studies
We investigate the performances of HNN units in two traditionally challenging ap-

plication domains for deep learning: tabular data and time series regression prob-

lems. To process tabular data, the HNN unit can be directly fed with the data and

it can be constructed from correlations by using the TMFG. In this case, the HNN

unit acts as a sparsified MLP. This architecture is schematically shown in Figure

6.4. Instead, in spatio-temporal neural networks, the temporal layers are responsible

for handling temporal patterns of individual series, whereas the spatial component

learns their dependency structures. Consequently, the temporal part is usually mod-

eled through the usage of recurrent neural networks (e.g. RNNs, GRUs, LSTMs),

while the spatial component employs convolutional layers (e.g. CNNs) or aggrega-

tion functions (e.g. MLPs, GNNs).

Figure 6.5 presents the spatio-temporal neural network architecture employed

in our multivariate time series experiments. The architecture consists of an LSTM

for the temporal encoding of each time series and a graph generation unit that takes

into account the correlation between different time series. This unit models time

1https://github.com/hyeon95y/SparseLinear

https://github.com/hyeon95y/SparseLinear
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series as nodes and pairwise correlations as edges by imposing the topological con-

straints typical of the TMFG: planarity and chordality. The HNN is built based on

the resulting sparse TMFG and aggregates each of the encoded time series from the

LSTM, generating the final output.

Figure 6.4: General HNN architecture is a sparsified MLP. The input data is processed by
a Graph Generation Unit to construct a prior sparse graph to represent spatial
interdependencies between the feature columns. The prior graph guides the de-
sign of the HNN unit which then processes and transforms the feature columns
into the final output.

Figure 6.5: LSTM-HNN architecture for time-series data. The multivariate time-series is
processed by a Graph Generation Unit to construct a prior sparse graph to rep-
resent spatial interdependencies, and each of the multivariate time series is pro-
cessed separately by LSTM in the Temporal Convolution Module to harness
the temporal information. The prior graph guides the design of the HNN unit
which then aggregates the single temporal representations from LSTMs into
the final output.
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solar-energy exchange-rates
Horizon (days) Horizon (days)

Model Metrics 3 6 12 24 3 6 12 24
LSTM-HNN RSE 0.190∗∗ 0.270∗∗ 0.354∗∗ 0.446∗∗ 0.022∗∗ 0.027∗∗∗ 0.040∗∗ 0.049∗∗

CORR 0.981∗ 0.964∗∗ 0.942∗∗ 0.902∗∗∗ 0.976∗∗∗ 0.968∗∗∗ 0.956∗∗ 0.938∗∗

LSTM-MLP-HNN RSE 0.207 0.292 0.365 0.454 0.028 0.034 0.046 0.054
CORR 0.980 0.959 0.936 0.893 0.965 0.957 0.945 0.928

LSTM-MLP-res RSE 0.245 0.340 0.409 0.501 0.031 0.035 0.052 0.059
CORR 0.972 0.944 0.905 0.898 0.850 0.829 0.835 0.828

LSTM-MLP RSE 0.307 0.361 0.425 0.697 0.029 0.037 0.054 0.056
CORR 0.956 0.937 0.898 0.723 0.845 0.838 0.834 0.824

Table 6.1: Relative Standard Error (RSE) and CORR (correlation). The best-performing
results in a given metric and horizon are highlighted in bold. In addition, a
paired T-test has been performed, and the p-values for the LSTM-HNN against
the second-best-performing model (LSTM-MLP-res) in the given metrics and
horizon are highlighted next to the best-performing results, where ∗ denotes 5%
significance, ∗∗ for 1% and ∗∗∗ for 0.1% respectively. The absence of ∗ indicates
statistical equivalence between the best-performing and LSTM-HNN models.

solar-energy exchange-rates
Horizon (days) Horizon (days)

Model Metrics 3 6 12 24 3 6 12 24
LSTM-HNN RSE 0.190 0.270 0.354 0.446 0.022 0.027 0.040 0.049

CORR 0.981 0.964 0.942 0.902 0.976 0.968 0.956 0.938
MTGNN RSE 0.177∗∗ 0.234∗∗∗ 0.310∗∗ 0.427∗ 0.019 0.025 0.034 0.045

CORR 0.985 0.972∗∗ 0.950∗∗ 0.903 0.978 0.970 0.955 0.937
TPA-LSTM RSE 0.180 0.234 0.323 0.438 0.017∗∗ 0.024 0.034 0.044

CORR 0.985 0.974 0.948 0.908∗∗ 0.979∗ 0.970 0.956 0.938
LSTNet-skip RSE 0.184 0.255 0.325 0.464 0.022 0.028 0.035 0.044

CORR 0.984 0.969 0.946 0.887 0.973 0.965 0.951 0.935
RNN-GRU RSE 0.193 0.262 0.416 0.485 0.019 0.026 0.040 0.062

CORR 0.982 0.967 0.915 0.882 0.978 0.971 0.953 0.922
GP RSE 0.225 0.328 0.520 0.797 0.023 0.027 0.039 0.058

CORR 0.975 0.944 0.851 0.597 0.871 0.819 0.848 0.827
VARMLP RSE 0.192 0.267 0.424 0.684 0.026 0.039 0.040 0.057

CORR 0.982 0.965 0.905 0.714 0.860 0.872 0.828 0.767
AR RSE 0.243 0.379 0.591 0.869 0.022 0.027 0.035 0.044

CORR 0.971 0.926 0.810 0.531 0.973 0.965 0.952 0.935

Table 6.2: Relative Standard Error and correlation. The best-performing results in a given
metric and horizon are highlighted in bold. In addition, a paired T-test has been
performed, and the p-values for the best-performing result against LSTM-HNN
in the given metrics and horizon are highlighted next to the best-performing
results, where ∗ denotes 5% significance, ∗∗ for 1% and ∗∗∗ for 0.1% respectively.
The absence of ∗ indicates statistical equivalence between the best-performing
and LSTM-HNN models. When LSTM-HNN is the best-performing result, then
the t-test is conversely performed against the second best-performing result.

6.4 Results
The HNN module can be used as a portable component along with different types

of neural networks to manage various input data structures and downstream tasks.
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In this Section, we apply HNN to process dependency structures in time series mod-

elling after temporal dependencies are handled through the LSTM architecture. We

use two different datasets which have been extensively investigated in the multivari-

ate time-series literature [139]: the solar-energy dataset from the National Renew-

able Energy Laboratory, which contains the solar-energy power output collected

from 137 PV plants in Alabama State in 2007; and a financial dataset containing

the daily exchange-rates rates of eight foreign countries including Australia, British,

Canada, Switzerland, China, Japan, New Zealand, and Singapore in the period from

1990 to 2016 (see Table A.9 in Appendix for further details).

Analogously with the tabular data, we first compare the outcomes of LSTM-

HNN with those obtained with adapted MLP units. Specifically, LSTM units plus

an MLP (LSTM-MLP); LSTM units plus an MLP with added residual connections

to the final read-out layer (LSTM-MLP-res); and LSTM units plus a sparse MLP

of the same layout as HNN without residual connections (LSTM-MLP-HNN). We

then compare the LSTM-HNN results with traditional and state-of-the-art spatio-

temporal models for multivariate time-series problems: auto-regressive model (AR)

[131]; a hybrid model that exploits both the power of MLP and auto-regressive

modelling (VARMLP) [232]; a Gaussian process (GP) [132]; a recurrent neural

network with fully connected GRU hidden units (RNN-GRU) [139]; a LSTM re-

current neural network combined with a convolutional neural network (LSTNet)

[133]; a LSTM recurrent neural network with attention mechanism (TPA-LSTM)

[134]; and a graph neural network with temporal and graph convolution (MTGNN)

[139].

