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Abstract—User-centric (UC) philosophy is a promising network
formation method in light emitting diode enabled visible light
communication (VLC) systems. Nevertheless, the nonlinear chan-
nel impairments restrict the overall system performance and have
not been fully considered in the association structure designing.
In this paper, an adaptive user association approach within
the UC-cells formation of dense VLC networks is investigated
under the consideration of practical nonlinear impairments and
adjacent interference. It is mathematically formulated to be an
achievable data rate maximization problem by jointly determin-
ing the optimal candidates of access point, clipping ratio and
information-carrying power. We divide this mixed combinatorial
and non-convex optimization problem into two subproblems and
delicately transform them to be binary nonlinear programming
and constrained linear programming problems, respectively. In
addition, we develop an efficient approach to obtain the local opti-
mal solution with low-computational complexity in an alternating
iterative way. Simulation results demonstrate that the proposed
scheme has relatively fast convergence and shows robustness to
the variation of complex interference patterns and nonlinear
impairments. Moreover, it can achieve significant throughput
gain as compared with the conventional schemes, demonstrating
the prospect and validity of this methodology for dense VLC
networks with actual nonlinear devices.

Index Terms—Visible light communication, user-centric, non-
linear distortion, clipping, power allocation

I. INTRODUCTION

Light-emitting diode (LED) based visible light communi-
cation (VLC) has attracted considerable interest over the last
decade due to its advantages of license-free spectrum, low
cost and immunity to electromagnetic interference [1]. The
VLC is being cast in the spotlight for short-range wireless
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communications and regarded as an important supplement for
current radio frequency techniques [2]–[4]. Based on intensity
modulation and direct detection (IM/DD), extensive studies
including spectral-efficient modulation [5], robust coding [6],
dimming control [7], channel estimation and equalization [8],
[9] have been dedicated to point-to-point VLC systems to
improve the achievable data rate. With the growing demands
of wireless traffic for emerging indoor applications in 6G
communications, how to design an efficient VLC system
to simultaneously support multiple users with dynamic-and-
flexible connectivity and high-speed transmission is still a
critical challenge task in this field [10].

The cellular fixed-shape principle is commonly used for
constructing the VLC network to support multiple user equip-
ments (UEs), where the illumination area of an LED-based
access point (AP) is considered as an individual attocell and
the UEs access their nearest attocell for data transmission [11].
As for an indoor environment, the AP is always deployed
in a dense manner to provide comfort illumination and the
corresponding number may be much greater than that of UEs,
resulting in a highly dense VLC network [12]. Thus, the
coverage of multiple attocells would be overlapped and the
induced inter-cell interference (ICI) will severely degrade the
performance of cell-edge UEs. To alleviate the ICI, several
approaches such as subchannel allocation [13] and frequency
reuse [14] were proposed accordingly. However, the coordina-
tion assignments can be complex and the reuse factor cannot
adapt to the variation of UEs’ requirements. Moreover, the
frequently inter-cell handover problems and outage events are
still prominent when the UEs are moving between APs [15].
Therefore, the cellular structure may become inefficient for an
indoor VLC network under dense AP deployment.

In contrast, the user-centric (UC) design philosophy relying
on an amorphous and irregular-shaped cell structure was pro-
posed for constructing the VLC network [16], where the UE
could flexibly connect with the favorable APs based on their
specific requirements without any handover and interruption
[17]. Within the receiver’s field of view (FOV), determining
the specific association structure for different UEs and the can-
didate APs plays a crucial role in UC-cells formation. In [18],
the UC-cells formation along with the multiuser scheduling
was formulated as a maximum weighted matching problem
relying on distance-based weight, and a greedy algorithm
was proposed to find the suboptimal yet compelling matching
relation and scheduling solution. In [19], a distance-based
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amorphous cell formation was investigated and then the power
allocation strategy was employed to maximize the energy effi-
ciency of the system. The well-designed power control could
indeed enhance the signal strength and alleviate the amount of
interference. However, to facilitate the calculation, the power
allocation was implemented under the assumption that all
other APs transmitted at their maximum permissible optical
power. By evaluating the exact interference information, the
UC-cells formation and power allocation were jointly treated
in [20], and two algorithms in terms of AP-UE clustering and
power allocation were proposed for maximization the energy
efficiency. In [21], the associated time fraction of UEs that
were served by different APs and the corresponding allocated
power were jointly optimized to maximize the achievable
instantaneous rate of the VLC system, where the UC-cells
were formed based on the well-exploited time-domain resource
and the associations of different APs and UEs just were
executed at different time slots according to time division
multiplexing (TDM). Similarly, the joint optimization of AP-
grouping based UE association and power allocation algorithm
were proposed in [22] to manage the down-link interference by
employing the optimal time fraction of association, and finally
maximize the overall spectral efficiency. However, the optimal
grouping will cost high computational complexity under a
dense APs deployment. Apart from the TDM, the frequency
division multiplexing (FDM) can be also involved in UC-cell
formation. In [23], a joint AP grouping and time-frequency
resource allocation was proposed to reduce the intra-group
interference and maximize the system throughput for VLC
networks. Besides, the subcarrier group, power and modulation
formats can be also jointly optimized in [24] and an iterative
algorithm was proposed to solve the resource management
optimization problem. As for UC-cells formation based on
sophisticated resource multiplexing strategies, both the inter-
ference mitigation and system performance gain were achieved
at the cost of resource utilization. In [25], the UE association
based on ingenious on-off collaboration between adjacent APs
was investigated without using any time/frequency division
multiplexing. By considering the UEs’ future locations and
dynamic data traffic, an anticipatory association algorithm was
proposed to achieve an attractive trade-off between the average
delay and average per-user throughput. However, only the
uniform power loading was employed in [25] thus the effect of
power control on the system performance was not considered.

Most of these previous studies were conducted under
distortion-free transmission and had not fully considered the
adverse effect of hardware impairments on the system perfor-
mance. In fact, the LED has an inherent non-ideal electro-
optical conversion characteristic [26] and the available dy-
namic linear range is always confined [27]. As the signal peaks
exceed the dynamic linear range [28], the nonlinear distortions
will be introduced which will drastically deteriorate the bit
error rate (BER) performance of the whole system [29]. In ad-
dition, the commercially available digital-to-analog converters
(DACs) and analog-to-digital converters (ADCs) always have
limited bit resolution, thus the nonlinear quantization distortion
is exacerbated as the signal with high peak-to-average power
ratio (PAPR) is imposed. Besides the inherent non-ideal char-

acteristics of the hardware itself, the amount of nonlinearity
is also related with the payload information of the modulated
signal [30], whose amplitude is driven by information carrying
(IC) power. Enhancing the IC power is favorable for achieving
higher signal-to-noise ratio (SNR), however, it will result in
larger peak-to-peak voltage of a waveform. Deep clipping
should be always deployed to accommodate both the available
transmission region of the LED and the limited bit resolution
of DACs and ADCs, thus the severe clipping distortions would
be introduced consequently [31]. Therefore, there indeed exists
a trade-off between the clipping and IC power, which should
be jointly treated to balance the system performance and the
nonlinear impairments. We note that there were relatively
insufficient literatures on how to design the optimal UC-cells
when facing the inevitable nonlinear impairments derived from
the LEDs, DACs and ADCs of all APs and UEs. Although
the nonlinearity introduced by both LED saturation and turn-
on threshold was considered in [25], the distortions cannot be
dynamically adjusted with the variation of UEs distribution
and the quantization noises of DACs and ADCs were not
involved accordingly.

Motivated by the above analysis, an adaptive user associa-
tion approach is investigated in this paper by considering three
interlinked design aspects in terms of AP selection, clipping
and IC power allocation in the presence of practical hardware
impairments of multi-user VLC systems. To elaborate, the
main contributions are summarized as follows:

• A novel adaptive user association framework involving
the nonlinear impairments of LEDs, DACs and ADCs is
firstly proposed for UC-cells formation in VLC systems,
which is formulated as dynamic achievable data rate max-
imization relying on the optimization of AP candidates,
adaptive clipping and IC power allocation. It is essentially
different as compared with the schemes in [19]–[25].

• We conceive an efficient approach by dividing the original
mixed combinatorial and non-convex optimization into
two sub-problems, and delicately transform them into
binary nonlinear programming and constrained linear
programming problems, which can be solved by the time-
efficient algorithms with low complexity in an alternating
iterative way.

