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Abstract
The reconstruction of images from their corresponding noisy Radon transform is a typical 
example of an ill-posed linear inverse problem as arising in the application of computer-
ized tomography (CT). As the (naïve) solution does not depend on the measured data con-
tinuously, regularization is needed to reestablish a continuous dependence. In this work, 
we investigate simple, but yet still provably convergent approaches to learning linear regu-
larization methods from data. More specifically, we analyze two approaches: one generic 
linear regularization that learns how to manipulate the singular values of the linear opera-
tor in an extension of our previous work, and one tailored approach in the Fourier domain 
that is specific to CT-reconstruction. We prove that such approaches become convergent 
regularization methods as well as the fact that the reconstructions they provide are typi-
cally much smoother than the training data they were trained on. Finally, we compare the 
spectral as well as the Fourier-based approaches for CT-reconstruction numerically, discuss 
their advantages and disadvantages and investigate the effect of discretization errors at dif-
ferent resolutions.

Keywords  Inverse problems · Regularization · Computerized tomography (CT) · Machine 
learning

Mathematics Subject Classification  47A52 · 65J22 · 68T05

1  Introduction

Linear inverse problems are at the heart of a variety of imaging applications, including res-
toration tasks such as image deblurring as well as the inference of unknown images from 
measurements that contain implicit information about them as, for instance, arising in com-
puterized tomography (CT), positron emission tomography (PET), or magnetic resonance 
imaging (MRI). All of these problems are commonly modeled as the task of recovering an 
image u from measurements
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for a linear operator A and noise � characterized by some error bound (noise level) 
� ∈ [0,∞[ to be specified later. A key challenge for most practically relevant problems is 
that A∶ X → Y  is a compact linear operator with the infinite dimensional range (assuming 
here that X and Y are infinite-dimensional Hilbert spaces), leading to zero being an accu-
mulation point of its singular values, and making the pseudo-inverse A† discontinuous.

The compactness of A makes it possible to expand it by its singular values, which means 
to write it in the form

where the singular values 𝜎n > 0 are non-increasing, {un}n∈ℕ and {vn}n∈ℕ form orthonor-
mal bases of the orthogonal complement of the nullspace of the operator N(A)⟂ , or the 
closure of its range R(A) , respectively. With a slight abuse of notation, ⟨⋅, ⋅⟩ denotes the 
inner-product on the spaces X and Y. Classical linear regularization strategies therefore aim 
to approximate u with so-called spectral regularization operators of the form

for a suitable function g� that remains bounded for all 𝛿 > 0 but for which g�(�) → 1∕� as 
� → 0 . With a suitable speed of such a pointwise convergence, the continuous dependence 
on the data, i.e., R(f �; g�) → A†f  , can be reestablished. An extensive overview on require-
ments for this kind of convergence and classical examples for g� including Tikhonov, 
Lavrentiev, or truncated SVD regularization, can be found in [18].

In the specific case of the linear operator

being the Radon operator defined on functions on the whole space (which is not compact 
in contrast to integral operators on bounded domains), we have to work with a continu-
ous spectrum. The most commonly used reconstruction technique for inverting the Radon 
transform is the filtered back-projection, which follows a very similar strategy to (3), but 
exploits the structure of the operator in a different way. With the central slice theorem, the 
inverse Radon transform applied to some range-element f ∈ R(A) is given by

where A∗ denotes the adjoint operator of A (also called back-projection operator), 𝜌̂(r) = |r| 
is called the ramp-filter, F1-D is the one-dimensional Fourier transform with respect to the 
spatial offset variable of the Radon transform, and r (in the definition of 𝜌̂ ) is the variable 
resulting from the Fourier transform.

In analogy to the regularized version (3), the most common classical way to ensure a 
stable reconstruction is to replace (4) by

with the filter �� chosen to avoid amplification of high frequency components with the large 
frequency |r| . Common choices include the Hamming and ramp / Ram-Lak filters.

(1)f � = Au + �

(2)Au =

∞�
n=1

�n⟨u, un⟩vn,

(3)R(f �; g�) =

∞�
n=1

g�(�n)⟨f � , vn⟩un

A∶ L2(ℝ
2) → L2(ℝ×[0, π])

(4)A−1f = A∗
(
F −1

1-D

(
𝜌̂ ⋅ F1-Df

))
,

(5)R(f �; ��) = A∗
(
F −1

1-D

(
�� ⋅ F1-Df

�
))
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In this work, we study (3) and (5) for functions g� (respectively, �� ) that can be learned 
from data. In particular, we show that the shape of the optimal functions g� and �� can be 
characterized in the closed form. We prove that the learned approaches result in convergent 
regularization methods under certain conditions, investigate their behavior under different 
discretizations, and conduct numerical experiments on CT reconstruction problems.

2 � Related Work

Regularization methods for linear inverse problems in general and manipulations of the 
singular values in particular, have long been studied in applied mathematics, c.f. the clas-
sical reference [18] or the more recent overview [12]. Classical examples of (3) include 
Lavrentiev, Tikhonov, or truncated SVD regularization. Subsequently, a lot of research has 
focused on nonlinear regularization techniques, such as variational methods or (inverse) 
scale space flows. Even more recently, researchers have focused on learning reconstruc-
tion schemes through neural networks, which tend to show significantly stronger practical 
performances, but often lack theoretical guarantees, e.g., being convergent regularizations 
(independent of their discretization) with error bounds in suitable (problem-specific) met-
rics. We refer to the two overview papers [12, 18] for classical and nonlinear regularization 
theory and recall some machine-learning specific regularization approaches below.

The simplest form of benefiting from data-driven approaches is pre- or post-process-
ing networks, i.e., parameterized functions G that are either applied to the data f � before 
exploiting a classical reconstruction technique, or to a preliminary reconstruction like (3). 
Common architectures in the area of image reconstruction problems are simple convo-
lutional neural networks (CNNs) or multiscale approaches such as the celebrated U-Net 
architecture [20, 33]. Direct reconstructions (with different types of problem specific infor-
mation being accounted for) can, for instance, be found in [19, 26, 41]. Natural extensions 
of pre- and post-processing networks use A and its adjoint to switch between the measure-
ment and reconstruction spaces with intermediate learnable operations in structures that 
are often motivated by classical iterative reconstruction/optimization methods such as gra-
dient descent, forward-backward splitting, or primal-dual approaches, e.g., LEARN [15], 
FISTA-Net [38], or the learned primal-dual method [1]. Yet, without further restrictions, 
such methods do not allow to prove error estimates or convergence results.

Coming from the perspective of regularization schemes based on variational methods, 
many approaches have suggested to learn the regularizer, starting from (sparsity-based) 
dictionary learning, e.g., [2, 27], over learning (convex and non-convex) regularizers moti-
vated by sparsity penalties, e.g., [14, 21, 34], to schemes that merely learn descent direc-
tions [29] or operators provably being convergent to a global optimum [32] or playing the 
role of [28, 31] a proximal operator, to reparametrizations of the unknown in unsupervised 
settings (e.g., the deep image prior [36]) or in a learned latent space of realistic recon-
struction [13, 22]. In a similar fashion, deep equilibrium models [9] generalize the opti-
mality conditions arising from learning regularizers (c.f. [30]) and can, for instance, be 
combined with convex neural networks [5] for learning suitable regularizations. Yet, the 
above approaches are either not viewed in the light of infinite dimensional problems, or are 
non-convex, such that standard regularization results do not apply, or at least require the 
ability to compute global minimizers (as in the analysis of [25] or strict assumptions like 
the tangential cone condition [7]). For a recent overview on data-driven approaches in the 
context of inverse problems, we refer the reader to [6].
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Even if properties like convexity of the regularizer allow to deduce convergence and/
or error estimates, the complex parametrization of the above methods makes it highly dif-
ficult to understand how a data-driven approach extracts information from the training data, 
which quantities matter and what properties a learned regularization has. Therefore, our 
approach in this paper is to extend our previous work [11] by studying the simple linear 
(singular-value based) reconstruction (3) as well as the application-specific learning of a 
filter in Radon-inversion (5) to provide more insights into properties of learned regulariza-
tion techniques. While optimizing such spectral filters in a data-driven manner has been 
studied in the past (c.f. [17]), to the best of our knowledge it has not been studied to which 
extent the obtained reconstruction operators fulfill the characteristics of classical regulari-
zation methods.

