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Abstract
Introduction  Alexander disease (AxD) is a rare leukodystrophy caused by dominant gain-of-function mutations in the gene 
encoding the astrocyte intermediate filament, glial fibrillary acidic protein (GFAP). However, there is an urgent need for 
biomarkers to assist in monitoring not only the progression of disease but also the response to treatment. GFAP is the obvious 
candidate for such a biomarker, as it is measurable in body fluids that are readily accessible for biopsy, namely cerebrospinal 
fluid and blood. However, in the case of ASOs, the treatment that is furthest in development, GFAP is the target of therapy 
and presumably would go down independent of disease status. Hence, there is a critical need for biomarkers that are not 
directly affected by the treatment strategy.
Methods  We explored the potential utility of biomarkers currently being studied in other neurodegenerative diseases and 
injuries, specifically neurofilament light protein (NfL), phosphorylated forms of tau, and amyloid-β peptides (Aβ42/40).
Results and Conclusions  Here, we report that GFAP is elevated in plasma of all age groups afflicted by AxD, including those 
with adult onset. NfL and p-tau are also elevated, but to a much lesser extent than GFAP. In contrast, the levels of Aß40 and 
Aß42 are not altered in AxD.
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Introduction

Alexander disease (AxD) is a rare leukodystrophy caused 
by dominant gain-of-function mutations in the gene 
encoding the astrocyte intermediate filament, glial fibril-
lary acidic protein (GFAP) [13]. In all cases, the hallmark 
neuropathological feature is the formation of cytoplasmic 
protein aggregates in astrocytes known as Rosenthal fibres. 
A critical stage in the development of the disease seems 
to involve elevated levels of GFAP protein. This elevation 
is, in part, attributed to a positive feedback loop govern-
ing the regulation of GFAP expression. In this loop, the 
presence of the mutant protein triggers a stress response, 
leading to the transactivation of the GFAP promoter [8]. 
Studies using rodent models demonstrate that the suppres-
sion of GFAP expression, using antisense oligonucleotides 
(ASO), can not only prevent but even reverse the disease 
[5]. Based on these findings, a GFAP-targeted ASO has 
now moved into a combined phase 1–3 human clinical trial 
(ClinicalTrials.gov Identifier: NCT04849741).

Despite being a single gene disorder, more than 100 
GFAP variants have been associated with AxD, with lit-
tle genotype–phenotype correlation. A wide range of 
clinical features have been observed, with ages of onset 
spanning prenatal through the ninth decades, and symp-
tomatology reflecting forebrain, hindbrain, and/or spinal 
cord dysfunction along with considerable variation in life 
expectancy [15, 19]. Nevertheless, the prospect of ASO 
and other potential therapies highlights an urgent need for 
quantitative biomarkers to assist in monitoring not only the 
progression of disease but also the response to treatment. 
GFAP is the obvious candidate for such a biomarker, as 
it is measurable in body fluids that are readily accessible 
for biopsy, namely cerebrospinal fluid and blood. Previ-
ously, we found that GFAP is markedly elevated in the 
cerebrospinal fluid of individuals with AxD and in blood 
of those with infantile and juvenile onset of symptoms 
(using a classification system based on age of first symp-
tom) [7]. GFAP levels appeared unchanged in the blood 
of those with adult-onset disease. However, in the case of 
ASOs, the treatment that is furthest in development, GFAP 
is the target of therapy and presumably would go down 
independent of disease status. Hence, there is a critical 
need for biomarkers that are not directly affected by the 
treatment strategy.

Other biomarkers for neurodegenerative injury and 
pathologies have been identified in blood in recent years 
[6]. Neurofilament light (NfL) protein is primarily a bio-
marker reflecting degeneration of myelinated axons and is 
regarded as a measure of the intensity of ongoing injury 
and stage of neurodegeneration [11]. Both CSF and blood 
levels of NfL are increased in most neurodegenerative and 

acute neurological disorders. In addition, phosphorylated 
tau (p-tau) and amyloid-β peptides (Aβ42/40) in blood 
have been shown to be important in Alzheimer’s disease 
(AD) [6], both at the symptomatic and presymptomatic 
stages of the disease. Previous studies have implicated 
links between AxD and Alzheimer’s disease, both in terms 
of oxidative stress [3] and transcriptomic profiles of gene 
expression [4].

In this study, in addition to GFAP, we sought to determine 
whether these novel blood biomarkers might prove useful in 
AxD. Here, we report that GFAP is elevated in plasma of 
all age groups afflicted by AxD, including those with adult 
onset. NfL and p-tau are also elevated, but to a much lesser 
extent than GFAP. In contrast, the levels of Aβ40 and Aβ42 
are not altered in AxD.

