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Abstract—Proximal-based optimisation algorithms have been
developed to be able to handle nondifferentiable functions. They
have been widely studied for image reconstruction and denoising
with priors such as the popular Total Variation (TV). Relatively
little work has been done in evaluating their convergence per-
formance with smooth priors that are more commonly used in
emission tomography. We investigated the effect of varying the
magnitude of a smoothing parameter for one image-based and one
anatomical-based TV-like prior on the convergence rate of two
proximal and two gradient-based algorithms for PET and SPECT
reconstruction. The results suggest that the smoothness of a prior
has less effect on the convergence rate for proximal algorithms
than gradient-based algorithms. As expected, a smoother function
results in faster convergence for gradient-based algorithms. A
smoother function results in a slightly decreased convergence rate
for proximal algorithms. Over-smoothing of the function resulted
in under-regularisation and the breakdown of convergence obser-
vations.

THE problem of reconstruction in tomography can be
formulated in terms of an objective function (or loss

function) to be solved by minimisation:

L(u, g) =
∑
j

D(Aijui, gj) +
∑
i

αR(ui) (1)

u∗ = argmin
u≥0

{L(u, g)} (2)

where A is the forward acquisition model applied to an image,
u, g is the acquired data, D(Au, g) is a data fidelity term that
describes how well the estimated data fit the acquired data, and
R(u) is a regularisation term that contains prior information
about the image, such as smoothness or structural information.

Traditionally in emission tomography priors have been for-
mulated to be differentiable and optimisation problems have
been solved by iterative Expectation Maximisation or gradient-
based algorithms such as gradient descent or Quasi-Newton
methods that provide an image update using the gradient of the
prior at the current and sometimes previous image estimates.
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For non-differentiable priors, proximal algorithms have been
developed which repeatedly apply one or more proximal maps,
defined for a function f(x) as

proxτf (x
′) = argmin

x

{
f(x) +

1

2τ
||x′ − x||22

}
(3)

where τ is the proximal step size and controls the size of the
image update by forcing the new estimate to be close to the
current estimate [1]. This mapping removes the requirement for
differentiability and, provided that proxτf (u) is easily found,
can lead to fast reconstruction. This has led to increasing use
of non-differentiable edge-preserving priors such as Total Vari-
ation (TV). However, these priors are often “smoothed”, for
example to prevent the stair-casing effect where reconstructed
images are piecewise constant and thus appear unnatural.

Little work has been done in order to investigate the
effect of this smoothing on the convergence of proximal
algorithms. This may be important with the recent introduction
of stochastic proximal algorithms such as SPDHG [2] into
the emission tomography sphere. This work investigated the
effect of increasing the smoothness of the TV approximating
Huber prior [3] on the rate of convergence near convergence
of two gradient-based and two proximal algorithms. We have
evaluated this for both PET and SPECT as the corresponding
inverse problems have different conditioning, leading to images
with different resolution and noise properties.

I. METHODS

A. Evaluation

The effect of smoothing of the prior on the rate of con-
vergence near the final convergent image was chosen for two
reasons:

1) We can use an inaccurate but fast algorithm, such as
OSEM-TV (Section IV.A) used in this investigation, to
get us close to the converged image. We can then warm
start the convergent algorithm using this reconstructed
image.

2) Changing the smoothing parameter alters the objective
function and thus the solution to the minimisation prob-
lem, meaning that number of iterations to convergence,
or similar measures, will not provide accurate results.

B. Data

Simulated 60x60 pixel two-dimensional emission (with up-
take ratios roughly corresponding to an FDG-PET), attenuation
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Fig. 1: two-dimensional BrainWeb images. a) ground truth
emission, b) attenuation image, c) T1-weighted MRI anatomi-
cal information

and T1-weighted magnetic resonance (MR) brain images were
simulated using BrainWeb’s brain database [4]. The emission
and anatomical images were normalised to have a maximum
pixel value of one. Two tumours were added to the image.
One is present in both the emission and MRI images and
one is present only in the emission image. The emission
images were forward projected into data space using the
Software for Tomographic Image Reconstruction (STIR) PET
& SPECT projectors via the Synergistic Image Reconstruction
Framework (SIRF) [5]1, including attenuation [6], [7]. A 2D
PET scanner with similar characteristics as the Siemens mMR
Biograph was chosen for PET projection with 504 detectors
per ring, a 65.6 cm inner ring diameter and 126 projections.
For the SPECT model, a 25.6 cm radius with 126 projections
and a distant-dependent Gaussian PSF using a linear model
(with σ = 0.0163d + 0.1466cm) was chosen. Poisson noise
was added in the projection space. 10 noise realisations were
used for the PET reconstructions and 1 noise realisation for
the SPECT reconstructions due to time constraints.

