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Abstract
The blood protein Von Willebrand factor (VWF) is critical in facilitating arterial thrombosis. At pathologically high shear 
rates, the protein unfolds and binds to the arterial wall, enabling the rapid deposition of platelets from the blood. We present 
a novel continuum model for VWF dynamics in flow based on a modified viscoelastic fluid model that incorporates a single 
constitutive relation to describe the propensity of VWF to unfold as a function of the scalar shear rate. Using experimental 
data of VWF unfolding in pure shear flow, we fix the parameters for VWF’s unfolding propensity and the maximum VWF 
length, so that the protein is half unfolded at a shear rate of approximately 5000 s−1 . We then use the theoretical model to 
predict VWF’s behaviour in two complex flows where experimental data are challenging to obtain: pure elongational flow 
and stenotic arterial flow. In pure elongational flow, our model predicts that VWF is 50% unfolded at approximately 2000 s−1 , 
matching the established hypothesis that VWF unfolds at lower shear rates in elongational flow than in shear flow. We dem-
onstrate the sensitivity of this elongational flow prediction to the value of maximum VWF length used in the model, which 
varies significantly across experimental studies, predicting that VWF can unfold between 2000 and 3200 s−1 depending on the 
selected value. Finally, we examine VWF dynamics in a range of idealised arterial stenoses, predicting the relative extension 
of VWF in elongational flow structures in the centre of the artery compared to high shear regions near the arterial walls.

Keywords  Mathematical model · Von Willebrand factor · Arterial thrombosis · Computational fluid dynamics · Parameter 
identification

1  Introduction

Coronary heart disease is characterised by the formation of 
plaque on the walls of arteries leading to the muscles of the 
heart, restricting blood flow (Casa and Ku 2017). Increased 
blood flow and pressure from increased physical activity or 

periods of stress create abnormally high wall shear stress 
which can lead to the rupture of an existing vulnerable 
plaque deposit. Following this rupture, a blood clot then 
rapidly forms to repair the damaged wall (Arroyo and Lee 
1999; Bentzon et al. 2014). Blood clot formation in arterial 
conditions, known as high shear thrombosis, is facilitated 
by the shear-sensitive blood protein Von Willebrand fac-
tor (VWF). This protein has platelet-binding sites along its 
length and is tightly coiled at normal levels of the fluid shear 
rate. At pathologically high shear rates, which occur as the 
blood flow accelerates over the plaque deposit, the protein 
unfolds and facilitates the formation of a platelet-based clot 
in the artery.

Von Willebrand factor is a large protein which naturally 
exists in the blood as a chain of repeating units known as 
dimers. VWF can be composed of between two and eighty 
dimers, and the proteins with the most dimers play the most 
dominant role in haemodynamics (Von 1996; Sadler 1998). 
VWF shape and length in flow was first revealed in 1996 
when atomic force microscopy was used to demonstrate 
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that the protein only unfolds at shear stresses greater than 
35 dyne/cm2 , which is equivalent to a shear rate of 3500 s−1 
assuming that the suspending fluid has the viscosity of water 
(Siediecki et al. 1996). VWF unfolding has since been char-
acterised experimentally for a range of shear rates (Bergal 
et al. 2022; Lippok et al. 2016; Schneider et al. 2007). All of 
these works find that VWF unfolds in shear flow with shear 
rates exceeding approximately 5000 s−1 . However, there is 
significant variation in the maximum length of the protein 
at high shear rates obtained in the two studies which directly 
measure VWF extension: Schneider et al. (2007) found that 
VWF obtains a maximum extension of 15 μm in contrast 
with the value of 0.17 μm found by Bergal et al. (2022). This 
variation was attributed in Bergal et al. (2022) to the blurring 
of VWF in the images obtained at high-flow speeds in Sch-
neider et al. (2007). The experimental works of Schneider 
et al. (2007) and Bergal et al. (2022) were accompanied by 
discrete, coarse-grained numerical simulations of VWF, in 
which the groups use contrasting modelling assumptions. 
Specifically, Schneider et al. (2007) used a collapsed poly-
mer model which best fits the sudden extreme unfolding 
found in their data whereas Bergal et al. (2022) used an 
uncollapsed, random chain which predicts more gradual 
unfolding in line with their experimental results. The work 
of Lippok et al. (2016) similarly features both experimental 
and discrete numerical results; however, the authors did not 
directly image VWF. Instead, the authors subjected VWF to 
shear force in combination with an enzyme which cleaves 
the multimers of VWF (ADAMTS13) and assumed that the 
proteins cleave at a rate proportional to their length. The 
authors then used a discrete numerical model, assuming that 
VWF behaves as a collapsed polymer, to relate the cleavage 
rate of their experiments to the length of VWF. The dispar-
ity in the experimental measurements of VWF’s unfolding 
mechanics adds uncertainty to the design of theoretical mod-
els, namely in whether they should predict sudden or gradual 
unfolding. This is compounded by the further disparity in 
experimental measurement of VWF length. Together these 
uncertainties pose a challenge in determining model param-
eters and therefore to the accuracy of model predictions.

The flow within diseased arteries has complex combi-
nations of regions of shear flow, as well as flow constric-
tion and expansion around narrow regions known as sten-
oses. However, the small size of VWF combined with the 
extremely high-flow speeds required to unfold the protein 
present significant experimental challenges. The limited 
experimental studies of VWF have all studied its behaviour 
in simpler setups for instance using pure shear flow, which 
does not reflect the complexities of physiological arterial 
flow (see Sect. 1.1). Fu et al. (2017) avoided the problem 
of tracking the protein at high speed by tethering VWF to a 
wall. This study yielded extensive quantitative data on the 
VWF mechanics; however, it also demonstrated that VWF 

behaviour differs when the protein is tethered to a wall com-
pared to when it is free to move. Specifically, Fu et al. (2017) 
found that VWF unfolds at low shear rates when tethered, 
which is likely due to the fact that the protein cannot resist 
extension by rotating when it is tethered to a wall. As a result 
of these experimental challenges, the behaviour of VWF 
in the complex flows that occur within arteries is not well 
understood. Predicting VWF’s dynamics within arteries is 
critical to understanding, and ultimately treating, thrombosis 
in clinically relevant scenarios.

In this paper, we present a novel theoretical model which 
describes VWF dynamics, we explore VWF dynamics using 
this model in steady simple two-dimensional flows and in 
steady, stenotic, arterial flow for Reynolds numbers up to 
500, where the Reynolds number is based on the maximum 
vessel radius. This captures the range of flow rates seen in 
small arteries near the heart (Mahalingam et al. 2016). In 
this range, steady flow will remain laminar, since the thresh-
old for turbulence is on the order of Re = 1000 for a stenosed 
pipe which is 50% obstructed (referred to as a 50% steno-
sis) (Ahmed and Giddens 1983; Mahalingam et al. 2016). 
Turbulent flow has been shown to cause cleavage of VWF 
multimers (Jhun et al. 2023). The model in this paper does 
not consider the breakage of VWF multimers. Considera-
tion of turbulent flow regimes would require an extension 
to the model in which proteins are categorised according to 
their number of monomers, and the transport of these sub-
populations in suspension is then tracked.

In Sect. 1.1, we now summarise the characteristics of flow 
within stenosed arteries. Then, in Sect. 1.2, we review the 
known behaviour of VWF in response to fluid flows.

1.1 � Flow structure within diseased arteries

The action of a fluid flow u on suspended proteins can be 
described locally by the velocity gradient ∇u . The veloc-
ity gradient can be split into symmetric and antisymmetric 
components:

where D and W are the rate of strain tensor and the rota-
tion tensor and describe local extension and local rotation, 
respectively. The magnitude of strain and rotation can be 
quantified through the scalar shear rate (also referred to as 
the strain rate), and scalar rotation rate defined as follows:

where : denotes the double dot product.
Stenotic arterial flow is a complex combination of 

elongational and rotational flows (Casa and Ku 2017; 
Rana et al. 2019). Upstream of the stenosis, the flow is 

(1)∇u =

1

2

(
∇u + ∇uT

)
+

1

2

(
∇u − ∇uT

)
= D +W,

(2)𝛾̇ =

√
2D ∶ D, 𝜔̇ =

√
2W ∶ W,
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predominantly in the axial direction (assuming that the 
vessel is not significantly curved) and is categorised as 
shear flow in which 𝛾̇ ≈ 𝜔̇ . The flow accelerates as it 
reaches a constriction in the vessel leading to an increase 
in the fluid velocity and the shear rate. We refer to this 
region as the leading edge of the stenosis. As the flow 
contracts, for sufficiently steep stenoses, the radial com-
ponent of the flow becomes comparable to the axial 
flow, this leads to a region of elongational flow which 
is defined by 𝛾̇ ≫ 𝜔̇ . Just downstream of the stenosis, 
a region we refer to as the trailing edge of the stenosis, 
a closed recirculation zone can form in which axial and 
radial flows are significant. In this region, the flow is 
rotational, which is defined by 𝛾̇ ≪ 𝜔̇ . On both the trail-
ing and leading edge of the stenosis close to the wall, 
there are small regions of rotational flow as the flow 
bends significantly to accommodate the stenosis geom-
etry. Far downstream the flow relaxes back to unidirec-
tional. Figure 1 illustrates the locations of these flow 
structures, based on our numerical simulations at Re = 
500 with a 50% stenosis. Details of the simulation method 
and fluid flow boundary conditions are listed in Sect. 2.2.