Methods

Participants

Blood samples from AxD individuals (n = 49) and controls 
(n = 31) were the same as those analyzed previously in Jany 
et al. [7]. Briefly, AxD participation required genetic con-
firmation of the diagnosis by sequencing of the GFAP gene. 
This cohort contained those with neonatal (n = 3), infantile 
(n = 21), juvenile (n = 12), and adult onsets (n = 13), with 
27 different variants distributed throughout the rod and tail 
domains of GFAP (see Supplemental Data for details of var-
iants). Controls were unaffected healthy adults (≥ 18 years) 
of both sexes. Fresh samples of venous blood were collected 
into lavender-topped tubes that contained K2-EDTA as anti-
coagulant. The samples were centrifuged within 60 min of 
collection at 2500 g for 15 min at room temperature. The 
supernatant was immediately placed in a polypropylene tube 
and stored either on dry ice for shipping or at − 20 °C until 
shipping could be arranged. Upon arrival at the central labo-
ratory, the samples were thawed, divided into aliquots, and 
stored at − 80 °C until further analysis. Three blood samples 
were collected as serum rather than plasma and were con-
sidered non-standard.

Blood biomarker measurements

All plasma biomarker measurements were performed 
using single molecule array (Simoa) technology on an 
HD-X platform at the University of Gothenburg, Sweden, 
blinded to participant information. Plasma GFAP, NfL, 
Aβ42, and Aβ40 concentrations were measured using the 
commercial Neurology 4-plex E kit (#502,334, Quanterix, 
Billerica). Plasma p-tau181 and p-tau231 concentrations 
were measured using in-house Simoa assays developed 
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at the University of Gothenburg [1, 9]. All measurements 
were done in singlicates on samples having undergone two 
free-thaw cycles and performed on one occasion using one 
batch of reagents. Intra-assay coefficients of variation on 
all biomarkers were < 15% derived from the internal control 
samples measured in duplicate on each analytical run. The 
three patient samples collected as serum were included in 
the analysis. Removing them from the study did not affect 
the results.

Statistical analysis

Data normality was determined by the D’Agostino-
Pearson test, and statistical evaluation was performed on 
log10-transformed data. All data analysis reported has been 
performed on log10-transformed data, but the untransformed 
values are shown in descriptive tables and figures. A one-
way ANOVA (Kruskal–Wallis) was performed to compare 
biomarker levels across groups adjusted for multiple com-
parisons. Correlations between the age of onset, age at col-
lection, and between biomarkers were performed by Spear-
man’s rank correlation. Statistical analysis was performed 
using IBM SPSS Statistics, version 25 (Armonk, NY, USA), 
and graphical representation was performed in Graph Pad 
Prism.

Ethics

Informed consents for studies of blood were obtained fol-
lowing protocols approved by the Institutional Review Board 
at the University of Wisconsin-Madison, and in accordance 
with the ethical standards from the 1964 Declaration of Hel-
sinki and its later amendments.

Results

The demographics of the cohort are shown in Table 1. The 
mean age of the control group was 34.6 years, whereas the 
mean ages of AxD patients (at the time when their sam-
ples were collected, though grouped by age of onset) were 
as follows: neonatal = 2.2, infantile = 6.6, juvenile = 19.9, 

and adult = 43.5 (all in years). The AxD group as a whole 
was balanced for sex, whereas the control group had a bias 
toward female participants.

Plasma levels of GFAP (Fig.  1a) were significantly 
increased in neonatal AxD (mean (SD); 7164 pg/mL 
(2126), P = 0.008), infantile AxD (12,191 pg/mL (10,158), 
P < 0.0001), and juvenile AxD (3705 pg/mL (3018), 
P < 0.001) compared with controls (70.6 pg/mL (38.1)). 
There was also a significant increase in adult AxD GFAP 
levels (774.1 pg/mL (550), P = 0.024). Plasma NfL 
(Fig. 1b) was increased in infantile AxD (106 pg/mL (130), 
P < 0.0001), juvenile AxD (21.1 pg/mL (9.6), P = 0.003), 
and adult AxD (24.6 pg/mL (29.6), P = 0.032) com-
pared with controls (7.1 pg/mL (4.4)). The apparent change 
in NfL for neonatal AxD (26.37 pg/mL (13.4)) was non-
significant. (Log scales for GFAP and NfL are shown in 
Supplemental Fig. 1).

Plasma p-tau181 (Fig. 1c) and p-tau231 (Fig. 1d) dem-
onstrated a similar pattern, with highest levels observed in 
infantile AxD (p-tau181, 28.9 pg/mL (15.1), P < 0.0001; 
p-tau231, 7.7 pg/mL (3.4), P = 0.001) compared with con-
trols (p-tau181, 5.9 pg/mL (3.6); p-tau231, 4.3 pg/mL (2.0)). 
However, in contrast, p-tau181 was significantly increased 
in juvenile AxD (13.3 pg/mL (7.1), P = 0.003) compared 
to controls, which was not observed for p-tau231. Plasma 
Aβ42/40 (Fig. 1e) was unchanged across all groups, although 
Aβ42 (Fig. 1f) and Aβ40 (Fig. 1g) peptides were lowest for 
the adult AxD groups (Aβ42, 5.3 pg/mL (1.4), Aβ40, 99.2 
pg/mL (26.3)).

