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Abstract

In this chapter we review recent developments in the research of Bregman
methods, with particular focus on their potential use for large-scale applications.
We give an overview on several families of Bregman algorithms and discuss
modifications such as accelerated Bregman methods, incremental and stochastic
variants, and coordinate descent-type methods. We conclude this chapter with
numerical examples in image and video decomposition, image denoising, and
dimensionality reduction with auto-encoders.

Keywords

Optimisation · Bregman proximal methods · Bregman iterations · Inverse
problems · Nesterov acceleration · Mirror descent · Kaczmarz method ·
Coordinate descent · Itoh-Abe method · Alternating direction method of
multipliers · Primal-dual hybrid gradient · Robust principal components
analysis · Deep learning · Image denoising

Introduction

Bregman methods have a long history in mathematical research areas such as opti-
misation, inverse and ill-posed problems, statistical learning theory, and machine
learning. In this review, we mainly focus on the areas of optimisation and inverse and
ill-posed problems and the application of popular Bregman methods to potentially
large-scale problems. Following Lev Bregman’s seminal work in 1967 (Bregman
1967), it was not before the work of Censor and Lent (1981) in 1981 that the
use of Bregman methods has slowly but steadily been popularised in the area of
mathematical optimisation, shortly followed by the advent of the mirror descent
algorithm (Nemirovsky and Yudin 1983). Bregman proximal methods, which we
discuss in greater detail in the following section, were first introduced by Censor and
Zenios in their seminal work in 1992 (Censor and Zenios 1992), shortly followed
by Teboulle (1992), Teboulle and Chen (1993) and Eckstein (1993). Bregman
methods have been extensively studied since, see, for example, Bauschke et al.
(2003) and references therein, and many notable extensions were developed, with
one of the most popular ones in the context of inverse and ill-posed problems
being the so-called Bregman iteration (Osher et al. 2005), which is based on a
generalised Bregman distance notion (Kiwiel 1997b). Bregman iterations have been
shown to possess favourable regularisation properties over traditional linear iterative
regularisation methods, especially in the context of imaging and image processing
applications, and therefore gained a lot of attention in those research fields. We
refer to Osher et al. (2005), Burger (2016) and Benning and Burger (2018) for an
overview on Bregman iterations.

The goal of this chapter is to provide a non-exhaustive overview over some
recent developments in the adaptation of Bregman methods to handle poten-
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tially large-scale problems. These extensions range from simple linearisations to
accelerated versions of Bregman methods, incremental and stochastic adaptations,
and coordinate descent variants to Bregman extensions of popular primal-dual
frameworks. The chapter is therefore structured as follows. In section “Bregman
Proximal Methods” we give an overview over Bregman proximal methods and
some notable extensions. In section “Accelerated Bregman Methods” we discuss
accelerations of the linearised Bregman iteration, before we focus on incremental
and stochastic variants in section “Incremental and Stochastic Bregman Proximal
Methods”. Subsequently, we discuss coordinate descent-type Bregman methods
in section “Bregman Coordinate Descent Methods” and saddle-point formulations
of Bregman algorithms in section “Saddle-Point Methods”. We present several
application examples in section “Applications” before concluding this chapter with
section “Conclusions and Outlook”.

Bregman Proximal Methods

The Bregman proximal method or Bregman proximal algorithm is defined as the
following iterative procedure. Starting with an initial value x0 ∈ R

n, we compute

xk+1 = arg minx∈Rn

{
F(x) + DR(x, xk)

}
, (1)

for k ∈ N. Here F : Rn → R is a function that we wish to minimise via (1). We
assume that F is bounded from below and that both F and R satisfy conditions that
guarantee existence and uniqueness of the solution of (1), without discussing them
in greater detail. The term DR(x, y) denotes the Bregman distance w.r.t. a convex
and continuously differentiable function R : Rn → R, which is defined as

DR(x, y) = R(x) − R(y) − 〈∇R(y), x − y〉, (2)

for all x, y ∈ R
n, see Bregman (1967) and Censor and Lent (1981). In the following

example, we recall a few relevant examples of Bregman distances.

Example 1 (Bregman distances). For a symmetric, positive semi-definite matrix
Q ∈ R

n×n and the function R(x) := 1
2 〈Qx, x〉, we observe

DR(x, y) = 1

2
〈Q(x − y), x − y〉.

Special cases include the squared Euclidean distance if Q is the identity matrix
and the squared Mahalanobis distance (cf. Mahalanobis 1936) if Q is a covariance
matrix.
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The generalised Kullback-Leibler divergence, i.e.

DR(x, y) =
n∑

j=1

⎡
⎣xj log

(
xj

yj

)
+ yj − xj

⎤
⎦ ,

can be obtained by choosing R as the (shifted, negative) Boltzmann-Shannon
entropy, i.e. R(x) := ∑n

j=1

[
xj log(xj ) − xj

]
. Other notable examples include the

Itakura–Saito distance (cf. Itakura 1968) and the Hellinger distance (cf. Hellinger
1909).

Note that DR(x, y) ≥ 0 is guaranteed for all x, y ∈ R
n due to the convexity of R.

Before we are briefly going to discuss how this Bregman framework unifies implicit
and explicit gradient methods in the following section, we want to recall some basic
and well-known properties of (1).

Corollary 1. Let F : Rn → R and R : Rn → R be continuously differentiable
functions, where R is also convex, and suppose for some x ∈ R

n that x∗ is defined
as

x∗ := arg minx∈Rn

{
F(x) + DR(x, x)

}
. (3)

Then, the following identity holds:

F(x∗) + DF (x, x∗) + DR(x, x∗) + DR(x∗, x) = F(x) + DR(x, x). (4)

Corollary 1 can easily be verified by computing the optimality condition of (3),
subsequent computation of the inner product of the optimality condition with
x∗ − x, and the use of the three-point identity for Bregman distances, first proven in
Chen and Teboulle (1993, Lemma 3.1). Corollary 1 allows us to verify the following
convergence result of the Bregman method with convergence rate 1/k for convex
functions F .

Theorem 1. Let F : Rn → R and R : Rn → R be continuously differentiable and
convex functions. Suppose x̂ is a global minimiser of F that exists. Then, for any x0,
the iterates (1) satisfy

F(xk) − F(x̂) ≤ DR(x̂, x0) − DR(x̂, xk)

k
,

for k ∈ N.

Proof. Applying Corollary 1 for x∗ = xk+1, x = xk , and x = x̂ yields

F(xk+1) + DF (x̂, xk+1) + DR(x̂, xk+1) + DR(xk+1, xk) = F(x̂) + DR(x̂, xk),
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which implies

F(xk+1) − F(x̂) ≤ DR(x̂, xk) − DR(x̂, xk+1),

due to the convexity of F and R. Summing up this inequality from k = 0, . . . , K−1
leads to

K−1∑
k=0

F(xk+1) − K F(x̂) ≤ DR(x̂, x0) − DR(x̂, xK).

Applying Corollary 1 again – but this time for x∗ = xk+1, x = xk and x = xk –
leaves us with

F(xk+1)+DF (xk, xk+1)+DR(xk, xk+1)+DR(xk+1, xk) = F(xk)+DR(xk, xk)︸ ︷︷ ︸
=0

,

which in return implies F(xk+1) ≤ F(xk) due to the convexity of F and R (which
is also an immediate consequence of the variational formulation of the Bregman
method). Hence, we observe K F(xK) ≤ ∑K−1

k=0 F(xk+1), which concludes the
proof.

Remark 1. Note that the conditions on F and R in Theorem 1 alone do not
necessarily guarantee uniqueness or even existence of xk+1 in (1). However, if the
solution exists and is unique and computable, then Theorem 1 applies.

Let us now turn our attention to implicit and explicit gradient methods and how they
can both be formulated as special cases of (1).

A Unified Framework for Implicit and Explicit Gradient Methods

While it is common in numerical analysis to distinguish between implicit and
explicit methods, a feature of the Bregman framework is that it covers both types of
methods. This can be seen by considering (1), i.e.

xk+1 = arg minx∈Rn

{
F(x) + DJ (x, xk)

}
, (5)

for the special choice of J : Rn → R with

J (x) :=
⎧⎨
⎩

R(x) implicit
1
τ
R(x) − F(x) explicit

. (6)
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Evaluating the Bregman distance w.r.t. J turns (5) into

xk+1 = arg minx∈Rn

{
F(x) + DR(x, xk) implicit

F(xk) + 〈∇F(xk), x − xk〉 + 1
τ
DR(x, xk) explicit

}
;

Hence, we can construct Bregman methods that are either implicit or explicit w.r.t.
∇F . Whenever we use J as the notation of our function throughout this manuscript,
we implicitly refer to J as defined in (6). Whenever we use R, we refer to a function
R that is not of the form 1

τ
R − F . Note that we rediscover the traditional gradient

descent algorithm for the choice R(x) = 1
2‖x‖2 as a special case of the explicit

formulation. Furthermore, note that the explicit formulation

xk+1 = arg minx∈Rn

{
F(xk) + 〈∇F(xk), x − xk〉 + 1

τ
DR(x, xk)

}
(7)

is also known as mirror descent (Ben-Tal et al. 2001; Beck and Teboulle 2003;
Juditsky et al. 2011), Bregman gradient method (Teboulle 2018), or recently also
as NoLips (Bauschke et al. 2017). In order to guarantee convergence of (5), one
usually has to guarantee convexity of J . In the explicit setting, this implies that τ

and R have to be chosen to ensure convexity of 1
τ
R − F or equivalently that F is

1/τ -smooth if R is also a quadratic function. The latter condition has basically been
proposed in Bauschke et al. (2017) and further discussed in Benning et al. (2017a,b)
and Bolte et al. (2018). It has also been shown that if the step size τ is chosen such
that c R - F is convex, for a some constant c > 0 and a function F , the estimate
0 < τ ≤

((
1 + γ (R)

) − δ
)

/c is sufficient to guarantee convergence under mild

assumptions that are outlined in detail in Bauschke et al. (2017). Here γ (R) denotes
the symmetry coefficient defined as

γ (R) := inf

{
DR(x, y)/DR(y, x)

∣∣∣ (x, y) ∈ (int dom R)2\{x, y | x=y}
}

∈ [0, 1],

and δ is a constant that satisfies δ ∈ (0, 1+γ (R)). In the following section, we want
to review the special case of Bregman gradient methods where F is the sum of two
functions.

