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Recent innovations in x-ray technology (namely phase-based and energy-resolved imaging) offer unprecedented oppor-
tunities for material discrimination; however, they are often used in isolation or in limited combinations. Here we show
that the optimized combination of contrast channels (attenuation at three x-ray energies, ultra-small angle scattering at
two, standard deviation of refraction) significantly enhances material identification abilities compared to dual-energy
x-ray imaging alone, and that a combination of off-the-shelf machine learning approaches can effectively discriminate,
e.g., threat materials, in complex datasets. The methodology is validated on a range of materials and image datasets that
are both an order of magnitude larger than those used in previous studies. Our results can provide an effective method-
ology to discriminate, and in some cases identify, different materials in complex imaging scenarios, with prospective
applications across the life and physical sciences. While the detection of threat materials is used as a demonstrator here,
the methodology could be equally applied to, e.g., the distinction between diseased and healthy tissues or degraded vs.
pristine materials.
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1. INTRODUCTION

The introduction of phase-based methods has transformed x-ray
imaging. These methods create contrast based on the unit decre-
ment of the refractive index (δ if this is written as n = 1− δ + iβ,
with i being the imaginary unit) instead of the imaginary part,
β, which determines the widely used attenuation coefficient
by µ= 4πβ/λ (with λ being the x-ray wavelength). Following
pioneering experiments in the 1960s [1] and 1980s [2], the field
exploded in the 1990s with the advent of 3rd generation syn-
chrotron facilities [3,4] and with the first pioneering experiments
based on more conventional micro-focal sources [5,6]. Effort
was soon focused on approaches to perform quantitative phase
imaging by separating attenuation and phase contributions (phase
retrieval), with methods based both on crystals [7] and free-space
propagation [8] being developed. Crystal-based methods, as well
as methods developed later based on x-ray masks [9], gratings [10],
or other beam modulators (e.g., [11–13]), are actually sensitive
to x-ray refraction, i.e., to the first derivative of the phase shifts,
which is linked to the refraction angleα byα = λ

2π∇x ,yφ(x , y , λ),
with ∇x ,y being the two-directional gradient operator transverse
to the x-ray propagation direction z, and 8 being the phase shift

introduced by the object. For this reason, these approaches are
referred to as “differential phase” methods; if needed, the phase
shift8 can be obtained by integration.

Experimentation with crystal-based methods soon revealed
that a third contrast channel could be retrieved, related to multiple
refraction events caused by structures smaller than the spatial
resolution of the imaging system. Early papers called this contrast
channel refractive scattering [14] or extinction [15], or borrowed
the term ultra-small angle x-ray scattering (USAXS) from the x-ray
scattering community [16], although it must be borne in mind
that in this case angles are in the order of microradians rather than
degrees or tenths of a degree. Later, the community converged on
the name dark-field [17], although USAXS is still widely used.
The dark-field channel turned out to be accessible through prac-
tically all differential phase methods [17–19], including those
adapted for use with low-brilliance x-ray sources in the 2000s
[20,21], with options to access it also through propagation-based
approaches emerging only more recently [22]. In addition to
enabling some of the earliest clinical trials with phase-based x-ray
methods [23], access to the dark-field alongside differential phase
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with low-brilliance sources makes “multi-contrast” (phase, atten-
uation, dark-field) x-ray imaging readily available in standard labs,
opening the way to commercial translation.

Edge illumination (EI), the phase-based method used in this
work, uses apertured masks to generate phase sensitivity (see
Section 2), an additional consequence of which is that the spatial
resolution is determined by the size of the apertures in the pre-
sample mask [24]. The dark-field signal does not depend directly
on the relation between the size of the scatterers and size of the
mask apertures [25]; however, in 2D (projection) images like the
ones presented in this paper, it does depend on it indirectly. This
dependence arises from how many edges the photons encounter
on their path, and as the scatterers become larger, there will be
fewer of them in a given sample thickness. Conversely, another
contrast channel exploited in this work, the standard deviation
of refraction, kicks in when the scatterers become larger than the
aperture because sub-resolution features typically do not create a
distinct refraction signal [25]. In this sense, it performs a similar
role as the dark-field signal for features above the spatial resolution
of the system (i.e., the pre-sample mask aperture).

