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Abstract

Abstract

We propose a novel approach for constructing a covariant formulation
of radiative transfer in dynamical spacetimes, which overcomes limi-
tations of previous methods when they are applied in the strong-field
regime, by promoting the 3+1 numerical relativity (NR) decomposition
via an embedding of a 4 dimensional spacetime into a 5 dimensional
non-flat pseudo-Riemannian manifold. This new formulation uses a 4+1
approach: one is able to calculate, in a physically-consistent way, the
null geodesics emitted from gravitational wave (GW) sources, e.g., from
black hole and neutron star coalescence. Chapters 1–3 introduce the
fundamental knowledge for this work and review previous studies of the
general relativistic radiative transfer formulation in stationary spacetimes
(e.g., Kerr). Chapter 4 introduces the level set method, which is applied
to evolving the 4 dimensional spacetime (and null geodesics) in higher
dimensional manifolds. Chapter 5 discusses the causal structure of a
generic spacetime and studies the embedding of a 4 dimensional space-
time in a 5 dimensional flat and a non-flat manifold. We recover the
Lorentz structure by choosing a specific isometric embedding and by
defining an appropriately-chosen form of the 5 dimensional metric (e.g.,
the Schwarzschild and Oppenheimer-Snyder metrics). Chapter 6 dis-
cusses the embedding of the 3+1 numerical representation of the Kerr
black hole and a 4 dimensional Brill-Lindquist spacetime. In Chapter 7,
we present the proof that the isometric embedding of a 4 dimensional
Lorentzian manifold in a 5 dimensional manifold with chosen metric,
where the Lorentz structure is enforced, exists and is non-unique. Chap-
ter 8 looks at the construction of a covariant radiative transfer formula-
tion for a binary black hole system. We apply the embedding method for
an equal mass non-spinning black hole merger using 3+1 numerical rel-
ativity and find the evolution equation of the geometric flow (spacetime
flow). A summary of the work presented in this thesis, together with
discussions and additional remarks, is presented in Chapter 9. Finally,
directions for future work are presented in Chapter 10.
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Impact Statement

Impact Statement

Impact on general relativistic astrophysics
This article constructs mathematical applications of geometry and nu-
merical computation to the astrophysical problem, and we also propose
a theoretical foundation for calculation photons propagation in highly
dynamical spacetime. Once the outcome is ready, researchers such as
those in the EHT (Event Horizon Telescope) Consortium would be the
first organisation that can apply the result and make more tests on the
validation of general relativity in the strong field regime. Furthermore,
the computation provides a reliable framework for the theoretical and
observational studies of gravitational wave sources, especially those to
be detected by LISA (Laser Interferometer Space Antenna).

Impact on mathematical physics
The embedding of Lorentz structure studied in this thesis might be mo-
tivated the interest of mathematicians and mathematical physicists, al-
though not completed yet. Further investigation can be dedicated to this
area and complement the unfinished proof.

Impact on a broader community
This article contributes to the human endeavour of formulating the phys-
ical world of our universe from the very beginning to its present time.
It applies the general theory of relativity which proposed by A. Einstein
more than 100 years ago, to the propagation of photons in the highly
curved and dynamical spacetime. Once the full evolution of the light
ray travelling through the intervening environment of dynamical space-
time, there would be more educational opportunities for undergraduate
and postgraduate students to participate and conduct relevant research
of gravitational waves in the future.
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Preface

Preface

"For every principle and methodology, it is essential to thoroughly un-
derstand the underlying reasons. Following its branches, tracing back to
its origin and reaching its core. Not only should it encompass the cul-
mination of astronomical knowledge, but also serve as the foundation for
everything."
— Hsü Kuang-Ch’i (1562-1633), former Chinese scientist and politician,

Introduction of Chongzhen Calendar.
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1. Introduction

Chapter 1

Introduction

We have found hundreds of events of the ripples of spacetime (i.e., grav-
itational wave) [1] since 2015. The covariant radiation transport for-
mulation in stationary spacetime (e.g., Kerr) has also been constructed
in the previous research [2], for which the radiative transfer equation is
solved along the derived null geodesics, satisfying the invariance of parti-
cle number and the conservation of phase space density of the particles.
Due to the recent detections of gravitational waves from a binary black
hole (BBH) coalescence [1] and the receiving of both the electromag-
netic (EM) and gravitational signals from a binary neutron star (BNS)
merger [3], it is necessary to construct a covariant formulation of radi-
ation transport in dynamical spacetime, which will benefit for a lot of
scientific collaborations and consortium, e.g., the LISA and ngEHT [4, 5].
However, we encounter certain difficulties in generalizing the current co-
variant radiative transfer formulation in dynamical spacetime, there are 5
problems prohibit the progress: 3 numerical difficulties (time-symmetry
problem, scattering problem and frame changing problem) and 2 physical
difficulties (caustic problem and Lorentz structure problem). And in this
research, we combine 2 mathematical frameworks, level set approach and
embedding, to fix these drawbacks.

In general relativity (GR), spacetime is a four dimensional smooth
pseudo-Riemannian manifold, consisting of events in the universe, cf.,
A for further information. The metric gab of a spacetime is indefinite
and symmetric between the two indices. This property leads to a conse-
quence that all observers’ and massive particles’ motion are time-like, and
all massless (e.g., photons) particles’ motion are light-like (also known as
(aka) null), and none could travel along a space-like worldline. The geo-
metric structure of spacetime is governed by the Einstein (gravitational)
equation. Roughly speaking, there exists two analogues of spacetime,
called the stationary and the dynamical spacetimes, which are introduced
in the following Chapter.

The trajectories of a free-falling particle (massless or massive) in
curved spacetime are described by geodesics derived in a 4 dimensional
manner via the Lagrangian formulation, i.e., using the geodesic equation

T a∇aT
b = 0 , (1.0.1)

where T a is the tangent to the curve and ∇a is the Levi-Civita con-
nection associated with the spacetime metric gab, satisfying ∇agbc = 0.
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1. Introduction

The geodesic equation can in general be solved numerically for analyt-
ical spacetimes with explicit metric function expressions, such as the
Schwarzschild and Kerr spacetimes [2]. For a general dynamical space-
time, one could in principle apply the method of 3+1 numerical relativity
to construct numerical spacetime metrics [6], by splitting the 4 dimen-
sional spacetime into a family of 3 dimensional space-like hypersurfaces
by virtue of a global scalar function t, to calculate an arbitrary geodesic
numerically [7].

However, as was mentioned in the previous context, neither of these
two methods is applicable to radiative transfer in dynamical spacetimes.
On the one hand, explicit analytical metric functions are in general not
available for solving equation (4.2.1) since there are no analytical solu-
tions to the Einstein equation for most dynamical spacetimes, including
binary black hole mergers. On the other hand, although numerical rel-
ativity has proven to be a powerful tool to obtain dynamical spacetime
solutions to the Einstein equations, applying 3+1 methods to calculate
(in particular, null) geodesics in dynamical spacetimes is physically prob-
lematic. First, the current radiative transfer equation is constructed with
the affine parameter τ of the photon along the derived geodesic. In the
3+1 numerical relativity, spacetime is indexed with the coordinate time
t rather than the affine parameter τ and we need to convert from the co-
ordinate frame to comoving frame pointwisely. In a desirable numerical
algorithm, we need to overcome this inefficiency.

It is well-known that scattering is a non-local phenomenon [8]. The
non-local nature of scattering problems, particularly their non-uniform
and inhomogeneous properties, render the ray-tracing technique ill-suited
to their solution. In dynamical spacetimes close to merger, the binary
pair is in relativistic motion and both companions can orbit at a signif-
icant fraction of the speed of light. The effect of these relativistic mo-
tions convolved with the dispersive properties of the increasingly powerful
gravitational waves being generated in-situ, give rise to a regime where
emergent radiation is strongly scattered by the rapidly-varying and dy-
namical gravitational field therein. Consequently, ray-tracing is poorly
suited to the solution of the radiative transfer equation in highly dynam-
ical spacetimes.

Another example of studying null geodesics in numerical relativity is
related to the method of finding the event horizon of a black hole (BH)
in dynamical simulations (see [9] for a review). The event horizon is a
global three dimensional hypersurface in spacetime which can be deter-
mined only in a post-processing analysis when the spacetime has settled
down to a quasi stationary state, which is known as that the event horizon
is teleological. Making use of the definition that the event horizon is the
boundary of the causal past of future null infinity J+ (J), the event hori-
zon can be found approximately from the numerically reconstructed 3+1
spacetime by integrating null geodesics backwards in time. While this re-
verse ray-tracing method has been demonstrated to work well for partic-
ular applications, it cannot be applied to ray-tracing for general radiative
transfer problems. Furthermore, the key assumption underpinning the
ray-tracing technique and subsequent observer-to-emitter approach is the
condition of time symmetry of the spacetime (i.e., a time-like Killing field
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1. Introduction

exists). However, this assumption is invalid in a dynamical spacetime,
which lacks of time-like Killing field and time-symmetry is violated, i.e.,
there is no time reversibility for a general relativistic radiative transfer
formulation.

There are unphysical consequences which arise when using the 3+1
decomposition to calculate the transport of radiation within a 3+1 foli-
ated spacetime. Whilst one can obtain a single null geodesic using the
formulation given in [10], one encounters issues when considering bundles
of photons, which define a definite (and invariant) phase space volume
(Liouville’s theorem). Such a consideration is integral to establishing
a covariant formulation of radiative transfer, regardless of whether the
spacetime is stationary or dynamical. Although this approach has the
immediate advantage of simplifying the numerical calculations for the
geodesics and subsequently the radiative transfer atop these geodesics,
the reduction in dimensionality of the phase space (usually from 8D →
6D) will lead to the formation of caustic structures (pinching of the bun-
dle’s phase space volume) due to the projection of the “true” bundle
into this artificial lower dimensional phase space [11, 12, 13]. As a conse-
quence of this, the convergence and divergence of bundles of photons, i.e.,
the gravitational lensing and resulting focusing and de-focusing effects
caused by the modulations of the highly dynamical spacetime geometry
cannot be properly calculated. This is a fundamental physical limitation
inherent to solving the radiative transfer problem in foliated spacetimes.
This limitation is not to be conflated with the well-established principle
of 3+1 foliation for the purposes of numerically evolving a dynamical
spacetime.

Each ray is a null geodesic and its 4-momentum, ka with components
kµ, must therefore satisfy the condition kµk

µ = 0, which is the vacuum
dispersion relation of photons. Since the numerical 3+1 formalism foli-
ates spacetime into a discrete series of spatial hypersurfaces, every point
along the geodesic integration must necessarily interpolate for the met-
ric parameters, e.g., the lapse function, shift vector, and 3 dimensional
metric tensor, together with their corresponding spatial derivatives, be-
tween pairs of neighbouring foliations. This procedure introduces small
secular errors in kµ, and therefore in pi(t), along a given geodesic. As the
geodesic progressively samples the more strongly curved and dynamical
gravitational field near both event horizons, this accumulated error grows
rapidly. One could naively enforce kµk

µ = 0 by, for example, exploiting
kt = −E (as is done in the 3+1 formulation of geodesic motion via the
6D Hamiltonian). However, in enforcing the null condition in this man-
ner, one is essentially altering kϕ = Lz of the geodesic (itself a conserved
quantity), thereby changing its trajectory by introducing a secular exter-
nal force which drives its path away from a null geodesic to a timelike
geodesic (i.e., causing artificial spatial dispersion). Conversely, since (in
vacuum) null geodesic paths do not depend on the energy of the photon,
one could instead fix the angular momentum (pϕ) of the geodesic and
obtain a constraint equation for kt such that kµk

µ = 0, i.e., one could
continually “correct” the energy of the geodesic to enforce the geodesic
to be null. However, this approach would mean that the frequencies of
photons would become increasingly erroneous as the rays evolve (i.e.,
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causing artificial temporal dispersion). This destroys the solution of the
radiative transfer equations and prohibits general relativistic radiative
transfer (GRRT) calculations altogether.

In order to circumvent these aforementioned issues, a Hamilton-Jacobi
(HJ) method is employed in this work, wherein a 4 dimensional spacetime
is embedded into a generic 5 dimensional pseudo-Riemannian manifold,
requiring that the 4 dimensional foliation evolves along an extra coor-
dinate w instead of the original temporal coordinate t and the geodesic
equation is solved using a new 4+1 formulation. This method is in part
motivated by the level set approach [14, 15], where the essential steps
are given as follows: (i) Embed the original 4 dimensional dynamical
spacetime into a 5 dimensional spacetime, via a series of isometric em-
bedding maps φw [16], (ii) construct the Hamilton-Jacobi equations and
solve them numerically to carry out the evolution of 4 dimensional space-
time slices, and (iii) slicing all 4 dimensional spacetime foliations by light
cones to calculate null geodesics which evolve along the additional fifth
coordinate. This approach is shown to naturally maintains the causal
structure of the 4 dimensional spacetime.

In this thesis, I will quickly discuss the basic knowledge of space-
time in general relativity in the second Chapter, the previous work on
geodesics construction in stationary spacetime (Kerr black hole) and a
covariant formulation of radiative transfer equation is briefly reviewed
in the third Chapter. Firstly, the structure of a Kerr black hole along
with ray-tracing in the background spacetime are introduced, and the
GRRT equations for massless and massive particles propagating in Kerr
spacetime are described in details. The level set method is introduced in
Chapter 4 and will be used to reconstruct the 4 dimensional null geodesics
in the 5 dimensional manifold in the fourth Chapter. In the next Chap-
ter, I proposed the 4+1 formulation by embedding the 4 dimensional
manifold in a 5 dimensional manifold. The isometric and conformal em-
beddings for a 4 dimensional manifold in a 5 dimensional flat or non-flat
pseudo-Riemannian manifold are discussed. We will apply a non-flat 5
dimensional manifold for our problem, where the cases of embedding the
Schwarzschild and Oppenheimer-Snyder spacetimes are demonstrated.
The local Lorentz structure is maintained by choosing an appropriate
metric form on the 5 dimensional manifold. In the sixth Chapter, I gen-
eralize the 4+1 method constructed in Chapter 5 to a 3+1 numerical
representation of Kerr black hole and to a 4 dimensional fake evolution
generated from the Brill-Lindquist initial data. It is shown that the 4+1
method can be generalized to any 3+1 numerical data. In Chapter 7,
we provide a proof for the embedding process, which indicates that a 4
dimensional Lorentzian manifold can be isometrically embedded in a 5
dimensional manifold with a given metric form, where the Lorentz struc-
ture correlating two adjacent foliations is maintained. Finally, in Chapter
8, I investigate the application of the 4+1 formulation to a real numerical
spacetime, where an equal mass, non-spinning binary black hole merger
is considered. The 3+1 data is generated from the Einstein toolkit [17]
and is embedded in a 5 dimensional manifold, where a 5 dimensional
metric is given after the embedding. Chapter 9 and 10 conclude the
whole thesis and discuss the future work.
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Chapter 2

Foundations of Spacetime in
General Relativity

2.1 Overview
We will review the foundations of general relativity and the background
knowledge for this research in this Chapter. Relevant astrophysical de-
tection is discussed. We also review the background knowledge for gravi-
tational wave physics and compare with its electromagnetic counterpart.
The recent reception for GW and EM radiations from the same source
(binary neutron stars) are the dominant astrophysical motivations for
this research.

Chapter 2 introduces the foundational knowledge and critical astro-
physical motivations of the research.

2.2 Stationary Spacetime
We, throughout this work, adopt the natural unit system, in which c =
G = h = 1, where c is the speed of light, unless otherwise stated, and G is
the gravitational constant. Also, a (−,+,+,+) signature is adopted for
the metric tensor in the 4 dimensional spacetime manifold. Hereafter,
we apply the convention of Penrose abstract index notation [18, 19],
where the Latin letters a , b , . . . denote the coordinate-independent non-
numerical indices of the tensors for all dimensional manifolds, and the
Greek letters µ , ν , . . . denote the coordinate-dependent indices of tensors
for all dimensional manifolds in this study.

A spacetime (M, gab) is said to be stationary, if there exists a vector
field ξa, which is a time-like Killing field when it is approaching the
infinity, see appendices A and J for further reference. Assume (M, gab)
has such a vector field. Let the parameter of ξa’s integral curve be t,
such that ξa = (∂/∂t)a. In the adapted coordinate system (t, xi) of ξa,
we have

∂gµν

∂t
|inf= Lξgµν = 0 , (2.2.1)

which implies that components of gab are independent of t, i.e., the metric
is invariant under time translation, as the name ‘stationary’, and the in-
dex ‘inf’ denotes infinity, herein we denote the 3 dimensional coordinates
by xi.
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Non-spinning (J = 0) Spinning (J 6= 0)
Uncharged (Q = 0) Schwarzschild Kerr
Charged (Q 6= 0) Reissner-Nordström Kerr-Newman

Table 2.1: Black Hole Category. These are the vacuum solutions to the Einstein
equation. The black holes are parameterized by three physical quantities: the mass
M , the spin J and the electric charge Q.

Contrarily, if there exists a coordinate system (t, xi) in (M, gab), such
that

∂gµν

∂t
|inf= 0 , (2.2.2)

and (t, xi) is adapted coordinate system to the time-like (at infinity)
vector field ξa ≡ (∂/∂t)a. Then

Lξgab|inf= 0 , (2.2.3)

indicating that ξa is a time-like (at infinity) Killing vector field on M,
i.e., spacetime is stationary. Moreover, if (2.2.2) is true only in a local
coordinate patch O, then (O, gab) is said to be stationary locally.

It should be noted that stationary is the intrinsic property of space-
time, which never changes under a coordinate transformation.

One example for stationary spacetime (also the first) was derived by
Schwarzschild in 1916 [20], the metric is given by

ds2 = −
(

1 − 2M
r

)
dt2+

(
1 − 2M

r

)−1
dr2+r2(dθ2+sin2 θdϕ2) . (2.2.4)

This is a spherically symmetric vacuum solution to Einstein equation.
M is the star mass, (t, r, θ, ϕ) are the Schwarzschild coordinates.

Later in 1965, Newman and his collaborators derived a new solu-
tion [21, 22], given as

ds2 = − [1 − Σ̃−1(2Mr −Q2)]dt2 + Σ̃∆−1dr2 + Σ̃dθ2

+ Σ̃−1[(r2 + a2)2 − ∆a2 sin2 θ] sin2 θdϕ2

− 2Σ̃−1a(2Mr −Q2) sin2 θdtdϕ ,
(2.2.5)

where the explanation of the physical quantities (M , Σ̃ and ∆) are given
in the next Chapter. This is an axisymmetrically (possessed by spin-
ning stars) electromagnetic vacuum solution to the Einstein gravitational
equation, generalizing the solution found by Kerr in 1963 by considering a
charged star solution, which regards the Maxwell tensor Fab as the source
of the energy-momentum tensor (Reissner-Nordström metric, a solution
to the Einstein-Maxwell equation [23, 24, 25, 26]). These four related
solutions are summarized in 2.1. In Chapter 3, we will investigate the
structure of Kerr spacetime and derive the photons trajectories around
a Kerr black hole.

All the above solutions are actually the spacetimes of black hole, for
which spacetime singularities present and are enclosed within boundary
regions, called the event horizons. The existence of such spacetime deficit
predicted by general relativity was proven to be true first by Roger Pen-
rose in the 1960s [27], and later by both Hawking [28, 29] and Penrose
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Figure 2.1: These are the figures of black hole imaged by EHT collaboration. The
first on the left is the image of M87. The second in the middle show its polarization.
The third on the right is the image of the black hole in the centre of the milky way
(i.e., the Sgr A*).

in the 1970s [30, 31, 32]. In the year of 2019, the EHT collaboration
pictured the first image of black hole [33, 34, 35, 36, 37, 38]. Following
their first celebrated imaging, EHT has carried out more figures of black
hole in 2021 [39, 40]. And in the year of 2022, the figure of the massive
compact object locating in the centre of our galaxy, i.e., the Milky Way,
was firstly brought to the world [41, 42, 43, 44, 45, 46], cf., Fig.2.1. An
enhanced image of the 2019 black hole is pictured in [47]. The ngEHT
will present more detailed and advanced figures in the future [5].

2.3 Dynamical Spacetime
Stationary spacetime is an ideal physical model, which is actually not
common in the universe. It is more frequent to encounter dynamical
spacetime, where the mathematical form of the metric is more complex
and it is hardly possible to find an analytical solution for a highly dy-
namical spacetime due to the high-order and non-linear structure of the
Einstein equation. Nevertheless, physicists have developed a powerful
3+1 numerical formalism of GR, which has been applied to various dy-
namical models, including the gravitational wave. Among them, binary
stars (neutron star-neutron star (NS-NS), NS-BH, BH-BH) are fascinat-
ing and deeply studied systems.

Binary black hole mergers are primary targets for GW interferometers
(e.g., LIGO) which has been and is currently constructed on the earth.
According to GR, the orbit of a binary system decays in three phases
due to the loss of energy and momentum carried away by gravitational
waves [48, 49, 50]. By emitting gravitational radiations, two compact
stars orbiting each other move closer and evolve into a quasi-circular
inspiral phase, where post-Newtonian techniques are applied. Following
the inspiral stage, two black holes meet in the plunge and merger phase,
and the amplitude of gravitational waves peak at this time. It is proven
that post-Newtonian and perturbation methods break down at this stage,
the numerical relativity algorithms [51] must be employed. Eventually,
two black holes coalesce into one compact object (a dynamical black
hole), damping to a stable black hole by emitting less GW, which is
called the ringdown phase.

Recent detected gravitational waves are very important hints for bi-
nary stars as instances of dynamical spacetime. Gravitational wave is one
of the most exciting conclusions and the final prediction from the gen-
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Figure 2.2: Three stages of two merging black holes with the corresponding gravi-
tational wave magnitude shown below, from inspiral to ringdown phases. Credit: T.
W. Baumgarte and S. L. Shapiro, 2011.

eral theory of relativity. These phenomena are considered as spacetime
ripples have been detected from LIGO in 2015 and 2017, and by Virgo in
2017 [1, 52, 53, 54, 3, 55]. And more observations have been confirmed
their existence by the subsequent detections of LIGO and Virgo, one of
them unveils the existence of an intermediate-mass black hole (102 to 105

M�) which are formed from two smaller stellar-mass black holes [56, 57,
58, 59, 60]. They also detected gravitational wave signal emitted from a
black hole and a neutron star (NS) coalescences, although this time there
was no reception of EM radiation reported [61]. A most recent report
on the GW event is given in [62]. Except the aforementioned LIGO and
Virgo observatories, there are a series of advanced GW detectors, either
ground-based or space-based, have been launched or in process, e.g., the
GEO, KAGRA, Taiji, AIGO, TianQin, DECIGO, ET, LISA etc. [63, 64,
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 4], eagerly to reveal the mystery of
the strong field characters and dynamical properties of gravitation.

In 1916, Albert Einstein found the wave solution to his gravitational
field equation in the linearized weak-field limit [75, 76], cf., appendix
E for detail. He believed that the amplitude of gravitational wave is
remarkably small [77]. Nevertheless, it was a significantly controversial
topic about the physical reality of gravitational waves until 1957 [78].

Also in 1916, Schwarzschild published his result for Einstein’s equa-
tion [20], later in 1963 Kerr generalized this solution [79] to include spin-
ning effect. Currently, it enables physicists to model the binary black
hole evolution and its accurate waveforms, due to the breakthrough in
both analytical and numerical studies of GR in the past four decades [80,
81, 82, 83, 84, 85, 86, 87].

The detection of gravitational waves began with Weber and his reso-
nant mass detectors in the 1960s [88]. Later the interferometer detectors
were suggested in the 1960s [89] and in the 1970s [90] (this idea was also
considered by Weiss). By the early 2000s, a series detectors, including
LIGO and Virgo were completed and started their work. In 2015, the
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Figure 2.3: The first GW event, GW150914 detected by the LIGO in Hanford (H1,
left panels) and the LIGO in Livingston (L1, right panels). Credit: B. P. Abbot et
al., 2016.

advanced LIGO was initiated and eventually detected the gravitational
radiation signals from two merging black holes after a century since the
prediction of Einstein [91, 92, 93, 66]. Future space-based detector, e.g.,
LISA, is under construction and part of them will be launched during the
2030s to start their work [94, 95]. The emerging research area brings a
fruitful results in developing relevant studies, including the detection of
primordial gravitational waves, the multi-messenger astronomy and the
gravitational wave cosmology [96, 97, 98].

As was first proposed by Henri Poincaré in 1905 [99] and subsequently
by Einstein in 1916 from the GR, gravitational waves were once believed
to be the oscillation of coordinate systems [100]. Bondi and other physi-
cists then proved in a coordinate-independent way that these waveforms
are not the behaviour of coordinates and do carry energy [101]. Whereas
it is distortion of the fabric of spacetime (i.e., metric) and caused by
the changes of shape and position of massive bodies (or energy). GWs,
moving at the speed of light, take away energy and momentum from
the source objects. It is then natural to compare GWs with electro-
magnetic waves which propagate at the same speed. Nevertheless, these
two physical phenomena are very different. Electromagnetic waves are
propagation of oscillations of electromagnetic fields in the background
spacetime, whereas GWs are ripples of spacetime, i.e., spacetime itself.
In addition, EM waves experience strong absorption and scattering while
GWs have essentially not affected by these processes.

Furthermore, the quantum properties of GW and EM waves are dif-
ferent. The fundamental gauge particles (hypothetical) that mediate
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Figure 2.4: Two coalescing black holes, strongly warp the surrounding spacetime
dynamically. Credit: NASA/Ames Research Center/C. Henze.

gravity are gravitons, possessing spin 2. While those for EM radiation
are photons with spin 1. The dominating term is quadrapolar in GW,
whereas it is dipole term in EM wave. Hence the GW is weaker than
EM radiation with similar conditions. It is widely acknowledged that
the strong gravitational radiations are normally generated in fierce as-
trophysical activities, such as the coalescence of two black holes, merging
neutron stars, and the events during the formation of early universe, e.g.,
the inflation [102, 103].

One of the simplest GW solutions is derived in the limit of linearized
gravity, where the field equation becomes

∂c∂cγab = 0 . (2.3.1)

Solve this equation under the radiation gauge, yields

γab = Hab cos(Kµx
µ) , (2.3.2)

where Hab is a symmetric constant field, satisfying ∂cHab = 0, called the
amplitude. This is the plane-wave solution of GR. Kµ denotes compo-
nents of the constant 4 dimensional wavevector, such that

KµKµ = 0 , (2.3.3)

which implies that Ka is a null vector field, i.e., the wave speed is the
speed of light. Rewrite Ka in a 3+1 form as Ka = ω(∂/∂t)a + ~Ka, it
follows that

ω2 = ~Ka ~Ka = ~K2 , (2.3.4)

where ω represents for angular frequency and ~Ka for 3 dimensional
wavevector. Equation (2.3.1) together with Lorentz condition yield

HµνK
ν = 0 , (2.3.5)

which implies that the propagation direction of GW is orthogonal to Hab.
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2.4 Electromagnetic Counterparts of Grav-
itational Wave

Apart from GW, the detection of its electromagnetic counterpart has
brought a new observational area for the multi-messenger astronomy [104].

On the one hand, upon the completion of previous general relativis-
tic radiative transfer formalism in stationary Kerr spacetime, it is nec-
essary to generalize the current formulation to a covariant formulation
in dynamical spacetime upon the detection of GW, particular the sig-
nals detected by LIGO and Virgo in 2017 from two coalescing neutron
stars, for which can be the source of the EM radiation1. The 2017 de-
tection is the first time that a gravitational wave source was confirmed
by a non-gravitational signal, which is just 1.7 seconds later than the
reception of the GW radiation [105, 106, 107]. On the other hand, the
research of gravitational waves has not developed enough at the time, it
is difficult for astrophysicists to study the properties of the source stars
from the information carried by GW. Nevertheless, one can study its
electromagnetic counterpart to fill the gap, hence a covariant formula-
tion of radiative transfer may help us to understand various astrophysical
phenomena via multi-messenger astronomy [108].

Accordingly, the next task is to reformulate the covariant formulation
of radiative transfer in a dynamical spacetime, which is the work I am
currently doing. Consider the case of the dynamical spacetime, more
specifically, I will investigate the covariant radiative transfer formulation
in a binary black hole merger system.

1In principle, one of the two compact stars must be a neutron star which can be
a source of the EM signals, provided the quantum effect is negligible.
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Chapter 3

General Relativistic Radiative
Transfer in Kerr Spacetime

3.1 Overview
The construction of general relativistic radiative transfer formulation in
Kerr spacetime has been carried out in the previous research by several
people [2, 107, 109]. The covariant formulation of radiation transport
is the key framework for either a stationary astrophysical context or
a highly dynamical one. The violation of the covariance in the conven-
tional approach largely motivates the embedding level set method. In this
Chapter, I review the previous covariant formulation of radiative trans-
fer, based on the Kerr spacetime. It gives the basic idea that how one
constructs a covariant formalism for the radiative transfer in a black hole
spacetime from the first principle and calculate the radiation transport
equation. Furthermore, the ray-tracing in Kerr spacetime is discussed
in details. Nevertheless, for a dynamical case the calculation algorithm
needs considerable modification and a new numerical method which can
be applied is introduced in the next Chapter.

In this Chapter, I derive the trajectories of photons and code it to
make geodesics plots, using Runge-Kutta (RK, Cash-Karp) method. The
results are given in section 3.3, where two figures are given therein and
illustrate the null geodesics propagating in the Kerr spacetime.

3.2 The Structure of Kerr Spacetime
It is widely acknowledged that all astrophysical stellar objects undergoing
gravitational collapse evolves to black holes, when their masses satisfy
certain condition (reach the Tolman-Oppenheimer-Volkoff limit) [110,
111]. The first exact solution to the Einstein equation derived by Schwarzs-
child in 1916 describes the properties of a spherically symmetric station-
ary black hole (Schwarzschild black hole). Later, in 1963, Kerr assumed
that the collapsed star possesses another parameter, the angular momen-
tum J , inherited form its progenitor, in which case the spacetime of the
compact object is stationary as the Schwarzschild metric. However, it is
axisymmetric instead of spherically symmetric. Due to the ‘no-hair con-
jecture’, an astrophysical black hole can be wholly characterized by three
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parameters, its mass, spin angular momentum and charge. Nevertheless,
a charged black hole can be neutralized by the surrounding medium and
accretion flow. An uncharged spinning black hole (Kerr black hole) is
therefore assumed throughout this thesis.

The Kerr solution of the Einstein equation written in the Boyer-
Lindquist coordinate system is given by

ds2 = gttdt2 + 2gtϕdtdϕ+ grrdr2 + gθθdθ2 + gϕϕdϕ2 , (3.2.1)

where the coefficients of the metric are given by

gtt = −
(

1 − 2Mr

Σ̃

)
, (3.2.2)

gtϕ = −2aMr sin2 θ

Σ̃
, (3.2.3)

grr = Σ̃
∆ , (3.2.4)

gθθ = Σ̃ , (3.2.5)

gϕϕ = sin2 θ

Σ̃
[(r2 + a2)2 − Σ̃a2 sin2 θ] , (3.2.6)

and
Σ̃ = r2 + a2 cos2 θ , (3.2.7)

a = J

M
, (3.2.8)

∆ = r2 − 2Mr + a2 , (3.2.9)
where (θ, ϕ) are spherical polar zenith and azimuthal coordinates, r is
modified radial coordinate, M and J are mass and total spin angular
momentum of the black hole respectively, a is defined as the spin pa-
rameter. Note that the components gµν which do not depend on t and
ϕ implies that the metric is stationary and axisymmetric. It reduces to
the Schwarzschild metric when a = 0. The transformation between a
Cartesian coordinate and the Boyer-Lindquist coordinate is given by

x =
√
r2 + a2 sin θ cosϕ , (3.2.10)

y =
√
r2 + a2 sin θ sinϕ , (3.2.11)
z = r cos θ . (3.2.12)

By observing equations (3.2.2)-(3.2.6), it is clear that there exist two
singularities for Kerr metric, one at Σ̃ = 0 and the other at ∆ = 0.
Changing from Boyer-Lindquist coordinate system to the Cartesian co-
ordinate, the Σ̃ = 0 singularity becomes a ring of radius a, located in
the equatorial plane of the black hole. The ∆ = 0 singularity leads to
(r − r+)(r − r−) = 0, where

r± = M ±
√
M2 − a2 , (3.2.13)

which results in two singularity regions, one is at r+, corresponding to
‘Event Horizon’ of the black hole, the other is at r−, corresponding to
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‘Cauchy Horizon’. The Cauchy Horizon has physical significant and a
mathematical resultant, and is hidden inside Event Horizon as r− <
r+. The existence of a Cauchy Horizon implies that the global causality
breaks down, for which the events beyond the Horizon are unpredictable,
i.e., there is no Cauchy surface. The Event Horizon is a 3 dimensional null
hypersurface, from which photons cannot escape but maintain effective
stationary motion on the surface. Any particle, massless or massive,
passing through r = r+ falls along geodesic with decreasing r, which
indicates that all objects passing the surface will never escape, hence the
name ‘Event Horizon’. This region can be treated as the boundary of
the black hole. Note that the Event Horizon reduces to r = 2M when
a = 0, which is the Event horizon of a Schwarzschild black hole. It
is assumed that a ‘naked singularity’, a singularity without an Event
Horizon, is not allowed in general relativity due to the weak Cosmic
Censorship hypothesis (Penrose 1969). Correspondingly, the magnitude
of a is required to be less than 1.

In general relativity, there are two types of singularities, one is the
spacetime singularity (aka true singularity, physical singularity), the
other is the coordinate singularity. A spacetime singularity is one which
cannot be eliminated by coordinate transformation, whereas a coordinate
singularity can be removed by appropriate coordinate transformation. In
the case of a Kerr black hole, the ring singularity at Σ̃ = 0 is a true sin-
gularity at which there is a scalar polynomial curvature singularity2 .
The Event Horizon, as well as the Cauchy Horizon, can be removed by
changing to the Kerr-Schild (1963) coordinate system from the Boyer-
Lindquist coordinate, given by

dt′ = dt± r2 + a2

∆ dr ,

dϕ′ = dϕ± a

∆dr .
(3.2.14)

Another region of physical interest of the Kerr black hole is called
the ergo region. In order to define the region, one must introduce a new
concept, the ‘Static Limit’, which is obtained by solving gtt = 0, yielding

rSL± = M ±
√
M2 − a2 cos2 θ . (3.2.15)

The ergo region is bounded by the Event Horizon and r = rSL+ Static
Limit. Note that the Schwarzschild black hole has no ergo region since
the Event Horizon and the Static Limit coincide when a = 0. rSL− is
called the ‘inner Static Limit’. It is clear that gtt changes sign as follows

r > rSL+ , gtt < 0 ,
rSL− < r < rSL+ , gtt > 0 ,
r < rSL− , gtt < 0 .

A static observer’s worldline is defined as a time-like geodesic with a 4
dimensional velocity proportional to Uµ = (1, 0, 0, 0). This is precisely
a time-like vector when r > rSL+ due to gµνU

µUν < 0. However, when
2A Kretschmann scalar singularity is defined as R[cs] = RµνσγRµνσγ diverges,

where Rµνσγ is the Riemann curvature.
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the observer passes the Static Limit, Uµ becomes space-like as gµνU
µUν

becomes greater than zero, accordingly the observer must move with the
rotating black hole to remain time-like, which implies a static observer
cannot exist in the region where rSL− < r < rSL+.

A significant consequence by the rotation of a Kerr black hole is the
inertial frame dragging [19], i.e., particles and observers have the trend
to co-rotate with the compact star. Specifically, this phenomenon is
caused by the cross component gtϕ in the metric. To understand this,
consider a stationary particle’s (or an observer’s) motion, with zero ini-
tial angular momentum Lz = Uϕ = 0. In the Schwarzchild spacetime,
the geodesic of this particle is orthogonal to hypersurfaces with con-
stant time (Schwarzschild time), where the 4 dimensional velocity reads
Uµ = (ut, 0, 0, 0). Nevertheless, in the Kerr spacetime, even the station-
ary particle cannot remain zero angular velocity and its worldlines are
not orthogonal to the hypersurfaces with constant Boyer-Lindquist time,
since

Uϕ = gtϕUt + gϕϕUϕ . (3.2.16)
By observing this equation, we know that Uϕ does not vanish even when
Uϕ = 0. As a result, the non-zero angular velocity is given by

ω = dϕ
dt

= dϕ
dλ

/(
dt
dλ

)

= Uϕ

U t
, (3.2.17)

where we use the definition of the 4 dimensional velocity and λ is an affine
parameter. In addition, from the relation Uϕ = 0 = gtϕU

t + gϕϕU
ϕ, it

follows that

ω = − gtϕ

gϕϕ

= 2aMr

(r2 + a2) − ∆a2 sin2 θ
, (3.2.18)

where ω/aM > 0, which implies that the particle’s angular velocity has
the same sign as that of the black hole, i.e., it is co-rotating with the
black hole. Then the particle’s 4 dimensional velocity can be written as

Uµ = (U t, 0, 0, Uϕ) = U t(1, 0, 0, ω) . (3.2.19)

In order to calculate U t, consider Ut = gttU
t + gtϕU

ϕ, upon inserting
(3.2.16), we get

Ut =
[
gtt −

g2
tϕ

gϕϕ

]
U t . (3.2.20)

Note that we require UµUµ = −1, (3.2.20) becomes

(U t)2 = gϕϕ

g2
tϕ − gttgϕϕ

= gϕϕ

∆ sin2 θ
, (3.2.21)
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hence the 4 dimensional velocity reads

Uµ =
√

gϕϕ

∆ sin2 θ
(1, 0, 0, ω) . (3.2.22)

The regions of physical interest are shown in Fig.3.1.

Figure 3.1: This is the Kerr black hole with its physical significant region boundary
plotted in a three dimensional Cartesian coordinate system. The red grid sphere is
Static Limit, the violet and black spheres are Event Horizon and Cauchy Horizon
respectively, which are close to each other. The yellow inner most sphere is the
inner Static Limit. The Ring Singularity coincides with the inner Static Limit on the
equatorial plan.

3.3 Covariant Radiative Transfer
Radiative transfer is the study of how photons propagate through the
medium. EM radiation could transmit information about physical prop-
erties of source object to remote receivers. The fundamental processes of
radiative transfer are absorption, emission and scattering.

In the absence of gravity, i.e., a flat spacetime, the radiative transfer
equation for which the medium is at rest can be expressed as

∂Iν

∂λ
= −χIν + η +

∫∫
σ(ν, ν ′)I ′

ν(Ω̃)dΩ̃dν ′ , (3.3.1)

where Iν is the intensity, λ is affine parameter, χ is the absorption co-
efficient, η is the emission coefficient, and σ is the scattering kernel. In
general, it is difficult to obtain an analytical solution, unless there are
numerous symmetries. Assume that we have enough symmetry, yields

∂Iν

∂t
+ µ

∂Iν

∂t
= −χIν + η , (3.3.2)

for the plane-parallel symmetry, and

Iν

∂t
+ µ

∂Iν

∂r
+ (1 − µ2)

r

∂Iν

∂µ
= −χIν + η , (3.3.3)
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for the spherical symmetry, where µ = cos θ. If scattering can be ignored,
we can solve the above equation

Iν(λ) =

Iν(λ0) exp
(

−
∫ λ

λ0
χ(λ′, ν)dλ′

)
−
∫ λ

λ0
exp

(
−
∫ λ

λ′
χ(λ′′

, ν)dλ′′
)
η(λ′, ν)dλ′ .

(3.3.4)

In the presence of gravity, the background spacetime is curved and all
equations must be covariant. The above radiative transfer equation needs
to be modified into a covariant formalism. Current general relativistic
radiative transfer equation is built in the Kerr spacetime, satisfying con-
servation of particle numbers and invariance of phase space [8].

The general relativistic radiative transfer formulation can be con-
structed once the geodesics near a Kerr black hole are calculated [112].
The evolution of photons intensity Iν is computed through the material
they traverses between the emission source and the observer. This can be
achieved by solving the radiative transfer equation, given the absorption
and emission coefficients from point to point. And the whole process
must be performed in a covariant manner due to the general covariance
principle.

The classical radiative transfer equation, in vacuum, given the emis-
sion and absorption properties and in the absence of scattering, can be
written as

dIν

ds = −ανIν + jν , (3.3.5)

where Iν is a function of s, denoting the intensity of the ray, ν is the fre-
quency of the photon, αν and jν are absorption and emission coefficients
respectively, ds is the length that photons traverse in (Chandrasekhar
1960 [113]; Rybicki and Lightman 1979 [114]). Defining the optical depth
as follow

τν(s) =
∫ s

s0
ds′αν(s′) , (3.3.6)

then the radiative transfer equation can also be expressed as

dIν

dτν

= −Iν + jν

αν

. (3.3.7)

A direct integration of this equation leads to

Iν(s) = Iν(s0)e−τν +
∫ s

s0
ds′jν(s′)e−(τν(s)−τν(s′)) , (3.3.8)

where Iν(s0) represents the initial value of the specific intensity. If we
introduce the source function Sν = jν/αν , equations (3.3.6) and (3.3.8)
can be rewritten as

dIν

dτν

= −Iν + Sν , (3.3.9)

Iν(s) = Iν(0)e−τν +
∫ τν

0
dτ ′

νSν(τ ′
ν)e−(τν−τ ′

ν) . (3.3.10)

Note that Iν(s0) = Iν(0), and these equations are not invariant under
Lorentz transformations.
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We now prove that the covariant formulation of radiative transfer can
be constructed from the conservation of phase space and the conservation
of particle number. Consider a phase space volume V full of particles, in
the comoving frame, it is given by

dV ≡ dxdydzdpxdpydpz , (3.3.11)

where d3x = dxdydz represents the 3 dimensional volume element, and
d3p = dpxdpydpz represents the 3 dimensional momentum volume ele-
ment. Liouville’s theorem states the following expression

dV
dλ = 0 , (3.3.12)

where λ is the affine parameter [115]. The volume element dV is thus a
Lorentz scalar. Consider a new function

f(xi, pi) = dN
dV , (3.3.13)

where dN is the number of particles within the phase space volume. It
is shown that f(xi, pi) is Lorentz invariant, note that we have used the
fact that dN is invariant under Lorentz transformations.

For relativistic massless particles, |~p| = E, and the 3 dimensional
momentum volume element can be rewritten as dpxdpydpz = p2dpdΩ.
Taking these into consideration, we get

f(xi, pi) = dN
E2dEdΩdxdydz . (3.3.14)

Moreover, the particle number in the three dimensional spatial volume
dV = dxdydz is equivalent to that traverses through an area dA in a
time interval dt, which leads to

f(xi, pi) = dN
E2dEdΩdAdt . (3.3.15)

The specific intensity of photons is

IE = EdN
dAdtdEdΩ , (3.3.16)

(Rybicki and Lightman 1979). Hence we get

I ≡ Iν

ν3 = IE

E3 , (3.3.17)

is a Lorentz scalar.
It is shown that χ = ναν is an invariant absorption coefficient under

Lorentz transformations. In order to find a Lorentz invariant emission
coefficient, note that Sν/ν

3 is a Lorentz invariant quantity, thereof η =
jν/ν

2 = ανSν/ν
2 is a Lorentz invariant emission coefficient. Reformulate

(3.3.7) with Lorentz scalars

I

τν

= −I + η

χ
, (3.3.18)
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which is Lorentz covariant. Note that this equation holds only when the
phase space volume is invariant for the light ray bundles with respect
to the affine parameter. While in the 3+1 numerical relativity, artificial
caustic arisen in the dimensional reduction will destroy the phase space,
and hence violates the Liouville’s theorem, which leads to the invalid of
the covariance of the formulation.