We evaluate performances of the LSTM-HNN and compare them with the ones

achieved by benchmark methodologies by forecasting the solar-energy power out-

puts and the exchange-rates values at different time horizons with performances

measured in terms of relative standard error (RSE) and correlation (CORR) (see Ta-

ble 6.1). We underline that LSTM-HNN significantly outperforms all MLP-based

models. On solar-energy data, LSTM-HNN reduces RSE by 38%, 25%, 17%, and

36% from LSTM-MLP and 8%, 7%, 3%, and 2% from LSTM-MLP-res across four
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horizons. On exchange-rates data, LSTM-HNN reduces RSE by 23%, 28%, 26%,

and 13% from LSTM-MLP and 19%, 20%, 14%, and 10% from LSTM-MLP-res

across four horizons.

We also notice that the residual connections from each layer to the final read-

out layer are effective both in the HNN architecture (i.e. LSTM-HNN outperforms

LSTM-MLP-HNN) and within the MPL models (i.e. LSTM-MLP-res outperforms

LSTM-MLP). In order to illustrate the significance of the gain, a paired t-test of

LSTM-HNN against LSTM-MLP-res has been performed revealing that all differ-

ences are significant at 1% or better with the only exception for the correlation at

horizon 3 in the solar-energy output data.

The comparison between the results for LSTM-HNN and the other bench-

mark models is reported in Table 6.2. Results reveal that LSTM-HNN consistently

outperforms all three non-RNN-based methods (AR, VARMLP and GP) on both

datasets. It also outperforms LSTNet-skip results. LSTM-HNN outperforms RNN-

GRU for all datasets and horizons except for the correlation in the exchange rates at

horizon 6 where it returns an equivalent result accordingly with the paired t-test that

was conducted between LSTM-HNN and the best-performing model. LSTM-HNN

is instead slightly outperformed by MTGNN in most results for solar-power and by

TPA-LSTM in several results for exchange-rates. It must be however noticed that

these are massive deep-learning models with a much larger number of parameters

(respectively 1.5 and 2.5 times larger than LSTM-HNN for the solar-energy datasets

and 10 and 26 times larger for the exchange-rates datasets, see Table A.10).

6.5 Summary

In this chapter we introduced Homological Neural Networks (HNNs), a novel deep-

learning architecture for multivariate time-series prediction based on a higher-order

network representation of multivariate data dependency structures. This architec-

ture can be seen as a sparse MLP with extra residual connections and it can be

applied in place of any fully-connected MLP unit in composite neural network

models. We test the effectiveness of HNNs on tabular and time-series heteroge-
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neous datasets. Results reveal that HNN, used either as a standalone model or as a

modular unit within larger models, produces better results than MLP models with

the same number of neurons and layers. We compare the performance of HNN

with both fully-connected MLP, MLP sparsified with the HNN layered structure,

and fully-connected MLP with additional residual connections and read-out unit.

We design an experimental pipeline that verifies that the sparse higher-order homo-

logical layered structure on which HNN is built is the main element that eases the

computational process. Indeed, we verify that the sparsified MLP with the HNN

structure (MLP-HNN) over-performs all other MLP models. We also verify that the

residual links between layers and the readout unit consistently improve HNN per-

formances. Noticeably, although residual connections also improve fully-connected

MLP performances, results are still inferior to the ones achieved by sparse MLP-

HNN. We demonstrate that HNNs’ performances are in line with state-of-the-art

best-performing computational models, however, it must be considered that they

have a much smaller number of parameters, and their processing architecture is

easier to interpret.

In this chapter, we built HNNs from TMFG networks computed on pure corre-

lations. TMFG are very convenient chordal network representations that are com-

putationally inexpensive and provide opportunities for dynamically self-adjusting

neural network structures. Future research work on HNN will focus on developing

an end-to-end dynamic model that addresses the temporal evolution of variable in-

terdependencies. TMFG is only one instance of a large class of chordal higher-order

information filtering networks [27] which can be used as priors to construct HNN

units. The exploration of this larger class of possible representations is a natural

expansion of the present HNN configuration and will be pursued in future studies.



Chapter 7

General Conclusions

7.1 Summary of Contributions

This thesis presents a novel approach by employing complex networks to model

multivariate time series, where each temporal sequence is interpreted as a node and

the bilateral dependency represents the edge uniting these nodes. Consequently,

the linear and nonlinear constituents of the multivariate system are illustrated by

the network or graph, facilitating subsequent analysis and transformation for di-

verse subsequent tasks. The pivotal components of the four main chapters rely

on information filtering methodologies to extract statistically significant data from

the network to yield a sparse yet meaningful representation, which is subsequently

leveraged to mitigate noise and jumps in financial time series, and facilitate the de-

signs of novel neural network architecture for time-series data. This depiction is

then used for cross-asset portfolio modelling and plays a crucial role in the formu-

lation of time-series neural network architectures. Empirical results obtained con-

sistently validate the efficacy of this approach that employs network/graph models

for multivariate time series.

In Chapter 3, we derive the sparse inverse covariance of the underlying assets

in a portfolio, and demonstrate its superiority over the full inverse covariance for

Markowitz portfolio optimization, due to its reduced noise content. The sparse in-

verse covariance further finds application as a component of a distance metric for

time-series clustering, enabling the segmentation of the market into two states char-
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acterized by high and low log-likelihood. We demonstrate that portfolios optimized

using data from the cluster that performs better yield superior outcomes than port-

folios derived from the complete dataset or the alternative state. The successful

execution of portfolio construction using clustering is significant, as it explicitly

handles the time-series jumps so that the estimated sparse inverse covariance is

closer to a true reflection of the underlying, without which the benefits derived from

the applied methodologies would likely be obscured by the noise from the empirical

inverse covariance.

In order to further mitigate the noise in a sparse representation, we propose

a statistically robust bootstrapping framework in Chapter 4, designed to eliminate

redundant edges created due to the imposition of topological constraints in con-

ventional network filtering stages. This novel methodology is used to construct di-

versified portfolios by selecting the least correlated assets, which are disconnected

and devoid of significant edges in the correlation network. Additionally, the boot-

strapping framework produces sub-networks through repetition, and the ensemble

centrality measure, calculated by averaging the centralities associated with each

sub-network, is more robust and can be utilized to optimize the weight in the afore-

mentioned portfolio for further diversification. Thus, the proposed method enhances

extant information filtering techniques in the network representation of multivariate

time series.

Given the promising results achieved with financial datasets, we subsequently

focus on broader multivariate time series modelling. With the advent of artificial

intelligence, numerous time series are processed using machine learning models,

especially the spatial-temporal neural network architecture which effectively pro-

cesses multivariate time series as the temporal pattern of individual time series is

captured by RNN or LSTM, and the interdependency among different ones is han-

dled by convolutional operations, such as GNN, CNN. In Chapter 5, we explore the

feasibility of incorporating graphical priors from the sparse network representations

into the GNN within a GNN+LSTM framework. Positive outcomes suggest the vi-

ability of replacing a fully connected GNN with a sparse network topology derived



7.2. FUTURE WORK 95

from the filtered correlation structure of underlying datasets.