Bregman Proximal Gradient Method

An interesting, special case frequently considered in the literature is the case where
F is a sum of two functions L and S, i.e. the Bregman method reads

xk+1 = arg minx∈Rn

{
L(x) + S(x) + DJ (x, xk)

}
, (8)
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where we assume that L : Rn → R is a continuously differentiable function. The
function S : Rn → R on the other hand is proper, lower semi-continuous (l.s.c.)
and convex, for R := R ∪ {∞}. If we choose J (x) := 1

2τ
‖x‖2 − L(x) in the spirit

of (6), then (8) reads

xk+1 = arg minx∈Rn

{
1

2

∥∥∥∥x −
(
xk − τ ∇L(xk)

)∥∥∥∥
2

+ τS(x)

}
,

=: (I + τS)−1
(
xk − τ ∇L(xk)

)
,

where (I + τS)−1 : R
n → R

n is known as the proximal map or resolvent, see,
for instance, (Parikh et al. 2014). This is the classical proximal gradient method,
also known as forward backward splitting (Lions and Mercier 1979). More general
proximal gradient methods can be derived for different choices of J and S, for
example, the entropic mirror descent algorithm (Nemirovsky and Yudin 1983; Beck
and Teboulle 2003; Beck 2017; Doan et al. 2018), i.e.

xk+1
j =

xk
j exp

(
−τ(∇L(xk))j

)
∑n

j=1 xk
j exp

(−τ(∇L(xk))j
) ,

for j ∈ {1, . . . , n}, the difference of the negative Boltzmann Shannon entropy as
defined in Example 1 and the function L, i.e. J (x) := 1

τ

∑n
j=1

[
xj log(xj ) − xj

]−
L(x) with the convention 0 log(0) ≡ 0, and the characteristic function

S(x) :=
⎧⎨
⎩

0 x ∈ Σ

+∞ x �∈ Σ
,

over the simplex constraint

Σ :=

⎧⎪⎨
⎪⎩

x ∈ R
n

∣∣∣∣∣∣
xj ≥ 0, ∀j ∈ {1, . . . , n} ,

n∑
j=1

xj = 1

⎫⎪⎬
⎪⎭

.

We also mention variable metric proximal gradient methods, an important
class of algorithms which may be viewed as an instance of Bregman proximal
gradient methods where the Bregman function Jk is iteration-dependent. Denoting
by (Ak)k∈N a sequence of symmetric positive definite matrices, which act as
preconditioners, we define Jk(x) := 1

2τk
〈x,Akx〉 − L(x). Note that if S ≡ 0,

Ak = ∇2L(xk), and τk = 1, then one recovers the Newton method for L

xk+1 = xk − (∇2L(xk))−1∇L(xk).
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More generally when S �≡ 0, one may choose Ak to be an approximation to the
Hessian of L at xk , so as to incorporate elements of quasi-Newton methods to the
proximal gradient scheme. These schemes were studied by Bonnans et al. (1995)
and later studied for non-convex objective functions (Chouzenoux et al. 2014;
Frankel et al. 2015), Hilbert spaces (Combettes and Vũ 2014), and extensions to
inertial methods (Bonettini et al. 2018), to mention a few examples.

In the next section, we focus on extensions of the Bregman proximal methods to
convex but nonsmooth functions.

Bregman Iteration

A very important generalisation of (1), first proposed in Osher et al. (2005), allows
us to also use convex but nonsmooth functions J as defined in (6) instead of convex
and continuously differentiable functions J . Suppose we are given a proper, l.s.c.
and convex function J : Rn → R. Then its subdifferential, defined as

∂J (y) :=
{
p ∈ R

n
∣∣ J (x) − J (y) ≥ 〈p, x − y〉, ∀x ∈ R

n
}

,

is non-empty. It therefore makes sense to extend the definition (2) to a generalised
Bregman distance (Kiwiel 1997a) for subdifferentiable functions, i.e.

D
p
J (x, y) = J (x) − J (y) − 〈p, x − y〉,

for p ∈ ∂J (y). A generalisation of (1), commonly known as Bregman iteration, can
then be defined as

xk+1 = arg minx∈Rn

{
F(x) + D

pk

J (x, xk)

}
, (9a)

pk+1 = pk − ∇F(xk+1), (9b)

for initial values x0 ∈ R
n and p0 ∈ ∂J (x0). Note that Corollary 1 and Theorem 1

also apply to Bregman iterations (cf. Benning and Burger 2018, Corollary 6.5), as
those statements did not utilise any potential differentiability of J . Furthermore,
note that the explicit variant of the Bregman iteration is known as the linearised
Bregman iteration and has extensively been studied in Yin et al. (2008), Cai et al.
(2009a,b,c), and Yin (2010).

Linearised Bregman Iteration as Gradient Descent

With the particular choice J (x) = 1
2τ

‖x‖2 + 1
τ
R(x) − F(x), the Bregman iteration

(9) turns into the linearised Bregman iteration, which reads
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xk+1 = arg minx∈Rn

{
F(xk)+〈∇F(xk), x−xk〉+ 1

2τ
‖x−xk‖2+ 1

τ
D

qk

R (x, xk)

}
,

= (I+∂R)−1
(
xk+qk−τ∇F(xk)

)
, (10a)

qk+1 = qk−
(
xk+1−xk + τ∇F(xk)

)
, (10b)

where (I + ∂R)−1 denotes the proximal mapping w.r.t. the function R and qk ∈
∂R(xk) the subgradient of R at xk that is iteratively defined via (10b) and some
initial value q0 ∈ ∂R(x0). Suppose we assume that (xk + qk)/τ − ∇F(xk) is in
the range of some matrix A ∈ R

m×n and that we therefore can substitute τA�bk :=
xk + qk − τ∇F(xk). Then (10) can be written as

xk+1 = (I + ∂R)−1(τA�bk), (11a)

A�bk+1 = A�bk − ∇F(xk+1). (11b)

In the following, we want to focus on the special case F(x) = 1
2‖Ax − bδ‖2 with

∇F(x) = A�(Ax − bδ) for a matrix A ∈ R
m×n, for which (11) simplifies to

xk+1 = (I + ∂R)−1(τA�bk), (12a)

bk+1 = bk −
(
Axk+1 − bδ

)
, (12b)

with initial value b0 = bδ , given the assumption that the initial values of the original
formulation were x0 = 0 and p0 = 0. Note that we can also write (12) as

bk+1 = bk −
(

A(I + ∂R)−1
(
τA�bk

)
− bδ

)
. (13)

Hence, if we can identify an energy Gτ for which we can associate its gradient ∇Gτ

with A(I + ∂R)−1
(
τA�·

)
− bδ , we can consider the linearised Bregman iteration

a gradient descent method applied to this specific energy. In Yin (2010) and Huang
et al. (2013), this energy has been identified as

Gτ (b) := τ

2
‖A�b‖2 − 〈b, bδ〉 − 1

τ
R̃(τA�b),

where R̃ denotes the Moreau-Yosida regularisation of R (cf. Moreau 1965; Yosida
1964), i.e.

R̃(z) := inf
x∈Rn

{
R(x) + 1

2
‖x − z‖2

}
.
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Since the gradient of the Moreau-Yosida regularisation of R reads ∇R̃(z) = z −
(I + ∂R)−1(z) (see, for instance, Attouch et al. 2014, Proposition 17.2.1), we easily
verify

∇Gτ (b) = A(I + ∂R)−1(τA�b) − bδ.

As a consequence, (13) is equivalent to

bk+1 = bk − ∇Gτ (b
k),

and the linearised Bregman iteration for F(x) = 1
2‖Ax − bδ‖2 reduces to a gra-

dient descent method. This equivalence will be useful when studying acceleration
methods.

Bregman Iterations as Iterative Regularisation Methods

Bregman iterations are not only useful for solving optimisation problems but are
also extremely important in the context of solving inverse and ill-posed problems.
The reason for this is that Bregman iterations can be used as iterative regularisation
methods. If we consider the deterministic linear inverse problem

Ax† = b†, (14)

for a given matrix A ∈ R
m×n, the aim of solving this inverse problem is to

approximate x† in (14), for given A and data bδ with ‖b† − bδ‖ ≤ δ. Here, δ is
a known, positive bound on the error of the measured data bδ and the data b† that
satisfies (14).

Suppose we consider a convex function F that depends on A and bδ , which we
will denote as Fbδ . It then can easily be shown that the iterates of (9) satisfy

D
pk+1

J (x†, xk+1) < D
pk

J (x†, xk),

for all indices k ≤ k∗(δ) that satisfy Morozov’s discrepancy principle (Morozov
1966), i.e.

Fbδ (xk∗(δ)) ≤ ηδ < Fbδ (xk),

for a parameter η ≥ 1, see Osher et al. (2005) and Burger et al. (2007). Note that
for η > 1 it can be guaranteed that k∗(δ) is finite. With the additional regularity
assumption that x† satisfies the so-called range condition (Benning and Burger
2018, Definition 5.8), i.e.

x† ∈ arg minx∈Rn

{
Fg(x) + R(x)

}
,
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for some data g ∈ R
m, one can prove the error estimate

D
pk

J (x†, xk) ≤ ‖w‖2

2k
+ δ‖w‖ + δ2k,

for the special case Fbδ (x) := 1
2‖Ax − bδ‖2, see Burger et al. (2007, Theorem 4.3).

Here, w is defined as w := g − Ax† ∈ R
m, which satisfies the source condition

A∗w ∈ ∂J (x†), cf. (Chavent and Kunisch 1997; Burger and Osher 2004). If k∗(δ)
is of order 1/δ, we therefore observe

D
pk∗(δ)

J (x†, xk∗(δ)) = O(δ);

Hence, xk∗(δ) converges to x† in terms of the Bregman distances if δ converges to
zero.

For more details on how to use Bregman iterations in the context of (linear)
inverse problems, we refer the reader to Osher et al. (2005), Resmerita and Scherzer
(2006), Schuster et al. (2012), Burger (2016), and Benning and Burger (2018). For
the remainder of this paper, we want to discuss modifications of Bregman iterations
and Bregman proximal methods that are suitable to large-scale optimisation and
inverse problems.

Inverse Scale Space Flows

In what follows, we describe the inverse scale space (ISS) flow, a system of
differential equations which can be derived as the continuous time limit of the
Bregman iterations. For a Bregman function J : Rn → R and objective function
F : Rn → R, this flow is given by

ṗ(t) = −∇F(x(t)), p(t) ∈ ∂J (x(t)). (15)

It is straightforward to verify that Bregman iterations (9b) and linearised Bregman
iterations (10) can be derived, respectively, as the forward and backward Euler
discretisation of (15).