• With the joint optimization of APs selection, clipping
ratio and IC power, the proposed scheme can alleviate
both the interference and nonlinear impairments of the
whole system effectively, and then improve the achievable
data rate without sacrificing the resource utilization. In
addition, it is more flexible to the variation of both UEs’
spatial distribution and the unique hardware devices.

• Numerical simulations are performed to verify the as-
sociated performance in terms of convergence, optimized
stationary points and the achieved sum rate, which shows
the applicability and superiority of the proposed scheme
to some traditional approaches.

The reminder of this paper is organized as follows. In
Section II, the channel model and signal model are introduced,
and the statistical analysis of the system nonlinearity in terms
of clipping and quantization distortions is also presented.
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The problem formulation is described in Section III and the
proposed methodology is elaborated in detail in Section IV.
Section V demonstrates the simulation results and discussions,
and Section VI finally concludes this paper.

Notations: The set of real numbers is denoted by R. The
terms (·)T and E (·) are employed to represent the transpose
and the mathematical expectation operators, respectively. In
addition, we use |a| to denote the absolute value of a and |N |
to represent the cardinality of set N . Let ∥ · ∥p denote the ℓp-
norm, and N

(
a, σ2

)
is the Gaussian distribution with mean a

and variance σ2.

II. SYSTEM MODEL

The conceptual diagram of a typical indoor UC-VLC net-
work consisting of N APs and M UEs is shown in Fig. 1.
The APs are uniformly installed on the ceiling for stable
illumination and the UEs are randomly distributed in the
room. The central controller connecting to the APs via wired
lines is responsible for the information collection, analyzing
and processing1. After decision making, the central controller
sends the control and information signal to each AP. Then,
the associated APs emit the information signal to the targeted
UEs by using the IM/DD-based VLC down-link channel. We
assume that each AP is equipped with one high illumination-
power LED and each UE has one photodetector (PD), which
are oriented vertically downwards and upwards, respectively.
In addition, the number of APs is much higher than that of
UEs since the dense AP deployment is considered.

A. Channel Model

The light-of-sight (LOS) path and the first reflection path
dominate in the indoor optical propagation. The LOS channel
gain between the UE um (m = 1, 2, · · · ,M) and the AP an
(n = 1, 2, · · · , N) can be expressed as [13]

h0
m,n =

(m̄0 + 1)RPDAPD

2πD2
m,n

cosm̄0 (ϕm,n)Ts (ψm,n)

× gs (ψm,n) cos (ψm,n) , 0 ≤ ψm,n ≤ ψC ,

(1)

where m̄0 = −1/log2
(
cosϕ1/2

)
is the Lambertian emission

order, ϕ1/2 and ϕm,n are the half power angle and the emission
angle of the LED, respectively. In addition, Dm,n denotes
the transmission distance between um and an, ψm,n is the
incidence angle and ψC is the half of the FOV. Let APD and
RPD denote the active area and optoelectronic responsitivity
of PD, respectively. Furthermore, Ts (ψm,n) is the optical
filter gain, and gs (ψm,n) is the concentrator gain, which is
calculated by

gs (ψm,n) =
n2r

sin2 (ψC)
, 0 ≤ ψm,n ≤ ψC , (2)

where nr is the internal refractive index.
As for the non-LOS (NLOS) paths, only the first reflection

is considered because the power of higher order scattering

1The channel state information is obtained by down-link training and
feedback to the central controller by the up-link provided by Wi-Fi [21].
We assume that it is always available for the central controller since it can be
acquired by a perfect channel estimation technique [8]. In addition, the UEs’
state remains unchanged in a short period of time [22].
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Fig. 1. Illustration of an indoor user-centric VLC system.

components is relatively weak. Explicitly, the gain of the first
reflected component is expressed by [21]

h1
m,n =

∫
walls

h(1)
m,ndAw, (3)

where h
(1)
m,n is the reflection term derived from a small

reflection point. Specifically, h(1)m,n is calculated by

h(1)
m,n =

ρ (m̄0 + 1)RPDAPD

2π2D2
1D

2
2

Awcos
m̄0 (ϕw) cos (ϕa) cos (ϕb)

× Ts (ψw) gs (ψw) cos (ψw) , 0 ≤ ψw ≤ ψC ,

(4)

where D1 and D2 represent the distance of an to the reflection
point and the reflection point to um, respectively. The reflective
area is Aw, while ρ denotes the corresponding reflection factor,
ϕw and ϕa are the angles of irradiance and incidence with
respect to D1, respectively. Similarly, ϕb and ψw are the angles
of irradiance and incidence with respect to D2, respectively.
Finally, the aggregated channel gain between um and an is
given by hm,n = h0m,n + h1m,n. Therefore, both the distance
and incident angle are the dominant factors which trigger the
variation of channel gain. The potential APs for the UEs are
not simply determined by their relative spatial distribution, but
also dependent on their FOVs.

B. Signal Model

Let xn denotes the digital time-domain signal of direct cur-
rent biased optical orthogonal frequency division multiplexing
(DCO-OFDM) that is prepared for an. According to the central
limit theorem, xn can be modeled as Gaussian distribution
following N

(
0, σ2

s,n

)
, where σ2

s,n is the variance of xn and
also represents the IC power. Then, xn is used to drive an by
using intensity modulation. Due to the limited bit resolution
of the DAC and the limited linear dynamic range of LED, the
amplitude clipping is implemented for xn with high PAPR,
shown as

xclip,n =

 xn, ϑl ≤ xn ≤ ϑu

ϑu, xn > ϑu

ϑl, xn < ϑl

, (5)
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where ϑl and ϑu are the lower and upper thresholds, re-
spectively. For simplicity, the symmetric clipping, i.e., ϑu =
−ϑl = ϑth, is considered in this paper. Therefore, the clipping
ratio (CR) associated with ϑth can be defined as

ζn =
ϑth√

E
{
|xn|2

} =
ϑth

σs,n

. (6)

The clipped signal xclip,n follows a truncated Gaussian distri-
bution [29], which has a probability density function as

Pr (x) =



1√
2πσ2

x

exp
(
− x2

2σ2
x

)
, −ϑth ≤ x ≤ ϑth

1
2

erfc
(

ϑth√
2σ2

x

)
δ (x− ϑth) , x > ϑth

1
2

erfc
(

ϑth√
2σ2

x

)
δ (x+ ϑth) , x < −ϑth

(7)

where erfc (x) = 1 − erf (x), erf (x) = 2√
π

∫ x

0
e−t2dt is

the error function and δ (·) is the Dirac function. For a
given ζn, therefore, the clipping probability of xn can be
calculated by Pclip = 1 − 2erf

(
ζn√
2

)
. After clipping, xclip,n

is injected into the DAC with a bit resolution of QDAC,n
to produce an analog waveform xclip,n (t). In addition, a
DC bias bdc,n (t) is always added to xclip,n (t) to obtain the
nonnegative waveform xdc,n (t), which drives the LED to
generate the optical signal xo,n (t) = RLEDxdc,n (t). In this
paper, we assume the linearized electro-optic conversion gain
RLED = 1 for facilitating analysis. In addition, bdc,n (t) can
be fixed to ζnσs,n to avoid further clipping from the turn-
on threshold. At um, the received optical signal is detected
by a PD and then converted into an electrical signal. After
that, the analog electrical signal is sent into an ADC with
QADC,m bits resolution to generate a digital signal. Then,
the demodulation procedure is performed accordingly. Note
that the DC component conveys no information thus only
the signals related to useful information are analyzed in the
following.