There was a significant overall correlation between 
plasma GFAP and NfL (r = 0.533, P < 0.001), which had 
a slightly stronger association in AxD patients (r = 0.663, 
P < 0.001). All blood biomarkers had a negative association 
with age at collection in the AxD group (GFAP, r =  − 0.766, 
P < 0.0001 (Fig. 2A); NfL, r =  − 0.528, P < 0.0001 (Fig. 2B); 
p-tau181, r =  − 0.613, P < 0.0001; p-tau231, r =  − 0.381, 
P = 0.009; Aβ40, r =  − 0.389, P = 0.006; Aβ42, r =  − 0.395, 
P = 0.005). With respect to GFAP, it is interesting to note 
that the age at collection appeared to be a more important 
factor than the age of onset.

Discussion

We found significant changes in the levels of GFAP, NfL, 
and p-tau in the blood of individuals with AxD, espe-
cially those with infantile-onset AxD. This is the first 
study to show changes in plasma NfL, a biomarker asso-
ciated with the intensity of neurodegeneration, in AxD. 
The higher levels of NfL in infantile-onset AxD are con-
sistent with this group having shorter survival time and 
clinical manifestations of encephalopathy and epilepsy. 
Similarly, ours is the first study to show changes in p-tau, 

Table 1   Demographics of the study cohort (ages in years)

Number (m/f) Age (mean) Age (SD) Age (range)

Controls 31 (9/22) 34.6 10.9 19–57
AxD (total) 49 (24/25)
Neonatal 3 2.2 1.1 0.96–3.07
Infantile 21 6.6 6.7 0.72–23.9
Juvenile 12 19.9 9.9 8.14–41.0
Adult 13 43.6 11.6 13.8–64.9
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specifically p-tau181, in AxD. This biomarker is thought 
to be a specific biomarker for AD pathology [10], but 
AD is an unlikely scenario in the AxD patient group. 
One can speculate that p-tau181 is reflecting intensity 
of brain injury in AxD; however, the lack of correlation 
between NfL and p-tau181 in the juvenile AxD group 
suggests another mechanism, such as blood–brain bar-
rier dysfunction. For GFAP, the results reported here 
differ from those reported in an earlier study [7], where 
adult-onset AxD individuals were indistinguishable from 
controls. In Jany et al. [7], however, GFAP quantitation 
was performed using a less sensitive sandwich ELISA in 
which 41% of the controls were not measurable. Using 
the Simoa platform, with an improved analytical sensi-
tivity and wider dynamic range, the same samples now 
show that adult-onset patients have blood values that, as 
a group, are tenfold higher than controls.

Reactive astrocytes are a prominent feature in many of the 
leukodystrophies, and whether changes in CSF and/or blood 
levels of GFAP suggest utility as a biomarker for these condi-
tions is just beginning as a topic for investigation. Recently, 
Beerepoot and colleagues [2] showed elevations in both 
GFAP and NfL in metachromatic leukodystrophy, although 
the degree of increase for GFAP was less than that seen in 
AxD. Of most significance was their finding that the degrees 
of elevation could distinguish slow vs. rapid rates of progres-
sion in the children with onsets before the age of 6 years. 
Changes in CSF and blood levels of GFAP and NfL have 
also been observed in X-linked adrenoleukodystrophy [18].

Our study has several limitations. With regard to GFAP, 
Petzold [14] pointed out that none of the existing assays 
addresses potential differences in the expression of isoforms, 
post-translational modifications, cleavage products, or the 
hook effect as seen with other protein aggregates. In addition, 

Fig. 1   Box and whisker plots demonstrating the concentrations of 
blood GFAP (A), NfL (B), pTau181 (C), pTau231 (D), Aβ42/40 
(E), Aβ42 (F), and Aβ40 (G) in controls and AxD patients separated 
by age of onset. The age of onset classification boundaries are as 

in Jany et  al. (2015) with the addition of the neonatal form (years): 
neonatal (0–0.08), infantile (0.08–2), juvenile (> 2–13), adult (> 13). 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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without careful epitope mapping, the values for patients may 
be impacted by whether their individual variant affects assay 
performance, especially in those individuals with major dele-
tions. Second, our study had imperfect age-matching between 
patients and controls (the latter limited by IRB requirements 
to be  ⪰18 years). However, prior studies on the same analytes 
with similar methods in younger controls suggest that the 
current interpretations for the AxD data set are correct [16, 
17]. For p-tau, concentrations are relatively high in newborns 
but become indistinguishable from adult levels in children 
over the age of 1 year, speaking against age being a major 
confounder when interpreting our results [12]. Third, we pos-
sessed limited clinical information on the AxD patients, thus 
preventing utilization of any classification system other than 
age of onset. Interesting differences may emerge when these 
biomarkers are evaluated in the context of the alternative sys-
tems proposed by Prust et al. [15] and Yoshida et al. [19]. 
Fourth, our results represent, for each patient, only a single 
point in time, and longitudinal studies that follow change over 
time will be extremely informative.

In conclusion, there is a need for easily obtainable bio-
markers that can assist in monitoring disease progression 
and treatment response in AxD. Our novel results show 
that in addition to GFAP, blood biomarkers of neural 
injury (NfL) and tau (p-tau181) are changed in AxD, par-
ticularly those with infantile onset, and should be further 
examined in the wider context of AxD.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10072-​024-​07495-8.
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