Another transformative development in x-ray imaging was
the introduction of energy-resolved detectors [26]. While
solutions based on photon counters with thresholding capa-
bilities are becoming increasingly popular [27,28], solutions
exist that can provide full spectroscopic capabilities, such as the
HEXITEC detector [29], pnCharge-Coupled Devices [30,31],
and Controlled-Drift Detectors [32], albeit possibly at the cost of a
reduced incident flux.

In this work, we used a photon counter with thresholding
capabilities (see Section 2) that allows us to split the incoming x-ray
spectrum in two parts; its use in phase-based multi-contrast imag-
ing therefore makes the above three channels (plus potentially the
standard deviation of refraction) simultaneously available in high
and low energy versions, making six (or even eight) contrast chan-
nels available in principle. Furthermore, with mask-based methods
like EI, the x-rays transmitted through the highly absorbing mask
septa can also be collected separately to create a third attenuation
image at a much higher x-ray energy [33]. Clearly, these contrasts
are not all independent of each other. The independence of low
and high energy x-ray attenuation images can be assumed when
these are dominated by the photoelectric and the Compton effects,
respectively [34]. More recently, a different energy dependence has
also been observed in gratings-based dark-field imaging for features
with sizes above and below a certain characteristic length of the
imaging system [35]; however, this does not apply to EI [25]. Phase
scales in a predictable way with x-ray energy, and its correlation
with the Compton signal has been widely discussed (e.g., [36]).
However, in the framework of attenuation-based imaging, it has
been repeatedly observed that the problem over-determination
allowed by the availability of attenuation images at more than
two energies leads to an increased precision in the results (e.g.,
[37]), and similar principles can be extended to phase-based imag-
ing [33,38], which this paper expands on to explore options for
material identification based on the simultaneous availability of
multiple image contrasts.

As a demonstrator, we apply the method to the area of security
inspections, namely to the identification of threat materials. The
field of x-ray based security scans is well developed, with exhaus-
tive summaries provided in various review papers (e.g., [39]).
While long-established dual-energy scanners are still widely used

[40], technologies such as computed tomography (CT) are being
deployed at airports worldwide, while others such as x-ray diffrac-
tion (e.g., [41]) are experiencing early market entry. However,
the dark-field and standard deviation of refraction signals probe
a different property of matter, namely microstructure instead of
atomic number/electron density and molecular structure (probed
by CT and diffraction, respectively), therefore providing infor-
mation that is complementary to existing methods. Furthermore,
both these signals are provided simultaneously with attenuation,
and therefore on top of the currently used dual-energy images if an
energy-resolved detector or appropriate filtration is used.

The combination of dark-field with deep learning approaches
is also explored in this work. The popularity of deep learning
methods has been booming in recent years [42], and their use in
security applications is also rapidly expanding [43]. The pros-
pect of automated detection is particularly attractive in security
inspections, and indeed 3D imagery like that provided by CT is
particularly well suited for analysis via machine learning methods
[44]. Here we are interested in exploring the compatibility between
multi-contrast x-ray imaging and deep learning, in particular the
added value brought by the dark-field channel.

In the first part of the paper, we test the discrimination and
identification potential of multi-contrast x-ray imaging used as a
standalone analytic method with no added automatic detection
algorithms. We apply this to a large dataset encompassing 19 threat
and 56 non-threat materials of varying thickness, showing how
the inclusion of additional contrast channels above conventional
attenuation significantly aids material discrimination and often
allows material identification. We propose a method to convert
multi-contrast images into simpler, “material-specific” images and
analyze the overall results obtained using this approach by means
of truth tables. We extend the methodology to the case where
different materials overlap, showing the approach still works.