For massless particles, including photons, the 4 dimensional momen-
tum ka satisfies kak

a = 0 (cf., appendix A). Consider the hypersurface
orthogonal to photon’s 4 dimensional velocity Ua, the spatial component
of ka is given by

va = P abkb

= ka + kbu
bua , (3.3.19)

where projection operator is P ab = gab+uaub. Given the affine parameter
λ, the variation in length s with respect to (wrt) λ is given by

ds
dλ = −|va|

∣∣∣
λobs

= −
√
gab(ka + kcucua)(kb + kdudub)

∣∣∣
λobs

= −
√
kbkb + 2(kaua)2 + (kbub)2ubkb

∣∣∣
λobs

= −kau
a|λobs

, (3.3.20)

where the subscript ‘obs’ stands for the observer. For a stationary located
at infinity, kau

a = −Eobs. Therefore, the relative energy shift between
observer’s frame and the comoving frame is given by

γ̃ = ν

ν0
= Eobs

−kaua|λ
= kau

a|λobs

kbub|λ
. (3.3.21)

Since dτν = ανds, (3.3.18) becomes

dI
ds = −ανI + jν

ν3 , (3.3.22)

substituting (3.3.20) into (3.3.22), yielding

dI
dλ = −kau

a|λ
(

−α0,νI + j0,ν

ν 3
0

)
, (3.3.23)

where indices ‘0’ denote the values in the local rest frame. Solving equa-
tion (3.3.23) leads to

I(λ) = I(λ0)e−τν(λ)

−
∫ λ

λ0
dλ′′ j0,ν(λ′′)

ν 3
0

exp
(

−
∫ λ

λ′′
dλ′α0,ν(λ′)kau

a|λ′

)
kbu

b|λ′′ ,

(3.3.24)

where the optical depth is given by

τν(λ) = −
∫ λ

λ0
dλ′α0,ν(λ′)kau

a|λ′ , (3.3.25)
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hence
I(τν) = I(τ0)e−τν +

∫ τν

τ0
dτ ′

νS(τ ′
ν)e−(τν−τ ′

ν) , (3.3.26)

where S denotes the Lorentz invariant source function

S = η

χ
. (3.3.27)

If −kau
a|λobs = E for an observer sitting at infinity, the radiative transfer

equation can be decoupled to the following equations

dτν

dλ = α0,ν

γ̃
, (3.3.28)

dI
dλ = j0,νe

−τν γ̃−1

ν 3
0

. (3.3.29)

For massive particle, the 4 dimensional momentum satisfies pap
a =

−m2. Therefore, equations (3.3.23) and (3.3.24) are not applicable.
These equations need to be modified by the effect of a mass term. The
variation of s with respect to λ is given by

ds
dλ = −

√
gab(pa + pcucua)(pb + pdudub)

∣∣∣
λobs

= −
√
papa + 2(paua)2 + (paua)2ubub

∣∣∣
λobs

= −
√
papa + (paua)2

∣∣∣
λobs

= −
√

−m2 + (paua)2
∣∣∣
λobs

. (3.3.30)

The covariant radiative transfer equation for massive particles is given
by

dI
dλ = −

√√√√1 −
(

m

paua|λobs

)2

pbu
b|λ
(

−α0,νI + j0,ν

ν3

)
. (3.3.31)

pau
a = −E for a stationary observer located at infinity, which leads to a√

1 − (m/E)2 term. Apparently, the radiative transfer equation (3.3.31)
reduces to equation (3.3.23) in the m = 0 limit.

3.4 Covariant Ray-Tracing
The equation of motion of a non-spinning free-falling massless particle in
Kerr black hole spacetime is the mathematical formalism of a geodesic
motion. It can be derived via the Lagrangian formulation

L = 1
2(gttṫ

2 + 2gtϕṫϕ̇+ grrṙ
2 + gθθθ̇

2 + gϕϕϕ̇
2) , (3.4.1)

where ẋµ denotes the derivative of xµ with respect to the affine parameter
λ [19] for the geodesic. By applying the Euler-Lagrange equation

∂L

∂xµ
− d

dλ
∂L

∂ẋµ
= 0 , 3 (3.4.2)
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yielding the following equations

ṫ = E + 2Mr

Σ̃∆
[(r2 + a2)E − aLz] , (3.4.3)

ṙ2 = ∆
Σ̃

(Eṫ− Lzϕ̇− Σ̃θ̇2) , (3.4.4)

θ̇2 = 1
Σ̃2

[Q + E2a2 cos2 θ − L2
z cot2 θ] , (3.4.5)

ϕ̇ = 2aMrE + (Σ̃ − 2Mr)Lz csc2 θ

Σ̃∆
, (3.4.6)

where E and Lz are two constants on the geodesic of photon, defined
as the total energy and projection of the particle’s angular momentum
along the black hole spin axis respectively, given by

∂L

∂ṫ
= −E , (3.4.7)

∂L

∂ϕ̇
= Lz . (3.4.8)

Q is a third constant of motion obtained by Carter in 1968 [116]. With
these equations, (3.4.3) - (3.4.6) can be further simplified. Since equa-
tions (3.4.4) and (3.4.5) contain the square of ṙ and θ̇, we must circumvent
this problem by calculating the second derivatives, yielding

r̈ = ∆
Σ̃

{
M(Σ̃ − 2r2)

Σ̃2
ṫ2 + (r −M)Σ̃ − r∆

∆2 ṙ2

+ rθ̇2 +
[
r +

(
Σ̃ − 2r2

Σ̃2

)
a2M sin2 θ

]
sin2 θϕ̇2

− 2aM sin2 θ

(
Σ̃ − 2r2

Σ̃2

)
ṫϕ̇+ a2 sin 2θ

∆ ṙθ̇

}
, (3.4.9)

θ̈ = 1
2Σ̃

(
sin 2θ

{
2a2Mr

Σ̃2
ṫ2 − 4aMr(r2 + a2)

Σ̃2
ṫϕ̇− a2

∆ ṙ2

+ a2θ̇2 +
[
∆ + 2Mr(r2 + a2)2

Σ̃2

]
ϕ̇2
}

− 4rṙθ̇
)
.

(3.4.10)

Equations (3.4.3), (3.4.6), (3.4.9), and (3.4.10) form a group of six cou-
pled equations, solving them with appropriate initial conditions gives rise
to solutions (t, r, ṙ, θ, θ̇, ϕ) of the geodesics. Fig.3.2 and Fig.3.3 illustrate
the images of the trajectories of massless particles in Kerr spacetime. We
need to solve the radiative transfer equation (3.3.18) along these derived
null geodesics (colourful lines in the figures).

3More explicitly, the geodesic equation reads as d2xµ/dτ2 +
Γ µ

νσ (dxν/dτ)(dxσ/dτ) = 0, where τ is the affine parameter, cf., appendix
B.
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Figure 3.2: This image is the geodesics of photons around a Kerr black hole in
the (x, y) plane of a Cartesian coordinate. We use the backward ray-tracing, i.e.
ray-traced with observer-to-emitter method. The grey lines indicate the escaping
geodesics. The coloured lines indicate geodesics falling into the black hole, rotating
with it anticlockwise (frame dragging). The inner blue circle indicates the Event
Horizon of the Kerr black hole. The distant observer located on the far right, not
shown in the plot.

Figure 3.3: This image illustrates the geodesics of photons around a Kerr spacetime
together with the black hole in a Cartesian coordinate system. Again, we apply the
observer-to-emitter approach. The two black grid spheres indicate the black hole
region, with the outer and inner ones correspond to Static Limit and Event Horizon
respectively. The grey lines indicate the photons which are not captured by the black
hole. Coloured lines indicate that the geodesics falling into the black hole. The
observer located on the far bottom right which is not shown in the plot.
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Chapter 4

Geodesic Calculation Using
the Level Set Method

4.1 Overview

As was mentioned in the previous context, we demand a new embed-
ding formalism to help us recover Lorentz structure and covariance of a
radiative transfer formulation in dynamical spacetime, where a level set
approach can be applied and allows a lower dimensional manifold propa-
gating in a higher dimensional manifold. The fourth Chapter largely con-
sidered the new method which enables one to reconstruct null geodesics
in dynamical spacetime. We have successfully calculated the numeri-
cal solutions to level set equations (4.4.2) with first-order finite differ-
ence method and third-order accurate essentially non-oscillatory (ENO)
method. Both methods aim to increase the accuracy of spatial discretiza-
tion. The temporal precision increased by total variation diminishing
Runge-Kutta (TVD RK) is under consideration and will be added to nu-
merically calculate the final geodesic equation. Level set method allows
one to reconstruct the shortest paths in higher dimensional spaces. We
have discussed specific level set equations and find non-constrained short-
est geodesics in some case. In the case of a dynamical spacetime, as will
be mentioned in the following context of this Chapter, one cannot derive
the geodesic within the regime of a 4 dimensional spacetime, where both
analytical and numerical methods are unavailable. In this Chapter we
review the level set method and the associated numerical algorithm.

4.2 Motivation of Applying the Level Set
Method

In general relativity the trajectory of a non-spinning free-falling particle
in gravitational field is described by a geodesic, derived in a 4 dimensional
manner, using geodesic equation [115]

d2xµ

dλ2 + Γ µ
νσ

dxν

dλ
dxσ

dλ = 0 , (4.2.1)
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where Γ µ
νσ is the Christoffel symbol appendix B, λ is the affine parameter

of the geodesic. This analytical method works for stationary spacetime15,
including Schwarzschild and Kerr spacetimes. For the dynamical case,
one could, in general, apply the numerical relativity, in which a 4 dimen-
sional spacetime is split into infinitely many 3 dimensional hypersurfaces
by virtue of a global time function t to calculate the geodesics numeri-
cally.

However, neither of these two methods is applicable in this project.
On the one hand, the analytical computation method using equation
(4.2.1) is not applicable to most of the the dynamical spacetime, including
binary black hole mergers, whose metric cannot be solved analytically.
On the other hand, the 3+1 numerical relativity foliation method can
help to calculate most cases of geodesics in dynamical spacetime. By
choosing an affine parameter of photons as the global function, one can
foliate the whole manifold into many three dimensional surfaces, then
cutting the hypersurfaces with null surfaces to derive the trajectories of
photons. However, taking radiative transfer into account, one must select
the specific photon rays that may approach the observers. One way to
achieve this is to calculate all hypersurfaces under certain conditions and
store all data on each slices, then cutting them by specific null surfaces.
Nevertheless, one immediately realizes that infinite data must be stored
in this scheme and it is clear that these huge numbers of data beyond
the capacity of any current computer.

Physicists have constructed other ways to build up null geodesic.
In [127], a back-trace 3+1 numerical method is applied to find the event
and apparent horizon of a black hole. The author just decomposes the
spacetime into time slices and trace from a future point backward to
black hole and let the ray marginally approach the initial region of event
horizon to recover the full 4 dimensional boundary of a black hole. Nev-
ertheless, this back-trace method is invalid in the ray-tracing of radiative
transfer, because radiative transfer deal with the absorption, emission
and scattering processes of light when interacted with the intermediate
matter point by point through its path. A back-trace method hence leads
to a completely different results from that derived from the propagating
forward method.

The current covariant formulation of radiative transfer in dynamical
spacetime is only carried out in the far regime where the gravitational
field is weak. In the strong field regime, where the spacetime is signif-
icantly curved by the compact binary system and the gravitational ra-
diations present, using 3+1 numerical relativity to derive null geodesics
may result in chaos on the photon trajectories. This is because all space-
time structure remain unchanged while doing the numerical calculation,
however, the Lorentz structure in between any two adjacent time slices
is deteriorated. In order to maintain causality, one needs to introduce
extra parameter in the numerical process which breaks the null geodesic
structure and brings chaos to the photon’s path [128, 129]. We have to

15Geodesic equation (4.2.1) can be applied to some specific dynamical cases, the
most famous one is the Friedmann-Lemaître-Robertson-Walker metric, which de-
scribes a homogeneous and isotropic cosmos [117, 118, 119, 120, 121, 122, 123, 124,
125, 126].
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find other way to fix the defect.

Mathematically speaking, 3+1 numerical relativity is a formulation
based on the ADM formalism [6], which is derived in the smooth 4 dimen-
sional manifold background. In principle, the fundamental formulation
is well-defined. However, when physicists try to carry this out practi-
cally, the smooth structure of a manifold is broken down to a group of 3
dimensional time slices and physical and numerical problems will occur
in a practical calculation. Losing Lorentz structure is one of them.

One way to circumvent these problems is to apply the level set method [14,
15] and embed a four dimensional spacetime into a five dimensional man-
ifold requiring that null geodesics evolve along the extra coordinate w in-
stead of the original temporal coordinate t. The fundamental steps are:
Embedding the original four dimensional dynamical curved spacetime
into the five dimensional manifold, via many embedding maps φw. Sub-
sequently, applying the level set method and solving level set equations
to find the evolution of the four dimensional slices. Ultimately, cutting
the four dimensional foliations by null surfaces (zero level set) to obtain
the geodesics evolving along the fifth coordinate. This computational
method is very similar to the 3+1 numerical relativity, but implemented
in a 4+1 manner instead.

One of the advantages of level set method is shown in Fig.4.1. We
demonstrates how one can manage to resolve the aforementioned back-
ward ray-tracing problem. With the help of level set approach, one is
able to propagate the wave-front of light rays (blue/dashed curves) for-
wardly, i.e. in the emitter-to-observer approach, where we don not need
to worry about the backward tracing problem.

Nevertheless, there is a problem arising when one embeds the four
dimensional spacetime into a five dimensional space, local Lorentz struc-
ture is not carried with the embedding maps to the new 5 dimensional
space outside each single spacetime foliation. This has to be circum-
vented before proceeding, which has been given a mathematical proof
in the next Chapter. We find a particular way to embed the 4 dimen-
sional spacetime in a generic 5 dimensional manifold and by choosing a
good metric on the ambient space to recover the Lorentz structure and
show that it works for all types of spacetime, including stationary and
dynamical ones. This reconstruction together with the cutting technique
used by level set method guarantees how we can maintain the Lorentz
structure for ray-tracing in radiative transfer in dynamical spacetime.

As we mentioned before, the usual analytical geodesic equation is
derived within the Lagrangian formulation of general relativity, and a
3+1 formulation is based on the Hamiltonian formulation. A level set
method employs an equation which is a Hamilton-Jacobi type. Hence,
we might be able to apply new numerical algorithms (eg. the symplectic
integrator [130], cf., appendix G) which contribute to a more efficient
computation.
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Figure 4.1: The figure illustrates the wave-front propagation in higher dimensional
ambient manifold. φini and φob denote the initial slice and the slice where the wave-
front cut the observer respectively. The black dot denotes the gravitational source
and the blue dot denotes the observer. Curved blue lines denote the propagating
wave-fronts, and the dotted curved blue line denotes the wave-front which hits the
observer. The red arrow represents the light ray propagation direction. From the
plot we can clearly find that the wave-front can always hit the observer while it is
propagating forwardly.

4.3 Bases for the 3+1 Formalism of Gen-
eral Relativity

Since we need to reconstruct the geodesics in 5 dimensional space in a
4+1 manner, it is necessary to introduce the bases of formalism of the
3+1 numerical relativity.

Given a global function t on spacetime (M, gab) such that the hyper-
surfaces Wt is defined as level surfaces of t, given by

t(p) = con ⇐⇒ ∀ p ∈ Wt ⊂ M , (4.3.1)
∀ con ∈ R ,

where the gradient of t is given by ∇at which never vanishes. Note that
from now on we apply t instead of the f for the global time function. It
is assumed that any two Wt1 , Wt2 ∈ {Wt} in this continuous set of level
surfaces will not intersect one other, i.e.

Wt1 ∩ Wt2 = ∅ , ∀ t1 6= t2 . (4.3.2)
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In this sense
M =

⋃
t∈R

Wt . (4.3.3)

If all hypersurfaces Wt are space-like surfaces (actually Cauchy sur-
face [19]), then spacetime (M, g) is a globally hyperbolic manifold16. Ac-
cordingly, the topological structure of a globally hyperbolic spacetime is
necessarily Wt×R. Scalar field t can be considered as ‘time’ in this sense,
Wt can be considered as ‘space’ at time t = con, where con is a constant
for each Wt. This is called a foliation of M.

Given a foliation Wt × R of spacetime (M, g), a specific and critical
normal covector is given by

na = −N∇at , ∀ t ∈ R . (4.3.4)

The normal vector associated with n is then given by

na = −Ngab∇bt . (4.3.5)

Factor N is called the lapse function, coined by Wheeler in 1964, given
by

N := (−gab∇at∇bt)−1/2 . (4.3.6)

It is apparently that na is a unit vector such that

gabn
anb = nan

a

= N2gab∇bt∇at

= (−gcd∇ct∇dt)−1gab∇at∇bt

= −1 ,

(4.3.7)

where we have used equations (4.3.4) and (4.3.5) in the third equality,
and used equation (4.3.6) in the fourth equality.

There are three types of hypersurface, i.e., if

nana > 0 ⇐⇒ W is time-like, (4.3.8)
nana = 0 ⇐⇒ W is null, (4.3.9)
nana < 0 ⇐⇒ W is space-like. (4.3.10)

And if nana 6= 0 then the normal vector is supposed to be normalized,
i.e.

nana = ±1 . (4.3.11)

Defining the time-like normal evolution vector ma to Wt, such that

ma := Nna . (4.3.12)

The length of m is gabm
amb = −N2, the inner product of ∇at and mb is

given as

g(~∇t,m) = gabm
b∇at = mb∇bt = Nnb∇bt = 1 , (4.3.13)

16A stably causal spacetime also admits such global function. Nevertheless, we still
use a globally hyperbolic spacetime instead throughout this thesis.
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where we have used (4.3.6) and (4.3.5), ~∇ = ∇a = gab∇b. A geometrical
consequence of this relation is that any point p of Wt can be dragged
to another point p′ of Wt+δt by a displacement mδt (the index of ma is
ignored here). For the scalar field t, we have

t(p′) = t(p+mδt) = t(p) + δtma∇at = t(p) + δt , (4.3.14)

where in the third equality we used (4.3.13). The result shows that
p′ ∈ Wt+δt.

We choose, in general, tangent (∂t)a as the tangent to the zeroth
coordinate line, which implies that this coordinate curve is parameterized
by t. Since we know that (∂t)a(dt)a = 1 and (dt)a = ∇at, tangent vector
(∂t)a obeys the same property as the normal evolution vector ma, i.e., it
drags hypersurfaces Wt to other slices. These two vectors (∂t)a and ma

differ by a shift vector βa, given by

βa := (∂t)a −ma . (4.3.15)

The name shift vector has been coined by Wheeler (1964). By combining
equations (4.3.15) and (4.3.13), we get

(dt)aβ
a = (dt)a(∂t)a − (dt)am

a = 1 − 1 = 0 . (4.3.16)

Equivalently, naβ
a = 0 due to (dt)a = ∇at = −N−1na, i.e., vector βa is

tangent to Wt. Rewrite (4.3.15) as

(∂t)a = Nna + βa , (4.3.17)

this expression will be used frequently in numerical relativity. Further-
more, (∂t)a satisfies

(∂t)a(∂t)bgab = −N2 + gabβ
aβb . (4.3.18)

Note that (∂t)a is not necessarily time-like, whereas

(∂t)a is time-like ⇐⇒ gabβ
aβb < N2 ,

(∂t)a is null ⇐⇒ gabβ
aβb = N2 ,

(∂t)a is space-like ⇐⇒ gabβ
aβb > N2 .

4.4 Foundations of the Level Set Method
Level set method [14, 15] is an effective computational algorithm to trans-
form surfaces (as well as the interfaces) in higher dimensions (from n to
n+1), which is allowed to work for arbitrary dimensional space. One ex-
ample is that the surfaces are described by the signed-distance-function,
where given a point returns the distance to the surface. Hence a surface
separates the inside and outside of a region, and the interface can be
obtained by requiring the signed-distance-function equals to zero, i.e.,
the zero level set. Nevertheless, specific functions, which are not signed-
distance-functions in general, are selected in different physics problems.
This technique approximates the solutions of an initial value partial dif-
ferential equation, requiring an adaptive methodology to obtain com-
putational efficiency. In [14], Sethian and Osher demonstrate that the
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solutions of level set equations resemble those of Hamilton-Jacobi equa-
tions, whose numerical algorithm may borrow from the technology de-
veloped for the equations of hyperbolic conservation laws [131]. In [131],
higher-order accurate schemes are developed for solving Hamilton-Jacobi
equations, nevertheless, this thesis is focusing on the first-order accurate
solutions based on the finite difference techniques and 3rd-order accu-
rate method (ENO). In addition to physics problems, level set method
is of great significance in deposition in semi-conductor manufacturing,
robotic navigation and path planning, image segmentation in medical
imaging scans, computation of seismic travel times, and other aspects of
computational geometry and computer science.

The most trivial case is that, in one spatial dimension, suppose one
can separate the real coordinate line into three distinct pieces by two
points, x = −1 and x = 1. More explicitly, these three regions are writ-
ten as (−∞,−1), (−1, 1) and (1,∞). We refer to the first and the third
subdomains as the outside portion, and the second subdomain as the
inside portion, denoted by O+ = (−∞,−1) ∪ (1,∞) and O− = (−1, 1)
respectively. The boundary between inside and outside portions consists
of two points ∂O = {−1, 1}, and is called the interface (or zero level).
This is an explicit representation of the interface. Nevertheless, one can
construct an implicit representation by introducing an extra spatial di-
mension and define a level function φ(x) = x2 − 1, the zero level of φ(x)
is the set of all points where φ(x) = 0, which is exactly the boundary
∂O. This simplest one dimensional case can be readily generalized to
arbitrarily higher dimensions and to non-Euclidean coordinates.

Consider a 3 dimensional implicit surface φ(~x) moving under the
speed field ~V (x, y, z), one can derive the evolution of all points on the
surface by solving the following equation

d~x
dt = ~V , (4.4.1)

given the initial conditions of ~V (x, y, z) at ~x when φ(~x) = 0, the evolu-
tion process of the surface can be computed using the above equation.
This is known as the Lagrangian formulation of interface evolution [15].
One can then use the numerical discretization if the surface elements are
not distorted too much. However, even the most trivial velocity field can
cause a large distortion and the accuracy of the method can deteriorate
quickly unless one modify the numerical scheme periodically to account
for the deformations by smoothing and regularizing inaccurate surface
elements. Moreover, one must deal with topological changes in addition
to smoothing the surface deformation. The regularizing, smoothing and
surgical modification would largely increase the complexity of the compu-
tational procedure [132]. The ability of handling spacetime defects, e.g.,
topological changes, enables the level set approach to tackle the scatter-
ing problem happens in constructing a radiative transfer formulation in
dynamical spacetime, cf., Fig.4.2 for an example.

In order to avoid the instability and complexity arising in the La-
grangian formulation, we use the level set method instead to construct
an implicit function, and solve the equations that govern the transfor-
mation of the surface where the velocity fields F depend on externally
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Figure 4.2: Evolution of a wound spiral in a curvature-driven flow. The high
curvature part move faster than the elongated part. This figures demonstrates that
the level set approach is well-behaved in manipulating sharp corner for an evolving
interface (cf., the first plot at top left), which implies that this method can alleviate the
aforementioned scattering problem encountered in the dynamical spacetime. Credit:
S. Osher and R. Fedkiw, 2002.

generated velocity or mean curvature κ, where the equations are given
as

φt + ~V · ∇φ = 0 ,
φt + F (κ) · |∇φ| = 0 ,

(4.4.2)

the evolution of interfaces can be tracked with these equations. Specifi-
cally, the equation for non-constrained geodesics is given by [133]

φt =
√
a(x, y)φ2

x + b(x, y)φ2
y − c(x, y)φxφy , (4.4.3)

for which causal structure is not defined, where the recovery of the causal-
ity has been solved in the next Chapter.

4.5 Numerical Integrators for Level Set Equa-
tions

It follows last section that there exist two types of level set equation, cor-
responding to different evolution styles. The evolution of a surface which
propagates under the externally generated velocity, which is independent
of curvature κ, is determined by the following equation

φt + ~V · ∇φ = 0 . (4.5.1)
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Recall that ∇ is the gradient operator (see following context), which
satisfies

~V · ∇φ = u1φx + u2φy + u3φz , (4.5.2)

where u1 , u2 and u3 are the three spatial components of ~V . This partial
differential equation defines the motion of surface as well as the interface
φ = 0, and is know as the Eulerian formulation of interface evolution, for
which the interface is captured by the implicit function φ as opposed to
being tracked by front elements in the Lagrangian formulation.

Finite difference is an effective first-order accurate method to calcu-
late the numerical solutions of partial differential equations, for example
the Hamilton-Jacobi equation

φt + F ·H(∇φ) = 0 , (4.5.3)

where subscript t denotes the temporal partial derivative ∂/∂t, ∇ denotes
the n dimensional gradient of function φ, given by

∇φ =
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
, · · ·

)
. (4.5.4)

In a Cartesian grid, the first-order forward difference is given by

∂φ

∂x
≈ φi+1 − φi

∆x , (4.5.5)

abbreviated as D+φ, where ∆x is the increment in the x direction, de-
noted by xi+1 − xi. The first-order backward difference is given by

∂φ

∂x
≈ φi − φi−1

∆x , (4.5.6)

abbreviated as D−φ. The central difference is given by

∂φ

∂x
≈ φi+1 − φi−1

2∆x , (4.5.7)

abbreviated as D0φ. In this formulation, subscript i denotes the position
on the grid at the i-th point, i.e., at xi, and φi is φ(xi). It is assumed
that the other dimensions have been suppressed and we are working in 1
dimensional space.

For second-order derivatives, it is convenient to express them using
previous notations

∂2φ

∂x2 ≈ φi+1 − 2φi + φi−1

∆x2 , (4.5.8)

abbreviated as D+
x D

−
x φ or D−

x D
+
x φ. For the derivative on y direction,

one just substitutes x with y in equation (4.5.8), abbreviated as D+
y D

−
y φ

or D−
y D

+
y φ. For φxy, the finite difference formula is given by

∂2φ

∂x∂y
≈ φi+1,j+1 − φi−1,j+1 − φi+1,j−1 + φi−1,j−1

4∆x∆y , (4.5.9)

abbreviated as D0
xD

0
yφ or D0

yD
0
xφ. Subscripts i and j denote the values

of φ at xi and yj in a 2 dimensional space, respectively.
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(a) t = 0 (b) t = 0.08 (c) t = 0.16

(d) t = 0.24 (e) t = 0.34 (f) t = 0.45

(g) t = 0.59 (h) t = 0.80 (i) t = 1.09

Figure 4.3: This group of figures illustrates the transforming surfaces at different
points of time, under the external field F = 1 and initial surface is given by cos(πx).
The value of the parameter t is shown under each panel.

In addition, the curvature of an implicit function is of great signif-
icance in level set equation. A curvature is the reciprocal of the local
radius of a function, in a 2 dimensional space it is given by

κ =
φ2

xφyy − 2φxφyφxy + φ2
yφxx

|∇φ|3
, (4.5.10)

where φx denotes the first-order partial derivative with respect to x ,
|∇φ|=

√
φ2

x + φ2
y. Same for the other expressions. Curvature in 3 dimen-

sional space is given by

κ = (φ2
xφyy − 2φxφyφxy + φ2

yφxx + φ2
xφzz − 2φxφzφzx + φ2

zφxx

+ φ2
yφzz − 2φyφzφyz + φ2

zφyy)/|∇φ|3 .
(4.5.11)

Curvatures in other dimensions can be derived in a similar manner.
The velocity field in equation (4.5.1) can come from numerous ex-

ternal sources, depending on the physical contexts. Fig.4.3 and Fig.4.4
illustrate an interface evolving under a constant velocity.

The numerical method used to solve equation (4.5.1) is called the
upwind difference, which is first-order accurate and combines the finite
difference and forward Euler method, given by

φn+1 − φn

∆t + ~V n · ∇φn = 0 , (4.5.12)
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Figure 4.4: This figure illustrates all the nine curves in one graph, with the time-
colour correspondence on the top right corner.

where superscripts n denote the value at the time point tn, for example,
φn = φ(tn), ∆t is the increment in time parameter t. Expanding equation
(4.5.12) yields

φn+1 − φn

∆t + unφn
x = 0 , (4.5.13)

where the equation is suppressed to one dimension. It is clear that the
sign of u determines whether the values of φ change to the right or the
left. The upwind difference indicates that, at each grid point, if un

i > 0,
approximate φx with D−

x φ, if un
i < 0, approximate φx with D+

x φ.
The combination of forward Euler time discretization and upwind

difference scheme is a consistent finite difference approximation due to
the numerical error converges to zero as ∆x → 0 and ∆t → 0. Stability of
the solutions is guaranteed by Courant-Friedreichs-Lewy condition (CFL
condition), which claims that numerical waves cannot propagate slower
than physical waves, implying

∆t = ∆x
max {|u|}

, (4.5.14)

where max {|u|} is chosen over the entire Cartesian grid. Equation
(4.5.14) is usually enforced by choosing a CFL number α̃ with

∆t
(

max {|u|}
∆x

)
= α̃ , (4.5.15)

given that 0 < α̃ < 1. A common near-optimal choice is α̃ = 0.9, and a
common conservative choice is α̃ = 0.5. A multi-dimensional version is
given by

∆t
(

max {|u|}
∆x

)
= α̃ . (4.5.16)

Upwind difference is a rather simple first-order accurate numerical
method. People have developed higher-order accurate techniques to
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study the solutions of Hamilton-Jacobi equations. The essentially non-
oscillatory polynomial interpolation of data has been applied to numer-
ical computation and this initial idea has been improved considerably,
generalizing the first-order technique to higher-order spatial accuracy by
choosing more accurate φ+

i and φ−
i [14, 134, 10]. Moreover, one can use

total variation diminishing Runge-Kutta method to increase the accuracy
in temporal discretization [135]. See appendix C for more details.

Equipped with high-order numerical schemes, one can now discuss
the solution to Hamilton-Jacobi (HJ) equation

φt +H(∆φ) = 0 . (4.5.17)

In three dimension, (4.5.17) can be rewritten as

φt +H(φx, φy, φz) = 0 . (4.5.18)

Note that the level set equation (4.4.3) is an example of HJ equation.
Consider the first-order accurate Euler forward time discretization of

Hamilton-Jacobi equation, given as

φn+1 − φn

∆t +H(φx, φy, φz) = 0 , (4.5.19)

introducing a new function Ĥ(φ+
x , φ

−
x , φ

+
y , φ

−
y , φ

+
z , φ

+
z ) called the numeri-

cal Hamiltonian (appendix D), rewriting equation (4.5.19) with Ĥ

φn+1 − φn

∆t + Ĥ(φ+
x , φ

−
x , φ

+
y , φ

−
y , φ

+
z , φ

−
z ) = 0 . (4.5.20)

The numerical Hamiltonian is required to be consistent with H such that
Ĥ(φx, φx, φy, φy, φz, φz) = H(φx, φy, φz). It is apparently that one can ap-
ply ENO to improve the spatial accuracy of Ĥ(φ+

x , φ
−
x , φ

+
y , φ

−
y , φ

+
z , φ

−
z ) by

substituting third-order accurate φ± into Ĥ and to improve the accurate
of numerical solutions. The temporal discretization can be generalized
straightforwardly to higher-order TVD RK, cf., appendix C.

The CFL condition for equation (4.5.20) is given by

∆tmax
{
H1

∆x + H2

∆y + H3

∆z

}
< 1 , (4.5.21)

where H1 , H2 , and H3 are derivatives of H with respect to φx , φy and
φz respectively. The numerical approximation scheme for Ĥ is given in
appendix D.

4.6 Construction of Geodesics Using Level
Set Equation

As we discussed in the previous context, deriving the photon trajectories
in dynamical spacetime in a sensible way is critical before proceeding to
formulate the radiative transfer. Since we have proven that we cannot
achieve this goal in a four dimensional spacetime and the level set ap-
proach is introduced in this Chapter. We will focus on how to implement
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Figure 4.5: This image illustrates the solutions of a 2 dimensional equation φt + φ ·
H(φx, φy) = 0 at time t = 0.02, where H(u, v) = u + v, under the initial condition
φ(0, x, y) = 1/4 + sin(π(x + y)/2), given on a grid mesh of 20 × 20 points. This
equation is solved with 3rd-order accurate ENO method in spatial coordinates and
1st-order accurate TVD RK in temporal coordinate (appendix C).

the specific level set equation (4.4.3) (which is mentioned in the introduc-
tory Chapter) to work out the non-constrained geodesics in this section,
and in the following context we generalize this method to carry out the
geodesics in the Schwarzschild spacetime, Kerr spacetime, ultimately a
binary black hole system.

The n dimensional non-constrained geodesics, for which the causal
structure is not defined, are generalization of the straight lines in n di-
mensional Euclidean space. It is also known as the shortest paths between
two source regions in an n dimensional surface (where the metric is pos-
itive definite). There are several different methods, including analytical
and numerical ones to derive shortest paths, nevertheless we will deal
with the problem of finding paths of minimal lengths by solving level set
equations [133].

The main step is to calculate the equal distance map from the source
area (a region or a point). We use the level set method to compute
the propagation of equal distance curve on the surface. For simplicity,
we consider the geodesics on a 3 dimensional surface without loss of
generality.

Let the equal distance curves be denoted by C ′(t)17, and the 2 di-
mensional projected curve C(t), given by

C(t) = φ̃ ◦ C ′(t) = {(x, y) | (x, y, z) ∈ C ′(t)} , (4.6.1)
17C ′ is actually a function of two parameters t (time) and u. For one distance

curve, t is a constant and u is variable, while for one geodesic t is a variable and u is
a constant.
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where φ̃ is a projection map from 3 dimensional space to 2 dimensional
space, z is a function of the surface with arguments (x, y).

From a general theory consequence, we know that the trace of a pla-
nar curve propagation can be determined by its normal velocity VN [136].
Using the planar normal component of the 2 dimensional projected ve-
locity [137], one can construct a differential equation describing the evo-
lution of projected equal distance curve

∂

∂t
C = VN~n , (4.6.2)

the initial conditions are given by

C(0) = {(x, y) | (x, y, z) = ∂W} , (4.6.3)

where W represents the source area and ∂W represents its boundary,
~n is the planar normal with components (n1, n2). VN depends on the
surface gradient (p = ∂z/∂x , q = ∂z/∂y) and ~n, given by

VN =

√√√√(1 + q2)n2
1 + (1 + p2)n2

2 − 2pqn1n2

1 + p2 + q2 . (4.6.4)

Then we can apply the level set method to calculate the propagation
of equal distance curves. Let C(t) be represented by the zero level sets
of a level set function φ(x, y, t), such that φ is positive in the exterior of
zero level set and negative in the interior of zero level set. The zero level
set is defined as

X(t) = {(x, y) | φ(X(t), t) = 0} . (4.6.5)

We can find the evolution rule of X(t), namely the equal distance curve
C(t), by finding the evolution rule of level set function φ, i.e., solving the
level set equation. Since from (4.6.5) we know that φ(X(t), t) = 0, upon
differentiation we get

∇φ(X, t) ·Xt + φt(X, t) = 0 , (4.6.6)

substituting relation (4.6.2) and C(t) = X(t) to equation (4.6.6), we
obtain

φt = −∇φ · VN~n , (4.6.7)
note that the planar normal can be written as ~n = φ/|φ| in level set
formulation. Take this into consideration, equation (4.6.7) becomes

φt = −VN|φ| . (4.6.8)

The initial conditions are set to be

φ(C, 0) = ±d , (4.6.9)

where d is the distance from (x, y) on the 2 dimensional plane to C(0),
and sign + is taken for exterior region, sign − is taken for interior region.

Using the normal components of velocity VN (4.6.4), equation (4.6.8)
reads

φt =

√√√√(1 + q2)φ2
x + (1 + p2)φ2

y − 2pqφxφy

1 + p2 + q2 , (4.6.10)
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which coincides with equation (4.4.3), where a = (1 + q2)/(1 + p2 + q2),
b = (1 + p2)/(1 + p2 + q2) and c = 2pq/(1 + p2 + q2). Parameters a, b
and c can be determined once at the initialization step. This equation
describes the propagation rule of φ and equal distance curve C(t) can be
computed as zero level set.

After solving equation (4.6.10), each grid point on the Cartesian mesh
can be assigned a value of distance. To achieve this goal, check if

φn
i,j · φn−1

i,j < 0 , (4.6.11)

then the distance from source region R to the point located at (xi, yj) at
time t is given by

di,j = dt
(
n−

φn
i,j

φn
i,j − φn−1

i,j

)
. (4.6.12)

It is guaranteed that all points in (4.6.12) are on equal distance contours,
i.e., the zero level sets, due to equation (4.6.11).

Let EW(x, y) denote the set of equal distance maps from (x, y) to
source region W, the shortest paths between regions W and A are given
by

G = {(x, y) | EW(x, y) + EA(x, y) = gm} , (4.6.13)

where gm = min(EW + EA) is the global minimum of the sum of the
distance maps from source and destination regions [133].

Nevertheless, this geodesic computation method is based on the fact
that the curve has the globally shortest path in the Euclidean space or
Riemannian space (locally shortest). Whilst in special relativity result is
reversed where the time-like geodesics are globally longest and in general
relativity this consequence is uncertain. We need to find new technique to
generalize the method to more generic case, inclusive of the 4 dimensional
pseudo-Riemannian manifold. Other ways of solving for geodesics by
level set method may see reference [138].
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Chapter 5

Embedding a Four
Dimensional Curved
Spacetime in a Five
Dimensional Manifold

5.1 Overview
Chapter 5 looks at the embedding of a 4 dimensional spacetime in the 5
dimensional flat space R5 and the 5 dimensional non-flat space4. We try
to solve specific problems arising as consequences of embedding manifolds
with causal structure. It is proven that embedding a black hole spacetime
does requires extra conditions in addition to diffeomorphism. One needs
to analyze the property of manifold after being embedded in an ambient
space, and causal structure within the same spacetime is preserved via
isometric or conformal embedding maps.

The other problem is more subtle and complicated, which needs care-
ful consideration and advanced geometry knowledge other than those
presented in this thesis. It should be noted that the local causal struc-
ture within one 4 dimensional manifold is preserved by a conformal or
isometric maps. Nevertheless, the metric has no definition between two
different 4 dimensional manifolds in the 5 dimensional ambient manifold,
as there is no well-defined correlation between two adjacent spacetime
foliations. This leads to a problem that local causal structure (aka the
local Lorentz structure) is not guaranteed and we might need to recover
this before proceeding to derive geodesics using level set method due to
numerical reason and theoretical justification. The possible ways have
been taken into consideration, including causal set theory [139, 140, 141,
142], where the smooth structure of spacetime is discretized with the
causal structure preserved by certain process. Geometric flow will have a
consideration in the research. Actually, the propagation of the 4 dimen-
sional manifold in the 5 dimensional manifold is one type of geometrical
flow. Moreover, it is expected that this problem can be resolved with
purely classically geometrical techniques, where all necessary tools have

4This notation is not rigorous enough when an indefinite metric is assigned to the
manifold. Actually, this can be type of R1,4, or R2,3 etc., and a final choice would be
made in due course.
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Figure 5.1: This image illustrates the fundamental procedure of construction of a
null geodesic of a 4 dimensional spacetime in a 5 dimensional space, two dimensions
are suppressed herein. M stands for the original spacetime, and M′ stands for 5
dimensional ambient space, where φwn(M) represents different spacetime foliations.
w denotes the extra dimension. The inclined pink rectangle surface illustrates the
vertical spacetime, intersection between hypersurfaces via null surfaces (light cone)
and null geodesic.

been introduced in this thesis. The way that we reconstruct Lorentz
structure will affect the evolution type of foliation as well as that of null
geodesic, which means that we need to develop a new computational
technique to construct the geodesics.

The equivalence principle could be recovered once the local causal
structure is reconstructed. As we can always find a coordinate system
such that in a sufficiently small region, the recovered metric reduces to
the Minkowskian metric ηab.

We will investigate the embedding properties of a 4 dimensional mani-
fold in 5 dimensional flat and non-flat manifolds. We show that the non-
flat manifold is a desired target, and we recover the Lorentz structure
of two adjacent 4 dimensional foliations for Schwarzschild, dynamical
Schwarzschild and Oppenheimer-Snyder spacetimes.

5.2 Embedding Basics
Equipped with the level set method, it is rather natural to push-forward
the original four dimensional spacetime in a five dimensional space and
apply the level set equation to find the evolution of level set surface, i.e.,
the 4 dimensional foliation and hence to derive the null geodesics. In
order to embed a 4 dimensional manifold into a 5 dimensional manifold,
we have to use the induced maps introduced in appendix A.

Consider the case of a four dimensional spacetime M, we embed it in a
five dimensional real space with distinct diffeomorphism maps φw, where
w ∈ R. Using level set method, one cuts the hypersurfaces with null
surfaces, on which photons moving, leading to null geodesics. Note that
in this formulation, massless particles are travelling through all the hori-
zontal hypersurfaces instead of staying inside any specific surface Fig.5.1.
However, one immediately realizes that the geodesics intersect with dif-
ferent coordinate systems in different manifolds φw(M) and a Lorentzian
metric cannot be constructed with different hypersurfaces, which means
that local causal structure is not carried into the new 5 dimensional
space automatically. This problem has to be circumvented with other
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techniques. Fig.5.1 illustrates how one achieves this goal graphically. In
order to complete this, we need to impose certain further conditions on
the embeddings φ, which has a careful reconsideration in section 5.5.

5.3 Causal Structure of Spacetime
Causal structure in pseudo-Riemannian manifolds is a consequence of the
presence of Lorentz metrics. This is reflected in the phenomena that the
motion of all particles and observers have to be light-like (null) or time-
like. The causal structure, or local Lorentz structure, cane be well-defined
in a 4 dimensional spacetime. Nevertheless, it cannot be carried to a
higher dimensional space (between two adjacent foliations) spontaneously
after embedding in a 5 dimensional real space unless specific conditions
are set with the embedding and the ambient manifold. In order to recover
this one needs to study the causal structure of spacetime, which can also
be employed to other problem in this project.

In GR, all time-like and null vectors (except zero vector) in the vector
space Tp at any point p in a spacetime can be split into two set portions,
one is denoted to be the future part (denoted by F̃p) and the other is
denoted to be the past part (denoted by P̃p). Elements in F̃p are called
the future directed time-like (or null) vectors, those in P̃p are called the
past directed time-like (or null) vectors.