The achievement with the sparse GNN representation prompts two questions:

Can higher-order interactions be directly modelled in graph-based models? Can

the sparse topology generated from the input dataset guide the design of neural

networks? In response, we introduce the Homological Neural Network (HNN) in

Chapter 6, which is a sparse MLP-like neural network structure derived from the

sparse network topology of the input data, with each layer representing a simplicial

level of the network. Our experiments reveal that it outperforms a fully connected

MLP and is equivalent in performance to sophisticated state-of-the-art transformer-

based models.

Our research underscores the wide-ranging applicability of the selection of

multivariate time series, conducting experiments with a variety of data sources in

each chapter. These include financial data such as equity returns from the US, UK,

and China, synthesized data, as well as machine learning benchmark datasets. It

has been established that networks can efficaciously encode dependency structures

between multivariate time series. The proposed approach promotes the use of sparse

inverse covariance in issues related to portfolio optimization and encourages the

innovative design of neural networks. These findings present promising avenues for

future research and exploration in the field.

7.2 Future Work

In Chapter 3, inverse covariance is effectively utilized to distinguish market regimes.

However, the fundamental methodology only employs sparse inverse covariance as

a distance metric, while Briola et. al. [233] propose that key market transition points

can be identified through network centrality measures derived from the correlation

network of assets. Consequently, the method for clustering market regimes may be

significantly improved by combining it with Chapter 4, where we present a more

precise estimation of centrality.

Network topological features, e.g., bootstrapped centrality in Chapter 4, have

been utilized during the portfolio optimization stage. Current implementation scale
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weights with centrality in an almost linear fashion, and without further additional

conditions/constraints such as MVO. Combining topological features into MVO

constraints would be an interesting further work and an analysis of the interaction

between different conditions would be novel and valuable. Furthermore, real-life

conditions could be also integrated into the optimizer, e.g., turnover, factor expo-

sure, and trading/holding constraints.

Correlation/covariance networks presented in this thesis are all based on raw

returns. In the quantitative trading field, residual returns (raw return subtract factor

returns) are equivalently or something more important than the raw return as they

capture the idiosyncratic nature of individual stocks. Hence, a correlation network

based on residual return can be analyzed alongside or against the raw-return-based

network, as it should be able to identify undefined systematic risk on top of the

known factors.

Taking inspiration from Zhang et.al [234], portfolios can be optimized using a

deep learning architecture specifically designed to optimize the Sharpe ratio. The

two primary applications of this dissertation - portfolio optimization and neural

networks - demonstrate their relevance in design and methodology by incorporating

sparse representation in similarity matrices, such as inverse covariance. As such, the

subsequent logical progression in research would be an integrated design combining

the sparse topology of neural networks with sparse inverse covariance in portfolio

optimization.

Current financial deep learning would train multiple models based on a large

set of parameters and random seeds, and ensemble the models in the end. The

correlation between each of the models is also certainly an interesting structure. By

considering the correlation structure during the ensemble stage, a more efficient and

effective ensembling can be achieved than simply aggregating them based on equal

weighting or performance weighting.

In Chapter 6, the Homological Neural Network (HNN) is proposed, which

represents a sparse MLP-like architecture derived from the sparse topology of the

input data. Ongoing work is focusing on applying a similar philosophy of direct
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modelling of higher-order interaction from the topology of input data using a convo-

lutional architecture, designated as the Homological Convolution Neural Network

(HCNN). Future endeavours will also include exploring similar topological design

architecture in other categories of neural networks, such as RNNs.



Appendix A

Appendices

A.1 Appendix 1 for Chapter 3

A.1.1 Off sample log-likelihood and performances for Student-t

log-likelihood construction

In this appendix, we investigate the effect of the length of the training set on the

Sharpe Ratio performance and off-sample (test set) log-likelihood using 100 ran-

domly selected stocks drawn from NASDAQ, FTSE and HS300. They are in a

similar format as Figure 3.1 and 3.2 and demonstrate that identical patterns exist

regardless of underlying assets and capital markets. In Figure A.2, it is noticeable

that the green bars in general sit above 0 and the red is below 0, which indicates the

Sparse 0 has better off-sample log-likelihood than the Full, as illustrated in Figure

3.2. In this appendix, we compute Student-t likelihoods with µ = 2.1.
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Figure A.1: Sharpe Ratio for portfolios with constituent stocks of three indices optimized
using different training set durations by using Student-t log-likelihood for ICC
clustering. The right subplot reports the average Sharpe Ratios (SR) with 1
standard deviation for states, statistics is on 100 training-testing periods cho-
sen at random within the 10-year dataset. The left subplot reports instead the
relative Sharpe Ratios between Sparse 0 and Full, SRSparse0/SRFull .
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Figure A.2: Student-t log-likelihood for constituent stocks of a) NASDAQ, b) FTSE and c)
HS300 Composite v.s. number of days in the test period after training. Each
bar represents the average gain of the Sparse 0 (green) or 1 (red) with respect
to the Full in each day. Averages are over 100 re-samplings.
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A.1.2 Portfolio Performances

In this appendix, we extend the results in the main paper including 10, 20, 30 and

100-day investment horizons based on Student-t log-likelihood. Differently from

the main text, portfolios are constructed with 100 random stocks drawn from NAS-

DAQ, FTSE and HS300. They serve as complement and comparison for table 3.1.

It is noticeable that although a shorter testing period yields a numerically larger

Sharpe Ratio due to a possible low Volatility and an overestimation of annualized

Return on a small sample, the relative difference, namely, the gain between the

Sparse 0 and the Full remains roughly the same. This consistency further confirms

the generality of our model. Besides, the patterns in the three tables are generally

consistent with the findings in section 3.4.2.
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Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile
NASDAQ 1/n Naive (-171,206) (14.0,40.0) (-8.7,12.5)
NASDAQ SLS Full (-210,138) (13.0,69.0) (-7.2,9.1)
NASDAQ SLS Sparse (-213,122) (12.0,59.0) (-7.6,9.1)
NASDAQ SLS Sparse 0 (-157,125) (9.0,52.0) (-5.1,10.4)
NASDAQ SLS Sparse 1 (-352,153) (13.0,49.0) (-7.1,7.6)
NASDAQ CLA Full (-198,190) (13.0,57.0) (-6.6,10.1)
NASDAQ CLA Sparse (-172,223) (13.0,51.0) (-8.4,10.3)
NASDAQ CLA Sparse 0 (-181,185) (10.0,49.0) (-5.2,13.4)
NASDAQ CLA Sparse 1 (-198,200) (13.0,66.0) (-8.3,7.4)

FTSE 1/n Naive (-125,140) (9.0,28.0) (-9.0,17.0)
FTSE SLS Full (-91,147) (7.0,27.0) (-8.1,20.5)
FTSE SLS Sparse (-89,125) (7.0,26.0) (-8.8,15.5)
FTSE SLS Sparse 0 (-64,150) (8.0,22.0) (-5.9,18.8)
FTSE SLS Sparse 1 (-113,116) (9.0,26.0) (-8.9,11.6)
FTSE CLA Full (-147,137) (8.0,22.0) (-6.9,17.6)
FTSE CLA Sparse (-138,122) (7.0,25.0) (-9.0,18.0)
FTSE CLA Sparse 0 (-119,129) (7.0,23.0) (-6.4,21.5)
FTSE CLA Sparse 1 (-171,149) (9.0,22.0) (-10.5,16.3)
HS300 1/n Naive (-228,198) (10.0,60.0) (-7.7,10.8)
HS300 SLS Full (-250,216) (12.0,42.0) (-8.3,15.8)
HS300 SLS Sparse (-283,252) (11.0,44.0) (-8.1,15.3)
HS300 SLS Sparse 0 (-181,284) (11.0,46.0) (-6.0,16.0)
HS300 SLS Sparse 1 (-317,192) (13.0,58.0) (-7.9,9.9)
HS300 CLA Full (-250,216) (12.0,42.0) (-8.3,15.8)
HS300 CLA Sparse (-283,252) (11.0,44.0) (-8.1,15.3)
HS300 CLA Sparse 0 (-194,284) (11.0,41.0) (-4.9,14.2)
HS300 CLA Sparse 1 (-277,223) (13.0,53.0) (-9.2,8.6)