C. Priors

The Huber function, defined as

H(x⃗) =

{
1
2θ (θ

2 + ||x⃗||22) ||x⃗||2 ≤ θ

||x⃗||2 ||x⃗||2 > θ
(4)

was used in this investigation (Fig. 2). Two variations, isotropic
Huber TV (iHTV), where R(u) = H(∇u), and anisotropic (or
directional) Huber TV (dHTV), where R(u) = H(Du). Here,
D is a directional operator, defined as

D = (1− ξξT ), with ξ =
∇v√

||∇v||22 + η2
. (5)

v is a registered image that contains structural information,
such as the T1-weighted MR images used in this investigation,
and η is a small constant to avoid division by zero in uniform
regions. This operator has the effect of suppressing the prior
when gradients in the emission and anatomical images align
and reduces to Total Variation where the anatomical image is
uniform [8].

1The same emission image was chosen for both PET and SPECT ground
truth image to facilitate comparison of the performance of the algorithms for
the two modalities.
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Fig. 2: One-dimensional, one-pixel Huber functions. x⃗ on the
horizontal axis and H(x⃗) on the vertical axis. a) θ = 0 (Total
Variation), b) small θ, c) large θ

D. Algorithms

The effect of smoothing on the convergence rate of four
algorithms was investigated. These were Preconditioned Gra-
dient Projection with a back-tracking line search (PCGP) (Sec-
tion IV.C), Low-memory Bounded Broyden-Fletcher-Goldfarb-
Shannon (L-BFGS-B) (Section IV.B [9], 3-block Linearised
Alternating Direction Method of Multipliers (L-ADMM) (Sec-
tion IV.E) [1] and 3-block Primal-Dual Hybrid gradient
(PDHG) (Section IV.D) [10].

E. Reconstruction Routine

1) Warm-start the reconstruction using 5 full iterations of
21-subset OSEM-TV.

2) Reconstruct the “converged” image used for comparison
with 1000 iterations of L-BFGS-B. This is much more
than is required for convergence to machine precision for
two-dimensional images.

3) Reconstruct the image using the desired algorithm until
the mean squared error (normalised to the maximum
of the ground truth image) between the current image
and the “converged” comparison image is less than a
threshold. This was chosen to be 0.0001.

4) The line connecting the final 10 iterations when plotted
on a graph of mean squared error against iteration was
observed to be linear. The slope of this line was measured
and was used as the rate near convergence (see Fig. 3),

C =
∂ MSE

∂ iterations
. (6)

This value was then compared for different algorithms
and smoothing parameters.

II. RESULTS

A. Small smoothing parameter

For values of θ less than approximately 0.01 (the red
dashed line in Fig. 4), gradient-based algorithms observed an
increase in convergence rate when the smoothing parameter
was increased. This was observed for both modalities and both
priors.

Proximal algorithms stayed more stable with increased
smoothing. The convergence rate decreased marginally with
increasing θ.



Fig. 3: Illustration of calculation of convergence rate, C. Inset
graphs have linear y-axis

Fig. 4: Effect of varying smoothing parameter, θ, on the
convergence rate of four algorithms

B. Large smoothing parameter

When the smoothing parameter was sufficiently large, ap-
proximately greater than 0.01, the convergence results broke
down and all algorithms were observed to have a reduced
convergence rate. The spread of results also increased signifi-
cantly for PET reconstructions with different noise realisations,
suggesting a greater dependence on noise.

L-ADMM was unable to converge in less than 10,000
iterations for smoother priors (Fig. 5).

III. DISCUSSION

Despite the different system models and well-posedness of
the PET and SPECT reconstruction problem, we have observed
very similar trends in the PET and SPECT cases.

It has long been known that less-smooth functions provide a
difficult environment for gradient-based algorithms. Large dif-
ferences in gradient can cause overshooting or small step sizes
and result in slow convergence. Therefore, an improvement in
algorithm performance was expected for smoother priors, and
this was indeed observed.

Proximal algorithms were developed for non-smooth func-
tions and so were expected to perform better on priors with
a small smoothing parameter. The effect of the quadratic
term “pulling” the current and next estimates together was
expected to increase for smoother functions, resulting in slower
convergence. We anticipate that this effect would be larger near
the minimum of the prior term. In the future, this could be
better investigated using separate regions of interest for high-
gradient and low-gradient parts of the image and investigating
the effect of smoothing on the convergence rate separately.

In this investigation, we have chosen the normalisation of the
Huber prior (Eq. 4) such that the behaviour of the prior was
independent of θ at large edges. However, this choice means
that for large θ the prior became very flat for most of the
image gradients. This resulted in under-regularisation (Fig. 5),
meaning that the optimisation problem was less well posed.
Due to this, the convergence rate became much more varied
(demonstrated by the increased size of the error bars in Fig. 4)
and the convergence rate decreased.