C. Statistical Analysis of Nonlinear Impairments

Based on (5) and (7), the average power of xclip,n can be
calculated by

σ2
xclip,n = E

{
|xclip,n|2

}
= 2

∫ ϑth

0

x2n√
2πσ2

s,n

exp

(
− x2n
2σ2

s,n

)
dx+ ϑ2

therfc
(
ζn√
2

)
= Cnσ

2
s,n

,

(8)

where Cn is shown as

Cn = 1−
√

2

π
ζn exp

(
−ζ

2
n

2

)
−
(
1− ζ2n

)
erfc

(
ζn√
2

)
. (9)

According to the Bussgang theorem [32], the clipped xclip,n
can be modeled as a sum of two uncorrelated parts, shown as

xclip,n = xeff,n + dn = αnxn + dn, (10)

where xeff,n is the effective signal, αn is the linear attenuation
factor, and dn is the clipping distortion which is statistically

uncorrelated to xn , i.e., E {xndn} = 0. Therefore, αn can be
calculated by

αn =
E
{
xnxclip,n

}
E
{
|xn|2

} = erf
(
ζn√
2

)
. (11)

Moreover, the power of xeff,n is derived as

σ2
xeff,n

= erf2
(
ζn√
2

)
σ2
s,n, (12)

and the power of dn can be calculated by

σ2
d,n = E

{
|xclip,n|2

}
− α2E

{
|xn|2

}
= Gd,nσ

2
s,n

, (13)

where Gd,n is related with ζn, shown as

Gd,n = 1−
√

2

π
ζn exp

(
−ζ

2
n

2

)
−
(
1− ζ2n

)
erfc

(
ζn√
2

)
− erf2

(
ζn√
2

)
.

(14)

As impinging xclip,n on the DAC with QDAC,n bits, the sig-
nal requires 2QDAC,n levels for quantization, then quantization
noise is consequently generated, which can be modeled as
additive uniformly distributed white noise with a variance of

σ2
DAC,n =

ζ2nσ
2
s,n

(
1− Pclip

)
3 · 4QDAC,n

= GDAC,nσ
2
s,n, (15)

where GDAC,n is denoted by

GDAC,n =
2ζ2n

3 · 4QDAC,n
erf
(
ζn√
2

)
. (16)

As for um, the variance of the quantization noise in the ADC
can be calculated by

σ2
ADC,m =

ζ2nh
2
m,nσ

2
s,n

3 · 4QADC,m
= GADC,nh

2
m,nσ

2
s,n, (17)

where GADC,n =
ζ2
n

3·4QADC,m
. According to (13), (15) and (17),

we can foresee that the quantization noise can be reduced by
decreasing ζn while at an expense of increasing clipping dis-
tortion, and vice versa. Therefore, both the linear attenuation
factor and the nonlinear attenuation factor in terms of αn, Cn,
Gd,n, GDAC,n and GADC,m should be well configured to make
a good compromise among all APs and UEs for achieving the
maximum SNR.

III. PROBLEM FORMULATION

Let Nm denotes the pre-defined AP set that could be
severed for um at the current time slot and N LOS

m be the set
of APs that has the LOS links with um. The remaining APs
in N LOS

m except for Nm belong to the subset N̄m. Thus, we
have Nm ⊆ N LOS

m and Nm ∪ N̄m = N LOS
m . In this paper,

only those links are considered in the UC-cell formation.
Although a single AP may provide LOS links for multiple
UEs simultaneously, we assume that different UEs have the
exclusive associated APs at the current time slot, which should
satisfy Nm ∩ Nl = ∅, ∀m ̸= l. Therefore, the received signal
of um can be formulated as

ym =
∑

n∈Nm

hm,nxclip,n +
∑

j∈N̄m

hm,jxclip,j + zm, (18)
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where zm is the additive background white noise with the
variance of σ2

zm and has the power spectral density (PSD) of
10−22 A2/Hz [25]. It can be seen that the first term in (18) is
the useful signal from the associated APs and the second term
is adjacent interference from the undesired APs. Therefore, the
signal to interference plus distortion and noise ratio (SIDNR)
of um can be expressed by

Im =

|Nm|∑
n=1

GBh2
m,nσ

2
xeff,n

|N̄m|∑
j=1

h2
m,jσ

2
xclip,j

+
|Nm|∑
n=1

h2
m,n(σ2

d,n+σ2
DAC,n)+

|Nm|∑
n=1

σ2
ADC,m+σ2

zm

,

(19)
where GB ≈ 1 is the bandwidth utilization factor for DCO-
OFDM. By substituting (8), (12), (13), (15) and (17) into (19),
we can rewrite (19) as

Im =

|Nm|∑
n=1

h2
m,nα

2
nσ

2
s,n

|N̄m|∑
j=1

h2
m,jCjσ2

s,j +
|Nm|∑
n=1

h2
m,nGnσ2

s,n + σ2
zm

, (20)

where Gn = Gd,n +GDAC,n +GADC,n.
Therefore, we can infer that the performance of Im would

be improved by recruiting more participating APs that offer
high-quality links to um, while switching off unexpected APs
that belongs to N̄m. However, these recruited APs for um
would degrade the performance of Il by emitting undesired
interference to ul. While these APs disabled for um could be
the potential dominant links for ul. Besides, the performance
of Im is also affected by the nonlinear distortion derived
from the APs that belongs to both Nm and N̄m, which
should be well balanced to guarantee the overall system
performance. Therefore, it seems more complex to construct
the optimal association structure among all APs and UEs
because the potential candidates are mutually constrained, and
the interference patterns and nonlinear impairments of the
whole system are also interlinked. Intuitively, we speculate
that if the clipping ratio, IC power and the participating APs
can be adaptively configured with the variation of all UEs’
spatial distribution, the adjacent interference and nonlinear
impairments could be effectively alleviated to some extent.

To formulate the aforementioned problem, the binary vari-
able βm,n ∈ {0, 1} is introduced to denote the association
relationship between the um and an, where βm,n = 1 if the
an is assign to um and βm,n = 0 for otherwise. Let β̃n =[
β1,n, β2,n, · · · , βM,n

]T ∈ RM be the association vector of

an and β =
[
β̃1, β̃2, · · · , β̃N

]
∈ RM×N be the association

matrix. Besides, we use ζ = [ζ1, ζ2, · · · , ζN ]
T ∈ RN to denote

the clipping ratio vector and σs =
[
σ2
s,1, σ

2
s,2, · · · , σ2

s,N

]T ∈
RN the IC power vector. Then the achievable instantaneous
rate of um can be expressed by

Rm = Blog2
(
1+Ĩm

)
, (21)

where B denotes the modulation bandwidth of DCO-OFDM,
and Ĩm the reformulated SIDNR, shown as

Ĩm =
Ωm,1 (β,σs, ζ)

Ωm,2 (β,σs, ζ)
, (22)

where

Ωm,1 (β,σs, ζ) =

N∑
n=1

βm,nh
2
m,nα

2
nσ

2
s,n, (23)

and

Ωm,2 (β,σs, ζ) =
M∑

l ̸=m,l=1

N∑
j=1

βl,jh
2
m,jCjσ

2
s,j

+

N∑
n=1

βm,nh
2
m,nGnσ

2
s,n + σ2

zm .

(24)

Additionally, we employ the weight wm to represent the prior-
ity of um. Thus, the UC-cells formation can be mathematically
formulated by maximizing the weighted sum rate F (β,σs, ζ)
with respect to the variables β, σs and ζ, which can be
expressed by

P1 : max
β,σs,ζ

F (β,σs, ζ) = max
β,σs,ζ

M∑
m=1

wmRm (25a)

s.t.
M∑

m=1

βm,n ≤1, ∀n (25b)

N∑
n=1

βm,n ≤ |Nm| , ∀m (25c)

βm,n = {0, 1} , ∀m, n ∈ NLOS
m (25d)

βm,n = 0, ∀m, n /∈ NLOS
m (25e)

0 ≤ σ2
s,n ≤ σ2

s,max, ∀n (25f)
N∑

n=1

σ2
s,n ≤PIC (25g)

1 ≤ ζn ≤ ζmax, ∀n (25h)
ϑmin

2
≤ ζnσs,n ≤ ϑmax

2
, ∀n (25i)

To elaborate, constraint (25b) meets the condition that an AP
can only serve one UE at the current time slot. As for a
particular UE, constraint (25c) corresponds to the fact that
the amount of participating APs cannot exceed the pre-defined
cardinality of Nm, and constraints (25d) and (25e) guarantee
that only the APs providing the LOS components will have the
chance to be recruited, otherwise, they will be abandoned by
um. Besides, (25f) constraint the IC power of the modulated
signal falling within its feasible region and (25g) corresponds
to the total power budget PIC with the consideration of energy
consumption. Since severe clipping will result in invalid com-
munication with contaminated BER, constraint (25h) limits the
clipping ratio from the perspective of effective demodulation.
Moreover, constraint (25i) guarantees that the DC bias should
be operated within the available range

[
ϑmin

2 , ϑmax

2

]
for the

sake of linear modulation and uniform illumination.
According to the objective function and the constraints of

(25), the problem P1 is therefore a mixed combinational and
non-convex optimization problem with respect to the discrete
variable β, and continuous variables σs and ζ, which is non-
trivial and challenging to solve. Concretely, the feasible region
of β is a kind of finite set of points and non-convex. Then the
optimal solution can be obtained by enumerating all feasible
β and then calculates the corresponding achievable rate under
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various clipping and power loading strategies. Intuitively, the
{β⋆,σ⋆

s , ζ
⋆} which provides the largest data rate will be

selected as the optimal solution for the problem P1. However,
the amount of feasible solutions increases exponentially with
the number of APs and UEs, and the computational complexity
becomes huge. Moreover, since the adjacent interference and
nonlinear impairment are mutually constrained and interlinked,
the trade-off between σs and ζ is dynamically varied with the
spatial distribution of all UEs and the active APs. Furthermore,
the objective function with respect to σs and ζ is also non-
concave, and the joint optimization is still a highly nonlinear
and non-convex problem. Therefore, finding the exact optimal
solution of the mixed combinational non-convex optimization
problem will be intractable and nontrivial in a reasonable time.