Table A.1: Portfolio performances obtained by using Student-t log-likelihood for ICC clus-
tering. We report annualized return, annualized volatility and annualized Sharpe
Ratio computed on 10 days investment period after the 1 year training set. The
values are averages and 5th and 95th percentiles computed over 10-day in-
vestment horizon from obtained from 100 re-sampling of consecutive training-
investment periods chosen at random within the 10 years dataset. The under-
lying assets are constituent stocks of NASDAQ, FTSE and HS300. Highlight
in bold are return, volatility and Sharpe Ratio indicating the optimal state in
each market solver combination, while highlights in 5th return and 95th volatil-
ity showcase the extreme behaviours (excluding the state Market). The state
1/n Naive is the equally weighted un-optimised portfolio and it is reported as
benchmark.
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Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile
NASDAQ 1/n Naive (-112,180) (14.0,84.0) (-4.7,5.9)
NASDAQ SLS Full (-126,131) (14.0,85.0) (-4.4,6.5)
NASDAQ SLS Sparse (-133,127) (13.0,53.0) (-5.1,6.5)
NASDAQ SLS Sparse 0 (-124,120) (12.0,83.0) (-4.4,7.5)
NASDAQ SLS Sparse 1 (-198,78) (15.0,50.0) (-6.1,4.5)
NASDAQ CLA Full (-147,127) (13.0,84.0) (-4.7,5.4)
NASDAQ CLA Sparse (-149,135) (13.0,53.0) (-4.6,6.4)
NASDAQ CLA Sparse 0 (-101,144) (12.0,46.0) (-2.8,7.9)
NASDAQ CLA Sparse 1 (-187,88) (15.0,62.0) (-5.4,4.1)

FTSE 1/n Naive (-77,111) (11.0,26.0) (-4.7,8.1)
FTSE SLS Full (-58,94) (9.0,26.0) (-4.5,11.4)
FTSE SLS Sparse (-59,95) (10.0,25.0) (-4.9,10.6)
FTSE SLS Sparse 0 (-39,96) (9.0,17.0) (-3.4,11.4)
FTSE SLS Sparse 1 (-72,75) (9.0,22.0) (-5.4,7.5)
FTSE CLA Full (-82,84) (10.0,25.0) (-5.6,10.3)
FTSE CLA Sparse (-62,81) (10.0,20.0) (-6.2,10.1)
FTSE CLA Sparse 0 (-59,79) (9.0,22.0) (-4.3,11.7)
FTSE CLA Sparse 1 (-100,80) (10.0,23.0) (-6.0,9.0)
HS300 1/n Naive (-102,236) (11.0,44.0) (-4.4,9.3)
HS300 SLS Full (-133,246) (15.0,42.0) (-5.1,10.7)
HS300 SLS Sparse (-125,234) (14.0,42.0) (-5.0,10.3)
HS300 SLS Sparse 0 (-101,218) (13.0,40.0) (-2.8,11.3)
HS300 SLS Sparse 1 (-142,202) (13.0,46.0) (-5.2,7.9)
HS300 CLA Full (-133,246) (15.0,42.0) (-5.1,10.7)
HS300 CLA Sparse (-125,234) (14.0,42.0) (-5.0,10.3)
HS300 CLA Sparse 0 (-62,247) (12.0,41.0) (-2.8,10.2)
HS300 CLA Sparse 1 (-131,187) (14.0,48.0) (-5.0,8.2)

Table A.2: Portfolio performances obtained by using Student-t log-likelihood for ICC clus-
tering. We report annualized return, annualized volatility and annualized Sharpe
Ratio computed on 20 20-day investment period after the 1-year training set.
The values are averages and 5th and 95th percentiles computed over a 20-day
investment horizon obtained from 100 re-samplings of consecutive training-
investment periods chosen at random within the 10-year dataset. The under-
lying assets are constituent stocks of NASDAQ, FTSE and HS300. Highlight in
bold are return, volatility and Sharpe Ratio indicating the optimal state in each
market solver combination, while highlights in the 5th return and 95th volatil-
ity showcase the extreme behaviours (excluding the state Market). The state
1/n Naive is the equally weighted un-optimised portfolio and it is reported as a
benchmark.
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Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile
NASDAQ 1/n Naive (-110,62) (13.0,35.0) (-4.5,5.7)
NASDAQ SLS Sparse (-133,115) (14.0,73.0) (-4.7,4.7)
NASDAQ SLS Sparse 0 (-99,112) (14.0,71.0) (-2.9,6.4)
NASDAQ SLS Sparse 1 (-128,72) (14.0,63.0) (-4.4,4.4)
NASDAQ CLA Full (-87,121) (16.0,69.0) (-3.0,5.8)
NASDAQ CLA Sparse (-86,130) (15.0,72.0) (-2.6,6.2)
NASDAQ CLA Sparse 0 (-40,134) (14.0,74.0) (-2.5,6.5)
NASDAQ CLA Sparse 1 (-101,86) (15.0,73.0) (-3.3,4.0)

FTSE 1/n Naive (-69,90) (11.0,28.0) (-3.0,6.6)
FTSE SLS Full (-63,80) (10.0,26.0) (-4.7,8.0)
FTSE SLS Sparse (-56,73) (10.0,22.0) (-4.8,8.3)
FTSE SLS Sparse 0 (-52,87) (9.0,20.0) (-3.5,7.3)
FTSE SLS Sparse 1 (-68,62) (11.0,22.0) (-4.5,6.3)
FTSE CLA Full (-56,79) (10.0,24.0) (-4.8,8.0)
FTSE CLA Sparse (-53,73) (10.0,20.0) (-4.6,9.1)
FTSE CLA Sparse 0 (-47,72) (9.0,20.0) (-4.2,9.0)
FTSE CLA Sparse 1 (-81,64) (11.0,24.0) (-5.8,7.1)
HS300 1/n Naive (-90,172) (11.0,38.0) (-3.3,7.1)
HS300 SLS Full (-127,173) (16.0,40.0) (-4.0,6.3)
HS300 SLS Sparse (-98,160) (15.0,36.0) (-4.1,7.2)
HS300 SLS Sparse 0 (-65,172) (13.0,43.0) (-2.9,7.3)
HS300 SLS Sparse 1 (-118,142) (15.0,45.0) (-3.8,5.7)
HS300 CLA Full (-127,173) (16.0,40.0) (-4.0,6.2)
HS300 CLA Sparse (-98,160) (15.0,36.0) (-4.1,7.2)
HS300 CLA Sparse 0 (-64,173) (13.0,38.0) (-2.7,7.4)
HS300 CLA Sparse 1 (-98,142) (15.0,36.0) (-4.2,5.4)