Spacetime (M, gab) is said to be time orientable if the light cone can
be continuously defined, such that there exists a C0 time-like vector field
ta, where the value of ta|p at each point p on M lies in the future part of
Tp. In general relativity, only the time orientable spacetime is considered
as a physical spacetime.

On a light-like (null) hypersurface Wn, there is only one null direction
at each point p ∈ Wn, i.e., v a

p = ku a
p , where v a

p and y a
p are tangent

vectors at p , k ∈ R. This direction is the same as that of the normal
vector na.

A C1 curve γ is called a future (past) directed time-like curve, if the
tangents of every point on γ are future (past) time-like vectors. A C1

curve γ is called a future (past) directed causal curve, if the tangents of
every point on γ are future (past) null vectors. An observer’s worldline
is always future directed and time-like.

A light cone at p is defined as a subset of Tp, such that {va ∈
Tp | gabv

avb = 0}.
Chronological (time-like) future (past) I+(p) (I−(p)) of p ∈ M is a

subset of manifold M, satisfying

I+(p) := {q ∈ M | ∃ Future directed time-like curve from p to q}5.
(5.3.1)

The chronological future (past) I+(p,Nei) (I−(p,Nei)) of p relative to
a neighbourhood Nei is defined as

I+(p,N) := {q ∈ Nei | ∃ Future directed time-like curve from p to q
within region Nei}. (5.3.2)

5Herein, a curve γ from p to q is an image of [a, b] ∈ R, where p = γ(a) and
q = γ(b).
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Note that I+(p)=I+(p,M) . I+(p,Nei) is not necessarily equal to I+(p) ∩
N . The minus sign is chosen for the ‘past’.

The causal future (past) J+(p) (J−(p)) of p ∈ M is a subset of mani-
fold M, satisfying

J+(p) := {q ∈ M | ∃ Future directed causal curve from p to q}. (5.3.3)

The causal future (past) J+(p,Nei) (J−(p,Nei)) of p relative to a neigh-
bourhood Nei is defined as

J+(p,Nei) := {q ∈ Nei | ∃ Future directed causal curve from p to q
within region Nei}. (5.3.4)

J−(p) and J−(p,Nei) can be defined dually. I+(p) , I−(p) , J+(p) and
J−(p) are collectively called the causal structure of M.

We then have the following propositions derived from the above def-
initions

r ∈ I+(p) , q ∈ I+(r) ⇒ q ∈ I+(p) , i.e. I + I = I , (5.3.5)
r ∈ J+(p) , q ∈ I+(r) ⇒ q ∈ I+(p) , i.e. J + I = I , (5.3.6)
r ∈ I+(p) , q ∈ J+(r) ⇒ q ∈ I+(p) , i.e. I + J = I . (5.3.7)

A neighbourhood Nei of p ∈ M is called a normal neighbourhood, if
there exists an open set T̂p of the vector space Tp where 0 ∈ T̂, such that
the exponential map expp : T̂p → Nei is a diffeomorphism.

A neighbourhood Nei of p ∈ M is called a convex neighbourhood, if
∀ q , r ∈ Nei, there exists a unique geodesic connecting q and r. Note
that not all neighbourhoods are convex neighbourhoods, even in the cases
of Minkowskian and Euclidean manifolds. Given a convex neighbour-
hood, such that it is a normal neighbourhood, then Nei of p is called a
convex normal neighbourhood.

From its definition we know that a convex normal neighbourhood is
an open set. Every point in any spacetime must have a convex normal
neighbourhood. If Nei is a normal neighbourhood of p ∈ M , Nei needs
not to be a normal neighbourhood for the other points q ∈ Nei , q 6= p.
Whereas the statement is true when Nei is a convex normal neighbour-
hood, see Hicks (1965) for proofs of the second and third corollaries.

Given a convex normal neighbourhood Nei and p , q ∈ Nei, there
exists only one geodesic connecting p and q, in addition, we have the
following propositions
(a) If q ∈ I+(p,Nei), then the geodesic from p to q must be time-like in
Nei.
(b) If q ∈ J+(p,Nei) − I+(p,Nei) , p 6= q, then the geodesic from p to q
must be null
in Nei.
(c) If q ∈ J+(p,Nei) − I+(p,Nei) , p 6= q, then the future directed causal
curve from p to q must be a null geodesic in Nei.

The above results imply that the causal properties of an arbitrary
spacetime within convex normal neighbourhoods are very similar to that
of a Minkowskian spacetime. And it becomes more complicated outside
a convex normal neighbourhood. Nevertheless, the third proposition is
not restricted by this situation, given in the following statement.

57 of 197



5. Embedding a Four Dimensional Curved Spacetime in a Five
Dimensional Manifold

In any spacetime, if q ∈ J+(p)− I+(p), then the future directed causal
curve from p to q must be a null geodesic. And it should be noted that
the statement: If there exists a future directed null geodesic from p to q,
then q ∈ J+p− I+(p), is a false proposition.

The chronological future of a subset W ⊂ M is defined as

I+(W) :=
⋃

p∈W

I+(p) . (5.3.8)

Note that

I+[I+(W)] = I+(W) ,
I−[I−(W)] = I+(W) ,
J+[J+(W)] = J+(W) ,
J−[J−(W)] = J−(W) .

(5.3.9)

The causal future of subset W ⊂ M is defined as

J+(W) :=
⋃

p∈W

J+(p) . (5.3.10)

The chronological and causal past of subset W, denoted by I−(W) and
J−(W), can be dually defined.

The subset W ⊂ M is called an achronal set, if there does not exist
p , q ∈ W, such that q ∈ I+(p), i.e., I+(W) ∩ W = ∅.

All time-like curves and time-like hypersurfaces are obviously not
achronal set. Some of the space-like curves and hypersurfaces are not
achronal set.

Suppose I is an interval in R , γ : I → M is a future directed causal
curve. p ∈ M is called the future endpoint of γ, if for any neighbourhoods
Nei of p, there exists t0 ∈ I such that γ(t) ∈ Nei , ∀ t ∈ I , t ≥ t0. The
past endpoint of λ can be dually defined.

In Schwarzschild spacetime, the future directed causal curves that
fall into singularity have no future endpoint. Intuitively, the endpoint is
locating at r = 0 in the Schwarzschild coordinate system, which is not
belonging to the spacetime.

A curve without a future endpoint is called future inextendible. Past
inextendible property can be dually defined.

Spacetime is said to satisfy the chronological condition if it does not
have closed time-like curve. Spacetime which is not chronological is con-
sidered as a causally violated spacetime and possesses the worst causality.
However, a chronological spacetime admits closed null (causal) curves
for photons or any massless particles is considered as possessing a rather
weak causal condition. One can improve the situation by introducing
more restrictions.

Spacetime is said to satisfy the causality condition if there is no closed
causal curves (except isolated-point line), which is called a causal space-
time.

The causal condition of spacetime can be enhanced by introducing
further restrictions. A spacetime (M, gab) is said to satisfy the strong
causality condition, if ∀ p ∈ M, and its neighbourhood p ∈ Nei , ∃
Nei′ ⊂ Nei such that there is no causal curves passing through Nei′
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more than once, where Nei′ is a neighbourhood. Such spacetime is called
a strong causal spacetime.

The causality of a strongly causal spacetime is stronger than that
of a causal spacetime. Nevertheless, the stability of a strongly causal
spacetime is not as elegant as what physicists expect. One substitution
of this is to introduce the stably causal spacetime.

A spacetime (M, gab) is said to satisfy the stably causal condition, if
there exists a C0 time-like vector field ta, such that spacetime (M, g̃ab)
satisfies the chronological condition, where g̃ab = gab − tatb , ta = gabt

b.
A stably causal spacetime allows an infinitesimal perturbation to the
metric gab without violating the causal structure of (M, gab). To explain
this, we introduce the following lemma. Let p be a point in (M, gab) ,
ta ∈ Tp be a time-like vector, then at point p, for the Lorentzian metric
g̃ab = gab − tatb, if

gabv
avb ≤ 0 ⇒ g̃abv

avb < 0 , (5.3.11)

which implies that the light cone encoded by perturbing the old metric
to g̃ab is ‘wider’ than that of gab. If the spacetime satisfies stably causal
condition, then the causal structure of the perturbed spacetime (M, g̃ab)
is not violated, indicating that spacetime is stable under an infinitesimal
perturbation.

A spacetime M has stable causality, if and only if (iff) there exists a
differentiable function f on M such that

∇af = gab∇bf , (5.3.12)

is a time-like vector field. f is called the global time function. See Wald
(1984) or Hawking and Ellis (1973) for proofs.

The existence of a global time function f implies that the spacetime
possesses a favourable causal structure. Since a time-like ∇af leads to a
space-like hypersurface with equal value of f . The whole spacetime can
be decomposed with respect to the one parameter space-like hypersurface
congruence {Σf}, each Σf is equivalent to the whole ‘space’ at time
f . Accordingly, one can define f to be the ‘time’ t and the value of f
represents the instant time at each spacetime point. In addition, the
future directed property of ∇af is satisfied by choosing the sign of f .
This freedom guarantees that any possibility of causality violation is
forbidden.

A stably causal spacetime must be strongly causal. There are more
stronger conditions, e.g., causally simple, than stable causality which we
will not discuss them here.

A complete hierarchy of the causality of a spacetime, from weakest
to strongest, is listed as follow

chronological < causal < strong causality < stably causal . (5.3.13)

Other detailed conditions can be inserted to reflect more delicate hierar-
chy, aka the causal ladder.

The future domain of influence of W ⊂ M is defined as the chrono-
logical future I+(W) (or causal future J+(W)) of W.
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Suppose W is a closed6 achronal subset, the future domain of depen-
dence of W is defined as
D+(W) := {p ∈ M | Any past inextendible causal curve starting from p

has no intersection with W}.
(5.3.14)

The past domain of dependence D−(W) of W can be defined dually. The
(whole) domain of dependence of W is given as

D(W) := D+(W)
⋃

D−(W) . (5.3.15)

D+(W)∩I−(W) = ∅.
Suppose γ′ is a past inextendible causal curve of p, then ∀ p′ ∈ I+(p),

there exist past inextendible time-like curves γ passing through p′, such
that γ ⊂ I+(γ′).

An achronal closed set W is called a Cauchy surface, if D(W) = M.
Note that not all spacetime has Cauchy surface.

Suppose W is a Cauchy surface, then

M = W
⋃

I+(W)
⋃

I−(W) . (5.3.16)

If W is a Cauchy surface, then any two-way inextendible causal curve
must pass through all of W, I+(W) and I−(W).

The edge of a closed achronal subset W is defined as
edge(W) := {p ∈ W | For any neighbourhood Nei of p, such that q ∈

I+(p,Nei), r ∈ I−(p,Nei),∃ future directed time-
like curve γ from r to q, with γ ⊂ Nei

and γ ∩ W = ∅}.
(5.3.17)

edge(W) = ∅ if W is a Cauchy surface. This is also know as Cauchy
surface has no edge.

A spacetime is said to be globally hyperbolic, if it has a Cauchy sur-
face. Globally hyperbolic condition is stronger than stably causal condi-
tion and is the strongest causal condition. Globally hyperbolic spacetime
is of physical significance in GR, and its Cauchy surface is in general ex-
plained as the whole space at certain temporal point due to achronal
property. The definition of Cauchy surface shows that everything hap-
pens in spacetime is determined by the initial data on the Cauchy surface.
On the contrary, a non-globally hyperbolic spacetime violated determin-
ism, since the whole history of spacetime cannot be determined by all
data at the initial time. Throughout this thesis, thereof, all physical
spacetimes are globally hyperbolic, unless otherwise specified.

5.4 Isometric and Conformal Embedding
In differential geometry (DG), diffeomorphism maps are critical tools in
transferring differential structure from one manifold to another. Never-
theless, this type of map does not impose strong conditions on trans-
formation for which sometimes are necessary in specific problems. In

6See Wald (1984) for a complete explanation of a closed subset.

60 of 197



5. Embedding a Four Dimensional Curved Spacetime in a Five
Dimensional Manifold

Riemannian and pseudo-Riemannian geometries, an isometric embed-
ding mapping occurs frequently, which preserves the metric (distance)
while the rank-two tensor is carried into different manifold.

Isometry, or isometric embedding, is a diffeomorphism between two
pseudo-Riemannian manifolds (M, gab) and (N, g̃ab) , φ : M → N, such
that

g̃ab = (φ∗g)ab . (5.4.1)
Herein, no extra restriction is imposed on the two manifolds, i.e., M and
N could be any type of pseudo-Riemannian manifold with an indefinite
metric, where a 4 dimensional spacetime with a Lorentzian metric and a
5 dimensional pseudo-Euclidean space R2,3 are inclusive.

Nevertheless, isometric embedding is a rather strong condition which
might require the ambient manifold to satisfy certain conditions. This
can be cured by releasing the constraints to enlarge the scope of the
class of mappings, among which is to introduce the notion of conformal
transformation.

Suppose there are two metric fields gab and g̃ab with arbitrary but
same signatures, on manifold M. If there exists a C∞ function Ω which
is positive everywhere on manifold, such that

g̃ab = Ω2gab , (5.4.2)

g̃ab is called conformally transformed from gab, scalar field Ω is called the
conformal factor. It is easy to prove that g̃ab = Ω−2gab. Since there exist
two metric fields on M, it should be specified when raising and lowering
the indices of tensors.

Suppose we have two covariant derivatives ∇a and ∇̃a which are com-
patible with gab and g̃ab respectively. We then have the relation

∇̃awb = ∇awb − Cc
abwc , (5.4.3)

where ∀ wa ∈ T(0, 1). Consider (E.0.14) and the metric adapted covariant
derivatives ∇̃a , ∇a, we have

Cc
ab = 1

2 g̃
cd(∇ag̃bd + ∇bg̃ad − ∇dg̃ab) . (5.4.4)

On the other hand, using (5.4.2), yields

∇ag̃bd = ∇a(Ω2gbd) = 2Ωgbd∇aΩ . (5.4.5)

Substituting (5.4.5) to (5.4.4), we get

Cc
ab = Ω−1gcd(gbd∇aΩ + gad∇bΩ − gab∇dΩ)

= δc
(a∇b) ln Ω − gabg

cd∇d ln Ω .
(5.4.6)

Given a spacetime (M, gab) , g̃ab and gab are conformal metrics, va is an
arbitrary vector field. Then the following facts are satisfied

gabv
avb > 0 ⇒ g̃abv

avb > 0 ,
gabv

avb = 0 ⇒ g̃abv
avb = 0 ,

gabv
avb < 0 ⇒ g̃abv

avb < 0 . (5.4.7)

61 of 197



5. Embedding a Four Dimensional Curved Spacetime in a Five
Dimensional Manifold

These relations imply that Lorentzian structure is not changed under a
conformal transformation. Nevertheless, these properties are not appli-
cable to geodesics in general, except for specific class.

Suppose γ(λ) is a null geodesic with respect to gab , λ is an affine pa-
rameter, such that T a∇aT

b = 0 where T a is the tangent vector. Consider
a conformal metric g̃ab, we have ∇̃aT

b = ∇aT
b + Cb

acT
c. Accordingly,

T a∇̃aT
b = T a∇aT

b + Cb
acT

aT c

= Cb
acT

aT c

= 2T aT cδb
(a∇c) ln Ω − T aT cgacg

bd∇d ln Ω
= 2T c∇c ln ΩT b − T aT cgacg

bd∇d ln Ω .

(5.4.8)

Note that γ is a null geodesic, with T cT agac = 0. Equation (5.4.8)
becomes

T a∇̃aT
b = 2T c∇c ln ΩT b = α′T b , (5.4.9)

where α′ ≡ 2T c∇c ln Ω is a function on γ(λ). One can always reparame-
terize γ such that γ(λ̃) is a null geodesic with respect to g̃ab by selecting
appropriate λ̃. The relation between two parameters is given by

dλ̃
dλ = cΩ2 , (5.4.10)

where c is a non-zero constant. Thereof, null geodesic is invariant under a
conformal transformation. Nevertheless, in general, time-like and space-
like geodesics do not possess such property.

Suppose (M, gab) and (M̃, g̃ab) are pseudo-Riemannian manifolds, a
diffeomorphism φ : M → M̃ is called a conformal diffeomorphism, if
there exists a C∞ function Ω which is positive everywhere on M̃, such
that g̃ab = Ω2(φ∗g)ab. If the dimension of M̃ is greater than the dimension
of M, then φ is called a conformal embedding.

The Riemann curvature R d
abc of ∇a and the Riemann curvature R̃ d

abc

of ∇̃a have the following relation
R̃ d

abc = R d
abc + 2δd

[a∇b]∇c ln Ω − 2gdegc[a∇b]∇e ln Ω + 2(∇[a ln Ω)δd
b]∇c ln Ω

− 2(∇[a ln Ω)gb]cg
de∇e ln Ω − 2gc[aδ

d
b]g

ge(∇e ln Ω)∇g ln Ω .

(5.4.11)

The Weyl tensor is conformally invariant, i.e., Cabcd = C̃abcd.
An n dimensional pseudo-Riemannian manifold (M, gab) is said to be

conformally flat, iff gab is conformal to an n dimensional flat metric η̂ab,
i.e.

gab = Ω2η̂ab . (5.4.12)
A corollary resulting from this definition states that any 2 dimensional
pseudo-Riemannian manifold is conformally flat.

5.5 Embedding a 4 Dimensional Manifold
with a Lorentzian Metric

We investigate the embedding map, with certain conditions, from a 4
dimensional manifold into a higher dimensional flat manifold in this sec-
tion. It is apparently that specific conditions should be imposed on the

62 of 197



5. Embedding a Four Dimensional Curved Spacetime in a Five
Dimensional Manifold

embedded metric when the 4 dimensional spacetime is embedded into
the higher dimensional metric space. Nevertheless, a natural choice is
an isometry, or a conformal embedding, as it is not expected to have
two different metrics defined on the same manifold, R5. Accordingly, the
geometric properties might be maintained, including the local Lorentz
relation for both isometric and conformal embeddings7.

We will demonstrate that how one can embed a spacetime around a
black hole into a 5 dimensional manifold. Consider a local coordinate
system (O, ψx) in the original manifold M. We embed M to R5 by a
diffeomorphism φ. For simplicity, we want to assume that one coordinate
for φ(O) ∈ R5 is fixed to be constant (this guarantees that φ(O) is a
4 dimensional patch). Nevertheless, this situation is satisfied only for
a flat or a conformally flat spacetime, i.e., when the Weyl curvature
vanishes, which turns out to be not the case for a more general curved
spacetime, for example a Schwarzschild or a Kerr black hole. Consider
this effect, the embedding manifold is supposed to be more flexible which
is a hypersurface of a 5 dimensional Euclidean space, denoted by w8.
Moreover, O is carried into R5 in the following manner

φw : O → R , R ( R5 , (5.5.1)

where R is a real subset of R5. Let (R′, ψy) denotes the local coordinate
patch such that R ⊂ R′, for which

ψy : R → O′
y ⊂ R5 , (5.5.2)

is a diffeomorphism. For these two given coordinate systems, one can
obtain the diffeomorphic transition function. For (O, ψx), we have

ψx : O → O′
x ⊂ R4 , O′

x = {xµ | (x0, x1, x2, x3) ∈ R4} . (5.5.3)

Similar for (R, ψy)

ψy : R → O′
y ⊂ R5 , O′

y = {yµ | (y0, y1, y2, y3, y4) ∈ R5} . (5.5.4)

The transition function between them is given by

ψy ◦ φw ◦ ψ−1
x

 O′
x → O′

y ,

xµ → yν(xν) .
(5.5.5)

Consider the metric gab = gµν(dxµ)a(dxν)b in O′
x. It is pushed-forward

by an induced map

φw∗

 gab(x) → g̃ab(y) ,
gµν → g̃µν ,

(5.5.6)

where the explicit coordinate transformation is given by

g̃σρ = ∂xµ

∂yσ

∂xν

∂yρ
gµν = A µ

σ A
ν

ρ gµν , (5.5.7)

7In fact, the isometry preserves the whole geometry, while the conformal embed-
ding only maintains the null geodesic.

8Herein, actually, w is a global smooth function defined on R5 and is a constant
for a 4 dimensional hypersurface spacetime.
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where we have used A µ
σ to represent transformation matrix.

The metric det g = det(gµν) is degenerate (a zero-determinant ma-
trix) at the singularity. Then for the induced metric g̃σρ we have

det g′ = det(g′
σρ)

= det(A µ
σ A

ν
ρ gµν)

= det(A µ
σ ) det(A ν

ρ ) det(gµν)
= (detA)2 det g . (5.5.8)

We used that the determinant of matrices product is equal to the prod-
uct of matrices determinant. Requiring that det(A) is finite and non-
vanishing at all points in (O, ψx), and recall that for a diffeomorphism
its inverse map is a smooth map, which guarantees that det(A) is finite
and A is invertible. It is proven that det g′ is degenerate, which implies
a singularity remains a singularity.

For a coordinate singularity, consider another coordinate patch (O′, ψx′),
such that det g′ is non-degenerate, then det g̃ satisfies

det g̃ = det(A′)2 det g′ , (5.5.9)

is non-degenerate. Implying that a coordinate singularity remains a coor-
dinate singularity. In this sense, the properties of singularities have not
been changed after being pushed-forward by a diffeomorphism embed-
ding, i.e., coordinate singularities remain spacetime points whilst space-
time singularities remain ideal points (not spacetime points).

Nevertheless a diffeomorphism is not a good choice to push-forward a
spacetime, even when there exist singularities on the original spacetime.
As we want to preserve the local geometric properties of the 4 dimen-
sional manifold, hence an isometric or a conformal embedding would be
more appropriate. For example, the most trivial case is to embed the
4 dimensional Minkowskian spacetime in the 5 dimensional Euclidean
space R1,4. This can be done in the following procedure

φw

 L4 → R5 ,

xµ 7→ uρ ,
(5.5.10)

with explicit coordinate transformation

uµ = xµ , i = 0 , 1 , 2 , 3 ,
u4 = con ,

(5.5.11)

where con is a constant. This is actually the u4 = con plane in R1,4.
Alternatively, we can also interpret the embedded spacetime as a hy-
persurface (level surface) φw(L4) → w − con = 0 in R1,4 by a constant
function w defined on the 5 dimensional space. In this special case,
w = u4 = con.

However in the case of a black hole system, where the manifold is
highly curved due to the strong gravitational field, one cannot simply
embed everything to a 5 dimensional flat manifold without extra con-
ditions as an isometric embedding may never exist for the case we are
considering. We will have to consider the isometric embedding of a 4
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dimensional manifold in a 5 dimensional flat manifold R5 first and if this
cannot be carried out, we then have to apply the conformal embedding.
And we will introduce a conformal factor Ω for both isometric and con-
formal embedding, where the factor is set to be 1 for isometric map. Let
us consider the simplest case first, Schwarzschild spacetime.

The metric components of Schwarzschild metric in Schwarzschild co-
ordinate system xµ ∼ (t, r, ϕ, θ) are given by

gµν =


−(1 − 2M

r
) 0 0 0

0 (1 − 2M
r

)−1 0 0
0 0 r2 sin2 θ 0
0 0 0 r2

 . (5.5.12)

Suppose that the whole isolated system is pushed-forward in a coordinate
system uγ of a 5 dimensional Euclidean manifold. The transformation
for the metric is given as

gµν = ∂uγ

∂xµ

∂uρ

∂xν
δγρ . (5.5.13)

The components of Euclidean metric is given by

δγρ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (5.5.14)

where we have demanded that the coordinate is a Cartesian coordinate.
Substitute (5.5.12) and (5.5.14) into (5.5.13) we obtain(

∂u0

∂t

)2

+
(
∂u1

∂t

)2

+
(
∂u2

∂t

)2

+
(
∂u3

∂t

)2

+
(
∂u4

∂t

)2

= −Ω2
(

1 − 2M
r

)
,

(5.5.15)(
∂u0

∂r

)2

+
(
∂u1

∂r

)2

+
(
∂u2

∂r

)2

+
(
∂u3

∂r

)2

+
(
∂u4

∂r

)2

= Ω2
(

1 − 2M
r

)−1
,

(5.5.16)(
∂u0

∂ϕ

)2

+
(
∂u1

∂ϕ

)2

+
(
∂u2

∂ϕ

)2

+
(
∂u3

∂ϕ

)2

+
(
∂u4

∂ϕ

)2

= Ω2r2 sin2 θ ,

(5.5.17)(
∂u0

∂θ

)2

+
(
∂u1

∂θ

)2

+
(
∂u2

∂θ

)2

+
(
∂u3

∂θ

)2

+
(
∂u4

∂θ

)2

= Ω2r2 , (5.5.18)

4∑
i=0

(
∂ui

∂xµ

)(
∂ui

∂xν

)
= 0 , (5.5.19)

for µ, ν = 0, 1, 2, 3 and µ < ν. Solutions to the equation set and
other n dimensional Schwarzschild solutions to Einstein’s equation have
not been carried out by researchers in an isometric way. Instead, sev-
eral isometric embedding maps have been made into a 6 dimensional
Minkowskian space [143, 144], which means that the conformal embed-
ding into the 6 dimensional Minkowskian space must exist as a conformal
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condition is weaker than an isometric condition. In addition to embed-
ding the full Schwarzschild spacetime into a 5 dimensional Euclidean
space, mathematicians have successfully proven that space-like hyper-
surface of Schwarzschild solution can be isometrically embedded into a 5
dimensional Euclidean space [145, 146].

A Kerr spacetime is more complicated than the Schwarzschild case as
the spherically symmetric property reduces to axisymmetry, leading to
the presence of a cross term in the components of Kerr spacetime metric.
Taking this into consideration, we may obtain the following equations(
∂u0

∂t

)2

+
(
∂u1

∂t

)2

+
(
∂u2

∂t

)2

+
(
∂u3

∂t

)2

+
(
∂u4

∂t

)2

= −Ω2
(

1 − 2Mr

Σ̃

)
,

(5.5.20)(
∂u0

∂r

)2

+
(
∂u1

∂r

)2

+
(
∂u2

∂r

)2

+
(
∂u3

∂r

)2

+
(
∂u4

∂r

)2

= Ω2
(

1 − Σ̃
∆

)
,

(5.5.21)(
∂u0

∂ϕ

)2

+
(
∂u1

∂ϕ

)2

+
(
∂u2

∂ϕ

)2

+
(
∂u3

∂ϕ

)2

+
(
∂u4

∂ϕ

)2

=

Ω2 sin2 θ

Σ̃
[(r2 + a2)2 − Σ̃a2 sin2 θ] ,

(5.5.22)(
∂u0

∂θ

)2

+
(
∂u1

∂θ

)2

+
(
∂u2

∂θ

)2

+
(
∂u3

∂θ

)2

+
(
∂u4

∂θ

)2

= Ω2Σ̃ , (5.5.23)
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∂u1
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∂u1
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∂u2
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)(
∂u2
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)
+
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∂u3
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)(
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)

+
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∂u4
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)(
∂u4

∂ϕ

)
= −Ω2 2aMr sin2 θ

Σ̃
,

(5.5.24)
4∑

i=0

(
∂ui

∂xµ

)(
∂ui

∂xν

)
= 0 , (5.5.25)

where µ, ν = 0, 1, 2, 3, µ < ν, with µ = 0, ν = 3 exclusive. We have used
the metric components of Kerr spacetime in Boyer-Lindquist coordinate.
It is noted that the coordinate φ in Chapter 3 has been changed to ϕ in
case that no confusion rises when we apply embedding map φw. Solving
the above equations gives explicit expression for an embedding of a Kerr
spacetime in the 5 dimensional Euclidean space.

In equations (5.5.15)-(5.5.19) there are 10 equations and 5 unknown
variables9, and in equations (5.5.20)-(5.5.25) there are 10 equations and 5
unknown variables which both seems to be unsolvable. For a generic case,
for example a binary black hole merger, the metric is more complicated
and in general there are totally 16 components in the metric component
matrix, while only 10 of them are independent due to the symmetry of
metric between its two indices. Thus there will be 10 equations and only

9The conformal factor Ω leads to an extra unknown and gives us one more freedom
to solve these equations.
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5 unknown variables to be solved10. It is very likely that no solution
exist for such equation set, which means that such spacetime cannot be
pushed-forward in a 5 dimensional Euclidean space isometrically. This is
similar to the problem that isometrically embedding a Riemannian man-
ifold in a higher dimensional Euclidean space and existence of such em-
beddings is guaranteed by the Nash’s theorem [147, 148, 149]. Recently,
there are some mathematicians who are trying to construct similar theo-
rems in pseudo-Riemannian space (e.g., spacetime) embedded into higher
dimensional pseudo-Euclidean space and have made significant break-
through. Nevertheless, in this project we only need to push-forward a
4 dimensional Lorentzian manifold in a 5 dimensional Euclidean space
(we will prove that it is actually R2,3 pseudo-Euclidean space when we
reconstruct Lorentz structure) unless otherwise specified. This specific
requirement strongly constrains our choice of target space and the pos-
sibility of success. Intuitively, the most straightforward way is to prove
that there exists such isometric embedding map for all types of space-
time. However, it is apparently complex and we do not know whether
the theorem is true or not. In the case of embedding a 4 dimensional
spacetime, which is a solution to Einstein’s equation, in a flat Euclidean
space, Kasner has proven that most 4 dimensional curved spacetime can-
not be embedded in a flat space [150]. So a more wise procedure is to
select specific spacetime and solve isometric transformation equations to
work out the embeddings explicitly.

Upon construction of embedding the spacetime, the properties of em-
bedded spacetime hypersurface need investigating in the perspective of 5
dimensional Euclidean space. Initially one needs to guarantee the causal
structure within the region of spacetime hypersurface is preserved by
embedding φw. Consider a point p ∈ M and its vector space Tp, a null
vector va ∈ Tp satisfies

gabv
avb = 0 . (5.5.26)

Induced map φw∗ leads to

g̃abṽ
aṽb = g̃ab(φw∗v)a(φw∗v)b

= g̃abφw∗v
aφw∗v

b

= φ∗
wg̃abv

avb

= (φ∗
wg̃)abv

avb

= gabv
avb

= 0 , (5.5.27)

this is true for all points as p is an arbitrary point in M, then all null
curves in M remain null curves in φw(M) due to (A.0.54), measured by
induced metric g̃ab = (φw∗g)ab. After some similar calculations, it is
proven that all time-like and space-like curves are preserved. At this
stage, the causal structure inside one spacetime foliation of the 5 dimen-
sional Euclidean space is recovered, which is not restricted by our choice

10NB, the number of unknowns discussed herein should not be confused with the
degree of freedoms of a generic manifold. The former are describing the unknown
variables in the equations which need to be solved, the latter are related to the 4
coordinates in a general relativistic perspective.
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of embedding maps if φw is a diffeomorphism11.
Moreover, the conformal embedding relates the induced metric and

the Euclidean metric in the following manner

(φw∗g)ab = Ω2δab , (5.5.28)

nevertheless, ambiguity is caused in this expression as φw is not a dif-
feomorphism from the 4 dimensional M to R5. A push-forward map is
ill-defined whilst the pull-back map is sensible which leads to a correct
relation

(φ∗
wδ)ab = Ω′2gab , (5.5.29)

or another expression which is well-defined in φw(M) ( R5, given as

(φw∗g)ab = Ω2hab , (5.5.30)

where hab is induced by δab as a 4 dimensional metric restricted on space-
time hypersurface φw(M), given by

hab := δab + nanb , (5.5.31)

where na is a normal covector to φw(M). Apparently, a null 4 dimen-
sional vector va (from now on we use v stand for vectors in R5 if no
confusion arises) is null measured by hab due to the conformal transfor-
mation (5.5.30). For the 5 dimensional metric δab, taking (5.5.31) into
consideration, we have

habv
avb = (δab + nanb)vavb

= δabv
avb + nanbv

avb

= δabv
avb + 0

= δabv
avb = 0 , (5.5.32)

where we have used that the normal covector na is orthogonal to all 4
dimensional vectors in the vector space of spacetime hypersurface. Thus,
a null 4 dimensional vector va is null measured by the 5 dimensional
metric δab and lies in the light cone of R5. Note that this is true regardless
of the form of the 5 dimensional metric, hence we have the formula

habn
anb = gabn

anb , (5.5.33)

for a generic metric gab. Since φw∗ is non-degenerate, va 6= 0, indicat-
ing that there is at least one time-like dimension in R5, i.e., the Eu-
clidean metric δab becomes a pseudo-Euclidean metric η̂ab with signature
(−,+,+,+,+). The ambient 5 dimensional space becomes R1,4.

Furthermore, it should be clarified that our aimed manifold is R2,3

with two time-like dimensions, and the metric signature is (−,+,+,+,−).

11Thereof, an isometric embedding or a conformal embedding always preserve causal
structure, as they are diffeomorphism (actually isometry group and conformal map
group are subgroup of diffeomorphism group).
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Detailed reasons and more explanation for introducing new time-like di-
mension are described in Chapter 4.5. Therefore, equation set (5.5.20)-
(5.5.25) becomes

−
(
∂u0

∂t

)2

+
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∂t

)2

+
(
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)2
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∂t

)2

−
(
∂u4

∂t

)2

=

− Ω2
(

1 − 2Mr

Σ̃

)
,

(5.5.34)
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)2

−
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(
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,

(5.5.35)
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(5.5.38)

−
(
∂u0

∂xµ

)(
∂u0

∂xν

)
+

4∑
i=1

(
∂ui

∂xµ

)(
∂ui

∂xν

)
= 0 , (5.5.39)

where µ, ν = 0, 1, 2, 3, and µ < ν with µ = 0, ν = 3 exclusive. And it
is assumed that the extra time-like dimension is denoted by the fourth
coordinate u4. Solving these equations to carry out the explicit transfor-
mation for Kerr spacetime into R2,3 with conformal factor being smooth
everywhere on φw(M) except true singularities.

Similar to the Nash’s theorem, it is natural to generalize the results
from Riemannian cases to pseudo-Riemannian cases. In 1916 Cartan
and Janet proved that any n dimensional Riemannian manifold can be
locally and isometrically embedded into a Euclidean space Rn with di-
mension dim= n(n + 1)/2 [151, 9]. This result has been generalized on
pseudo-Riemannian M into Minkowskian space Ln by Friedman in 1961.
The number of difference between dimensions of M and Ln is called em-
bedding class and denoted by p = n(n + 1)/2 − n = n(n − 1)/2. In
GR, dimension of spacetime is generally n = 4, which leads to p = 10.
In the case of a spacetime with some symmetries, the embedding class
might decrease. For example, for a constant curvature spacetime p is 1,
for a spherically symmetric spacetime, i.e., Schwarzschild spacetime, p
becomes 2 [152, 153].

As mentioned previously, there exist 6 locally and globally isometric
embeddings of Schwarzschild spacetime, which has been carried out in a
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6 dimensional Minkowskian space [144]. In the case of Kerr spacetime,
there is only one local embedding in (3+6) dimensional Minkowskian
space [154]. Intuitively, it is apparent that embedding a Kerr spacetime
is more complicated than embedding a Schwarzschild spacetime since the
symmetries of Kerr spacetime is axisymmetry resulting from one time-
like Killing vector field and a spatial Killing vector field, and that of
a Schwarzschild spacetime is spherical symmetry resulting from three
Killing vector fields (one Killing vector field corresponds to one indepen-
dent symmetry of spacetime). This situation is likely contributing to a
locally and isometrically embedding of Kerr spacetime into an 8 dimen-
sional pseudo-Euclidean space. Nevertheless, this is just a conjecture and
requires further investigation. On the other hand, the embedding class
for a conformal embedding is referred to as conformal embedding class
which is 1 dimension less than that of an isometric embedding. Hence
it is possible to locally and conformally embed a Schwarzschild space-
time into a 5 dimensional Minkowskian space as well as a 5 dimensional
pseudo-Euclidean space. Suppose the ambient space is R2,3, equations
(5.5.15)-(5.5.19) become
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for µ, ν = 0, 1, 2, 3, and µ < ν. After some algebra, we find that these
coupled non-linear partial differential equations (PDE) are difficult to
solve in the Schwarzschild coordinate system, even by choosing suitable
conformal factor. Nevertheless, one of the advantage of GR is the freedom
of choosing coordinate. In a particular Cartesian coordinate system, it
is possible to split the Schwarzschild metric into the temporal section
and a 3 dimensional positive definite metric which is isometric to a flat
Euclidean metric [145], where the line element is given as

ds2 = −
(

1 − M
2R

1 + M
2R

)2

dt2+
(

1 + M

2R

)4
((dx1)2+(dx2)2+(dx3)2) . (5.5.45)
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This metric looks well organized since its spatial section is conformally
flat and can be pushed-forward into R2,3 slice by slice. Nevertheless, in
order to recover a Lorentzian metric via these foliations one needs to com-
bine all 3 dimensional space-like hypersurfaces, which makes the whole
process tedious and the possibility of recovering a Schwarzschild metric
via space-like hypersurfaces in a 5 dimensional space remains uncertain.
To seek a sensible way of reconstructing Schwarzschild metric in R2,3,
observe equations (5.5.42) and (5.5.43) we can obtain a direct solution
to (u1, u2, u3) by setting Ω2 = r−2


u1 = sin θ sinϕ ,
u2 = cos θ ,
u3 = sin θ cosϕ .

(5.5.46)

Where we assume that (u0, u4) are functions of (t, r). As a result, equa-
tions (5.5.44) would be satisfied automatically. The remaining two equa-
tions need more subtle consideration. The different coefficients gtt and
grr might be converted to same expression due to (5.4.12), which yields

−
( 1
r2 − 2M

r3

)
dt2 + 1

r2 − 2Mr
dr2 = 1

Λ2 (−dT 2 + dX2) . (5.5.47)

Where Λ = Λ(T,X) is a function of T and X. This new factor could be
regarded as an extra conformal factor and extract from the whole metric,
which is given as

g[c]
µνdxµdxν = −dT 2 + dX2 + Λ2X2

(
dθ2 + sin2 θdϕ2

)
, (5.5.48)

where g[c]
µν are the components of an intermediate metric g[c]

ab which is
conformal to the Schwarzschild metric, such that

g[c]
µν = Ω2Λ2g[S]

µν . (5.5.49)

We now can consider an isometric transformation between (T,X, θ, ϕ)
and (u0, u1, u2, u3, u4). The only consequence of introducing the new
conformal factor is that solution (5.5.46) gains a factor Λ, e.g., u1 =
Λ sin θ sinϕ, without affecting equations (5.5.44) (µ = 0 , ν = 1 ex-
cluded). Note that the conformal factor becomes ΩΛ in terms of g[c]

µν .
Equations (5.5.40), (5.5.41) and (5.5.44), after some calculation with
µ = 0 , ν = 1, become
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There exist more than one solution to these equations, for example u0 =
T , u4 =

√
3X , Λ = 2X. Nevertheless, we have to find a coordinate
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transformation such that the solution Λ satisfies the transformation rule
for (T,X), i.e., we must solve three coupled equations

− 1
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= 1
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We have reduced ten coupled non-linear differential equations to these
three equations, but it remains a problem due to the number of un-
knowns are less than that of the equations, and an explicit coordinate
transformation from (t, r) to (T,X) needs to be obtained.

It is unlikely for solutions to exist as the simplified system is still
over-determined, which indicates that Schwarzschild spacetime may not
be isometrically or conformally embedded in a 5 dimensional flat pseudo-
Euclidean space. Additional codimensions are in general needed to solve
the PDE system. This phenomenon is similar to the isometric embedding
problem for isometrically embedding Riemannian manifolds in higher
dimensional Euclidean spaces, which was solved in the celebrated work
of John Nash [155, 156, 157]. Later on, mathematicians have resolved
the isometric embedding problem in the pseudo-Riemannian setting and
have made significant breakthrough [152].

In the mathematical study of isometric embedding problems, the de-
gree of regularity on the metrics has substantial effect on the existence
of solutions to the problem. More precisely, if we consider Ck-isometric
embeddings where k ≥ 2, then there are higher-order compatibility con-
ditions given by the Gauss-Codazzi constraint equations which imply
certain rigidity phenomena [158]. On the other hand, if we consider
isometric embeddings which are only C1, then the system of non-linear
partial differential equations exhibit h-principles12 [159] which imply that
solutions are expected to exist in abundance, provided that certain topo-
logical conditions are satisfied (cf., [160]). For our embedding problem
at hand, if we are only concerned about the spacetime conformal struc-
tures, only C1 metrics and C1 isometric embeddings will suffice and we
should expect the conformal isometric embedding problem to be solvable
in most cases. However, if we want our spacetime to satisfy the Einstein
equation in the classical sense, then we require our metrics to be at least
C2 and the conformal isometric embedding problem theoretically could
be harder to solve.

Nevertheless, for our particular problem at hand, we need to embed a
4 dimensional Lorentzian manifold into a 5 dimensional pseudo-Euclidean
space R2,3. These specific requirements on the dimensions and signature
strongly constrain the problem. However, there exist two alternative
approaches of solving this resolution. Firstly, instead of looking at the
general problem of isometrically embedding an arbitrary spacetime, we
could focus on solving the problem for some specific spacetimes, which

12Throughout this thesis, we apply the notations h and hab to represent the induced
metrics, except for the h-principles that is presented here, unless otherwise specified.
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gives a more tractable problem. Moreover, once can solve this problem by
relaxing the condition of the ambient space, e.g., the Campbell’s theorem
guarantees that a D dimensional Riemannian manifold can be locally
embedded in a (D+ 1) dimensional Ricci flat Riemannian manifold [161,
162, 163, 164]. In the next section we will follow the second method and
propose a distinct way of embedding a 4 dimensional spacetime into a 5
dimensional space, which is applicable to an arbitrary spacetime.

5.6 Recover the Lorentz Structure in a Gen-
eral 5 Dimensional Manifold

As mentioned previously, one problem must be circumvented before mak-
ing progress. The local Lorentz structure is lost if the particle traverses
through different spacetime foliations in the ambient space, see Fig.5.1.
The basic idea to cure this problem is to rebuild a ‘vertical’ manifold,
within which the null geodesics are cut by zero level sets and prove that
the metric induced in the new manifold is isometric to that of the origi-
nal spacetime. It then allows one to reconstruct local coordinate systems
and a Lorentz metric h′

ab. Thereof, the causal structure can be recovered
by means of the 5 dimensional metric and the coordinate systems in the
5 dimensional manifold which consists of all spacetime slices.

In the previous section I derived a reduced set of equations for the
coordinate transformation of a conformal embedding into a flat pseudo-
Euclidean space. Nevertheless, equations (5.5.53)-(5.5.55) are still diffi-
cult to solve since the number of equations exceeds the number of un-
knowns.