IV. PROPOSED METHODOLOGY

In this section, an efficient approach is proposed to find the
local optimal solution of problem P1 from a practical point of
interference management and nonlinearity mitigation. Firstly,
the problem P1 is separated into two subproblems with respect
to the discrete and continuous variables, respectively. Then,
we apply a metric to measure the corresponding participation
qualification of each AP and transform the complex multi-
AP combinatorial problem into a binary linear programming
problem. In addition, an improved fractional programming
is also employed to transform the non-convex clipping and
power allocation subproblem into a series of constrained linear
programming problems. Finally, the optimization of β, σs and
ζ are alternately solved by the time-efficient algorithms and
updated within sequential iterations.

Specifically, the AP selection subproblem is shown as

max
β

M∑
m=1

wmR
σ̄s,ζ̄
m (26a)

s.t. (25b), (25c), (25d), (25e) (26b)

where Rσ̄s,ζ̄
m is the achievable rate of um for the fixed σ̄s and

ζ̄. Subsequently, the clipping and power allocation subproblem
is expressed by

max
σs,ζ

F (σs, ζ) = max
σs,ζ

M∑
m=1

wmR
β̄
m (27a)

s.t. (25f), (25g), (25h), (25i) (27b)

where Rβ̄
m denotes the corresponding achievable rate of um

on the condition of a fixed β̄.

A. AP Selection

As for a specific um, the potential AP candidates can be
roughly divided into two categories. One is that the AP has
only a LOS link to um but zero channels to other UEs, and the
other one is that the AP also delivers the LOS links to multiple
UEs in addition to um. Therefore, the first category must be
recruited by um because its participation will improve the
associated performance of um significantly whereas the second
category should be carefully treated for recruiting or switching
off. As for the multi-AP association case, i.e., |Nm| > 1, the

problem (26) can be considered as a combinatorial optimiza-
tion for choosing the most appropriate subset for each UE so
as to achieve the maximization of the transmission rate at the
given σ̄s and ζ̄. However, the corresponding solution is not as
straightforward as that of the single-AP case. For one thing,
the cardinality of Nm is essentially different for each UE and
it is difficult to manually determine the optimal one just based
on the empirical trials. For another, even though the number
of APs is not very large, examining all combinations will lead
to a considerably large solution space, which will introduce
unacceptable computational complexity.

To this end, we introduce a metric to approximately evaluate
the participating eligibility for each AP. Let Γm,n denote the
contribution ratio of an towards the association for um, which
can be calculated by

Γm,n=
h2
m,nσ̄

2
s,n

M∑
l ̸=m,l=1

h2
l,nσ̄

2
s,n

. (28)

High strength of Γm,n indicates that an provides more useful
signal to um than the interference offered to the other UEs,
and vice versa. Then, the average contribution of an can be
obtained by

Γ̃n =
1

M

M∑
m=1

Γm,n. (29)

As for um, the AP whose contribution ratio is higher than
the average value is encouraged to be a reliable candidate.
Therefore, a criterion is adopted to select the potential serving
APs for each UE, shown as

Am =
{
n : Γm,n > Γ̃n

}
. (30)

As a result, the searching space can be reduced to a
certain extent as compared with the original set. To determine
the optimal cardinality for each UE, an auxiliary variable
ηm,q ∈ {0, 1} is employed to denote the active flag of
association mode q ∈ Qm ( Qm = {1, 2, · · · , |Am|}), where
ηm,q = 1 indicates that the number of APs serving um is q,
and ηm,q = 0 otherwise. Furthermore, βm,n is evolved into
βm,n,q to denote the association behavior, where βm,n,q = 1
indicates that an is associated with um at the qth association
mode, and βm,n,q = 0 otherwise. Hence, the achievable rate
of um can be considered as the sum rate of all feasible modes,
which can be reformulated by

R̃σ̄s,ζ̄
m = B

|Am|∑
q=1

log2
(
1+Ĩqm

)
, (31)

where Ĩqm is the SIDNR when the qth association mode is
employed for um, which can be expressed as

Ĩqm =

N∑
n=1

βm,n,qh
2
m,nα

2
nσ̄

2
s,n

Ξq
m + σ2

zm

, (32)

where Ξq
m is the interference and nonlinear distortion seen at

um, shown as

Ξq
m =

|Am|∑
q=1

M∑
l̸=m,l=1

N∑
j=1

βl,j,qh
2
m,jCj σ̄

2
s,j +

N∑
n=1

βm,n,qh
2
m,nGnσ̄

2
s,n.

(33)
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Therefore, the problem in (26) can be reformulated as

P2 : max
βm,n,q

M∑
m=1

wmR̃
σ̄s,ζ̄
m (34a)

s.t.
M∑

m=1

βm,n,q ≤1, ∀n ∈ Am, q ∈ Qm (34b)

N∑
n=1

βm,n,q +
(
1− ηm,q

)
q = q, ∀m, q ∈ Qm (34c)

|Am|∑
q=1

ηm,q ≤ 1, ∀m (34d)

ηm,q = {0, 1} , ∀m, q ∈ Qm (34e)
βm,n,q = {0, 1} , ∀m,n ∈ Am, q ∈ Qm (34f)
βm,n,q = 0, ∀m,n /∈ Am, q ∈ Qm. (34g)

For each mode, constraint (34b) ensures that an AP can only
participate in serving of one UE at most, and constraint (34c)
guarantees that the UE can only be served by a total q APs
once the mode q is selected. Besides, constraint (34d) requires
that only one multi-AP association mode can be deployed for
one UE or none of them are employed. What’s more, constraint
(34f) and (34g) require that only the AP demonstrating the
dominate eligibility can be selected. Therefore, the subproblem
(26) becomes a binary nonlinear programming problem P2.
In this paper, branch and bound is employed to search the
optimal solution. The details can be found in [33], which are
not further elaborated here. Finally, βm,n can be obtained from
the optimized βm,n,q by merging all association modes since
only one mode can employed for one UE at most.

With the aid of participating eligibility, the sparsity structure
of the solution space is well exploited and the search range
can be narrowed to a certain extent. In a sense, the employed
Am and Qm can also provide priors for branch search, which
would speed up the convergence of the entire branch boundary.
Moreover, the multi-AP association can be jointly optimized
for all UEs and the amount of recruited APs in serving of a
specific UE can be adaptively configured as considering the
relative interference pattern of the whole system, rather than
the preset integer shown in the original problem.

B. Adaptive Clipping and Power Allocation

For a given β̄, F (σs, ζ) is generally considered as a
non-convex function. Solving these non-convex optimization
problems in a direct manner is computationally intractable in
a reasonable time. However, as shown in subproblem (27),
each logarithm term contains a ratio of two functions, which
are nondecreasing and concave for σs and ζ. Therefore,
we employ an improved fractional programming based on a
Lagrangian dual transform and quadratic transform to recast
the original (27) as a sequence of simple constrained linear
programming problems, and then to find its local optimal
solution with low computational complexity.