While a large number of different data-driven approaches have been tailored to CT-
reconstruction (c.f. [8, 10, 16, 39] for particular examples or [24, 37, 40] for surveys), they 
largely follow the above categories in terms of theoretical guarantees and an understanding 
of the underlying learning process.

Our framework is close to learning the optimal Tikhonov regularizer, which was 
extended to the infinite dimensional case and studied with a focus on the generalization to 
unseen data in [3]. Although our approach is more restricted and requires the knowledge 
of the forward operator and its singular value expansion, it allows for deriving reasonable 
assumptions to guarantee the convergence in the no-noise-limit.

3 � Supervised Learning of Spectral Regularizations

In this section, we derive a closed-form solution for g�(�n) in (3) when the expectation of 
the squared norm difference between u and the regularization applied to data f � is mini-
mized. Here u and f �= Au + � come from a distribution of training data. We then analyze 
the corresponding regularization operator and show that the operator is a convergent linear 
regularization.

3.1 � Optimally Learned Spectral Regularization

In this section, we study the approach of learning the function g� in the approach of (3) 
from a theoretical perspective. First of all note that due to the assumption of A being com-
pact (and hence having a discrete spectrum), only the evaluations of g� at �n matter, such 
that we will focus on the optimal values gn ∶= g�(�n) directly. For the sake of simplicity, 
we can guarantee the well-definedness of g(�n) = gn by assuming the singular values �n to 
be strictly decreasing and have multiplicity �(�n) = 1 . Let us further assume that our data 
formation process (1) arises with noise drawn independently from u from a noise distribu-
tion parameterized by the noise level � with the zero mean.

For a fixed noise level � , the most common way to learn parameters (i.e., the gn in our 
case) is to minimize the expectation of a suitable loss, e.g., the squared norm, over the 
training distribution of pairs (u, f �) of the desired ground truth u and the noisy data f � . 
Thus, the ideal learned method is obtained by choosing

g = argmin
g

�u,�(‖u − R(f �; g)‖2),
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where �u,� denotes the expected value with respect to the joint distribution of the ground 
truth data and the noise. With the spectral decomposition (3) we have

where u0 ∈ N(A) is the unique projection of u onto the nullspace of the operator. Due to 
the independence of u and � together with the zero mean of the noise we find

hence

with

where �u and �� denote the expected values with respect to the marginal distributions of 
the ground truth data, or the noise, respectively. Since the whole training only makes sense 
in the chosen spaces X and Y if the ground truth data u are indeed elements of X, we shall 
assume in the following without further notice that

The above problem can be minimized for each gn separately by solving a quadratic minimi-
zation problem, where a solution is given by

To obtain uniqueness of the solution, we assume that Πn > 0 or Δn > 0 for all n ∈ ℕ 
throughout this paper.

Remark 1  The above result can be generalized to the case of singular values not strictly 
decreasing. Since �n is converging to zero, each singular value has the finite multiplicity 
and we can rewrite them as a sequence of strictly decreasing singular values �n with the 
multiplicity �(�n) ⩾ 1 and corresponding singular functions {unm}

�(�n)

m=1
 and {vnm}

�(�n)

m=1
 , i.e.,

In this case, the optimal coefficients gn are again given by (6), where we use the general-
ized variance coefficients

‖u − R(f �; g)‖2 = ‖u0‖2+
�
n

((1 − �ngn)⟨u, un⟩ + gn⟨�, vn⟩)2

= ‖u0‖2+
�
n

((1 − �ngn)
2⟨u, un⟩2 + g2

n
⟨�, vn⟩2

−2(1 − �ngn)gn⟨u, un⟩⟨�, vn⟩),

�u,�(⟨u, un⟩⟨�, vn⟩) = 0,

�u,�(‖u − R(f �; g)‖2) = �u

�‖u0‖2
�
+
�
n

((1 − �ngn)
2Πn + g2

n
Δn)

Πn ∶= �u(⟨u, un⟩2), Δn ∶= ��(⟨�, vn⟩2),

�
n

Πn =
�
n

�u(⟨u, un⟩2) = �u

��
n

⟨u, un⟩2
�

= �u(‖u‖2) < ∞.

(6)gn =
�nΠn

�2
n
Πn + Δn

.

Au =
�
n

�n

�(�n)�
m=1

⟨u, unm⟩vnm and R(f , g) =
�
n

gn

�(�n)�
m=1

⟨f , vnm⟩unm.
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We observe that for Πn > 0 , (6) can be rewritten as

and therefore has the same form as the classical Tikhonov regularization

with the commonly fixed regularization parameter � being replaced by a componentwise 
adaptive and data-driven term Δn∕Πn . We note that the restricted structure of the regular-
izer prevents it from approximating the nullspace component of the unknown. This is quan-
tified by the term �u

�‖u0‖2
�
 which is independent of the choice of g. For the generalization 

error this implies

and hence,

In general we will need an assumption about the structure of the noise in the data set. First 
of all we interpret the noise level � in a statistical sense as a bound for the noise standard 
deviation, however formulated such that it includes white noise. This leads to

which we will assume throughout the paper without further notice. Note that when study-
ing the zero noise limit � → 0 it is natural to interpret Δn as depending on � and in these 
instances we will use the explicit notation Δn(�) . We will refer to the case of white noise as 
Δn(�) = �2 for all n ∈ ℕ.

Πn ∶= �u

�
�(�n)�
m=1

⟨u, unm⟩2
�
, Δn ∶= ��

�
�(�n)�
m=1

⟨�, vnm⟩2
�
.

gn =
�n

�2
n
+ Δn∕Πn

ĝn =
𝜎n

𝜎2
n
+ 𝛼

min
g

�u,�(‖u − R(f �; g)‖2)−�u

�‖u0‖2
�

=�u,�(‖u − R(f �; g)‖2)−�u

�‖u0‖2
�
=
�
n

((1 − �ngn)
2Πn + g

2

n
Δn)

=
�
n

⎛⎜⎜⎝

�
1 −

�2
n

�2
n
+ Δn∕Πn

�2

Πn +
�2
n

(�2
n
+ Δn∕Πn)

2
Δn

⎞⎟⎟⎠

=
�
n

�
Πn +

�2
n
Δn + �4

n
Πn − 2Πn�

2
n
(�2

n
+ Δn∕Πn)

(�2
n
+ Δn∕Πn)

2

�

=
�
n

�
Πn −

�2
n
Δn + �4

n
Πn

(�2
n
+ Δn∕Πn)

2

�
=
�
n

Πn(�
2
n
+ Δn∕Πn)

2 − �2
n
Δn − �4

n
Πn

(�2
n
+ Δn∕Πn)

2

=
�
n

�2
n
Δn + Δ2

n
∕Πn

(�2
n
+ Δn∕Πn)

2
=
�
n

Δn

�2
n
+ Δn∕Πn

=
�
n

ΔnΠn

�2
n
Πn + Δn

,

(7)min
g

�u,�(‖u − R(f �; g)‖2)−�u

�‖u0‖2
�
=
�
n

ΔnΠn

�2
n
Πn + Δn

.