In the second part of the paper, we create complex scenarios
where the 75 materials are hidden inside bags and covered by a
range of cluttering materials. Overall, we produced 3891 scans
of randomly selected materials, with the thickness of each mate-
rial varying between 12 and 30 mm in the various scans, combined
with various cluttering objects. A total of 2732 (70%) of these scans
were used as a training set (for transfer learning), and the remaining
1168 (30%) for testing. We progressively optimized our deep
learning approach and obtained the best results with a hierarchical
approach where the cluttering objects are segregated first then
materials are discriminated; this was trained with a cross-entropy
loss function and used layer-specific learning rate adaptation [45].
Despite the complexity of the dataset, use of this architecture
resulted in a single false negative out of the 313 explosive-bearing
cases contained in the set of 1168 images used for testing.

We note that, although here we used the discrimination of
threat materials as a demonstrator, our interest lays in the general
ability of the dark-field to separate and ideally identify materials
using additional information regarding their microstructure.

2. METHODS

A. X-Ray Imaging System and Method

This work used the EI x-ray phase-contrast imaging method [9]
in its laboratory implementation [21] to produce the dark-field
and refraction images on top of the conventional attenuation ones.
Combination with an x-ray detector with two energy thresholds
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Fig. 1. (a) Schematic of the experimental setup, with (b) photos of the source and (c) detector/masks parts. A mismatch of the pre-sample mask position
along the x-ray propagation axis allows for different detector apertures being hit at different points by the beamlets created by the pre-sample mask.

(XCounter XC-FLITE FX2, Direct Conversion, Danderyd,
Sweden) allowed the acquisition of all the above images at two
different average spectral energies. The x-ray source (MXR-
160HP/11, Comet, Wünnewil-Flamatt, Switzerland) was set at
80 kVp and operated at 8.7 mA, and a higher detector thresh-
old splitting the (W) spectrum with roughly one third and two
thirds of the counts in the high and low energy bins, respectively.
X-ray energies below approximately 24 keV were cut off by the
lower detector threshold, so as to completely eliminate noise (i.e.,
detector pixels registered no counts with the beam off ).

Two masks were used to realize the EI configuration. The first
(“pre-sample”) mask, placed immediately before the sample, had
overall dimensions of 150 (h)× 9.6 (w)mm2, with regularly
spaced (75 µm period), 21.4 µm apertures parallel to the long side
of the mask. The second (“detector”) mask, placed immediately
before the detector, had dimensions of 200 (h)× 12.8 (w)mm2,
98 µm period, 28 µm apertures. The source-to-detector dis-
tance was 2.1 m; the detector mask was placed at 42 mm from
the detector so that its projected period would match the 100 µm
detector pixel pitch. The pre-sample mask was slightly displaced
from its “ideal” position at 52.5 cm from the detector, where it
also would also have matched the detector pitch; in this way, the
beamlets it creates hit slightly different positions on the detec-
tor mask (see Fig. 1), allowing for the retrieval of attenuation,
refraction, and dark-field with a single sample scan, similarly to
the method described in [23]. Basically, different detector pixels
receive different amounts of illumination [Fig. 1(a)], which corre-
spond to sampling the illumination curve (IC) at different points,
thus allowing its fit with an appropriate mathematical function.
The IC is obtained by scanning the pre-sample mask while the
detector mask is kept stationary, with apertures at the center of
the corresponding pixels. This provides a bell-shaped curve with
the maximum where pre-sample and detector mask apertures are
aligned, and minima where the pre-sample mask apertures are
aligned with the septa at either side of the corresponding detector
mask aperture. The introduction of a sample causes the IC to
dampen, shift laterally, and broaden, corresponding to attenua-
tion, refraction, and dark-field effects, respectively. Since the IC is
normally well approximated by a Gaussian function [18,33,46],
fitting it before and after the introduction of a sample enables the
extraction of the latter’s attenuation, refraction, and dark-field
characteristics on a pixel-by-pixel basis. Specifically, if

IC0 =
a0
√

2πa2
exp

[
(x − a1)

2

2a2

]
+ a3 (1)

is the IC without the object, in which a term (a3) accounting for a
degree of x-ray transmission through the mask septa has also been
included, and

ICobj =
a0t

√
2π(a2 + σ)

exp

[
(x − a1 −1)

2

2(a2 + σ)

]
+ a3o (2)

is the IC with the object, then t , 1/d , σ/d2, and o represent the
transmission, refraction, dark-field, and offset images, respec-
tively, with d the sample to detector mask distance used to
transform the lateral shift of the IC into the refraction angle ϑ ,
in the approximation tan(ϑ)' ϑ .