To study these complex f low effects in isolation, 
theoretical and experimental studies often use idealised 
simple flows for instance; pure elongational flow, in 
which 𝜔̇ = 0 ; pure rotational flow, in which 𝛾̇ = 0 ; and 
pure shear flow which has exactly equal parts elonga-
tion and rotation so that 𝜔̇ = 𝛾̇ . We use these idealised 
flows to examine the behaviour of our theoretical model 
in Sect. 3.1, and we use pure shear flow to parameterise 
our model compared to experimental studies of VWF in 
Sect. 2.1.1. We now summarise the known behaviour of 
VWF in different flow structures.

1.2 � VWF behaviour in flow and existing theoretical 
models

The elongational flow within stenotic arteries has been 
proposed as a key mechanism in VWF’s ability to rapidly 
unfold (Casa and Ku 2017; Sing and Alexander-Katz 2010). 
In experimental studies using pure elongational flow, pro-
teins and polymers similar to VWF fully unfold at lower 
values of shear rate than in pure shear flow (Babcock et al. 
2003; Smith et al. 1999); theoretical models predict this 
behaviour also occurs for VWF in suspension (Sing and 
Alexander-Katz 2010). However, all experimental studies 
of VWF unfolding both in free flow and tethered use shear 
flow, since tracking and imaging proteins in suspension at 
high shear rates is less challenging in unidirectional flows 
(Bergal et al. 2022; Fu et al. 2017; Schneider et al. 2007). No 
experimental studies to date have examined VWF dynamics 
in pure elongational flow. As a result, the hypothesis that 
there is also a lower shear rate threshold of unfolding in pure 
elongational flow for VWF has not yet been tested in vitro. 
Furthermore, in elongational flow regions where 𝛾̇ ≫ 𝜔̇ , it 
is unclear how much the shear rate must exceed the rotation 
rate for the proposed rapid unfolding to occur. Babcock et al. 
(2003) examined DNA molecules in elongational flow and 
determined that DNA unfolds more easily if the difference 
between the shear rate and rotation rate divided by the total 
rotation and shear, (𝛾̇ − 𝜔̇)∕(𝛾̇ + 𝜔̇) , exceeds 0.0048. How-
ever, this threshold has not yet been characterised for VWF.

Mathematical models can examine VWF’s dynamics 
in flows that are challenging to generate in vitro, namely 
elongational flows. Existing mathematical models of VWF 
are predominantly discrete models which describe the pro-
tein as a chain of beads and springs. The spring coeffi-
cients can then be parameterised so that the model predicts 
VWF unfolding at approximately 5000s−1 in pure shear 

Fig. 1   Sketch of the flow structures within a two-dimensional slice of 
a 3D axisymmetric stenosed artery based on our numerical simula-
tions at Re = 500 with a 50% stenosis. Dotted lines illustrate the inlet 
(left), outlet (right), and the centre of the pipe (bottom). Four regions 
of key flow behaviour are labelled below. Illustrative streamlines are 
shown by grey arrows. Three key flow structures are highlighted by 
colours at their respective locations within the artery. Shear flow 
(pink), which is an approximately equal combination of rotational and 

elongational flows, occurs near the vessel walls and away from the 
stenosis where flow is unidirectional. Elongational flow (blue) occurs 
away from the wall at the leading edge of the stenosis, and to a lesser 
extent at the trailing edge. Rotational flow (green) occurs predomi-
nantly in the recirculation zone behind the stenosis, although small 
regions of rotation occur close to the vessel wall at the leading and 
trailing edge of the stenosis
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flow to match experimental data as measured by Schnei-
der et al. (2007). However, these bead and spring models 
of VWF predict a wide variety of unfolding thresholds in 
pure elongational flow: 500s−1 (Sing and Alexander-Katz 
2010), 2400s−1 (Nguyen et al. 2021), 2500s−1 (Kania et al. 
2021), and 3500s−1 (Dong et al. 2019). Discrete models 
can also examine VWF’s interactions with red blood cells 
or platelets in flow as part of the thrombosis cascade. For 
instance, (Rack et al. 2017) demonstrate that the proteins 
remain globular in the centre of the vessel which enables 
the protein to travel to the edge of the vessel more easily 
since collisions with red blood cells displace globular pro-
teins further than the unfolded proteins. Liu et al. (2022) 
examine the formation of small platelet–VWF aggregates 
and predict the required protein concentration and length 
to initiate aggregation. We note that these numerical stud-
ies predate the contrasting, gradual VWF unfolding behav-
iour found by Bergal et al. (2022) and therefore describe 
VWF using collapsed polymer models which predict sud-
den unfolding.

Discrete models of VWF can be characterised with 
in vitro data and offer insights into protein mechanics. How-
ever, these models can only accommodate a limited number 
of proteins and their interactions during thrombosis before 
their numerical solution becomes demanding. An alternative 
approach is to employ continuum models that examine the 
dynamics of a large number of constituents such as plate-
lets, red blood cells and proteins, together with their role in 
thrombosis (Du et al. 2020; Leiderman and Fogelson 2011; 
Wu et al. 2020). To explicitly incorporate VWF into these 
models, a continuum description for VWF able to describe 
the protein’s dynamics in complex, evolving arterial flow 
is required.

VWF dynamics are modelled using a continuum frame-
work in Zhussupbekov et al. (2021). The authors use a two-
species model where VWF exists in one of the two binary 
states: either fully unfolded or completely globular. Each 
species is tracked using an advection–diffusion equation. 
The unfolding rate which moves proteins from the globular 
category to the unfolded category is modelled by first clas-
sifying the local flow as approximately pure shear, pure elon-
gational, or pure rotational, then prescribing unfolding rates 
in each case. The unfolding of VWF in shear flow uses the 
unfolding rate of Lippok et al. (2016) derived from cleavage 
data. In regions defined as elongational flow, according to 
the DNA threshold of Babcock et al. (2003), the authors use 
a constant unfolding rate. No unfolding occurs in rotational 
flow. This model predicts that, in a stenotic flow, a signifi-
cant number of VWF molecules are unfolded both close to 
the stenosis wall in the shear flow region and away from 
the wall due to elongational flow regions. This model was 
then incorporated into a thrombosis model where shear-flow-
induced VWF unfolding near the wall was shown to match 

the location of thrombus formation in vitro (Zhussupbekov 
et al. 2022). This is the first work to include an explicit 
description of unfolding VWF in a continuum model. Other 
studies include VWF by increasing the phenomenological 
binding rate between platelets and the vessel wall as a func-
tion of shear rate or elongation rate (Du et al. 2020; Sorensen 
et al. 1999; Wu et al. 2020).

In this paper, we present a novel continuum model for 
VWF that predicts the length and orientation of the pro-
tein in varying flow structures. Our model describes VWF 
length and orientation continuously, allowing examination 
of cases where VWF only partially extends which is vital 
to examine thrombosis at shear rates marginally outside of 
the normal range. Our model does not split the local flow 
into discrete categories. Instead, our model encodes the flow 
structure through the velocity gradient and can, therefore, 
describe VWF dynamics in shear, elongational, and rota-
tional flows and combinations of these in three dimensions 
using a single unfolding propensity. This unfolding propen-
sity function can be parameterised using experimental data 
from pure shear flow which eliminates the need to use data 
from other proteins as in Zhussupbekov et al. (2021) which 
may be inaccurate for VWF. Crucially, this allows us to pre-
dict the protein unfolding throughout the full range of flow 
types that occur within diseased arteries. The accuracy of 
these predictions relies on the corresponding accuracy of 
our model parameters. In this paper, we quantify how model 
predictions change depending on the selected value of the 
parameter for which the experimental measurements are the 
most uncertain: the maximum length VWF can reach in flow.

It is important to note which VWF behaviours the model 
does not currently include. Firstly, VWF has been shown to 
demonstrate hysteresis, whereby the time taken for the pro-
tein to relax back to its natural length following the removal 
of flow is much longer than the time taken to unfold when 
the flow is applied. Fu et al. (2017) demonstrated that teth-
ered molecules unfold over approximately 0.01 s when the 
flow is turned on and require approximately 1 s to return to 
their natural length. The time required to travel the length 
of the coronary artery can be estimated to be approximately 
1 s (based on an arterial length of 10 cm and a velocity of 
0.1 m/s (Grief and Richardson 2005)). However, the time 
required to pass a typical stenosis is approximately 0.1 s 
(based on a 1.7 cm stenosis and a 0.16 m/s pathological 
velocity (Elhfnawy et al. 2019; Zafar et al. 2014). This 
means that the proteins could remain partially unfolded in 
the region downstream of the stenosis. In this paper, we do 
not consider VWF hysteresis, but it is a valuable extension 
discussed in Sect. 4. Finally, in shear flow with a constant 
shear rate above 5000s−1 , the protein periodically unfolds, 
tumbles, and then refolds. The period between this unfolding 
and refolding and the magnitude of unfolding both increase 
as the shear rate increases (Sing and Alexander-Katz 2010). 
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We note that the continuum model we present in this paper 
to describe VWF’s dynamics does not capture these unfold-
ing and refolding cycles, but rather the average length that 
an individual protein has in flow.