Table A.3: Portfolio performances obtained by using Student-t log-likelihood for ICC clus-
tering. We report annualized return, annualized volatility and annualized Sharpe
Ratio computed on 30 days investment period after the 1 year training set. The
values are averages and 5th and 95th percentiles computed over 30-day in-
vestment horizon from obtained from 100 re-sampling of consecutive training-
investment periods chosen at random within the 10 years dataset. The under-
lying assets are constituent stocks of NASDAQ, FTSE and HS300. Highlight
in bold are return, volatility and Sharpe Ratio indicating the optimal state in
each market solver combination, while highlights in 5th return and 95th volatil-
ity showcase the extreme behaviours (excluding the state Market). The state
1/n Naive is the equally weighted un-optimised portfolio and it is reported as
benchmark.
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Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile
NASDAQ 1/n Naive (-167,172) (11.0,48.0) (-7.6,8.4)
NASDAQ SLS Full (-210,138) (13.0,69.0) (-7.2,9.1)
NASDAQ SLS Sparse (-213,122) (12.0,59.0) (-7.6,9.1)
NASDAQ SLS Sparse 0 (-189,160) (11.0,41.0) (-5.4,8.4)
NASDAQ SLS Sparse 1 (-290,114) (13.0,66.0) (-8.5,5.6)
NASDAQ Full (-198,190) (13.0,57.0) (-6.6,10.1)
NASDAQ CLA Sparse (-172,223) (13.0,51.0) (-8.4,10.3)
NASDAQ CLA Sparse 0 (-165,187) (11.0,46.0) (-6.1,14.2)
NASDAQ CLA Sparse 1 (-257,166) (13.0,62.0) (-6.8,6.6)

FTSE 1/n Naive (-186,140) (8.0,22.0) (-10.3,23.0)
FTSE SLS Full (-91,147) (7.0,27.0) (-8.1,20.5)
FTSE SLS Sparse (-89,125) (7.0,26.0) (-8.8,15.5)
FTSE SLS Sparse 0 (-75,161) (7.0,21.0) (-7.4,29.2)
FTSE SLS Sparse 1 (-110,123) (9.0,27.0) (-9.5,13.6)
FTSE CLA Full (-147,137) (8.0,22.0) (-6.9,17.6)
FTSE CLA Sparse (-138,122) (7.0,25.0) (-9.0,18.0)
FTSE CLA Sparse 0 (-80,145) (8.0,23.0) (-5.7,24.2)
FTSE CLA Sparse 1 (-194,138) (9.0,25.0) (-12.0,16.3)
HS300 1/n Naive (-228,198) (10.0,60.0) (-7.7,10.7)
HS300 SLS Full (-250,216) (12.0,42.0) (-8.3,15.8)
HS300 SLS Sparse (-283,252) (11.0,44.0) (-8.1,15.3)
HS300 SLS Sparse 0 (-237,249) (11.0,50.0) (-5.6,16.5)
HS300 SLS Sparse 1 (-237,193) (14.0,45.0) (-8.4,9.3)
HS300 CLA Full (-250,216) (12.0,42.0) (-8.3,15.8)
HS300 CLA Sparse (-283,252) (11.0,44.0) (-8.1,15.3)
HS300 CLA Sparse 0 (-186,298) (10.0,44.0) (-7.6,13.9)
HS300 CLA Sparse 1 (-302,186) (13.0,56.0) (-7.5,9.5)

Table A.4: Portfolio performances obtained by using Student-t log-likelihood for ICC clus-
tering. We report annualized return, annualized volatility and annualized Sharpe
Ratio computed on 100 days investment period after the 1 year training set. The
values are averages and 5th and 95th percentiles computed over 100-day in-
vestment horizon from obtained from 100 re-sampling of consecutive training-
investment periods chosen at random within the 10 years dataset. The under-
lying assets are constituent stocks of NASDAQ, FTSE and HS300. Highlight
in bold are return, volatility and Sharpe Ratio indicating the optimal state in
each market solver combination, while highlights in 5th return and 95th volatil-
ity showcase the extreme behaviours (excluding the state Market). The state
1/n Naive is the equally weighted un-optimised portfolio and it is reported as
benchmark.



A.1. APPENDIX 1 FOR CHAPTER 3 106

A.1.3 Normal Log-likelihood: training duration and Off-sample

Log-likelihood

This Appendix C section includes Sharpe ratio against training duration plots and

off-sample Normal log-likelihood plots of 100 random stocks drawn from NAS-

DAQ, FTSE and HS300. They are in the similar format as Figure 3.1 and 3.2 and

demonstrate that identical patterns exist regardless underlying assets and capital

markets. In Figure A.2, it is noticeable that the green bars in general sit above 0

and the red are below 0, which indicates the Sparse 0 has better off-sample log-

likelihood than the Full, as illustrated in Figure 3.2.
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Figure A.3: Sharpe Ratio for portfolios with constituent stocks of three indices optimized
using different training set durations by using Normal log-likelihood for ICC
clustering. The right subplot reports the average Sharpe Ratios (SR) with 1
standard deviation for states, statistics is on 100 training-testing periods cho-
sen at random within the 10 years dataset. The left subplot report instead the
relative Sharpe Ratios between Sparse 0 and Full, SRSparse0/SRFull .
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Figure A.4: Normal log-likelihood for constituent stocks of a) NASDAQ, b) FTSE and c)
HS300 Composite v.s. number of days in the test period after training. Each
bar represents the average gain of the Sparse 0 (green) or 1 (red) with respect
to the Full in each day. Averages are over 100 re-samplings.
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A.1.4 Off sample log-likelihood and performances for Normal

log-likelihood construction

In this appendix we perform the same kind of investigations as in the previous ap-

pendix but ICC is computed using Normal log-likelihood. We notice similar pat-

terns but the Student-t log-likelihood result are more significant. However, the Nor-

mal log-likelihood performs better in risk matrices.
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Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile
NASDAQ 1/n Naive (-171,206) (14.0,40.0) (-8.7,12.5)
NASDAQ SLS Full (-192,190) (13.0,57.0) (-5.4,10.1)
NASDAQ SLS Sparse (-160,223) (13.0,51.0) (-7.4,10.3)
NASDAQ SLS Sparse 0 (-144,174) (11.0,49.0) (-5.0,12.6)
NASDAQ SLS Sparse 1 (-181,218) (14.0,59.0) (-8.7,7.8)
NASDAQ CLA Full (-192,198) (13.0,57.0) (-5.4,10.1)
NASDAQ CLA Sparse (-160,223) (13.0,51.0) (-7.4,10.3)
NASDAQ CLA Sparse 0 (-169,171) (12.0,36.0) (-5.0,14.2)
NASDAQ CLA Sparse 1 (-256,144) (14.0,67.0) (-6.5,6.5)

FTSE 1/n Naive (-161,117) (7.0,34.0) (-9.2,15.4)
FTSE SLS Full (-163,116) (8.0,28.0) (-8.7,14.1)
FTSE SLS Sparse (-148,108) (8.0,33.0) (-8.9,14.2)
FTSE SLS Sparse 0 (-111,138) (7.0,22.0) (-7.1,18.8)
FTSE SLS Sparse 1 (-199,118) (9.0,40.0) (-12.1,13.0)
FTSE CLA Full (-163,116) (8.0,28.0) (-8.7,14.1)
FTSE CLA Sparse (-148,108) (8.0,33.0) (-8.9,14.2)
FTSE CLA Sparse 0 (-111,146) (7.0,21.0) (-8.3,18.0)
FTSE CLA Sparse 1 (-176,123) (8.0,36.0) (-11.0,13.7)
HS300 1/n Naive (-228,198) (10.0,60.0) (-7.7,10.8)
HS300 SLS Full (-250,216) (12.0,42.0) (-8.3,15.8)
HS300 SLS Sparse (-283,252) (11.0,44.0) (-8.1,15.3)
HS300 SLS Sparse 0 (-165,276) (11.0,42.0) (-5.6,15.2)
HS300 SLS Sparse 1 (-289,176) (13.0,44.0) (-8.3,7.9)
HS300 CLA Full (-250,216) (12.0,42.0) (-8.3,15.8)
HS300 CLA Sparse (-283,252) (11.0,44.0) (-8.1,15.3)
HS300 CLA Sparse 0 (-131,250) (11.0,45.0) (-5.3,18.8)
HS300 CLA Sparse 1 (-331,218) (12.0,58.0) (-8.9,9.9)

