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We consider scattering processes where a quantum system comprises an inner subsystem and a boundary and
is subject to Haar-averaged random unitaries acting on the boundary-environment Hilbert space only. We show
that, regardless of the initial state, a single scattering event will disentangle the unconditional state (i.e., the
scattered state when no information about the applied unitary is available) across the inner subsystem-boundary
partition. Also, we apply Lévy’s lemma to constrain the trace norm fluctuations around the unconditional state.
Finally, we derive analytical formulas for the mean scattered purity for initial globally pure states and provide one
with numerical evidence of the reduction of fluctuations around such mean values with increasing environmental
dimension.
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I. TYPICAL STATES UNDER RESTRICTED
INTERACTIONS

Typicality arguments, based on Haar averages in the
high-dimensional limit, have been repeatedly advocated as a
plausible avenue to justify the second law and the ubiquity
of the thermal state [1–4]. Such arguments rely on averages
over Haar-distributed unitaries over a composite Hilbert space
Hσε = Hσ ⊗ Hε pertaining to a physical system σ interacting
with an environment ε (see the next section for a detailed defi-
nition of “Haar-distributed”). The typicality approach, closely
related to the general study of typical partial entropies [5,6],
does allow one to shed light on the general thermodynamic
behavior of quantum systems without getting bogged down in
unnecessary detail, and has been more recently extended to
other quantifiers as well, such as quantum coherence [7]. Be-
sides, typical entanglement and states play an important role
in quantum information science, both directly and through the
construction of related t designs, with applications to quan-
tum cryptography, teleportation thresholds, state estimation,
channel capacities, and randomized benchmarking [8–14].
Random unitaries, possibly under specific restrictions, have
also recently been applied to explore thermal behaviours in
many-body systems [15], with further applications to emer-
gent hydrodynamics [16,17], quantum chaos [18], and driven
systems [19–21].
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However, it must be noted that actual physical interactions
hardly ever comply with the notion of typicality set out above,
as they do not extend to the whole system-plus-environment
Hilbert space. It is therefore worthwhile to reconsider the
study of typical states and entropies by generalizing the
system or environment framework to one where the system
comprises an inner part with Hilbert space HI and a boundary
with Hilbert HB, and where only the latter interacts with
the environment, with Hilbert space HE , through a Haar-
distributed unitary over the space HB ⊗ HE , as per this sketch:

(
I• B•)

E•︸ ︷︷ ︸
U

.

Somewhat loosely, we refer to this framework of restricted,
“partial” mixing as “random scattering.” This framework will
allow us to inquire into how equilibration [22] and thermal-
ization play out for many-body systems with only a partial
interface interacting with the environment.

Notably, a setup similar to the above one plays a central
role in the seminal Hayden-Preskill model for information
retrieval from a black hole’s Hawking radiation [23]. Therein,
the internal dynamics of a black hole is modeled through
a random, Haar-distributed unitary acting only on two spe-
cific subsystems (which are maximally entangled with two
other reference systems). Building on previous work [10,11],
Hayden and Preskill make use of an upper bound constrain-
ing the trace distance between the averaged system reference
state and a product state, given in terms of dimensions and
inner state purity. Such structured black hole models, based
on the selective application of “pseudorandom” interactions,
are currently drawing substantial attention [24–27]. Strictly
related to these models is the study of “information scram-
bling” [29–31], which would be carried out by black holes
through random interactions. It is also worthwhile to mention
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that, in a similar vein, pseudorandom interactions are finding
application in other fundamental investigations, such as the
study of wormhole growth in the AdS/CFT correspondence
[28].

On a less extraordinary, and arguably more concrete, level,
our model of “buffered” random interactions would be rele-
vant at the mesoscopic scale, for nanowires [32] or quantum
dots in 2D structures [33,34], when the bulk’s and boundary’s
sizes become comparable and interactions with the environ-
ment are mediated by the latter (and, indeed, the relation
between quantum dots’ and black holes’ thermalization has
already been spotted [35]).