The term inverse scale space flow was coined by Scherzer and Groetsch (2001)
in 2001. In addition to its connection to Bregman schemes, the ISS flow itself is an
active topic of research. Initially studied by Burger et al. (2006, 2007, 2013), and
Burger (2016), it has found applications in nonlinear spectral analysis by Burger et
al. (2016), Gilboa et al. (2016), and Schmidt et al. (2018).

The ISS flow itself has largely been studied in the context of scale space methods
and data filtering, where the objective functions generally take the more specific
forms ‖x−b†‖2/2 or ‖Ax−b†‖2/2. We mention some papers that address questions
regarding the existence and uniqueness results for solutions to (15). Burger et al.
(2007) proved existence, uniqueness, and certain regularity properties of the solution
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to the flow when J is the total variation seminorm. These results were extended by
Frick and Scherzer (2007) to all convex, proper, lower semicontinuous functions
J , while in Burger et al. (2013), Burger et al. characterise the solution to the flow
explicitly for the case J = ‖ · ‖1. We note that while these studies do not assume
strict convexity of J , strong convexity is ensured for F by the ‖ · ‖2 term in F

(restricted to the range of the linear operator A), so that the iterations (and flow) are
still well-defined.

By supposing that J were twice continuously differentiable and μ-convex for
some μ > 0 (i.e. strongly convex with parameter μ, see Hiriart-Urruty and
Lemaréchal 1993), we can provide an additional interpretation of the ISS flow,
rewriting (15) as

ẋ(t) = −(∇2J (x(t)))−1∇F(x(t)). (16)

With this formulation, one can interpret the Hessian of J (x(t)) as a preconditioner
for the flow. Furthermore, by using the chain rule, we derive an energy dissipation
law for the system

d

dt
F (x(t)) = 〈

ẋ(t),∇F(x(t))
〉 = −

〈
ẋ(t),∇2J (x(t))ẋ(t)

〉
≤ −μ‖ẋ(t)‖2,

where the final inequality follows from μ-convexity of J . Furthermore, observe that
if J = F , (16) reduces to a continuous-time variant of Newton’s method. One may
tie this back to the variable metric proximal gradient methods, which were designed
to incorporate quasi-Newton preconditioning to proximal gradient methods.

In section “The Bregman Itoh–Abe Method”, we describe the Bregman Itoh–
Abe (BIA) method (Benning et al. 2020), an iterative system derived by applying
structure-preserving methods from numerical integration to the flow. Thus the ISS
flow provides an alternative way to consider variational formulations for formulating
Bregman schemes.

Accelerated Bregman Methods

Not only when dealing with large-scale problems, reducing the number of iterations
is an important goal to achieve when designing an algorithm. In Theorem 1 we have
seen that the Bregman proximal method (1) has a convergence rate of order 1/k.
In the wake of Nesterov (1983), many acceleration strategies have been developed
for first-order optimisation methods that aim at minimising convex functions. As
we focus on Bregman methods, we want to highlight the following adaptation of
Nesterov (1983), first developed in Huang et al. (2013) for quadratic functions F .
There, the authors consider the linearised Bregman iteration, i.e. (9) for the choice
J (x) = 1

2τ
‖x‖2 + 1

τ
R(x) − F(x), as shown in (10). We have seen that (10) can be

formulated as the gradient descent (13) for the special case F(x) = 1
2‖Ax − bδ‖2.

The authors in Huang et al. (2013) have applied the idea of Nesterov acceleration to
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formulation (13), which reads

bk+1 = (1 + βk)b
k − βkb

k−1 − ∇Gτ ((1 + βk)b
k − βkb

k−1), (17)

where {βk}k∈N is a sequence of positive scalars. Applying τA� to both sides of the
equation and substituting τA�bk = xk + qk − τA�(Axk + bδ) then yields the
equivalent formulation

xk+1 = arg minx∈Rn

{
F(x) + (1 + βk)D

pk

J (x, xk) − βkD
pk−1

J (x, xk−1)

}
,

(18a)

pk+1 = (1 + βk)p
k − βkp

k−1 − ∇F(xk+1), (18b)

for J (x) = 1
2τ

‖x‖2 + 1
τ
R(x) − F(x), F(x) = 1

2‖Ax − bδ‖2, pk = 1
τ
(xk + qk) −

∇F(xk) ∈ ∂J (xk), and qk ∈ ∂R(xk) for all k ∈ N.

Remark 2. We want to emphasise that the equivalence between (17) and (18) does
not hold for arbitrary functions F as we have exploited the linearity of ∇F by
making use of ∇F((1 + βk)x

k − βkx
k−1) = (1 + βk)∇F(xk) − βk∇F(xk−1).

Note that (17) can also be written in less compact form as

xk+1 = (I + ∂R)−1(zk), (19a)

yk+1 = zk − τ∇F(xk+1), (19b)

zk+1 = (
1 + βk+1

)
yk+1 − βk+1y

k, (19c)

if we substitute yk = τA�bk . Following the same approach as in Chambolle and
Dossal (2015), (19) can also be written as

xk+1 = (I + ∂R)−1(zk), (20a)

yk+1 = zk − τ∇F(xk+1), (20b)

zk+1 =
(

1 − 1

tk+1

)
yk+1 + 1

tk+1
uk+1, (20c)

uk+1 = yk + tk+1(y
k+1 − yk). (20d)

for βk := (tk − 1)/tk+1 and a sequence {tk}k∈N of positive parameters.
An open problem which has attracted interest in recent years concerns whether

accelerated versions of Bregman (proximal) gradient methods with generic, strongly
convex Bregman distances are possible (Teboulle 2018). In a recent work by
Dragomir et al. (2019), this question is partly answered in the negative, concluding
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that for Bregman distances, based on smooth functions R or functions R that satisfy
that 1

τ
R − F is convex, the O(1/k) convergence rate is optimal for first-order

methods that use previous gradient and Bregman proximal evaluations. However,
for more restrictive function classes, faster convergence rates can be achieved, as
has been shown in Hanzely et al. (2018) and Gutman and Peña (2018).

Acceleration strategies such as Nesterov acceleration have also been analysed
in the context of iterative regularisation strategies (e.g. (9) combined with early
stopping as described in section “Bregman Iterations as Iterative Regularisation
Methods”), see, for instance, Matet et al. (2017), Neubauer (2017), Garrigos et al.
(2018), and Calatroni et al. (2019).

Incremental and Stochastic Bregman Proximal Methods

Many large-scale problems, in particular in machine learning, involve the minimi-
sation of functions of the form

F(x) := 1

m

m∑
i=1

fi(x). (21)

In other words, the objective function is a sum of m individual functions. If m

happens to be extremely large, computing the gradient of F can be computationally
extremely expensive, rendering the application of traditional methods such as (1)
or (18) computationally infeasible. Feasible alternatives are methods that make
use of gradients that are only based on a subset B ⊂ {1, . . . , m} of all indices.
Such methods include incremental gradient methods (Bertsekas et al. 2011a) and
stochastic gradient methods (Robbins and Monro 1951). If we assume that F in
(21) is of the form

F(x) = L(x) + S(x) = 1

m

m∑
i=1

	i(x) + 1

m

m∑
i=1

si(x), (22)

an incremental version of the Bregman proximal gradient as in (8) can be formulated
as

xk = arg minx∈Rn

{
	i(k)(x) + si(k)(x) + DJk

(x, xk−1)
}

. (23)

Here i : N → {1, . . . , m} denotes the index function i(x) := x modulo m, although
other cycle orderings are certainly possible as well. A special case of (23) is the
classical incremental proximal gradient method (Bertsekas et al. 2011b)

xk = (
I + τk∂si(k)

)−1
(
xk−1 − τk∇	i(k)(x

k−1)
)
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for the choice of Jk(x) = 1
2τk

‖x‖2 − 	i(k)(x). If we further pick si ≡ 0 for all i, we
obtain the classical incremental gradient descent (Widrow and Hoff 1960; Bertsekas
et al. 2011a), i.e.

xk = xk−1 − τk∇	i(k)(x
k−1),

= xk−1 − τk∇fi(k)(x
k−1),

(24)

as a special case.
In the following sections, we discuss extensions of stochastic gradient descent

(SGD) and Kaczmarz methods in the Bregman framework, before highlighting the
connection between single cycles of incremental Bregman proximal methods and
deep neural network architectures.

Stochastic Mirror Descent

Stochastic gradient descent generalises naturally to the Bregman proximal setting
with the stochastic mirror descent (SMD) method (recall that mirror descent is
equivalent to the Bregman gradient or linearised Bregman iteration). SMD is one
of the most popular families of methods for stochastic optimisation, and the method
is defined as Nemirovski et al. (2009)

xk+1 = arg minx∈Rn{τk〈∇fi(k)(x
k), x〉 + D

pk

J (x, xk)}. (25)

As in the setting of incremental descent methods, i(k) ∈ {1, . . . , n} represents a
sequence of indices, which in the setting of SMD are typically randomised.

SMD was originally introduced by Nemirovsky and Yudin (1983), while subse-
quent, significant contributions include Nemirovski et al. (2009), Nesterov (2009),
and Xiao (2010). The framework and its convergence analysis were further extended
by Duchi et al. (2012) to cases where the samples from the distribution are not
assumed to be independent.

Similar to SGD, the SMD algorithms are suitable for large-scale optimisation
and online learning settings, yet furthermore they come with the added benefits of
Bregman iterations of exploiting structures in the data. Because of this, SMD is one
of the most widely used family of methods for large-scale stochastic optimisation
(Azizan and Hassibi 2018; Zhou et al. 2017).

In the aforementioned works on SMD, the Bregman function J is assumed to
be differentiable. In contrast, the use of nonsmooth Bregman functions, e.g. that
invoke the 	1-norm, is significant in the context of Bregman iterations and sparse
signal processing. In the following section, we cover a Bregman method for sparse
reconstruction of linear systems which can be seen as an instance of SMD, using
the nonsmooth Bregman function J (x) = ‖x‖2/2 + λ‖x‖1.
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The Sparse Kaczmarz Method

The Kaczmarz method is a scheme for solving quadratic problems of the form
minx〈x,Ax〉/2 − 〈b, x〉. The method was originally introduced by Kaczmarz
(1937) and later by Gordon et al. (1970) under the name algebraic reconstruction
technique. In this section, we review the extension of Kaczmarz methods to sparse
Kaczmarz methods (Lorenz et al. 2014b) and their block variants. The motivation
for sparse Kaczmarz methods is to find sparse solutions to linear problems Ax = b

via the problem formulation

min
x∈Rn

{
1

2
‖x‖2 + λ‖x‖1 : Ax = b

}
. (26)

We first briefly review the original Kaczmarz method. For x0 = 0, time steps
τk > 0, and a sequence of indices (i(k))k∈N, the (randomised) Kaczmarz method is
given by

xk+1 = xk − τk(〈ai(k), x
k〉 − bi(k))ai(k). (27)

Here ai(k) denotes the ith row vector of A. If i(k) comprise a subset of indices, then
the block-variant of the Kaczmarz method is given by

xk+1 = xk − τka
†
i(k)(ai(k)x

k − bi(k)),

where ai(k) denotes the submatrix formed by the row vectors of A indexed by i(k)

and a
†
i(k) denotes the Moore-Penrose pseudo-inverse of ai(k). The iterates of the

randomised Kaczmarz methods converge linearly to a solution of Ax = b (Gower
and Richtárik 2015).