Table A.5: Portfolio performances obtained by using Normal log-likelihood for ICC clus-
tering. We report annualized return, annualized volatility and annualized Sharpe
Ratio computed on 10 days investment period after the 1 year training set. The
values are averages and 5th and 95th percentiles computed over 10-day in-
vestment horizon from obtained from 100 re-sampling of consecutive training-
investment periods chosen at random within the 10 years dataset. The under-
lying assets are constituent stocks of NASDAQ, FTSE and HS300. Highlight
in bold are return, volatility and Sharpe Ratio indicating the optimal state in
each market solver combination, while highlights in 5th return and 95th volatil-
ity showcase the extreme behaviours (excluding the state Market). The state
1/n Naive is the equally weighted un-optimised portfolio and it is reported as
benchmark.
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Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile
NASDAQ 1/n Naive (-129,147) (14.0,36.0) (-4.9,7.8)
NASDAQ SLS Full (-147,124) (13.0,84.0) (-4.7,5.4)
NASDAQ SLS Sparse (-149,135) (13.0,53.0) (-4.6,6.4)
NASDAQ SLS Sparse 0 (-98,133) (12.0,64.0) (-3.7,8.4)
NASDAQ SLS Sparse 1 (-147,101) (14.0,71.0) (-5.6,5.3)
NASDAQ CLA Full (-147,127) (13.0,84.0) (-4.7,5.4)
NASDAQ CLA Sparse (-149,135) (13.0,53.0) (-4.6,6.4)
NASDAQ CLA Sparse 0 (-95,127) (11.0,51.0) (-3.1,7.8)
NASDAQ CLA Sparse 1 (-149,111) (14.0,69.0) (-4.8,5.5)

FTSE 1/n Naive (-83,104) (10.0,32.0) (-6.9,9.1)
FTSE SLS Full (-79,100) (9.0,30.0) (-5.5,9.5)
FTSE SLS Sparse (-63,84) (9.0,27.0) (-5.6,9.6)
FTSE SLS Sparse 0 (-49,82) (9.0,27.0) (-5.7,11.7)
FTSE SLS Sparse 1 (-92,94) (11.0,34.0) (-5.6,8.0)
FTSE CLA Full (-79,100) (9.0,30.0) (-5.5,9.5)
FTSE CLA Sparse (-63,84) (9.0,27.0) (-5.6,9.6)
FTSE CLA Sparse 0 (-68,82) (9.0,23.0) (-5.2,10.7)
FTSE CLA Sparse 1 (-110,101) (9.0,29.0) (-7.3,8.3)
HS300 1/n Naive (-102,236) (11.0,44.0) (-4.4,9.3)
HS300 SLS Full (-133,246) (15.0,42.0) (-5.1,10.7)
HS300 SLS Sparse (-125,234) (14.0,42.0) (-5.0,10.3)
HS300 SLS Sparse 0 (-92,231) (13.0,45.0) (-3.8,11.4)
HS300 SLS Sparse 1 (-143,204) (14.0,43.0) (-5.6,7.4)
HS300 CLA Full (-133,246) (15.0,42.0) (-5.1,10.7)
HS300 CLA Sparse (-125,234) (14.0,42.0) (-5.0,10.3)
HS300 CLA Sparse 0 (-94,223) (12.0,46.0) (-3.0,10.0)
HS300 CLA Sparse 1 (-146,209) (12.0,39.0) (-5.5,8.0)

Table A.6: Portfolio performances obtained by using Normal log-likelihood for ICC clus-
tering. We report annualized return, annualized volatility and annualized Sharpe
Ratio computed on 20 days investment period after the 1 year training set. The
values are averages and 5th and 95th percentiles computed over 20-day in-
vestment horizon from obtained from 100 re-sampling of consecutive training-
investment periods chosen at random within the 10 years dataset. The under-
lying assets are constituent stocks of NASDAQ, FTSE and HS300. Highlight
in bold are return, volatility and Sharpe Ratio indicating the optimal state in
each market solver combination, while highlights in 5th return and 95th volatil-
ity showcase the extreme behaviours (excluding the state Market). The state
1/n Naive is the equally weighted un-optimised portfolio and it is reported as
benchmark.
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Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile
NASDAQ 1/n Naive (-112,137) (15.0,41.0) (-3.3,7.0)
NASDAQ SLS Full (-105,113) (16.0,71.0) (-3.0,5.0)
NASDAQ SLS Sparse (-135,120) (15.0,73.0) (-3.2,5.5)
NASDAQ SLS Sparse 0 (-52,116) (12.0,78.0) (-2.6,5.6)
NASDAQ SLS Sparse 1 (-169,86) (16.0,74.0) (-3.9,3.3)
NASDAQ CLA Full (-105,113) (16.0,71.0) (-3.0,5.0)
NASDAQ CLA Sparse (-135,120) (15.0,73.0) (-3.2,5.5)
NASDAQ CLA Sparse 0 (-61,116) (14.0,71.0) (-2.5,6.2)
NASDAQ CLA Sparse 1 (-146,78) (15.0,79.0) (-4.1,3.7)

FTSE 1/n Naive (-46,68) (11.0,31.0) (-3.0,5.7)
FTSE SLS Full (-45,75) (11.0,26.0) (-2.9,6.8)
FTSE SLS Sparse (-48,69) (11.0,24.0) (-3.3,7.7)
FTSE SLS Sparse 0 (-32,68) (11.0,21.0) (-2.6,8.2)
FTSE SLS Sparse 1 (-69,67) (11.0,29.0) (-3.8,6.6)
FTSE CLA Full (-45,75) (11.0,26.0) (-3.0,6.8)
FTSE CLA Sparse (-48,69) (11.0,24.0) (-3.3,7.7)
FTSE CLA Sparse 0 (-43,67) (11.0,22.0) (-3.0,7.6)
FTSE CLA Sparse 1 (-56,58) (12.0,29.0) (-3.2,5.3)
HS300 1/n Naive (-91,165) (11.0,51.0) (-3.3,6.0)
HS300 SLS Full (-127,168) (16.0,42.0) (-4.0,6.3)
HS300 SLS Sparse (-94,163) (15.0,38.0) (-4.1,7.1)
HS300 SLS Sparse 0 (-78,182) (12.0,38.0) (-3.0,6.5)
HS300 SLS Sparse 1 (-121,135) (14.0,55.0) (-3.9,5.5)
HS300 CLA Full (-127,168) (16.0,42.0) (-4.0,6.3)
HS300 CLA Sparse (-94,163) (15.0,38.0) (-4.1,7.1)
HS300 CLA Sparse 0 (-54,165) (12.0,51.0) (-2.3,7.8)
HS300 CLA Sparse 1 (-110,138) (14.0,43.0) (-4.2,6.0)