(8)�2 = sup
n∈ℕ

Δn,
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Obviously we expect the clean images to be smoother than the noise, which means 
that their decay in the respective singular basis is faster. We thus formulate the follow-
ing assumption, which is automatically true for white noise ( Δn = �2 for all n), since Πn 
goes to zero.

Assumption 1  For 𝛿 > 0 , there exists n0 ∈ ℕ such that the sequence Δn∕Πn is well-defined 
for n ⩾ n0 and diverging to +∞.

For some purposes it will suffice to assume a weaker form, which only has a lower 
bound instead of divergence to infinity.

Assumption 2  There exists c > 0 and n0 ∈ ℕ such that Δn(�) ⩾ c �2 Πn for every n ⩾ n0 
and 𝛿 > 0.

With Assumption 2 we can conclude that the operator R(⋅; g) with g given by (6) is a 
linear and bounded operator for strictly positive �.

Lemma 1  Let Assumption 2 be satisfied. Then R(⋅; g) with g as defined in (6) is a bounded 
linear operator for 𝛿 > 0.

Proof  By construction, the operator R is linear in its argument f � . We first note that Πn = 0 
implies gn = 0 . For Πn > 0 and n ⩾ n0 , the condition Δn ⩾ c �2 Πn implies

due to �2
n
+ Δn∕Πn ⩾ 2�n

√
Δn∕Πn . For n < n0 we have

Hence, we conclude

which implies that the operator R(⋅; g) is a bounded linear operator for 𝛿 > 0 . 

Remark 2  In practical scenarios with finite (empirical) data (ui, f i)i=1,⋯,N one typically 
minimizes the empirical risk

instead of the expectation, leading to coefficients

with

gn =
�n

�2
n
+ Δn∕Πn

⩽
1

2
√
Δn∕Πn

⩽
1

2
√
c�

,

gn ⩽
1

�n0

.

‖R(f � , g)‖ ⩽
1

min{�n0 , 2
√
c�}

‖f �‖, ∀f � ,

1

N

N�
i=1

‖ui − R(f i; g)‖2

(9)g
N

n
=

�nΠ
N
n
+ΓN

n

�2
n
ΠN

n
+ ΔN

n
+ 2�nΓ

N
n
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Yet, a convergence analysis of the empirical risk minimization requires further (strong) 
assumptions to control ΓN

n
 , such that we limit ourselves to the analysis of the ideal case (6) 

in this work.

3.2 � Range Conditions

We start our analysis of the learned regularization method with an inspection of the range 
condition (cf. [12]), which for Tikhonov-type regularization methods equals the so-called 
source condition in classical regularization methods (cf. [18]). More precisely, we ask 
which elements u ∈ X can be obtained from the regularization operator R(⋅, g) for some 
data f, i.e., we characterize the range of R(⋅, g) . Intuitively, one might expect that the range 
of R includes the set of training samples, or in a probabilistic setting the expected smooth-
ness of elements in the range (with expectation over the noise and training images) should 
equal the expected smoothness of elements of the training images. However, as we shall 
see below, the expected smoothness of reconstructions is typically higher.

We start with a characterization of the range condition, where we again denote the range 
of an operator by R.

Proposition 1  Let g be given by (6). Then u ∈ R(R(⋅, g)) if and only if

If Assumption 2 is satisfied we have in particular u ∈ R(A∗) and in the case of white noise 
the range condition (10) holds if and only if

Proof  Given the form of g we see that u ∈ R(R(⋅, g)) if

for some f ∈ Y  , which is further equivalent to 1
gn
⟨u, un⟩ ∈ �

2(ℕ) . We see that

and due to the boundedness of �n , we find �n⟨u, un⟩ ∈ �
2(ℕ) for any u ∈ X . Hence, the 

range condition is satisfied if and only if

holds, which is just (10). Under Assumption 2 we have Δn

�nΠn

⩾
c �2

�n
 , thus

ΠN
n
∶=

1

N

N�
i=1

⟨ui, un⟩2, ΔN
n
∶=

1

N

N�
i=1

⟨�i, vn⟩2, ΓN
n
∶=

1

N

N�
i=1

⟨ui, un⟩ ⟨�i, vn⟩.

(10)
�
n

Δ2
n

Π2
n
𝜎2
n

⟨u, un⟩2 < ∞.

(11)
�
n

⟨u, un⟩2
Π2

n
𝜎2
n

< ∞.

⟨u, un⟩ = gn⟨f , vn⟩

1

gn
= �n +

Δn

�nΠn

Δn

�nΠn

⟨u, un⟩ ∈ �
2(ℕ)
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This implies u = A∗w with

For white noise, we have Δn = �2 , which implies that (10) is satisfied if and only if (11) is 
satisfied.

Let us mention that under Assumption 1 the range condition of the learned regu-
larization method is actually stronger than the source condition u = A∗w , since we even 
have

with the weight Δ
2
n

Π2
n

 diverging under Assumption 1. This indicates that the learned regulari-
zation might be highly smoothing or even oversmoothing, which depends on the roughness 
of the noise compared to the signal, i.e., the quotient Δn

Πn

.
Although the range of the reconstruction operator is still dense in the range of A∗ if 

Πn > 0 for all n ∈ ℕ , the oversmoothing effect of the learned spectral regularization 
method can be made clear by looking at the expected smoothness of the reconstructions, 
i.e.,

A straight-forward computation yields

While we expect (at least on average) similar smoothness of the reconstructions as for the 
training images, i.e., Π̃n ≈ Πn , we find under Assumption 2 that

for large n, i.e., Π̃n

Πn

 converges to zero at least as fast as �2
n
 . The distribution of reconstruction 

thus has much more mass on smoother elements of X than the training set. The main reason 
for this behavior seems to stem from the noise in the data. Thus, although the method is 
supervised and tries to match all reconstructions to the training data, it needs to produce a 
linear operator that maps noise to suitable elements of X as well. Note that the behavior 
changes with � → 0 . For small Δn

�2
n
Πn

 , the denominator is approximately equal to one, hence

�
n

1

𝜎2
n

⟨u, un⟩2 < ∞.

w =
�
n

1

�n
⟨u, un⟩vn ∈ Y .

�
n

Δ2
n

Π2
n

⟨w, vn⟩2 < ∞

(12)Π̃n = �u,𝜈(⟨R(Au + 𝜈, g), un⟩2) .

(13)Π̃n =
𝜎2
n
Πn

𝜎2
n
Πn + Δn

Πn =
1

1 +
Δn

𝜎2
n
Πn

Πn.

Π̃n ⩽
1

1 +
c𝛿2

𝜎2
n

Πn ≈
𝜎2
n

c𝛿2
Πn

Π̃n ≈ Πn,
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i.e., in the limit the right degree of smoothness will be restored.
Another perspective on the expected smoothness is to investigate the bias of the obtained 

reconstruction operator, or, since we cannot expect to reconstruct nullspace elements

Inserting the definition of g we derive with that for any N ∈ ℕ

which yields the convergence of the bias to zero as � → 0 . We see that, just like the veloc-
ity of the convergence of the variance coefficients Π̃n , the velocity of the convergence of 
the bias is determined by the convergence of the factors Δn

�2
n
Πn

→ 0.

3.3 � Convergence of the Regularization

In the following we will investigate the convergence properties of the learned spectral reg-
ularization as the noise level � tends to zero. For this sake we will write Δn(�) and g(�) here 
to make clear that we are looking at a sequence converging to zero.