Based on a Lagrangian dual transform, the subproblem (27)
can be rewritten as

max
σs,ζ,γ

f1 (σs, ζ,γ) (35a)

s.t. (25f), (25g), (25h), (25i), (35b)

where γ = [γ1, · · · , γM ]
T refers to a collection of auxiliary

variables. In addition, f1 (σs, ζ,γ) is given by

f1 (σs, ζ,γ) =

M∑
m=1

wm

(
log2 (1 + γm)− γm

ln 2

)
+

M∑
m=1

wm

ln 2
(γm + 1)Θm,

(36)

where

Θm =
Ωm,1

(
β̄,σs, ζ

)
Ωm,3

(
β̄,σs, ζ

) , (37)

and Ωm,3

(
β̄,σs, ζ

)
= Ωm,1

(
β̄,σs, ζ

)
+Ωm,2

(
β̄,σs, ζ

)
.

Lemma 1: The maximum objective values of (27) and (35)
are the same.

Proof 1: The proof is given in Appendix I. ■
As shown in (36), Θm involved in the last item of

f1 (σs, ζ,γ) contains a sum-of-ratio form, which involves the
variables of σs and ζ. To this end, we invoke the quadratic
transform to decouple the denominator and the numerator from
the multiple fractional terms. Specifically, problem (35) can be
further transformed as

P3 : max
σs,ζ,γ,µ

f2 (σs, ζ,γ,µ) (38a)

s.t. (25f), (25g), (25h), (25i), (38b)

where µ = [µ1, · · · , µM ]
T is the auxiliary variables and

f2 (σs, ζ,γ,µ) is given as

f2 (σs, ζ,γ,µ) =

M∑
m=1

wmlog2 (1 + γm)− 1

ln 2

M∑
m=1

wmγm

+
1

ln 2

M∑
m=1

2µm

√
ϖmΩm,1

(
β̄,σs, ζ

)
− 1

ln 2

M∑
m=1

µ2
mΩm,3

(
β̄,σs, ζ

)
,

(39)

where ϖm = wm (1 + γm). As σs is fixed, ζn is mainly
determined by ϑmax and σ2

s,n of an. In addition, the problem
P3 is an objective maximization over variables σs, ζ, γ and µ.
Fortunately, it can be verified that f2 (σs, ζ,γ,µ) is concave
with respect to those variables. Therefore, the optimization of
σs and ζ can be done alternately at a given γ and µ. To solve
this problem, we propose an iterative algorithm to sequentially
optimize γ, µ, σs and ζ in an alternative manner while fixing
the others.

Firstly, according to the Karush Kuhn Tucker (KKT) con-
ditions, γm can be updated by solving the following equation
as all the other variables are fixed, shown as

∂f2 (σs, ζ,γ,µ)

∂γm
= 0, ∀m = 1, 2, · · · ,M. (40)
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After simplifying, γ∗m can be calculated by

γ∗
m =

µ2
mΩm,1

(
β̄,σs, ζ

)
2wm

+

√(
µ2
mΩm,1

(
β̄,σs, ζ

))2
+ 4wmµ2

mΩm,1

(
β̄,σs, ζ

)
2wm

.

(41)

By substituting (41) into (39), the optimal µm can be updated
by setting

∂f2 (σs, ζ,γ
∗,µ)

∂µm
= 0, ∀m = 1, 2, · · · ,M. (42)

Thus, µ∗
m can be calculated by

µ∗
m=

√
ϖ∗

mΩm,1

(
β̄,σs, ζ

)
Ωm,3

(
β̄,σs, ζ

) , (43)

where ϖ∗
m = wm (1 + γ∗m).

After substituting γ∗ and µ∗ into (39), the first two terms of
f2 (σs, ζ,γ

∗,µ∗) can be regarded as constants that are only
related with γ∗. Then, we use f̂2 (σs, ζ,γ

∗,µ∗) to denote the
components of the last two terms in f2 (σs, ζ,γ

∗,µ∗), which
can be expressed by

f̂2 (σs, ζ,γ
∗,µ∗) =

1

ln 2

M∑
m=1

2µ∗
m

√
ϖ∗

mΩm,1

(
β̄,σs, ζ

)
− 1

ln 2

M∑
m=1

(µ∗
m)

2
Ωm,3

(
β̄,σs, ζ

)
.

(44)

Then, the optimal σs can be derived by solving

σ∗
s = argmax

σs

f̂2 (σs, ζ,γ
∗,µ∗). (45)

Let ∂
∂σs

f̂2 (σs, ζ,γ
∗,µ∗) = 0, we can obtain the following

series of equations, which can be expressed by
N∑

n=1

β̄m,nh
2
m,nα

2
nσ

2
s,n = (ξ∗m)

2
, ∀m = 1, 2, · · · ,M, (46)

where ξ∗m can be explicitly calculated as

ξ∗m =

√
ϖ∗

m

N∑
n=1

β̄m,nh
2
m,nα

2
n

µ∗
m

(
M∑

l̸=m,l=1

N∑
j=1

β̄l,jh
2
m,jCj +

N∑
n=1

β̄m,nh2
m,n (Gn + α2

n)

) .
(47)

Let ξ =
[
(ξ∗1)

2
, · · · , (ξ∗M )

2
]T

, Va = [va
1 , · · · ,va

N ] and

va
n =

[
β̄1,nh

2
1,nα

2
n, · · · , β̄M,nh

2
M,nα

2
n

]T
, the solution of (46)

is equivalent to the following

σ∗
s = argmin

σs

∥Vaσs − ξ∥2 (48a)

s.t. (25f), (25g), (25i). (48b)

Note that, (48) is a constrained linear programming problem
and it can be efficiently solved by the existing algorithms
with polynomial-time computational complexity. In addition,
the optimized σ∗

s obtained by the problem (48) exactly yields
the same solution as that of the problem (45).

With fixed γ∗, µ∗ and σ∗
s , the optimization of ζ is jointly

related with Ωm,1

(
β̄,σ∗

s , ζ
)

and Ωm,3

(
β̄,σ∗

s , ζ
)
, which are

monotonically nondecreasing and concave over ζn as ζn ≥ 1.

As previously shown, the corresponding attenuation factors
in terms of α2

n, Cn and Gn involved in Ωm,1

(
β̄,σ∗

s , ζ
)

and
Ωm,3

(
β̄,σ∗

s , ζ
)

are monotonic and highly nonlinear functions
for ζn ≥ 1. Although the optimal clipping ratio can be
determined by using numerical methods such as the exhaustive
or golden search for the associated APs that maximizes
the f2 (σ

∗
s , ζ,γ

∗,µ∗). However, it will lead to prohibitive
computational complexity and cannot guarantee the optimality
for all UC-cells. Therefore, we could employ a lower bound
approximation that can be analytically characterized to thereby
reduce the computational complexity to some extent. To this
end, we further simplify Ωm,3

(
β̄,σ∗

s , ζ
)

by combining (9),
(11) and (14), shown as

Ωm,3

(
β̄,σ∗

s , ζ
)
=

M∑
l ̸=m,l=1

N∑
j=1

β̄l,jh
2
m,jCj

(
σ∗
s,j

)2
+

N∑
n=1

β̄m,nh
2
m,n

(
Gn + α2

n

) (
σ∗
s,n

)2
+ σ2

zm

=

M∑
l=1

N∑
n=1

β̄l,nh
2
m,nCn

(
σ∗
s,n

)2
+

N∑
n=1

β̄m,nh
2
m,n (GDAC,n +GADC,n)

(
σ∗
s,n

)2
+ σ2

zm .

(49)

As ζn ≥ 1, it can be verified that Cn is monotonically
nondecreasing and concave, while the sum of GDAC,n and
GADC,n is monotonically increasing and convex. Moreover, as
ζn is increasing, Cn gradually approaches α2

n and the average
error between these two terms approximates an order of 10−6

for ζn ≥ 3. In addition, Cn also shows much greater than the
sum of GDAC,n and GADC,n, e.g., the former is 0.995 whereas
the latter is 1.4 × 10−4 at ζn = 3. Hence, we consider the
upper band of Ωm,3

(
β̄,σ∗

s , ζ
)
, shown as

Ωm,3

(
β̄,σ∗

s , ζ
)
≤ Ω̃m,3

(
β̄,σ∗

s , ζ
)

∆
=

M∑
l=1

N∑
n=1

β̄l,nh
2
m,nα

2
n

(
σ∗
s,n

)2
+

N∑
n=1

β̄m,nh
2
m,n

(
Gmax

DAC,n +Gmax
ADC,n

) (
σ∗
s,n

)2
+ σ2

zm ,

(50)

where Gmax
DAC,n and Gmax

ADC,n are the values considered at ζmax.
Due to α2

n being monotonically increasing and concave over
ζn, we introduce the auxiliary variable χn to replace α2

n. Then,
the optimization of the clipping ratio can be reduced to the
following problem as

χ∗ = argmax
χ

⌢

f 2 (σ
∗
s ,χ,γ

∗,µ∗) , (51)

where
⌢

f 2 (σ
∗
s ,χ,γ

∗,µ∗) is shown by

⌢

f 2 (σ
∗
s ,χ,γ

∗,µ∗) =

M∑
m=1

2µ∗
m

√
ϖ∗

mΩm,1

(
β̄,σ∗

s ,χ
)

−
M∑

m=1

(µ∗
m)

2
Ω̃m,3

(
β̄,σ∗

s ,χ
)
.