Lorenz et al. (2014b) proposed a sparse Kaczmarz method as follows. Given
starting points x0 = z0 = 0, the updates are given by

zk+1 = zk − τk(〈ai(k), x
k〉 − bi(k))ai(k),

xk+1 = Sλ(z
k+1).

(28)

Here Sλ denotes the soft-thresholding operator with threshold λ. The iterates
(xk)k∈N converge linearly to a solution of (26) (Schöpfer and Lorenz 2019, Theorem
3.2).

A block variant of the sparse Kaczmarz method was proposed in Lorenz et al.
(2014b). For blocks of rows of A denoted by sets of indices i(k), it consists of the
updates

zk+1 = zk − τka
�
i(k)(ai(k)x

k − bi(k)),

xk+1 = Sλ(z
k+1).

(29)
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Note that this uses the transpose a�
i(k), unlike the standard block Kaczmarz method

which uses the pseudo-inverse a
†
i(k). This too converges to a solution of (26) (Lorenz

et al. 2014a, Corollary 2.9).
The sparse (block-)Kaczmarz method (29) has connections to two aforemen-

tioned Bregman schemes. First, one may verify that it corresponds to the SMD
method (25) for J (x) = ‖x‖2/2+λ‖x‖1 and F(x) = ∑n

i=1 |〈ai, x〉−bi |2. Second,
if one takes the entire matrix A as each block, then one recovers the linearised
Bregman method for the same J (Lorenz et al. 2014b).

As with the general SMD method, the sparse Kaczmarz method is particularly
suitable in online reconstruction settings, where the rows of the linear system
A and/or data entries b are not all available instantly but successively are made
available over time. We refer the reader to Lorenz et al. (2014b) for numerical
examples which include the application of online compressed sensing.

Deep Neural Networks

We can generalise the incremental Bregman proximal gradient (23) by including an
additional, potentially nonlinear projection Hk : Rnk−1 → R

nk , to obtain

xk = arg minx∈Rnk

{
	k(x) + sk(x) + DJk

(x,Hk(x
k−1))

}
, (30)

for a sequence of dimensions {nk}lk=1 with nk ∈ N for all k = 1, . . . , l. We
are interested in a single cycle of this incremental Bregman proximal method
only, which is why we have simplified the indexing notation from i(k) to k

throughout this subsection. In the following, we want to demonstrate how certain
deep neural network architectures are special cases of (30). This connection was
first investigated in the context of variational networks by Kobler et al. (2017), in
the context of Bregman methods by Benning and Burger (2018), and in the context
of proximal gradient methods by Frerix et al. (2017), Combettes and Pesquet (2018),
and Bertocchi et al. (2019). Gradient-based learning with Bregman algorithms has
also been studied in the context of image segmentation by Ochs et al. in (2015),
and Bregman distances are used to analyse regularisation strategies based on neural
networks (Li et al. 2020). With the following example, we want to demonstrate how
a class of feedforward neural networks coincides with (30).

Example 2 (Feedforward neural network with ReLU activation function). In this
example we want to demonstrate how basic feedforward neural networks can be
interpreted as variants of Algorithm (30). If we, for instance, choose {	k}lk=1 to be
of the form

	k(x) := 1

2

〈
(I − Mk)x − 2 bk, x

〉
,
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for quadratic matrices {Mk}lk=1 and vectors {bk}lk=1 with Mk ∈ R
nk×nk and bk ∈

R
nk , which has the gradient

∇	k(x) =
(

I − 1

2

(
Mk + M�

k

))
x − bk,

and if we choose {sk}lk=1 of the form

sk(x) := χ≥0(x) =
⎧
⎨
⎩

0 ∀j : xj ≥ 0

∞ ∃j : xj < 0

for all k ∈ {1, . . . , l}, then we easily verify that for the choice Jk(x) = ‖x‖2/2 −
	k(x) the update

xk = max
(

0, Ak(x
k−1) + bk

)
,

with Ak := 1
2 (Mk + MT

k ) ◦ Hk is the unique solution of (30). Hence, we can
consider this l-layer feedforward neural network with rectified linear units (ReLU)
as activation functions (Nair and Hinton 2010) as a special case of the modified
incremental Bregman gradient method (30) if we further guarantee that x0 is chosen
to be the input of the network.

Many other neural network architectures can be recovered in similar fashion to
Example 2, where different activation functions can be recovered as proximal
mappings for different choices of functions sk , such as in Combettes and Pesquet
(2018), and Bertocchi et al. (2019). For a recent overview of machine learning
algorithms in the context of inverse problems, we refer to Arridge et al. (2019).

Bregman Incremental Aggregated Gradient

Two particularly interesting instances of incremental Bregman proximal methods
are the incremental aggregated gradient (IAG) method (Blatt et al. 2007) and its
stochastic counterpart stochastic averaged gradient (SAG) (Schmidt et al. 2017).
For the sake of brevity, we focus on the incremental version in this paper. The IAG
method reads

xk+1 = xk − τk

m
gk, (31a)

gk+1 = gk − ∇fi(k+1)(x
k+1−m) + ∇fi(k+1)(x

k+1). (31b)
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Here {τk}k∈N is a sequence of positive scalars and i : N → {1, . . . , m} is defined as
in “A Unified Framework for Implicit and Explicit Gradient Methods”. Please also
note that m arbitrary points x1−m, x2−m, . . . , x0 have to be chosen as initialisation.
It is easy to see and has also been pointed out in Blatt et al. (2007) that (31) can be
rewritten as

xk+1 = xk − τk

m

m−1∑
l=0

∇fi(k−l)(x
k−l ), (32)

for k ≥ m. Note that this is equivalent to the following characterisation in terms of
Bregman distances, in analogy to the explicit gradient descent characterisation in
section “A Unified Framework for Implicit and Explicit Gradient Methods”: if we
rewrite (21) to F(x) = ∑m−1

l=0 fi(k−l)(x) for any k ∈ N and suppose we consider a
Bregman method of the form

xk+1 = arg minx∈Rn

⎧
⎨
⎩F(x) + 1

2τk

‖x − xk‖2 − 1

m

m−1∑
l=0

Dfi(k−l)
(x, xk−l )

⎫
⎬
⎭ ,

(33a)

= arg minx∈Rn

⎧
⎨
⎩

1

m

m−1∑
l=0

[
fi(k−l)(x

k−l ) + 〈∇fi(k−l)(x
k−l ), x − xk−l〉

]

+ 1

2τk

‖x − xk‖2
}

, (33b)

then it becomes evident from computing the optimality condition of (33a) that the
update (33b) is equivalent to (32) and hence (31) for k ≥ m. Note that we can
rewrite (33a) to

xk+1 = arg minx∈Rn

⎧⎨
⎩F(x) − 1

m

m−1∑
l=1

Dfi(k−l)
(x, xk−l ) + DJk

(x, xk)

⎫⎬
⎭ , (34)

for Jk(x) := 1
2τk

‖x‖2 − 1
m

fi(k)(x). The notable difference to the conventional

IAG method is that we can replace the Bregman distance DJk
(x, xk) in (34) with

more generic Bregman distances. As in section “A Unified Framework for Implicit
and Explicit Gradient Methods”, we can for example choose Jk(x) = 1

2τk
‖x‖2 +

1
τk

R(x)− 1
m

fi(k)(x) and therefore derive incremental Bregman iterations of the form

xk+1 = (I + ∂R)−1
(

xk + qk − τk

m
gk

)

qk+1 = qk −
(

xk+1 − xk + τk

m
gk

)
,
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gk+1 = gk − ∇fi(k+1)(x
k+1−m) + ∇fi(k+1)(x

k+1),

where qk ∈ ∂R(xk) for all k. Hence, substituting yk = xk + qk − τk

m
gk yields the

equivalent formulation

xk+1 = (I + ∂R)−1
(
yk
)

,

gk+1 = gk − ∇fi(k+1)(x
k+1−m) + ∇fi(k+1)(x

k+1),

yk+1 = yk − τk+1

m
gk+1.

If F is of the form (22), where si = s for some (convex) function s : R
n → R

for all indices i ∈ {1, . . . , m} and if we choose Jk(x) = 1
mτk

R(x) − 1
m

	i(k)(x) for
continuously differentiable R, we recover the proximal-like incremental aggregated
gradient (PLIAG) method, recently proposed in Zhang et al. (2017), which reads

xk+1 = arg minx∈Rn

⎧⎨
⎩s(x) +

m−1∑
l=0

[
	i(k−l)(x

k−l ) + 〈∇	i(k−l)(x
k−l ), x − xk−l〉

]

+ 1

τk

DR(x, xk)

}
.

Needless to say, many different IAG or SAG methods can be derived for different
choices of {Jk}mk=1. Choosing Jk such that convergence of the above algorithms is
guaranteed is a delicate issue and involves carefully chosen assumptions, cf. Zhang
et al. (2017, Section 2.3). Convergence guarantees for Jk as defined above with an
arbitrary (proper, convex, and l.s.c.) function R which is an open problem. Having
considered incremental variants of Bregman proximal algorithms, we now want to
review coordinate descent adaptations of this algorithm in the following section.

Bregman Coordinate Descent Methods

In the previous section, we have reviewed Bregman adaptations of popular algo-
rithms for minimising objective functions that are sums of individual objective
functions that occur in numerous large-scale applications, such as empirical risk
minimisation in machine learning.