Both masks are mounted on a pair of translators and a goniome-
ter for alignment. An addition, a larger translator is used to scan
the samples through the beam. An exposure time of 1 s was used,
and samples were scanned at a speed of 0.3 mms−1, meaning each
scan took between 15 and 25 min, depending on the length of
the specific sample. The relatively large (0.4 mm) focal spot of
the source is reduced to approximately 80 µm in the horizontal
direction by means of a Huber (Huber Diffraktionstechnik GmbH
& Co. KG, Rimsting, Germany) slit, placed as close as possible to
the source output window [see Fig. 1(b)]. A detailed description
of the system can be found in [46], save for the use of a slightly
different pre-sample mask. The entire system is placed inside a
cabinet, which enables its easy transportation to different locations
(e.g., for the explosive scans, see below).

B. Samples and Sample Preparation

A complete list of the materials considered in this application is
provided in Supplement 1, Table 1, which also lists the clutter-
ing objects used in the deep learning part of the study alongside
the 57 benign and 19 explosive materials. The benign mate-
rials were scanned on the Nikon X-Tek Systems premises in
Tring (Hertfordshire, UK) using the pre-commercial prototype
described above. The prototype was then transported to the
Cranfield Ordnance Test and Evaluation Centre (COTEC) near
Devizes (Wiltshire, UK), which provided access to the explosive
materials. These were first scanned individually as done for the
benign materials in Tring and then were placed into bags and
obscured by cluttering objects. A total of 3891 different com-
binations were produced and scanned, a description of which is
provided in Supplement 1, Fig. 4, which also shows what combi-
nation of cluttering objects was used in combination with which
material. At least 40 (typically more) cluttered combinations were
realized for each of the threat materials, which means the overall
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number of scans containing an explosive was approximately 22%
of the total.

C. Deep Learning Architectures

The CNN Inception V3 [47] was used as our base architecture.
This was pre-trained on ImageNet [48], with a few additional
layers trained on our (training) dataset. For training, we used
stochastic gradient descent with momentum as the optimization
procedure, with L2 as the regularizer [48]. We trained for 20
epochs with a batch size of 64, using a dropout probability of 0.5
for the convolutional layers. A 10 times lower learning rate was
used for the pre-trained layers in comparison to the additional
ones, using batch normalization [49] after the convolutional layers
of Inception V3.

Initially we used the softmax loss function, then intro-
duced a cross-entropy loss. Assume we have N training
samples, with M classes. Let the training set be represented by
{(x1, y1), . . . , (xN, y N)} where xi , i ∈ {1, . . . , N} represent
N training images, and y i denotes the corresponding ground-
truth labels (since we have M classes, y i ∈ {1, . . . , M}). Training
with a softmax loss is accomplished by minimizing the negative
log-likelihood:

Ls = −
1

N

N∑
r=1

log
(

p̂r ,yr

)
,

where the probability p̂r ,yr , r ∈ {1, . . . , N} is obtained by apply-
ing the softmax function to the penultimate layer of the classifier.
Letting lr ,m denote the mth output for xr , we have

p ′r ,m =
e lr ,m∑
m′ e

lr ,m′
, m,m′ ∈ {1, . . . ., M} .

Conversely, with a sigmoid cross-entropy loss, the network is
trained by minimizing the following loss function:

Le =−
1

NM

N∑
r=1

[
pr · log

(
p̂r

)
]+
[ (

1− pr

)
· log

(
1− p̂r

)
],

with pr being the M-dimensional ground truth probability vector,
and p̂r being the M-dimensional predicted probability vector
obtained by applying the sigmoid function to the outputs of the
penultimate layer of the classifier.