The paper is structured as follows. First, in Sect. 2.1, we 
present the mathematical model which is derived from an 
existing viscoelastic fluid model. In Sect. 2.2, we present an 
idealised arterial stenosis flow setup. In Sect. 3.1, we explore 
the predictions for VWF behaviour in pure shear flow and 
pure elongational flow, we do not examine pure rotational 
flow as VWF does not extend in this regime. In Sect. 3.2, we 
determine the sensitivity of this elongational flow prediction 
to the value of maximum VWF length used in the model, 
which varies significantly between the experiments of Sch-
neider et al. (2007) and Bergal et al. (2022). In Sect. 3.3, 
we explore the mechanistic insight that our model can pro-
vide in the complex flow regimes inside arteries through 
numerical simulations in a range of idealised stenoses. The 
flow consists of predominantly shear flow near the stenosis 
wall and regions of predominantly elongational flow at the 
leading edge of the stenosis. We select the maximum VWF 
extension as found in Schneider et al. (2007) and show that 
the model can predict the relative extension of VWF in the 
elongational flow structures in the centre of the artery com-
pared to high shear regions near the arterial walls. For this 
value of maximum VWF extension, we find that VWF is 
most extended and, therefore, most reactive with platelets, 
in the shear flow close to the stenosis wall. We conclude in 
Sect. 4 by discussing the implications of these predictions, 
how they can be used to examine VWF’s role in arterial 
thrombosis and highlighting the limitations of the model.

2 � Methods

2.1 � VWF model

We model blood, which contains VWF, using the 
Navier–Stokes equations and a modified Finitely Extensi-
ble Nonlinear Elastic model with the Peterlin spring closure 
(FENE-P) in the limit where the contribution to the fluid 
stress from the suspended VWF molecules is negligible. The 
relative scale of the protein stress compared to the stress 
of the suspending fluid is determined by the ratio Gd∕�U , 
where d is a reference lengthscale, U is a reference velocity 
value, and � is the fluid viscosity and G = nkbT  , in which n 
is the number of proteins per meter cubed, k

b

 is Boltzmann’s 
constant, and T is the average temperature. To estimate the 
number of proteins per meter cubed, we use the concentra-
tion of VWF in the blood (0.055 g/m3 ) and the protein’s 
molecular weight (between 500 and 20,000 KDa depend-
ing on the number of dimers combined) (Von 1996; Pey-
vandi et al. 2011). The value of G can then be estimated as 

between 0.027 and 6.7×10−4 Pa. In this paper, we consider 
arterial flows with fluid velocities between 0.17 and 0.84 m/s 
in a 1.5 mm radius vessel. Hence, the maximum value of 
the ratio Gd∕�U is approximately 0.008, demonstrating 
that VWF’s contribution to the fluid stress is minimal. As a 
result, the flow is uncoupled from the VWF dynamics, and 
VWF does not contribute to the overall fluid stress.

We model blood as an incompressible, Newtonian, vis-
cous fluid with velocity u and pressure p at time t. The flow 
is governed by the incompressible Navier–Stokes equations 
given by

where the density � and viscosity � of the blood are taken 
to be constant.

We capture the average length and orientation of VWF 
molecules via the symmetric, rank 2, configuration tensor A. 
This tensor description of a protein in flow can be rigorously 
derived from dynamics of a two-bead dumbbell connected 
by a nonlinear spring (Bird et al. 1980). The tensor’s com-
ponents, Aij , represent the average of the components of the 
end-to-end vector of the microscopic dumbbell r such that 
Aij =< rirj > . Hence, the diagonal components of A repre-
sent the average length in each axis direction squared, e.g. 
Axx =< r2

x
> for the x− direction. Hence, the components 

of A can be used to describe the protein’s orientation and 
extension in each direction, which we will demonstrate for 
simple flows in Sect. 3.1.

The trace of A is proportional to the average length of the 
protein squared (Rallison and Hinch 1988), and hence, we 
define the normalised VWF length as

so that when L = 1 , the protein is at its natural length for 
which A = I . We define the extension of the proteins to be 
E = L − 1 , which we use to compare model predictions to 
experiments in Sect. 2.1.1.

The configuration tensor evolves as a FENE-P fluid and 
is governed by the following equation:

where � is the VWF relaxation time, f (A) = L
2
∕(L

2
− Tr(A)) 

is the nonlinear spring law which restricts the protein length 
to be less than a prescribed maximum we denote L, and 
a = L

2
∕(L

2
− Tr(I)) is a constant which ensures that in the 

absence of flow A = I (Bird et al. 1980). In Eq. (5), the 
first two terms on the left-hand side describe the transport 
of proteins along fluid streamlines. The last two terms on 

(3)∇ ⋅ u = 0, �

(
�u

�t
+ u ⋅ ∇u

)
= −∇p + �∇2u,

(4)L =

√
Tr(A)

Tr(I)
,

(5)

𝜕A

𝜕t
+ u ⋅ ∇A − A ⋅ ∇u−(∇u)T ⋅ A = −

1

𝜏(𝛾̇)
(f (A)A − aI),
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the left-hand side represent the effects of the rotation and 
extension from the fluid flow which arise since the two ends 
of the protein can experience different fluid velocities. The 
right-hand side is a nonlinear function of the configuration 
tensor which represents the elastic forces which resist exten-
sion and also maintain the protein’s finite length.

We model the unfolding of VWF at high shear rates by 
allowing the VWF relaxation time � in (5) to depend on the 
shear rate 𝛾̇ . This is described through a saturating function 
of the fluid shear rate as follows:

The parameter �∗ is the shear rate at which VWF relaxa-
tion time is half of its maximum value, and � describes how 
quickly the relaxation time varies as the shear rate increases. 
Large values of � correspond to a rapid increase in � once 
the shear rate reaches �∗ . Finally, the parameters � and � fix 
the minimum and maximum values of the relaxation time to 
be �� and �(1 + �) , respectively. This nonlinear relaxation 
time is shown in Fig. 2a. Examining the left- and right-hand 
sides of (5), VWF extension is driven by fluid gradients, 
which are proportional to the shear rate 𝛾̇ , and extension 
is resisted by elastic forces, which are proportional to the 
inverse relaxation time, 1∕� . The relative size of these two 

(6)𝜏(𝛾̇) = 𝛼

(
1

2
(tanh(𝛽(𝛾̇ − 𝛾∗)) + 1) + 𝛿

)
.

effects is determined by 𝛾̇𝜏 , so that if 𝛾̇𝜏 ≪ 1 , then elastic 
forces dominate and the protein remains globular whereas 
if 𝛾̇𝜏 ≫ 1 , fluid extension forces dominate and the protein 
unfolds. In practice, this means that we select the values of 
the unfolding parameters � and � , so that 𝛼(1 + 𝛿)𝛾̇ ≫ 1 for 
shear rates, where we want VWF to unfold and 𝛼𝛿𝛾̇ ≪ 1 
at shear rates where VWF remains globular. We detail the 
parameter selection method in Sect. 2.1.1.

There are several important points to note when apply-
ing this model. Firstly, the FENE-P model describes dilute 
suspensions and does not include protein–protein interac-
tions. This means that we cannot model entanglement or 
protein–protein binding which may be significant in the later 
stages of thrombosis. Secondly, the FENE-P equation is 
derived through mean-field analysis of a collection of micro-
scopic Brownian dumbbells in the absence of walls (Bird 
et al. 1980). However, despite this inconsistency, the model 
is extensively and successfully used for flows in bounded 
domains. Including boundary effects in viscoelastic models 
remains an open theoretical challenge; hence, in this paper, 
we use the FENE-P model to describe the dynamics of VWF 
in bounded flows. We use the model solution at the bound-
ary to describe the length of VWF close to the wall; gain-
ing insight into the protein dynamics where VWF–platelet 
binding occurs. Finally, we note that our modified FENE-P 

Fig. 2   a Modified relaxation time of VWF, Eq.  (6). At low shear 
rates, the relaxation time is small, and the proteins do not extend; at 
high shear rates, the relaxation time is larger which allows the pro-
teins to extend, this is fitted using the unfolding curve of Lippok et al. 
(2016). b Extension of VWF in pure shear flow for varying shear rate 
compared to the normalised VWF extension curve of Lippok et  al. 
(2016) (red); extension is normalised so that the maximum value is 
one. c VWF length L for varying shear rate in pure shear flow com-
pared to the experimental data of (Schneider et al. 2007) (blue) and 

(Bergal et  al. 2022) (purple), both of which are normalised by the 
minimum length measured. When using L = 22.6 to match Schneider 
et  al. (2007), VWF reaches 50% of its maximum length at 5096s−1 
(dashed-dot line). The grey curve shows model fitting using L = 2.8 to 
match Bergal et al. (2022), this provides a quantitative match however 
predicts more sudden unfolding compared to Bergal et al. (2022). All 
subfigures use parameters listed in Table 1 fitted with L = 22.6 , aside 
from the grey curve in (c) which uses L = 2.8
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model cannot predict VWF hysteresis, since (5) is single-
valued for a particular shear rate. Hence, the proteins will 
relax back to their natural length on the same timescale 
as they unfolded on. We discuss the limitations of these 
assumptions on model predictions in Sect. 4.