In this section, we want to focus on Bregman adaptations of algorithms that aim
to minimise multi-variable functions F : Rn → R by minimising the objective with
respect to one variable at a time. If we consider (1) for example, a simple coordinate
descent adaption is

xk+1
i = arg minx∈R

{
F(xk+1

1 , xk+1
2 , . . . , xk+1

i−1 , x, xk
i+1, . . . , x

k
n) + DJi

(x, xk
i )
}

,
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See, for example, Hua and Yamashita (2016), Corona et al. (2019a,b), Ahookhosh
et al. (2019), Benning et al. (2020), and Gao et al. (2020). In the following,
we want to give a brief overview on Bregman coordinate descent-type methods,
with particular emphasis on an Itoh-Abe discrete gradient-based method, and also
highlight their connections to traditional coordinate descent algorithms (and their
Bregman adaptations) such as successive over-relaxation (SOR).

The Bregman Itoh–Abe Method

The Bregman Itoh–Abe (BIA) method (Benning et al. 2020) is a particular form
for coordinate descent, derived by applying the discrete gradient method to the ISS
flow (15). Discrete gradients are methods from geometric numerical integration for
solving differential equations while preserving geometric structures – for details on
geometric numerical integration, see, e.g. Hairer et al. (2006) and McLachlan and
Quispel (2001) – and have found several applications to optimisation, e.g. Benning
et al. (2020), Grimm et al. (2017), Ehrhardt et al. (2018), Riis et al. (2018), and
Ringholm et al. (2018) due to their ability to preserve energy dissipation laws.

A discrete gradient is an approximation to a gradient that must satisfy two
properties as follows.

Definition (Discrete gradient). Let F be a continuously differentiable function.
A discrete gradient is a continuous map ∇F : R

n × R
n → R

n such that for all
x, y ∈ R

n,

〈∇F(x, y), y − x〉 = F(y) − F(x) (Mean value), (35)

lim
y→x

∇F(x, y) = ∇F(x) (Consistency). (36)

Given a choice of ∇F , starting points x0, p0 ∈ ∂J (x0), and time steps (τk)k∈N, the
Bregman discrete gradient scheme is defined as

pk+1 = pk − τk∇F(xk, xk+1), pk+1 ∈ ∂J (xk+1). (37)

As with the other Bregman schemes, this is a discretisation of (15). Furthermore,
the following dissipation property is an immediate consequence of the definition of
discrete gradients.

Remark 3. When J (x) = ‖x‖2/2, then the ISS flow reduces to the Euclidean
gradient flow, and we refer to the corresponding BIA method simply as the Itoh–
Abe (IA) method.

Proposition. Suppose J is μ-convex and that (xk+1, pk+1) solves the update (35)
given (xk, pk) and time step τk > 0. Then
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F(xk+1) − F(xk) = − 1

τk

D
symm
J (xk, xk+1) ≤ − μ

τk

‖xk − xk+1‖2, (38)

where D
symm
J (x, y) is the symmetrised Bregman distance defined as

D
symm
J (x, y) := D

p
J (x, y)+D

q
J (y, x)=〈p−q, y−x〉 for p ∈ ∂J (y), q ∈ ∂J (x).

Proof. By (35) and (37) respectively, we have

F(xk+1) − F(xk) = 〈∇F(xk, xk+1), xk+1 − xk〉 = − 1

τk

〈pk+1 − pk, xk+1 − xk〉.

The result then follows from monotonicity of convex functions, see, e.g. Hiriart-
Urruty and Lemaréchal (1993, Theorem 6.1.2).

While there are various discrete gradients (see, e.g. McLachlan et al. 1999), the
Itoh–Abe discrete gradient (Itoh and Abe 1988) (also known as the coordinate incre-
ment discrete gradient) is of particular interest in optimisation as it is derivative-free
and can be implemented for nonsmooth functions. It is defined as

∇F(x, y) =

⎛
⎜⎜⎜⎜⎜⎝

F(y1,x2,...,xn)−F(x)
y1−x1

F(y1,y2,x3,...,xn)−F(y1,x2,...,xn)
y2−x2

...
F (y)−F(y1,...,yn−1,xn)

yn−xn

⎞
⎟⎟⎟⎟⎟⎠

, (39)

where 0/0 is interpreted as ∂iF (x).
The BIA method is derived by plugging in the Itoh–Abe discrete gradient for ∇F

in (37). Provided that J is separable in the coordinates, i.e. J (x) = ∑n
i=1 Ji(xi), for

Ji : R → R, then this method reduces to sequential updates along the coordinates.
Specifically, it can be written as

pk+1
i = pk

i − τk,i

F (yk,i) − F(yk,i−1)

xk+1
i − xk

i

, pk+1
i ∈ ∂Ji(y

k,i
i ),

yk,i = [xk+1
1 , . . . , xk+1

i , xk
i+1, . . . , x

k
n], i = 1, . . . , n.

(40)

In addition to having a derivative-free formulation, the BIA method has con-
vergence guarantees for a large group of objective functions. In particular, if the
Bregman function J is nonsmooth and strongly convex, and if F is locally Lipschitz
continuous with a regularity assumption (see Benning et al. 2020 for details), the
BIA scheme converges to a set of Clarke stationary points (Benning et al. 2020,
Theorem 4.5). Clarke stationarity refers to the optimality criteria 0 ∈ ∂CF (x),
where ∂CF (x) denotes the Clarke subdifferential of F at x (Clarke 1990).
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This scheme comes with the cost that the updates (40) are in general implicit.
However, for the cases

J (x) = 1

2
‖x‖2, J (x) = 1

2
‖x‖2 + λ‖x‖1,

F (x) = 1

2
‖Ax − bδ‖2, F (x) = 1

2
‖Ax − bδ‖2 + γ ‖x‖1,

the updates are explicit (Benning et al. 2020).
In section “Student-t Regularised Image Denoising”, we present an example of a

nonsmooth, nonconvex image denoising model, previously considered in Benning
et al. (2020), for which one can significantly speed up convergence by exploiting
sparsity in the residual x∗ − xδ .

Equivalencies of Certain Bregman Coordinate Descent Methods

In what follows, we briefly discuss and draw connections between various
approaches to coordinate descent methods using Bregman distances. This builds
on the observation by Miyatake et al. (2018) that the Itoh–Abe method applied to
quadratic functions F(x) = 〈x,Ax〉/2 − 〈b, x〉 is equivalent to the Gauss–Seidel
and successive-over-relaxation (SOR) methods (Young 1971).

The explicit coordinate descent method (Beck and Tetruashvili 2013; Wright
2015) for minimising F is given by

yk,0 = xk

yk,i = yk,i−1 − τ i[∇F(yk,i−1)]iei ,

xk+1 = yk,n,

(41)

where τ i > 0 is the time step and ei denotes the ith basis vector. As mentioned in
Wright (2015), the SOR method is also equivalent to the coordinate descent method
with F as above and the time steps scaled coordinate-wise by 1/Ai,i . Hence, in
this setting, the Itoh–Abe discrete gradient method is equivalent not only to SOR
methods but to explicit coordinate descent.

Furthermore, these equivalencies extend to discretisations of the inverse scale
space flow for certain quadratic objective functions and certain forms of Bregman
functions J . Consider a quadratic function F(x) = 〈x,Ax〉/2 − 〈b, x〉 where A

is symmetric and positive definite, and denote by B the diagonal matrix for which
Ai,i = Bi,i for each i. Given a scaling parameter ω > 0 and the Bregman function

J (x) = 1

2ω
〈x, Bx〉 + λ‖x‖1, (42)
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The Itoh–Abe method yields a sparse SOR scheme as detailed in Benning et al.
(2020). We may compare this to a Bregman linearised coordinate descent scheme

yk,0 = xk, pk ∈ ∂J (xk),

zi = arg miny[∇F(yk,i−1)]i · y + D
pk

J (yk,i−1, yk,i−1 + yei),

yk,i = yk,i−1 + zie
i,

xk+1 = yk,n,

where J is given by (42) for some ω = ωE ∈ (0, 2). One can verify that these
schemes are equivalent if one sets ωE = 1

1/ω+1/2 . We furthermore mention that
these equivalencies also hold if we were to consider (implicit) Bregman iterations
rather than linearised ones.

Remark 4. It is worth noting at this stage that while the Kaczmarz method (27) is
closely related to SOR (Oswald and Zhou 2015), this connection does not carry over
to the BIA method versus the sparse Kaczmarz method.

Saddle-Point Methods

Many problems in imaging (Chambolle and Pock 2016a) and machine learning
(Goldstein et al. 2015; Adler and Öktem 2018) can be formulated as minimisation
problems of the form

min
x∈Rn,z∈Rm

G(x) + F(z) subject to K(x, z) = c. (43)

Here G : Rn → R and F : Rm → R are proper and lower semi-continuous and
usually also convex functions, the operator K : Rn × R

m → R
s is a bounded, and

usually linear operator and c ∈ R
s are a vector. A classical linear example for K is

K(x, z) = Ax + Bz,

where A ∈ R
s×n and B ∈ R

s×m are matrices (Boyd et al. 2011).
In terms of optimisation, the equality constraint can be incorporated with the help

of a Lagrange multiplier y ∈ R
s . We can then re-formulate (43) as finding a saddle

point of an augmented Lagrange function, i.e. we solve

min
x∈Rn,z∈Rm

max
y∈Rs

Lδ(x, z; y)

for the augmented Lagrangian

Lδ(x, z; y) := G(x) + F(z) + 〈y,K(x, z) − c〉 + 1

2δ
‖K(x, z) − c‖2, (44)
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where δ > 0 is a positive scalar. For the special case K(x, z) = Ax − z and c ≡
0, one can replace F(Ax) with its convex conjugate and formulate the alternative
saddle-point problem

min
x∈Rn

max
y∈Rm

G(x) + 〈Ax, y〉 − F ∗(y), (45)

where the convex conjugate or Fenchel conjugate F ∗ of F is defined as

F ∗(y) := sup
x∈Rn

〈x, y〉 − F(x).

We want to emphasise that extensions for nonconvex functions (Li and Pong 2015;
Moeller et al. 2015; Möllenhoff et al. 2015) and extensions for nonlinear operators
A (Valkonen 2014; Benning et al. 2015; Clason and Valkonen 2017) or nonlinear
replacements of the dual product (Clason et al. 2019) exist. In the following, we
review Bregman algorithms for the numerical computation of solutions of those
saddle-point formulations.

Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM), (Gabay 1983), is a
coordinate descent method applied to the augmented Lagrangian functional (44).
The augmented Lagrangian is furthermore modified to also include appropriate
penalisation terms, so that we compute

xk+1 = arg minx∈RnLδ(x, zk;μk) + DJx (x, xk), (46a)

zk+1 = arg minz∈RmLδ(x
k+1, z; yk) + DJz(z, z

k), (46b)

yk+1 = arg max
y∈Rm

Lδ(x
k+1, zk+1; y) − DJy (y, yk), (46c)

in an alternating fashion. To our knowledge, the first adaptation of ADMM to more
general Bregman functions was proposed in Wang and Banerjee (2014). In the
setting discussed here, the functions Jx , Jz, and Jy are convex and continuously
differentiable functions. In the most basic scenario, we choose K(x, z) = Ax +Bz,
Jx , and Jy as the zero functions, i.e. Jx(x) = 0 and Jz(z) = 0 for all x ∈ R

n

z ∈ R
m, while Jy is chosen to be a positive multiple of the squared Euclidean norm

Jy(y) := 1
2τ

‖y‖2. Then (46) reduces to the classical ADMM setting (cf. Boyd et al.
2011)

xk+1 =
(
A�A + δ ∂G

)−1
(

A� (
c − (Bzk + δyk)

))
,

zk+1 =
(
B�B + δ ∂F

)−1
(

B� (
c − (Axk+1 + δyk)

))
,
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yk+1 = yk + τ
(
Axk+1 + Bzk+1 − c

)
.

Depending on the choices of Jx , Jz, and Jy , many other useful variants are possible,
such as

xk+1 = (I + τx δ ∂G)−1
(

xk − τxA
� (

Axk + Bzk + δyk − c
))

,

zk+1 = (
I + τz δ ∂F

)−1
(

zk − τzB
� (

Axk+1 + Bzk + δyk − c
))

,

yk+1 = yk + τy

(
Axk+1 + Bzk+1 − c

)
,

for the choices Jx(x) = 1
2δ τx

‖x‖2 − 1
2δ

‖Ax‖2, Jz(z) = 1
2δ τz

‖z‖2 − 1
2δ

‖Bz‖2, and

Jy(y) = 1
2τy

‖y‖2, which is fully explicit with respect to the operators A and B.

Moreover, Jx is convex for 0 < τx < ‖A‖2, while Jz is convex for 0 < τz < ‖B‖2.
A unified Bregman framework for primal-dual algorithms is discussed in greater
detail in Zhang et al. (2011).

Primal-Dual Hybrid Gradient Method

In this section we focus on the special saddle-point formulation (45). It is straight-
forward to verify that for convex G and F a saddle point (x̂, ŷ)� is characterised by
the optimality system

0 ∈ ∂G(x̂) + A�ŷ, (47a)

0 ∈ ∂F ∗(ŷ) − Ax̂. (47b)

It is sensible and has indeed been suggested in Chambolle and Pock (2016b), and
Hohage and Homann (2014) to solve this nonlinear inclusion problem with a fixed
point algorithm of the form

(
0
0

)
∈

(
∂G(xk+1) + A�yk+1

∂F ∗(yk+1) − Axk+1

)
+ ∂J (xk+1, yk+1) − ∂J (xk, yk). (48)

Here ∂J denotes the subdifferential of some convex function J : Rn × R
m → R.

For the choice
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J (x, y) := 1

2

∥∥∥∥∥∥

(
x

y

)∥∥∥∥∥∥

2

M

with

∥∥∥∥∥∥

(
x

y

)∥∥∥∥∥∥
M

:=
√√√√
〈
M

(
x

y

)
,

(
x

y

)〉

and M :=
(

1
τ
I −A�

−A 1
σ
I

)
,

and τσ‖A‖2 < 1, we obtain the conventional primal-dual hybrid gradient (PDHG)
method (with relaxation parameter set to one) as proposed and discussed in Zhu and
Chan (2008), Pock et al. (2009), Esser et al. (2010), and Chambolle and Pock (2011,
2016a), which reads

xk+1 = (I + τ∂G)−1
(
xk − τA�yk

)
, (49a)

yk+1 = (
I + σ∂F ∗)−1

(
yk + σA(2xk+1 − xk)

)
. (49b)

Note that we can reformulate (48) to

(
0
0

)
∈

(
∂G(xk+1) − ∂G(x̂) + A�(yk+1 − ŷ)

∂F ∗(yk+1) − ∂F ∗(ŷ) − A(xk+1 − x̂)

)

+ ∂J (xk+1, yk+1) − ∂J (x̂, ŷ) −
(
∂J (xk, yk) − ∂J (x̂, ŷ)

)
, (50)

if we add the optimality system (47) to (48), for a saddle point (x̂, ŷ)�. Taking a
dual product of

(
∂G(xk+1) − ∂G(x̂) + A�(yk+1 − ŷ)

∂F ∗(yk+1) − ∂F ∗(ŷ) − A(xk+1 − x̂)

)

with (xk+1 − x̂, yk+1 − ŷ)� therefore yields

〈(
∂G(xk+1) − ∂G(x̂) + A�(yk+1 − ŷ)

∂F ∗(yk+1) − ∂F ∗(ŷ) − A(xk+1 − x̂)

)
,

(
xk+1 − x̂

yk+1 − ŷ

)〉

= D
symm
G (xk+1, x̂) + D

symm
F ∗ (yk+1, ŷ) ≥ 0.

Here D
symm
J (x, y) denotes the symmetric Bregman distance D

symm
J (x, y) =

D
q
J (x, y)+D

p
J (y, x) = 〈p−q, x −y〉, for subgradients p ∈ ∂J (x) and q ∈ ∂J (y),

which is also known as Jeffreys–Bregman divergence and closely related to other
symmetrisations such as Jensen–Bregman divergences (Nielsen and Boltz 2011) and
Burbea Rao distances (Burbea and Rao 1982b,a). As an immediate consequence,
we observe
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0 ≥
〈
∂J (xk+1, yk+1) − ∂J (xk, yk),

(
xk+1 − x̂

yk+1 − ŷ

)〉

= DJ

⎛
⎝
(

x̂

ŷ

)
,

(
xk+1

yk+1

)⎞
⎠ − DJ

⎛
⎝
(

x̂

ŷ

)
,

(
xk

yk

)⎞
⎠ + DJ

⎛
⎝
(

xk+1

yk+1

)
,

(
xk

yk

)⎞
⎠ ,

where we have made use of the three-point identity for Bregman distances (Chen
and Teboulle 1993). Thus, we can conclude

DJ

⎛
⎝
(

x̂

ŷ

)
,

(
xk+1

yk+1

)⎞
⎠ + DJ

⎛
⎝
(

xk+1

yk+1

)
,

(
xk

yk

)⎞
⎠ ≤ DJ

⎛
⎝
(

x̂

ŷ

)
,

(
xk

yk

)⎞
⎠

for all iterates. Consequently, the iterates are bounded in the Bregman distance
setting with respect to J . Summing up the dual product of (48) with (xk+1 −
x̂, yk+1 − ŷ)� therefore yields

N∑
k=0

[
D

symm
G (xk+1, x̂) + D

symm
F ∗ (yk+1, ŷ)

]
+

N∑
k=0

DJ

⎛
⎝
(

xk+1

yk+1

)
,

(
xk

yk

)⎞
⎠

=
N∑

k=0

⎡
⎢⎣DJ

⎛
⎝
(

x̂

ŷ

)
,

(
xk

yk

)⎞
⎠ − DJ

⎛
⎝
(

x̂

ŷ

)
,

(
xk+1

yk+1

)⎞
⎠
⎤
⎥⎦ ≤ DJ

⎛
⎝
(

x̂

ŷ

)
,

(
x0

y0

)⎞
⎠

< +∞.

Hence, we can conclude D
symm
G (xN, x̂) → 0, D

symm
F ∗ (yN , ŷ) → 0, and

DJ

((
xN yN

)�
,
(

xk yk
)�) → 0 for N → ∞. If G and F ∗ are at least convex

and if J is strongly convex with respect to some norm, one can further guarantee
convergence of the corresponding iterates in norm to a saddle-point (x, y) solution
of (45) with standard arguments. For more details, analysis, and extensions of
PDHG methods, we refer the reader to Chambolle and Pock (2016a).

Applications

In the following we want to show applications for some of the Bregman algorithms
discussed in this review chapter. We want to emphasise that none of the applications
shown are really large-scale applications. The idea of this section is rather to
demonstrate that the algorithms are applicable to a wide range of different problems,
offering the potential to enhance actual large-scale problems. We focus on three
combinations of applications and algorithms: robust principal component analysis
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via the accelerated linearised Bregman iteration, deep learning with an incremental
proximal Bregman architecture, and image denoising via the Bregman Itoh–Abe
method.

Robust Principal Component Analysis

Robust principal component analysis is an extension of principal component
analysis first proposed in Candès et al. (2011). The key idea is to decompose a
matrix X ∈ R

m×n into a low-rank matrix L ∈ R
m×n and a sparse matrix S ∈ R

m×n

by solving the optimisation problem

min
L,S

α1‖L‖∗ + α2‖S‖1 subject to X = L + S. (51)

Here ‖S‖1 is the one norm of the matrix S, i.e. ‖S‖1 = ∑m
i=1

∑n
j=1 |sij |, while

‖L‖∗ denotes the nuclear norm of L, which is the one norm of the singular values

of L, i.e. ‖L‖∗ = ∑min(n,m)
j=1 σj , for L = UΣV ∗ with Σij =

⎧⎨
⎩

σj i = j

0 i �= j
and U

and V being orthogonal. There are numerous strategies for solving (51) numerically
(Bouwmans et al. 2018); we focus on using the accelerated linearised Bregman
iteration as discussed in section “Accelerated Bregman Methods”. For this we
use formulation (12) of the linearised Bregman iteration, respectively (19), in the

accelerated case. We choose A =
(
I I

)�
, bδ = X, and R = α1‖ · ‖∗ +α2‖ · ‖1 and

therefore obtain

Lk+1 = (
I + α1∂‖ · ‖∗

)−1
(
τXk

)
,

Sk+1 = (
I + α2∂‖ · ‖1

)−1
(
τXk

)
,

Xk+1 = Xk −
(
Lk+1 + Sk+1 − X

)
,

in the case of (12), respectively

Lk+1 = (
I + α1∂‖ · ‖∗

)−1
(
τ Y k

)
,

Sk+1 = (
I + α2∂‖ · ‖1

)−1
(
τ Y k

)
,

Xk+1 = Y k −
(
Lk+1 + Sk+1 − X

)
,

Y k+1 = (1 + βk+1)X
k+1 − βk+1X

k,
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(a) (b) (c) (d)

Fig. 1 From left to right: the first image of the Yale B faces database, its approximation which is
the sum of a low-rank and a sparse matrix, the low-rank matrix, and the sparse matrix. (a) Original
(b) Approximation (c) Low-rank part (d) Sparse part

in the case of (17), for X0 := X. We choose the parameters to be τ = 1/‖A‖2 =
1/2, α1 = 10

√
max(m, n), α2 = 10, and βk = (k − 1)/(k + 3) for k ≥ 1. Note that

the latter automatically implies Y 0 = X. We run the algorithm on two test datasets;
inspired by Brunton and Kutz (2019), the first one is the Yale Faces B dataset (Lee
et al. 2005), and the second one is a video sequence of a Cornell box with a moving
shadow, from (Benning et al. 2007). Figure 1 shows the first image of the Yale
B faces database, its approximation, and its decomposition into a low-rank and a
sparse part.