We shall naturally consider the convergence in the mean-squared error, i.e.,

This equals the 2-Wasserstein distance (cf. [4, Sect. 2.1]) between the concentrated meas-
ure at u and the distribution generated by the regularization applied to random noisy data, 
thus can be understood as a concentration of measure in the zero noise limit.

In addition to the convergence of the regularization for single elements u ∈ X we can 
also look at the mean-squared error over the whole distribution of given images and noise, 
i.e.,

which is identical to the quantity (7) with emphasis of the dependency of Δn on �.
With the following theorem we verify that e(u, �) as defined in (14) and e(�) as defined 

in (15) are indeed converging to zero for � converging to zero.

Theorem 1  For u ∈ N(A)⟂ , let ⟨u, un⟩ = 0 for all indices n with Πn = 0 . Then e(u, �) → 0 
as � → 0 . Moreover, we also have e(�) → 0 for � → 0.

Proof  We start by computing

ē0 ∶= �u

�‖u − R(Au, g)‖2� − �u

�‖u0‖2
�
.

ē0 =
∑
n

1(
𝜎2
n
Πn

Δn

+ 1
)2

Πn ⩽
𝛿2

min n⩽N
Πn>0

(𝜎2
n
Πn)

∑
n⩽N

Πn +
∑
n>N

Πn,

(14)e(u, �) ∶= ��(‖u − R(f �; g(�))‖2).

(15)
e(�) ∶= �u(e(u, �))−�u

�‖u0‖2
�

= �u,�(‖u − R(f �; g(�))‖2)−�u

�‖u0‖2
�
,
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Taking expectations with respect to the noise yields

Now let 𝜖 > 0 be arbitrary. Due to the summability of ⟨u, un⟩2 + Πn we can choose N large 
enough such that

Now we can choose

to obtain

for � sufficiently small, which implies the convergence to zero.
In the same way we can estimate

‖u − R(f 𝛿; g(𝛿))‖2 = �
n∶Πn>0

�
(1 − 𝜎ngn(𝛿))

2⟨u, un⟩2 + g(𝛿)2⟨𝜈, vn⟩2

+ 2(1 − 𝜎ngn(𝛿))gn(𝛿)⟨u, un⟩⟨𝜈, vn⟩
�
.

𝔼𝜈(‖u − R(f 𝛿; g(𝛿))‖2) = �
n,

Πn>0

�
(1 − 𝜎ngn(𝛿))

2⟨u, un⟩2 + gn(𝛿)
2Δn(𝛿)

�

=
�
n,

Πn>0

Δn(𝛿)
2⟨u, un⟩2 + 𝜎2

n
Π2

n
Δn(𝛿)

(𝜎2
n
Πn + Δn(𝛿))

2

=
�
n,

Πn>0

�
Δn(𝛿)

𝜎2
n
Πn + Δn(𝛿)

�2

⟨u, un⟩2 +
𝜎2
n
Δn(𝛿)

(𝜎2
n
+

Δn(𝛿)

Πn

)2

⩽
�
n⩽N,
Πn>0

𝛿2

𝜎2
n
Πn + Δn(𝛿)

⟨u, un⟩2 +
�
n>N,
Πn>0

⟨u, un⟩2

+
�
n⩽N,
Πn>0

𝜎2
n
𝛿2

𝜎4
n

+
�
n>N

Πn

⩽ 𝛿2
⎛
⎜⎜⎝

‖u‖2
minn⩽N,

Πn>0

𝜎2
n
Πn

+
N

𝜎2

N

⎞
⎟⎟⎠
+
�
n>N

(⟨u, un⟩2 + Πn).

�
n>N

(⟨u, un⟩2 + Πn) <
𝜖

2
.

𝛿 <

�
𝜖

2

⎛
⎜⎜⎜⎝

‖u‖2
min n ⩽ N,

Πn > 0

𝜎2
n
Πn

+
N

𝜎2
N

⎞
⎟⎟⎟⎠

−1∕2

�𝜈(‖u − R(f 𝛿; g)‖2) < 𝜖
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where the first equality follows from (7), and obtain the convergence by the same argument.

4 � Learned Radon Filters

In this section, we show the correspondence between the data-driven regularization 
of the inverse Radon transform and filtered back-projection. We therefore analyze the 
properties of an optimal filter for the regularized filtered back-projection (5), i.e., we 
want to find a function �∶ ℝ × [0, π] → ℂ such that

The function � now plays the role of the learned spectral coefficients. In particular, 
�(r, �) = |r| corresponds to an inversion, i.e., gn =

1

�n
 , and �(r, �) = 1 yields the adjoint 

operator, which corresponds to gn = �n . In analogy to the derivation of the optimal coeffi-
cients in Sect. 3, we first rewrite the L2-error of the difference of a single u ∈ L2(ℝ2) and 
the corresponding regularized reconstruction of the measurement f � ∈ L2(ℝ2) as follows 
(using the isometry property of the Fourier transform):

In the last line, we use the central slice theorem to get

where the latter equality holds since the range of the Radon transform is dense in 
L2(ℝ × [0, π]) and thus

Note that for the reconstruction operator to be well-defined and continuous on L2 , the fil-
ter function � has to be essentially bounded. With the same arguments used in Sect. 3 we 
derive

𝔼u,𝜈(‖u − R(f 𝛿; g)‖2)−𝔼u

�‖u0‖2
�
=
�
n

ΔnΠn

𝜎2
n
Πn + Δn

,

⩽ N
𝛿2

𝜎2
N

+
�
n>N

Πn ,

(16)� = argmin
�

�u,�(‖u − R(f �; �)‖2).

‖u − R(f �; �)‖2 = ∫
ℝ2

�F2-Du(�) − F2-DR(f
�; �)(�)�2 d�

= ∫
π

0
∫
ℝ

�r� �F2-Du(r�) − F2-DR(f
�; �)(r�)�2 drd�

= ∫
π

0
∫
ℝ

�r� ����F1-DAu(r, �) −
�(r, �)

�r� F1-Df
�(r, �)

����
2

drd�.

F2-Du(r�) = F1-DAu(r, �) and F2-DR(f
�; �)(r�) =

�(r, �)

|r| F1-Df
�(r, �),

AR(f �; �) = F −1
1-D

(
�

| ⋅ | ⋅ F1-Df
�

)
.
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with �(r, �) =
�(r,�)

|r|  , 

By the above formula we can restrict � and thus � to be real-valued, as adding an imagi-
nary component would always increase the expected value. Accordingly, the optimal filter 
is real-valued and given by

To fulfill the boundedness of � we assume that

as |r| ⟶ ∞ for every � ∈ [0, π] , which can be recognized as the obvious conditions of 
ground-truth data being smoother than noise on average. The expected error using the opti-
mal filter is then given by

Using the central slice theorem again we can further determine the expected smoothness 
Π̃(r, 𝜃) ∶= �

(||F1-DAR(f
𝛿; 𝜌)(r, 𝜃)||2

)
 of the reconstructions as

This reveals the analog to the smoothing effect obtained by the spectral reconstruction that 
was discussed in Sect. 3.2.

Remark 3  Similar to the spectral regularization, optimal filters can also be computed for a 
finite set of training data. Rewriting the empirical risk for input-output pairs {ui, f �,i}N

i=1
 as

And computing the optimality conditions for � yields

with

𝔼(‖u − R(f �; �)‖2) = ∫
π

0 ∫
ℝ

�r���1 − �(r, �)�2 Π(r, �) + ��(r, �)�2 Δ(r, �)� drd�

Π(r, �) = �

(||F1-DAu(r, �)
||2
)
, and Δ(r, �) = �

(||F1-D�(r, �)
||2
)
.