2.1.1 � Parameterisation

The model parameters required to describe the flow and 
VWF behaviour according to (3) and (5) are shown in 
Table 1. The VWF unfolding parameters in (6), namely � , 
�∗ , � , � , and the maximum VWF length L, are unknown.

We estimate these parameters, aside from L, by fitting the 
numerical solution of the FENE-P equation in simple shear 
flow to the normalised VWF extension curve obtained by 
Lippok et al. (2016). We use a gradient-based minimiser in 
Matlab to carry out the fitting. The curve of (Lippok et al. 
2016) provides relative VWF extension across a large range 
of shear rates and shows the protein reaching a maximum 
extension. However, since the authors measured VWF cleav-
age then fitted a discrete numerical model to obtain this 
unfolding curve, this study does not provide the maximum 
VWF length L. The value of extension VWF achieves in 
flow is not well established experimentally; measured VWF 
maximum length ranges from twice its natural length to fif-
teen times its natural length (Bergal et al. 2022; Schnei-
der et al. 2007). To quantify how our predictions for VWF 
behaviour in pure elongational flow would change as more 
data becomes available on VWF length, in Sect. 3.2, we 
estimate model parameters, � , �∗ , � , � , using the normalised 
VWF extension curve obtained by Lippok et al. (2016) for 
a range of L values from 2.8 to 22.6. This corresponds to a 
maximum length between twice (as found by Bergal et al. 
2022) and fifteen times the protein’s natural length (as found 
by Schneider et al. (2007)). Details of the parameter estima-
tion algorithm are given in Appendix A.

For simplicity, in Sects. 3.1 and 3.3, we present VWF 
dynamics for a fixed value of L, namely L = 22.6 , so that the 
maximum possible extension of VWF matches the value of 
15 � m obtained by Schneider et al. (2007) when normal-
ised by the globular length of 1 � m. The normalised VWF 

extension in pure shear flow for L = 22.6 is compared to the 
normalised VWF extension obtained by Lippok et al. (2016) 
in Fig. 2b. The corresponding VWF length is also compared 
with the data of (Schneider et al. 2007) in Fig. 2c. Our fitted 
model finds that VWF reaches 50% of its maximum length at 
5096s−1 in pure shear flow, this is within 1% of the unfolding 
threshold found by Lippok et al. (2016) of 5122s−1 . Finally, 
in Fig. 2c, we also show our model fitting which uses L = 2.8 
to match the maximum length measured in flow from Bergal 
et al. (2022). This case of our model obtains a quantitative 
match to the minimum and maximum extent of VWF unfold-
ing found by Bergal et al. (2022); however, we predict that 
VWF will unfold more suddenly, this is as expected as we 
have used the unfolding curve from Lippok et al. (2016) to 
determine all parameters aside from L.

2.2 � Arterial flow setup

We examine our model predictions of VWF unfolding in 
an idealised axisymmetric stenosis under steady flow for a 
range of flow speeds and geometries. The arterial stenosis 
geometry is shown in Fig. 3, the stenosis is defined by its 
height h, half-length l

1
 , and steepness h∕l

2
 . The pipe radius d 

is chosen to match the dimensions of the coronary artery. We 
solve the model in the (r, z)-plane assuming axisymmetry, as 
illustrated in Fig. 3. In the (r, z)-plane, the inlet of the pipe 
is located at z = zi and is denoted Γi , the outlet is located at 
z = zo and is denoted Γo , the pipe walls which include the 
stenosis are denoted Γw , and the centre of the pipe at r = 0 is 
denoted Γ

c

 . We denote the fluid flow components as w and u 
in the axial and radial directions, respectively.

To close our model in this geometry, we prescribe bound-
ary conditions for (3) and (5) as follows. The flow is driven 
by a unidirectional, parabolic inlet flow on Γ

i

 with maximum 
velocity U. At the outlet, Γ

o

 , we prescribe that the normal 
stress is equal to a prescribed pressure, pa , and that the flow 
is unidirectional. The latter condition creates a requirement 
for the pipe to be longer than any recirculation zone behind 
the stenosis. We prescribe no slip on the walls of the domain 
Γ
w
 . On the centre of the domain, Γ

c

 , we prescribe no normal 
flow and a symmetry condition that the normal derivative 

Table 1   Dimensional model 
parameters. The VWF 
parameters, aside from L, have 
been estimated by fitting VWF 
extension in shear flow to the 
unfolding curve from (Lippok 
et al. 2016). In Sects. 3.1 and 
3.3, the maximum VWF length 
is fixed at L = 22.6 to match 
data of (Schneider et al. 2007). 
In Sect. 3.2, L is varied

Name Param Value Units Source

Viscosity of blood � 0.0025 Pa s (Pries et al. 1992)
Density of blood � 1050 kg m −3 (Vitello et al. 2015)
Extension parameter � 0.069 s Fit to (Lippok et al. 2016)
Extension parameter � 3.44 × 10−4 s Fit to (Lippok et al. 2016)
Extension parameter � 9.70 × 10−4 – Fit to (Lippok et al. 2016)
Extension parameter �∗ 1.0 × 104 s−1 Fit to (Lippok et al. 2016)
Maximum VWF length L S.3.3 & 3.1: 22.6, – (Schneider et al. 2007)

S.3.2: 2.8 − 22.6 –
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of the axial flow vanishes. At the inlet, Γ
i

 , we prescribe an 
inlet configuration of VWF, A

in
(r) , which is the solution 

of Eq. (5) under the imposed inlet parabolic flow. Since we 
consider steady flow, we analyse the steady counterparts of 
(3) and (5) and do not require initial conditions to close the 
problem.

2.2.1 � Dimensionless model

The dimensionless model is obtained by scaling lengths with 
the maximum pipe radius and the fluid velocity components 
with the maximum inlet velocity. Hence, we define dimen-
sionless variables, denoted with hats, as follows:

where we note that the configuration tensor is dimension-
less so does not need rescaling. The pressure scaling in (7) 
is defined to balance inertial forces and the pressure gradi-
ent in (3) relative to the prescribed outlet pressure pa . The 
dimensionless shear rate is defined as 𝛾̇ = (U∕d) ̂̇𝛾 . Using 
(7) the stenosis geometry is defined by its height ĥ = h∕d 
and the lengths l̂

1
= l

1
∕d and l̂

2
= l

2
∕d . Inserting scalings 

(7) into (3) and (5) and dropping hats on dimensionless vari-
ables, we recover the dimensionless steady Navier–Stokes 
and FENE-P equations given by

where the Reynolds number is Re = �Ud∕� , and � = ��∕d2� 
is defined so that the product �Re is the Deborah number, 
which represents the ratio of the timescales of protein relaxa-
tion to fluid advection. However, we choose to work with 
� rather than the Deborah number so that we are able to 
examine the system for varying Re. The FENE-P function 
f (A) = L

2
∕(L

2
− Tr(A)) and a = L

2
∕(L

2
− Tr(I)) remain 

unchanged as L is dimensionless. The dimensionless VWF 
relaxation time is

(7)z = dẑ, r = dr̂, p = pa + 𝜌U2p̂, u = Uû,

(8)∇ ⋅ u = 0, Re u ⋅ ∇u = −Re∇p + ∇

2u,

(9)

𝜉Re(u ⋅ ∇A − A ⋅ ∇u − ∇uT ⋅ A) = −

1

𝜏(𝛾̇)
(f (A)A − aI),

where 𝛽 = 𝛽𝜇∕d2𝜌 and 𝛾̂∗ = 𝛾∗𝜌d2∕𝜇 are the dimensionless 
relaxation time parameters. The dimensionless boundary 
conditions for the system are

In (11), the inlet configuration of VWF, A
in
(r) , is the solu-

tion of the dimensionless Eq. (9) under the imposed inlet 
parabolic flow. Dimensionless parameters and the values 
used in our numerical simulations in Sects. 3.1 and 3.3 are 
shown in Table 2. In Sect. 3.2, we vary the VWF unfold-
ing parameters, namely � , �∗ , � , � , and L. For the arterial 
flow simulations in Sect. 3.3, we place the channel outlet at 

(10)𝜏(𝛾̇) =
1

2

(
tanh

(
𝛽Re

(
𝛾̇ −

𝛾̂∗

Re

))
+ 1

)
+ 𝛿,

(11)w =

(
1 − r2

)
, u = 0, A = A

in
(r) on Γi,

(12)n̂ ⋅ � ⋅ n̂ = 0, u = 0 on Γo,

(13)u = 0,
�w

�r
= 0 on Γc,

(14)u = 0 on Γw.