The more important aspect in terms of this review paper is certainly the com-
parison between the linearised Bregman iteration and its accelerated counterpart. A
log-scale plot of the decrease of the loss function 1

2‖L + S − X‖2
F, where ‖ · ‖F

denotes the Frobenius norm, over the course of the iterations of the two algorithms
is visualised in Fig. 2. The plot is an empirical validation that (18) converges at rate
O(1/k2) as opposed to the O(1/k) rate of its non-accelerated counterpart.

In Fig. 3 we see the 1st, 50th, 100th, and 150th frame of the original Cornell
box video sequence from Benning et al. (2007), together with a low-rank approxi-
mation and a sparse component computed with the accelerated linearised Bregman
iteration.

Deep Learning

Ever since Alexnet entered the scene in 2012 (Krizhevsky et al. 2012), thwarting
then state-of-the-art image classification approaches in terms of accuracy in the
process, deep neural networks (DNNs) have been central to research in computer
vision and imaging. In this section, we merely want to support the analogy between
incremental Bregman proximal methods and DNNs as shown in section “Deep
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Fig. 2 This is an empirical validation of the different convergence rates of the linearised Bregman
iteration and its accelerated counterpart (with regular scaling of the iterations on the left-hand side
and a logarithmic scaling on the right-hand side)

Fig. 3 First row: the 1st, 50th, 100th, and 150th frame of the original video sequence from
Benning et al. (2007). Second row: the same frames of the computed low-rank part. Third row:
the same frames of the computed sparse part
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Neural Networks” with a practical example, rather than engaging in a discussion
of when and why DNNs based on (30) should be used or what advantages or
shortcomings they possess compared to other neural network architectures. For a
comprehensive overview over developments in deep learning, we refer the reader to
Goodfellow et al. (2016).

In this example, we set up a DNN-based auto-encoder for dimensionality
reduction and compare it to classical dimensionality reduction via singular value
decomposition. The auto-encoder is of the form

xk = (
I + ∂‖ · ‖1

)−1
(
Akx

k−1 + bk

)
,

= S1

(
Akx

k−1 + bk

)
,

for k ∈ {1, 2, 3, 4} and x0 = x, where x denotes the input of the network, Ak :=
1
2 (Mk + M�

k ) ◦ Hk for matrices Mk ∈ R
mk×mk dimensions m1 = 196, m2 = 49,

m3 = 196, and m4 = 784, and where H1 and H2 are two-dimensional average
pooling operators with window size 2 × 2 and H3 and H4 are nearest-neighbour
interpolation operators that upscale by a factor of two. The vectors {bk}4

k=1 are bias
vectors of dimensions {mk}4

k=1, and the operator S1 is the soft-shrinkage operator as
described in section “The Sparse Kaczmarz Method”. Please note that this auto-
encoder architecture is of the form (30) and represents a parametrised mapping
ΦΘ from R

784 to R
784, where Θ = ({Mk}4

k=1, {bk}4
k=1) denotes the collection of

parameters. We train the auto-encoder by minimising the empirical risk based on the
mean-squared error for a set of samples {xi}si=1, s = 60000, via stochastic gradient
descent (which is the randomised version of (24)), i.e. we approximately estimate
optimal parameters Θ̂ via

Θ̂ = arg minΘ

1

2s

s∑
i=1

(
ΦΘ(xi) − xi

)2
.

We emphasise that the soft-thresholding activation function S1 leaves ΦΘ as not
differentiable, which is why the application of (24) is technically a stochastic
subgradient method. We train the auto-encoder with the help of PyTorch for a fixed
number of epochs (500) and fixed step size τ = 2 with batch size 100 on the MNIST
training dataset (LeCun et al. 1998). In Fig. 4, we visualised several samples and the
corresponding transformed outputs of the auto-encoder. In Fig. 5, we have visualised
random images from the same dataset in comparison to their truncated singular
value decomposition reconstructions where all but the first 49 singular values are
cut off. As to be expected, nonlinear dimensionality reduction can outperform linear
dimensionality reduction, achieving visually superior results for the same subspace
dimensionalty.
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Fig. 4 Top row: random samples from the MNIST dataset. Bottom row: the corresponding
approximations with the trained auto-encoder

Fig. 5 Top row: random samples from the MNIST dataset. Bottom row: the corresponding
approximations with the first 49 singular vectors

Student-t Regularised Image Denoising

In what follows, we apply BIA methods for solving a nonsmooth, nonconvex image
denoising model, previously presented in Ochs et al. (2014). A priori knowledge
of the noise distribution allows the use of Bregman functions J (x) that exploit
sparsity structures of the problem. As we will see, this yields significantly improved
convergence rates in comparison with the default Itoh–Abe scheme (i.e. J (x) =
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‖x‖2/2). The application of the BIA method for this example was previously
presented in Benning et al. (2020).

The objective function is given by

F : Rn → R, F (x) :=
N∑

i=1

ϕiΦ(Kix) + ‖x − xδ‖1. (52)

Here {Ki}Ni=1 is a collection of linear filters, (ϕi)
N
i=1 ⊂ [0,∞) are coefficients,

Φ : Rn → R is the nonconvex function based on the student-t distribution, defined
as

Φ(x) :=
n∑

j=1

ψ(xi), ψ(x) := log(1 + x2),

and xδ is an image corrupted by impulse noise (salt and pepper noise).

Fig. 6 Comparison of BIA and IA methods, for student-t regularised image denoising. First:
convergence rate for relative objective. Second: convergence rate for relative gradient norm. Third:
input data. Fourth: reconstruction
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As impulse noise only affects a fraction of pixels, we use the data fidelity term
x �→ ‖x − xδ‖1 to promote sparsity of x∗ − xδ for x∗ ∈ arg minF(x). As linear
filters, we consider the simple case of finite difference approximations to first-order
derivatives of x. We note that by applying a gradient flow to this regularisation
function, we observe a similarity to Perona–Malik diffusion (Perona and Malik
1990).

For the BIA method, we consider the Bregman function

J (x) := 1

2
‖x‖2 + γ ‖x − xδ‖1,

to account for the sparsity of the residual x∗ − xδ and compare the method to the
regular Itoh–Abe discrete gradient method (abbreviated to IA).

We set the starting point x0 = xδ and the parameters to τk = 1 for all k, γ = 0.5,
and ϕi = 2, i = 1, 2. For the impulse noise, we use a noise density of 10%. In the
case where xk+1

i is not set to xδ
i , we use the scalar root solver scipy.optimize.brenth

on Python. Otherwise, the updates are in closed form.
See Fig. 6 for numerical results. By gradient norm, we mean dist(∂CF (xk), 0).

Conclusions and Outlook

In this review paper, we gave a selective overview on a range of topics concerning
adaptations of Bregman algorithms suited for large-scale problems in imaging. In
particular, we discussed Nesterov accelerations of the Bregman (proximal) gradient
or linearised Bregman iteration, incremental variants of Bregman methods, and
coordinate descent-type Bregman algorithms with a particular focus on a Bregman
Itoh–Abe scheme.

Despite the variety of numerous adaptations, a lot of research on Bregman
algorithms is yet to be done. We conclude this chapter by discussing some open
problems as well as ongoing directions of research.

Examples of open problems are adaptations for nonconvex objectives (following
recent advances in papers such as Ahookhosh et al. 2019), extensions to nonlinear
inverse problems (Bachmayr and Burger 2009) or inverse problems with non-
quadratic data fidelity terms (Benning and Burger 2011) and the closer analysis
and numerical realisation of neural network architectures inspired by Bregman
algorithms. We also want to emphasise that Bregman variants of incremental or
stochastic variants of ADMM or the PDHG method in the spirit of Ouyang et al.
(2013) and Chambolle et al. (2018) are still open problems.

Another important topic of ongoing research is to understand the scope for and
limitations of accelerated Bregman methods, as stated by Teboulle (2018). Dragomir
et al. (2019) point out the open problem of whether accelerated Bregman methods
are possible if one makes further assumptions on the objective and Bregman
functions or by allowing access to second-order information. Another interesting
approach is to consider ODEs – see, e.g. Krichene et al. (2015) in which Krichene et
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al. investigate accelerating mirror descent via the ODE interpretation of Nesterov’s
acceleration (Su et al. 2016).