Although a solution can be directly determined by brute force and a
conformal embedding of the Schwarzschild spacetime in a flat 5 dimen-
sional space may exist [165], this is not a readily extendable approach
when converting to a spacetime with more complicated geometric struc-
tures, e.g., the fully-dynamical spacetimes found in the gravitational wave
producing systems. We instead employ a new method which relaxes the
constraint on the target 5 dimensional ambient space. The target ambi-
ent space, as mentioned previously, requires the definition of a suitably-
chosen metric. This metric is obtained as follows.

The basic idea is to relax the requirement that the target space is
flat. We consider instead a general 5 dimensional pseudo-Riemannian
manifold with a metric which remains to be defined. The metric is par-
tially defined when embedding the 4 dimensional spacetime into the 5
dimensional manifold, since one can always obtain a specific, coordinate-
dependent, isometric transformation which recovers the original metric.
The form of the 5 dimensional metric is chosen such that the Lorentz
structure of the original 4 dimensional spacetime is recovered from the
foliations of the new 5 dimensional space.

We focus on the Schwarzschild case, with metric form gµν given in
(5.5.12) in the Schwarzschild coordinate. A conformal embedding is re-
placed by a more rigorous isometric embedding. An explicit coordinate
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transformation reads 
u0 = t ,

u1 = r ,

u2 = θ ,

u3 = ϕ ,

(5.6.1)

with u4 = t0 on the slice, where t0 is a constant and the slice is labelled
as the zeroth slice. We re-define all coordinates as,

u0 = t′ ,

u1 = r′ ,

u2 = θ′ ,

u3 = ϕ′ ,

u4 = w′ ,

(5.6.2)

which is a Schwarzschild-like coordinate system and w′ = w′
0 on this

slice, herein prime coordinates substitute ui coordinates throughout the
following context. This transformation is definitely an isometry and the
metric g′

µν has the same formula as that of the original metric in the orig-
inal Schwarzschild coordinate by replacing non-prime coordinates with
prime ones in (5.5.12).

For the first slice, we do the same operation and the explicit coordi-
nate transformation is given by

t′ = t− ∆t ,
r′ = r ,

θ′ = θ ,

ϕ′ = ϕ ,

w′
1 = t0 + ∆t = t1 ,

(5.6.3)

where t1 and t0 are constants, and ∆t is a positive finite constant.
Continue the embedding process we get a set of foliations, similar

coordinate transformation applied on each of them except for the zeroth
and fourth coordinates t′ and w′, which are given regularly as

t′ = t− n∆t = t0 ,

w′
n = t0 + n∆t = tn ,

(5.6.4)

on the n-th slice. It is apparently that the whole 5 dimensional man-
ifold has a R × M = M′ topology. Recall that one of our tasks is to
recover the Lorentz structure, in the above setting we can find a ‘null
geodesic’ φwn(C) on each hypersurface in M′, which is the image of a
same null geodesic C in the original 4 dimensional manifold. We pick out
one spacetime point from each φwn(C): (t′0, r′

0, θ
′
0, ϕ

′
0, w

′
0) on φw0(C) ,

(t′1, r′
1, θ

′
1, ϕ

′
1, w

′
1) on φw1(C), and similar for the remaining curves. If

we let ∆t → 0, and rewrite the infinitesimal quantity as dt, this is result-
ing that all these points constitute a curve which is the image of C. By
this one can recover a 3 dimensional null surface in which the embedded
geodesic is inclusive within the 5 dimensional space, and furthermore one
needs to recover the whole 4 dimensional manifold which consists of all
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cut 4 dimensional null geodesics and prove that this new 4 dimensional
manifold is isometrically embedded from M13.

The new constructed manifold is formed via all cut null geodesics,
which is called a vertical spacetime and it turns out that w′ = t on this
vertical slice, and the metric in this foliation is

h′
µνdxµdxν = −

(
1 − 2M ′

r′

)
dw′2+

(
1 − 2M ′

r′

)−1

dr′2+r′2(dθ′2+sin2 θ′dϕ′2) ,

(5.6.5)
the full 5 dimensional metric is given by

g′
µνdxµdxν = −

(
1 − 2M ′

r′

)
dw′2 −

(
1 − 2M ′

r′

)
dt′2 +

(
1 − 2M ′

r′

)−1

dr′2

+ r′2(dθ′2 + sin2 θ′dϕ′2) ,
(5.6.6)

where M ′ = M represents the Schwarzschild mass in the new 5 dimen-
sional manifold, and both are written in the Schwarzschild-like coordinate
system (t′, r′, θ′, ϕ′, w′).

Note that the new dimension introduced here is a temporal one in-
stead of a spatial one in common sense, which is atypical but can be
proven its necessity. To recover the Lorentz structure, it is natural to
add time-like dimension as intuitively the cut null geodesic is evolving
along the extra dimension, denoted by w′14.

Moreover, the 3 dimensional null surface recovery in 5 dimensional
manifold is a purely mathematical process, physically only a 4 dimen-
sional ‘universe’ is meaningful for an observer, which implies that one
has to recover the entire 4 dimensional spacetime consisting of all 3 di-
mensional null geodesics. To prove that the original spacetime M is
isometric to the recovered 4 dimensional manifold, denoted by Φ(M),
two steps must be done: Firstly, all 4 dimensional null geodesics con-
stitute a smooth 4 dimensional manifold with a metric denoted by h′

ab.
Secondly, there exists an isometry Φ from M to the recovered manifold
(that is why we use Φ(M) to denote it), satisfying (Φ∗g)ab = h′

ab.
We already obtained a series of embeddings, denoted by φwn (in nu-

merical simulation wn denote for discrete numerics of spacetime folia-
tions). A congruence of null geodesics {C(λ)} is selected, where the 4
dimensional spacetime is filled by these curves. Note this can always be
done for a real spacetime, for example, a Minkowskian space can be filled
by all 45◦ null geodesics and a Schwarzschild spacetime can be filled by all
incoming and outgoing null geodesics of Schwarzschild spacetime (in the
Eddington-Finkelstein coordinate system). Figure Fig.5.2 illustrates how
we recover the Lorentz structure of 2 dimensional Minkowskian foliations
in a 3 dimensional pseudo-Euclidean manifold.

13From now on hypersurface represents only for a 4 dimensional manifold in a 5
dimensional manifold, and we use surface to denote all other manifolds including a 3
dimensional null hypersurface of a 4 dimensional spacetime.

14Mathematically, it is possible to introduce a spatial dimension and recover the
Lorentz structure and derive null geodesics along the original temporal direction, but
this leads to uncertainty in the evolution direction of the 4 dimensional manifold,
which may either flow along positive w′ direction or negative w′ direction.
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Figure 5.2: The figure illustrates the embedding of a 2 dimensional Minkowskian
manifold embedded into a 3 dimensional pseudo-Euclidean manifold. The Lorentz
structure is recovered along p0p1 curve. The first two foliations are plotted, where
φw(M) (brown) represents the initial foliation and φw+∆t(M) (pink) represents the
adjacent foliation. The blue foliation Φ(M) represents the vertical foliation. p0

′p1
′

are the image of p0p1 curve.

After embedding, with the setting from (5.6.2), (5.6.3) and (5.6.4), we
pick the image of a null geodesic which travel through point (t0, r0, θ0, ϕ0)
of the original manifold M, and in the zeroth spacetime slice it is φw0(C),
and passes through (φw0(t0), φw0(r0), φw0(θ0), φw0(ϕ0), w′

0). In the first
spacetime slice the image of the same null geodesic passes (φw1(t0), φw1(r0),
φw1(θ0), φw1(ϕ0), w′

1) and (φw1(t1), φw1(r1), φw1(θ1), φw1(ϕ1), w′
1). It is

natural to cut each spacetime slice φwn(M) where the intersection are
(φwn(tn), φwn(rn), φwn(θn), φwn(ϕn), w′

n) on each of them, where w′
n =

t+n∆t = tn as we set in (5.6.4) and all these points in the 5 dimensional
space form an image of C, denoted by Φ(C). Herein, we have demanded
that the temporal interval between φwn(tn) and φwn+1(tn+1) is equal to
that between tn and tn+1. This is true because ∆w = wn+1 − wn = ∆t.
Now on this individual null geodesic the Lorentz structure is physically
recovered because adjacent points on Φ(C) are one to one correspondence
via the following map

φwn+1 ◦ an,n+1 ◦ φ−1
wn

: (t′n, r′
n, θ

′
n, ϕ

′
n, w

′
n)

→ (t′n+1, r
′
n+1, θ

′
n+1, ϕ

′
n+1, w

′
n+1) ,
(5.6.7)

where an,n+1 represents the vector which drags point (t′n, r′
n, θ

′
n, ϕ

′
n, w

′
n)

to point (t′n+1, r
′
n+1, θ

′
n+1, ϕ

′
n+1, w

′
n+1) on curve C15. Fig.5.3 illustrates

how one recovers the Lorentz structure between two adjacent foliations in
the 5 dimensional manifold. Note that in that graph, A cannot traverse to
any other point but the point B′, otherwise the causality will be violated
even in principle.

Generalize this cutting construction to all null geodesics in this con-
gruence and the images constitute a new 4 dimensional manifold Φ(M)16

15Note that the statement is more appropriate when ∆t → 0, i.e., the dragging
vector becomes the null tangent.

16Actually, Φ(M) is not covering the whole spacetime since we fix the starting point
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Figure 5.3: Illustration of a photon traveling from one spacetime foliation φwn(M)
to the adjacent foliation φwn+1(M). The two black circles correspond to the same
pre-image in M, e.g., A and A′ mapped from a. To maintain the Lorentz structure,
one must let the photon travel from A in φwn

(M) to B′ in φwn+1(M), i.e., the red
line. It is noted that these slices, φwn

(M) and φwn+1(M) are in the 5 dimensional
space. Furthermore, the interval between A and B (hence A′ and B′) must be equal
to that between A and B′, i.e., ∆w = ∆t.

which is an image of our original Lorentzian manifold. On this manifold
coordinate t′ is a constant since on the i-th spacetime slice t′ = tn−n∆t =
t0 as given in (5.6.4), in addition formula (5.6.4) demonstrates that in
the new manifold w′ replaces the physical time t and plays a similar role
provided ∆t → 0, where the map is given by

Φ : M → Φ(M) ⊂ M′ , (5.6.8)

with coordinate transformation given as

t′ = t0 ,

r′ = r ,

θ′ = θ ,

ϕ′ = ϕ ,

w′ = t .

(5.6.9)

This is a smooth manifold as all of the open sets in Φ(M) is mapped
via the induced map Φ from the open sets in M and since the transition
map ψ◦Φ is smooth, where ψ is the coordinate presentation of spacetime
M, a smooth coordinate presentation of Φ(M) is just the inverse of that
particular transition map.

We then need to find out the induced metric on the vertical manifold
Φ(M). It is supposed in (5.6.6) that the components of the 5 dimensional
metric of M′ reads

gµν = g[o]
µν + g44dw′2 , (5.6.10)

of spacetime slice and these null geodesics are incomplete ones in the 5 dimensional
space. We need to extend these curves backward in w′ to recover the whole Lorentzian
manifold.
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where g[o]
µν denote the original metric components of the Schwarzschild

spacetime and g44 = − (1 − 2M ′/r′) is associated to dw′2.
There exists a map from Φ(M) to M′, denoted by ĩ. A 4 dimensional

metric is induced by this map, given by

ĩ∗ : g′
ab → h′

ab . (5.6.11)

Consider the coordinate relation between these two spaces we can find
that the coordinate transformation is given by

T = t′ = t0 ,

R = r′ ,

Θ = θ′ ,

Ψ = ϕ′ ,

W = w′ ,

(5.6.12)

where capital letters are used for the coordinates of M′ in case no con-
fusion is caused. Note that the first row of these equations implies that
T is a constant for the submanifold of M′ which means that this vertical
spacetime is a hypersurface of the 5 dimensional space. Using the explicit
coordinate transformation we find the induced metric on Φ(M) is given
by

h′
µνduµduν =

(
1 − 2M ′

r′

)−1

dr′2+r′2(dθ′2+sin2 θ′dϕ′2)−
(

1 − 2M ′

r′

)
dw′2 ,

(5.6.13)
where, we use notation u to denote the general coordinates of the 5
dimensional manifold. Moreover, the original spacetime metric can be
mapped on 5 dimensional space by means of the induced map Φ and
the metric is pushed-forward as h′′

ab = (Φ∗g)ab, using the coordinate
transformation (5.6.9), the explicit form of the induced metric is given
as

h′′
µνduµduν =

(
1 − 2M ′′

r′

)−1

dr′2+r′2(dθ′2+sin2 θ′dϕ′2)−
(

1 − 2M ′′

r′

)
dw′2 ,

(5.6.14)
where M ′′ = M is the original Schwarzschild mass. By inspection, it is
apparent that h′′

ab coincides with h′
ab, i.e., (Φ∗g)ab = h′

ab, which indicates
that Φ is an isometric embedding. The Lorentz structure is recovered on
the cut manifold Φ(M) in the 5 dimensional space M′ .

This formalism can be generalized to all stationary spacetime, in-
cluding Kerr spacetime. Ignoring the region enclosed by event horizon,
there is always existing a coordinate system such that the metric can be
expressed in a time independent way, satisfying

∂gµν

∂t
= 0 , (5.6.15)

where t denotes the physical time. From (5.6.9) we know that

dw′ = dt , (5.6.16)
dt′ = 0 . (5.6.17)
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Figure 5.4: The figures illustrate the Schwarzschild spacetime (the one in the left
panel) embedded in 5 dimensional space in a Schwarzschild-like coordinate in 5 dimen-
sional space viewed from two different angels (the middle and right panels), where
coordinates θ′ and ϕ′ are suppressed. Only four of spacetime foliations φ(M) are
drawn in the plot. Red lines represent for event horizons, wavy black lines for space-
time singularity and blue curves represent for the boundary of collapsed star which
finally fall into the horizon (the dotted light blue lines represent the interior of the
star, only shown on the first slice). The vertical lines represent spacetime Φ(M). It is
apparent from the figure that the fifth coordinate w′ substitute the physical time t′.

No matter what metric form we have, we can write down an appropriately-
chosen metric form which is more generic than (5.6.6), given by

g′
µνduµduν = g′

00dt′
2 + g′

44dw′2

+g′
0kdt′duk + g′

jmdujdum

+g′
4idwdui , (5.6.18)

where µ and ν run from 0 to 4 , k , m , i and j run from 1 to 3. Due to
(5.6.16) and (5.6.17), all dt′ terms in (5.6.18) vanish and are transferred
to the dw′ term on the vertical spacetime Φ(M), even those containing
cross terms, for example the dtdϕ term in the Kerr metric. Due to
(5.6.15), this is guaranteed even if the two coordinate origins of M and
M′ do not coincide, where w′ = t + ∆t on Φ(M). However, a ∆t shift
affects the result for dynamical spacetimes, i.e., the pulling-back of a 5
dimensional metric onto the 4 dimensional recovered spacetime Φ(M)
leads to a non-isometric embedding of the original spacetime to Φ(M).

Consider a modified Schwarzschild metric, along with the metric form
given by

gµνdxµdxν = −
(

1 − 2M(t)
r

)
dt2 +

(
1 − 2M(t)

r

)−1

dr2

+ r2(dθ2 + sin2 θdϕ2) .
(5.6.19)

Where M is a function of t, which satisfies M(t) = t called the dynamical
Schwarzschild mass. It is noted that the metric is a generalization of
the normal Schwarzschild metric and is not necessarily a solution to the
Einstein equation. Without loss of generality, the result derived here can
be generalized to all analytical solutions of dynamical spacetime. We
demand a similar coordinate transformation for this ideal mathematical
model as is operated in formulas (5.6.2), (5.6.3) and (5.6.4). The ambient
space M′ is given as M×R and the topology for each hypersurface is that
of the original pseudo-Schwarzschild manifold which possesses a constant
coordinate w′ in a Schwarzschild-like coordinate. One point which is
different from a stationary case should be noticed is that now the mass
term M is time dependent and it is only a function of the coordinate time
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t, or a function of spacetime coordinate xµ at most. After embedding
M becomes a function of (t′, w′) on the whole 5 dimensional manifold
and varies with respect to w′ only on the vertical manifold, otherwise it
makes the ‘spacetime’ to be stationary on the vertical hypersurface, i.e.,
it is given by

M ′
n = t′ + w′ , (5.6.20)

for g′
00 and g′

11 on the n-th slice, and is given as

M ′ = w′ , (5.6.21)

for g′
44 on the n-th foliation. This result is curious because t is the real

physical time and could affect the black hole mass, however the extra
coordinate w′ is not a physical dimension but an evolution parameter.
The coordinate w′ is avoided in the final solution by pulling-back the
spacetime after deriving the null geodesics. Now the full metric has the
following form

g′
µνduµduν = −

(
1 − 2w′

r′

)
dw′2 −

(
1 − 2(w′ + t′)

r′

)
dt′2

+
(

1 − 2(w′ + t′)
r′

)−1

dr′2 + r′2(dθ′2 + sin2 θ′dϕ′2) .

(5.6.22)

The coordinate transformation would not produce isometric embedding
if two coordinate origins locate at different positions. This issue might be
cured if we set w′ = t to force a coincide of two origins. This operation
results in converting all t dependent terms in (5.6.18) to w′ dependent
for the induced metric h′

ab.
Moreover, the physical time dependent term (mass term in this case)

needs to be chosen very carefully in order to guarantee that each φwn

is an isometry. For a generic 4 dimensional spacetime, the metric gab

becomes

gµνdxµdxν = g00dt2 + g0idtdxi + gjkdxjdxk , (5.6.23)

where i , j and k run from 1 to 3. After embedding, the original time
dependent term A(t) becomes

A′
n(w′, t′) = A′

n(t′ + w′) , (5.6.24)

for the metric components of the first, third and fourth terms in equation
(5.6.18) on the n-th spacetime foliation, and A(t) becomes

A′
n(w′, t′) = A′

n(w′) , (5.6.25)

for the components of the second and fourth terms in equation (5.6.18) on
the n-th spacetime foliation. Herein, A′

n(t′ +w′) and A′
n(w′) possess the

same form as that of A(t). For the zeroth slice, the isometric condition is
satisfied due to that t′ = t. For the first component of equation (5.6.23),
according to (5.6.4), the ‘00’ component of a pushed-forward metric h′′
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is given by

h′′
00 = ∂t

∂t′
∂t

∂t′
g00

= g00

= g00(t)
= g00(t′ + n∆t) , (5.6.26)

on the n-th foliation φwn(M). The ‘00’ component of metric h′ induced
on φwn(M) by the 5 dimensional metric is given by

h′
00 = ∂T ′

∂t′
∂T ′

∂t′
g′

00

= g′
00

= g′
00(t′ + n∆t+ t0) , (5.6.27)

where we have used capital T ′ for the coordinate of the 5 dimensional
manifold to avoid confusion. We require that g00 and g′

00 have the same
form, hence (5.6.26) and (5.6.27) lead to h′

00 = h′′
00 provided the initial

value t0 (hence the initial value of w′) is set to be zero, i.e., w′
0 = t0 = 0,

which implies that φwn is an isometric embedding.
As for the remaining of the metric components in equation (5.6.18),

we can perform the same transformation and demand that the pushed-
forward 4 dimensional metric h′′

ab is isometric to the pulled-back metric
of the 5 dimensional metric g′

ab. Then the form of the 5 dimensional
metric (5.6.18) can be rewritten as

g′
µνduµduν = g′

00 (t′ + w′) dt′2 + g′
44 (w′) dw′2

+g′
0k (t′ + w′) dt′duk + g′

4m (w′) dw′dum

+g′
ij (t′ + w′) duiduj .

(5.6.28)

5.7 Application and Generalization
The Oppenheimer-Snyder solution [166] is one of the most simple and
famous dynamical solution to the Einstein equation, where the metric
form is given by

gµνdxµdxν = −dτ̃ 2 + o(τ̃)2(dχ̃2 + sin2 χ̃dΩ̃2) . (5.7.1)

This solution describes the process of a spherical star with zero pressure
and uniform density dust collapsing to a Schwarzschild black hole, where
τ̃ is the proper time parameter, χ̃ is radial coordinate and o is the scale
factor, satisfying

ȯ2 + 1 = 8π
3 ρo2 , (5.7.2)

if taking Einstein equation into consideration, where the overdot denotes
differentiation with respect to τ̃ . Consider the energy-momentum con-
servation with zero pressure, one derives

ρo3 = con ≡ 3
8πom , (5.7.3)
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where om is the maximum value of scale factor o and is a scalar (constant)
under general coordinate transformation. And o is related to τ̃ through
the conformal time Υ as

o = 1
2om(1 + cos Υ) , (5.7.4)

τ̃ = 1
2om(Υ + sin Υ) . (5.7.5)

The fluid elements gather into the star as the collapse proceed, along the
geodesics with fixed spatial coordinates χ̃ , θ and ϕ, and eventually form
a Schwarzschild black hole.

A similar method constructed in the last section can be implemented
for the dust collapse spacetime, for which the particular coordinate trans-
formation is given by 

τ̃ ′
n = τ̃ − n∆τ̃ ,

χ̃′
n = χ̃ ,

θ′
n = θ ,

ϕ′
n = ϕ ,

w′
n = τ̃0 + n∆τ̃ ,

(5.7.6)

for the n-th spacetime slice, where τ̃0 is a constant and ∆τ̃ is a positive
constant. The topology of the 5 dimensional manifold is given by MOS ×
R. Then we can follow a similar route to recover the Lorentz structure
by first choosing a metric for which form is expressed as

g′
µνduµduν = −dτ̃ ′2 + o′(τ̃ ′, w′)2(dχ̃′2 + sin2 χ̃′dΩ̃′2) − dw′2 , (5.7.7)

where the factor o′ is now a function of τ̃ ′ and the new coordinate w′,
given as

o′
n(τ̃ ′, w′) = on(τ̃ ′ + w′) , (5.7.8)

on the n-th discrete slice. Construct the vertical 4 dimensional manifold
Φ(MOS) in a similar way, we find that the metric introduced on Φ(MOS)
is just that of (5.7.7) without the first dτ̃ ′ term, and in addition the
factor o′ becomes a function of w′ due to that τ̃ ′ is transferred to w′ on
Φ(MOS) by coordinate transformation w′ = τ̃ . The full proof of isometric
relation between Φ(MOS) and MOS and the recovery of Lorentz structure
on Φ(MOS) can be referred to the last section where we demonstrate an
example for the Schwarzschild spacetime and an example for the pseudo-
Schwarzschild spacetime.

In the case of Oppenheimer-Snyder spacetime, we deduce that the
induced metric on Φ(MOS) is given as

h′
µνduµduν = o′(w′)2(dχ̃′2 + sin2 χ̃′dΩ̃′2) − dw′2 , (5.7.9)

where

o′ = 1
2o

′
m(1 + cos Υ′) , (5.7.10)

w′ = 1
2o

′
m(Υ′ + sin Υ′) , (5.7.11)

along with the conformal time satisfies Υ′ = Υ, since w′ = τ̃ by virtue
of the coordinate transformation which leads to that Υ′ = Υ due to
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(5.7.5) and (5.7.11), provided the constant maximum value of scale factor
satisfies o′

m = om. Accordingly, consider (5.7.4) and (5.7.10), o′ = o.
Note that we need to set τ̃0 = 0 in (5.7.6), hence the fifth coordinate on
the zeroth slice satisfies that w′

0 = 0.
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Chapter 6

Generalization of the 4+1
Method to Brill-Lindquist
Data and 3+1 Representation
of a Kerr Black Hole

6.1 Overview
We have shown in the last Chapter that analytical metric can be embed-
ded in a 5 dimensional manifold with the recovery of Lorentz structure
between neighbouring foliations, and whether we can employ the method
to a 3+1 numerical spacetime remains a question. Now we will general-
ize the embedding approach to the applications of 3+1 representations of
dynamical spacetime before proceeding to the embedding of a real binary
black hole evolution. In this Chapter, we first embed a fake evolution
of a Brill-Lindquist initial slice in a 5 dimensional manifold, then we in-
vestigate application of the embedding approach to the Kerr black hole
data. The implementation of the embedding method to the 3+1 repre-
sentations of these spacetimes forms a bridge between the application of
embedding approach to analytical and real 3+1 numerical data, which
will be discussed in the 8th Chapter.

6.2 Numerical Method for Binary Black Hole
The spacetime around a binary black hole merger system is solved by
using specific scheme from numerical relativity. The initial work for 3+1
numerical relativity originates from George Darmois in the 1920’s [167],
André Lichnerowicz in the 1930-40’s [168, 169, 170] and then Yvonne
Choquet-Bruhat (known as Yvonne Fourès-Bruhat at that time) in the
1950’s [171, 172] who was able to show that the Cauchy problem arising
from 3+1 decomposition has locally a unique solution [171]. Later in the
late 1950’s and early 1960’s, a considerable impulse, serving as the foun-
dation of GR, was contributed to the formalism by Paul Dirac [173, 174],
and R. Arnowitt, S. Deser and C. Misner (the ADM formalism) [175,
176, 177, 178, 179, 180, 181, 182, 183, 184]. In the 1970’s, by which time
3+1 formalism became the basic tool for nascent numerical relativity,
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James York who developed a general method to solve the initial value
problem [185] played a primordial role in putting the 3+1 equations in
the shape which are used afterwards by the numerical community [16].
L. Smarr performed the first non-spherically symmetric simulation of the
black hole spacetime [186]. It is the 1980’s and 1990’s when numerous au-
thors devoted to help increase the numerical computations, both in com-
plexity and suitable numerical implementation. Many efforts have been
dedicated to such area and recently fruitful results have been carried out.
Among them, Takashi Nakamura and his school, including Shibata, initi-
ated the formulation, which was later on improved by Shapiro and Baum-
garte and now becomes the popular BSSN scheme [187, 188, 189, 190]. In
2003, Alcubierre and his collaborators proposed a gauge condition which
is now called the ‘moving puncture’ method to avoid the spacetime singu-
larity while evolving the coordinates [191, 192]. Furthermore, the mathe-
matical aspects of 3+1 numerical relativity are well established, and new
computational algorithms are being developed (e.g. [193, 194]), aiming
for improving the numerical accuracy and stability, and for extending
the ranges of the physical parameters. Nowadays, most of the numerical
relativity codes are based on the 3+1 formalism. Other approaches are
the 2+2 formalism or characteristic formulation as reviewed by Wini-
cour [195], the conformal field equations by Friedrich [196] as reviewed
in [197], and the generalized harmonic decomposition by Pretorius [198,
199, 200].

Before proceeding, we need to demonstrate the 3+1 formalism of Ein-
stein equation and that of spacetime metric, based on the configuration
introduced in section 5.2

First of all, the induced metric hab introduce in (A.0.58) can be rewrit-
ten as

hab = gab ∓ nanb , (6.2.1)

where na is the normalized normal vector17. The related projector tensor
is given by

h b
a = δ b

a ∓ nan
b . (6.2.2)

And the inverse of hab can be deduced and is given by

hab = gab ∓ nanb . (6.2.3)

We then introduce the extrinsic curvature, which is also known as the
second fundamental form of hypersurface W. More precisely, one defines
the Weingarten map (sometime called the shape operator) X̃, which is a
map on a tangent space at point p of hypersurface W in M

X̃

Tp(W) → Tp(W) ,
va 7→ vb∇bn

a ,
(6.2.4)

where na is normal to W. Note that this definition is well-defined due to
that

gabn
aX̃(vb) = nbv

c∇cn
b = 1

2v
c∇c(nbn

b) = 0 . (6.2.5)

17Herein, a minus sign is employed if nana = 1, and a plus sign is employed if
nana = −1.
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The last equality is a result of (4.3.11) if W is not a null surface, whereas
if W is null, then the definition of X depends on the choice of null normal
vector na. A fundamental property of Weingarten map is that it is self-
adjoint, such that

habv
aX̃(ub) = habu

aX̃(vb) , (6.2.6)
given ∀ ua , va ∈ Tp(W). See Gourgoulhon [201] for a full mathematical
proof.

The self-adjointness of X̃ indicates that a symmetric bilinear form
defined on Tp(W) , K given by

K

 Tp(W) × Tp(W) → R ,
(u, v) 7→ habu

aX̃(vb) .
(6.2.7)

This is called the extrinsic curvature of hypersurface W. Some authors,
for example in [115], choose a minus sign for Kab in the above definition,
whereas a plus sign is used here which is in agree with other authors’
choice, e.g., Carroll [202], Wald [19] and Poisson [203]. More precisely,
the extrinsic curvature is given by

Kabu
avb = habu

aX̃(vb)
= habu

ah c
d v

d∇cn
b

= h c
d u

avd(gab + nanb)∇cn
b

= h c
d u

avd(gab∇cn
b + nanb∇cn

b)
= h c

d u
avdgab∇cn

b

= h c
d u

avd∇cna

= h c
b u

avb∇cna ,

(6.2.8)

where we use the fact that nb∇cn
b = 0 in the fifth equality and ∇cgab = 0

in the sixth equality, and change the dummy index d to b. Hence we can
rewrite the extrinsic curvature as

Kab = h c
b ∇cna , (6.2.9)

and
Kabu

avb = uavc∇cna . (6.2.10)
The trace of Kab is denoted by K, given by

K = habKab . (6.2.11)

In principle, the contractions in equations (6.2.6)-(6.2.11) are measured
by induced metric hab. Nevertheless, na acting on a vector in T(W) leads
to zero by definition. It gives the same results when we use gab instead
of hab

habKab = gabKab + nanbKab

= gabKab + nanb∇anb

= gabKab + 1
2n

a∇a(nbnb)

= gabKab ,

(6.2.12)
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where the inverse of hab from (6.2.3) is applied in the first equality. Kab

and K are able to be related to the normal vector na by means of the
covariant derivative ∇a according to the formula

∇anb = Kba − Abna , (6.2.13)

and
K = −gab∇anb , (6.2.14)

where
Aa = nb∇bn

a , (6.2.15)

is defined as the 4 dimensional acceleration of an Eulerian observer, whose
4 dimensional velocity is na. The proof of (6.2.13) is given by virtue of
(6.2.2) and (6.2.9), such that

Kab = h c
b ∇cna

= (δ c
b + nbn

c)∇cna

= ∇bna + nbn
c∇cna

= ∇bna + nbAa .

(6.2.16)

This completes the proof of (6.2.13), where Aa = gabA
b.

The essential step for numerical relativity is the decomposition of met-
ric and that of Einstein equation. Consider the 4 dimensional Riemann
curvature tensor R d

abc defined in (B.0.24), the tensor is decomposed in a
3+1 manner by using the covariant derivative defined on hypersurface W,
denoted by Da and the derived 3 dimensional Riemann curvature tensor,
denoted by 3R d

abc , which is associated with induced 3 dimensional metric
hab on W, where the 3 dimensional covariant derivative satisfies

Dahbc = 0 . (6.2.17)

And the 3 dimensional Riemann tensor is given by

(DaDb −DbDa)vc = −3R c
abd v

d , (6.2.18)

where vc is a generic vector field tangent to W. Given a tensor T a1···ai
b1···bj

∈
Tp(i, j), the 3 dimensional covariant derivative is expressible in terms of
the 4 dimensional covariant derivative according to the formula

DcT
a1···ai

b1···bj
= ha1

e1 · · ·hai
ei
hf1

b1 · · ·hfj

bj
hd

c∇dT
e1···ei

f1···fj
. (6.2.19)

In addition, we have another formula relates the two covariant deriva-
tives, first let us compute the following formula

uaDav
b = uah c

a h
b

d ∇cv
d

= uc(δ b
d + ndn

b)∇cv
d

= uc∇cv
b + ucndn

b∇cv
d

= uc∇cv
b + ucnb∇c(ndv

d) − ucnbvd∇cnd

= uc∇cv
b − ucnbvd∇cnd

= ua∇av
b − uanbvd∇and ,

(6.2.20)
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where the last equality is due to ndv
d = 0, provided vd ∈ Tp(W). Consider

(6.2.10) and plug it into (6.2.20), gives

uaDav
b = ua∇av

b −Kadv
audnb . (6.2.21)

The 4 dimensional Riemann tensor is able to be decomposed with respect
to the quantities relative to hypersurface W, namely the 3 dimensional
Riemann tensor 3R d

abc and extrinsic curvature Kab. By using formula
(6.2.19), we obtain that

DaDbv
c = h d

a h
e

b h
c

f ∇d(Dev
f )

= h d
a h

e
b h

c
f ∇d(h m

e h f
n ∇mv

n) .
(6.2.22)

After expanding and some algebra, we get the following expression

DaDbv
c = Kabh

c
f n

e∇ev
f −K c

a Kbfv
f + h d

a h
e

b h
c

f ∇d∇ev
f . (6.2.23)

Permute the indices a and b to get the expression for DbDav
c, in the LHS

of (6.2.18) there remains

DaDbv
c−DbDav

c = (KadK
c

b −KbdK
c

a )vd+h f
a h

e
b h

c
g (∇f∇ev

g−∇e∇fv
g) .

(6.2.24)
Consider the expression for the 4 dimensional Riemann tensor given in
the appendix B, the above formula becomes

DaDbv
c −DbDav

c = (KadK
c

b −KbdK
c

a )vd − h f
a h

e
b h

c
g R

g
fed v

d , (6.2.25)

substitute this relation into (6.2.18) results in
3R c

abd v
d = h f

a h
e

b h
c

g R
g

fed v
d − (KadK

c
b −KbdK

c
a )vd , (6.2.26)

since vd = h d
e v

e, an equivalent formula is given by

h d
a h

e
b h

f
c h

m
g R c

demv
g = 3R f

abg v
g − (K f

a Kgb −K f
b Kag)vg . (6.2.27)

Given the vector v is an arbitrary tangent in Tp, therefore we conclude

h d
a h

e
b h

f
c h

m
g R c

dem = 3R f
abg −K f

a Kgb +K f
b Kag , (6.2.28)

which is known as the Gauss relation. Consider the contraction between
two induced metrics,

h b
a h

c
b = δ c

a + nan
c , (6.2.29)

then we can contract the indices a and f in the Gauss relation

h d
a h

e
b Rde + hadn

eh c
b n

mR d
cme = 3Rab −KKab +KadK

d
b , (6.2.30)

where Rde and 3Rab are 4 dimensional Ricci and 3 dimensional Ricci
tensors respectively. This is called the contracted Gauss relation. The
scalar Gauss relation is given by

R + 2Rabn
anb = 3R −K2 +KabK

ab , (6.2.31)

by taking the trace of (6.2.30) with respect to hab, where 3R denotes the
3 dimensional Ricci scalar. Apply the identity (B.0.25) to normal vector
na and project it onto W via hab, gives

h d
a h

e
b h

f
c R

c
demn

m = h d
a h

e
b h

f
c (∇d∇en

c − ∇e∇dn
c) . (6.2.32)
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From (6.2.13),

h d
a h

e
b h

f
c ∇d∇en

c = DaK
f

b − AfKab , (6.2.33)

swap the indices of a ↔ b and subtraction from (6.2.33), equation (6.2.32)
becomes

h d
a h

e
b h

f
c R

c
demn

m = DaK
f

b −DbK
f

a . (6.2.34)
This is the Codazzi relation, or sometimes called Codazzi-Mainardi re-
lation in the mathematical literature [204]. Contracting the Codazzi
relation on the indices a and f yields

h d
c n

ch e
b R

c
dem = DdK

d
b −DbK . (6.2.35)

Moreover,

h d
c n

mh e
b R

c
dem = (δ d

c + ncn
d)nmh e

b R
c

dem

= nmh e
b Rem + h e

b R
c

demncn
mnd .

(6.2.36)

Taking the anti-symmetric property of the Riemann tensor, we conclude
that

nmh e
b Rem = DdK

d
b −DbK , (6.2.37)

which is known as the contracted Codazzi relation.
As mentioned in the previous context, an Eulerian observer, or called

a fiducial observer [205], is defined as whose worldline’s 4 dimensional
velocity is the unit normal vector na to a hypersurface W ⊂ M. Locally,
according to Einstein’s simultaneity convention, all physical events on
the hypersurface can be simultaneously observed by such an observer.
Furthermore, one can deduce that the 4 dimensional acceleration of an
Eulerian observer satisfies

Aa = nb∇bna = Da lnN = 1
N
DaN , (6.2.38)

where N is the lapse function. We then substituting this relation into
(6.2.13), leads to

∇anb = Kab −Da lnNnb . (6.2.39)
The gradient of the time-like normal evolution vector ma is then deduced
from (4.3.12) and (6.2.39), we obtain

∇am
b = NKb

a −DbNna + nb∇aN , (6.2.40)

by means of this formula, we are able to derive the following expression

Lmhab = mc∇chab + hcb∇am
c + hac∇bm

c

= Nnc∇c(nanb) + hcb(NK c
b −DbNnc + nc∇aN)

+ hac(NK c
b −DcNna + nc∇aN)

= N(nc∇cnanb + nan
c∇cnb) +NKba −DbNna +NKab −DaNnb

= 2NKab ,

(6.2.41)

where we have used habn
a = 0 in the third equality and (6.2.38) in the

last equality. It follows the simplest result

Lmhab = 2NKab . (6.2.42)
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Consider the relation ma = Nna, after some algebra we get

Lnhab = 1
N
Lmhab , (6.2.43)

this together with (6.2.42), leads to

Kab = 1
2Lnhab . (6.2.44)

Moreover, the Lie derivative of the projection tensor h b
a and any tensor

which is in TW(i, j) along ma vanish,

Lmh
b

a = 0 , (6.2.45)
LmT

a1···ai
b1···bj

= 0 . (6.2.46)

The result implies that any tensor tangent to W remains a tangent tensor
under the action of Lie derivative along ma. Contrarily, this feature is
not shared by na, for which Lnh

b
a 6= 0.

Consider the expression hadn
fh g

b n
eR d

gef = hadn
eh g

b (∇g∇en
d−∇e∇gn

d),
by means of (6.2.39), we get successively

hadn
fh g

b n
eR d

gef = −KaeK
e

b + 1
N
DbDaN − h d

a h
g

b n
e∇eKdg . (6.2.47)

And using (6.2.40), the Lie derivative of extrinsic curvature along the
normal evolution vector is given by

LmKab = −Nnc∇cKab −2NKacK
c

b +KacD
cNnb +KbcD

cNna . (6.2.48)

Apply the projection operator h b
a twice to the above formula, we get

LmKab = −Nh c
a h

e
b n

d∇dKce − 2NKacK
c

b . (6.2.49)

Extracting term Nh c
a h

e
b n

d∇dKce and plug it into equation(6.2.47), leads
to

hadn
fh g

b n
eR d

gef = − 1
N
LmKab + 1

N
DaDbN +KadK

d
b , (6.2.50)

where the torsion free feature of the 3 dimensional covariant derivative is
applied here. This relation is sometimes called the Ricci equation. More-
over, one can discard the 4 dimensional Riemann tensor by combining
(6.2.30) and (6.2.50) to obtain a equation with only Ricci tensor, given
by

h c
a h

d
b Rcd = 1

N
LmKab − 1

N
DaDbN + 3Rab +KKab − 2KacK

c
b . (6.2.51)

Contracting this relation with respect to hab, leads to

habRab = 1
N
habLmKab − 1

N
DaD

aN + 3R +K2 − 2KabK
ab

⇒(gab + nanb)Rab = 1
N
habLmKab − 1

N
DaD

aN + 3R +K2 − 2KabK
ab

⇒R +Rabn
anb = 1

N
habLmKab − 1

N
DaD

aN + 3R +K2 − 2KabK
ab .

(6.2.52)
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From (6.2.42) and habh
bc = δ c

a , we conclude

Lmh
ab = −2NKab . (6.2.53)

Consequently, (6.2.52) becomes

R +Rabn
anb = 3R +K2 + 1

N
LmK − 1

N
DaD

aN . (6.2.54)

Combine the relation with the scalar Gauss relation (6.2.31), we get an
equation with only Ricci scalar

R = 3R +K2 +KabK
ab + 2

N
LmK − 2

N
DaD

aN . (6.2.55)

Now we are at the stage to decompose the Einstein’s gravitational
equation. Firstly, by taking the contraction of it with respect to gab on
both sides, yields to the following formula

R = −8πT , (6.2.56)

where T = gabTab stands for the trace of energy-momentum tensor. An
equivalent form of (E.0.1) is immediately derived from this

Rab = 8π(Tab − 1
2Tgab) . (6.2.57)

Focus on the right hand side of (E.0.1), from the very definition of
energy-momentum tensor, energy density as measured by an Eulerian
observer is given by

E := Tabn
anb , (6.2.58)

similarly, the 3 dimensional momentum density as measured by the Eu-
lerian observer is given by

pa := −Tcbn
chb

a . (6.2.59)

Finally, still from the very definition of energy-momentum tensor, the
stress tensor as measured by the Eulerian observer is given by

Sab := h c
a h

d
b Tcd . (6.2.60)

Herein, pa and Sab are tangent to hypersurface W. Denote the trace of
stress tensor by S with respect to hab

S = habSab . (6.2.61)

It is sufficient to reformulate Tab in terms of (E, pa, Sab)

Tab = Sab + napb + Enanb . (6.2.62)

Take the trace with respect to Gab yields

T = S − E . (6.2.63)

It is now fully equipped to perform the projection of Einstein equation
onto the hypersurface and along its normal direction. A full projection

91 of 197



6. Generalization of the 4+1 Method to Brill-Lindquist Data and 3+1
Representation of a Kerr Black Hole

of (E.0.1) onto W is by taking the action of projection operator h b
a twice

and taking the (6.2.51) into consideration, we get

1
N
LmKab−

1
N
DaDbN+3Rab+KKab−2KacK

c
b = 8π

[
Sab − 1

2(S − E)hab

]
,

(6.2.64)
after some algebra, we have

LmKab = DaDbN−N
{

3Rab +KKab − 2KacK
c

b + 4π [(S − E)hab − 2Sab]
}
,

(6.2.65)
the mixed projection onto W and along normal na is given as

Rabn
ah b

c − 1
2Rgabn

ah b
c = 8πTabn

ah b
c . (6.2.66)

It follows from the contracted Codazzi equation (6.2.37) and (6.2.59) that

DaK −DbK
b

a = 8πpa . (6.2.67)

This is called the momentum constraint.
The full projection along the normal direction to hypersurface W,

given by
Rabn

anb − 1
2Rgabn

anb = 8πTabn
anb , (6.2.68)

consider gabn
anb = −1 and (6.2.58), the above equation becomes

3R +K2 −KabK
ab = 16πE . (6.2.69)

This equation is called the Hamiltonian constraint. At the stage, equa-
tions (6.2.65), (6.2.67) and (6.2.69) consist of a 3+1 equivalent form of
Einstein gravitational field equation (6.2.51).

We then introduce the adapted coordinate system, denoted by (t, xi),
which is suitable for our foliation Wt , ∀ t ∈ R, such that the three field
equations could be translated into a set of partial differential equations
and are able to be carried out practically. To establish the coordinate
system, let us first construct a local 3 dimensional coordinate system,
denoted by xi, on a single hypersurface W0. The local coordinates are
carried out from W0 to the adjacent foliation Wδt, by the Eulerian ob-
server along its tangent direction. Accordingly, at each intersection point
p = CEO ∩Wt of the Eulerian observer and the hypersurfaces, a local co-
ordinate is well defined. Together with the global function time t, one can
define a coordinate system (t, xi) for the manifold M which is adapted
to the foliation that we choose. The coordinates xi are recognized as
the spatial coordinates and t is recognized as the temporal coordinate,
although in some cases its tangent vector (∂t)a is not time-like according
to (4.3), for which would not cause unphysical consequence.