Fig. 3   Diagram of (r, z)-plane of our axisymmetric arterial-scale ste-
nosis geometry. Cylindrical polar coordinates (r, z) are marked. The 
stenosis is symmetric around z = 0 and is defined by parameters l

1
 , 

l
2
 , and h which define the length, steepness, and height. The inlet at 

z = z
i
 is Γi , the outlet at z = zo is Γo , the walls are Γ

w
 , and the pipe 

centre line is marked Γ
c

Table 2   Dimensionless model parameters used in Sects. 3.1 and 3.3, 
those with ranges are varied, all others held fixed

Name Param. Definition Value(s)

Dimensionless pipe outlet ẑo zo∕d 30 + l̂
1
+ l̂

2

Dimensionless pipe inlet ẑi zi∕d -10
Dimensionless stenosis height ĥ h/d 0.3–0.5
Dimensionless stenosis length l̂

1
l
1
∕d 1.5

Dimensionless stenosis parameter l̂
2

l
2
∕d 2 − 5

Reynolds number Re �Ud∕� 200 − 500

VWF extension parameter 𝛽 ��∕d2� 2.16 × 10−4

VWF extension parameter � – 9.7 × 10−4

VWF extension parameter � ��∕d2� 0.043
VWF extension parameter 𝛾̂∗ �∗dd2�∕� 1.60 × 104

Maximum VWF length L – 22.6
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ẑo = 30 + l̂
1
+ l̂

2
 which is sufficient to ensure the domain 

extends beyond the fluid recirculation zone for ĥ = 0.5.

2.2.2 � Numerical method

For an illustrative range of stenosis geometries, we consider 
a range of Reynolds numbers from 200 to 500 which produce 
shear rates representative of diseased arteries (Casa and Ku 
2017). We solve the model using the Finite Element Method 
implemented using the Python Package FEniCS (Logg and 
Wells 2010; Logg et al. 2012) which allows implementation of 
the weak form in the language UFL (Logg et al. 2012; Kirby 
and Logg 2006; Ølgaard and Wells 2010). This problem is 
then compiled by FIAT (Kirby 2004, 2012). We use GMSH 
to construct a mesh of the stenosis geometry (Geuzaine and 
Remacle 2009). Since the flow is independent of the VWF 
configuration, we first solve for the fluid flow and then the 
VWF dynamics. Full details of the numerical method are given 
in Appendix B.

We add artificial diffusion to the FENE-P equation with a 
Péclet number of 103 following the regularisation procedure 
commonly applied during the numerical solution of viscoelas-
tic fluid models at high Reynolds numbers (Guy and Thomases 
2014; Sureshkumar and Beris 1995). Artificial diffusion allows 
the hyperbolic equation for the VWF configuration tensor to be 
solved using the finite element method and avoids instability at 
locations where the shear stress changes rapidly. The inclusion 
of artificial diffusion means that we must prescribe boundary 
conditions for the configuration tensor on all boundaries. We 
prescribe a symmetry condition, ∇A ⋅ r̂ = 0 , on the centre of 
the pipe. On solid walls, there are two approaches commonly 
used in existing numerical studies; firstly, Dirichlet boundary 
conditions can be applied where the tensor A is set to equal the 
solution of (9) in the absence of flow as in Paulo et al. (2014); 
Sureshkumar and Beris (1995). Secondly, no normal diffusive 
flux can be applied on the walls as in Richter et al. (2010). We 
adopt the latter approach as it reduces computational com-
plexity: No diffusive flux boundary conditions can be easily 
applied during the Finite Element Method solution, and Dir-
ichlet conditions would require the additional solution of the 
FENE-P model on the walls by an alternative method. We note 
that since the FENE-P equation was derived in the absence of 
walls, the choice of boundary conditions when artificial diffu-
sion is added is an open question for both the FENE-P model 
and other viscoelastic fluid models (El-Kareh and Leal 1989).

3 � Results

We now demonstrate how our model can be used to gain 
insight into VWF’s behaviour in experimental flows and 
make predictions of the protein’s dynamics in complex flow 

regimes. We first consider the simpler flow regimes of pure 
shear flow and pure elongational flow in Sects. 3.1 and 3.2, 
and then, we consider stenotic arterial flow in Sect. 3.3.

3.1 � VWF behaviour in pure shear and elongation 
flow

In this section, we examine steady, spatially independent 
solutions of our VWF model in two-dimensional pure shear 
flow and two-dimensional pure elongational flow. To quan-
titatively compare the solutions, we set the flows to have 
the same scalar shear rate, 𝛾̇ . We use a Cartesian coordi-
nate system (x, y) with corresponding basis vectors (i, j) . 
We note that in two-dimensional pure rotational flow with 
u = 𝜔̇(yi − xj) , the solution of (5) is A = I , which implies 
that the proteins remain at their natural length, and are ran-
domly oriented. Hence, as expected, rotational flow only 
rotates the proteins but does not extend them.

We take the velocity field of the pure shear flow to be 
u = 𝛾̇yi , where 𝛾̇ is the shear rate. In two dimensions, the 
configuration tensor has three unique components as a result 
of symmetry, where Axx and Ayy are the average lengths 
squared in x- and y-directions, respectively. We seek a con-
figuration tensor independent of time and space, which is 
possible since the shear rate is spatially uniform. In this case, 
we find that Eq. (5) reduces to an algebraic system:

We take the velocity field of pure elongational flow to be 
u = 𝛾̇(xi − yj)∕2 , where again 𝛾̇ is the shear rate (for pure 
elongational flow, 𝛾̇ is sometimes referred to as the elonga-
tion rate). As in pure shear, we seek a steady, spatially inde-
pendent solution of (5) which gives the following algebraic 
system:

so that the configuration tensor is diagonal, reflecting that 
the directions of principal stretch are the x- and y-axes.

The numerical solutions of (15) and (16) for increasing 
shear rate are shown in Fig. 4a, b respectively. For each 
flow type, illustrations of VWF behaviour at three increas-
ing shear rates are shown. Considering first the solution 
in pure shear flow, Fig. 4a, we see that for values of the 
shear rate below the unfolding threshold, we have A ≈ I ; 
this represents a globular protein as shown in inset (i). 
At 𝛾̇ ≈ 2000 s−1 , the protein is only slightly unfolded, as 
shown in inset (ii). At large shear rates, 𝛾̇ ≈ 5000 s−1 , the 
protein is 50% unfolded and begins to align in the x-direc-
tion, as shown in inset (iii). As the shear rate increases 
further, to maintain the finite-length restriction enforced 
by the VWF model, the protein’s length in the y-direction 

(15)2𝛾̇𝜏Axy = f (A)Axx − a, 𝛾̇𝜏Ayy = f (A)Axy, f (A)Ayy = a.

(16)
−2𝛾̇𝜏Axx = f (A)Axx − a, 2𝛾̇𝜏Ayy = f (A)Ayy − a, Axy = 0,
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tends to zero. We have fitted our model behaviour in 
shear flow to the unfolding curve of (Lippok et al. 2016) 
to obtain that at 𝛾̇ = 5096 s−1 , the protein is unfolded to 
half its maximum length, which is within 1% of the value 
obtained by Lippok et al. (2016) of 5122 s−1 . The 50% 
unfolding threshold is shown by the dot-dash vertical line 
in Fig. 4a.

In elongational flow, shown Fig.  4b, VWF remains 
globular for 𝛾̇ < 100 s−1 , as shown in inset (i). However, at 
𝛾̇ ≈ 2000 s−1 , the protein is 50% unfolded in the x-direction 
and contracted in the y-direction, as illustrated in inset (ii). 
This is in contrast with pure shear flow, where contraction in 
the y-direction only occurs at larger shear rates to maintain 
the protein’s finite length. We predict that in elongational 
flow, when using L = 22.6 , the proteins will be 50% unfolded 
at 𝛾̇ = 1947 s−1 , which is marked on Fig. 4b by the dash-
dotted line. Since pure shear flow is the superposition of 
a pure elongational flow and a pure rotational flow, VWF 
extends to its maximum length at a much lower shear rate 
in pure elongational flow as rotation allows the protein to 
avoid unfolding. This demonstrates that our model reflects 
this well-established property of polymers and proteins in 
flow which is predicted to also occur for VWF (Bird et al. 
1980; Sing and Alexander-Katz 2010). For both pure elon-
gational flow and pure shear flow, our modified relaxation 
time ensures that the proteins remain globular at low shear 

rates, further reflecting known VWF behaviour (Casa and 
Ku 2017).

3.2 � Pure elongational flow predictions: parameter 
sensitivity

In Sect. 3.1, the VWF parameters, listed in Table 2, were 
fitted to the unfolding curve of (Lippok et al. 2016) with 
the maximum VWF length, L, fixed at 22.6. Using this 
value of L, we predicted that VWF will be 50% unfolded 
at 𝛾̇ = 1947 s−1 in pure elongational flow. Since the extent 
of VWF unfolding in vitro is not well established, in this 
section, we vary the maximum VWF length to determine 
the range of pure elongational unfolding rates which can be 
predicted by our model.

For L between 2.8 (to match Bergal et al. 2022) and 22.6 
(to match Schneider et al. 2007), the best fit of the model to 
the unfolding curve of (Lippok et al. 2016) is calculated. The 
shaded region in Fig. 5a shows the range in fitted behaviour 
as L varies, the fitting used in Sects. 3.1 and 3.3 is shown 
by the black line. For all L values, we are able to obtain a 
mean error within 2% of the (Lippok et al. 2016) curve in 
pure shear flow.