�(r, �) = |r| Π(r, �)

Π(r, �) + Δ(r, �)
.

Δ(r, �)

Π(r, �)|r| ⟶ ∞,

𝔼(‖u − R(f �; �)‖2) = ∫
π

0 ∫
ℝ

�r�Π(r, �)
�
1 −

Π(r, �)

Π(r, �) + Δ(r, �)

�
drd�.

Π̃(r, 𝜃) =

(
𝜌(r, 𝜃)

|r|
)2

�

(|||F1-Df
𝛿(r, 𝜃)

|||
2
)

=
Π(r, 𝜃)

Π(r, 𝜃) + Δ(r, 𝜃)
Π(r, 𝜃).

1

N

N�
i=1

(‖u − R(f �,i; �)‖2) = ∫
π

0 ∫
ℝ

�r���1 − �(r, �)�2 ΠN(r, �) + ��(r, �)�2 ΔN(r, �)

− 2(1 − �(r, �))�(r, �)ΓN
�
drd�.

(17)�
N
=

ΠN+ΓN

ΠN + ΔN + 2ΓN
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and

5 � Numerical Experiments with the Discretized Radon Transform

In this section, we support the theoretical results of the previous sections with numerical 
experiments.1

5.1 � Datasets

The following experiments are performed on a synthetic dataset and the LoDoPaB-CT 
dataset (cf. [23]). The synthetic dataset contains 32 000 images of random ellipses sup-
ported on a circle contained completely in the image domain (see Fig. 4 for an example). 
Each ellipse has a random width and height, and is roto-translated by a random distance 
and angle. All ellipses are completely contained within the image borders, and there may 
be an overlapping between two or more ellipses. We split the data into 64% training, 16% 
validation, and 20% test data. The LoDoPaB-CT dataset contains over 40 000 human chest 
scans and is split into 35 820 training, 3 522 validation, and 3 553 test images. For both 
datasets, we simulate sinograms as described in the following section and model noisy data 
by adding Gaussian noise with zero mean and variance �2 . In “Appendix A” we addition-
ally report results for uniformly distributed noise.

5.2 � Discretization and Optimization

We perform numerical experiments with the Radon transform for discrete data based on 
the Spline-0-Pixel-Model where we assume the image functions u ∈ L2(ℝ2) to be of the 
form

where I ∈ ℕ denotes the number of pixels in each direction, uij ∈ ℝ for each i, j < I and the 
0-spline �0 is defined as

ΠN(r, �) =
1

N

N∑
i=1

|F1-DAui(r, �)|2, ΔN(r, �) =
1

N

N∑
i=1

|F1-D�i(r, �)|2,

ΓN(r, �) =
1

2N

N∑
i=1

(
F1-DAui(r, �)F1-D�i(r, �) + F1-DAui(r, �)F1-D�i(r, �)

)
.

u(x, y) =

I−1∑
i,j=0

u(ij) �0

(
I

(
x −

i

I

))
�0

(
I

(
x −

j

I

))
for a.e. (x, y) ∈ ℝ2,

�0(t) =

{
1, if |t| ⩽ 1

2
,

0, otherwise.

1  Our code is available at
  https://​github.​com/​Alexa​nderA​uras/​conve​rgent-​data-​driven-​regul​ariza​tions-​for-​ct-​recon​struc​tion.

https://github.com/AlexanderAuras/convergent-data-driven-regularizations-for-ct-reconstruction
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Accordingly we have u(ij) = u

(
i

I
,
j

I

)
 , so with a slight abuse of notation we write u ∈ ℝI×I . 

Reformulating the Radon transform for this particular choice of input functions yields a 
finite linear operator (see e.g., [35] for a detailed derivation) and can thus be represented by 
a matrix A. For sufficiently small dimensions, the finite set of vectors un and vn is given by 
the SVD of A, more precisely A = VΣUT , where un and vn are the column vectors of the 
orthogonal matrices U and V and Σ is a diagonal matrix containing the singular values in 
the non-increasing order. Since the considered problem has finite dimensions, Assumption 
2 is always fulfilled. We still see a faster decay of ΠN compared to ΔN as is depicted in 
Fig. 1.

Since the computation of the SVD has high memory requirements and the matrix multi-
plication with U and VT is computationally expensive, this approach is only feasible for low 
resolution data. Using the fact that V is orthogonal, we see the connection to the continu-
ous optimization (16) by rewriting the regularized inversion operator as

where the division is to be interpreted element-wise, and where diag(Σ) returns the main 
diagonal of Σ.

As we will analyze in more detail below, the discretization of the Radon transform leads 
to (4) being incorrect for F  denoting the discrete Fourier transform. Thus, we will compare 
four different approaches in our numerical results. 

i)	 The spectral regularization (3) with coefficients computed according to the analytical 
solution (9).

ii)	 The spectral regularization (3) with coefficients optimized in a standard machine learn-
ing setting, i.e., initializing the parameters with zeros, partitioning the data into batches 
of 32 instances, and then using the PyTorch implementation of Adam (with default 
parameters except for a learning rate of 0.1) for optimization. Ideally, these results 
should be identical to i).

iii)	 The learned filtered back-projection (5) with coefficients computed according to the 
analytical solution (17), knowing that the resulting coefficient might not be optimal due 
to the aforementioned discretization error in (5). To partially compensate for this, we 
replaced the discretization of the ramp filter |r| by filter coefficients we optimized on 
clean data. For all non-zero noise levels we kept these pseudo-ramp filter coefficients 
from the no-noise baseline.

(18)R(f �; g
N
) = AT

(
V

g
N

diag(Σ)
VT

)
f � ,

Fig. 1   Comparison of coefficients ⟨u, un⟩ and ⟨�, vn⟩ with n = 5, 200, 4 000 for 64 × 64 ground truth images, 
93 × 256 sinograms, and noise level � = 0.005 . While the variance of the data-coefficients decreases with 
increasing n, the variance of the noise-coefficients is stable
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iv)	 The learned filtered back-projection (5) with coefficients that optimize 

where F denotes the discrete Fourier transform. In keeping with the results from 
Sect. 4, we only consider real-valued � . The optimization is done in the same way as 
described above for the SVD. We point out that for rotation invariant distributions, i.e., 
cases where the noise and data distributions are constant in the direction of the angles, 
the filter � can be chosen constant in the direction of the angles as well. By this the 
number of necessary parameters is equal to the number of positions s. We further note 
that due to the inevitable discretization errors, we cannot expect perfect reconstruc-
tions, not even for perfect measurements without noise.

We refer to Approaches ii) and iv) as learned and to Approaches i) and iii) as ana-
lytic and compare their behavior below. Although the discrete Radon transform A is an 
approximation of the continuous Radon transform (denoted by Â in the following), sev-
eral scaling factors have to be taken into account to relate the discrete regularization to a 
continuous regularization. We collect these factors in the following remark.

Remark 4  For data supported on the uniform square, we consider discretizations u ∈ ℝI×I 
and v ∈ ℝK×L of functions û and v̂ . Here I denotes the number of pixels in each direction, K 
denotes the number of equispaced angles in [0, π] , and L denotes the number of equispaced 
positions in 

�
−

√
2

2
,

√
2

2

�
 . Then, the following approximations hold for 

	 (i)	 the Radon transform and its adjoint: 

	 (ii)	 the SVD: 

where ûn , v̂n are normalized with respect to the L2-norm, and un , vn are normalized 
with respect to the Euclidean norm,

	 (iii)	 the data-driven (co-)variance terms: 

5.3 � Results

In the following, we present several numerical results for the approaches introduced in 
the previous section.