Note that for a coordinate line of (∂i)a, it always lies on the slice Wt

due to a constant zeroth coordinate t = con (constant), which results in
that the tangent vector (∂i)a is tangent to Wt.

Write down the components of metric and induced metric as follow

gab = gµν(dxµ)a(dxν)b , (6.2.70)
hab = hij(dxi)a(dxj)b . (6.2.71)
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Figure 6.1: This figure illustrates the adapted coordinate system on the foliations.
Credit: É. Gourgoulhon, 2012.

The components in the coordinate system constructed above are then
given as

gµν = gab(∂µ)a(∂ν)b , (6.2.72)
hij = hab(∂i)a(∂j)b . (6.2.73)

From definition (4.3.15), we get

βi(dxi)a = βa = gabβ
b = habβ

b , (6.2.74)

where we have used that na is normal to Wt and βb is tangent to Wt.
The ‘00’ component of metric gab is given by

g00 = gµν(∂t)a(∂t)b = −N2 + βiβ
i , (6.2.75)

where we have used (4.3.18) in the second equality. The ‘0i’ components
are given by

g0i = gab(∂t)a(∂i)b

= gab(ma + βa)(∂i)b

= gabβ
a(∂i)b

= (hab − nanb)βa(∂i)b

= habβ
a(∂i)b

= βj(dxj)b(∂i)b

= βi , (6.2.76)

where (6.2.74) is applied in the second last equality. The ‘ij’ components
of gab is given by

gij = gab(∂i)a(∂j)a = (hab − nanb)(∂i)a(∂j)b = hij . (6.2.77)

Hence, the expression (6.2.70) can be rewritten as

gµνdxµdxν = −N2dt2 + hij(dxi + βidt)(dxj + βjdt) , (6.2.78)
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Figure 6.2: This graph illustrates how lapse function and shift vector ‘propagate’
the coordinate from one time slice to another. Credit: T. W. Baumgarte and S. L.
Shapiro, 2010.

where we ignore the abstract indices here.
Further calculation implies that the relation between the determi-

nants of gab and hab is given by
√

−g = N
√
h , (6.2.79)

where g and h denote the determinant of a 4 dimensional metric and the
induced metric respectively.

Given a coordinate system (t, xi) on manifold M and a space-like
hypersurface W0 uniquely determine a lapse function N and a shift vector
β. The converse is true in the sense that given a coordinate system (xi), a
lapse function field and a shift vector field on the space-like hypersurface
W0 uniquely determine a coordinate system (t, xi) in the neighbourhood
region of W0, such that t = 0 is W0. Graphically, the lapse function
tells us the distance between the point p in W0 and the point p′ in the
adjacent hypersurface Wδt, where p′ is right ‘above’ p (perpendicularly
moving from p to p′), and the shift vector tells us how to propagate the
coordinate (xi) from its original location to its current location in Wδt.

In the adapted coordinate system, LmKab can be expressed as

LmKab = L∂tKab − LβKab , (6.2.80)

rewrite in component form

LmKij = L∂tKij − LβKij , (6.2.81)

where
L∂tKij = ∂Kij

∂t
≡ ∂tKij , (6.2.82)

and
LβKij = βk∂kKij +Kkj∂iβ

k +Kik∂jβ
k , (6.2.83)

similarly, it follows from (6.2.42) that

2NKij = L∂thij − Lβhij , (6.2.84)

where
L∂thij = ∂thij , (6.2.85)
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and the second term on the RHS is given as

Lβhij = βkDkhij + hkjDiβ
k + hikDjβ

k

= Diβj +Djβi , (6.2.86)

by means of equations (6.2.81) and (6.2.82), as well as (6.2.84) and
(6.2.85), the 3+1 form of Einstein equation (6.2.65), (6.2.67) and (6.2.69)
become

∂thij − Lβhij = 2NKij , (6.2.87)
∂tKij − LβKij = DiDjN −N3Rij −NKKij + 2NK k

i Kkj

+ 4πN [(S − E)hij − 8πNSij] , (6.2.88)
3R +K2 −KijK

ij = 16πE , (6.2.89)
DiK −DjK

j
i = 8πpi . (6.2.90)

Furthermore, the covariant derivative terms can be expressed in terms of
partial derivative with respect to the spatial coordinates xi by means of
3 dimensional Christoffel symbols 3Γ k

ij of Di, where

DiDjN = ∂i∂jN − 3Γ k
ij ∂kN , (6.2.91)

DjK
j

i = ∂jK
j

i + 3Γ j
jk K

k
i − 3Γ k

ji K
j

k , (6.2.92)
DiK = ∂iK . (6.2.93)

Equations (6.2.83) and (6.2.86) then become

LβKij = βk∂kKij +Kkj∂iβ
k +Kik∂jβ

k , (6.2.94)
Lβhij = ∂iβj + ∂jβi − 2Γ k

ij βk . (6.2.95)

With the 3 dimensional Ricci tensor and 3 dimensional Christoffel symbol
given by

3Rij = ∂k
3Γ k

ij − ∂j
3Γ k

ik + 3Γ k
ij

3Γ l
kl − 3Γ l

ik
3Γ k

lj , (6.2.96)
3Γ k

ij = 1
2h

kl(∂ihlj + ∂jhil − ∂lhij) . (6.2.97)

These equations, (6.2.87)-(6.2.97) complete the second-order non-linear
PDEs of 3+1 Einstein equation for unknowns (hij, N,Kij, β

i), assuming
that source terms (E, pi, Sij) are given. This is first derived by Darmois
in [167], with the special case N = 1 and βi = 0.

6.3 Embedding the 3+1 Brill-Lindquist Data
in a 5 Dimensional Manifold

Follow the last section, we now have the mathematical tools to build the
numerical data for binary compact star systems, such as BBH, NS-BH
and NS-NS binaries. Let us start with a simple data set, derived by Brill
and Lindquist, describing the initial condition of two head-on colliding
non-spinning black holes [206, 207].

Another head-on collision initial value solution for black holes is given
by Misner in 1960 [208].
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A treatment that 2 dimensional Misner and Brill-Lindquist slices are
isometrically embedded into 3 dimensional Euclidean space is discussed
by Hsungrow [209].

In this section, we first study the Brill-Lindquist data. These data are
helpful to us for two main justifications: The initial data is readily derived
and can be easily generalized to provide discrete data on a 4 dimensional
spacetime, i.e., the physical variables (N, βi, hab, Kab). Secondly, a fake
evolution Brill-Lindquist metric might allow the appearance of radiation
region.

A time symmetric Brill-Lindquist initial 3 dimensional metric hab is
given by

hab = ψ̂4δab , (6.3.1)
where δab is the metric of a 3 dimensional Euclidean space, and this
metric is apparently conformally flat. ψ̂ is given as

ψ̂ = 1 +
Nbh∑
i=1

Mi

2ri

, (6.3.2)

whereNbh is the number of black holes which takes the value of 2 through-
out the thesis, Mi is the mass of the i-th black hole and ri are the radial
distance from the centres of the black holes [210].

By using the isotropic (spherical) coordinates, the metric can be ex-
pressed as

hµνdxµdxν = ψ̂4
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
, (6.3.3)

with
ri =

√
r2 + d 2

i − 2dir cos θ , (6.3.4)
where di denotes the distance between the i-th black holes and the origin
of the coordinate system. When they are far apart, each hole has a
horizon radius of M/2 in the coordinate system.

The limitation of separation for two black holes between single and
double horizons have been found by several people, including Brill and
Lindquist [206], Shoemaker et al. [210], Cadez [211], Alcubierre et al. [212],
and Huq [213] and others [214, 215]. Herein, we use the critical separation
1.53(5)M found by Shoemaker et al..

Next we can obtain an evolution from the initial data (1, β0
a, ψ̂ 4

0 δab, 0)
with isotropic coordinates (t0, r0, θ0, ϕ0), where ψ̂0 = 1 + M/r1 + M/r2
and two equal mass black holes are assumed here and for the rest of the
context. Suppose the two black holes locate on the z-axis and have the
initial radial values of d0 and −d0 respectively. Let the initial separation
value of binary black hole spacetime be 10M and at the next time point
a Brill-Lindquist slice with separation smaller than that of the initial
one. Repeat this procedure and effectively glue all time slices together
until the slice with separation 1.5M . This can be viewed in the following
physical scenario: Let each hole possess a small initial constant speed
v18. For each finite time step δt, both objects move along the z-axis a
small distance δr, where

δr = vδt . (6.3.5)
18Herein, small means that the distance that each hole moves in a finite time period

is incomparable to that of the separation of two black holes.
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This is a smooth manifold M with a 4 dimensional metric, given by

gµνdxµdxν = −
(
N2 − βαβα

)
dt2 + β1dtdr + β2dtdθ + β3dtdϕ

+ ψ̂4
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
, (6.3.6)

where dn = d0 − nδr. In addition, a very important truth is concealed
from the implicit term ψ̂, which is a time dependent term

ψ̂ = 1 + M

rb1(t)
+ M

rb2(t)
, (6.3.7)

where rb1(t) and rb2(t) stand for the radial distance from the black hole
centres, which are time dependent due to (6.3.5). This will lead to a
dynamical spacetime for the 4 dimensional Brill-Lindquist metric.

Before making a progress, one should notice this type of evolution
might not be allowed in the physical world. As each slice is a solution to
the Hamiltonian and momentum constraint equations but the full metric
is not necessarily a solution to the Einstein equations. Nevertheless, this
construction is a good test for the viability of the 4+1 numerical method
for a discrete data set.

The first time slice is now able to be constructed. After a short time
evolving by δt, the initial data becomes (N1, β1

a, ψ̂ 4
1 δab, 0), where ψ̂1 is

given by

ψ̂1 = 1 + M

2r1
+ M

2r1
(6.3.8)

= 1 + M

r1
, (6.3.9)

where r1 is given by

r1 =
√
r2 + d 2

1 − 2d1r cos θ . (6.3.10)

Note that here we insist the fact that both black holes possess the same
value of radial distance from star centre, denoted by r1. We can follow
a similar procedure for the rest of the slices until the critical separation
is approached and a single horizon is formed. We now have achieved a 4
dimensional Brill-Lindquist data set.

Furthermore, we need to determine the value of lapse function Nn

and shift vector β a
n . Despite the slices and a coordinate system are

determined, there is freedom to choose a suitable pair of (N, βa) since
the fake manifold feature of the dynamical Brill-Lindquist spacetime. Let
the lapse function take the value of 1 and the shift vector be 0. Hence
we obtain a series data

(1, 0, ψ̂ 4
n δab, 0) , (6.3.11)

for the 4 dimensional metric defined on the n-th slice of the Brill-Lindquist
manifold.

Note that the slow decelerating motion of two black holes might give
rise to a gravitational radiation in the spacetime, with a small 3 dimen-
sional acceleration aµ. Such an evolution will absolutely lead to a solution
of Einstein equations, but satisfy the full vacuum Hamiltonian constraint

DjK
j
i −DiK = 0 , (6.3.12)
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Figure 6.3: These plots illustrate the evolution of two equal mass black holes merg-
ing, derived from Brill-Lindquist initial data. 4 slices are drawn in the figure.

on each Brill-Lindquist time slice. For the case of the fake wave prop-
agation, we have to find out other way of deriving the waveform. The
gravitational wave is caused by the accelerating motion of massive bodies,
and hence one intuitively wants to borrow this idea, such that the gravi-
tational wave energy is equal to that of the energy loss of the gravitating
system between two adjacent foliations.

We then apply the 4+1 method to the 4 dimensional Brill-Lindquist
data that is constructed in the last section here. Firstly, we embed the 4
dimensional metric into a 5 dimensional space and obtain the coordinate
transformation as below 

t′ = t ,

r′ = r ,

θ′ = θ ,

ϕ′ = ϕ ,

w′
0 = t0 .

(6.3.13)

This is done on the zeroth 4 dimensional slice φw0(M), M denotes the
original 4 dimensional manifold generated from the Brill-Lindquist data.

On the first slice the coordinate transformation is given by

t′ = t− ∆t ,
r′ = r ,

θ′ = θ ,

ϕ′ = ϕ ,

w′
1 = t0 + ∆t = t1 .

(6.3.14)

Repeating this operation to the rest of the 4 dimensional spacetime slices
and a new manifold is formed via combining all 4 dimensional spacetime
foliations, denoted by M′ = R × M.

Then one needs to recover the Lorentz structure by introducing a 5
dimensional metric, which is given by

g′
ab = −

(
N2 − β′

cβ
′c
)

(dw′)a (dw′)b + β′
1 (dt′)a (dr′)b + β′

2 (dt′)a (dθ′)b

+ β′
3 (dt′)a (dϕ′)b + gab .

(6.3.15)

The only term in the metric that needs to be concerned is the time
dependent ψ̂, which becomes ψ̂′(t′, w′), given by

ψ̂′
n(t′, w′) = ψ̂′

n(t′ + w′) , (6.3.16)
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for the coefficient contained in the gµν component, where ψ̂′ has the
same expression as that of ψ̂. By virtue of these transformations and
constructions, a Lorentz structure can be recovered and the proof is given
in previous context.

We have investigated the 3 dimensional Brill-Lindquist stationary
metric and made a generalization from the initial data to an evolution
version of this metric. Apart from the initial slice, more time slices are
added and glued to form a smooth Brill-Lindquist manifold at time t > t0,
where t0 labels the initial time on the zeroth slice. By adjusting the sep-
aration di one can create a fake evolution of a head-on collision of the
two compact stars. The collision is requiring that the distance between
two holes is decreasing as the introduced ‘physical’ time t increases. This
is by no means a real evolution, since the 4 dimensional Brill-Lindquist
metric is not a solution to the full Einstein equation. Nevertheless, this
treatment is still a good sample for studying the usability of a 4+1 for-
mulation for a discrete 3+1 spacetime data.

We have, at this stage, applied the embedding process with the fake
evolution Brill-Lindquist data, and successfully construct a 4+1 data
from the discrete 3+1 numerical data. The Lorentz structure of the re-
constructed 4 dimensional manifold Φ(M) is recovered outside one space-
time slice.

We have already discussed in Chapter 4 the dynamical case of a dust
collapse Oppenheimer-Snyder spacetime. However, this metric is not
employing 3+1 numerical relativity and only an analytical solution is
studied. We then have to apply the 4+1 method to a real numerical
data. Making use of the fake evolution Brill-Lindquist metric is a first
step. There is no solution of this initial value to the general relativity
that is singled out as two initially stationary black holes. Accordingly, it
is still necessary to have a try with more generic data which has to be a
solution of Einstein equation. The simplest case, two equal mass, non-
spinning black holes is the best to start with. Using Einstein toolkit [216,
217] it is convenient to generate a data set from our own initial value.

In some previous papers, people have described a Brill-Lindquist data
with radiation on the time slice by means of perturbation theory, in which
case a gravitational radiation area is deduced and may comparable to
another initial value solution given by Misner [218].

Furthermore, the study of an evolution Misner 4 dimensional space-
time has been considered [219] and it is not surprisingly that one would
be able to research an extensive solution to a Brill-Lindquist initial data,
satisfying the Einstein equation, for which possesses a gravitational radia-
tion region. Nevertheless, we will not do it here in this thesis. Intuitively,
there should exist some correlations between a real evolution and the fake
one, in which a further investigation may take this into consideration and
explain more details.

Consider the real evolution of two black holes, which undergo head-
on collision, there is a numerical simulation and the data is given by the
SERN/NRPY code [220, 221, 222].
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6.4 Applications of the 4+1 Method to Kerr
Spacetime

The analytical Kerr solution in the Boyer-Lindquist coordinate system is
given in (3.2.1)-(3.2.9)

The embedding method has been constructed in the previous Chap-
ter. We now apply it to the analytical Kerr spacetime. Define a 5 di-
mensional manifold M′ which is given by R × M, where M represents
the original Kerr spacetime. A metric can be defined on this manifold,
whose form is given by

g′
µνduµduν = g′

00dt′
2 + 2g′

03dt′dϕ′ + g′
kmdukdum + g′

4jdw′duj , (6.4.1)

where index 3 corresponds to the ϕ′ coordinate, 0 corresponds to the t′
coordinate and index 4 corresponds to the w′ coordinate, k , m and j run
from 1 to 3. And

g′
4kdw′duk = g′

44dw′2 + g′
43dw′dϕ′ , (6.4.2)

with
g′

44 = −
(

1 − 2M ′r′

Σ̃′

)
, (6.4.3)

g′
43 = −2a′M ′r′ sin2 θ′

Σ̃′
, (6.4.4)

where
Σ̃′ = r′2 + a′2 cos2 θ′ , (6.4.5)

a′ = J ′

M ′ , (6.4.6)

and the remaining components of g′ have similar expressions as those
given in (3.2.1)-(3.2.6).

The coordinate transformation for the 4 dimensional Kerr spacetime
is given by 

t′ = t− n∆t ,
r′ = r ,

θ′ = θ ,

ϕ′ = ϕ ,

w′
n = t0 + n∆t = tn ,

(6.4.7)

on the n-th slice φwn(M), t0 and tn are constants. One then needs to cut
the foliations in M′ to obtain a new manifold, denoted by Φ(M), which
is an image of M. On this submanifold, one can recover the Lorentz
structure by pulling-back the 5 dimensional metric g′. A pulled-back
metric is given by

h′
µνduµduν = g′

44dw′2 + 2g′
43dw′dϕ′ + g′

kmdukdum . (6.4.8)

The local Lorentz structure is encoded in the above 4 dimensional Lorentzian
metric.

We then apply the above embedding method to a 3+1 numerical
representation for the Kerr spacetime derived by the ADM formulation.
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We will apply the Kerr-Schild line element, which possesses the fol-
lowing form

gµν = ηµν + 2Hlµlν , (6.4.9)

where ηµν represents the Minkowskian metric, lµ and lν are incoming
null vectors, and H denotes a scalar function of coordinates [223]. In
a Cartesian coordinate system (t, x, y, z), the components of the metric
read

H = Mr3

r4 + a2z2 , (6.4.10)

and
lµ =

(
1, rx+ ay

r2 + a2 ,
ry − ax

r2 + a2 ,
z

r

)
, (6.4.11)

where r is given by

r2 = 1
2(ρ2 − a2) +

√
1
4(ρ2 − a2)2 + a2z2 , (6.4.12)

where M denotes the mass of the black hole, a = J/M is the black hole’s
angular momentum, and ρ ≡

√
x2 + y2 + z2.

A numerical decomposition of this metric is given by applying the
equation (6.2.78), such that the components for Kerr metric can be rep-
resented by the lapse function, shift vector and a 3 dimensional metric
defined on each hypersurface, which are given as

N = 1√
1 + 2Hlt2

, (6.4.13)

βk = 2Hltδkjlj/
(
1 + 2Hl 2

t

)
, (6.4.14)

hkj = ηkj + 2Hlklj , (6.4.15)

where lt denotes the zeroth component of lµ , k and j run from 1 to 3.
We then embed these data in a 5 dimensional manifold, which is

introduced as M′ = R × M. First we need a coordinate transformation
given in the Chapter 4, which is given as

t′ = t ,

r′ = r ,

θ′ = θ ,

ϕ′ = ϕ ,

w′
0 = t0 ,

(6.4.16)

on the zeroth 4 dimensional slice in the 5 dimensional manifold. On the
first slice, it is 

t′ = t− ∆t ,
r′ = r ,

θ′ = θ ,

ϕ′ = ϕ ,

w′
1 = t0 + ∆t = t1 .

(6.4.17)
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As mentioned before, the 5 dimensional manifold M′ is formed by repeat-
ing the process, for which on the n-th slice, the coordinate transformation
is given as 

t′ = t− n∆t ,
r′ = r ,

θ′ = θ ,

ϕ′ = ϕ ,

w′
n = t0 + n∆t = tn .

(6.4.18)

where t0 , tn and t1 are constants, ∆t is a positive constant.
An appropriate 5 dimensional metric is given by

g′
µνduµduν = −

(
N ′2 − β′

iβ
′i
)

dw′2 + gµνduµduν

+ h′
ijβ

′idujdw′

+ h′
ijβ

′jduidw′ . (6.4.19)

Where we have reformulated the equation (6.2.78), and gµν denote the
components of the original Kerr metric and are now depending on the
coordinates uµ. Note that none of the components of the Kerr met-
ric depends on the temporal coordinate t, hence we have the following
relations

N ′ = N , (6.4.20)

β′i = βi , (6.4.21)

h′
ij = hij . (6.4.22)

Following the procedure we proposed in the Chapter 4, a vertical
manifold Φ(M) can be constructed by cutting all spacetime foliations.
One can find that the Lorentz structure is recovered by pulling-back the
5 dimensional metric on the induced 4 dimensional manifold Φ(M).

We can recover the local Lorentz structure by a similar way, for which
a detailed derivation is ignored here.
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Chapter 7

Isometric Embedding for a
Four Dimensional Lorentzian
Manifold in a Five
Dimensional
Pseudo-Riemannian Manifold

7.1 Overview

We have exploit the embedding of a 4 dimensional spacetime in a flat
or a non-flat 5 dimensional manifold in Chapter 5. However, we lack
a rigorous proof whether an embedding exist, and if so, whether this is
the only way to embed. In this Chapter we will demonstrate that the
embedding do exist and we can define a class of embeddings which allow
one to recover the Lorentz structure correlating adjacent foliations.

For the former problem, we rely on the coordinate which can be
chosen freely on the 4 dimensional manifold. Although this is not a
purely geometrical way, it relaxes the choice of the coordinate that one
can use, i.e., we can choose our preferred coordinate for the 4 dimensional
manifold, and find a coordinate correlation of the two manifolds.

For the latter problem, we propose one type of different embedding
which introduces an extra constant parameter Θ. The result derived in
here shows that we might be able to generalize the current embedding
approach, from the one we found in Chapter 5 to a large family, or
even a group, of embeddings characterized with parameter Θ ∈ R (at
the moment, likely to introduce new factors to describe the embedding).
These mathematical discoveries are new and interesting, which are of the
main findings of this research.
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7.2 Proof on Recovering the Lorentz Struc-
ture with a Given 5 Dimensional Met-
ric

The existence and uniqueness (aka rigid embedding) of the embedding
map are the two main aspects of the aforementioned embedding problem.
In this Chapter we will deal with these two topics.

For a 5 dimensional manifold M with a metric gab defined on it (note
that we will ignore the abstract indices of metric in the following con-
text, which is true only in this Chapter), if one wants to isometrically
embed a 4 dimensional manifold N with a Lorentzian metric h′ in the
higher dimensional space, we need to impose certain constraints on the
5 dimensional manifold M and the 5 dimensional metric that we choose.
Actually, such a problem can be achieved in the following two steps as
mentioned: First we need to prove such an embedding(s) exist; secondly
we need to prove whether this embedding is unique or not.

For the first problem, we can change our mind and think about this
process. We define a 5 dimensional space M with a given metric g,
and then foliate this space into a family of 4 dimensional hypersurfaces.
Then we pull-back the 5 dimensional metric on the 4 dimensional hyper-
surfaces, and prove that each of the 4 dimensional manifold is equivalent
to a solution of the Einstein’s equation. Finally, we need to prove that all
4 dimensional hypersurfaces are mutually isometric, which means there
exist isometric maps φij between any two submanifolds iM and jM of
M.

Let us first analyze the first problem. Investigate the set of the so-
lutions to the Einstein’s equation, we can find that this set is actually a
subset of the set of all the 4 dimensional Lorentzian manifolds, where the
metrics are given arbitrarily, whose signatures are (−,+,+,+). Hence,
if one could prove that the existence of the embedding holds for all kinds
of Lorentzian type of manifolds, the former would be guaranteed as a
consequence.

Hence this requirement would impose constraint on the 5 dimensional
metric that one can choose. In order to obtain a 4 dimensional Lorentzian
metric by pulling-back a 5 dimensional metric we need at least one time-
like dimension, i.e., the signature of the 5 dimensional metric should be
of the type (−,+,+,+,±). The last sign is yet to be determined by
further constraints. We have the following lemma.

Lemma 7.2.1. Given a 5 dimensional manifold M with metric g, a
hypersurface of M can be a 4 dimensional Lorentzian manifold, iff the
signature of the metric of M possesses at least one different sign.

Proof. Consider a 5 dimensional manifold M with a metric g, a 4 di-
mensional manifold 1M ⊂ M and is a hypersurface on M. Let M be
a pseudo-Riemannian manifold where its metric is given by g with sig-
nature (−,+,+,+,+), Given a map between the two manifolds, the 4
dimensional metric can be pulled-back from g, i.e.

φ1 : 1M → M , (7.2.1)
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induces
φ1

∗ : g → 1h , (7.2.2)
let the normal vector to the hypersurface be 1n, we then can construct a
relation between g and 1h, such that

1h = g + 1n1n . (7.2.3)

Given the normal covector for which direction is along one of the ‘plus’
dimensions, we can prove, by means of 7.2.3, that the signature of the in-
duced 4 dimensional metric is given by (−,+,+,+), which is a Lorentzian
manifold (spacetime).

If the signature of a 5 dimensional metric g is given by (−,+,+,+,−),
then the normal vector’s direction can be either ‘minus’ one or ‘minus’
two, which leads to the consequence that the signature of 1h is given
by (+,+,+,−) or (−,+,+,+). Hence we obtain a Lorentzian manifold
(1M, 1h).

The results hold if we change the signs of the signature of the 5 dimen-
sional metric, i.e., the signature of the metric is given by (+,−,−,−,−)
or (+,−,−,−,+), which is just a different choice of convention.

Assume that the 5 dimensional manifold M is endowed with a metric
g, given a hypersurface on the 5 dimensional manifold, denoted by φi(N),
there is a 4 dimensional metric ih induced by the 5 dimensional metric,
given by

ih = g + inin , (7.2.4)
where in represents for the normal covector field defined on φi(N), which
satisfies in ∈ T∗(M), where T∗(M) denotes the covector field. We need
to introduce a way of foliating the 5 dimensional manifold. This will
require one more constraint on the 5 dimensional manifold. i.e., the 5
dimensional manifold must be hyperbolic, such that one can define a
global function, which is labelled by the parameter w on it. Note that
the hyperbolicity implies that the whole manifold can be decomposed
as R × iM, where {iM | iM, i ∈ N0} denote a family of 4 dimensional
hypersurfaces. We define that such a function on M, and the whole
manifold can be decomposed into a family of hypersurfaces, given by

{φi(N) ⊂ M | w(p) = coni , where coni ∈ R and is a constant, p ∈ φi(N) ,
i ∈ N0}. (7.2.5)

From now on, we use iM, defined in the 7.2.5, to denote the 4 dimensional
hypersurface φi(N). Use equation (7.2.4), one notices that there might be
a map between any two slices and an induced map between their metrics,
given by

φj ◦ φi
−1 : iM → jM , (7.2.6)

(φj ◦ φi
−1)∗ : ih → jh , (7.2.7)

where map φj ◦φi
−1 is a diffeomorphism, as both φj and φi (hence is the

inverse map φi
−1) are diffeomorphisms. Furthermore, we require that

the embedding map is isometric, i.e., φi preserves the metric ih, where
ih is isometric to the metric h of a 4 dimensional manifold N , ∀ i ∈ N0.
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Herein, we use h to denote the 4 dimensional metric. From this we know
that φi : N → iM induces a map φi∗, which satisfies

φi∗h = ih . (7.2.8)

Lemma 7.2.2. The mapping φj ◦φi
−1, between any two arbitrary hyper-

surfaces jM and iM, is an isometry, given any two integer labels j and
i.

Proof. From (7.2.4), we know that the metrics induced on jM and iM

are give by

jh = g + jnjn , (7.2.9)
ih = g + inin . (7.2.10)

From (7.2.8), we have

h = φ ∗
j

jh , (7.2.11)
h = φ ∗

i
ih , (7.2.12)

hence we have
(φj ◦ φi

−1)∗
ih = jh , (7.2.13)

which implies that φj ◦ φi
−1 : iM → jM is an isometry, for any i and

j.

We then give the form of the 5 dimensional metric.
Let us first consider the flat manifold case as a demo and then follow

a similar approach to derive the proof. Suppose a pseudo-Euclidean 5 di-
mensional manifold with metric η̂, such that η̂ has the following diagonal
component form (−1, 1, 1, 1,±1) in a Cartesian coordinate system xµ. In
this coordinate we decompose the whole manifold in a way that each hy-
persurface possesses a constant fifth coordinate x4 = con. Pull the metric
back onto a 4 dimensional hyperplane, leading to a 4 dimensional metric
h with diagonal components (−1, 1, 1, 1). Consider one more constraint,
that on each hyperplane, the zeroth coordinate satisfies the following
formula

x0 = X0 + i∆x , (7.2.14)
for the i-th foliation, where the capital letter denotes the 5 dimensional
zeroth coordinate. ∆x is an infinitesimal constant between two adjacent
slices, which equals to the difference in the x4 direction. In this setting, it
is clear that the Lorentz structure can be recovered outside one spacetime
foliation, shown in the Fig.7.1.

Now consider a generic 5 dimensional manifold (M, g) with metric
signature (−,+,+,+,−), and a hypersurface iM in it. We choose a local
coordinate (x0, x1, x2, x3) on iM and propagate this coordinate along the
normal unit vector in to the next adjacent foliation i+1M, and translate
the coordinate by a factor of ta∆t, where ta is a unit tangent along the x0

coordinate line, which forms a local coordinate in i+1M. From (7.2.5), we
know that the difference between the neighbouring foliations is given as
in∆t. Hence, if we set the first foliation as 0M and the zeroth coordinate
as x0 = t, then the zeroth coordinate on the i-th foliation is given by
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Figure 7.1: This figure illustrates that how one would recover the local Lorentz
structure outside one 4 dimensional foliation.

x0 = t, where t is the 4 dimensional zeroth coordinate of N. Now a local
coordinate has been constructed on the 5 dimensional manifold, given as
(X0, X1, X2, X3,W ), where X1 = x1 , X2 = x2 , X3 = x3 and the fifth
coordinate W is given as follow: W is a constant on each hypersurface.
Without loss of generality, let the W0 = t0 on the 0M hyperplane. We
conclude that Wi = t0 + i∆t on the i-th foliation. And X0 = x0 − i∆t
on the i-th foliation. We then can recover the Lorentz structure which
correlates adjacent foliation.

Consider a hypersurface N′ which traverses each 4 dimensional folia-
tions iM, a metric on N′ can be defined as

h′ + cn′cn′ = g , (7.2.15)

where cn′ denotes the normal covector to N′. We set t0 = 0 without
loss of generality. We choose hypersurface N′ where the normal vector
satisfies the following relation

0n′ = k′ ∂

∂X0 , (7.2.16)

there always exists hypersurface N′ which satisfies (7.2.16). For example,
an X0 = con (constant) hyperplane would obey the condition. We have
the following theorem.

Lemma 7.2.3. The X0 = con hyperplane traverses each foliation iM.

Proof. The intersection of X0 = con hyperplane and iM is given as
{p | p = (con,X1, X2, X3, t0 + i∆t)}, which is not empty, where X1 , X2

and X3 are free coordinates. Hence, the hyperplane X0 = con correlates
adjacent foliations iM and i+1M.

Now we require the X0 = 0 for the N′ without loss of generality.
First, the normal vector can be derived from the normal covector, given
as

na = cncg
ac . (7.2.17)

We also have that the 5 dimensional metric is given by (7.2.4).

Lemma 7.2.4. There exists an isometric embedding between N′ and a
hyperplane 0M, if the metric takes a uniform expression in dX0 and dW
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coefficient, i.e.

gµνdxµdxν = A00(dX0)2 + A00dW 2

+ A11(dX1)2 + A12dX1dX2

+ A13dX1dX3 + A22(dX2)2

+ A33(dX3)2 + A23dX2dX3

+ A01dX0dX1 + A01dWdX1

+ A02dX0dX2 + A02dWdX2

+ A03dX0dX3 + A03dWdX3

+ A04dX0dW , (7.2.18)

in the given coordinate (X0, X1, X2, X3,W ).

Proof. First, look at the following lemma:

Lemma 7.2.5. The manifold M is given as R × iM.

Proof. On any given hyperplane iM, the fifth coordinate reduces to a
constant, which is Wi = i∆t. Hence, dW terms vanish. The metric then
reduces to

igµνdxµdxν = A00(dX0)2 + A11(dX1)2 + A12dX1dX2

+ A13dX1dX3 + A22(dX2)2 + A33(dX3)2 + A23dX2dX3

+ A01dX0dX1 + A03dX0dX3 . (7.2.19)

And the induced metric ih on iM is given by

ih = ig . (7.2.20)

Consequently, each hyperplane possesses the same metric form given in
(7.2.20), which proves that φ : iM → jM is an isometric map, ∀ i and j.

Lemma 7.2.6. (∂/∂W ) is orthogonal to (∂/∂X0), hence the cross term
A04 is zero.

Proof. The coordinate line of W is given when X0 , X1 , X2 , X3 are
constants. On 0M, the origin is X0 = X1 = X2 = X3 = 0, where
x0 = X0. Propagate to foliation 1M, the origin ofXµ is 0 = X0 = x0−∆t,
i.e., we need to transform the coordinate x0 by (−ta∆t), where ta is along
the x0 coordinate line. Hence, the origin of X0 = X1 = X2 = X3 = 0 is
propagated by 0n∆t. We then have the following relation

∂

∂W
= k′′ × 0n , (7.2.21)

where k′ is a reparameterization factor. Furthermore, we have

g(0n, ∂/∂X0) = 0 , (7.2.22)

due to 0N is normal to the hyperplane and ∂/∂X0 is tangent to that
plane. We conclude that g(∂/∂X0, ∂/∂W ) = 0, i.e., A04 = 0.
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The normal vector to N′ is n′ = k′∂/∂X0. After reparameterizing we
can get k′ = 1. Hence the normal covector is given as follow

cn′ = g(n′) , (7.2.23)

the explicit form of cn′ is given as

cn′ = A00dX0 + A01dX1 + A02dX2 + A03dX3 . (7.2.24)

Hence, we can derive the metric induced on N′, given as

h′
µν = gµν − cn′

µ
cn′

ν

= A00(dX0)2 + A00dW 2 + A11(dX1)2 + A12dX1dX2

+ A13dX1dX3 + A22(dX2)2 + A33(dX3)2 + A23dX2dX3

+ A01dX0dX1 + A01dWdX1 + A02dX0dX2 + A02dWdX2

+ A03dX0dX3 + A03dWdX3

−
(
A00dX0 + A01dX1 + A02dX2 + A03dX3

)2
, (7.2.25)

which leads to

h′
µν =

(
A00 − (A00)2

)
(dX0)2 + A00dW 2

+
(
A11 − (A01)2

)
(dX1)2 + (A10 − 2A01A00) dX1dX0

+
(
A22 − (A02)2

)
(dX2)2 + (A02 − 2A00A02) dX0dX2

+
(
A33 − (A03)2

)
(dX3)2 + (A03 − 2A00A03) dX0dX3

+ (A12 − 2A01A02) dX1dX2

+ (A23 − 2A02A03) dX2dX3

+ (A13 − 2A01A03) dX1dX3

+ A01dWdX1 + A02dX2dW + A03dX3dW . (7.2.26)

For the hyperplane 0M, the normal covector is given as

0nµ = gµν
0nν = gµν

∂

∂W
, (7.2.27)

where we have reparameterized the 0nν and k′ is now 1. Consider equa-
tions (7.2.18), (7.2.4) and (7.2.27), we have the following expression

0hµν =
(
A00 − (A00)2

)
dW 2 + A00(dX0)2

+
(
A11 − (A01)2

)
(dX1)2 + (A10 − 2A01A00) dX1dW

+
(
A22 − (A02)2

)
(dX2)2 + (A02 − 2A00A02) dWdX2

+
(
A33 − (A03)2

)
(dX3)2 + (A03 − 2A00A03) dWdX3

+ (A12 − 2A01A02) dX1dX2

+ (A23 − 2A02A03) dX2dX3

+ (A13 − 2A01A03) dX1dX3

+ A01dX0dX1 + A02dX2dX0 + A03dX3dX0 . (7.2.28)
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In addition, we have the coordinate relation as follow

X0
0 = W′ ,

X1
0 = X1′ ,

X2
0 = X2′ ,

X3
0 = X3′ ,

X0′ = W0 = 0 ,

(7.2.29)

where ‘′’ denotes the coordinate of N′ and ‘0’ denotes that of 0M, which
implies that the metric h′ is isometric to 0h, i.e., the mapping Φ : N′ →
0M is an isometric embedding.

Lemma 7.2.7. The 4 dimensional Lorentz structure can be recovered on
N′.

Proof. The lemma is equivalent to that the mapping between N′ and the
original 4 dimensional manifold N is an isometric embedding. We know
that an induced mapping given as φ′ ≡ Φ−1 ◦ φ0 relates N′ and N as

φ′ : N → N′ , (7.2.30)

is an isometry due to the previous lemma. Hence, the Lorentz structure
is recovered on N′.

Proposition 7.2.8. The 4 dimensional Lorentz structure (of manifold
N) which correlates two adjacent foliations can be recovered, provided
the 5 dimensional metric have certain constraint, and the 5 dimensional
manifold is given as R× iM, where N is isometric to iM , ∀ i an integer.

7.3 Proof of the Non-Uniqueness of the Em-
bedding

The uniqueness of the embedding, is that whether this embedding mech-
anism is unique or not, such that the Lorentz structure is maintained
when a 4 dimensional spacetime is carried into a 5 dimensional manifold
with a given 5 dimensional metric where the signature is (−,+,+,+,+)
or (−,+,+,+,−). The conclusion is that this mechanism is not unique,
i.e., the isometric is not rigid, as the metric that we choose in the last
section is a specific one and we impose too many constraints on it. We
may relax these conditions and make new choice of the 5 dimensional
metric g and the embedding.

Consider only these two constraints, which are: First, we require iso-
metric embeddings for all pull-back mappings. Moreover, we require that
the Lorentz structure is maintained outside each individual 4 dimensional
hypersurface (i.e., correlate two adjacent foliations). Define a 5 dimen-
sional manifold with a pseudo-Riemannian 5 dimensional metric g, whose
signature is, without loss of generality, given by (−,+,+,+,−). The in-
duced 4 dimensional metric, by pulling-back the 5 dimensional metric
onto a 4 dimensional hypersurface, is given in (7.2.4).

First, again, consider the Minkowski case as a demonstration with
coordinate (t, r, θ, ϕ). The first slice embedded in the 5 dimensional flat
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manifold is locating on the w′ = 0 hyperplane and rotated wrt the w′-axis
by a factor of Θ = arctan(

√
2/2). The new coordinates (t′, r′, θ′, φ′) are

given as 

t′ = t′′ ,

r′ = r′′ ,

θ′ = θ′′ ,

ϕ′ = ϕ′′ ,

w′ = 0 ,

(7.3.1)

where (r′′, t′′, θ′′, ϕ′′) are given as

t′′

r′′

θ′′

ϕ′′

 =


cos Θ sin Θ 0 0

− sin Θ cos Θ 0 0
0 0 1 0
0 0 0 1



t
r
θ
ϕ

 , (7.3.2)

the next foliation would locate on a w′ = con, where con is a constant,
plane while rotated in the following way: t′′2 → t − ∆t and the fifth
coordinate is given as w′

2 = ∆t/
√

2, where ∆t is a positive constant.
The full coordinate transformation of (t′, r′, θ′, ϕ′, w′) is given as



t′2 = t′′2 cos Θ + r′′
2 sin Θ ,

r′
2 = −t′′2 sin Θ + r′′

2 cos Θ ,

θ′
2 = θ′′

2 ,

ϕ′
2 = ϕ′′

2 ,

w′
2 =

√
2

2 ∆t ,

where θ′′
2 = θ, and ϕ′′

2 = ϕ.
For the foliations after the first and second ones, we can deduce the

following coordinate transformation

t′′n = t− n∆t ,
r′′

n = r ,

θ′′
n = θ ,

ϕ′′
n = ϕ ,

w′
n =

√
2

2 n∆t ,

(7.3.3)

with 
t′n
r′

n

θ′
n

ϕ′
n

 =


cos Θ sin Θ 0 0

− sin Θ cos Θ 0 0
0 0 1 0
0 0 0 1



t′′n
r′′

n

θ′′
n

ϕ′′
n

 , (7.3.4)

on the n-th foliation, where all the coordinates with “′′” denote the inter-
mediate coordinates which can be cancelled out in the final coordinate
transformation from (t, r, θ, ϕ) to (t′, r′, θ′, ϕ′, w′). The embedding for-
malism is pictured in the Fig.7.2.

We can now consider the embedding of the Schwarzschild metric given
in (2.2.4). We introduce a new metric form for the 5 dimensional manifold
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Figure 7.2: The figure illustrates the embedding of the 4 dimensional Minkowskian
manifold in a 5 dimensional pseudo-Euclidean manifold. The left panel denotes the
original Minkowskian manifold M with two spatial dimensions are suppressed. And
the right panel denotes the 5 dimensional flat manifold R×M. The 45◦ inclined black
lines in the right panel represent the null geodesics, t and r are the temporal and
spatial coordinates respectively. The line p0p1 denotes the null curve which traverses
the origin of M. φw represents the isometric embedding. For the left panel, w′ , r′

and t′ denote the three coordinates, where w′ and t′ are time-like. φ1(M) represents
the initial foliation and φ2(M) denotes the second slice with w′

2 = ∆t/
√

2. The
intermediate coordinate (t′′, r′′) are denoted with pink colour. The can be approached
by rotating the (t′, r′) coordinate along the w′-axis by an angle of Θ. p0

′p1
′ denotes

the image of p0p1. Note that the upper foliation is shifted along the −t′′ direction by
a factor of ∆t. The vertical manifold is denoted by Φ(M). The Lorentz structure of
M can be recovered within this hyperplane.