The predicted behaviour in pure elongational flow is 
shown in Fig. 5b. The shaded region represents the solution 
evaluated using the best fit of parameters from Fig. 5a. The 

Fig. 4   Numerical solutions of the VWF model are shown with 
insets (i)–(iii) above of typical VWF’s length and alignment at 
three increasing shear rates. a In pure shear flow, the protein first 
extends in the x-direction, then contracts in the y-direction to main-
tain finite length. The dashed line shows 5096 s−1 at which VWF is 

half unfolded. b In pure elongation flow, the protein extends in the 
x-direction and contracts in the y-direction simultaneously resulting 
in full unfolding at lower shear rates than in shear flow. The dashed 
line shows 1947 s−1 at which VWF is half unfolded. VWF parameters 
listed in Table 2 with L = 22.6
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predicted 50% unfolding threshold in pure elongational flow 
varies between approximately 𝛾̇ = 1947 s−1 and 3223 s−1 . 
The smallest unfolding threshold of 1947 s−1 is obtained 
when the largest value of L = 22.6 is used, showing that the 
proteins which are capable of sustaining very large exten-
sions also unfold at lower shear rates. The significant vari-
ability in the pure elongational flow thresholds demonstrates 
a large degree of sensitivity in the model output to the value 
of L selected and further motivates the need to experimen-
tally quantify the extension VWF is able to sustain in flow.

3.3 � VWF behaviour in idealised arterial flow

We now examine the model’s predictions for VWF’s 
behaviour in steady stenoic arterial flow. Figure 6 shows 
the dimensionless numerical solution of the model 
obtained for Re = 400 . All subfigures illustrate solutions 
overlaid by the fluid closed streamlines. At this Reynolds 
number, a recirculation zone forms downstream of the ste-
nosis as illustrated by the streamlines. The magnitude of 
the fluid velocity is shown in Fig. 6a. The flow is four times 
faster as it crosses the stenosis compared to upstream. The 
fluid shear rate, shown in Fig. 6b, is greatest at the leading 
edge of the stenosis at z = −2 where it reaches 𝛾̇ ≈ 55 . The 
shear rate is much lower away from the boundary and in 
the flow recirculation zone. VWF extension E is shown in 
Fig. 6c. VWF reaches E ≈ 15 which is the maximum exten-
sion achievable with a maximum VWF length of L = 22.6 . 

The maximum extension is obtained at the leading edge of 
the stenosis at z = −2 where 𝛾̇ is the greatest.

3.3.1 � The effect of Reynolds number on VWF unfolding

We now examine how VWF extension changes as the 
Reynolds number varies for a fixed stenosis geometry. 
In this section to compare the shear rate obtained at the 
boundary for different flow rates, we define the scaled wall 
shear rate (WSR) as the dimensionless shear rate multi-
plied by the Reynolds number, Re𝛾̇ , this remains dimen-
sionless but reflects how the magnitude of the dimensional 
shear rate changes as the flow rate increases.

The scaled wall shear rate on the stenosis wall for Re 
from ranging 200 to 500 is shown in Fig. 7ai, illustrat-
ing that as the Reynolds number increases, the shear rate 
increases. The maximum shear rate occurs at the leading 
edge of the stenosis for all Re. VWF extension on the 
stenosis wall is shown in Fig. 7aii. For all Reynolds num-
bers, the maximum extension is obtained at the point on 
the stenosis wall where the wall shear rate is greatest. As 
Re increases, VWF extends more at the stenosis wall as a 
result of the increasing shear rate. Furthermore, the non-
linear dependence of VWF extension on the shear rate is 
demonstrated as the protein reaches an extension of nearly 
100% at Re = 400 but only 33% at Re = 200.

Fig. 5   a VWF model in pure shear flow compared to (Lippok et  al. 
2016), the range of fitted curves obtained as L varies between 2.8 and 
22.6 is shown in grey. For all values of L, we are able to obtain a 
close quantitative match to the Lippok et al. (2016) curve. b The cor-
responding range in predicted VWF behaviour in pure elongational 

flow is shown in grey. The dot-dashed line shows the minimum 50% 
unfolding threshold, found with L = 22.6 , and the dashed line shows 
the maximum unfolding threshold which is found for L = 2.6 . In both 
plots, black lines show the model solutions with L = 22.6
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3.3.2 � Stenosis geometry and VWF extension

In Sect. 3.3.1, we found that the greatest VWF extension is 
obtained at the wall; hence, we now examine how varying 
stenosis geometry alters the value and axial position of 
this extension for fixed Reynolds number of Re = 400. The 
scaled wall shear rate and VWF extension for increasing 
stenosis steepness are shown in Fig. 7bi, bii. We increase 
the stenosis steepness by decreasing the parameter l̂

2
 . 

Increasing the steepness of the stenosis slightly increases 
the maximum shear rate in the pipe, causing the VWF to 
unfold more. However, for steeper stenoses, the increased 
shear rates, and correspondingly VWF extension, are con-
fined to a smaller region.

The wall shear rate and VWF extension for increasing 
stenosis height are shown in Fig. 7ci, cii. Increasing the ste-
nosis height drastically increases the maximum shear rate in 
the pipe and causes VWF to unfold to a greater extent. For 

Fig. 6   Dimensionless numeri-
cal solutions for Re = 400 
overlayed by fluid streamlines.a 
Fluid velocity magnitude. A 
recirculation zone forms down-
stream of the stenosis, indicated 
by circular streamlines. b Fluid 
shear rate, which is great-
est at the leading edge of the 
stenosis. c VWF extension. The 
proteins are most extended by 
the stenosis wall and are fully 
extended at the leading edge of 
the stenosis. Parameter values: 
l̂
1
= 1.5, l̂

2
= 2, ĥ = 0.5 , 

L = 22.6.

Fig. 7   VWF extension for 
varying stenosis geometry 
and Reynolds numbers. When 
not stated in the legend, all 
other geometry parameters 
are: l̂

1
= 1.5 , l̂

2
= 2 , ĥ = 0.5 , 

L = 22.6 , and Re = 400 . 
Columns show behaviour for a 
increasing Re, b increasing ste-
nosis steepness, and c increas-
ing stenosis height respectively. 
Subfigures (i) show the scaled 
wall shear rate (WSR), defined 
as Re𝛾̇ , and the corresponding 
subfigures (ii) show the VWF 
extension obtained at the wall
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smaller stenoses with h ≤ 0.2 , a fluid recirculation zone does 
not form since the shear rate 𝛾̇ > 0 for all z > 0 . The absence 
of a recirculation zone means that there will be more signifi-
cant transport of VWF behind the stenosis which could alter 
thrombus location.

3.3.3 � Elongational flow structures in arteries and VWF 
unfolding

In Sect. 3.3.2, we showed that increasing the steepness of the 
stenosis alters the flow, leading to a higher wall shear rate. 
Figure 8 shows the difference between the shear rate and the 
rotation rate, 𝛾̇ − 𝜔̇ , for a steep stenosis compared to a more 
shallow stenosis, with red regions on Fig. 8 showing regions 
of elongational flow and blue regions showing rotational 
flow. The steeper stenosis leads to elongational flows with 
𝛾̇ − 𝜔̇ three times larger than the shallow stenosis.

To highlight this, we show regions for which 𝛾̇ − 𝜔̇ = 0.2 , 
by the dashed regions in Fig. 8. The interior of this line 
defines regions where the flow is highly elongational. 
The maximum shear rate obtained in these highly elonga-
tional regions is 𝛾̇ = 1.3 and 𝛾̇ = 3.7 for the shallow steno-
sis and steep stenosis, respectively. These correspond to 
𝛾̇ = 317.1 s−1 and 𝛾̇ = 902.0 s−1 in dimensional terms. For 
L = 22.6 , our model predicted that in pure elongational 
flow, VWF is half unfolded at 1947 s−1 whereas VWF 
is half unfolded at 5096 s−1 in pure shear flow. Since the 
flow in the centre region of the stenotic artery is not pure 
elongational flow, we expect that the unfolding threshold 
in this region will be larger than 1947 s−1 but still smaller 
than the pure shear flow unfolding threshold. In the highly 
elongational regions, the shear rate does not reach the pure 
elongational flow threshold of 1947 s−1 . As a result, VWF 
only unfolds to 2.3% and 0.7% of its maximum length in the 
indicated regions in Fig. 1. This is in contrast with the exten-
sion achieved at the wall where VWF can reach extensions 
of 98% and 88% in the steep and shallow stenosis cases, 

respectively. The lack of significant unfolding in the elon-
gational flow region is in contrast with the work of Zhus-
supbekov et al. (2021) where the authors found that VWF 
will be fully extended in the centre of the flow.

The predicted significance of elongational flow on VWF 
unfolding depends on model parameterisation and the pre-
dicted unfolding rate in pure elongational flow. In Sect. 3.2, 
we demonstrated that our predicted unfolding thresh-
olds in pure elongational flow range from approximately 
2000–3200s−1 depending on the maximum VWF length 
L, which is not known. The smallest unfolding threshold 
was found for proteins with the largest maximum lengths 
L = 22.6 for which we did not find significant unfolding away 
from the walls. However, these quantitative predictions are 
subject to change as more experimental insights into VWF 
length and unfolding behaviour become available.