�
N
= argmin

�

1

N

N∑
i=1

‖‖‖‖‖
ui − AT

(
F−1�

N
F

)‖‖‖‖‖

2

,

Âû ≈ Au and Â∗v̂ ≈

√
2π

KL
ATv,

𝜎̂n ≈

�√
2π

KL
𝜎n, ûn ≈ I un, and v̂n ≈

�
KL√
2π

vn,

Π̂n =
Πn

I2
, Δ̂n =

√
2π

KL
Δn, and Γ̂n =

�√
2π

KL

Γn

I
.
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5.3.1 � Learned vs. Analytic

The loss as well as the PSNR- and SSIM-values obtained by the different approaches 
on the test dataset is documented in Table  1. Based on these results, we deduce that 
the SVD-based regularization performs better than the FFT-based regularization. In the 
SVD case we see that the results obtained by the analytic coefficients are still slightly 
better than the ones obtained by the learned coefficients. The opposite is true in the FFT 
case, where the analytic solution performs worse than the learned one. This had to be 
expected by the discretization errors that are made in the computation of the analytic 
optimum. Figure 2 shows the loss curves for both data-driven optimization approaches 
as well as the loss obtained by the analytically optimal filters. As expected for the SVD-
approach the learned loss converges to the analytic loss. On the other hand, the loss 
approximated with the analytic formula for the Fast-Fourier-approach is higher than the 
actual data-driven loss, which may again indicate that the optimization balances out the 
discretization errors. This gap between the continuous and discrete optima can also be 
seen in higher resolution data, as the comparison of the analytic filters to the learned 
filters in Fig.  3 shows. Based on these insights, we only show the results for analytic 
SVD-coefficients and learned FFT-filters in the following.

We further see that the obtained losses of both approaches are more similar the 
higher the noise level is which is also visible in the reconstructions (see Fig. 4). Here, 
we compare our two approaches to naïve reconstruction with filtered back-projection 
(FBP) and Tikhonov reconstruction, where the reconstruction operator is chosen indi-
vidually for each example with the discrepancy principle. The reconstruction examples 
also reveal the predicted oversmoothing effect for both approaches.

Table 1   Performance of the 
different approaches on test data 
for 64 × 64 ground truth images, 
93 × 256 sinograms, and different 
noise levels �

� = 0 � = 0.005 � = 0.01 � = 0.015

Loss (MSE)
 SVD analytic 6.5 × 10−12 6.7 × 10−4 1.2 × 10−3 1.7 × 10−3

 SVD learned 6.6 × 10−6 6.7 × 10−4 1.2 × 10−3 1.7 × 10−3

 FFT learned 6.2 × 10−4 8.7 × 10−4 1.3 × 10−3 1.7 × 10−3

 FFT analytic 6.1 × 10−4 1.1 × 10−3 1.9 × 10−3 2.5 × 10−3

PSNR
 SVD analytic 111.9 31.75 29.09 27.77
 SVD learned 51.83 31.74 29.94 27.71
 FFT learned 32.1 30.6 28.83 27.67
 FFT analytic 32.17 29.65 27.19 26

SSIM
 SVD analytic 1 0.832 0.744 3 0.684 6
 SVD learned 0.999 0.816 0.731 0.683
 FFT learned 0.992 0.837 0.747 0.683
 FFT analytic 0.923 0.901 0.811 0.729
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5.3.2 � Generalization to Different Resolutions

Since the operator we use in our experiments is discretized, the optimal coefficients (or 
filters, respectively) depend on the resolution of the operator and the corresponding 
data. However, both approaches offer ways to transfer coefficients optimized for a cer-
tain resolution to another resolution. One approach to generalize the learned SVD-based 
coefficients would be to resort to the classic linear regularization formulation (3) and 
retrieve a function g(�) by inter-/extrapolating the optimal values g(�n) = gn . A gener-
alization of the FFT-filters can be obtained in a similar way by interpolation of �(�, r) in 
the direction of the angles � and extrapolation in the direction of the frequencies r. Com-
paring the optimal coefficients obtained for different resolutions after rescaling them in 
accordance to Remark 4 (see Fig. 5 for SVD-coefficients and Fig. 6 for FFT-filters) we 
see that all curves behave similarly but there are obvious differences in the magnitude 
and location of the peak for different resolutions. While the optimal coefficients seem to 
converge in the domain of small singular values (or low frequencies, respectively), up to 
the resolutions we were able to compute, there is no obvious convergence visible for the 
domain of large singular values in the SVD-approach or the domain of high frequencies 
in the FFT-approach. Note that since high singular values correspond to low frequen-
cies, this reveals an opposite behavior of both approaches. Inspecting the curves for Π̂ 
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Fig. 2   Training loss curves for both optimization approaches and different noise levels � for 64 × 64 ground 
truth images and 93 × 256 sinograms. The scale on the right shows the loss obtained by the analytically 
computed filters
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that they are almost identical for high resolutions (see Fig. 5). Therefore, a convergence 
of the optimal spectral coefficients for higher resolutions seems probable.

5.4 � Generalization to Different Data Distributions

To evaluate how well the learned regularizers generalize between different datasets, we 
show empirical results on the LoDoPaB-CT data set in this section. Figures 7, 8, and 9 
compare the results obtained with a regularizer trained on LoDoPaB-Ct dataset with 
the ones obtained with a regularizer trained on the synthetic ellipse dataset. While both 
approaches clearly improve the reconstructions compared to the filtered back-projection, 
the effect of optimizing the regularizers on the correct dataset is still clearly visible.

6 � Conclusions and Outlook

In this work, we studied the behavior of data-driven linear regularization of inverse 
problems. For problems emerging from compact linear forward operators we showed 
that the optimal linear regularization can be computed analytically with the singular 
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Fig. 3   Comparison of analytic and learned Fast-Fourier-Filters for 256 × 256 ground truth images and 
365 × 256 sinograms (values for negative r are omitted due to symmetry)
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Fig. 4   Comparison of the ellipse reconstructions obtained by different approaches for different levels of 
additive gaussian noise. The first row ( � = 0 ) shows the reconstructed sinograms before adding noise
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Fig. 5   Comparison of the optimal spectral coefficients for different resolutions of input data noise level 
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value expansion of the operator. An analysis of the range conditions revealed an overs-
moothing effect depending on the noise level. We further confirmed that the optimal 
regularization is convergent under suitable assumptions. By deriving analogous results 
for the Radon transform, a specific non-compact linear operator, we could establish a 
connection to the well-known approach of filtered back-projection. Numerical experi-
ments with a discretized (and thus compact) version of the Radon transform verified our 
theoretical findings for compact operators. We additionally proposed a computationally 
more efficient discretization of the filtered back-projection using the FFT, which allows 
for finer discretizations of the operator. However, the filters obtained by this approach 
turned out to strongly deviate from the theoretical results for the continuous case. Espe-
cially in the regime of low noise, the discretization errors that come with this approach 
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Fig. 6   Comparison of the optimal FFT-filters for different angles and frequency resolutions for 256 × 256 
ground truth images with noise level � = 0.005 . Since the filters are not constant in the direction of the 
angles, multiple, slightly different curves correspond to one filter. The filters for higher spatial resolutions 
are cut off at frequency r = 183

Fig. 7   Example image from the LoDoPaB-CT dataset and the reconstructions of an uncorrupted sinogram 
by the different methods
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caused a heavy accuracy loss compared to the SVD-approach. Additionally, we empiri-
cally evaluated the convergence behavior of both regularization approaches for the dis-
crete Radon transform with an increasing level of discretization.

