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Figure 1: (a) Head rotation velocity and angle are measured in VR. (b) Vertical head tilt is also recorded. (c) Eye-gaze patterns are
analyzed to show 90% and 60% likelihood areas, using head coordinates for longitude and latitude. (d) Analysis identifies two

gaze-probability regions: the top 100 pixels (yellow) and the next 150 pixels (orange), aiding selective rendering.

ABSTRACT

We propose a lightweight deep learning approach for gaze estimation
representing the visual field as three distinct regions: fovea, near,
and far peripheral. Each region is modelled using a gaze parameteri-
zation gaze regarding angle-magnitude, latitude, or a combination
of angle-magnitude-latitude. We evaluated how accurately these
representations can predict a user’s gaze across the visual field when
trained on data from VR headsets. Our experiments confirmed that
the latitude model generates gaze predictions with superior accuracy
with an average latency compatible with the demanding real-time
functionalities of an untethered device. We generated an outperform-
ing ensemble model with a comparable latency.
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1 INTRODUCTION

The human eye is designed to interpret visual signals with high
spatial resolution in the centre of the retina (the fovea), and this res-
olution declines with eccentricity (angular distance from the centre),
which is one of the essential characteristics of the human visual sys-
tem. This functionality has created rendering or image compression
models to minimise the data needed for display. Foveated rendering
reduces computation and can be used in interactive 3D graphics for
2D displays or virtual reality headsets, video compression, and video
reconstruction by in-painting, among other applications [3, 11, 10, 6]
especially in virtual reality (VR) headset [4, 8, 9, 7]. This study

explores deep-learning gaze-prediction models for fovea prediction
in VR. It relies exclusively on head movements, making it suitable
for real-time deployment on affordable HMDs. Our choice of the
multi-perceptron (MLP) neural network (NN) is informed by its
successful results in Bovo’s work [2]. Our MLP architecture is a
fully connected layer designed to learn the central fixation points
and the outlines of probable fixation areas. These areas are predicted
by such models as shown in Figure . Rather than pinpointing the
precise location of a user’s gaze, our model outlines the three regions
of the visual fields: fovea, near peripheral, and far peripheral. This
approach addresses the inherent limitations of head movements. It
minimizes the visual footprint of head-based cues, which is par-
ticularly valuable in immersive scenarios where consumer-market
HMDs do not include an eye-tracker for cost reasons. Our model
does not depend on visual saliency and can be deployed in various
environments and scenarios. Predicting the location of such areas in
a virtual reality (VR) immersive scenario gives several advantages.

We created three distinct fovea estimation models characterized
by the inputs: latitude, velocity angle-magnitude, and latitude and
angle-magnitude, each designed to tackle the challenges inherent
to accurate visual field prediction in extended reality (XR) envi-
ronments. To gauge their efficacy, we conducted a comprehensive
evaluation focusing on two pivotal metrics: accuracy and latency.
We trained these models to the GIW [5] and panoramic 360° [1]
datasets. Building upon these individual model evaluations, we
created an ensemble model. This ensemble approach effectively
harnessed the strengths of each model, forging a comprehensive
solution that not only improved fovea prediction accuracy but also
maintained a low latency value.

2 FOVEA PREDICTION MODELS

Our model library included three variations of the fovea prediction.
We developed the ”Angle + Magnitude” model, which accepts in
input the head velocity angle and magnitude. In contrast, the ”Lati-
tude” model used the pitch information from head movement. The
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Figure 2: (a)(b)(c) plots depicting the density of samples across
combinations of head rotational direction (θ ) velocity magnitude (ρ)
and head latitude (φ ). (e)(f)(g) plots depicting the best performing
model cross combinations of head rotational direction (θ ) velocity
magnitude (ρ) and head latitude (φ ).

”Latitude + Angle + Magnitude” model, uses all three parameters.
The model employed is an MLP neural network tailored for gaze
estimation. We introduced the head’s pitch parameter compared to
Bovo’s study [2] referred to as ”latitude”(φ ). The latitude, as a factor
in our predictive model, played a crucial role in improving the accu-
racy of gaze prediction. Latitude directly influences the alignment of
the user’s gaze and, subsequently, their foveal vision. By incorporat-
ing latitude into our model, we could account for variations in how
users tilt their heads when exploring virtual environments, leading
to more precise and robust fovea predictions. Our research explored
two distinct predictions that can be made using this model. The first
one is a probability model of the vision field, which characterizes the
likelihood of a user’s gaze falling within the foveal region at a given
time. Secondly, we aim to estimate the pixel area associated with
the foveal region and near the peripheral area. This pixel area pre-
diction is a valuable tool for controlling the allocation of computing
resources. We used the pixel area prediction method to assign a fixed
number of pixels for the foveal region and near the peripheral area.
This approach allows efficient resource consumption management
while maintaining a high accuracy in gaze prediction. It optimizes
computational efficiency and bandwidth allocation, ensuring users’
seamless and immersive experience.

3 RESULTS

In our study, we comprehensively evaluated three distinct gaze es-
timation models in the context of virtual reality. We assessed their
performance using an average fixation map (AFM) derived from the
collective gaze data. The visual field was divided into a grid struc-
ture of 16x16, totalling 256 cells. We determined the most suitable
gaze estimation model for each cell, ultimately generating a map
highlighting the best-performing model across the visual space. Our
assessment considered three key parameters: head velocity, head
latitude, and head direction, allowing us to create maps that provide
insights into the model’s effectiveness under different conditions.
Additionally, we incorporated a weighted evaluation method to ac-
count for the non-uniform distribution of samples across the visual
space. This approach ensured that the evaluation results accurately
reflected real-world scenarios, where some cells might contain a
greater number of samples than others. This comprehensive evalua-
tion showed that the latitude-based model outperformed the other

models, showcasing its effectiveness in estimating fovea behaviour.
Furthermore, we examined the latency of all models. We determined
that they were compatible with low-latency processing, making them
suitable for deployment on mobile devices and enhancing the overall
user experience in virtual reality applications.

4 CONCLUSION

Our study has presented a lightweight deep learning approach for
gaze estimation in virtual reality, focusing on three distinct regions
of the visual field: fovea, near peripheral, and far peripheral. We
evaluated the effectiveness of three fovea prediction models, each
tailored to address the unique challenges of gaze estimation in ex-
tended reality environments. Our extensive evaluation was based on
key parameters such as head velocity, head latitude, and head direc-
tion, and we employed an average fixation map (AFM) to compare
the models’ performance. To ensure the reliability of our evalu-
ation, we implemented a weighted approach that considered the
non-uniform distribution of samples across the visual space, address-
ing real-world scenarios where certain areas may contain more data.
Our findings demonstrated that the latitude-based model consistently
outperformed the other models, emphasizing its accuracy in predict-
ing foveal gaze behaviour. Furthermore, we assessed the latency of
all models. We found them compatible with low-latency processing,
making them well-suited for deployment on mobile devices and
enhancing the user experience in virtual reality applications.
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