While progressively refining the approach, the first improve-
ment consisted of the introduction of a hierarchical architecture
to segregate cluttering object classes first, then apply material dis-
crimination. Assuming we have K object classes and R materials,
an inception V3 net is first trained to detect one of the K objects
O1 . . . OK . K more inception V3 nets are then separately trained,
where the l th net (1≤ l ≤ K ) separates the benign and threat
materials obscured by Ol . If a material image has been obscured
by two objects Ok1 and Ok2 , the image is put into both Ok1 and
Ok2 object classes during training with mild data augmentation
(see Supplement 1, Fig. 4). During testing, the trained model
chooses the k1th material-discrimination net if the probability of
the presence of object Ok1 is predicted to be greater than that of the
presence of object Ok2 , and vice versa. This functionality naturally
extends if a material is obscured by three or more objects.

The second improvement consisted of the introduction of the
sigmoid cross-entropy loss function outlined above; note that

the change of loss function only applied to the K nets trained for
material discrimination, while the first net is still trained with the
softmax loss. Finally, we introduced layer-specific learning rate
adaptation by assigning a weight to a given layer proportional to
the average decorrelation-based segregation between classes [50];
again, this was only applied to the K material-discrimination nets.

Training and inference procedures were carried out on an
NVIDIA GeForce GTX 1080 Ti graphic card, with on-chip mem-
ory of ∼11 GB, which led to an inference time per image of the
order of 10 ms.

3. RESULTS AND DISCUSSION

An initial simplified example of the benefit of using additional con-
trast channels alongside conventional ones is shown in Fig. 2. The
horizontal axis in this plot is the new effective atomic number (Ze ),
which is based on the effective atomic number (Zeff) corrected
using published linear x-ray attenuations [51] and represents a
condensed version of dual energy attenuation-based imaging. The
additional contrast channels accessed through phase contrast mea-
surement with masks are then added on the vertical axis. These are
dark-field at low [Fig. 2(a)] and high [Fig. 2(b)] energy, the “offset,”
i.e., the image at a much higher average x-ray energy obtained by
exploiting x-rays that have traversed the highly absorbing mask
septa [Fig. 2(c)], and the standard deviation of the refraction signal
[Fig. 2(d)] which, as discussed above, can be used as a proxy for
dark field when overlapping features larger than the system’s spatial
resolution are present [25,52]. For a straightforward comparison
with Ze , all contrast channels bar the standard deviation of refrac-
tion have been made thickness-independent through division
by the attenuation signal, following the procedure described in
[33]. Explosive materials are highlighted with a square for ease of
visualization.

As can be seen, adding contrast channels separates out the
points in the 2D graphs, allowing for much easier identification—
especially of materials that would overlap based on their Ze value
alone. Unsurprisingly, the offset signal is the least effective in pro-
viding additional separation, due to its lack of complementarity
over the two energies used to extract Ze . Dark-field at low and high
energy provide similar results, with the former spreading out the
points a bit more due to the dark-field signal being stronger at lower
energies [25,35]. The best separation seems to be provided by the
standard deviation of refraction, which would indicate a prevalence
of grain sizes comparable to or larger than the spatial resolution of
the imaging system (approximately 25µm).

From an operational perspective, the above information needs
to be combined in a simplified way that could be presented to,
e.g., an operator, without trading off on signal complexity. We
propose a simple quantitative approach based on the relative dis-
tance between material pairs in all contrast channels, exemplified
in Fig. 3. A radius corresponding to the measurement error [e.g.,
one standard deviation over a region of interest (ROI)] is assigned
to all reference points (e.g., blue arrows in Fig. 3 for PE8). When
an unknown material is scanned, contrast measurements and
corresponding standard deviations are extracted from the corre-
sponding ROI and plotted on top of the reference materials (red
arrows in Fig. 3). While for obvious reasons only two contrast
channels are represented in Fig. 3, this procedure actually defines a
“hyper-cube” (or hyper-sphere if standard deviations are summed
in quadrature), with dimensions corresponding to the number of
used contrast channels. This immediately provides the probability

https://doi.org/10.6084/m9.figshare.25556034
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Fig. 2. Scatterplots combining the effective atomic number (Ze , horizontal axis in all graphs) with dark-field at low and high energy, offset, and standard
deviation of refraction, reported on the vertical axis of panels (a)–(d), respectively. Explosive materials are highlighted by squares.

of an unknown sample being made of a certain material as the
overlap between hyper-cubes (hyper-spheres).