For the future, we would like to better understand the discretization error that arises 
from the discretization of the Radon transform and its impact on the computed filters. 
It would also be interesting to study more general nonlinear data-driven regularization 
methods and to find formulations and criteria for which one can prove that these meth-
ods are convergent regularizations, similar to the analysis carried out in Sect. 3.3.

Fig. 8   Comparison of LoDoPaB reconstructions obtained by SVD-approach, trained on different datasets, 
for different levels of additive Gaussian noise

Fig. 9   Comparison of LoDoPaB reconstructions obtained by FFT-approach, trained on different datasets, 
for different levels of additive Gaussian noise
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Appendix A Results for Uniformly Distributed Noise

In this Appendix, we present the results for the numerical experiments introduced in 
Sect.  5 with another noise model. More precisely, instead of using centered Gaussian 
noise with variance �2 , for a noise level 𝛿 > 0 , we corrupt the simulated sinograms with 
noise that is uniformly distributed in the interval [−

√
3�,

√
3�] . Based on the reconstruc-

tions shown in Figs. 10, 11, and 12 we deduce that the method is robust with respect to 
different noise models.

Fig. 10   Comparison of the ellipse reconstructions obtained by different approaches for different levels of 
additive uniform noise

Fig. 11   Comparison of LoDoPaB reconstructions obtained by SVD-approach, trained on different datasets, 
for different levels of additive uniform noise



	 Communications on Applied Mathematics and Computation

1 3

Acknowledgements  A part of this work was carried out while SK and MBu were with the Friedrich-Alex-
ander-Unversität Erlangen-Nürnberg. SK and MB acknowledge support from DESY (Hamburg, Germany), 
a member of the Helmholtz Association HGF. SK, AA, HB, MM, and MBu acknowledge the support of the 
German Research Foundation, projects BU 2327/19-1 and MO 2962/7-1. DR acknowledges support from 
the EPSRC grant EP/R513106/1. MBe acknowledges support from the Alan Turing Institute. This research 
utilized Queen Mary’s Apocrita and Andrena HPC facilities, supported by the QMUL Research-IT http://​
doi.​org/​10.​5281/​zenodo.​438045.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Data Availability  Further information on how to access the LoDoPaB-CT dataset can be found at https://​doi.​
org/​10.​1038/​s41597-​021-​00893-z. The generation of the synthetic data as well as the code for our experi-
ments can be found at https://​github.​com/​Alexa​nderA​uras/​conve​rgent-​data-​driven-​regul​ariza​tions-​for-​ctrec​
onstr​uction.

Compliance with Ethical Standards 

Conflict of Interest  On behalf of all authors, the corresponding author declares that there is no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322–
1332 (2018). https://​doi.​org/​10.​1109/​TMI.​2018.​27992​31

Fig. 12   Comparison of LoDoPaB reconstructions obtained by SVD-approach, trained on different datasets, 
for different levels of additive uniform noise

http://doi.org/10.5281/zenodo.438045
http://doi.org/10.5281/zenodo.438045
https://doi.org/10.1038/s41597-021-00893-z
https://doi.org/10.1038/s41597-021-00893-z
https://github.com/AlexanderAuras/convergent-data-driven-regularizations-for-ctreconstruction
https://github.com/AlexanderAuras/convergent-data-driven-regularizations-for-ctreconstruction
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TMI.2018.2799231


Communications on Applied Mathematics and Computation	

1 3

	 2.	 Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries 
for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

	 3.	 Alberti, G.S., De Vito, E., Lassas, M., Ratti, L., Santacesaria, M.: Learning the optimal Tikhonov reg-
ularizer for inverse problems. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Vaughan, 
J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 25205–25216. Curran 
Associates Inc., New York (2021)

	 4.	 Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. In: Modelling and Optimisation of Flows 
on Networks, pp. 1–155. Springer, Berlin (2013). https://​doi.​org/​10.​1007/​978-3-​642-​32160-3_1

	 5.	 Amos, B., Xu, L., Kolter, J.Z.: Input convex neural networks. In: ICML, pp. 146–155. PMLR (2017)
	 6.	 Arridge, S., Maass, P., Öktem, O., Schönlieb, C.-B.: Solving inverse problems using data-driven mod-

els. Acta Numer. 28, 1–174 (2019)
	 7.	 Aspri, A., Banert, S., Öktem, O., Scherzer, O.: A data-driven iteratively regularized Landweber itera-

tion. Numer. Funct. Anal. Optim. 41(10), 1190–1227 (2020)
	 8.	 Baguer, D.O., Leuschner, J., Schmidt, M.: Computed tomography reconstruction using deep image 

prior and learned reconstruction methods. Inverse Prob. 36(9), 094004 (2020). https://​doi.​org/​10.​1088/​
1361-​6420/​aba415

	 9.	 Bai, S., Kolter, J.Z., Koltun, V. Deep equilibrium models. In: Wallach, H., Larochelle, H., Beygel-
zimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Sys-
tems, vol. 32, Curran Associates, Inc., New York (2019)

	10.	 Barutcu, S., Aslan, S., Katsaggelos, A.K., Gürsoy, D.: Limited-angle computed tomography with deep 
image and physics priors. Sci. Rep. 11(1), 17740 (2021). https://​doi.​org/​10.​1038/​s41598-​021-​97226-2

	11.	 Bauermeister, H., Burger, M., Moeller, M.: Learning spectral regularizations for linear inverse prob-
lems. In: NeurIPS 2020 Workshop on Deep Learning and Inverse Problems (2020)

	12.	 Benning, M., Burger, M.: Modern regularization methods for inverse problems. Acta Numer. 27, 
1–111 (2018)

	13.	 Bora, A., Jalal, A., Price, E., Dimakis, A.G.: Compressed sensing using generative models. In: ICML, 
pp. 537–546. PMLR (2017)

	14.	 Chen, Y., Ranftl, R., Pock, T.: Insights into analysis operator learning: from patch-based sparse models 
to higher order MRFs. IEEE Trans. Image Process. 23(3), 1060–1072 (2014)

	15.	 Chen, H., Zhang, Y., Chen, Y., Zhang, J., Zhang, W., Sun, H., Lyu, Y., Liao, P., Zhou, J., Wang, G.: 
LEARN: learned experts’ assessment-based reconstruction network for sparse-data CT. IEEE Trans. 
Med. Imaging 37(6), 1333–1347 (2018)

	16.	 Chen, H., Zhang, Y., Kalra, M.K., Lin, F., Chen, Y., Liao, P., Zhou, J., Wang, G.: Low-dose CT with a 
residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 
(2017). https://​doi.​org/​10.​1109/​TMI.​2017.​27152​84

	17.	 Chung, J., Chung, M., O’Leary, D.P.: Designing optimal spectral filters for inverse problems. SIAM J. 
Sci. Comput. 33(6), 3132–3152 (2011)

	18.	 Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Kluwer, 
Dordrecht (1996)

	19.	 He, J., Wang, Y., Ma, J.: Radon inversion via deep learning. IEEE Trans. Med. Imaging 39(6), 2076–
2087 (2020)

	20.	 Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse prob-
lems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017). https://​doi.​org/​10.​1109/​TIP.​
2017.​27130​99

	21.	 Kobler, E., Effland, A., Kunisch, K., Pock, T.: Total deep variation for linear inverse problems. In: 
CVPR, pp. 7546–7555 (2020)

	22.	 Latorre, F., Ektekhari, A., Cevher, V. Fast and provable ADMM for learning with generative priors. In: 
Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in 
Neural Information Processing Systems, vol. 32, Curran Associates, Inc., New York (2019)