(52)
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It can be verified that (51) is a convex problem over χ. Let
∂
∂χ

⌢

f 2 (σ
∗
s ,χ,γ

∗,µ∗) = 0, we can obtain

N∑
n=1

β̄m,nh
2
m,n

(
σ∗
s,n

)2
χn = (υ∗

m)
2
, ∀m = 1, 2, · · · ,M, (53)

where υ∗m can be explicitly calculated by

υ∗
m =

√
ϖ∗

m

N∑
n=1

β̄m,nh
2
m,n

(
σ∗
s,n

)2
µ∗
m

M∑
l=1

N∑
j=1

β̄l,jh
2
m,j

(
σ∗
s,j

)2 . (54)

Let vb
n =

[
β̄1,nh

2
1,n

(
σ∗
s,n

)2
, · · · , β̄M,nh

2
M,n

(
σ∗
s,n

)2]T
, Vb =[

vb
1, · · · ,vb

N

]
, and υ =

[
(υ∗1)

2
, · · · , (υ∗M )

2
]T

, then the opti-
mized χ∗ can be determined by solving the following

χ∗ = argmin
χ

∥∥Vbχ− υ
∥∥
2

(55a)

s.t. erf2
(

1√
2

)
≤ χn ≤ erf2

(
ζmax√

2

)
, ∀n (55b)

erf2
(

ϑmin

2
√
2σ∗

s,n

)
≤ χn ≤ erf2

(
ϑmax

2
√
2σ∗

s,n

)
, ∀n.

(55c)

After obtaining χ∗
n, ζ∗n can be obtained by back extrapolation,

shown as

ζ∗n =
√
2erf−1 (√χ∗

n

)
, ∀n = 1, 2, · · · , N, (56)

where erf−1 (·) is the inverse of erf (·) and has the Maclaurin
expression as

erf−1 (z) =

∞∑
k=0

bk
2k + 1

(√
π

2
z

)2k+1

, (57)

where b0 = 1 and

bk =

k−1∑
k0=0

bk0bk−1−k0

(k0 + 1) (2k0 + 1)
. (58)

The detailed description about the above iterative procedure
is also shown in Algorithm 1. The rationale behind it is
alternately optimizing γ, µ, σs and ζ while fixing the others
until the stationary points are found, which satisfy the KKT
conditions of the problem P3.

Lemma 2: The Algorithm 1 is guaranteed to be convergent
and monotonically nondecreasing after each iteration, and
the local optimal solutions can be achieved along with the
convergence.

Proof 2: The proof is given in Appendix II. ■

C. Joint Optimization

After that, the binary variable β and continuous variables σs

and ζ can be optimized in an alternating way, the details are
shown in Algorithm 2. Firstly, the optimized β(t+1) is obtained
by solving the AP selection subproblem with fixed σ

(t)
s and

ζ(t) at each iteration. Then, the optimized σ
(t+1)
s and ζ(t+1)

are found via solving the subproblem (27) based on the given
β(t+1). Note that the optimizing procedure for the clipping
ratio and IC power is just executed based on the fixed β̄, which

Algorithm 1 Adaptive clipping and IC power allocation with
the specified association factor.
Input:
1) Association decision β̄m,n

2) Weight wm, channel gain h2m,n, background noise σ2
zm

3) Threshold ∆min

1: Initialization
2: Set ζ(1) and σ

(1)
s with feasible values. Initialize (γ∗m)

(1)
=

Ĩm and t = 1, respectively.
3: while 1 do
4: Obtain (µ∗

m)
(t+1) via (43).

5: Update (γ∗m)
(t+1) via (41).

6: Update (ξ∗m)
(t+1) via (47).

7: Update Va and Obtain (σ∗
s )

(t+1) by solving the
problem (48).

8: Obtain (υ∗m)
(t+1) via (54) and update Vb.

9: Obtain χ∗ by solving the problem (55).
10: Update (ζ∗n)

(t+1) via (56) based on χ∗.
11: Check the halting criterion:
12: if

∣∣∣f2(t+1) − f2
(t)
∣∣∣ ≤ ∆min then

13: Break.
14: end if
15: t = t+ 1
16: end while
17: Obtain σ∗

s ⇐ (σ∗
s )

(t+1) and ζ∗ ⇐ (ζ∗)
(t+1), respectively.

Output: σ∗
s , and ζ∗

is sensitive to the initial condition. To guarantee the solving
quality, random initial points are employed for β(1), while the
uniform power loading and clipping ratio are set for σ(1)

s and
ζ(1), respectively. At last, the solving results are averaged out.
Here we set the empirical ∆min = 1× 10−3 for checking the
halting conditions. By employing the proposed methodology,
the UC-cells can be dynamically constructed according to the
spatial distribution of all UEs, and the adjacent interference
and nonlinear impairments would be consciously avoided or
mitigated in a subtle way, which can effectively improve the
achievable data rate and achieve a good trade-off between the
system performance and computational complexity.

Lemma 3: The Algorithm 2 always converges to a local
optimum when a stationary point (β⋆,σ⋆

s , ζ
⋆) is obtained.

Proof 3: The proof is given in Appendix III. ■

D. Complexity Analysis

In Algorithm 2, the calculation of β(t+1) is dominant in
each iteration. For a given N and M , the computational
complexity of the optimization of β(t+1) is mainly affected
by branching and bounding rules since they determine the
number of feasible solutions for each branching operation.
With the help of the metric of participating eligibility, each
UE has the limited potential AP subset Am, which gives

Ka =
M∏

m=1
|Am| possible solutions to evaluate. However,

some of them will turn out to be the infeasible solutions since
the current assignment violates the constraints of (34b) and
(34c), which should be pruned to further reduce the number



10

Algorithm 2 Joint optimization of AP selection, clipping ratio
and IC power.
Input:
1) Weight wm, channel gain h2m,n, background noise σ2

zm .
2) Threshold ∆min.
1: Initialization
2: Set t = 1, and initialize σ

(1)
s , ζ(1) and β(1) with feasible

values, respectively.
3: while 1 do
4: Obtain Γm,n and Γ̃n via (28) and (29), respectively.
5: Update β(t+1) by solving the problem (34) based on

the fixed σ
(t)
s and ζ(t).

6: Update σ
(t+1)
s ⇐ σ∗

s and ζ(t+1) ⇐ ζ∗ via Algorithm
1 based on the fixed β(t+1).

7: Calculate F
(
β(t+1),σ

(t+1)
s , ζ(t+1)

)
.