Table A.7: Portfolio performances obtained by using Normal log-likelihood for ICC clus-
tering. We report annualized return, annualized volatility and annualized Sharpe
Ratio computed on 30 days investment period after the 1 year training set. The
values are averages and 5th and 95th percentiles computed over 30-day in-
vestment horizon from obtained from 100 re-sampling of consecutive training-
investment periods chosen at random within the 10 years dataset. The under-
lying assets are constituent stocks of NASDAQ, FTSE and HS300. Highlight
in bold are return, volatility and Sharpe Ratio indicating the optimal state in
each market solver combination, while highlights in 5th return and 95th volatil-
ity showcase the extreme behaviours (excluding the state Market). The state
1/n Naive is the equally weighted un-optimised portfolio and it is reported as
benchmark.
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Market Solver State Return (5, 95) percentile Volatility (5, 95) percentile Sharpe (5, 95) percentile
NASDAQ 1/n Naive (-25,42) (15.0,33.0) (-1.3,2.6)
NASDAQ SLS Full (-33,52) (17.0,53.0) (-1.4,2.8)
NASDAQ SLS Sparse (-24,56) (16.0,36.0) (-1.2,3.1)
NASDAQ SLS Sparse 0 (-17,38) (14.0,37.0) (-0.8,2.3)
NASDAQ SLS Sparse 1 (-41,51) (17.0,51.0) (-1.9,2.1)
NASDAQ CLA Full (-33,52) (17.0,53.0) (-1.4,2.8)
NASDAQ CLA Sparse (-24,56) (16.0,36.0) (-1.2,3.1)
NASDAQ CLA Sparse 0 (-24,52) (15.0,36.0) (-1.2,2.4)
NASDAQ CLA Sparse 1 (-34,34) (16.0,49.0) (-1.7,1.7)

FTSE 1/n Naive (-37,49) (11.0,30.0) (-2.3,5.3)
FTSE SLS Full (-34,55) (11.0,26.0) (-2.2,5.0)
FTSE SLS Sparse (-38,55) (11.0,26.0) (-2.1,5.0)
FTSE SLS Sparse 0 (-27,44) (10.0,18.0) (-1.9,6.3)
FTSE SLS Sparse 1 (-39,59) (12.0,30.0) (-2.3,5.1)
FTSE CLA Full (-34,55) (11.0,26.0) (-2.2,5.0)
FTSE CLA Sparse (-38,55) (11.0,26.0) (-2.1,5.0)
FTSE CLA Sparse 0 (-28,57) (11.0,18.0) (-1.9,7.2)
FTSE CLA Sparse 1 (-45,44) (11.0,34.0) (-2.6,4.5)
HS300 1/n Naive (-47,112) (15.0,51.0) (-1.9,5.0)
HS300 SLS Full (-68,77) (17.0,52.0) (-2.0,3.8)
HS300 SLS Sparse (-50,96) (16.0,43.0) (-1.8,4.9)
HS300 SLS Sparse 0 (-60,109) (15.0,46.0) (-1.8,5.5)
HS300 SLS Sparse 1 (-74,114) (17.0,48.0) (-2.0,4.1)
HS300 CLA Full (-68,77) (17.0,52.0) (-2.0,3.8)
HS300 CLA Sparse (-50,96) (16.0,43.0) (-1.8,4.9)
HS300 CLA Sparse 0 (-54,86) (15.0,51.0) (-1.4,5.3)
HS300 CLA Sparse 1 (-71,91) (17.0,46.0) (-2.0,4.3)

Table A.8: Portfolio performances obtained by using Normal log-likelihood for ICC clus-
tering. We report annualized return, annualized volatility and annualized Sharpe
Ratio computed on 100 days investment period after the 1 year training set. The
values are averages and 5th and 95th percentiles computed over 100-day in-
vestment horizon from obtained from 100 re-sampling of consecutive training-
investment periods chosen at random within the 10 years dataset. The under-
lying assets are constituent stocks of NASDAQ, FTSE and HS300. Highlight
in bold are return, volatility and Sharpe Ratio indicating the optimal state in
each market solver combination, while highlights in 5th return and 95th volatil-
ity showcase the extreme behaviours (excluding the state Market). The state
1/n Naive is the equally weighted un-optimised portfolio and it is reported as
benchmark.
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A.1.5 Portfolio Optimization

In the original Markowitz’s mean variance optimization approach, the portfolio

weights W = (w1, ...,wn) ∈ R1×n are chosen in order to minimize portfolio’s vari-

ance σ2
p = WΣW⊤ for a given value, of the portfolio’s expected return µW⊤ = r̄p.

Specifically,

W∗ = min
W

WΣW⊤

s.t 1W⊤ = 1,

and µW⊤ = r̄p,

(A.1)

The exact solution can be obtained analytically by setting to zero the derivatives

with respect to W, using the Lagrange multiplier technique to account for the con-

straints. Namely the minimum of the following Lagrangian is computed

L(W,λ ) = WΣW⊤+λ1µW⊤+λ21W⊤, (A.2)

and the solution is

W∗ = Σ
−1(λ1µ +λ21)

⊤, (A.3)

where λ1 and λ2 are the Lagrange multipliers.

The sequential least square quadratic programming (SLS) [185, 186, 187]

is considered to be one of the most efficient computational method to solve general

nonlinear constrained optimization problems. Jackson et al. and Cesarone et al.

demonstrate its effectiveness in finance [188, 189]. SLS solves the optimization

problem iteratively with a gradient descent strategy starting with an initial setting

W0, and updating Wk+1 from Wk by:

Wk+1 = Wk +α
kdk (A.4)

where dk is the search direction at the k-th step and αk is the associated step size.

In each iteration, the descent search direction, d, is determined by the solution of a
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sub-problem. Given the loss function

f (W) = WΣW⊤ (A.5)

that we want to minimize under a set of non-liner constraints g j(W) = 0 for j ∈

[1,me] and g j(W) ≥ 0 for j ∈ [me +1,m], at each iteration, the problem of finding

the optimal descent direction can be addressed by solving the standard quadratic

programming sub-problem [235]:

dk+1 = min
d

1
2

d∇
2L(Wk,λ )d⊤+∇ f (Wk)d⊤

s.t ∇g j(Wk)d⊤+g j(Wk) = 0, j = 1, ...,me

∇g j(Wk)d⊤+g j(Wk)≥ 0, j = me +1, ...,m

(A.6)

where L(W,λ ) is the associated Lagrangian

L(W,λ ) = f (W)−
m

∑
j=1

λ jg j(W). (A.7)

A step size α = 1 is optimal near a local optimum, but when far from the

optimum, the step size will need to be modified to guarantee a global convergence.

Han [236], Powell [237], Schittkowski [238] and Rockafellar [239] have introduced

the use of penalty functions in the nonlinear programming to control the step size.

The Critical Line Algorithm (CLA) is an efficient alternative to the quadratic

optimizer for mean-variance model, as it is specifically designed for inequality port-

folio optimization. It was already originally introduced in the Markowitz Portfolio

Selection paper [1], and its computational implementation has become increasingly

popular [190, 191]. CLA also solves constrained problems with conditions in in-

equalities, but unlike SLS, it divides a constrained problem into series of uncon-

strained sub-problems by invoking the concept of turning point. A turning point is a

constrained minimum variance portfolio whose vicinity contains other constrained

minimum variance portfolios of different free assets.