	23.	 Leuschner, J., Schmidt, M., Baguer, D.O., Maass, P.: LoDoPaB-CT, a benchmark dataset for low-
dose computed tomography reconstruction. Sci. Data. 8, 109 (2021). https://​doi.​org/​10.​1038/​
s41597-​021-​00893-z

	24.	 Leuschner, J., Schmidt, M., Ganguly, P.S., Andriiashen, V., Coban, S.B., Denker, A., Bauer, D., Had-
jifaradji, A., Batenburg, K.J., Maass, P., van Eijnatten, M.: Quantitative comparison of deep learning-
based image reconstruction methods for low-dose and sparse-angle CT applications. J. Imaging 7(3), 
44 (2021)

	25.	 Li, H., Schwab, J., Antholzer, S., Haltmeier, M.: NETT: solving inverse problems with deep neural 
networks. Inverse Prob. 36(6), 065005 (2020)

https://doi.org/10.1007/978-3-642-32160-3_1
https://doi.org/10.1088/1361-6420/aba415
https://doi.org/10.1088/1361-6420/aba415
https://doi.org/10.1038/s41598-021-97226-2
https://doi.org/10.1109/TMI.2017.2715284
https://doi.org/10.1109/TIP.2017.2713099
https://doi.org/10.1109/TIP.2017.2713099
https://doi.org/10.1038/s41597-021-00893-z
https://doi.org/10.1038/s41597-021-00893-z


	 Communications on Applied Mathematics and Computation

1 3

	26.	 Li, Y., Li, K., Zhang, C., Montoya, J., Chen, G.-H.: Learning to reconstruct computed tomography 
images directly from sinogram data under a variety of data acquisition conditions. IEEE Trans. Med. 
Imaging 38(10), 2469–2481 (2019). https://​doi.​org/​10.​1109/​TMI.​2019.​29107​60

	27.	 Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., Bach, F.: Supervised dictionary learning. In: NeurIPS 
(2008)

	28.	 Meinhardt, T., Moeller, M., Hazirbas, C., Cremers, D.: Learning proximal operators: using denoising 
networks for regularizing inverse imaging problems. In: ICCV, pp. 1781–1790 (2017)

	29.	 Moeller, M., Mollenhoff, T., Cremers, D.: Controlling neural networks via energy dissipation. In: 
ICCV, pp. 3256–3265 (2019)

	30.	 Riccio, D., Ehrhardt, M.J., Benning, M.: Regularization of inverse problems: deep equilibrium models 
versus bilevel learning. arXiv:​2206.​13193 (2022)

	31.	 Rick Chang, J., Li, C.-L., Poczos, B., Vijaya Kumar, B., Sankaranarayanan, A.C.: One network to solve 
them all—solving linear inverse problems using deep projection models. In: ICCV, pp. 5888–5897 
(2017)

	32.	 Romano, Y., Elad, M., Milanfar, P.: The little engine that could: regularization by denoising (RED). 
SIAM J. Imaging Sci. 10(4), 1804–1844 (2017)

	33.	 Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmenta-
tion. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and 
Computer-Assisted Intervention—MICCAI 2015, pp. 234–241. Springer, Cham (2015)

	34.	 Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205–229 (2009)
	35.	 Servieres, M.C.J., Normand, N., Subirats, P., Guedon, J.: Some links between continuous and discrete 

Radon transform. In: Fitzpatrick, J.M., Sonka, M. (eds.) Medical Imaging 2004: Image Processing, 
vol. 5370, pp. 1961–1971. SPIE, WA, United States. International Society for Optics and Photonics 
(2004). https://​doi.​org/​10.​1117/​12.​533472

	36.	 Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR, pp. 9446–9454 (2018)
	37.	 Wang, G., Ye, J.C., De Man, B.: Deep learning for tomographic image reconstruction. Nat. Mach. 

Intell. 2(12), 737–748 (2020). https://​doi.​org/​10.​1038/​s42256-​020-​00273-z
	38.	 Xiang, J., Dong, Y., Yang, Y.: FISTA-Net: learning a fast iterative shrinkage thresholding network for 

inverse problems in imaging. IEEE Trans. Med. Imaging 40(5), 1329–1339 (2021). https://​doi.​org/​10.​
1109/​TMI.​2021.​30541​67

	39.	 Xu, M., Hu, D., Luo, F., Liu, F., Wang, S., Wu, W.: Limited-angle x-ray CT reconstruction using image 
gradient �0-norm with dictionary learning. IEEE Trans. Radiat. Plasma Med. Sci. 5(1), 78–87 (2021). 
https://​doi.​org/​10.​1109/​TRPMS.​2020.​29918​87

	40.	 Zhang, M., Gu, S., Shi, Y.: The use of deep learning methods in low-dose computed tomography 
image reconstruction: a systematic review. Complex Intell. Syst.  8, 5545–5561 (2022). https://​doi.​org/​
10.​1007/​s40747-​022-​00724-7

	41.	 Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform 
manifold learning. Nature 555(7697), 487–492 (2018). https://​doi.​org/​10.​1038/​natur​e25988

Authors and Affiliations

Samira Kabri1   · Alexander Auras2 · Danilo Riccio3   · Hartmut Bauermeister2 · 
Martin Benning3,4 · Michael Moeller2 · Martin Burger1,5

 *	 Samira Kabri 
	 samira.kabri@desy.de

	 Alexander Auras 
	 alexander.auras@uni-siegen.de

	 Danilo Riccio 
	 s.d.riccio@qmul.ac.uk

	 Hartmut Bauermeister 
	 hartmut.bauermeister@uni-siegen.de

https://doi.org/10.1109/TMI.2019.2910760
http://arxiv.org/abs/2206.13193
https://doi.org/10.1117/12.533472
https://doi.org/10.1038/s42256-020-00273-z
https://doi.org/10.1109/TMI.2021.3054167
https://doi.org/10.1109/TMI.2021.3054167
https://doi.org/10.1109/TRPMS.2020.2991887
https://doi.org/10.1007/s40747-022-00724-7
https://doi.org/10.1007/s40747-022-00724-7
https://doi.org/10.1038/nature25988
http://orcid.org/0000-0003-0131-3933
http://orcid.org/0000-0002-8153-8640


Communications on Applied Mathematics and Computation	

1 3

	 Martin Benning 
	 m.benning@qmul.ac.uk

	 Michael Moeller 
	 michael.moeller@uni-siegen.de

	 Martin Burger 
	 martin.burger@desy.de

1	 Helmholtz Imaging, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, 
Germany

2	 Institute for Vision and Graphics, University of Siegen, Adolf‑Reichwein‑Straße 2a, 57076 Siegen, 
Germany

3	 School of Mathematical Sciences, Queen Mary University of London, Mile End Road, 
London E1 4NS, UK

4	 The Alan Turing Institute, British Library, 96 Euston Rd, London NW1 2DB, UK
5	 Fachbereich Mathematik, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany


	Convergent Data-Driven Regularizations for CT Reconstruction
	Abstract
	1 Introduction
	2 Related Work
	3 Supervised Learning of Spectral Regularizations
	3.1 Optimally Learned Spectral Regularization
	3.2 Range Conditions
	3.3 Convergence of the Regularization

	4 Learned Radon Filters
	5 Numerical Experiments with the Discretized Radon Transform
	5.1 Datasets
	5.2 Discretization and Optimization
	5.3 Results
	5.3.1 Learned vs. Analytic
	5.3.2 Generalization to Different Resolutions

	5.4 Generalization to Different Data Distributions

	6 Conclusions and Outlook
	Appendix A Results for Uniformly Distributed Noise
	Acknowledgements 
	References