Proximal algorithms consistently performed more poorly
than gradient-based algorithms throughout this investigation,
both in terms of convergence rate near the solution (Fig. 4) and
the required number of iterations (Fig.5), especially L-BFGS-B
which produced “converged” images in an order of magnitude
fewer iterations than its proximal counterparts. The gradient-
based algorithms were also much easier to fine-tune, with L-
BFGS-B being practically plug-and-play. However, as the aim
of this investigation was not to compare the convergence of
these algorithms, we did not do an exhaustive search on optimal
parameter settings. We speculate that this could also have been
caused by the fact that both gradient-based algorithms had step
sizes (and directions in the case of L-BFGS-B) based on line
searches and iteration-dependent preconditioners, whereas the
proximal algorithms had (preconditioned) proximal step sizes
based on the warm-start images that were fixed at the start of
the reconstruction process. This warrants further investigation,
especially for more complex algorithms such as stochastic
variants and with iteration-dependent preconditioners and step
sizes. At present, however, gradient-based algorithms seem to
be preferable over proximal algorithms for fully differentiable
objective functions. Nonetheless, the only small reduction in
convergence rate for low smoothing of the Huber prior is reas-
suring that, should prior smoothing be desired, the convergence
of proximal algorithms should not be overly affected.

IV. CONCLUSION

The convergence rate near the final solution, C, depends
on the amount of smoothing of the prior, with similar trends
observed for PET and SPECT as well as for isotropic and
directional variants of the Huber prior. For low smoothing pa-
rameter, θ, values, more smoothing resulted in improvements in
the convergence rate of gradient-based algorithms and marginal
reductions in the convergence rate of proximal algorithms. For
very large smoothing parameters, convergence rate becomes
more unstable and was reduced for all algorithms due to under-
regularisation.



(a) θ = 1× 10−5 (b) θ = 0.1

Fig. 5: Convergence of four algorithms. Colours are the same as
in Fig. 4. Note the log scale for the horizontal axis, and the fact
that L-ADMM (green) fails to converge with high smoothing
parameter.

(a) θ = 1× 10−5 (b) θ = 0.05 (c) θ = 1

Fig. 6: L-BFGS-B PET reconstructed image with a iHTV prior
for three different smoothing parameters
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APPENDIX

A. EM-TV

To warm-start the reconstructions we used a simple algo-
rithm consisting of an OSEM step followed by a weighted
denoising step and then applied a positivity constraint.

Algorithm 1 EM-TV

1: u0 ← uniform image
2: s = AT1
3: for k iterations do
4: uEM

k ← OSEM step
5: wk ← s

uk

6: f(uk) =
∑

i wi||uk − uEM
k ||2

7: ūk+1 ← arg min
x
{R(uk) + f(uk)}

8: uk+1 ← Proj{≥0}(ūk+1)

B. L-BFGS-B

We use the scipy implementation of L-BFGS-B [13]. This
was altered to allow the algorithm to run without a stopping
criteria.

C. PC-GD

Algorithm 2 PC-GD
1: u0 ← uinit

2: s← AT1
3: Initialiseλ, c > 0
4: for k iterations do
5: gk ← ∇L
6: pk ← uk

s
7: tk ← cgk · pk
8: ūk+1 ← uk − λgk
9: uk+1 ← Proj{≥0}(ūk+1)

10: if L(uk+1)− L(uk) < λtk then
11: λ← 0.5λ
12: repeat iteration
13: else
14: continue
15: end if

The initial step size, λ, was chosen to be 1 and c was chosen
to be 0.0001

D. PDHG
We used a 3-block algorithm, inspired by work on the

stochastic variant of PDHG [2]

Algorithm 3 PDHG

1: u0,← uinit, y0 ← Ku, z0 ← Au
2: θ ∈ [0, 1]
3: Initialise σD, σR, τ > 0
4: for k iterations do
5: yk = β prox

σR/β
R∗ ((yk−1 + σRKuk−1)/β)

6: zk = proxσD
D∗(zk−1 + σDAuk−1)

7: uk = Proj{≥0}(uk−1 − τKT yk − τAT zk)
8: ū = uk + θ(uk − uk−1)

where K is ∇ for iHTV or D for dHTV. Step sizes were
chosen to be σD = |u|/|A|, σR = |u|/|K|, and τ = 2 ·
min{1/(|u||A|), 1/(|u||K|)}.

E. L-ADMM
We use 3-block ADMM with the first term linearised using

a small approximation to give an explicit proximal in Step 5
[14].

Algorithm 4 L-ADMM

1: u0 ← uinit, y0 ← Ku, z0 ← Au
2: p0, q0 ← 0
3: Initialise σD, σR, τ > 0
4: for k iterations do
5: uk ← Proj{≥0} R

[
u− τ

(
(1/σD)(AT (Auk−1 − yk−1 + qk−1))−
(1/σR)(KT (Kuk−1 − zk−1 + pk−1))

)]
6: yk ← proxβRσ

R (Ku+ p)
7: zk ← proxσD

D (Au+ q)
8: pk ← pk +Kuk − yk
9: qk ← qk +Auk − zk



where K is ∇ for iHTV or D for dHTV. Step sizes were
chosen to be σD = |u|/|A|, σR = |u|/|K|, and τ = 2 ·
min{σD/(|A|2), σR/(|K|2)}.
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