4 � Discussion

In this paper, we have presented a model for the dynamics of 
shear-sensitive blood protein VWF using a dilute limit of the 
viscoelastic fluid model FENE-P with a modified relaxation 
time. The modified relaxation time captures VWF propensity 
to unfold in response to the fluid shear rate. This is charac-
terised using parameter estimates from the VWF unfold-
ing behaviour measured by Lippok et al. (2016). Through a 
configuration tensor, our model can describe VWF’s length 
and orientation in any combination of elongational, shear, 
and rotational flows, defined as 𝛾̇ ≫ 𝜔̇ , 𝛾̇ ≈ 𝜔̇ , and 𝛾̇ ≪ 𝜔̇ , 
respectively. Using an idealised arterial stenosis geometry, 
we demonstrated that increasing the fluid flow rate and ste-
nosis height have the strongest effect on the wall shear rate 
and therefore VWF’s extension at the wall. Since platelets 
are transported in large quantities in the cell-free layer by 
the wall, VWF molecules which are extended close to the 

Fig. 8   Flow structures over the stenosis. The flow is elongational 
when 𝛾̇ − 𝜔̇ ≪ 0 and rotational when 𝛾̇ − 𝜔̇ ≪ 0 . Flow over: a a shal-
low stenosis with l̂

2
= 5 and b a steeper stenosis with l̂

2
= 2 . For the 

two cases, the region where 𝛾̇ − 𝜔̇ = 0.2 is shown by the dashed black 

line, the interior defines regions in which we have significantly more 
elongation than rotation. The elongational flow (b) has a much larger 
disparity between the shear rate and the rotation rate at the entrance 
to the stenosis. Both have: l̂

1
= 1.5, ĥ = 0.5, and Re = 400
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arterial wall will most readily bind with platelets to form a 
thrombus Casa and Ku (2017).

Our model is able to reproduce the dependency of VWF 
behaviour on the flow structure, namely that the protein 
unfolds at lower shear rate in pure elongational compared to 
pure shear flow (Babcock et al. 2003; Smith et al. 1999). Our 
prediction of the shear rate at which VWF unfolds in pure 
elongational flow varies depending on the value of maxi-
mum extension which VWF can achieve, which is not defini-
tively established in the literature. In our model, the parame-
ter L restricts the value of VWF extension. For L = 2.8–22.6, 
VWF can reach at most ≈ 2 − −15 times its natural length. 
For this range of the maximum VWF length, we estimate 
that VWF will be 50% unfolded between approximately 
2000–3200 s−1 in pure elongational flow. This agrees with 
existing discrete models of VWF which uniformly estimate 
that VWF unfolds at a lower shear rate in elongational flow 
compared to shear flow. Furthermore, our estimated range of 
the unfolding threshold in pure elongational flow falls within 
the range of values predicted by discrete mathematical mod-
els of single VWF molecules: 500s−1 (Sing and Alexander-
Katz 2010), 2400s−1 (Nguyen et al. 2021), 2500s−1 (Kania 
et al. 2021), and 3500 s−1 (Dong et al. 2019).

This model is able to examine VWF behaviour in the 
complex, multidimensional flows which occur in diseased 
arteries. We show that VWF is most unfolded in the shear 
flow close to the stenosis wall, with the maximum extension 
occurring at the leading edge of the stenosis. This provides 
patterns of elongation of the protein along the wall which 
could be combined with a model of platelet transport to pre-
dict thrombus formation. We have shown that elongational 
flow occurs within stenosed geometries, with the difference 
between the shear rate and the rotation rate increasing as the 
steepness of the stenosis increases. Our model can evaluate 
the degree to which VWF unfolds in free flow away from the 
wall compared to the wall extension. Using a single value of 
VWF extension which matches the data of Schneider et al. 
(2007), namely L = 22.6 , our model predicts VWF only 
reaches 2% of its maximum length in the highly elonga-
tional flows away from the wall where the maximum shear 
rate is 171s−1 . However, our parameter sensitivity analysis 
demonstrated that the model predictions in elongation flow 
are sensitive to the maximum length of VWF used. Further-
more, we fixed the unfolding mechanics of our model to fit 
the unfolding curve of Lippok et al. (2016), it is possible 
that if further sources of experimental data are incorporated, 
there could be some parameter regimes, in which significant 
unfolding could be found away from the wall.

The structure of our model differs from the only contin-
uum model of VWF to date by Zhussupbekov et al. (2021). 
Zhussupbekov et al. (2021) uses experimental data from 
DNA unfolding to define regions where the flow is suffi-
ciently elongational to unfold VWF (Babcock et al. 2003). 

Zhussupbekov et al. (2021) then enforce that the proteins 
unfold at 500s−1 in these regions of elongational flow. Using 
these parameter choices (Zhussupbekov et al. 2021) predict 
that VWF will fully unfold in the flow away from the wall 
in microfluidic stenosis simulations. Our model does not 
include a threshold at which the flow is classified as elonga-
tion; instead, the flow structure is encoded in (5) through the 
velocity gradient. The velocity gradient is then combined 
with a single constitutive relaxation time which models 
VWF’s ability to unfold. This allows our model to be easily 
parameterised using data from shear flow, eliminating the 
need to rely on data obtained for other proteins, which may 
not be accurate for VWF.

The accuracy of our predictions relies on the estimation 
of the model parameters which describe VWF’s unfolding 
through the nonlinear relaxation time � . We estimated these 
parameters, aside from VWF length L, by comparing our 
model predictions in shear flow to the unfolding behaviour 
measured in Lippok et al. (2016). This required the esti-
mation of five unknown parameters. Our estimate yields a 
1.82% error in the relative length of VWF compared to (Lip-
pok et al. 2016). However, this estimation was done using a 
single minimsation algorithm, and it is possible that alterna-
tive minima could exist which yield a better fit to the Lippok 
et al. curve. Finally, in this paper, we varied the maximum 
VWF length to determine the variation in best fit obtained to 
the Lippok et al. (2016) data. The resulting predicted behav-
iour in pure elongational flow varied significantly over the 
range of L = 2.8–22.6. When further data are available for 
the maximum extension of VWF in free flow, the model 
parameters which determine VWF unfolding can be readily 
updated allowing the model to more precisely estimate the 
elongational flow behaviour of VWF.

There are two different hypotheses about VWF’s micro-
scale mechanics, namely whether it behaves like a collapsed 
polymer (Schneider et al. 2007) or a loosely coiled polymer 
(Bergal et al. 2022). In this paper, we estimated our model’s 
parameters using the unfolding curve of Lippok et al. (2016), 
which was obtained using a discrete numerical collapsed 
polymer model fit to experimental VWF cleavage data. 
However, both of the microscale behaviour hypotheses of 
VWF can be captured by the modified FENE-P model in this 
paper. Our model is derived from the microscale mechan-
ics of a two-bead dumbbell; therefore, the complexity of 
VWF’s unfolding is captured in the nonlinear relaxation 
time function. Collapsed and loosely coiled polymers both 
reach a maximum length as the force increases and obtain a 
nonlinear force–extension curve, both of which are features 
of our model; therefore, our model can be adapted as more 
evidence appears to support either hypothesis.

There are several limitations and possible extensions of 
the theoretical framework of our model which we now detail. 
Firstly, our model does not include any history effects, for 
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instance, the proteins do not require exposure to high shear 
stresses for a certain period of time to unfold. Furthermore, 
our model does not include the hysteresis of VWF, whereby 
the proteins relax back to their original length over a longer 
timescale than extension. This would mean that the proteins 
could remain unfolded downstream of the stenosis which 
could be significant for thrombus formation behind the 
stenosis. Including hysteresis would allow the model to be 
applied to the pulsatile flow which occurs in vivo in arteries. 
Pulsatile flow within stenosed pipes alters the recirculation 
zone within each cardiac cycle and creates time-varying vor-
tices (Sherwin and Blackburn 2005). The time of an average 
cardiac cycle in the coronary artery is approximately 0.8 s, 
which is much longer than the timescale required to unfold 
VWF (Chen et al. 2021). Our model currently enforces that 
VWF refolds rapidly, this means that it will underestimate 
the protein’s length over the cardiac cycle and predicts that 
the proteins are not extended the recirculation zone. In real-
ity, the proteins could remain extended during the cardiac 
cycle due to their slow refolding time. Accurately capturing 
the time-dependent dynamics of VWF length throughout the 
domain would be especially important when combined with 
the additional mixing from pulsatility. Our model could be 
extended to include hysteresis by following the construction 
in Zhussupbekov et al. (2021) and categorising the proteins 
as extending, which unfold rapidly, and retracting, which 
refold more slowly. However, this would require formulat-
ing how proteins move between the two categories, adding 
significant complexity to the model in physiological flows.