Those probabilities can be used to produce user-friendly,
“material-specific” images, an example of which is provided in
Fig. 4; the sides (radii) of the hyper-cubes (spheres) can be used to
trade off sensitivity versus specificity. The examples in Figs. 4(a)–
4(d) and 4(e)–4(h) refer to bicarbonate of soda and semtex,
respectively. Figures 4(a) and 4(b) and Figs. 4(e), 4(f ) use Ze only,
with a smaller [Figs. 4(a) and 4(e)] and larger [Figs. 4(b) and 4(f )
thresholds resulting in high specificity and sensitivity, respectively.

Fig. 3. Material discrimination based on relative distances in “image
contrast” space, with the overlap between areas defined by the uncer-
tainty on the measured contrasts determining the probability of an
unknown (red) material corresponding a known one (blue). While only
two contrasts can be represented in a 2D figure, in truth the overlap
between “hyper-volumes” is calculated by simultaneously considering the
uncertainties on all contrast channels.

Figures 4(c) and 4(d) and Figs. 4(g) and 4(h) introduce dark-field at
two energies, offset and standard deviation of refraction. Multiple
contrast channels lead to multiple ways to trade-off sensitivity
and specificity: for example, highly specific images [Figs. 4(c) and
4(g)] require that Ze is triggered alongside three of the other four
contrast channels, while Figs. 4(d) and 4(h) simply require that
three channels are flagged, one of which may or may not be Ze . As
can be seen the multi-contrast approach works extremely well for
the bicarbonate of soda, where it completely clears up the image;
relaxing the specificity makes almost all pixels in the bicarbonate
ROI turn yellow, at the expense of some spurious positive pixels in
other parts of the image. Things work slightly less well for semtex;
however, the combination of contrasts significantly outperforms
the corresponding Ze only cases. In future work, outcomes could
be further improved by (a) giving different weights to the various
contrast channels, which could be refined with successive and
extensive calibrations and (b) performing additional probability
calculations based on the number of pixels flagged in a ROI, e.g.,
by assuming “continuity” for the examined material and defining
likely boundaries. Supplement 1, Fig. 1 provides additional exam-
ples for different materials, and Supplement 1, Figs. 2 and 3 show
that the method is still applicable when different materials overlap.
Application of the above principle to a range of different materials
allows the creation of confusion matrices, an example of which is
provided in Fig. 5.

Confusion matrices like those of Fig. 5 enable presenting results
like those of Fig. 4 for a plurality of materials in a single image.
The gray scale represents the probability that a material belongs
to a certain class, with white and black representing the certainty
of belonging/not belonging to that class, respectively. The same
materials are listed along the horizontal and vertical axis so that a

https://doi.org/10.6084/m9.figshare.25556034
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Fig. 4. Material-specific images for (a)–(d) the bicarbonate of soda and (e)–(h) semtex, the area corresponding to which is highlighted by a pink rectan-
gle in all images. All images are binary, flagging the pixels as belonging to the material in question (yellow) or not (blue). Images (a), (b) and (e), (f ) are based
only on Ze , with (a), (e) short and (b), (f ) long cutoff radii corresponding to high specificity and high sensitivity conditions, respectively. Images (c), (d) and
(g), (h) include the additional contrast channels introduced in Fig. 2. The plurality of contrasts provides different mechanisms to trade-off specificity and
sensitivity; for example, in images (c) and (g) (high specificity), Ze had to be triggered alongside 3 of the other 4 contrast channels for a pixel to be flagged
as belonging to a certain material. Conversely, “high sensitivity” images in (d) and (h) simply require that 3 contrasts out of 5 are triggered, regardless of Ze .
The improvement brought by the proposed multi-contrast method can be appreciated by comparing each image of the bottom row to its “Ze only” corre-
spondent immediately above.