R × M, given as

gµνdx′µdx′ν = −
(

1 − 2M
t′ sin Θ + r′ cos Θ

)
cos2 Θdt′2

+ 2
(

1 − 2M
t′ sin Θ + r′ cos Θ

)
sin Θ cos Θdt′dr′

−
(

1 − 2M
t′ sin Θ + r′ cos Θ

)
sin2 Θdr′2

+
(

1 − 2M
t′ sin Θ + r′ cos Θ

)−1
sin2 Θdt′2

+ 2
(

1 − 2M
t′ sin Θ + r′ cos Θ

)−1
sin Θ cos Θdt′dr′

+
(

1 − 2M
t′ sin Θ + r′ cos Θ

)−1
cos2 Θdr′2

+ (t′ sin Θ + r′ cos Θ)2(dθ′ + sin2 θ′dϕ′2)

− 2
(

1 − 2M
t′ sin Θ + r′ cos Θ

)
dw′2

− 2
√

2
(

1 − 2M
t′ sin Θ + r′ cos Θ

)
cos Θdt′dw′

+ 2
√

2
(

1 − 2M
t′ sin Θ + r′ cos Θ

)
sin Θdr′dw′ , (7.3.5)
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a coordinate transformation given as

t =
√

2w′
n + t′n cos Θ − r′

n sin Θ ,

r = t′n sin Θ + r′
n cos Θ ,

θ = θ′
n ,

ϕ = ϕ′
n ,

w′
n =

√
2

2 n∆t ,

(7.3.6)

would induce an isometric embedding from the 4 dimensional Schwarzschild
M to a foliation (n-th, where w′

n = con) in R×M. An isometric embed-
ding can be defined from M to a hypersurface Φ(M) of R × M, by the
following coordinate transformation

t =
√

2w′ +
√

2
2 r

′ cos Θ − r′ sin Θ ,

r =
√

2
2 r

′ sin Θ + r′ cos Θ ,

θ = θ′ ,

ϕ = ϕ′ ,

(7.3.7)

where Φ(M) is given as

Φ(M) =


w′ = w′ ,

t′ =
√

2
2 r

′ ,

θ′ = θ′ ,

ϕ′ = ϕ′ ,

(7.3.8)

in the 5 dimensional manifold. Hence, we can infer that the pulled-back
metric of (7.3.5) onto Φ(M) and the pushed-forward metric of (2.2.4)
into Φ(M) have the same expression, given as

hµνdx′µdx′ν =(√
2 sin Θ cos Θ − 1

2 cos2 Θ − sin2 Θ
)(

1 − 2M
r′ sin Θ/

√
2 + r′ cos Θ

)
dr′2

+
(√

2 cos Θ sin Θ + cos2 Θ + 1
2 sin2 Θ

)(
1 − 2M

r′ sin Θ/
√

2 + r′ cos Θ

)−1

dr′2

+
(√

2
2 r′ sin Θ + r′ cos Θ

)2

(dθ′2 + sin2 θ′dϕ′2)

− 2
(

1 − 2M
r′ sin Θ/

√
2 + r′ cos Θ

)
dw′2

+
(
2
√

2 sin Θ − 2 cos Θ
)(

1 − 2M
r′ sin Θ/

√
2 + r′ cos Θ

)
dr′dw′ , (7.3.9)

which implies that the embedding Φ is an isometric embedding, where h
denotes the induced metric on Φ(M). Note that this is by no means a
generic form of the 5 dimensional metric which satisfies our requirement.
The constant factor Θ can be changed to give another form of the em-
bedding. There is also a chance to introduce more variables and get a
more complicated expression of the metric in the following research.
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Chapter 8

Application of the 4+1 Level
Set Approach to Spacetime
around Binary Black Hole

8.1 Overview
In this Chapter we will be dealing with a real binary black hole space-
time and solve the Einstein’s equations numerically by the powerful 3+1
numerical relativity. Having seen in the previous Chapters that the reso-
lution to the Einstein equations amounts to solving the Cauchy problem,
namely propagating a set of initial data on the initial hypersurface for-
ward in time. Technically speaking, this means that solving the second-
order non-linear Einstein’s gravitational field equations reduces to com-
puting the propagation (evolution) equations of initial data, which satisfy
the Hamiltonian and momentum constrain equations, via appropriate nu-
merical schemes. Now, depending on the formulation constructed in the
Chapter 5, we can apply the embedding approach to the real numerical
data of binary black hole.

We apply the approach that is proposed in Chapter 5, to a real bi-
nary black hole numerical data generated from the Einstein toolkit. We
show that the discrete data can be isometrically embedded into the 5
dimensional manifold, due to the linear coordinate transformation we in-
troduced in Chapter 5. The linearity and smoothness of coordinate trans-
formation are critical to the embedding, which guarantees the embedded
manifold maintains the original structure, regardless of the analytical or
numerical metric form. In fact, the coordinate transformations that are
introduced in the previous context are C∞ differentiable, i.e., smooth.
With the help of the coordinate transformation derived in Chapter 6,
we can embed the discrete data set of a 4 dimensional manifold to a 5
dimensional manifold.

8.2 Embedding the BBH in a 5 Dimen-
sional Manifold

Conceptually, this initial value problem can be considered in two dif-
ferent ways: (i) The mathematical problem: given a hypersurface Σ0,
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find a positive definite metric hab, a symmetric bilinear tensor Kab and
some matter distribution (E, pa) on Σ0 such that the two constraints are
satisfied. Note that the energy-momentum tensor components (E, pa)
may have their own constraints which are independent of that derived
from the Einstein equations. (ii) The astrophysical problem: it should
be guaranteed that the solution to these equations is subject to certain
astrophysical conditions, which implies we have to correlate the results
to a specific physical system that we want to investigate.

Let us focus on an equal mass, non-spinning black hole binary merger.
The first task is to determine the initial data for the 3+1 Cauchy

problem. We calculate the initial value of this spacetime evolution, sat-
isfying the Hamiltonian constraint and momentum constrain equations,
given by (6.2.89) and (6.2.90).

Looking for an appropriate set of initial data is a tough task and
can be dated back to the year of 1944, under the work of Lichnerow-
icz [169], who has obtained a much more satisfactory split of the initial
data (hab, Kab) between its freely chosen parts and the rest parts which
are given by solving the constraint equations (6.2.89) and (6.2.90) by
means of the conformal decomposition, cf., appendix F for further in-
formation. Later on, this method was extended by several physicists,
including Choquet-Bruhat (1956, 1971) [172, 224], York and Ó Mur-
chadha (1972, 1974, 1979) [185, 225, 226, 16] and York and Pfeiffer
(1999, 2003) [227, 228]. Alternative methods are also developed recently,
cf. [229, 230, 231, 232].

At this stage, one can evolve the spatial initial foliation by solving the
equations (6.2.87) and (6.2.88). The initial values on the first foliation
are propagated pointwisely in the adapted coordinate system constructed
in the preceding context.

Firstly, let us look at the conformal decomposition of the 3+1 Einstein
equations. This mathematical tool is a decomposition of the induced 3
dimensional metric hab of hypersurface W and was first introduced by
Lichnerowicz in 1944 [169], which is of the type

hab = Ψ4h̃ab , (8.2.1)

where Ψ is a strictly positive scalar field and h̃ab is an auxiliary positive
definite 3 dimensional metric field on W. The conformal decomposition
method has been proven to be a fruitful technique for generating valid
initial data in the simulation of dynamical spacetimes. In the follow-
up research, in 1971 and 1972, York demonstrated that the conformal
method is also important in the evolution scheme of the Cauchy prob-
lem [233, 234], by showing that there exist conformal equivalence classes
which carry two degrees of freedom of the gravitational field, where the
classes are defined via equation (8.2.1), given by{

ĥab | ∃ Positive definite Ψ, such that Ψ4ĥab = hab

}
. (8.2.2)

And a rank-2 tensor, called the Cotton-York tensor, was introduced by
York

Cij := −1
2ε

iklCmklh
mj = εiklDk

(
Rj

l − 1
4Rδ

j
l

)
, (8.2.3)
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where Cmkl = Dl (Rmk −Rhmk/4) − Dk (Rml −Rhml/4) is the Cotton
tensor [235]. This tensor was used to support his argument [233]. The
Cotton-York tensor exhibits the following properties

symmetric Cij = Cji , (8.2.4)
traceless Cijhij = 0 , (8.2.5)
divergence-free DjC

ij = 0 . (8.2.6)

For an initial data one needs to solve the Hamiltonian and momen-
tum constraints of the Einstein equation, as are given in appendix F,
the conformal version of constraints have been derived in (F.0.53) and
(F.0.67). Re-scaling the energy-momentum components as follow

Ẽ := Ψ8E , (8.2.7)
p̃a := Ψ10pa . (8.2.8)

The equations (F.0.53) and (F.0.67) can be rewritten as

D̃aD̃aΨ − 1
8

3R̃Ψ + 1
8κ̂

abκ̂abΨ−7 + 2πẼΨ−3 − 1
12K

2Ψ5 = 0 , (8.2.9)

D̃bκ̂ab − 2
3Ψ6D̃aK = 8πp̃a . (8.2.10)

Based on the work of York [185, 16, 236], by decomposing the tensor
κ̂ab as

κ̂ab = (L̃k)ab + κ̂ ab
t , (8.2.11)

where κ̂ ab
t is both traceless and transverse (i.e., divergence free), such

that

h̃abκ̂ ab
t = 0 ,

D̃aκ̂ ab
t = 0 .

(8.2.12)

The L̃a denotes the conformal Killing operator associated with the metric
h̃ab and is defined as

(L̃k)ab := D̃akb + D̃bka − 2
3D̃ck

ch̃ab , (8.2.13)

which is by construction traceless and symmetric. The first term in
(8.2.11) is called the longitudinal part of κ̂ab, and the second is called
the transverse part of κ̂ab. Consider (8.2.12), it is apparently that

D̃b(L̃k)ab = D̃bκ̂ab . (8.2.14)

Define the conformal vector Laplacian ∆̃L as (using (8.2.13) and the
definition of 3 dimensional Ricci tensor)

∆̃Lka := D̃b(L̃k)ab = D̃bD̃
bka + 1

3D̃
aD̃bk

b + 3R̃a
bk

b , (8.2.15)

then (8.2.14) can be rewritten as

∆̃Lka = D̃bκ̂ab . (8.2.16)
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Insert (8.2.11) into (8.2.9) and (8.2.10), yields

D̃aD̃aΨ − 1
8

3R̃Ψ + 1
8
[
(L̃k)ab + κ̂ ab

t

] [
(L̃k)ab + κ̂t

ab

]
Ψ−7

+ 2πẼΨ−3 − 1
12K

2Ψ5 = 0 , (8.2.17)

∆̃Lka − 2
3Ψ6D̃aK = 8πp̃a , (8.2.18)

where the indices are lowered by h̃ab. According to the two above con-
straint equations, it is free to choose the quantities (h̃ab, κ̂ab, K, Ẽ, p̃a)
and to solve equations (8.2.17) and (8.2.18) for the rest two quantities
(Ψ,ka) on the initial foliation W0. The original data (hab, E, p

a, Kab)
might be obtained by solving the formulas (8.2.1), (8.2.7), (8.2.8) and

Kab = Ψ−10
(
(L̃k)ab + κ̂ ab

t

)
+ 1

3Ψ−4Kh̃ab . (8.2.19)

This method is called the conformal transverse traceless (CTT) method [16].
If one chooses one of the free data to be constant, e.g., K a constant

scalar field on the initial slice W0, then constraint (8.2.18) becomes

∆̃Lka = 8πp̃a . (8.2.20)

This leads to that the simplified constraint equation (8.2.20) is decou-
pled from the constraint (8.2.17). We can first solve (8.2.20) for ka, and
plug it back into (8.2.17) to solve for the conformal factor Ψ. N.B. a hy-
persurface with constant K is called a constant mean curvature (CMC)
hypersurface. The details of proof of the uniqueness and existence of so-
lutions to (8.2.20), a conformal vector Poisson equation, are given in [237,
238, 239].

A more tough task is to obtaining a solution to the elliptic, non-linear
differential equation (8.2.18). Many attempts have been made by several
people, cf. [231, 240, 241, 242, 243, 169, 170].

Some of the simplest cases of the solutions to the constraints are listed
below:

A flat conformal metric h̃ab = δab, a vanishing κ̂ab = 0 and a
vanishing mean curvature K = 0 in a vacuum background, where Ẽ = 0
and p̃a = 0. Given these values, it is enough to solve the equations
(8.2.20) and (8.2.18) with appropriate boundary conditions, obtain a flat
space-like hypersurface of a 4 dimensional Minkowskian space, where
hab = δab and Kab = 0.

A non-trivial solution is by selecting a flat conformal metric h̃ab =
δab, a vanishing κ̂ab = 0, a vanishing mean curvatureK = 0 and a vacuum
mass-energy tensor. However, this time we obtain a different solution
depends on a different boundary condition, and the 3 dimensional metric
is given as

hµν =
(

1 + 2M
r

)
diag(1, r2, r2 sin θ) , (8.2.21)

and the extrinsic curvature is

Kab = 0 . (8.2.22)
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This is just a hypersurface of a constant zeroth coordinate of a Schwarzschild
spacetime in the isotropic coordinate.

Note that these types of initial data possess a conformally flat geom-
etry and a normal evolution vector ma which is a locally Killing vector.
Additionally the extrinsic curvature locally vanishes on the foliation. The
feature is called the momentarily stationary.

An alternative method for calculating initial data is described in the
appendix H.

Having discussed the initial data problem in the preceding section,
the next logic step is to study the feature of coordinate choice, which
could affect the hyperbolic or elliptic character of the system, based on
the chosen lapse function and shift vector. Description of the topic can
be found in review articles [244, 245, 246, 16, 247].

The simplest choice of foliation is the geodesic slicing, which leads to
a unit lapse function

N = 1 . (8.2.23)

This condition leads to a consequence that the worldline of an Eulerian
observer is a geodesic and coincides with the t coordinate line. In addi-
tion, the proper time coincides with the coordinate time t. See [187, 248,
249] for examples and applications.

The maximal slicing corresponds to a vanishing mean curvature on
hypersurface, i.e., K = 0. This fact gives rise to a maximal volume of
the hypersurface (see [201] for a proof). Consider the equation (F.0.57)
and the demand of K = 0, we obtain an elliptic equation

DaD
aN = N

[
4π(E + S) +KabK

ab
]
, (8.2.24)

see [250, 251, 252, 253, 254] for examples. The applications are given
in [255, 256, 257, 258, 259, 260, 261, 262]. A modified maximal slicing
method was proposed by Shibata [263] by changing the elliptic equation
(8.2.24) to a less CPU-consuming parabolic equation, which has been
made use to the binary neutron star and other numerical simulations [264,
265, 266, 267, 268, 269, 270, 271, 272, 273].

A third category of time slicing is called the harmonic slicing, deduced
from the harmonic (aka De Donder) condition for the coordinates

�gx
µ := ∇ν∇νxµ = 0 , (8.2.25)

where �g is the d’Alembertian associated with the 4 dimensional metric
gab [274, 275, 276, 277, 238]. The harmonic slicing condition holds only
for the x0 coordinate, yields

�gx
0 = 0 , (8.2.26)

and herein x0 = t. The standard d’Alembertian leads to

∂

∂xµ

(√
−ggµ0

)
= 0 . (8.2.27)

The components of the inverse 4 dimensional metric might be deduced
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from (6.2.78), given by

g00 = 1
N2 , (8.2.28)

g0i = βi

N2 , (8.2.29)

gi0 = βi

N2 , (8.2.30)

gij = hij − βiβj

N2 . (8.2.31)

Consider the relation √
−g = N

√
h and the expressions (8.2.28), (8.2.30),

(8.2.27) becomes

− ∂

∂t

(√
h

N

)
+ ∂

∂xi

(√
h

N2 β
i

)
= 0 . (8.2.32)

Further expansion and reordering leads to

∂N

∂t
− βi∂N

∂xi
−N

[
1√
h

∂
√
h

∂t
− 1√

h

∂

∂xi
(
√
hβi)

]
= 0 . (8.2.33)

Introducing a formula [201]

1√
h

∂
√
h

∂t
= −NK +Daβ

a . (8.2.34)

The (8.2.33) then becomes(
∂

∂t
− Lβ

)
N = −NK . (8.2.35)

The above equation is an evolution equation for the lapse function. Ap-
plications of the harmonic slicing might be referred to [276, 278].

A generalized harmonic slicing condition was deduced in 1995 [279],
given by (

∂

∂t
− Lβ

)
N = −KN2f(N) , (8.2.36)

where f(N) is a function of lapse N . Choose that f(N) = 2N , then(
∂

∂t
− Lβ

)
N = −KN2N , (8.2.37)

plug (8.2.34) into (8.2.37), yields(
∂

∂t
− Lβ

)
N = ∂

∂t
ln h− 2Daβ

a . (8.2.38)

If the shift vector vanishes, then leading to a solution

N = 1 + ln h . (8.2.39)

Any foliation which is subject to the condition (8.2.37) is called a 1+log
slicing. Note that the harmonic slicing and geodesic slicing are special

119 of 197



8. Application of the 4+1 Level Set Approach to Spacetime around
Binary Black Hole

cases of (8.2.36) when f(N) = 1 , 0 respectively. The 1 + log slicing was
introduced by Anninos et al. and Bernstein [280, 281, 282]. There have
been numerous applications of the 1+log slicing, including the simula-
tions of binary systems, e.g., black hole mergers [283, 284, 285, 286, 287,
288, 289, 290, 291, 87, 292, 293, 294, 295, 296, 297, 298].

For the details of the conformal time slicing and algebraic slicing,
see [299, 247, 300].

As for the coordinate choice, we need to deal with the shift vector
as it governs the movement of the coordinate from the preceding slice to
the later one. The choice of normal coordinates set the condition

βa = 0 . (8.2.40)

This leads to the fact that all lines with constant xµ coordinates are
orthogonal to the hypersurfaces, where µ run from 1 to 3. This condition
is also know as the Eulerian coordinates [261]. For a partial review of
the applications of this gauge, referred to [301].

A second coordinate choice is called the minimal distortion. First we
define a distortion tensor Qab, given by

Qab := L∂thab − 1
3h

cdL∂thcdhab . (8.2.41)

This quantity measures the evolution of the shape of spatial domain V

from Wt to Wt+∆t [201]. One can deduce that

habL∂thab = hab∂hab

∂t
= ∂ ln h

∂t
= ∂Ψ12

∂t
+ ∂ ln I

∂t
= 12∂Ψ

∂t
, (8.2.42)

where we have used the (F.0.7) and (F.0.1), also taking the following
formula into consideration

δ(lnA) = tr(AabδAab) , (8.2.43)

where Aab is a general matrix and A , Aab denote its trace and inverse
form respectively. By means of (8.2.41), (8.2.43) and (F.0.6), we obtain

Qab = Ψ4 ˙̃hab . (8.2.44)

Decompose the tensor into two parts

Qab = (L̃k)ab + Qt
ab , (8.2.45)

where the action L̃a is defined previously by (8.2.13), Qt
ab is traceless and

transverse w rt hab. It is legitimate to attribute the first term in (8.2.45)
to account for the gravitational field and the second part to account for
the change of the 3 dimensional metric between two adjacent time slices
due to the variation of the coordinates [201].

The minimal distortion coordinates are then defined by demanding
that

Qab = Qt
ab , (8.2.46)

which leads to
DaQab = 0 , (8.2.47)
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Figure 8.1: The operation of Qab is the change of the domain of fixed coordinates
from foliations Wt to Wt+∆t. Credit: É. Gourgoulhon, 2012.

due to the property of the transverse part of Qab. Consider the equations
(6.2.87), (8.2.41) and the formula hab∂thab = −2NK + 2Daβ

a, we obtain

Qab = −2NKab + Lβhab + 1
3 (2NK − 2Dcβ

c)hab , (8.2.48)

i.e.
Qab = −2Nκab + (L̃β)ab , (8.2.49)

due to the fact Lβhab = 2D(aβb). Insert this into (8.2.47), yields

−2NDbκab − 2κabDbN +Db(L̃β)ab = 0 . (8.2.50)

The divergence of κab may be rewritten by means of (6.2.90) as

Dbκab = 8πpa + 2
3D

aK . (8.2.51)

The third term on the LHS of (8.2.50) can be rewritten as Db(L̃β)ab =
DbD

bβa + DaDbβ
b/3 + 3Ra

bβ
b [201]. Hence we get an elliptic equation

about the shift vector, given by

DbD
bβa+ 1

3D
aDbβ

b+3Ra
bβ

b = 16πNpa+ 4
3ND

aK+2κabDbK . (8.2.52)

Consider the equation (8.2.44), minimal distortion condition (8.2.47) can
be rewritten as

Db(Ψ4 ˙̃hab) = 0 , (8.2.53)
or rewritten by means of D̃a as

D̃b(Ψ6 ˙̃hab) = 0 . (8.2.54)

The minimal distortion was studied by Smarr and York, etc. [238, 302].
Furthermore, an alternative formula which deviates from (8.2.54) by

D̃b ˙̃hab = 0 , (8.2.55)

or modified into
Db ˙̃hab = 0 , (8.2.56)
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called the pseudo-minimal distortion coordinate [303, 188].
An alternative version of the condition was given in [304]. By (H.1.3),

re-express the ˙̃hab as

2N κ̃ab = − ˙̃hab + h̃ach̃bd(L̃β)cd , (8.2.57)

plug into (8.2.55), yields

D̃b
[
h̃ach̃bd(L̃β)cd − 2N κ̃ab

]
= 0 . (8.2.58)

Expanding this expression and taking the operation of conformal vector
Laplacian, equation (F.0.68) and by replacing the conformal Laplacian
associated to h̃ab with the conformal Laplacian associated to the flat
metric δab, leads to

DbD
bβa + 1

3D
aDbβ

b −2κ̃abD̃bN+
[
3κ̃abD̃b ln Ψ − 1

3D̃
aK − 4πΨ4pa

]
= 0 .

(8.2.59)
The above equation defines an elliptic equation instead of the (8.2.52),
called the approximate minimal distortion [264, 270, 266, 305, 306].

A fourth prescription of the evolution equation of shift vector is the
Gamma freezing, by replacing the two symbols in the (8.2.56)

Db
˙̃hab = 0 , (8.2.60)

where ˙̃hab := ∂h̃ab/∂t. Expanding the above equation leads to

Db
˙̃hab = Db

∂h̃ab

∂t

= ∂

∂t
Dbh̃

ab = 0 , (8.2.61)

due to the commutation of the two derivative operators. For the covariant
derivative Da, we have

Dbh̃
ab = ∂bh̃

ab + Γ̄ a
cb h̃

cb + Γ̄ c
cb h̃

ab

= h̃cb
(
Γ̄ a

cb − Γ̃ a
cb

)
, (8.2.62)

where we have used Γ̄ b
cb = ∂c ln I/2 , Γ̃ b

cb = ∂c ln h̃/2, the relation be-
tween D̃a h̃ = I , Γ̃ c

ab and D̃ah̃
ab = 0. Introduce a notation

Γ̃a := h̃cb
(
Γ̃ a

cb − Γ̄ a
cb

)
, (8.2.63)

by applying this to (8.2.62), yields

Dbh̃
ab = −Γ̃a . (8.2.64)

Combine the above equation with (8.2.61), we obtain

∂tΓ̃a = 0 , (8.2.65)

which implies a non-dynamical Γ notation [307].
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The time derivative of h̃ab can be written in terms of the Da as

˙̃hab = 2N κ̃ab + βcDch̃
ab − h̃cbDcβ

a − h̃caDcβ
b + 2

3D̃cβ
ch̃ab , (8.2.66)

by means of (8.2.64) and the action of ∂t, leads to

∂tΓ̃a = − 2NDbκ̃ab − 2NκabDbN + βcDcΓ̃a − Γ̃cDcβ
a + 2

3Γ̃aDcβ
c

+ h̃bcDcDbβ
a + 1

3 h̃
abDcDbβ

c . (8.2.67)

The term Dbκ̃ab can be re-expressed by the momentum constraint equa-
tion, such that the above equation becomes

∂tΓ̃a = h̃bcDcDbβ
a + 1

3 h̃
abDcDbβ

c + 2
3Γ̃aDcβ

c − Γ̃cDcβ
a + βcDcΓ̃a

− 2N
[
8πΨ4pa − κ̃cb

(
Γ̃ a

cb − Γ̄ a
cb

)
− 6κ̃abDb ln Ψ + 2

3 h̃
abDbK

]
− 2κ̃abDbN , (8.2.68)

hence the condition (8.2.65) is equivalent to the following elliptic equation

h̃bcDcDbβ
a + 1

3 h̃
abDcDbβ

c + 2
3Γ̃aDcβ

c − Γ̃cDcβ
a + βcDcΓ̃a =

− 2N
[
8πΨ4pa − κ̃cb

(
Γ̃ a

cb − Γ̄ a
cb

)
− 6κ̃abDb ln Ψ + 2

3 h̃
abDbK

]
− 2κ̃abDbN .

(8.2.69)

A fifth condition is called the Gamma driver coordinate. Consider,
instead the relation

∂tβ
a = f∂Γ̃a , (8.2.70)

with a positive function f . Injecting this relation back to equation
(8.2.68) will result in a parabolic equation for βa. Alternatively, in [191],
the authors require that

∂2βa

∂t2
= f

∂Γ̃a

∂t
−
(
f1 − ∂ ln f

∂t

)
∂βa

∂t
, (8.2.71)

where f1 is a positive function, cf. [308, 309, 310]. This prescription
indeed produces a hyperbolic evolution equation for βa, given as

∂2βa

∂t2
+
(
f1 − ∂ ln f

∂t

)
∂βa

∂t
=

f
(
h̃bcDcDbβ

a + 1
3 h̃

abDcDbβ
c + 2

3Γ̃aDcβ
c − Γ̃cDcβ

a + βcDcΓ̃a
)

− 2Nf
[
8πΨ4pa − κ̃cb

(
Γ̃ a

cb − Γ̄ a
cb

)
− 6κ̃abDb ln Ψ + 2

3 h̃
abDbK

]
− 2f κ̃abDbN . (8.2.72)

The hyperbolic Gamma driver has been utilized in many contemporary
numerical computations, referred to [311, 297]. Other dynamical gauge
may be found in various articles and reviews, see [271, 272, 273]. Ap-
pendix I contains further discussion on gauging, regarding the coordinate
evolution.
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We are now in the position to discuss the full completion of integrating
the Einstein equations, by introducing the free scheme and constrained
scheme of the evolutionary equations [312, 313, 314, 315, 316].

For the constrained schemes, there exist two branches, one is called
the partially constrained scheme, the other is the full constrained scheme.
Such a scheme requires the code to re-calculate the constraint equations
on each time slice (corresponding to each time step). Herein, we fo-
cus on the free scheme whereas ignore the constrained scheme. Further
discussion on this approach may refer to [317, 318, 319, 320].

A free scheme implies that one only needs to solve the constraint
equations once on the initial slice for the initial value, the rest of the cal-
culation would emphasis on looking for solutions to the evolution equa-
tions rather than computing the constraints slice by slice [321]. We will
justify the statement hereafter in the following text.

The general relativity is a well-posed initial value problem [322],
which indicates that given a initial condition (hab, Kab) defined on a 3
dimensional hypersurface, such that they satisfy the vacuum Einstein
constraint equations

3R −KabK
ab +K2 = 0 , (8.2.73)

DaK
a

b −DbK = 0 . (8.2.74)

And the original Einstein equation can be derived from the evolution
equations

(
∂

∂t
− Lβ

)
hab = 2NKab , (8.2.75)(

∂

∂t
− Lβ

)
Kab = −N3Rab + 2NK c

a Kcb −NKKab +DaDbN ,

(8.2.76)

where for a vacuum spacetime it is assumed Tab vanishes. Compare the
equation (6.2.51), which is in general satisfied by the extrinsic curvature,
to equation (8.2.76), they are differed by a term Rcdh

c
a h

d
b . Now for a

vacuum configuration, this term is equal to zero. When the equations
(8.2.73) and (8.2.74) are satisfied, we have the following relation

Gabn
ahb

c = DaK
a

c −DcK = 0 , (8.2.77)
Gabn

anb = 3R −KabK
ab +K2 = 0 . (8.2.78)

For (8.2.78), one can conclude that

Rabn
anb = −1

2R , (8.2.79)

due to that gabn
anb = −1. For (8.2.77), there is a natural consequence

Rabn
anbnc = −1

2Racn
a . (8.2.80)
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Note that gabn
ah b

c = nbh
b

c = 0. Gabn
ah b

c = 0 leads to

0 = Rabn
ah b

c − 1
2Rgabn

ah b
c

⇒ 0 = Rabn
a(δ b

c + ncn
b)

⇒ 0 = Racn
a +Rabn

ancn
b

⇒ Racn
a = −Rabn

ancn
b . (8.2.81)

Hence the equation (8.2.80). Combine (8.2.80) and (8.2.79), one can
immediately obtain

Racn
a = Rnc , (8.2.82)

by means of (8.2.82), (8.2.80) and Rabh
a

c h
b

d = 0, we conclude that

Rcd + 1
2Rncnd = 0 , (8.2.83)

which implies that

0 = Rcdg
cd + 1

2Rncndg
cd = R − 1

2R = 1
2R , (8.2.84)

i.e., R = 0. Consequently, this leads to

Gabh
a
ch

b
d = Rabh

a
ch

b
d = 0 . (8.2.85)

This recovers the remaining part of Einstein equations. To conclude,
we have recovered the full system of vacuum Einstein equations, consist-
ing of (8.2.73), (8.2.74), (8.2.75) and (8.2.76), which reflect the dynam-
ics of spacetime geometry, i.e., the evolution of an initial 3 dimensional
space-like hypersurface in the foliations, for which we sometimes call it
geometrodynamics.

Moreover, with the help of equations (8.2.75) and (8.2.76), the Lie
derivatives of the LHS of (8.2.73) and (8.2.74) along the ∂t coordinate
line vanish, i.e.,

L∂t

(
3R −KabK

ab
)

= 0 , (8.2.86)

L∂t

(
−N3Rab + nK c

a Kcb −NKKab +DaDbN
)

= 0 . (8.2.87)

We ignore the proof here, for details see [201]. The equations (8.2.86)
and (8.2.87) demonstrate that any quantities (h0

ab, K
0
ab) can be regarded

as the initial condition on some hypersurface, if they obey the equations
(8.2.73) and (8.2.74). Furthermore, the constraints (8.2.73) and (8.2.74)
are preserved by the data which satisfy the evolution equations (8.2.75)
and (8.2.76) based on the initial values (h0

ab, K
0
ab). Note that we assume

the vacuum condition in the proof here, in general the mass-energy ten-
sor must satisfy the conservation law ∇aTab = 0 to guarantee a generic
satisfaction of (8.2.86) and (8.2.87).

The well-established mathematical formulation of the constraint preser-
vation property does not imply that any numerical procedure and algo-
rithms would obey the same rule. Indeed, people have struggled with con-
structing a formalism which preserves the constraint equations in most
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of the early time simulations. Many work has been done and devoted to
this field, referred to [315, 323, 324, 313, 325, 326, 327, 328].

The most successful and well-behaved free evolution scheme must
be the BSSN formalism, founded by Baumgarte, Shapiro, Shibata and
Nakamura in 1990s, which demonstrated strong hyperbolicity of the Ein-
stein equations [329]. We describe the basics for this evolution formalism
and its applications to practical algorithms, then it will be applied in the
thesis to model the binary black hole spacetime with two equal mass,
non-spinning compact objects.

To continue, let us begin with considering the conformal 3 dimen-
sional Ricci tensor 3R̃ab appears in the appendix F. Rewrite it in the
following pattern

3R̃ab = ∂cΓ̃ c
ab − ∂bΓ̃ c

ac + Γ̃ c
ab Γ̃ d

cd − Γ̃ c
ad Γ̃ d

cb . (8.2.88)

Introduce a tensor
∆ c

ab := Γ̃ c
ab − Γ̄ c

ab , (8.2.89)

where ∆ c
ab is an auxiliary tensor of type (1, 2). An equivalent form of

(8.2.89) is given by

∆ c
ab = 1

2 h̃
cd
(
Dah̃bd + Dbh̃ad − Ddh̃ab

)
. (8.2.90)

One can then deduce the following result

∆ c
ac = 0 , (8.2.91)

by contracting indices c and b of ∆ c
ab , where we have considered h̃ = I.

Replace Γ̃ c
ab in (8.2.88) by means of ∆ c

ab , yields

3R̃ab = ∂c∆ c
ab + ∂cΓ̄ c

ab − ∂b∆ c
ac − ∂bΓ̄ c

ac + ∆ d
cd ∆ c

ab + ∆ d
cd Γ̄ c

ab

+ ∆ d
cd Γ̄ c

ab + Γ̄ d
cd Γ̄ c

ab − ∆ d
cd ∆ c

ab − Γ̄ d
cb ∆ c

ad − Γ̄ c
ad ∆ d

cb − Γ̄ c
ad Γ̄ d

cb .
(8.2.92)

If we consider the flat feature of Iab, which leads to a vanishing Ricci
tensor, we then can obtain the reduced expression for 3R̃ab as

3R̃ab = ∂c∆ c
ab − ∂b∆ c

ac + ∆ d
cd ∆ c

ab + ∆ d
cd Γ̄ c

ab + ∆ d
cd Γ̄ c

ab

− ∆ d
cb ∆ c

ad − Γ̄ d
cb ∆ c

ad − Γ̄ c
ad ∆ d

cb . (8.2.93)

Formula (8.2.91) enables us to simplify the above equation to

3R̃ab = ∂c∆ c
ab + Γ̄ d

cd ∆ c
ab − Γ̄ d

ca ∆ c
bd − Γ̄ d

cb ∆ c
ad − ∆ d

cb ∆ c
ad

= Dc∆ c
ab − ∆ d

cb ∆ c
ad . (8.2.94)

Consider the alternative expression of ∆ c
ab given in (8.2.90), plug it

into (8.2.94) yields

3R̃ab = −1
2
(
h̃cdDcDdh̃ab + h̃caDbDdh̃

cd + h̃cbDaDdh̃
cd
)

+ Rab(h̃,Dh̃) ,
(8.2.95)
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where

Rab(h̃,Dh̃) := 1
2
(
Dch̃bdDah̃

cd + Dch̃adDbh̃
cd + Dch̃

cdDdh̃ab

)
− ∆ c

ad ∆ d
bc .

(8.2.96)
Consider the equation (8.2.64), (8.2.95) becomes

3R̃ab = −1
2
(
h̃cdDcDdh̃ab − h̃acDbΓ̃c − h̃bcDaΓ̃c

)
+ Rab(h̃,Dh̃) . (8.2.97)

The 3 dimensional Ricci scalar is then given by contracting the indices
of 3 dimensional Ricci tensor as

3R̃ = 1
2
[
h̃cdDc(h̃abDdh̃ab) + h̃cdDch̃

abDdh̃ab + 2DcΓ̃c
]

+ h̃abRab(h̃,Dh̃) .
(8.2.98)

From (8.2.90), we have 2∆ d
cd = h̃abDch̃ab, and from (8.2.91), we obtain

3R̃ = DcΓ̃c + R(h̃,Dh̃) , (8.2.99)

where

R(h̃,Dh̃) := 1
2 h̃

cdDch̃
abDdh̃ab + h̃abRab(h̃,Dh̃) . (8.2.100)

The motivation of introducing an auxiliary variable Γ̃a was first investi-
gated by de Donder [274] with a different formalism in the 4 dimensional
case, and then formally proposed by Nakamura et al. [187]. Additional
references about this topic might be found in [330, 331, 86, 200, 332, 333,
334].

Hence, the complete BSSN scheme is given by gathering evolution
equations (F.0.44), (F.0.45), (F.0.62) and (F.0.63) and constraints (F.0.66)
and (F.0.68) (or (F.0.54) and (F.0.67)), and equations (8.2.97) and (8.2.96),
and equations (8.2.99) and (8.2.100), and (8.2.68) [292].

8.3 Null Geodesics Finder for BBH Space-
time Using the 4+1 Formulation

Applying the 4+1 method to the derived data set in the last section.
Firstly, we embed the 4 dimensional metric into a 5 dimensional manifold
where the coordinate transformation is given as

t′ = t ,

r′ = r ,

θ′ = θ ,

ϕ′ = ϕ ,

w′
0 = t0 .

(8.3.1)

This is done on the zeroth slice φw0(M), where M denotes the original 4
dimensional manifold generated from the initial data by solving the 3+1
Einstein equations, and t0 is a constant.

127 of 197



8. Application of the 4+1 Level Set Approach to Spacetime around
Binary Black Hole

On the first slice the coordinate transformation is given by

t′ = t− ∆t ,
r′ = r ,

θ′ = θ ,

ϕ′ = ϕ ,

w′
1 = t0 + ∆t = t1 .

(8.3.2)

Where ∆t is a positive constant. Repeating this operation to the re-
maining of the spacetime slices and a new 5 dimensional manifold is
formed via combining all 4 dimensional spacetime foliations, denoted by
M′ = R × M.

Then one needs to recover the Lorentz structure by introducing a 5
dimensional metric, which is given by

g′
µνduµduν =

(
−N ′2 + h′

ijβ
′iβ′j

)
dw′2

+ h′
ijβ

′jdw′dui + h′
ijβ

′idw′duj

+ gµνduµduν . (8.3.3)

Where the notation u represents the coordinate of 5 dimensional manifold
as before, i and j are concrete indices, and gµν represent the components
of the original 4 dimensional metric. Follow the similar procedure that
has been constructed in the fourth Chapter, we may choose a congruence
of light rays in the original spacetime M, denoted by {Ci}. Find their
images in each spacetime slice of the 5 dimensional space M′. We recover
one of the curves in {Ci}, by choosing a point in the zeroth slice φw0(M)
and track it to the successive point located at a point which has a shifted
zeroth coordinate, by a value of ∆t. Follow this operation we can track
the third and more points to recover an image of this curve, travelling
through all spacetime foliations φwn(M) in the chronological order in
terms of coordinate w. Repeating this procedure for the remaining null
curves of {Ci} and gathering all the images, we can recover a vertical (at
least locally) manifold, denoted by Φ(M).

Moreover, it is natural to obtain an isometric transformation between
Φ(M) and the original 4 dimensional spacetime M, by pulling-back the
5 dimensional metric given in (8.3.3) to Φ(M), then it is apparently that
the pulled-back metric on Φ(M) is isometric to the original 4 dimensional
metric of M, for a detailed proof see Chapter 5.

We will analyze the data19 and demonstrate how one can apply the
data as a 5 dimensional quantity. This is a necessary step before we can
make a further progress. We will first focus on the lapse function as a
concise demonstration, which is nonetheless, an appropriate example to
explain how we can work with the discrete data and what kind of extra
information we need for further numerical calculation.

It is noted that we do not need the whole data set hence the only
embedded data would be part of the huge data set, which will consist of

19Three are more than one package for manipulating the results of Einstein toolkit,
e.g., SimulationTools, PostCactus, and kuibit. One can use any of these to illustrate
the plots and movies, or transform file format of the output data files.
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the lapse function, shift vector, 3 dimensional metric and the extrinsic
curvature.

We can first focus on one of the files which contains (partially) the
information of lapse function N on each time foliation. The data can be
generated from the code of the Einstein toolkit web page [17]. We would
produce an equal mass, non-spinning binary black hole merger dataas
we have discussed in the previous context. The data file might look like:
[lapse.xz.asc] or [lapse.h5]. These files contain all information that is
required to reconstruct the physical quantity and the coordinates. We
need to embed the values into the 5 dimensional coordinate system, where
the detailed procedure has been given in Chapter 6. However, unlike what
we have done in the that Chapter, we cannot straightforwardly perform
the embedding and obtain the values on the corresponding 5 dimensional
grid points. This is mainly because that the data of a real numerical
spacetime has a more complicated structure than the data of a symmetric
head-on collision spacetime, where each quantity, including scalar and
tensor is decomposed into various components, which are labeled by .xx,
.xz etc., In particular, those variables which depend on the temporal
coordinate demand extra attention due to a more complex transformation
law (Chapter 4). Herein, we propose a sensible and convenient way of
constructing the 5 dimensional data. We read the 3 dimensional physical
quantities from the HDF file (.h5 file in the output directory) on each
foliation [335, 336], and use one of the above processing tools to convert
the HDF file into a Fortran readable format. We then can embed all
the variables in the 5 dimensional manifold and their values are assigned
on the 5 dimensional grid points. Note that the 5 dimensional data take
the same values as their counterparts due to the isometric embedding φw,
provided they are correctly locating at the corresponding grid points. We
need then to store the 5 dimensional data in the Fortran code for further
computation.

We can find that in the following chart how one practically ma-
nipulates the numbers given in file.h5. First we need to recover the
lapse function via the data from files: admbase-lapse.h5. For example,
for the value at grid point (0,-6,-124,-6), the lapse function is given by
N = 9.961815 × 10−1, hence, a transformation is given as follow

(9.961815 × 10−1) at (0,−6,−124,−6) →
(9.961815 × 10−1) at (0,−6,−124,−6, 0) , (8.3.4)

on the first spacetime foliation φw0(M). We can perform the similar
operation for the remaining HDF files and recover the whole 3+1 metric
on each 4 dimensional foliation in the 5 dimensional manifold. For the
time-dependent metric components, we follow the rule and calculate the
original 4 dimensional quantity first by equations (5.6.24) and (5.6.25),
and embed them in the 5 dimensional manifold.

For the full and comprehensive analysis of the data generated from
Einstein toolkit, check with the kuibit platform [337].

Furthermore, a generic level set equation given by (4.5.3), requires
a propagation speed factor which control the evolution of propagating
interface. Hence, we have to know more geometrical quantities than
just the 3+1 metric components. For example, for the mean curvature
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flow, we will need to derive the mean curvature κ as the propagation
parameter, where the level set equation would be modified to acquire an
alternative term H ′ = |∇u|div(∇u/|∇u|) [338] instead of the second term
of equation (4.5.3). For the general relativity, we need to determine the
local values of null tangent, metric tensor and probably further quantities
which might be demanded in deriving the null geodesic.

We will hereafter derive the 5 dimensional null tangents on certain
grid point, at which we first decide the embedded 4 dimensional met-
ric components and then derive the 5 dimensional metric components
using (8.3.3). Then one can calculate the 5 dimensional geometric quan-
tities via the 5 dimensional metric. Furthermore, we can decide the 5
dimensional Riemann curvature in terms of the 4 dimensional Riemann
curvature if necessary, like what we have done for the relation between
the 4 dimensional Riemann curvature and the 3 dimensional Riemann
curvature in the 3+1 formalism [339].

Given a null tangent na, it satisfies

gabn
anb = 0 , (8.3.5)

consider the equation (6.2.78), we have the following expression

(−N2 + hijβ
iβj)n0n0 + hijn

inj = 0 , (8.3.6)

where nµ denote the components of na in the given coordinate, i and j run
from 1 to 3. Apparently, there exist numerous solutions to this equation,
which also justifies that at a given spacetime point we have more than
one vector on the light cone. To pick out a specific null tangent, let us
first set that

nµ = (1, n1, n2, n3) , (8.3.7)

hence (8.3.6) reduces to

−N2 + hijβ
iβj + hijn

inj = 0 , (8.3.8)

furthermore, we are free to choose n1 and n3, which left us only one degree
of freedom (DOF), the n2. Without loss of generality, let n1 = n3 = 0,
leads to that

−N2 + hijβ
iβj + h22n

2n2 = 0 , (8.3.9)

from (8.3.8). We can now proceed by plugging the values of hij , βi and
N at a grid point (0, 0, 0, 0) into (8.3.9) and compute n2, which is

n2 = 0.96770429508 , (8.3.10)

hence the null tangent is given as nµ = (1, 0, 0.96770429508, 0). And
a 5 dimensional null tangent can be derived from this, given as n′µ =
(1, 0, 0.96770429508, 0, 0) at grid (0, 0, 0, 0, 0). This is guaranteed due to
(5.5.33).