There are several theoretical extensions to our modelling 
framework which would improve its ability to describe VWF 
when in close proximity to the walls of an artery or those 
of an in vitro device. In this paper, we used the solution of 
the FENE-P equation to describe VWF length when at the 
vessel wall. However, the FENE-P equation is derived for 
a protein in the absence of walls. The effect of walls has 
been included in similar non-Newtonian models of confined 
flows of proteins (Biller and Petruccione 1987) and confined 
flow of bacteria (Saintillan and Shelley 2015). However, this 
introduces reflection conditions or binding conditions on the 
probability density function from which the configuration 
tensor is derived. This adds complexity to the model con-
struction as the arising equation for the configuration tensor 
does not have a closed form (Biller and Petruccione 1987). 
VWF unfolding behaviour when tethered to a non-reactive 
wall differs significantly from its behaviour in free flow, so 
it is not clear if the unfolding relation fitted in shear flow 
used in this paper would effectively describe the dynamics 
of VWF when close to or bound to a wall (Fu et al. 2017). 
Furthermore, in this paper to improve the tractability of 
numerical simulations, we added numerical diffusion to the 
FENE-P equation. This addition necessitates the selection of 
boundary conditions for the FENE-P equation on the walls 

of the device. In this paper, we imposed no diffusive flux 
boundary conditions on the device walls, this choice offers 
ease of implementation in the Finite Element Method and 
is well-suited to flow setups where the walls are solid, rigid, 
and non-reactive. This choice must be carefully examined 
when using the model to examine VWF dynamics in more 
complex devices; for instance, is it not clear what the best 
choice of boundary condition would be for a porous bound-
ary or one where VWF is able to bind to the walls. It would 
be especially valuable to characterise the appropriate bound-
ary conditions for materials commonly used in medical and 
experimental devices such as polydimethylsiloxane (PDMS) 
(Berry et al. 2021). Indeed, when binding to a collagen-
coated wall, VWF has been shown to form bundles or car-
pets of tangled proteins (Colace and Diamond 2013; Schnei-
der et al. 2007); since the FENE-P equation describes dilute 
suspensions of polymers or proteins, our model would not 
be able to capture this binding or protein–protein interac-
tions. Insights from discrete models of VWF could be used 
to effectively determine how best to include the effects of 
binding or protein–protein interactions into a continuum 
framework (Liu et al. 2022; Wang et al. 2019).

In this paper, we examine flow and VWF dynamics within 
arterial scale stenoses, as this is the most clinically relevant 
scale and geometry at which high shear thrombosis occurs. 
However, VWF-mediated thrombosis can also occur at the 
location of an arterial stent or on a prosthetic heart valve 
(Casa and Ku 2017). Our model can be readily applied to 
examine these alternative geometries or indeed any vessels 
or devices in which the continuum approximation for the 
VWF suspended in blood is valid. This holds when the ves-
sel diameter is significantly larger than the radius of a red 
blood cell (approximately 3.5 μm (Colace and Diamond 
2013)). As a result, our model can be applied in smaller 
vessels such as arterioles or in microfluidic devices which 
are regularly used to study thrombosis in vitro (Liu et al. 
2022; Westein et al. 2013).

5 � Conclusion

In this paper, we have presented a novel continuum model 
to describe the dynamics of VWF in blood. Our model 
uses a single constitutive relation to describe VWF’s pro-
pensity to unfold at a given shear rate which is parameter-
ised to match experimentally measured VWF behaviour 
in shear flow. The model is then able to quantitatively 
predict VWF length and orientation in any combination 
of flow types which occur in diseased arteries. Crucially, 
our model can examine VWF dynamics in elongational 
flows which are challenging to examine experimentally 
and which are predicted to facilitate excessive VWF 
unfolding. Our model could be readily incorporated into 
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a continuum model of high shear thrombosis by coupling 
the configuration tensor to an advection–diffusion equa-
tion which tracks the concentration of VWF in the flow. 
The combination of VWF concentration and the config-
uration tensor can then be used to determine in which 
regions VWF will be both in high concentrations and 
unfolded, and therefore, where thrombosis could occur.

Appendix A: Parameter estimation

We estimate the model parameters which determine 
VWF’s unfolding, namely � , � , � , and 𝛾̇∗ , using the 
VWF cleavage rate of Lippok et al. (2016) normalised 
using the maximum cleavage rate obtained in their work 
( 3.5 × 10−3nM/s). Following the assumption of Lippok 
et al. (2016) that the proteins cleave at a rate proportional 
to their length, this normalised cleavage rate represents 
the normalised VWF extension. We use the solution of 
the FENE-P equation in two-dimensional shear flow at 𝛾̇i , 
which we denote as A(𝛾̇i) to calculate the extension at that 
shear rate E(𝛾̇i) using (4). We use this extension to define 
the mean error made to Lippok et al. (2016) curve as

where in practice, we use N = 400 discrete values of the 
shear rate between 𝛾̇ = 1 s−1 and 𝛾̇ = 105 s−1 equally spaced 
on a log scale. We use the gradient-based minimiser fmin-
con from MATLAB’s optimisation toolbox to determine the 
VWF parameters which minimise E. We use the initial guess 
of � = 0.01 s , 𝛾̇ = 104 s−1 , � = 0.01 s , and � = 10−4.

We first seek a set of optimal parameters with the 
maximum VWF length fixed at L = 22.6 which is set so 
that the maximum extension VWF can achieve in two-
dimensions matches the maximum extension measured 
by (Schneider et al. 2007). We set bounds on the minimi-
sation so that we seek optimal parameters which satisfy 
10−8 < 𝛿 < 10−3 , 10−8 s < 𝛽 < 10−2 s , 10−6 s < 𝛼 < 0.1 s , 
4000 s−1 < 𝛾̇∗ < 2 × 104 s−1 , which are motivated by the 
physical role of each parameter in the relaxation time. We 
find that the parameter values listed in Table 1 minimise 
the error obtained compared to (Lippok et al. 2016) with 
E = 0.0182 as defined in (A1), which is equivalent to an 
average percentage error of 1.82%.

In Sect.  3.2, we vary the value of L used. We use 
five values of L between 2.8 and 22.6, obtaining a best 
estimate of the parameters: � , � , � and 𝛾̇∗ , in each case 
using numerical continuation. We keep the bounds on the 
parameter space unchanged in this process.

(A1)E =

1

N

N∑

i=1

|Ẽ(𝛾̇i) − E(𝛾̇i)|,

Appendix B: Numerical scheme 
and validation

We use the package FEniCS version 2019.2.0.dev0, and 
code construction is based on examples in Alnæs et al. 
(2015); Logg et al. (2012) for the solution of Stokes equa-
tions and advection–diffusion equations.

In our numerical solution of the steady Navier–Stokes 
equations (8), we use Taylor Hood elements of the first- 
and second-order for the pressure and velocity vector, 
respectively. The steady nonlinear system is solved using 
the inbuilt Newton Solver solve as part of the FEniCS 
package. We solved the model using the viscous pressure 
scale which is equivalent to solving for the dimensionless 
pressure defined in (7) divided by the Reynolds number. 
The velocity gradients in each direction, along with the 
wall shear rate on the pipe wall, are determined using the 
first-order elements as functions of the velocity solution. 
The velocity gradients and velocity field are then used to 
solve the modified FENE-P Eq. (9).

The FENE-P equation consists of four coupled advec-
tion–diffusion equations with the velocity field given by 
the solution of the Navier–Stokes equations. As discussed 
above, we include diffusion in these equations for numeri-
cal tractability. We use the first-order Lagrange elements 
to solve for each component of the configuration tensor. To 
solve the system for each component of the configuration 
tensor, A , we employ continuation in the Reynolds num-
ber, with unit steps performing well. Our initial guess for 
the solver for Re = 0 is that A = I . The inlet value of the 
configuration tensor is found by solving Eq. (9) under the 
imposed inlet flow for which we solve the nonlinear system 
numerically, using the NumPy Newton solver fsolve with-
out numerical continuation, with an initial guess of A = I.

We construct a mesh in GMSH which is finer closer 
to the boundary and at the upstream edge of the stenosis 
where the shear rate is greatest. In Fig. 9a, we compare the 
maximum value of VWF extension and fluid velocity mag-
nitude obtained on a sequence of meshes with increasing 
numbers of mesh vertices to the same quantities obtained 
using a fine reference mesh with 6 × 105 vertices. We use 
the mesh that has approximately 6.7 × 104 vertices on 
which we achieve a maximum relative error of 0.1% on 
all variables compared to the aforementioned reference 
mesh. We define the relative error by dividing the differ-
ence between the value on the fine reference mesh and 
the coarse mesh by the maximum absolute value on the 
fine mesh.

The steep gradients in the fluid shear rate can lead to 
spurious oscillations in the components of the configura-
tion tensor A . To ensure that our mesh is suitably fine 
to capture the large gradients in the tensor components 
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without oscillations, we examine the minimum value of the 
trace of the configuration tensor obtained on each mesh. 
The trace A should be bounded below by one. Our selected 
mesh gives a relative error, defined as (Tr(A) − 1)∕(L2 − 1) , 
equal to − 0.0022; hence, the amplitude of any oscillations 
in the configuration tensor components is less than 1% 
when compared to the maximum extension.

Data availability  Files for numerical solution and figure produc-
tion can be found in the repository https://github.com/Edwina-Yeo/
VWF-Modelling.
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