white diagonal in a black background represents perfect detection
with 100% certainty (here we have represented twice as many
materials on the vertical than on the horizontal axis, so the diagonal
would only occupy half the graph). As can be seen, the Ze cases in
Figs. 5(a) and 5(b) are severely plagued by false positives, also in

the high specificity case. The multi-contrast analysis significantly
clears up the confusion matrix; it must be noted, however, that the
diagonal points in Fig. 5(c) are dimmer than in Figs. 5(a) and 5(b).
This is ameliorated by relaxing the specificity in favor of sensitivity
[Fig. 5(d)], which results in the appearance of a larger number

Fig. 5. Confusion matrices based on Ze at (a) high specificity and (b) high sensitivity, and on the multi-contrast approach at (c) high specificity and
(d) high sensitivity. Matrices focus only on the explosive materials, which are listed on the horizontal axis. The same materials in the same order occupy the
top 19 rows of each matrix, while the bottom 19 represent a subset of the benign materials. The gray scale represents the probability that a certain material
belongs to a certain class; hence, the ideal matrix is a white diagonal occupying the top half of the graph, with all other entries being black.
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Table 1. Results of Machine Learning Analysis Performed with Various Architectures
a

Architecture TP FP FN Precision Recall

Single softmax 297 65 16 82.04% 94.89%
Hierarch. softmax 303 57 10 84.17% 96.81%
Hierarch. x-entropy 307 52 6 85.52% 98.08%
Hierarch. x-entropy+ layer-specific learn. adapt. 312 32 1 90.70% 99.68%
Hierarch. x-entropy+ layer-specific learn. adapt. no dark-field 281 56 32 83.38% 89.78%

aThe first four rows refer to datasets combining attenuation at two energies and dark-field at two energies, while the two dark-field images were removed to obtain the
results of row 5. TP= true positives, FP= false positives, FN= false negatives, Precision=TP/(TP+ FP), Recall=TP/(TP+ FN).

of false positives. Overall, Fig. 5(d) has a comparable diagonal to
Fig. 5(a), but fewer (and dimmer) false positives.

Finally, we present the results of a test carried out using deep
learning. For simplicity, we focused on the performance of atten-
uation at high and low energy alone vs. their combination with
dark-field at high and low energy. A random combination of mate-
rials with random thickness ranging from 12 to 30 mm was placed
inside bags with additional cluttering items; ratio images were used
to eliminate the dependence from material thickness as described
in [33]. A total of 3891 combinations were produced and scanned
with the imaging system described in Section 2. Supplement 1,
Table 1 lists all threat and non-threat materials as well as all clutter-
ing items, Supplement 1, Fig. 4 provides a scheme summarizing
the characteristics of the dataset used in the deep learning experi-
ments, Supplement 1, Fig. 5 shows a few example images from the
scanning campaign.

The 3891 images were split into 2732 (70%) for training and
1168 (30%) for testing. The convolutional neural network (CNN)
Inception V3 [47] was used as our base architecture, pre-trained
on ImageNet [48]; Supplement 1, Fig. 6 shows a schematic of
our hierarchical architecture (that yielded the best performance),
and more details on it are provided in the methods section. We
progressively refined our approach by (1) moving from a single to a
hierarchical architecture in which the cluttering object classes are
segregated first then the materials differentiated, (2) swapping the
softmax for a cross-entropy loss function, and (3) implementing
layer-specific learning rate adaptation [45]: every step increased
the obtained precision and recall values. To calculate these, we
focused on the 313 images out of the 1168 used for testing that
contained an explosive. We counted the number of true positives
(TP), false positives (FP), and false negatives (FN), and calculated
precision as TP/(TP+ FP) and recall as TP/(TP+ FN); note
that TP+ FN= 313 while typically TP+ FP > 313 as FPs are
images outside the 313 explosive-containing ones erroneously
assumed to contain an explosive. Precision and recall provide esti-
mates of specificity and sensitivity, respectively; results are reported
in Table 1 for the various architecture refinements. The best per-
forming architecture (hierarchical segregation+ cross-entropy loss
function+ layer-specific learning rate adaptation) was also applied
to a dataset from which the dark-field images had been eliminated,
resulting in a significantly reduced performance.