8: Check the halting criterion:
9: if

∣∣F (t+1) −F (t)
∣∣ ≤ ∆min then

10: Break.
11: end if
12: β⋆ ⇐ β(t+1), σ⋆ ⇐ σ(t+1) and ζ⋆ ⇐ ζ(t+1).
13: t = t+ 1.
14: end while
Output: β⋆, σ⋆

s and ζ⋆

of evaluated solutions. Note that the remaining solutions for
each UE are also related with the interference pattern of the
whole system. We assume that there are remaining total Kb

feasible solutions, thus the computational complexity of the
optimization β(t+1) can be expressed as O (Kb logKb +Ka),
where Kb logKb represents the cost of sorting the feasible
solutions based on their objective function values. As for
the updating of σ

(t+1)
s and ζ(t+1), Algorithm 1 consists of

two main steps. In the first step, µ(t+1), γ(t+1), ξ(t+1) and
υ(t+1) are successively calculated in a recursive manner,
which needs to be run at most M times for each iteration. In
the second step, σ(t+1)

s and ζ(t+1) can be obtained by solving
the constrained linear programming (48) and (55), where the
calculation of the Moore-Penrose matrix is needed for each
iteration. The time complexity for solving this linear program-
ming depends on the specific used algorithm. Considering the
structure of the problem, we could invoke the interior point
method where the time complexity is O

(
N3
)
. In summary,

the computational complexity of the whole procedure can be
denoted as O

(
Kb logKb +Ka +N3 +M

)
approximately.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical simulations are conducted to
evaluate the capability of the proposed scheme for enhancing
the achievable rate of a multi-user VLC network in the
presence of nonlinear impairments. A room with a typical
size of 6× 6× 3 m3 is considered here. A total of 16 APs are
uniformly deployed on the ceiling with a horizontal interval of
1.5 m, which are used to provide down-link transmission and
illumination. The UEs are randomly distributed in the room,
and the receiving plane of each UE has a height of 0.85 m

TABLE I
SIMULATION PARAMETERS

Parameters Values

Room Size (m3) 6× 6× 3
Height of receiving plane (m) 0.85
Semi-angle ϕ1/2 (deg) 60
Active area APD (cm2) 1
Optical filter gain 0.9
Responsitivity RPD (A/W) 0.53
Reflection factor ρ 0.8
FOV ψC (deg) 45
Maximum IC power σ2

s,max
1 1

Total power budget PIC
1 5

Available LED range [ϑmin, ϑmax]1 [1,4]
Modulation bandwidth B (MHz) 50
1 The IC power and the LED range are normalized with the reference 40

mW and 5 mA, respectively.

above the floor. Furthermore, the classic random waypoint mo-
bility model is adopted to generate the spatial locations of all
UEs in each time slot, where the minimum distance between
UEs is not less than 1 m. The main simulation parameters
of the VLC channel are listed in Table I. It should be noted
that the normalized IC power and LED range are employed in
this paper to facilitate the mathematical calculations in the
optimization procedure2. Moreover, the receiver noise PSD
with the value of 10−22 A2/Hz is approximately equivalent to
an effective SNR of 30.2 dB when the modulation bandwidth
of 50 MHz and the IC power of 40 mW are employed.
Therefore, the effective SNR of 30 dB is considered, and both
σ2
s,max and ϑmin can be set to 1, which are normalized with

the reference 40 mW and 5 mA, respectively. In addition, the
weight wm is set to be equal to 1

M while the objective function
becomes the average rate of VLC network. For simplicity,
QDAC,n = QADC,m = Qbit is the adopted for each AP and UE.

A. Convergence Performance

To show the feasibility of the proposed scheme, the conver-
gence performance which can be evaluated by the variation
of the objective function F (β,σs, ζ) versus the number of
iterations is firstly investigated. As Qbit = 10 and M is
varied from 3 to 7, F (β,σs, ζ) for each iteration is shown
in Fig. 2. The results clearly demonstrate that the number
of iterations required for reaching to the convergence state
is gradually increased with the number of UEs. The main
reason is that the computational complexity of the proposed
scheme is directly related with the number of APs and
UEs, and also with the interference patterns of the whole
system derived from the specific distributions of UEs. When
the room size and the number of APs are determined, the
increase of M will dominant the computational complexity
of Algorithm 1 and Algorithm 2. In addition, the interference
strength of the whole system is also enhanced to a certain
extent and the interference relations between users become
more complex with the increase of UEs density. However,

2The average channel coefficients of indoor VLC are much smaller, which
will encounter the calculation failure due to the accuracy limitations of some
existing optimization solvers.
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Fig. 2. Convergence comparison for different number of UEs as Qbit = 10.

the proposed scheme still can achieve favorable convergence
performance under such conditions. Moreover, we can also
observe that F (β,σs, ζ) declines as M is increased. This is
indeed as expected because more resources are required for
simultaneously supporting their target UEs whereas the total
resources are restricted.

Fig. 3 illustrates the convergence performance of the pro-
posed scheme under different ADC/DAC bit resolutions as
M = 4. We consider two scenarios, where Scenario A
refers to the case of slight interference patterns and the
coordinates of UEs are (1.1, 1.5) m, (4.5, 1.5) m, (1.5, 4.6)
m and (4.7, 4.5) m, respectively. By comparison, Scenario
B implies the complex interference case where the coordi-
nates of UEs are (1.1, 1.5) m, (2.9, 2.1) m, (1.5, 4.2) m and
(4.2, 2.9) m, respectively. The results demonstrate that all of
the curves tend to become stable gradually with the increase
of iteration number. In general, the proposed scheme involving
slight interference patterns has a faster convergence rate under
similar nonlinear quantization distortions. Additionally, the
final optimized F (β,σs, ζ) is just slightly reduced as the
lower Qbit is employed, e.g., less than 20 Mbps throughput
reduction is introduced in Qbit = 8 as compared with the
case of Qbit = 10 and Qbit = 12, which indicates the
effectiveness and reliability of the proposed scheme when
facing different nonlinear quantization distortions. Therefore,
the proposed scheme could achieve the convergence in a
limited time and exhibit excellent interference and nonlinear
impairments management capability.

B. Optimized Stationary Points

Fig. 4 depicts the stationary points of the proposed scheme
in terms of ζ⋆ and σ⋆

s , which are collected at the convergence
state under different ϑmax. As the results show, the range of the
stationary points is obviously distinct for different scenarios.
In general, ζ⋆ and σ⋆

s in Scenario A fall within a relatively
wider range than that of Scenario B. As shown in the case
of ϑmax = 3.5, the range of ζ⋆ and σ⋆

s in Scenario A are
[3.1006, 3.2484] and [0.2902, 0.3186], respectively, where the
range size is nearly 4 times wider than that of Scenario B,
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Fig. 4. The stationary points in terms of ζ⋆ and σ⋆
s under different ϑmax.

i.e., [3.1072, 3.1431] and [0.3100, 0.3172], respectively. In ad-
dition, the range sizes is decreased as lower ϑmax is employed,
and it will turn out to be one point for ϑmax = 3. In this case,
we conjecture that the available linear region of each AP is
confined to be so small that the proposed algorithms converge
to the same stationary points with high probability under the
current power budget. Thus, all APs are implemented with the
same clipping and power loading, which is a special case of
uniform resource allocation. We know that a wider range of
optimized variables enables the whole system to have a more
flexible adjustment margin to achieve the desired performance,
which can also indicate that the proposed scheme is superior
to the uniform strategies. Furthermore, the smooth curves also
mean that there exists a special functional relationship between
the optimized ζ⋆ and σ⋆

s obtained by the proposed scheme.
In addition, a snapshot of the optimized β⋆ with ϑmax = 4

in Scenario B is shown in Fig. 5. According to their distribu-
tion, we know that some UEs are spatially close to each other,
which will introduce complex and severe mutual interference
when the conventional fixed-shape attocell was employed in
the system. However, the proposed scheme can associate all
UEs with their optimal AP candidates rather than the nearest
one by comprehensively assessing the overall interference and
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nonlinear impairments of the whole network. In addition,
combined with adaptive clipping and power loading, the 4
UEs can obtain the achieved throughput as 532.1, 483.1,
554.7 and 562 Mbps, respectively, which indicates that the
potential mutual interference of the whole system can be
well managed and balanced to some extent for guaranteeing
the system throughput, since the maximum performance gap
among all UEs is less than 17%. Therefore, the UC-cells can
be dynamically constructed by the proposed scheme with the
optimized β⋆, ζ⋆ and σ⋆

s to make a good compromise among
the interference and achieved throughput of the whole system.

C. Achieved Sum Rate

The FOV and total IC power budget are important parame-
ters in the VLC system which can directly affect the channel
gain and also the interference patterns. In this section, the
effect of various FOVs and total IC power budget on the
achievable sum rate is investigated under the case of Scenario
B. To validate the effectiveness of the proposed scheme, three
traditional network formations are also considered here for
comparison:
a) Benchmark 1: Multiple AP association based on distance

metric, where the neighboring APs of one UE within a
certain area are merged to be a UC-cell.

b) Benchmark 2: Single AP association based on fixed-shape
cell, where the coverage of each AP is regarded as one
attocell, and the UE will be connected to its nearest AP.

c) Benchmark 3: Multiple AP association based on fixed-
shape cells, where the whole room is divided into 2 × 2
square cells and each cell contains 4 APs. In contrast to
Benchmark 1, the corresponding combination of APs for
each cell keep unchanged in Benchmark 3.