Similar to quadratic programming, an initial solution is required on the con-
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strained minimum variance frontier. To construct the initial solution, assets are

ranked with respect to their expected returns. Then, one increases the weight of the

first asset of the highest expected returns, w1, from a defined lower bound l1 = 0 to

an upper bound u1 if w1 ≤ 1. Subsequently, the following assets have their weights

increased until ∑i wi = 1. Typically, the weights of the first and the last few assets

are set to the upper and lower bound which are called bounded assets, while only

one in the middle has its weight between bounds and referred as the free asset. The

free weight is expressed as:

w f = 1−∑
i∈U

wi−∑
i∈L

wi (A.8)

where U and L represents two sets of upper and lower bounded weights. Then in

the following iterations, by decreasing the Lagrange multiplier for the constraint

on expected portfolio return, λ to move to the next lower turning point, two cases

need to be considered to compute W. A formally free asset moves to its bound, or

vice versa, a bounded asset wants to become free. In both situations, the maximum

threshold λinside and λoutside for the former and the later will be found. Subse-

quently, the larger one characterises the new turning point, and the asset is moved

accordingly, and weights are re-assigned. As the free and bounded assets do not

interchange between turning points, the constrained solution between two turning

points is in fact the solution of unconstrained optimization on only the free assets.

Therefore, the constrained problem reduces to solving the unconstrained problem

on the free assets. When no new threshold can be found, the lowest turning point is

said to be reached and the algorithm is terminated for the optimized W.
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A.2 Appendix 2 for Chapter 5

Dataset No. Features No. Samples Sample Rate
solar-energy 137 52560 10 minutes

exchange-rates 8 7588 1 day

Table A.9: Multivariate time-series dataset statistics, including the number of features,
number of samples and sample rate in the solar-energy-energy and exchange-
rates-rates datasets [139].

solar-energy exchange-rates
LSTM-MLP 452901 13011

LSTM-MLP-HNN 509208 13203
LSTM-MLP-res 509208 13203

LSTM-HNN 239061 12795

Table A.10: Number of parameters in each model in solar-energy and exchange-rates
datasets, comparing the sparse LSTM-HNN with the fully connected models.

solar-energy exchange-rates
LSTM-skip 337112 19478
TPA-LSTM 613987 132172

MTGNN 347665 337345
LSTM-HNN 239061 12795

Table A.11: Number of parameters in each model in solar-energy and exchange-rates
datasets, comparing the LSTM-HNN with respect to state-of-art models.
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[178] Grégoire Pacreau, Edmond Lezmi, and Jiali Xu. Graph neural networks for

asset management. SSRN, 2021.

[179] Danial Saef, Yuanrong Wang, and Tomaso Aste. Regime-based implied

stochastic volatility model for crypto option pricing. ArXiv, abs/2208.12614,

2022.

[180] Henrik Hult, Filip Lindskog, Ola Hammarlid, and Carl Johan Rehn. Risk and

portfolio analysis. 2012.

[181] Yves-Laurent Kom Samo and Alexander Vervuurt. Stochastic portfolio the-

ory: A machine learning perspective. Advanced Risk & Portfolio Manage-

ment® Research Paper Series, 2016.

[182] Gah-Yi Ban, Noureddine El Karoui, and Andrew E. B. Lim. Machine learn-

ing and portfolio optimization. Manag. Sci., 64:1136–1154, 2018.

[183] Felipe D. Paiva, Rodrigo T. N. Cardoso, Gustavo P. Hanaoka, and Wen-

del Moreira Duarte. Decision-making for financial trading: A fusion ap-

proach of machine learning and portfolio selection. Expert Syst. Appl.,

115:635–655, 2019.



Bibliography 137

[184] Pier Francesco Procacci and Tomaso Aste. Portfolio optimization with sparse

multivariate modelling. arXiv, 2103.15232, 2021.

[185] D. Kraft. A software package for sequential quadratic programming. Tech.

Rep. DFVLR-FB, 88(28), 1988.

[186] P.T. Boggs and J.W. Tolle. Sequential quadratic programming. Acta Numer-

ica, 4(1), 1996.

[187] J. Nocedal and S.J. Wright. Numerical optimization. Springer-Verlag, 2006.

[188] M. Jackson and M.D. Staunton. Quadratic programming applications in fi-

nance using excel. The Journal of the Operational Research Society, 50(12),

1999.

[189] F. Cesarone, A. Scozzari, and F. Tardella. Portfolio selection problems in

practice: a comparison between linear and quadratic optimization models.

Computational Management Science, 12(3), 2015.

[190] R.H. Singh, L. Barford, and F.C. Harris. Accelerating the critical line algo-

rithm for portfolio optimization using gpus. Advances in Intelligent Systems,

448, 2016.

[191] Harry M. Markowitz, David Starer, Harvey Fram, and Sander Gerber.

Avoiding the Downside: A Practical Review of the Critical Line Algo-

rithm for Mean–Semivariance Portfolio Optimization. In John B Guerard

and William T Ziemba, editors, HANDBOOK OF APPLIED INVESTMENT

RESEARCH, World Scientific Book Chapters, chapter 17, pages 369–415.

World Scientific Publishing Co. Pte. Ltd., 2020.

[192] D.H. Bailey and M.L. de Prado. An open-source implementation of the

critical-line algorithm for portfolio optimization. Algorithms, 6(1), 2013.

[193] J. Narsoo. Performance analysis of portfolio optimisation strategies: Evi-

dence from the exchange market. International journal of economics and

finance, 9:124–132, 2017.



Bibliography 138

[194] William F. Sharpe. The sharpe ratio. The Journal of Portfolio Management,

21(1):49–58, 1994.

[195] Andrew W. Lo. The statistics of sharpe ratios. Financial Analysts Journal,

58(4):36–52, 2002.

[196] Yahoo Fiance. Shelton capital management nasdaq-100 index fund direct

shares.

[197] Yahoo Fiance. ishares core ftse 100 ucits etf gbp (dist) (isf.l).

[198] Tong Zhang. Stock picking strategy based on exploration of chip distribu-

tion indicators. In 2020 International Conference on Computing and Data

Science (CDS), pages 276–282, 2020.

[199] Darrell Duffie and Jun Pan. An overview of value at risk. The Journal of

Derivatives, 4(3):7–49, 1997.

[200] A. Ford Ramsey and Barry K. Goodwin. Value-at-risk and models of de-

pendence in the u.s. federal crop insurance program. Journal of Risk and

Financial Management, 12(2), 2019.

[201] Alan L. Stuart and Harry M. Markowitz. Portfolio selection: Efficient di-

versification of investments. A Quarterly Journal of Operations Research,

10:253, 1959.

[202] Rosario N. Mantegna. Hierarchical structure in nancial markets. 1999.

[203] Jukka-Pekka Onnela, Anirban Chakraborti, Kimmo K. Kaski, János Kertész,

and Antti J. Kanto. Dynamics of market correlations: taxonomy and portfolio

analysis. Physical review. E, Statistical, nonlinear, and soft matter physics,

68 5 Pt 2:056110, 2003.

[204] Yuanrong Wang and Tomaso Aste. Dynamic portfolio optimization with in-

verse covariance clustering. 2021.



Bibliography 139

[205] Pier Francesco Procacci and Tomaso Aste. Portfolio optimization with sparse

multivariate modeling. Journal of Asset Management, 23:445 – 465, 2021.

[206] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

internal representations by error propagation. 1986.

[207] Hasim Sak, Andrew W. Senior, and Françoise Beaufays. Long short-term

memory recurrent neural network architectures for large scale acoustic mod-

eling. In INTERSPEECH, 2014.
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