We need first to propose the level set equation that governs the prop-
agation of the photons. One equation that we can use is given by

∂

∂τ
φ (τ, xµ) + na∇aφ (τ, xµ) = 0 , (8.3.11)
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where φ is a function defined on the manifold, τ is an evolution parameter,
xµ is the coordinates of the manifold, na is a vector field and ∇a is the 5
dimensional covariant derivative. We can now proceed by first explaining
the terms in equation (8.3.11). Let the τ denote the parameter of the
null geodesic, na is the tangent vector to the null geodesic which do not
depend on the parameter τ , and ∇a denote the covariant derivative which
is adapted to the 5 dimensional metric, where xµ is the 5 dimensional
coordinate. The φ is denoting the level set hypersurface which propagates
under the control of equation (8.3.11).

In addition, we need also to apply extra constraint to control the evo-
lution to make it remain on the correct path — null geodesic. A practical
algorithm for calculating the null geodesic is ongoing and numerical im-
plementation will be carried out in a further detailed research.
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Chapter 9

Summary, Discussions and
Additional Remarks

9.1 Summary of the Thesis
The core physics of this project is to construct the covariant formulation
of radiative transfer in dynamical spacetime, in particular two coalescing
black holes, and seek solution schemes of the radiative transfer equations.
In order to achieve this goal, one needs to find the photons’ trajecto-
ries in a BBH spacetime. Specifically, the null geodesics, i.e., worldlines
of free falling massless particles (including photons) are constructed by
combining 3+1 numerical relativity and the level set method in a 4+1
formulation, by embedding the original 4 dimensional spacetime in a 5
dimensional ambient space and solving the level set equations (evolution
equations), and the covariant radiative transfer equations are constructed
along the derived geodesics. General relativistic radiative transfer formu-
lation in Kerr black hole system has been constructed previously [2, 340]
(cf., the article [341] for the most original research).

In the Chapter 1, which is the introductory Chapter, the general rela-
tivity background and the radiation transport are discussed. Motivations
for constructing a covariant formulation of radiative transfer in dynami-
cal spacetime is introduced. And an alternative covariant formulation for
constructing an appropriate radiation transport equation in dynamical
spacetime is given.

In the Chapter 2, the basics of GR is introduced and the GWs devel-
opment and its EM counterpart are discussed.

The previous ray-tracing algorithm and covariant formulation of ra-
diative transfer are reviewed in Chapter 3. I derived the photons’ trajec-
tories using Euler-Lagrange equations in the stationary Kerr spacetime.

We discussed the fundamental knowledge of the level set method
in Chapter 4. The non-constrained geodesic formulation has been in-
troduced with level set equation given in (4.4.3). Currently, we used
both first-order accurate finite difference method and third-order accu-
rate ENO method to solve the equations for a demo case and results
will be compared with precise solutions. The higher-order TVD RK has
been applied to a generic equation and will be modified to match specific
equations. Nevertheless, the precision of numerical integrators must be
improved and then be tested. This can be done via the implementation

132 of 197



9. Summary, Discussions and Additional Remarks

of different computational algorithms, e.g., the symplectic integrator for
Hamilton-Jacobi equations.

Furthermore, the new method should be generalized to any type of
geodesic in an arbitrary spacetime, including null and time-like geodesics
in the Kerr spacetime and those in the binary black hole systems. Nev-
ertheless, the method that is currently used is designed for a shortest
geodesic in space with a Riemannian metric. In a manifold with pseudo-
Riemannian metric, where it could be completely different, the space-like
geodesic is locally shortest curve and time-like geodesic is locally longest
curve, while null geodesic is indefinite due to the indefinite property of
the metric. As mentioned, we must overcome this problem and seek
appropriate technique to obtain null geodesics. And a final geodesic
equation is also strongly affected by the spacetime embeddings, in which
the evolution pattern could be simplified by an appropriate selection of
embedding.

In Chapter 5 we look at the problems arising when the 4 dimensional
spacetime is embedded in a 5 dimensional pseudo-Euclidean space R2,3.
Embedding of the causal relation has been discussed and the solution
scheme is proposed. We use conformal embedding instead of isometric
embedding to reduce the difficulty of seeking proper transformation and
absorb the geometric structure of the black hole spacetime. In addi-
tion, the causal structure and null geodesics are preserved by the confor-
mal map as expected. Local and global embeddings are working in this
project but the map selected in either approach should cover at least the
region outside the event horizon for an astrophysical problem including
radiative transfer in the dynamical spacetime. We investigate the embed-
dings for both Schwarzschild and Kerr spacetimes and briefly analyze the
difference between them, where the latter one is more difficult to carry
out due to lack of symmetry. In the case of the Schwarzschild spacetime,
it is promising to find an explicit embedding into R2,3. We work out, in
partial, an implicit embedding and convert all information into a con-
formal function Λ and reduce the number of PDEs. Nevertheless, the
results are not completed, particularly in mapping selection. Apparently
we need further mathematical techniques, which are to complement the
whole procedure of construction. Causal structure recovery is critical as
otherwise one cannot prove that a null geodesic is a null geodesic even if
it is derived from the calculations. This is one of the core schemes in the
whole process (the other one is the geodesic derivation). The trivial case
of Minkowskian spacetime can be borrowed to make a simple demonstra-
tion which is an embedding from L4 in R2,3. This method leads to some
interesting consequences, one of which is the property of extra coordinate.
Intuitively, as discussed in the main context, it is a time-like coordinate
since one expects that null geodesics evolve along that direction, and the
extra coordinate is treated as a dummy parameter even if it is a time-like
coordinate. Nevertheless, the idea of this method could be an open field
and may have applications in other areas for future research.

In the sixth Chapter, we investigate the Brill-Lindquist initial data
obtained by solving the constraint equations from the Hamiltonian for-
mulation of the general relativity. The 4+1 method that is constructed
previously in the fourth Chapter is applied to a generalized fake evolution
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Brill-Lindquist data. The 3+1 fake Brill-Lindquist spacetime is embed-
ded in a 5 dimensional space with a given 5 dimensional metric. The
Lorentz structure is recovered for the discrete spacetime within the ver-
tical spacetime Φ(M). It is proven that this method is applicable to any
of the spacetime described by the discrete data, including those derived
from the 3+1 numerical relativity approach.

The 7th Chapter demonstrates how we can embed the 4 dimensional
manifold in a 5 dimensional manifold with the Lorentz structure being
maintained, which correlates adjacent foliations. The proofs of the exis-
tence and non-uniqueness of the embedding are given.

In the Chapter 8, we briefly reviewed the fundamental knowledge of
the numerical relativity developed in the last few decades. We start from
the conformal decomposition and then discuss the construction of the
initial condition. The choice of adapted coordinate is given and finally
the BSSN evolution scheme is introduced. Equipped with the mathemat-
ical tool, we calculate the metric of the equal-mass non-spinning binary
black hole spacetime and embed it in a 5 dimensional manifold with an
appropriately-chosen 5 dimensional metric. Lorentz structure is recov-
ered by the method introduced in the fourth Chapter. We show in detail
how to manipulate the discrete data from the 3+1 numerical relativity
and how one can derive corresponding 5 dimensional quantities. The null
geodesics can be derived by obtaining a level set equation and resolving
it, using a specific algorithm. We then define the level set equation and
assign different implications for the terms in that equation, which is now
an equation governing the propagation of the wave-front of photon in the
5 dimensional manifold. The photon goes through each 4 dimensional
slice. We will have to find out a specific numerical method to solve the
equation and the appropriate algorithm may require extra conditions.
Currently we are working on this. A plausible research plan to achieve
this goal would be: We will demonstrate with the Minkowskian manifold
first and then generalize to a more complicated case, the Schwarzschild
spacetime. The results are carried out and compared to that derived by
the normal 4 dimensional way. Finally, we will work with the binary
black hole merger and derive a null geodesic where the photon is emitted
from the near field region of a binary black hole merger (while they are
coalescing) to the distant observer on earth.

9.2 Discussions
We in the thesis do not aim to enhance or develop the mature formula-
tion of the numerical relativity, whereas we are trying to overcome certain
problems that are encountered in deriving the null geodesics in the strong
gravitational field regime, and constructing a more appropriate way of
solving for the null path, hence is appropriate for a covariant radiative
transfer formulation in dynamical spacetime. The discovery of the grav-
itational waves in 2015 opens a new era for astrophysics, it also leads to
the demanding of the reception of EM counterpart from the gravitational
source. Hence, the construction of a covariant formulation of radiation
transport in dynamical spacetime is necessary for the field. However, as
we have discussed in the previous context, the 3+1 numerical relativ-
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ity is incapable of obtaining an accurate enough null geodesic emitting
from the rapidly changing gravitational area, where information would
lost during the numerical calculation. The level set method would be a
good aid for maintaining the spacetime structure while propagating the
photon, by solving the level set equation which governs the wave-front
evolution in the higher dimensional manifold.

With the help of this formulation, one can propagate the photon wave-
front along the extra dimension without losing information of geometry
and particle. All these constructions are based on the 3+1 formulation
of relativity, the isometric embedding and the level set approach. We
might be able to generalize the formulation to other physical theory.
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Chapter 10

Directions for Future Work

10.1 Mathematical Completion of the Em-
bedding Process

As we have shown in the main context, the embedding formalism is not
completed (Chapter 5). We need further to consider the possibility of
embedding a 4 dimensional Lorentzian manifold in a higher dimensional
manifold.

As is discussed in the thesis, an embedding of the Schwarzschild space-
time in a higher dimensional flat manifold is carried out, the isometric
embedding for the Kerr metric has not developed good enough. Cur-
rently, we only know a 9 dimensional embedding for the Kerr spacetime.
However, consider the axisymmetry feature, this condition might be re-
duced to lower dimensional manifold, which will remain as a potential
question and requires further investigation.

The embedding process for a 4 dimensional Lorentzian manifold in
a 5 dimensional generic pseudo-Riemannian manifold is proposed in this
thesis, where the Lorenz structure correlating adjacent foliations is recov-
ered. The metric form given in the main context is highly specific and by
no means the generic form of an expectation metric. Hence, the follow-
ing proof which depends on this fact should be generalized. We might
want to ask if this is doable? The answer at the moment is not clear
enough. Nevertheless, based on the non-uniqueness of the embedding
formalism, we might hypothetically hold a positive perspective on this,
which leads to a yes answer. Furthermore, the extension of embedding
for a specific type of dynamical spacetime (e.g., binary black hole) might
be considered as well. Finally, the non-uniqueness of the embedding is
not completed (if the large family of embeddings can form a group? How
many parameters we can introduce to this family, except for the Θ?) and
a more general form of the 5 dimensional metric and its generalization to
the time-dependent metric components should be derived in the future.
Nevertheless, the embeddings together with their generalisation found in
this research are new and important, which have not been found in other
research.
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10.2 Direct Quantitative Comparison of Re-
sults Computed by the 4+1 Method
and the 3+1 Numerical Relativity

We compare the difference of the 3+1 numerical relativity and the newly
proposed 4+1 formulation. It should be noted that the purpose of the
thesis is not to replace the original 3+1 method in manipulating the
complicated structure of dynamical spacetime. Whereas to find an ap-
propriate computational algorithm for propagating photons in the highly
dynamical spacetimes when the 3+1 numerical relativity is incapable of
this work.

As mentioned in the main text, lacking of enough Killing vector may
lead to non-integrability of the geodesic equation [342, 343]. Further-
more, the discreteness feature of 3+1 method results in its own defect
(e.g., the interpolation of data might lead to inaccurate in photon tra-
jectory). The chaos problem can either from the physical theory or the
numerical calculation, where further investigation is required.

10.3 Extension of the Formulation to Other
Physical Theories

We have not discussed this topic in the main context. However, the
possibility of generalizing the 4+1 method to other physical fields. For
example, the unification of the electromagnetic field and the gravitational
filed might be worked out in the background of the R2,3 Euclidean space,
or a more generic Riemannian manifold where two dimensions are time-
like, where the Maxwell tensor can be unified with the metric tensor in
one matrix form.

As is discussed by Kaluza and Klein, the magnetic and gravitational
fields can be reconciled in a unified formulation within a 5 dimensional
theory. In their proposal, the two fundamental forces (interactions) are
rewritten in a single metric form. However, in their initial paper, the
extra dimensional was introduced as a spatial one, in this project we
demand a different temporal dimensional instead, which leads to different
physical consequence and mathematical formulation.

An extra time-like dimension might be of physical interest and cur-
rently most research are dedicated to building up higher dimensional
theories with extra space-like rather than time-like dimensions. Never-
theless, a time-like dimensional has more significance than just a phys-
ical ‘time’. Mathematician has discovered that when people are trying
to isometrically embed a Riemannian manifold into a higher dimensional
space, a time-like dimension might be able to help absorb the curved ge-
ometric structure and do better work than a space-like dimension [344,
345]. This remains an open question to the physical and mathematical
communities.
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Appendix A

Differential Geometry

Differential geometry [346] is one of the main mathematical tools through-
out the whole project. This is foundation for general relativity so will
be applied frequently in this thesis [347]. In addition to the basic as-
pects introduced in the appendix, more advanced topics are involved,
including 3+1 foliation of a pseudo-Riemannian manifold [19] and ge-
ometric flow [348]. The former one is one of the core techniques to
derive null geodesics, and the second one can be used to rebuild local
Lorentz structure, i.e., the local causal structure in higher dimensional
space (5 dimensional pseudo-Euclidean space and 5 dimensional pseudo-
Riemannian manifold).

The topology of a non-empty set X, denoted by T̂, consists of a certain
number of subsets of X, such that

(a) X ,∅ ∈ T̂ ,

(b) If Oi ∈ T̂ , i = 1 , 2 , · · · , n , then
n⋂

i=1
Oi ∈ T̂ ,

(c) If Oα ∈ T̂ , ∀ α , then
⋃
α

Oα ∈ T̂ .

Given the topology T̂, set X is called a topological space, denoted by
(X, T̂). A subset O of X is called an open subset (or open set), if O ∈ T̂.

A subset Nei ⊂ X is said to a neighbourhood of x, if ∃ O ∈ T̂ such
that x ∈ O ⊂ Nei. Nei is called an open set if Nei ∈ T̂.

A set C ⊂ X is called a closed set if X − C is an open set. A closed
set satisfies the following properties

(a) X , ∅ ∈ closed sets,

(b) If Ci are closed sets, i = 1 , 2 , · · · , n , then
n⋃

i=1
Ci is closed set,

(c) If Cα are closed sets, then
⋂
α

C is closed set.

Suppose (X, T̂) is a topological space, A ⊂ X. The closure of A is
defined as

Ā :=
⋂
α

Cα , (A.0.1)

where A ⊂ Cα, and Cα are closed sets.
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The interior of A is
i(A) :=

⋃
α

Oα , (A.0.2)

where Oα ⊂ A, and Oα ⊂ T̂.
The boundary of A is defined as

Ȧ := Ā − i(A) . (A.0.3)

A point x ∈ Ȧ is called a boundary point. Ȧ can also be denoted by ∂A.
Some useful corollaries are given here without proof,

1 Ā is closed. A ⊂ Ā . A = Ā ⇐⇒ A is closed.
2 i(A) ∈ T̂ . i(A) ⊂ A . i(A) = A ⇐⇒ A ⊂ T̂ .

3 ∂A is closed.
(A.0.4)

A homeomorphism is a map between two topological spaces (X, T̂)
and (Y,P) , f : X → Y, such that f is one-to-one and onto, the inverse
f−1 and f are continuous maps. Herein, we denote differentiability by
Cr, i.e., C0 represents continuity, C∞ represents infinitely differentiable
and continuous (referred to as smooth), similar rules hold for Cr.

A set {Oα}, consists of some open sets of X, is called an open cover
for A ⊂ X, if A ⊂ ⋃

α
Oα.

An n dimensional smooth manifold M is a topological space, abbre-
viated as n dimensional manifold, if M ⊂ {Oα}, such that

(a) ∀ Oα , ∃ homeomorphisms ψα : Oα → O′
α , (A.0.5)

(b) If Oα ∩ Oβ 6= ∅ , then the composition ψβ ◦ ψα
−1 is C∞, (A.0.6)

where O′
α is an open ball in Rn. (Oα, ψα) constitute the coordinate

systems, Oα are the coordinate patches. The coordinate system is referred
to as xµ in the main and following context unless otherwise specified. The
transition function ψβ ◦ ψα

−1 is given by

(x1, · · · , xn) = ψβ ◦ ψα
−1(y1, · · · , yn) , (A.0.7)

where xµ and yµ are coordinates of (Oβ, ψβ) and (Oα, ψα) respectively.
Equation (A.0.7) implies that transition function actually consists of n
n dimensional real functions xµ = (ψβ ◦ ψα

−1)µ(y1, · · · , yn), where ∀ µ ∈
N , 1 6 µ 6 n. The C∞ property requires that these functions are
infinitely differentiable with respect to yν , ∀ ν ∈ N , 1 6 ν 6 n. For
simplicity, (xµ) denotes coordinate system for most cases throughout
this thesis.

A manifold M is said to be diffeomorphic to manifold N, if ∃ φ :
M → N, such that φ is one-to-one and onto, φ−1 and φ are C∞. φ is a
diffeomorphism map (or diffeomorphism) from M to N. Two manifolds
which are diffeomorphic to each other can be regarded as equivalent in
geometrical perspective. Furthermore, M is diffeomorphic to N ⇐⇒
dimM = dimN. In (A.0.6) the requirement in (a) is actually diffeo-
morphism instead of homeomorphism, since diffeomorphism is a relation
between manifolds whereas at that time the concept has not been intro-
duced.
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A function, or a scalar field, on M is a map f : M → R. In general,
one wants that f is a smooth function. The set of all smooth functions
is denoted by FM.

A map v : FM → R is defined as a vector at p ∈ M , ∀ f , g ∈
FM, and ζ1 , ζ2 ∈ R, such that

(a) Linearity : v(ζ1f + ζ2g) = ζ1v(f) + ζ2v(g) , (A.0.8)
(b) Leibniz rule : v(fg) = f |p·v(g) + v(f) · g|p , (A.0.9)

where f |p is the value of f(p) , fg is the product of f |p and g|p. The set
of all vectors at p forms a vector space (or tangent space) at p, denoted
by Tp. Note that dimTp = dimM.

Assigning a vector to each point of a manifold M will define a vector
field T(M) on M. T(M) is C∞ if ∀ v ∈ T(M) acts on C∞ functions
yielding C∞ functions, T(M) is Cr if ∀ v ∈ T(M) acts on C∞ functions
yielding Cr functions.

The union of vector spaces at all points of a manifold is called the
tangent bundle, denoted by TM = ∪p∈MTp.

Given a coordinate system xµ and a point p, a vector v ∈ Tp can be
decomposed in the following way

v = vµ(x) ∂

∂xµ

∣∣∣∣
p
, (A.0.10)

where vµ is the µ-th component of v, depending on xµ. ∂/∂xµ consti-
tute a basis for the vector space. Herein, Einstein summation convention
is adopted, i.e., any two repeated upper and lower indices trigger con-
traction. We will apply this convention throughout this thesis unless
otherwise specified.

The transformation law of vector components between any two coor-
dinate systems xµ and x′µ is given by

vµ(x) = ∂xµ

∂x′ν v
′ν(x′) , (A.0.11)

where ∀ x , x′ ∈ Oµ ∩ Oν , vµ and v′ν are components of a vector v
in vector field T(Oµ ∩ Oν) in coordinate systems xµ and x′ν respectively.
Equation (A.0.11) is also known as the general coordinate transformation
in general relativity.

A dual vector (or covector) at p is a linear map w : Tp → R, such
that

w(ζ1v + ζ2u) = ζ1w(v) + ζ2w(v) , (A.0.12)
∀ v , u ∈ Tp , ζ1 , ζ2 ∈ R .

The covector space T∗
p, covector field T∗(M) and the cotangent bundle

T∗
M can be defined in a similar manner as what we have done for vectors.

Similarly, the general coordinate transformation for covector is given by

wµ(x) = ∂x′ν

∂xµ
w′

ν(x′) , (A.0.13)

where wµ and w′
ν are components of w in xµ and x′ν respectively.
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Suppose I ⊂ R is an interval, a Cr map C : I → M is defined as a
Cr curve on M. For any t ∈ I, there exists a unique point p on M, such
that C(t) = p , t is the parameter of the curve C.

Consider a C1 curve C(t) on M, a vector T at C(t0) is a tangent
vector to C(t), defined as

T (f) := d(f ◦ C)
dt

∣∣∣∣
t0

, ∀ f ∈ FM . (A.0.14)

In this thesis, we use notation d/dt to denote the tangent T . In a given
coordinate system xµ, T can be rewritten as

T = d
dt = dxµ

dt
∂

∂xµ
. (A.0.15)

More explicitly, dxµ/dt is dxµ(t)/dt, where the n xµ(t) = ψµ ◦ C(t) are
maps from I ∈ R to R.

If the tangent to a curve coincides with va of a vector field at every
point on that curve, then the curve is called the integral curve of the
vector field va, such that

∂xµ

∂τ
= vµ . (A.0.16)

Suppose (O, ψ) is a coordinate system with coordinate xµ, the subset
of O

{p ∈ O | xν(p) = ψν(p) , x1(p) = c1 , · · · , xn(p) = cn} , (A.0.17)

where ν is an integer, running from 1 to n, and c1 , · · · , cn are constants.
This subset can be considered as a curve parameterized by coordinate xν

(here xν only represents one coordinate, not the whole system), called
the coordinate line, ∂/∂xν is the tangent to this curve.

A tensor of type (k, l) at p is a multi-linear map acting on k covectors
and l vectors

T : T∗ × · · · × T∗︸ ︷︷ ︸
k

×
l︷ ︸︸ ︷

T × · · · × T → R . (A.0.18)

The tensor space of type (k, l) is denoted by Tp(k, l) , dimTp(k, l) = nk+l,
where n is the dimension of M. TM(k, l) is the tensor field on M, note
that this is different from the tangent bundle TM.

With (A.0.11) and (A.0.13), one can construct the general coordinate
transformation of a type (k, l) tensor T , yielding

T µ1···µk
ν1···νl

(x) =
∂xµ1

∂x′µ′
1

· · · ∂x
µk

∂x′µ′
k

∂x′ν′
1

∂xν1
· · · ∂x

′ν′
l

∂xνl
T ′µ′

1···µ′
k

ν′
1···ν′

l
(x′) , (A.0.19)

where T µ1···µk
ν1···νl

and T ′µ
′
1···µ′

k

ν′
1···ν′

l
are components of T in coordinate systems

x and x′ respectively.
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The symmetric part and anti-symmetric part of a tensor Tµ1···µl
are

given by

T(µ1···µl) := 1
l!
∑

π

Tµπ(1)···µπ(l) , (A.0.20)

T[µ1···µl] := 1
l!
∑

π

δπTµπ(1)···µπ(l) , (A.0.21)

where π represents a permutation of (1, · · · , l). δπ = ±1 (+ for even
permutation, − for odd permutation).

A covariant derivative ∇ on manifold M is a map, ∇ : TM(k, l) →
TM(k, l + 1), which satisfies properties given as follow

(a) Linearity :
∇µ(ζ1T

σ1···σk
ν1···νl

+ ζ2R
σ1···σk

ν1···νl
) = ζ1∇µT

σ1···σk
ν1···νl

+ ζ2∇µR
σ1···σk

ν1···νl
,

(A.0.22)
∀ T σ1···σk

ν1···νl
, Rσ1···σk

ν1···νl
∈ TM(k, l) , ζ1 , ζ2 ∈ R ,

(b) Leibnitz rule :
∇µ(TR) = T∇µR +R∇µT , (A.0.23)
∀ T ∈ TM(k, l) , R ∈ TM(k′, l′) ,

(c) Commutative with contraction,
(d) vµ∇µf = v(f) , ∀ v ∈ T(M) , ∀ f ∈ FM , (A.0.24)
(e) Torsion free :

∇µ∇νf = ∇ν∇µf , ∀ f ∈ FM . (A.0.25)

Property (c) implies ∇ν(T µRµ) = T µ∇νRµ+∇νT
µRµ. Property (d) leads

to ∇af = (df)a (a is an abstract index, see the abstract index part). The
covariant derivative is not unique on a manifold, any two of them, ∇ and
∇′, can be correlated in the following coordinate-independent manner

∇µwν = ∇′
µwν − C σ

µν wσ , (A.0.26)

where C σ
µν is a type (1, 2) tensor, symmetric between two lower indices

µ and ν , ∀ w ∈ T∗(M). We also have

∇µv
ν = ∇′

µv
ν + C ν

µγ v
γ , (A.0.27)

where ∀ v ∈ T(M). Hence one can obtain the action of ∇ on an arbitrary
type (k, l) tensor, such that

∇γT
µ1···µk

σ1···σl
= ∇′

γT
µ1···µk

σ1···σl
−
∑

i

C µi
γν T µ1···ν···µk

σ1···σl
+
∑

j

C ν
γσj
T µ1···µk

σ1···ν···σl
,

(A.0.28)
where i , j are integers, running from 1 to k and 1 to l respectively.

A very important tensor in general relativity is the metric tensor,
which is a symmetric non-degenerate type (0, 2) tensor g. Consider its
components gµν in a coordinate system, symmetric property implies that
gµν = gνµ, and non-degenerate property implies that gµν has a non-
zero determinant. Two vectors are said to be orthogonal to each other
if gµνv

µuν = 0. A non-coordinate basis eµ is said to be orthonormal
(this is true at least in a sufficiently small region), if g(eµ, eµ) = 0, and
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g(eµ, eν) = ±1 for any µ 6= ν. In this sense, g(u, v) can be treated as the
inner product of vectors u and v under the action of g.

Given an orthonormal basis, the components of g can be expressed
readily by a diagonal matrix. The diagonal elements for a positive (neg-
ative) definite metric are all +1, the rest are indefinite metrics with r
+1 elements and n-r −1 elements. A Lorentzian metric has only one −1
diagonal element. The signature of a metric is the value of sum of all
diagonal elements, for a positive definite metric it is n, for a Lorentzian
metric it is n − 2. This is sometimes represented by means of the signs
of diagonal elements in a row vector, for example (−,+,+,+) for a 4
dimensional Lorentzian metric.

With the Lorentzian metric, all vectors in a vector space Tp can be
divided into three categories, given by

(1) vµ is space-like ⇐⇒ gµνv
µvν > 0 , (A.0.29)

(2) vµ is null ⇐⇒ gµνv
µvν = 0 , (A.0.30)

(3) vµ is time-like ⇐⇒ gµνv
µvν < 0 , (A.0.31)

where ∀ vµ , vν ∈ Tp.
The inverse of metric g is defined as

gµνgνγ = δµ
γ . (A.0.32)

A manifold M with a positive definite metric g is called a Rieman-
nian space, whilst a manifold with a Lorentzian metric is called a pseudo-
Riemannian space or spacetime in physics (4 dimension in general), writ-
ten as (M, g).

In general relativity, we are interested in metric adapted covariant
derivative, such that

∇µgνσ = 0 . (A.0.33)

This relation is adopted throughout this thesis unless otherwise specified.
The metric may also be expressed as

ds2 = g = gµνdxµdxν , (A.0.34)

where ds2 is called the line element. The length of a line on a manifold
M with metric g is defined as

l :=
∫ τ

τ0

√
|g(T, T )|dτ =

∫ √
|ds2| , (A.0.35)

where τ denotes parameter of that line and T denotes the tangent vector.
Specifically, for a time-like wordline in spacetime (M, g), the length of a
time-like curve is given as

l =
∫ √

−ds2 . (A.0.36)

For a null wordline, l always vanishes due to g(Tnull, Tnull) = 0.
The proper time τ of a particle or an observer is given by

τ1 − τ2 =
∫ p2

p2

√
−ds2 , (A.0.37)
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where τ1 and τ2 are values of proper time at point p1 and p2 on the
worldline. An observer’s worldline is a time-like curve with unity tangent.

The 4 dimensional velocity Uµ of a particle or an observer is defined
as the tangent vector to the worldline, with parameter being the proper
time

Uµ = ∂

∂τ
, g(U,U) = −1 . (A.0.38)

We denote an observer by (p, Z̃µ) where p is the point on the observer’s
worldline, and Z̃µ is the 4 dimensional velocity. We can decompose a
series of 4 dimensional vector by means of an observer’s 4 dimensional
velocity.

A 1+3 decomposition of a particle’s 4 dimensional velocity Uµ with
respect to observer (p, Z̃ν) is given by

Uµ = −UνZ̃ν(Z̃µ + uµ) , (A.0.39)

where uµ denotes the 3 dimensional velocity of the particle measured by
observer.

The 4 dimensional acceleration of a particle with 4 dimensional ve-
locity Uµ is defined as

Aµ := Uν∇νU
µ . (A.0.40)

Aµ is orthogonal to Uµ since UµU
ν∇νU

µ = Uν∇ν(UµU
µ)/2 = 0. Aµ =

0 yields geodesic motion. A 1+3 decomposition of the 4 dimensional
acceleration is complicated and is less likely to be used in this thesis,
thereof we neglect it here.

The 4 dimensional momentum of a particle with rest mass m and 4
dimensional velocity Uµ is

P µ := mUµ . (A.0.41)

The 3 + 1 decomposition of P µ with respect to (p, Z̃ν) is given by

P µ = EZ̃µ + p µ
3 , (A.0.42)

where E = −P µZ̃µ = mUµZ̃µ denotes the energy of a particle in the
observer’s frame, p µ

3 := ~pi is the 3 dimensional momentum of a particle
in the observer’s frame.

In order to illustrate an abstract tensor by its indices, Penrose intro-
duced the abstract index notation, such that

1. The abstract indices only appears with abstract tensors, not tensor
components, denoted by lower-case Latin letters a , b , c , · · ·. This im-
plies that the abstract indices only represent the type of the tensors. A
type (k, l) tensor has k upper indices and l lower indices.
2. Repeated abstract indices lead to contraction.
3. Lower-case Greek letters µ , ν , · · · are used for components of the
tensors, these indices are the common indices we used in calculation, one
can use concrete number to replace them, for example T 1

2 accordingly
they are called the concrete indices20.

20Note that the t , r notations for Kerr metric represent concrete coordinates.
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With abstract indices notation, a tensor of type (k, l) can be readily
written as

T a1a2···ak
b1b2···bl

= T µ1µ2···µk
σ1σ2···σl

(eµ1)a1(eµ2)a2 · · · (eµk
)ak(eσ1)b1(eσ2)b2 · · · (eσl)bl

,
(A.0.43)

where (eµi
)ai and (eσj )bj

denote the bases of vector and covector spaces
respectively. The coordinate-dependent bases read (∂/∂xµ)a and (dxµ)a.
Note that only tensors with the same abstract indices can be added or
subtracted, for example va + ua is correct. The contraction of tensors is
given by

RaTa = RµTµ . (A.0.44)
The components of T are given by

T µ1···µk
ν1···νl

= T a1···ak
b1···bl

(eµ1)a1 · · · (eµk)ak
(eν1)b1 · · · (eνl

)bl . (A.0.45)

Particularly, the action of a metric gab on vectors reads

g(v, u) = gabv
aub . (A.0.46)

Moreover, gab can be considered as an isomorphic map (one-to-one and
onto, preserving the vector space action), g : Tp → T∗

p ∀ p ∈ M, hence
one can identify the elements in T and T∗

p by

va = gabv
b , (A.0.47)

where va ∈ T∗ , vb ∈ Tp , ∀ p ∈ M. This corresponding relation is one-to-
one and onto, guaranteed by isomorphism.

A symmetric or anti-symmetric tensor Tab satisfies

Tab = Tba for symmetric,
Tab = −Tba for anti-symmetric. (A.0.48)

The induced mappings come along with the mappings φ between
manifolds and are induced by these maps φ. Firstly, a pull-back map is
defined as φ∗ : FM → FN, such that

(φ∗f)|p:= f |φ(p) , ∀ f ∈ FN , p ∈ M , (A.0.49)

abbreviated as φ∗f = f ◦ φ, where φ is a map between manifolds M and
N, f is a function on M. φ∗ is a linear map such that

φ∗(ζ1f + ζ2g) = ζ1φ
∗(f)+ ζ2φ

∗(g) , ∀ f , g ∈ FN , ζ1 , ζ2 ∈ R , (A.0.50)

and satisfies
φ∗(fg) = φ∗(f)φ∗(g) , ∀ f , g ∈ FN . (A.0.51)

A push-forward map is defined as φ∗ : Tp → Tφ(p), such that

(φ∗v)(f) := v(φ∗f) , ∀ f ∈ FN , p ∈ M , (A.0.52)

where ∀ va ∈ Tp, its image is (φ∗v)a ∈ Tφ(p). φ∗ is a linear map, such
that

φ∗(ζ1u
a + ζ2v

a) = ζ1(φ∗u)a + ζ2(φ∗v)a , ∀ ua , va ∈ Tp , ζ1 , ζ2 ∈ R .
(A.0.53)
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A very useful corollary is that

The image of a tangent to a curve is the tangent to the image of the curve,
i.e., (φ∗T )a ∈ T(φ(C(t0))), where T a ∈ T(C(t0)), C is a curve parameterize-
d by t , t0 ∈ I ⊂ R , I is the interval of curve C.

(A.0.54)

If the map φ is a diffeomorphism [158], for which its inverse map φ−1

exists, the push-forward (as well as the pull-back) map can be generalized
to any type of tensors in the following manner, φ∗ : TM(k, l) → TN(k, l),
such that

(φ∗T )a1···ak
b1···bl

|qv1
b1 · · · vl

blw1
a1 · · ·wk

ak
=

T a1···ak
b1···bl

|φ−1(q)(φ∗v1)b1 · · · (φ∗vl)bl(φ∗w1)a1 · · · (φ∗wk)ak
,

(A.0.55)

∀ q ∈ N , wi ∈ T∗
q , vj ∈ Tq ,

where the subscripts of v and superscripts of w are dummy labels, in-
dicating they are distinct tensors. In (A.0.55), (φ∗vj)bj is equivalent to
(φ−1

∗vj)bj . Similarly, pull-back maps can be generalized to T(k, l) by
virtue of φ−1. The pull-back and push-forward maps are known as in-
duced maps which play significant roles in spacetime embedding as well
as numerical relativity.

Suppose W and M are manifolds, let dimW 6 dimM21. A map
φ : W → M is called an embedding, such that φ is one-to-one and
C∞, and ∀ p ∈ W, the push-forward map φ∗ is non-degenerate, i.e.,
(φ∗v)a = 0 ⇒ va = 0 , va ∈ Tp. These properties carry the topological
structure of W onto manifold M, such that φ is a diffeomorphism. φ(W)
is a submanifold of M, if dimW = n− 1, then φ(W) ⊂ M is also known
as a hypersurface of M.

Suppose W ⊂ M is a hypersurface, p ∈ W, there exists an (n − 1)
dimensional vector space Up at p which is a tangent space in W. With
this, one can define the non-zero normal covector na, such that

nau
a = 0 , ∀ ua ∈ Up , (A.0.56)

where na ∈ T∗
p , T∗

p is the cotangent space in M. From the definition
we find that a normal covector is orthogonal to any vector in Up.

Given a metric gab on M, the normal vector can be defined as

na = gabnb , (A.0.57)

where na ∈ Tp , nb is a normal covector to the hypersurface. It can be
shown that na is orthogonal to all vectors in Up, since gabn

aub = nbu
b = 0,

where we have used (A.0.56) in the second equality.
Suppose f is a function on, without loss of generality, a three dimen-

sional manifold M, given different constant values to f(x, y, z) (with x ,
y , z the coordinates on M) gives rise to distinct hypersurfaces, denoted
by W. We then can prove that ∇af is a normal vector to the surface
determined by f(x, y, z) = con, where con is a constant.

21dimW denotes the dimension of manifold W.
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The induced metric hab can be defined by virtue of an embedding
map φ : W → M , W is a hypersurface on M, such that

h = φ∗g , (A.0.58)

where g is the metric on M. Induced metric is also known as the first fun-
damental form of W, or the short-hand name the 3 dimensional metric.
Note that

gabu
avb = habu

avb , ∀ ua , vb ∈ Tp(W) , (A.0.59)

where ∀ p ∈ W ⊂ M. From now on we use W to denote the hypersurface
of M if this does not cause confusion.

A hypersurface W is said to be

• space-like if h is positive definite, i.e., has signature (+,+,+),
(A.0.60)

• null if h is degenerate, i.e., has signature (0,+,+), (A.0.61)
• time-like if h is Lorentzian, i.e., has signature (−,+,+). (A.0.62)

The Lie derivative of a tensor T a1···ak
b1···bl

along the vector field v is a
linear map Lv : TM(k, l) → TM(k, l), given by

LvT
a1···ak

b1···bl
:= lim

t→0

1
t
(φ ∗

t T
a1···ak

b1···bl
− T a1···ak

b1···bl
) , (A.0.63)

where φ ∗
t is a diffeomorphism induced by va. A theorem states that

Lvf = v(f) , ∀ f ∈ F.
Given a vector field va on a manifold M, choose its integral curve as

the x1 coordinate line. Then randomly choose a group of lines traverse
x1 lines, regard these lines as x2 coordinate line if two tangent vectors
at the same intersection point are different. It is natural to generalize
this procedure to n dimension, such that they form an n dimensional
coordinate system (x1, x2, · · · , xn), called the adapted coordinate system
of va.

The components of the Lie derivative of T a1···ak
b1···bl

along va in the
adapted coordinate system of va are given as

LvT
µ1···µk

ν1···νl
=
∂T µ1···µk

ν1···νl

∂x1 . (A.0.64)

The explicit expression of the Lie derivative is given by

LvT
a1···ak

b1···bl
= vc∇cT

a1···ak
b1···bl

−
k∑

i=1
T a1···c···ak

b1···bl
∇cv

ai +
l∑

j=1
T a1···ak

b1···c···bl
∇bj

vc ,

(A.0.65)
where ∀ T ∈ T(k, l) , v ∈ T(1, 0). The Lie derivative is a linear operator,
for which satisfies

Lζ1v+ζ2uT
a1···ak

b1···bl
= ζ1LvT

a1···ak
b1···bl

+ ζ2LuT
a1···ak

b1···bl
, (A.0.66)

where ζ1 , ζ2 ∈ R.
A vector field ξa on spacetime (M, gab) is called a Killing vector field,

if Lξgab = 0. ξa satisfies the following equation

∇aξb + ∇bξa = 0 . (A.0.67)
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Appendix B

Curvature and Christoffel
Symbols

Given a coordinate system xµ, the Christoffel symbol is defined as

∇aT
b1···bk

c1···cl
= ∂aT

b1···bk
c1···cl

+
∑

i

Γ bi
ad T b1···d···bk

c1···cl
−
∑

j

Γ d
acj

T b1···bk
c1···d···cl

,

(B.0.1)
where T is a tensor of type (k, l) , ∂a denotes (∂/∂xµ)(dxµ)a. It is ap-
parently that Γ d

ac is a coordinate-dependent quantity which is referred
to as a coordinate-dependent tensor (i.e., not a tensor). Substituting gab

into (B.0.1) and note that covariant derivative is metric adapted, yields

∂agbc = Γcab + Γbac . (B.0.2)

Permuting the three indices, yields

∂bgac = Γcba + Γabc , (B.0.3)

∂cgab = Γbca + Γabc , (B.0.4)

where the upper index of Γ has been lowered by g. (B.0.3) plus (B.0.2)
minus (B.0.4) gives rise to

Γabc = 1
2(∂agbc + ∂bgac − ∂cgab) . (B.0.5)

Raising the index with gcd, yields

Γ c
ab = 1

2g
cd(∂agdb + ∂bgad − ∂dgab) . (B.0.6)

Christoffel symbol is a symmetric coordinate-dependent tensor between
its two lower indices, i.e., Γ c

ab = Γ c
ba .

The non-vanishing components of Christoffel symbol for the Kerr met-
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ric are given as follow

Γ t
tr = M(r2 + a2)(2r2 − Σ)

Σ2∆ , (B.0.7)

Γ t
tθ = −a2Mr sin 2θ

Σ2 , (B.0.8)

Γ t
rθ = −aM [4r4 − (r2 − a2)Σ] sin2 θ

Σ2∆ , (B.0.9)

Γ t
θϕ = 2a3Mr sin3 θ cos θ

Σ2 , (B.0.10)

Γ r
tt = M∆(2r2 − Σ)

Σ3 , (B.0.11)

Γ r
tϕ = −aM∆(2r2 − ∆) sin2 θ

Σ3 , (B.0.12)

Γ r
rr =

(
1 + ∆

Σ

)
r −M

∆ , (B.0.13)

Γ r
rθ = −a2 sin 2θ

2Σ = Γθ
θθ = −Γθ

rr

∆ , (B.0.14)

Γ r
θθ = −r∆

Σ = ∆Γθ
rθ , (B.0.15)

Γ r
ϕϕ = −∆[rΣ2 − a2M(2r2 − Σ)] sin2 θ

Σ3 , (B.0.16)

Γ θ
tt = −a2Mr sin 2θ

Σ3 , (B.0.17)

Γ θ
tϕ = aMr(r2 + a2) sin 2θ

Σ3 , (B.0.18)

Γθ
ϕϕ = −sin 2θ

2Σ3 {(r2 + a2)Σ2 + 2a2Mr[Σ + (r2 + a2)] sin2 θ} , (B.0.19)

Γ ϕ
tr = aM(2r2 − Σ)

∆Σ2 , (B.0.20)

Γ ϕ
tθ = −2aMr cot θ

Σ2 , (B.0.21)

Γ ϕ
rϕ = rΣ2 −M [2r2Σ − (2r2 − Σ)a2 sin2 θ]

∆Σ2 , (B.0.22)

Γ ϕ
θϕ = cot θ + a2Mr sin 2θ

Σ2 . (B.0.23)

All these components reduce to the components of the Schwarzschild met-
ric in the limit of non-rotating object, i.e., a = 0, and to the Minkowskian
metric in the limit of a = 0 and M = 0.

The Riemann curvature tensor R d
abc of ∇a is defined as

(∇a∇b − ∇b∇a)wc = R d
abc wd , (B.0.24)

or
(∇a∇b − ∇b∇a)vc = −R c

abd v
d , (B.0.25)

where wc ∈ T(0, 1) and vc ∈ T(1, 0). Given a coordinate system xµ, the
Riemann curvature can be written as

R d
abc = ∂bΓ d

ac − ∂aΓ d
bc + Γ e

ca Γ d
be − Γ e

cb Γ d
ae . (B.0.26)
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There are only two independent contractions of different indices in Rie-
mann curvature tensor. One of them is the Ricci tensor

Rac := R b
abc . (B.0.27)

The other one is scalar curvature

R := gacRac . (B.0.28)

It can be proven that a Riemann tensor satisfies the following identities

(1) R d
abc = −R d

bac , (B.0.29)
(2) Rabcd = −Rabdc , (B.0.30)
(3) Rabcd = Rcdab , (B.0.31)
(4) Cyclic identity R d

[abc] = 0 , (B.0.32)
(5) Bianchi identity ∇[aR

e
bc]d = 0 . (B.0.33)

The indices are lowered by gab.
When dimM ≥ 3, the Weyl curvature tensor is defined as

Cabcd := Rabcd − 2
n− 2(ga[cRd]b − gb[cRd]a) + 2

(n− 2)(n− 1)Rga[cgd]b .