In addition, the uniform clipping and power loading in terms
of ζ = 3 and σs =

PIC
N are used for the above three benchmark

schemes.
Fig. 6 presents the sum rate performance comparison of the

proposed scheme and three benchmark schemes, where ψC

is varied from 25 to 75 degrees and PIC = 5. As shown in
the figure, the sum rate of all curves is decreased when larger
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Fig. 6. The achieved sum rate comparison under different FOVs.

ψC is employed, because the wide ψC may drive a specific
UE to receive more interference signals from the adjacent APs
that serve the other UEs. However, the proposed scheme still
exhibits an excellent sum rate performance for all benchmark
schemes, and can achieve a significant gain especially for
ψC = 55 degrees, which confirms its robustness against the
inevitably interference at condition of larger FOVs.

Fig. 7 illustrates the corresponding sum rate performance
comparison as PIC is varied from 2 to 10 and ψC = 45
degrees. As for the three benchmark schemes, their sum rate
performance gradually increase and then sharply decline on
the condition of PIC > 7. Because the uniform power loading
strategy is deployed in the three benchmark schemes, more
power will be allocated to the modulated signal consequently
as PIC is increasing. Thus, the majority part of the modulated
signal will be clipped accordingly due to the limited avail-
able linear region of the LED, resulting in severe nonlinear
distortions. It is a fact that the interference strength and
nonlinear distortions are directly related to PIC. The larger
PIC employed, the higher the interference and the nonlinear
distortions introduced. However, the proposed scheme just has
a slight performance degradation as PIC > 7, and its sum rate
will gradually reach a stable state, which shows the robustness
of the proposed scheme to the nonlinear distortions. Therefore,
the proposed scheme can still work effectively to provide the
robust sum rate performance even under severe interference
and nonlinear impairments.

D. Statistical Distribution

In this section, the statistical performance in terms of the
cumulative distribution function (CDF) of the achieved sum
rate are investigated. Taking M = 4 and PIC = 5, the CDFs
of the proposed and the other three benchmark schemes are
illustrated in Fig. 8, where the position of randomly located
UEs is employed and total 200 snapshots are used. It can
be seen that the proposed method exhibits a better sum rate
performance as expected because it outperforms all benchmark
schemes for the majority of UE distribution. We know that
the benchmark schemes employ the association structure with
the fixed ζ and σs without considering the relative spatial
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distribution of all UEs. However, as for the proposed scheme,
the candidate APs for each UE and the corresponding ζ and
σs are dynamically adjusted by considering the spatial dis-
tribution of all UEs comprehensively, which can alleviate the
potential interference and nonlinear impairments effectively,
resulting in an significant sum rate performance improvement.
In summary, the proposed scheme has superiority over the
traditional schemes and shows the validity in the UC-cells
formation from the above simulations and discussions.

VI. CONCLUSION

In this paper, a novel UC-cell formation based on the joint
design of AP selection, clipping ratio and IC power allocation
was proposed to achieve the sum rate maximization under the
concerns of nonlinear impairments of multi-user VLC system.
We formulated this designing as a mixed combinational and
non-convex optimization problem and proposed an efficient
method to obtain the local optimal solution. Specifically, the
discrete variable and continuous variables were separated into
two subproblems, and we developed a method to transform the
complex subproblems to be binary nonlinear programming and
constrained linear programming problems, respectively, which
can be efficiently solved in relatively low-complexity manners.

Results demonstrated that the proposed scheme can effectively
mitigate the interference and achieve significant performance
gain. In addition, it also exhibited a relative robustness to
the severe nonlinear impairments, outperforming the existing
conventional methods when compared at the same conditions.

APPENDIX I
PROOF OF LEMMA 1

As σs is held to σ̄s and ζ is fixed to ζ̄s, (27) can be
reformulated by introducing the variable γm to replace each
ratio term in the logarithm function, shown as

max
γ

F (γ) = max
γ

M∑
m=1

wmlog2 (1+γm) (A.1a)

s.t. γm ≤ Ĩm
(
σ̄s, ζ̄

)
, ∀m. (A.1b)

The subproblem (A.1) is a convex optimization in γm
with one global optimal solution. Therefore, the dual prob-
lem can be used to achieve the optimal solution since
strong duality holds. By introducing the dual variables
λ = {λm ≥ 0 : m = 1, · · · ,M} to the inequality constraints
(A.1b), the Lagrangian duality problem can be expressed as

min
λ

max
γ

L (γ,λ) , (A.2)

where L (γ,λ) is given by

L (γ,λ) =

M∑
m=1

wmlog2 (1+γm)−
M∑

m=1

λm

(
γm − Ĩm

(
σ̄s, ζ̄

))
.

(A.3)
From the KKT conditions, we have ∂L(γ,λ)

∂γm
= 0, then, the λ̃m

can be obtained as

λ̃m =
Ωm,2

(
β̄, σ̄s, ζ̄

)
wm

Ωm,3

(
β̄, σ̄s, ζ̄

)
ln 2

, ∀m = 1, · · · ,M. (A.4)

Substituting λ̃m into (A.3), L
(
γ, λ̃

)
can be further derived

as

L
(
γ, λ̃

)
=

M∑
m=1

wmlog2 (1 + γm)− 1

ln 2

M∑
m=1

wmγm

+
1

ln 2

M∑
m=1

wm (γm + 1)Θm,

(A.5)

Let f1
(
σ̄s, ζ̄,γ

)
= L

(
γ, λ̃

)
, for any σs and ζ, we define

γ̃ (σs, ζ) = argmax
γ

f1
(
σ̄s, ζ̄,γ

) ∣∣
σ̄s=σs,ζ̄=ζ . (A.6)

From the trivial solution of (A.1), we know that each of γ̃m
satisfy γ̃m = Ĩm (σs, ζ). Then, substituting γ̃m back in (A.5),
we can obtain

max
σs,ζ

f1 (σs, ζ, ,γ) = max
σs,ζ

F (σs, ζ) . (A.7)

Proof completed.
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APPENDIX II
PROOF OF LEMMA 2

The updating of σs and ζ are obtained by solving (48)
and (55), respectively. However, the parameters Va, ξ, Vb

and υ related to the linear programming with constraints are
calculated based on the updating of γ and µ, which are directly
optimized from the maximizing of f2 (σs, ζ,γ,µ). Although
the ζ is optimally updated by maximizing the lower band
of f2 (σs, ζ,γ,µ), the solution would converge to the point
which satisfies the KKT conditions of the original problem.
Therefore, the solving of (48) and (55) are equivalent to the
maximizing of f2 (σs, ζ,γ,µ) since all of variables can be
approximately regarded as the optimal updating based on the
same gradient function. Therefore, Algorithm 1 is essentially
block coordinate ascent.

In addition, as we change one variable while fixing the
others, it can be verified that f2 (σs, ζ,γ,µ) is a monotoni-
cally nondecreasing function with a finite bound. After each
iteration, thus, f2 (σs, ζ,γ,µ) satisfies

f2
(
σ(t+1)

s , ζ(t+1),γ(t+1),µ(t+1)
)
≥ f2

(
σ(t)

s , ζ(t),γ(t),µ(t)
)
.

(B.1)
Therefore, Algorithm 1 will converge to the stationary point
satisfying the KKT conditions of the problem (27).

Proof completed.

APPENDIX III
PROOF OF LEMMA 3

As aforementioned, the branch and bound algorithm is
sufficient to guarantee the local optimal solution of β(t+1)

when bounded by the given σ
(t)
s and ζ(t), satisfying

F
(
β(t+1),σ(t)

s , ζ(t)
)
≥ F

(
β(t),σ(t)

s , ζ(t)
)
. (C.1)

According to Lemma 2, we know that f2 (σs, ζ,γ,µ) is mono-
tonically nondecreasing and Algorithm 1 is always convergent
at a stationary point satisfying the KKT conditions once the
optimal β(t+1) is given, thus we have

F
(
β(t+1),σ(t+1)

s , ζ(t+1)
)
≥ F

(
β(t+1),σ(t)

s , ζ(t)
)
. (C.2)

Therefore, F (β,σs, ζ) is monotonically nondecreasing in
each iteration and Algorithm 2 always converges to a local
optimum when a stationary point is obtained. Note that, even
though β is a binary variable, the convergence result of
Algorithm 2 is the best solution that one could hope for since
the optimality of β⋆ can be easily asserted at the condition of
σ⋆
s and ζ⋆.
Proof completed.
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