Going from optimisation to sampling, some recent papers consider methods
for sampling of distributions which incorporate elements of mirror descent in the
underlying dynamics. Hsieh et al. (2018) propose a framework for sampling from
constrained distributions, termed mirrored Langevin dynamics. In a similar vein,
Zhang et al. (2020) propose a Mirror Langevin Monte Carlo algorithm, to improve
the smoothness and convexity properties for the distribution.
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Combettes, P.L., Vũ, B.C.: Variable metric forward–backward splitting with applications to
monotone inclusions in duality. Optimization 63(9), 1289–1318 (2014)

Corona, V., Benning, M., Ehrhardt, M.J., Gladden, L.F., Mair, R., Reci, A., Sederman, A.J.,
Reichelt, S., Schönlieb, C.-B.: Enhancing joint reconstruction and segmentation with non-
convex bregman iteration. Inverse Prob. 35(5), 055001 (2019)

Corona, V., Benning, M., Gladden, L.F., Reci, A., Sederman, A.J., Schoenlieb, C.-B.: Joint phase
reconstruction and magnitude segmentation from velocity-encoded mri data. arXiv preprint
arXiv:1908.05285 (2019)

Doan, T.T., Bose, S., Nguyen, D.H., Beck, C.L.: Convergence of the iterates in mirror descent
methods. IEEE Control Syst. Lett. 3(1), 114–119 (2018)

Dragomir, R.-A., Taylor, A., d’Aspremont, A., Bolte, J.: Optimal complexity and certification of
bregman first-order methods. arXiv preprint arXiv:1911.08510 (2019)

Duchi, J.C., Agarwal, A., Johansson, M., Jordan, M.I.: Ergodic mirror descent. SIAM J. Optim.
22(4), 1549–1578 (2012)

Eckstein, J.: Nonlinear proximal point algorithms using bregman functions, with applications to
convex programming. Math. Oper. Res. 18(1), 202–226 (1993)

Ehrhardt, M.J., Riis, E.S., Ringholm, T., Schönlieb, C.-B.: A geometric integration approach to
smooth optimisation: Foundations of the discrete gradient method. ArXiv e-prints (2018)

Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual
algorithms for convex optimization in imaging science. SIAM J. Imag. Sci. 3(4), 1015–1046
(2010)



Bregman Methods for Large-Scale Optimisation with Applications in Imaging 39

Frankel, P., Garrigos, G., Peypouquet, J.: Splitting methods with variable metric for Kurdyka–
łojasiewicz functions and general convergence rates. J. Optim. Theory Appl. 165(3), 874–900
(2015)

Frerix, T., Möllenhoff, T., Moeller, M., Cremers, D.: Proximal backpropagation. arXiv preprint
arXiv:1706.04638 (2017)

Frick, K., Scherzer, O.: Convex inverse scale spaces. In: International Conference on Scale Space
and Variational Methods in Computer Vision, pp. 313–325. Springer (2007)

Gabay, D.: Chapter ix applications of the method of multipliers to variational inequalities. In:
Studies in Mathematics and Its Applications, Vol. 15, pp. 299–331. Elsevier (1983)

Gao, T., Lu, S., Liu, J., Chu, C.: Randomized bregman coordinate descent methods for non-
Lipschitz optimization. arXiv preprint arXiv:2001.05202 (2020)

Garrigos, G., Rosasco, L., Villa, S.: Iterative regularization via dual diagonal descent. J. Math.
Imaging Vision 60(2), 189–215 (2018)

Gilboa, G., Moeller, M., Burger, M.: Nonlinear spectral analysis via one-homogeneous functionals:
Overview and future prospects. J. Math. Imaging Vision 56(2), 300–319 (2016)

Goldstein, T., Li, M., Yuan, X.: Adaptive primal-dual splitting methods for statistical learning
and image processing. In: Advances in Neural Information Processing Systems, pp. 2089–2097
(2015)

Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-

dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471–481 (1970)
Gower, R.M., Richtárik, P.: Randomized iterative methods for linear systems. SIAM J. Matrix

Anal. Appl. 36(4), 1660–1690 (2015)
Grimm, V., McLachlan, R.I., McLaren, D.I., Quispel, G.R.W., Schönlieb, C.-B.: Discrete gradient

methods for solving variational image regularisation models. J. Phys. A 50(29), 295201 (2017)
Gutman, D.H., Peña, J.F.: A unified framework for bregman proximal methods: subgradient,

gradient, and accelerated gradient schemes. arXiv preprint arXiv:1812.10198 (2018)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving

Algorithms for Ordinary Differential Equations, Vol. 31, 2nd edn. Springer Science & Business
Media, Berlin (2006)

Hanzely, F., Richtarik, P., Xiao, L.: Accelerated bregman proximal gradient methods for relatively
smooth convex optimization. arXiv preprint arXiv:1808.03045 (2018)

Hellinger, E.: Neue begründung der theorie quadratischer formen von unendlichvielen veränder-
lichen. Journal für die reine und angewandte Mathematik (Crelles Journal) 1909(136), 210–271
(1909)

Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex analysis and minimization algorithms I: Fundamen-
tals, volume 305 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathemati- cal Sciences], 2nd edn. Springer, Berlin (1993)

Hohage, T., Homann, C.: A generalization of the chambolle-pock algorithm to banach spaces with
applications to inverse problems. arXiv preprint arXiv:1412.0126 (2014)

Hsieh, Y.-P., Kavis, A., Rolland, P., Cevher, V.: Mirrored Langevin dynamics. In: Advances in
Neural Information Processing Systems, pp. 2878–2887 (2018)

Hua, X., Yamashita, N.: Block coordinate proximal gradient methods with variable bregman
functions for nonsmooth separable optimization. Math. Program. 160(1–2), 1–32 (2016)

Huang, B., Ma, S., Goldfarb, D.: Accelerated linearized bregman method. J. Sci. Comput. 54(2–3),
428–453 (2013)

Itakura, F.: Analysis synthesis telephony based on the maximum likelihood method. In: The 6th
International Congress on Acoustics, 1968, pp. 280–292 (1968)

Itoh, T., Abe, K.: Hamiltonian-conserving discrete canonical equations based on variational
difference quotients. J. Comput. Phys. 76(1), 85–102 (1988)

Juditsky, A., Nemirovski, A., et al.: First order methods for nonsmooth convex large-scale
optimization, I: General purpose methods. Optim. Mach. Learn. 121–148 (2011). https://doi.
org/10.7551/mitpress/8996.003.0007

https://doi.org/10.7551/mitpress/8996.003.0007
https://doi.org/10.7551/mitpress/8996.003.0007


40 M. Benning and E. S. Riis

Kaczmarz, M.S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bulletin Interna-
tional de l’Académie Polonaise des Sciences et des Lettres. Classe des Sciences Mathématiques
et Naturelles. Série A, Sciences Mathématiques 35, 355–357 (1937)

Kiwiel, K.C.: Free-steering relaxation methods for problems with strictly convex costs and linear
constraints. Math. Oper. Res. 22(2), 326–349 (1997)

Kiwiel, K.C.: Proximal minimization methods with generalized bregman functions. SIAM
J. Control. Optim. 35(4), 1142–1168 (1997)

Kobler, E., Klatzer, T., Hammernik, K., Pock, T.: Variational networks: connecting variational
methods and deep learning. In: German Conference on Pattern Recognition, pp. 281–293.
Springer (2017)

Krichene, W., Bayen, A., Bartlett, P.L.: Accelerated mirror descent in continuous and discrete time.
In: Advances in Neural Information Processing Systems, pp. 2845–2853 (2015)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural
networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

LeCun, Y., Cortes, C., Burges, C.J.C.: The mnist database of handwritten digits (1998). http://yann.
lecun.com/exdb/mnist 10:34 (1998)

Lee, K.-C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable
lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)

Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization.
SIAM J. Optim. 25(4), 2434–2460 (2015)

Li, H., Schwab, J., Antholzer, S., Haltmeier, M.: Nett: Solving inverse problems with deep neural
networks. Inverse Prob. 36, 065005 (2020)

Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J.
Numer. Anal. 16(6), 964–979 (1979)

Lorenz, D.A., Schöpfer, F., Wenger, S.: The linearized Bregman method via split feasibility
problems: Analysis and generalizations. SIAM J. Imag. Sci. 7(2), 1237–1262 (2014)

Lorenz, D.A., Wenger, S., Schöpfer, F., Magnor, M.: A sparse Kaczmarz solver and a linearized
Bregman method for online compressed sensing. arXiv e-prints (2014)

Prasanta, P.C.: On the generalized distance in statistics. National Institute of Science of India
(1936)

Matet, S., Rosasco, L., Villa, S., Vu, B.L.: Don’t relax: Early stopping for convex regularization.
arXiv preprint arXiv:1707.05422 (2017)

McLachlan, R.I., Quispel, G.R.W.: Six lectures on the geometric integration of ODEs, pp. 155–210.
London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge
(2001)

McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients.
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 357(1754), 1021–1045 (1999)

Miyatake, Y., Sogabe, T., Zhang, S.-L.: On the equivalence between SOR-type methods for linear
systems and the discrete gradient methods for gradient systems. J. Comput. Appl. Math. 342,
58–69 (2018)

Moeller, M., Benning, M., Schönlieb, C., Cremers, D.: Variational depth from focus reconstruction.
IEEE Trans. Image Process. 24(12), 5369–5378 (2015)

Möllenhoff, T., Strekalovskiy, E., Moeller, M., Cremers, D.: The primal-dual hybrid gradient
method for semiconvex splittings. SIAM J. Imag. Sci. 8(2), 827–857 (2015)

Moreau, J.-J.: Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique
de France 93, 273–299 (1965)

Morozov, V.A.: Regularization of incorrectly posed problems and the choice of regularization
parameter. USSR Comput. Math. Math. Phys. 6(1), 242–251 (1966)

Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceed-
ings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to
stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)

Nemirovsky, A.S., Yudin, D.B.: Problem complexity and method efficiency in optimization (1983)

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist


Bregman Methods for Large-Scale Optimisation with Applications in Imaging 41

Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of conver-
gence O(1/k2). In: Doklady AN USSR, Vol. 269, pp. 543–547 (1983)

Nesterov, Y.: Primal-dual subgradient methods for convex problems. Math. Program. 120(1), 221–
259 (2009)

Neubauer, A.: On nesterov acceleration for landweber iteration of linear ill-posed problems.
J. Inverse Ill-posed Prob. 25(3), 381–390 (2017)

Nielsen, F., Boltz, S.: The burbea-rao and bhattacharyya centroids. IEEE Trans. Inf. Theory 57(8),
5455–5466 (2011)

Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: Inertial proximal algorithm for nonconvex
optimization. SIAM J. Imag. Sci. 7(2), 1388–1419 (2014)

Ochs, P., Ranftl, R., Brox, T., Pock, T.: Bilevel optimization with nonsmooth lower level problems.
In: International Conference on Scale Space and Variational Methods in Computer Vision, pp.
654–665. Springer (2015)

Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total
variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

Oswald, P., Zhou, W.: Convergence analysis for Kaczmarz-type methods in a Hilbert space
framework. Linear Algebra Appl. 478, 131–161 (2015)

Ouyang, H., He, N., Tran, L., Gray, A.: Stochastic alternating direction method of multipliers. In:
International Conference on Machine Learning, pp. 80–88 (2013)

Parikh, N., Boyd, S., et al.: Proximal algorithms. Found. Trends® Optim. 1(3), 127–239 (2014)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans.

Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)
Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the mumford-shah

functional. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1133–1140.
IEEE (2009)

Resmerita, E., Scherzer, O.: Error estimates for non-quadratic regularization and the relation to
enhancement. Inverse Prob. 22(3), 801 (2006)

Riis, E.S., Ehrhardt, M.J., Quispel, G.R.W., Schönlieb, C.-B.: A geometric integration approach
to nonsmooth, nonconvex optimisation. Foundations of Computational Mathematics (FOCM).
ArXiv e-prints (2018)
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