The table clearly shows the improvement in both precision
and recall values as the deep learning architecture is progressively
refined, reaching a near-perfect 99.68% degree of recall for the
hierarchical architecture with cross-entropy loss function and
layer-specific learning adaptation; note this corresponds to a single
false negative out of the 313 explosive-bearing images included in
the 1168 used for testing. Importantly, removing the dark-field
imaging channel from the dataset leads to a significant degradation

in the overall performance, with a reduction of 7% and 10% points
in the precision and recall values, respectively, thereby demon-
strating the importance of the dark-field channel in the material
discrimination potential of deep neural networks.

4. CONCLUSION

We have shown that the inclusion of additional x-ray contrast
channels, namely dark-field at two average energies, attenuation
at a third energy and standard deviation of refraction, can signifi-
cantly enhance the material discrimination and identification
potential of dual-energy x-ray imaging. We developed a mecha-
nism to combine all the different contrast channels into a single
“material-specific” image, the pixels of which represent whether
they belong to that material based on overlapping hyper-spheres,
the radii of which are a chosen uncertainty. We propose a mecha-
nism to trade-off sensitivity and specificity in this approach and
compare the results to those obtained while using only attenuation
at two x-ray energies, demonstrating substantial advantages. We
also provide evidence that the method can be extrapolated to over-
lapping materials, so long as areas where we can “re-normalize” the
signal against the overlapping object/background are available.

This laid the groundwork for the application of deep learn-
ing to the multi-contrast images, which was previously shown
to bear promise in a proof-of-concept study involving a small
dataset and a limited number of materials [33]. In this wider
study, a custom-developed architecture was applied to almost
4000 images containing 57 benign and 19 explosive materials
with varying thickness, randomly mixed in bags also containing
a multitude of cluttering objects. The network architecture was
progressively refined by creating a hierarchical structure in which
the cluttering object classes are segregated first then materials are
discriminated, as well as by introducing a cross-entropy loss func-
tion and layer-specific learning rate adaptation; this ultimately led
to a near-perfect recall rate of 99.68%, corresponding to a single
explosive being missed out of the 313 contained in the 1168 images
used for testing. By applying the same deep neural network to the
same image set from which the dark-field images were excluded,
the recall rate dropped by 10 percentage points, corresponding
to 32 explosives being missed. We find this highlights the funda-
mental importance of the match between dark-field images and
detection abilities of the deep neural network in discriminating
certain material classes. Although security inspections have been
chosen as an example to demonstrate the potential of the approach,
the method is purely based on the additional discrimination capa-
bilities provided by the textural nature of dark-field images, related
to the microscopic structure of a given material; as such, it can be
widely applied to microscopically inhomogeneous materials across
the life and physical sciences.
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In terms of limitations, it has to be mentioned that, despite
the increase compared to previous studies like the one described
in [33], ∼4000 is still a small number of images for a typical
deep learning study. This is largely due to the fact that we are
concurrently proposing a new x-ray imaging method currently
at the pre-commercial prototype stage, which means there are
no larger image databases available besides those generated by
the method’s inventors and/or developers. To provide at least
some reassurance on the dataset’s diversity, we have analyzed the
dataset’s variability by studying the standard deviations of the
2048-dimensional feature vectors extracted from the fully con-
nected penultimate (pre-classification) layer of the Inception V3
network (see Supplement 1, Fig. 7 and related discussion). To test
its representativeness, we have compared the range of textures
present in our dataset to those of a widely used “real world” one, the
Oxford’s Describable Textures Dataset [53], with results presented
in Supplement 1, Fig. 8. We have also tested the method’s robust-
ness by applying our best-performing CNN architecture to images
degraded through convolution with Gaussians with increasingly
large standard deviations. The results (presented in Supplement 1,
Table 2) show that, although small standard deviations have a
limited effect on performance, this degrades more significantly as
the standard deviation is made larger. While this may indicate some
limits in the approach’s robustness, it also provides indications for
future work by, e.g., fine-tuning our model as a downstream task
over a self-supervised trained pretext model [54] and preferably
using transformers throughout [55,56].
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