(B.0.34)
A Wely tensor has the following properties

(1) Cabcd = −Cbacd = −Cabdc = Ccdab , (B.0.35)
(2) C[abc]d = 0 , (B.0.36)
(3) Wely tensor is traceless, i.e., gabCabcd = Ccd = 0 , gabCab = 0 .

(B.0.37)

Any manifold with a vanishing Weyl tensor is conformally flat, which
means that in a specific coordinate system the metric is proportional to
a constant tensor.
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Appendix C

Higher-Order Numerical
Schemes

In this section the first-order accurate method described in the main con-
text is improved by high-order schemes. The essentially non-oscillatory
method (ENO) [349] for spatial terms and the total variation diminishing
Runge-Kutta [135] for temporal terms are introduced.

C.1 Essentially Non-Oscillatory Method
The idea of ENO is firstly proposed by Harten et al. [350]. The ac-
tual implementation was improved by Shu and Osher in [134] and [10].
Furthermore, in [14], Sethian and Osher borrowed this ENO method and
extended it for the numerical discretization of Hamilton-Jacobi equation,
e.g., the level set equation (4.4.3). This Hamilton-Jacobi ENO (HJ ENO)
allows one to promote the spatial precision of first-order upwind scheme
by providing better numerical approximations of φ+

xi
and φ−

xi
, where xi

represent the spatial coordinates x , y , z , .... in the n dimensional space.
We use the smoothest polynomial interpolation to find φ and differ-

entiate it to derive φx in one dimensional space [15]. The zeroth divided
differences of φ are given by

D0
i φ = φi , (C.1.1)

located at xi. By means of this definition, the

D1
i+ 1

2
φ = D0

i+1φ−D0
i φ

∆x , (C.1.2)

denote the first divided differences of φ and are defined at the midpoint
between grid node i (located at xi) and i+1 (located at xi+1). Note that
the forward and backward differences are given by (D+φ)i = D1

i+1/2φ and
(D−φ)i = D1

i−1/2φ respectively. The second divided differences, located
at xi, are given by

D2
i φ =

D1
i+ 1

2
−D1

i− 1
2

2∆x , (C.1.3)

and the third divided differences are defined at midway between grid
node, given as

D3
i+ 1

2
φ =

D2
i+ 1

2
−D2

i− 1
2

3∆x . (C.1.4)
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These divided differences can be used to reconstruct the polynomial form
of the derivatives of φ(x) = Q0(x)+Q1(x)+Q2(x)+Q3(x), the first term
Q0 is zero, which vanishes upon differentiation. Accordingly, differenti-
ating φ leads to

φx(xi) = Q ′
1 (xi) +Q ′

2 (xi) +Q ′
3 (xi) , (C.1.5)

where ‘′’ denote derivatives. Note that xi in this equation denote x at
grid nodes i, not the coordinates.

Next we introduce parameters c , c? , k? and k to distinguish φ+ and
φ−. We start with k = i for φ+, and k = i− 1 for φ−. Then define

Q1(x) = (D1
k+ 1

2
φ)(x− xi) , (C.1.6)

such that
Q ′

1 (xi) = D1
k+ 1

2
, (C.1.7)

which implies that the contribution of the Q1 term in (C.1.5) is exactly
the same as the first-order upwind scheme, i.e., the φ±. We can improve
the accuracy to second- and third-orders by adding Q2 and Q3 terms.

For the second-order accurate correction, if |D2
kφ|< |D2

k+1φ|, c = D2
kφ

and k? = k − 1; otherwise, c = D2
k+1/2φ and k? = k. Then we define

Q2(x) = c(x− xk)(x− xk−1) , (C.1.8)

upon differentiating leads to

Q ′
2 (xi) = c(2(i− k) − 1)∆x . (C.1.9)

Similarly, for the third-order accurate correction, if |D3
k?+1/2φ|< |D3

k?+3/2φ|,
then c? = D3

k?+1/2φ; otherwise c? = D3
k?+3/2φ. Then we define

Q3(x) = c?(x− xk?)(x− xk?+1)(x− xk?+2) , (C.1.10)

upon differentiating yields

Q ′
3 (xi) = c?(3(i− k?)2 − 6(i− k?) + 2)(∆x)2 , (C.1.11)

which is the third-order correction in equation (C.1.5).

C.2 Total Variation Diminishing RK
HJ ENO allows one to discretize the spatial terms to third-order. Com-
paring with the first-order upwind scheme for spatial terms, the first-
order Euler forward method for temporal discretization produces less
deterioration of numerical solutions.

But in some cases, a higher-order scheme in temporal terms is nec-
essary. The total variation diminishing Runge-Kutta approach was used
in [134] to increase the temporal numerical approximation accuracy. This
method assumes that the spatial discretization can be separated from the
temporal discretization, such that the temporal discretization of a par-
tial differential equation can be treated independently as an ordinary
differential equation (ODE).
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The basic first-order accurate TVD RK is just the Euler forward
method. The second-order accurate scheme is identical to the standard
second-order accurate RK scheme. We focus on the third-order accurate
scheme.

Firstly, an Euler step is taken to forward the solution to time tn +∆t,

φn+1 − φn

∆t +H(φn) = 0 , (C.2.1)

where H(φn) is a function of φ at time tn. Then we forward the solution
to tn + 2∆t,

φn+2 − φn+1

∆t +H(φn+1) = 0 , (C.2.2)

taking the average of φn and φn+2 produces

φn+ 1
2 = 3

4φ
n + 1

4φ
n+2 , (C.2.3)

which produces an approximation solution at time tn + 1
2∆t. Taking

another Euler step to forward the solution to tn + 3
2∆t, leads to

φn+ 3
2 − φn+ 1

2

∆t +H(φn+ 1
2 ) = 0 , (C.2.4)

followed by another averaging step, given as follow

φn+1 = 1
3φ

n + 2
3φ

n+ 3
2 , (C.2.5)

which produces a third-order accurate solution to φ at time tn + ∆t.
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Appendix D

Numerical Schemes for
Hamiltonian Ĥ

There are several numerical approximation methods to Ĥ. For simplicity,
we suppress the dimensions to two. The numerical approximation can
be generalized to the other dimensions in a similar manner.

D.1 Lax-Friedrichs Schemes
The Ĥ in Lax-Friedrichs (LF) scheme [351] is given by

Ĥ = H

(
φ+

x + φ−
x

2 ,
φ+

y + φ−
y

2

)
− αx

(
φ+

x − φ−
x

2

)
− αy

(
φ+

y − φ−
y

2

)
,

(D.1.1)
where the dissipation coefficients αx and αy are given by

αx = max|H1(φx, φy)| , (D.1.2)
αy = max|H2(φx, φy)| . (D.1.3)

The dissipation coefficients αx and αy are calculated through the whole
computational domain. The maximum and minimum values of φ+

x , φ−
x ,

φ+
y , φ−

y are chosen, denoted by φmax
x , φmin

x , φmax
y and φmin

y , then the
interval of φx and φy are defined as

Ix = [φmin
x , φmax

x ] , (D.1.4)
Iy = [φmin

y , φmax
y ] . (D.1.5)

The αx are set to be the maximum possible values of H1(φx, φy) with
φ±

x ∈ Ix and φ±
y ∈ Iy, a similar procedure can be applied to find αy.

Occasionally, it is rather difficult to calculate αx and αy when H1 and
H2 depend on φx and φy.

In order to decrease the complexity of searching dissipation coeffi-
cients, mathematicians have proposed new approach, the Local Lax-
Friedrichs (LLF) scheme and Local Local Lax-Friedrichs (LLLF) scheme,
where only the local values of φ±

x and φ±
y are required to compute H1 and

H2 [131, 10]. In LLF, we evaluate φ±
x at specific grid point to determine

Ix and φ±
y is still selected from all grid nodes to determine Iy for αx. For

αy , φ±
y is evaluated at specific point to determine Iy and φ±

x is selected
from all grid nodes to determine Ix. While in LLLF, all coefficients αx

and αy are determined with the local values of φ±
x and φ±

y at specific
point.
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D.2 Roe-Fix Scheme
From last subsection we recognize that it can be rather tricky to find
appropriate values of dissipation coefficients. We then introduce another
method, dubbed Roe-Fix (RF) scheme [131, 10]. The numerical Hamil-
tonian is given as bellow

Ĥ = H(φ?
x, φ

?
y) − αx

(
φ+

x − φ−
x

2

)
− αy

(
φ+

y − φ−
y

2

)
. (D.2.1)

In RF scheme, if H1 does not change sign for all φx ∈ Ix and φy ∈ Iy:
then if H1 < 0, we set φ?

x = φ−
x ; otherwise if H1 > 0, we set φ?

x = φ+
x .

Similar for H2 and φ?
y. The αx and αy are set identically to zero.

If eitherH1 orH2 changes sign, we need to modify RF scheme by LLF.
When H1 does not change its sign for all φx ∈ Ix

LLF and φy ∈ Iy
LLF, we

set φ?
x equal to either φ+

x or φ−
x , depending on the sign of H1. And αx is

set to be zero. We use the LLF method on the y-direction to compute
αy and set φ?

y = (φ+
y +φ−

y )/2. A similar algorithm is executed, if H2 does
not change sign for all φx ∈ Ix

LLF and φy ∈ Iy
LLF, setting φ?

y equal to
either φ+

y or φ−
y depending on the sign of H2. αy is zero. Choosing αy as

dictated by LLF and set φ?
x = (φ+

x + φ−
x )/2 on the x-direction.

If both H1 and H2 change signs, we switch to standard LLF scheme
at the grid point.

D.3 Godunov’s Scheme
Another scheme, called the Godunov’s scheme [352], was pointed out in
[353] by Osher and Bardi, that the numerical Hamiltonian is written as

Ĥ = extxextyH(φx, φy) . (D.3.1)

In the Godunov’s scheme, the intervals Ix and Iy are defined in the
LLLF manner with φx and φy determined only on the local grid points.
Then if φ+

x > φ−
x , extxH takes on the minimum value of H for all φx ∈

Ix. If φ+ < φ+
x , then extxH takes on the maximum value of H for all

φx ∈ Ix. Otherwise, if φ+
x = φ−

x , simply plug φ+
x (= φ−

x ) into H for φx.
Similarly, if φ+

y > φ−
y , then extyH takes on the minimum value of H for

all φy ∈ Iy. If φ+
y < φ−

y , then extyH takes on the maximum value of H
for all φy ∈ Iy. Otherwise, if φ+

y = φ−
y , plug φ+

y (= φ−
y ) into H for φy.

Normally, extxextyH 6= extyextxH. Nevertheless, this is not the case if
H is separable, which can be written as H = H(φx) +H(φy).
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Appendix E

Linearized Gravitational
Equation

The Einstein’s gravitational equation is

Gab = 8πTab , (E.0.1)

where Gab ≡ Rab − Rgab/2 called the Einstein tensor, Tab is the energy-
momentum tensor. This is a second-order non-linear equation. It can
be simplified to linearized version in the weak-field limit. In GR, the
physical interpretation of weak-field is that the metric is perturbed from
Minkowskian metric by an infinitesimal term, yielding

gab = ηab + γab , (E.0.2)

where the components of γab satisfy that |γµν |� 1 in some Lorentz co-
ordinate system of ηab. Note that in the limit of weak-field, raising and
lowering of indices are operated by ηab and ηab. Nevertheless, there is
one exception, that the inverse of gab is not gcdη

caηdb, whereas it is given
by

gab = ηab − γab . (E.0.3)
Substituting (E.0.2) and (E.0.3) into (B.0.6) and ignoring higher-order
terms in γab (higher than second-order), yields

Γ(1)c

ab = 1
2η

cd(∂aηbd + ∂bηad − ∂dηab) . (E.0.4)

The Riemann curvature to the first-order is given by

R(1)
abcd = ∂d∂[aγc]b − ∂b∂[aγc]d . (E.0.5)

The first-order accurate Ricci tensor is given by

R(1)
ab = ∂c∂(aγb)c − 1

2∂
c∂cγab − 1

2∂a∂bγ , (E.0.6)

where γ ≡ γa
a = ηabγab. Then the Einstein tensor is given by

G(1)
ab = ∂c∂(bγa)c − 1

2∂
c∂cγab − 1

2∂a∂bγ− 1
2ηab(∂c∂dγcd −∂c∂cγ) , (E.0.7)

such that

∂c∂(bγa)c − 1
2∂

c∂cγab − 1
2∂a∂bγ− 1

2ηab(∂c∂dγcd −∂c∂cγ) = 8πTab , (E.0.8)
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called the linearized Einstein equation. Defining γ̄ab ≡ γab − 1
2ηabγ, then

equation (E.0.8) can be simplified to

−1
2∂

c∂cγ̄ab + ∂c∂(aγ̄b)c − 1
2ηab∂

c∂dγ̄cd = 8πTab . (E.0.9)

Consider the transformation

γ̃ab = γab + ∂aεb + ∂bεa , (E.0.10)

by another infinitesimal covector field εa. After some algebra, we obtain

∂b ˜̄γab = ∂bγ̄ab + ∂b∂bεa . (E.0.11)

If εa satisfies that ∂b∂bεa = −∂bγ̄ab, it is thus guaranteed the Lorentz
gauge condition

∂b ˜̄γab = 0 . (E.0.12)

Then linearized Einstein equation becomes

∂c∂c
˜̄γab = −16πTab . (E.0.13)

In addition to the Lorentz gauge, there is another gauge condition called
the radiation gauge, given by

˜̄γ = 0 , (E.0.14)
˜̄γ00 = 0 , (E.0.15)
˜̄γ0i = 0 . (E.0.16)
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Appendix F

Conformal Decomposition

As is given in the main context, a conformal decomposition of the 3
dimensional metric is given by equation (8.2.1). Follow the steps to
derive the decompositions of 3 dimensional metric tensor, Ricci tensor,
extrinsic curvature tensor and finally the 3+1 Einstein equation.

Introduce a positive definite background 3 dimensional metric Iab [354]
on the hypersurface W, such that in the adapted coordinate system xµ

that we choose, it satisfies

L∂tIij = ∂Iij

∂t
= 0 . (F.0.1)

The inverse background metric satisfies

I ikIkj = δi
j , (F.0.2)

and
I ij 6= hikhjlikl . (F.0.3)

We denote Da as the Levi-Civita connection associated with Iab, such
that

DaIbc = 0 . (F.0.4)
The Christoffel symbols of Da are given by

Γ̂ c
ab = 1

2I
cd (∂aIdb + ∂bIad − ∂dIab) . (F.0.5)

Define a tensor h̃ab on W

h̃ab := Ψ−4hab , (F.0.6)

where

Ψ :=
(
h

I

) 1
12

, (F.0.7)

h := det(hij) , (F.0.8)
I := det(Iij) . (F.0.9)

I shall call tensor h̃ab the conformal metric tensor. By construction, we
have

h̃ := det(h̃ij) = I . (F.0.10)
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Define the inverse conformal metric by

h̃ikh̃kj = δi
j , (F.0.11)

or equivalently
h̃ab = Ψ4hab . (F.0.12)

Define the Levi-Civita connection associated with the conformal metric
as D̃a, the Christoffel symbols are given by

Γ̃ c
ab = 1

2 h̃
cd
(
∂ah̃db + ∂bh̃ad − ∂dh̃ab

)
. (F.0.13)

The difference between two covariant derivatives Da and D̃a with respect
to a tensor T b1b2···bq

a1a2···ap is evaluated by a tensor C c
ab , given by

DcT
b1b2···bq

a1a2···ap
= D̃cT

b1b2···bq
a1a2···ap

−
p∑

r=1
C d

car
T

b1b2···bq

a1a2···d···ap
+

q∑
r=1

C br
cd T b1b2···d···bq

a1a2···ap
,

(F.0.14)
where

C c
ab := Γ c

ab − Γ̃ c
ab , (F.0.15)

similar to the Christoffel symbol, the tensor C c
ab satisfies

C c
ab = 1

2h
cd
(
D̃ahdb + D̃bhad − D̃dhab

)
. (F.0.16)

Substitute the equations (F.0.6) and (F.0.12) into the above equation
(F.0.16), and after some algebra we obtain

C c
ab = 2

(
δ c

a D̃b ln Ψ + δ c
b D̃a ln Ψ − D̃c ln Ψh̃ab

)
. (F.0.17)

From the definition of the 3 dimensional curvature tensor and the 3 di-
mensional Ricci tensor, we can derive that

3Rabv
b = DbDav

b −DaDbv
b , (F.0.18)

where vb is a vector on hypersurface W. Using the equation (F.0.14), the
3 dimensional Ricci tensor becomes
3Rabv

b = D̃bD̃av
b−D̃aD̃bv

b+D̃bC
b

ac v
c−D̃aC

b
bc v

c−C c
ab C

b
cd v

d+C b
bc C

c
ad v

d .
(F.0.19)

Consider a similar relation for the conformal 3 dimensional Ricci tensor
3R̃abv

b = D̃bD̃av
b − D̃aD̃bv

b , (F.0.20)

then after some algebra from (F.0.19), we obtain
3Rabv

b = 3R̃abv
b + D̃cC

c
ab v

b − D̃aC
c

cb v
b + C d

cd C
c

ab v
b − C c

ad C
d

cb v
b .

(F.0.21)
Note that va is an arbitrary vector, it is concluded that

3Rab = 3R̃ab + D̃cC
c

ab − D̃aC
c

cb + C d
cd C

c
ab − C c

ad C
d

cb . (F.0.22)

Contracting the indices c and b in (F.0.17), we obtain

C c
ac = 2

(
D̃a ln Ψ + 3D̃a ln Ψ − D̃a ln Ψ

)
= 6D̃a ln Ψ , (F.0.23)
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hence
D̃aC

c
bc = 6D̃aD̃b ln Ψ , (F.0.24)

and
D̃cC

c
ab = 4D̃aD̃b ln Ψ − 2D̃cD̃

c ln Ψh̃ab . (F.0.25)
Taking the equations (F.0.24) and (F.0.25) into consideration, the ex-
pression (F.0.22) becomes

3Rab = 3R̃ab − 2D̃aD̃b ln Ψ − 2D̃cD̃
c ln Ψh̃ab + 4D̃a ln ΨD̃b ln Ψ

− 4D̃c ln ΨD̃c ln Ψh̃ab .

(F.0.26)

Taking the trace of (F.0.26), leads to an expression for the scalar
curvature, which is given by

3R = Ψ−4
[

3R̃ − 8
(
D̃aD̃

a ln Ψ + D̃a ln ΨD̃a ln Ψ
)]
, (F.0.27)

where 3R̃ := 3R̃abh̃
ab. Equation (F.0.27) can be readily rewritten as

3R = (Ψ−4)3R̃ − 8Ψ−5D̃aD̃
aΨ . (F.0.28)

For the extrinsic curvature, one can first divide it into traceless and
trace parts. Define a tensor κab, such that

κab := Kab − 1
3Khab , (F.0.29)

where K is the trace of Kab with respect to the 3 dimensional metric.
And κab is traceless. Define two rank-two contravariant tensors Kab and
κab, given by

Kab := hachbdKcd , (F.0.30)
κab := hachbdκcd . (F.0.31)

Consequently the traceless decomposition of extrinsic curvatures are given
by

Kab = κab + 1
3Kh

ab , (F.0.32)

Kab = κab − 1
3Khab . (F.0.33)

Consider the traceless part of Kab, write

κab = Ψακ̃ab , (F.0.34)

for some power α, aka the scaling factor, to be determined. By means of
equations (F.0.6), (F.0.33), the equation (6.2.41) becomes

Lm

(
Ψ4h̃ab

)
= 2Nκab + 2

3NKhab , (F.0.35)

simplifying the expression leads to

Lmh̃ab = 2NκabΨ−4 + 2
3 (NK − 6Lm ln Ψ) h̃ab . (F.0.36)
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Taking the trace of the above equation gives

h̃abLmh̃ab = 2NK − 12Lm ln Ψ . (F.0.37)

Consider the law of variation of the determinant of an invertible matrix,
we have

h̃abLmh̃ab = Lm ln h̃ . (F.0.38)
By means of equations (4.3.15) and (F.0.10), (F.0.38) becomes

Lm ln h̃ = (L∂t − Lβ) ln I , (F.0.39)

and due to (F.0.1), this becomes

Lm ln h̃ = −Lβ ln I = Lβh̃ . (F.0.40)

After some calculation, we obtain

Lm ln h̃ = −h̃abLβh̃ab = −2D̃aβ
a . (F.0.41)

Combine with (F.0.38), yields

h̃abLmh̃ab = −2D̃aβ
a , (F.0.42)

substitute the above equation into (F.0.37), yields

6Lm ln Ψ −NK = D̃aβ
a , (F.0.43)

i.e.
(L∂t − Lβ) ln Ψ = 1

6
(
D̃aβ

a +NK
)
. (F.0.44)

An evolution equation for the conformal metric may be obtained by plug-
ging equation (F.0.43) into (F.0.36)

(L∂t − Lβ) h̃ab = 2N κ̃ab − 2
3D̃cβ

ch̃ab , (F.0.45)

where κ̃ab := Ψ−4κab, which possesses the following properties

h̃abκ̃ab = 0 , (F.0.46)
κ̃ab = Ψ4κab . (F.0.47)

where κ̃ab = h̃ach̃bdκ̃cd. This corresponds to the case of a scaling factor
α = −4, which is introduced by Nakamura [188].

The equation (F.0.45) may lead to the following expression

(L∂t − Lβ) h̃ab = −2N κ̃ab + 2
3D̃cβ

ch̃ab . (F.0.48)

From (F.0.32), we have

DbK
ab = Dbκab + 1

3D
aK , (F.0.49)

by means of (F.0.14), (F.0.17) and (F.0.23), the first term on the RHS
of this equation becomes

Dbκab = D̃bκab + 10κabD̃b ln Ψ − 2D̃a ln Ψh̃bcκbc . (F.0.50)
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Note that 0 = h̃bcκbc = Ψ−4hbcκbc, (F.0.50) thus reduces to

Dbκab = Ψ−10D̃bκ̂ab , (F.0.51)

where κ̂ab = Ψ10κab, which corresponds to a scaling factor of α = −10.
This is found by Lichnerowicz [169]. The inverse tensor is given by

κ̂ab := h̃ach̃bdκ̂cd , (F.0.52)

which satisfies
κ̂ab = Ψ2κab . (F.0.53)

Accordingly, the momentum constraint can be rewritten as

D̃bκ̂ab − 2
3Ψ6D̃aK = 8πΨ10pa . (F.0.54)

Substitute (F.0.33) into the LHS of (6.2.65), and taking the contrac-
tion of indices a and b on both sides of the equation (6.2.65), yields

LmKab = Lmκab + 1
3LmKhab + 1

3LmhabK , (F.0.55)

LmK = DaD
aN −N

[
3R +K2 + 4π(S − 3E)

]
, (F.0.56)

this can be rewritten by means of the Hamiltonian constraint, leads to(
∂

∂t
− Lβ

)
K = DaD

aN −N
[
4π(E + S) +KabK

ab
]
. (F.0.57)

By applying the equations (F.0.56) and (6.2.65) into (F.0.55), and
considering the expression of Kab in terms of κab, yields

Lmκab = −DaDbN +N
[

3Rab − 1
3Kκab − 2κacκ c

b − 8π
(
Sab − 1

3Shab

)]
− 1

3
(
DcD

cN − 3RN
)
hab . (F.0.58)

Next step is to perform the conformal decomposition of the 3+1 equa-
tions. Consider the case where the scaling factor is given by α = −4, i.e.,
κ̃ab. First, consider the relation between two Levi-Civita connections,
from (F.0.14) and take the trace of the equation, we obtain

Dav
a = Ψ−6D̃a

(
Ψ6va

)
. (F.0.59)

Apply the above formula to a vector DaN , yields

DaD
aN = Ψ−4

(
D̃aD̃

aN + 2D̃a ln ΨD̃aN
)
. (F.0.60)

From (F.0.32) and (F.0.33), we have

KabK
ab = κ̃abκ̃ab + K2

3 . (F.0.61)

In view of (F.0.60), (F.0.61) and (F.0.57), yields(
∂

∂t
− Lβ

)
K = Ψ−4

(
D̃aD̃

aN + 2D̃a ln ΨD̃aN
)

−N

[
4π (E + S) + κ̃abκ̃ab + K2

3

]
. (F.0.62)
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Making use of (F.0.44), (F.0.14), (F.0.17), (F.0.22), (F.0.27) and
(F.0.58), after some algebra and rearrangements, we obtain the following
expression(
∂

∂t
− Lβ

)
κ̃ab =

− 2
3D̃cβ

cκ̃ab +N
[
Kκ̃ab − 2h̃cdκ̃acκ̃bd − 8π

(
Ψ−4Sab − 1

3Sh̃ab

)]
+ Ψ−4

{
−D̃aD̃bN + 2D̃a ln ΨD̃bN + 2D̃b ln ΨD̃aN

}
+ 1

3
(
D̃cD̃

cN − 4D̃c ln ΨD̃cN
)
h̃ab

+N [3R̃ab − 1
3

3R̃h̃ab − 2D̃aD̃b ln Ψ + 4D̃a ln ΨD̃b ln Ψ

+ 2
3
(
D̃cD̃

c ln Ψ − 2D̃c ln ΨD̃c ln Ψ
)
h̃ab] . (F.0.63)

We can deduce that

κ̂ab = Ψ6κ̃ab , (F.0.64)
κ̂ab = Ψ6κ̃ab . (F.0.65)

Then by means of the equations (F.0.28) and (F.0.61), the Hamiltonian
constraint becomes

D̃aD̃
aΨ − 1

8
3R̃Ψ +

(1
8 κ̃abκ̃ab − 1

12K
2 + 2πE

)
Ψ5 = 0 , (F.0.66)

D̃aD̃
aΨ − 1

8
3R̃Ψ + 1

8κ̂abκ̂abΨ−7 +
(

2πE − 1
12K

2
)

Ψ5 = 0 . (F.0.67)

This is the Lichnerowicz equation and was first derived in 1944 by Lich-
nerowicz [169, 170].

Consider (F.0.64) and (F.0.65), the equation (F.0.54) can be rewritten
as

D̃bκ̃ab + 6κ̃abD̃b ln Ψ − 2
3D̃

aK = 8πΨ4pa . (F.0.68)

Now the equations (F.0.44), (F.0.45), (F.0.62), (F.0.63), (F.0.66),(F.0.68),
(F.0.54) and (F.0.67) constitute the conformal version of the 3+1 Ein-
stein equations. To recover the original 3 dimensional metric hab and the
extrinsic curvature Kab, we need to use (F.0.6) and (F.0.33).
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Appendix G

Symplectic Integrator

The symplectic method is designed for integrating the system with a
Hamiltonian function H(p, q) [355, 356, 357, 358]. Consider the Hamil-
tonian system H(p1, p2, · · · , pn, q1, q2, · · · , qn), and the tangent vectors to
the curve in phase space are given by

dqi

dt = Hpi
, (G.0.1)

dpi

dt = −Hqi
, (G.0.2)

which are also known as the Hamiltonian equations in classical mechanics,
∀ i, where 1 < i < n. Introduce a matrix X = ( 0 Xn

−Xn 0 ), and a column
vector z = ( q

p ). We can then rewrite the Hamiltonian equations as
d
dtz = X∇H(z) , (G.0.3)

where the ∇ denotes the derivative with respect to the variables pi and
qi.

A typical first-order accurate method is given by
qi+1 = qi + ∆t∇pH(pi+1, qi) , (G.0.4)
pi+1 = pi − ∆t∇qH(pi+1, qi) , (G.0.5)

or
qi+1 = qi + ∆t∇pH(pi, qi+1) , (G.0.6)
pi+1 = pi − ∆t∇qH(pi, qi+1) . (G.0.7)

This is known as the symplectic Euler method of order 1.
A second-order symplectic method is

qi+1/2= qi + ∆t

2 ∇pH(pi, qi+ 1
2
) , (G.0.8)

pi+1 = pi − ∆t

2
(
∇qH(pi, qi+ 1

2
) + ∇qH(pi+1, qi+ 1

2
)
)
, (G.0.9)

qi+1 = qi+ 1
2

+ ∆t

2 ∇pH(pi+1, qi+ 1
2
) , (G.0.10)

pi+1/2= pi − ∆t

2 ∇qH(pi, qi+ 1
2
) , (G.0.11)

qi+1 = qi + ∆t

2
(
∇pH(pi+ 1

2
, qi) + ∇pH(pi+1, qi+ 1

2
)
)
, (G.0.12)

pi+1 = pi+ 1
2

− ∆t

2 ∇qH(pi+ 1
2
, qi+1) , (G.0.13)
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which is also known as the Störmer-Verlet schemes.
Another second-order symplectic approach is given by

zi+1 = zi + ∆tX∇H
(

zi+1 + zi

2

)
. (G.0.14)

A general Runge-Kutta method is given by

ki = f

t0 + ci∆t, Y0 + ∆t
n∑

j=1
Aijkj

 , (G.0.15)

Y1 = Y0 + ∆t
n∑

i=1
biki , (G.0.16)

based on the initial value
dY
dt

= f(t, Y ) , (G.0.17)

Y (t0) = Y0 . (G.0.18)

A symplectic Runge-Kutta [359] relates the symplecticity to the conserva-
tion of the quadratic first integrals. If a Runge-Kutta method conserves
quadratic first integrals, i.e., I(Y1) = I(Y0) whenever I(Y ) = Y T CY
with C a symmetric matrix, is a first integral of dY/dt = f(Y ), then it
is a symplectic Runge-Kutta.

The Gauss collection method is defined as: Let c1 , c2 , · · · , cn be
the zeroth of the shifted Legendre polynomial dn (xn(1 − x)n) /dxn, and
u(t) be the polynomial of degree of n satisfying

u(t0) = Y0 , (G.0.19)
u̇(t0 + ci∆t) = f (t0 + ci∆t, u(t0 + ci∆t)) , (G.0.20)

the numerical solution is then given by Y1 = u(t0 + ∆t) for Gauss collec-
tion method. The Gauss collection method is symplectic as it conserves
quadratic first integrals.

If the coefficients of Runge-Kutta method satisfy

biaij + bjaji = bibj , (G.0.21)

for all i , j = 1 , 2 , · · · , n, it then conserves quadratic first integrals
and is thus symplectic [360, 361, 362, 363].

Consider the following mapping

qi+1 = qi + ∇pG(pi+1, qi) , (G.0.22)
pi+1 = pi − ∇qG(pi, qi+1) , (G.0.23)

if G(p, q) satisfies

G(p, q, t) = ∆tG1(p, q) + ∆t2G2(p, q) + ∆t3G3(p, q) + · · · , (G.0.24)

where

G1 = H , (G.0.25)

G2 = 1
2
∂H

∂q

∂H

∂p
, (G.0.26)

G3 = 1
6

∂2H

∂q2 +
(
∂H

∂p

)2

+ ∂2H

∂q∂p

∂H

∂q

∂H

∂p
+ ∂2H

∂p2

(
∂H

∂q

)2
 . (G.0.27)
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Then (G.0.22) and (G.0.23) produce an exact solution to the Hamilto-
nian equations. If we apply a truncate series of G(p, q) = ∆tG1(p, q) +
∆t2G2(p, q) + · · · + ∆tiGi(p, q) to that solution, it will produce a sym-
plectic one-step method of order 1. For i ≥ 2, the method requires a
higher-order of H(p, q) [364, 365].

Consider the approximation expression

Gt({qi}n
0 ) =

n−1∑
i=0

Lt(qi, qi+1) , (G.0.28)

Lt(qi, qi+1) ≈
∫ ti+1

ti

L(q(t), q̇(t), t)dt . (G.0.29)

Where Lt(qi, qi+1) denotes the discrete Lagrangian. The requirement of
extremum of (G.0.28) yields the Euler-Lagrange equation

∂e1Lt(qi, qi+1) + ∂e2Lt(qi−1, qi) = 0 , (G.0.30)

where the derivatives refer to Lt = Lt(e1, e2), for i = 1 , 2 , · · · , n.
Introduce momenta via the Legendre transformation

pi = −∂Lt

∂e1
(qi, qi+1) , (G.0.31)

if one substitutes i for i+ 1 in (G.0.30), it is then derived from (G.0.31)
that

pi+1 = ∂Lt

∂e2
(qi, qi+1) . (G.0.32)

Producing a mapping (pi, qi) 7→ (pi+1, qi+1), which defines a symplectic
integrator.
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Appendix H

Conformal Thin Sandwich
Method

H.1 Basics of Conformal Thin Sandwich
(CTS) Method

In appendix F, we have derived the equation (F.0.48), hence for the
traceless part κ̃ab, we obtain

κ̃ab = 1
2N

[
(L∂t − Lβ) h̃ab − 2

3D̃cβ
ch̃ab

]
. (H.1.1)

And
−Lβh̃

ab = (L̃β)ab + 2
3D̃cβ

ch̃ab . (H.1.2)

The (H.1.1) can be then rewritten as

κ̃ab = 1
2N

[
˙̃hab + (L̃β)ab

]
, (H.1.3)

where
˙̃hab := ∂

∂t
h̃ab . (H.1.4)

Consider (F.0.65), the formula (H.1.3) becomes

κ̂ab = 1
2Ñ

[
˙̃hab + (L̃β)ab

]
, (H.1.5)

where
Ñ := Ψ−6N , (H.1.6)

this denotes the conformal lapse function. We now have a new form of
decomposition of the κ̂ab in terms of Ñ , β and ˙̃hab. Hence the constraints
of Einstein equation become

D̃aD̃aΨ − 1
8

3R̃Ψ + 1
8κ̂

abκ̂abΨ−7 + 2πẼΨ−3 − 1
12K

2Ψ5 = 0 , (H.1.7)

D̃b

( 1
Ñ

(L̃β)ab
)

+ D̃b

( 1
Ñ

˙̃hab
)

− 4
3Ψ6D̃aK = 16πp̃a . (H.1.8)

The Hamiltonian constraint which takes the same form as (8.2.9), ex-
pressed with (H.1.5). Now the freely-chosen data are (h̃ab,

˙̃hab, K, Ñ , Ẽ, p̃a),
and solve for the (Ψ, βa) via (H.1.7) and (H.1.8). This method is called
the conformal thin sandwich method [366, 367, 239, 368, 227]. The equa-
tion (H.1.8) can be decoupled from (H.1.7) on a CMC hypersurface.
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H.2 Extended Conformal Thin Sandwich
(XCTS) Method

Consider the identity

D̃aD̃
aN + 2D̃a ln ΨD̃aN = Ψ

[
4π(E + S) + κ̃abκ̃ab + K2

3

]
, (H.2.1)

plug (F.0.62) and (H.1.7) into the LHS and RHS of the above equation,
yields,

D̃aD̃
a(ÑΨ7) − (ÑΨ7) +

[1
8

3R + 5
12K

2Ψ4 + 7
8 κ̂abκ̂abΨ−8 + 2π(Ẽ + 2S̃)Ψ−4

]
+
(
K̇ − βaD̃aK

)
Ψ5 = 0 ,

(H.2.2)

where

K̇ := ∂K

∂t
, (H.2.3)

S̃ := Ψ8S . (H.2.4)

Then the three equations (H.1.7), (H.1.8) and (H.2.4) constitute a con-
straint system of Einstein equation. Now the constrained data become
the Ñ , βa and Ψ. Contrary to the CTT method, it is not allowed to de-
couple these equations from one another even if on a CMC hypersurface.
The uniqueness of the solution to the system is discussed by different
people [369, 370, 371] and has been proven to be false by Walsh [372].

The two methods, CTT and CTS are both well constructed effective
approach to the initial value problem for the Cauchy problem. The for-
mer is considered as a method in the Hamiltonian representation, whereas
the latter is considered in the Lagrangian representation [373]. Compar-
ison of the two approaches has been made [374, 375], cf., the [376].
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Appendix I

Full Spatial Coordinate
Fixing Choices

In the Chapter 8, we introduce a series of gauge conditions which govern
the evolution of the shift vector. Therein, the coordinates on the ini-
tial slice are not fixed. In this appendix section we will describe a few
prescriptions which are subject to such restrictions.

I.1 Spatial Harmonic Coordinates
The spatial harmonic coordinate [377, 378, 379] is defined as

DjD
jxi = 0 , (I.1.1)

which is equivalent to
∂a(

√
hhab) = 0 . (I.1.2)

Rewrite the condition in terms of Da and background metric Iab, given
by

Da

(h
I

)1/2

hab

 = 0 . (I.1.3)

I.2 Dirac Gauge
A condition given by

∂(h1/3hij)
∂xj

= 0 , (I.2.1)

was introduced by Dirac in 1959 for a canonical quantization of the gen-
eral relativity in a Hamiltonian formulation [174], where i and j run from
1 to 3. A more covariant form of the formula is given by [354]

Db

(h
I

)1/3

hab

 = 0 , (I.2.2)

where Db denotes the 3 dimensional covariant derivative associated to
the background 3 dimensional metric and I denotes the determinant of
the background 3 dimensional metric in the coordinate system xi. It is
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recognized that the term in bracket may be substituted by the inverse of
conformal 3 dimensional metric, yields

Dbh̃
ab = 0 . (I.2.3)

This is called the Dirac gauge [238]. Due to (8.2.64) and (I.2.3), we know
that

Γ̃a = 0 , (I.2.4)

hence the shift vector which satisfies the Dirac gauge must satisfy the
equation (8.2.69) with a vanishing Γ̃a, given by

h̃bcDcDbβ
a + 1

3 h̃
bcDcDbβ

c =

− 2N
[
8πΨ4pa − κ̃cb

(
Γ̃ a

cb − Γ̄ a
cb

)
− 6κ̃abDb ln Ψ + 2

3 h̃
abDbK

]
− 2κ̃abDbN . (I.2.5)

Applications of the Dirac gauge has been made to various problems in
the numerical relativity computation, cf. [380, 381, 382].

170 of 197



J. The Infinity and Asymptotic Flatness

Appendix J

The Infinity and Asymptotic
Flatness

We apply here the definition given by Ashtekar [383]. First we introduce
the definition of spacetime infinity. There are three types of infinity:
Time-like infinity, space-like infinity and light-like infinity, denoted by
I± , i0 and J± respectively, where the + and − denote future and past
Fig.J.2. In physics, time-like infinity implies infinitely long time, space-
like infinity implies infinite distance, and null infinity implies the region
(3 dimensional hypersurface) where a free photon can approach [384, 385,
386]. For the Minkowskian manifold, its metric is given as

ηµνdxµdxν = −dt2 + dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (J.0.1)

in a spherical coordinate xµ. Define the coordinate transformation as
follow

u1 = t+ r , (J.0.2)
u2 = t− r , (J.0.3)

where −∞ < u1 < ∞ , −∞ < u2 < ∞. And another transformation
given as

T = arctan(u1) + arctan(u2) , (J.0.4)
R = arctan(u1) − arctan(u2) , (J.0.5)

now equation (J.0.1) has the following form

ηµνdx′µdx′ν = −dT 2 + dR2 + sin2 R (dθ2 + sin2 θdϕ2)
4 cos2[(T +R)/2] cos2[(T −R)/2] , (J.0.6)

where −π < T + R < π , −π < T − R < π and R ≥ 0. We need to
expand the domain of η. Let a new metric g given as

gµνdx′µdx′ν = −dT 2 + dR2 + sin2 R
(
dθ2 + sin2 θdϕ2

)
, (J.0.7)

and
Ω = 2 cos[(T +R)/2] cos[(T −R)]/2] , (J.0.8)

we have
Ω2ηµν = gµν . (J.0.9)
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Figure J.1: The figure illustrates the embedding of a Minkowskian manifold in a
R × S3 manifold, the infinity region of Minkowskian manifold is conformally trans-
formed to finite location in the ambient manifold, and M represents the region of the
Minkowskian manifold. Credit [346].

For gµν , we deduce that T +R = π ⇒ |u1|= ∞ and T −R = −π ⇒ |u2|=
∞. Now the original manifold R1,3 has been embedded in a 4 dimensional
manifold Fig.J.1, given as

φ : R1,3 → R × S3 , (J.0.10)

the infinity region of Minkowskian manifold is now dragged to finite
place, which are given as: The future time-like infinity I+ is T = π ,
R = 0; the space-like infinity i0 is T = 0 , R = π; the future light-like
infinity J+ is T + R = π , 0 < R < π; the past time-like infinity I− is
T = −π , R = 0; the past light-like infinity J− is T−R = −π , 0 < R < π.

The asymptotically flat spacetime is considered along with the iso-
lated system [387]. A definition proposed by Ashtekar is:

(a) For (M, gab), there exists a spacetime (M̃, g̃ab), satisfies:
(a1) M ⊂ M̃.
(a2) ∃ i0 ∈ M̃, where J̄+(i0) ∪ J̄−(i0) = M̃ − M.
(a3) The metric g̃ab is C∞ in M̃− i0, and is C>0 (cf. [346, 388])

at i0.
(b) There exists a function Ω on M̃, satisfies:
(b1) g̃ab = Ω2gab on M.
(b2) Ω is C∞ on M̃ − i0, and is C2 at i0.
(b3) Ω|M> 0 , Ω|Ṁ= 0.
(b4) ∇̃aΩ|J± 6= 0 , limp→i0 ∇̃aΩ = 0.
(b5) limp→i0 ∇̃a∇̃cΩ = 2g̃ac|i0 .

(c) ∂M has an open neighbourhood Nei, where (Nei, g̃ab) sat-
isfies

the strongly causal condition.
where Ṁ = J+ ∪ i0 ∪ J−, with J± = J̇±(i0) − i0.

Further detail of the infinity and asymptotic flatness, refer to [19,
389].
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Figure J.2: The figure illustrates the Penrose diagram [390] of the conformal com-
pactified Minkowskian manifold, where I± , i0 and J± represent the future (past)
time-like infinity, spacelike-infinity and future (past) light-like infinity respectively.
Red line denotes the time-like curve, blue line denotes space-like curve, and green
lines denote null curve. Credit [391].
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tron Stars of Unequal Mass in Full General Relativity”. In: Phys.
Rev. D 68.084020 (2003).

189 of 197



Bibliography

[268] Y. Sekiguchi and M. Shibata. “Axisymmetric Collapse Simula-
tions of Rotating Massive Stellar Cores in Full General Relativ-
ity: Numerical Study for Prompt Black Hole Formation”. In: Phys.
Rev. D 71.084013 (2005).

[269] M. Shibata, K. Taniguchi, and K. Uryū. “Merger of Binary Neu-
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