In this work, we determine the average state resulting from
a scattering event and show that it is always completely uncor-
related across the inner subsystem-boundary partition; also,
by applying a standard argument based on Lévy’s lemma, we
exponentially bound the fluctuations around such a mean state
for initial states that are separable across the inner subsystem-
boundary partition and for any initial state of the environment.
Next, we determine the average purity of the system (inner
plus boundary) state under Haar-averaged scattering interac-
tions for an initial global pure state, as well as for an initial
factorized state of the environment as a function of the initial
inner subsystem-boundary Schmidt coefficients and subsys-
tems’ dimensions alone.

The plan of the paper is as follows: in Sec. II we define
the random scattering process, set out the basic terminology,
and introduce some of the quantities adopted; in Sec. III we
determine the average unconditional state and study its fluc-
tuations for initially separable states; in Sec. IV we determine
the mean local purity of initially pure scattered states and, by
addressing numerically GHZ and W states, present evidence
that the fluctuations around such mean values shrink with
increasing environmental dimension; in Sec. V we draw some
conclusions; derivations and preliminary technical material
concerning Haar averages, Lévy’s lemma, and concentration
of measure are deferred to the Appendixes.

II. THE SCATTERING MAP

Let us consider the scattering map � sending the global ini-
tial state ρ, defined on the Hilbert space HI ⊗ HB ⊗ HE , into
the state of subsystem IB after a random scattering interaction
acting on subsystem BE alone:

�(ρ) = TrE

[∫
U

dU BE (II ⊗ UBE )ρ(II ⊗ UBE )†

]
, (1)

where the Haar average over the unitary group, denoted by∫
U dU BE , takes into account the lack of information about

the boundary-environment interaction in a random scattering
process. To emphasize the Haar averaging involved, we shall
also refer to the scattered system state as 〈ρIB〉 = �(ρ) in
what follows.

Let us recall that the Haar measure is the only left-invariant
measure on the unitary group (and, more generally, and up to
the more technical requirements of being finite on any com-
pact subset as well as inner and outer regular, on any locally
compact topological group [36]). In our integral notation, this
amounts to stating that, for any measurable subset S of the

unitary group U and any V ∈ U , one has∫
S

dU =
∫

VS
dU . (2)

Basic techniques for the evaluation of Haar averages are
sketched in Appendix A. The mathematical privilege of such a
measure is thus clear and has motivated its adoption in physics
to describe sets of random states since the late 1970s [1]. Yet
the physical and operational relevance of such an adoption is
less clear, and the remit of its applicability in practice is to
some degree questionable, which is precisely one of the main
motivations behind this paper.

As customary in this context, we shall adopt the purity
μ = Tr(ρ2) as an entropic measure. The purity is related to
the so-called linear entropy SL = (1 − μ), which can in turn
be derived from the von Neumann entropy SV = −Tr(ρ ln ρ)
through a Taylor expansion at lowest order in the quantum
state. At variance with the von Neumann entropy, the purity
is not endowed with a direct operational interpretation but is
much more expedient to evaluate and is still very effective
in characterizing the mixedness and thermal character of a
state, especially around its extremal values (1 for pure states
and 1/d for maximally mixed states, d being the system
dimension). It is easy to see directly from its definition that
the purity is a convex function on the set of quantum states.

In the following we will consider both the average scattered
state 〈ρIB〉 = �(ρ) as well as the average of the purity under
the Haar measure

〈μ(ρIB)〉 = TrIB

[∫
U

dU (TrE (II ⊗ U )ρ(II ⊗ U )†)2

]
. (3)

Both 〈ρIB〉 and 〈μ(ρIB)〉 can be evaluated exactly, and, as we
will see in the next sections, the fluctuations around them can
be bound by means of Lévy’s lemma.

Borrowing from well-established terminology in quantum
control theory, we will refer henceforth to the state 〈ρIB〉 as to
the “unconditional” state, which is prepared after a scattering
event when the interaction between boundary and environ-
ment is completely unknown, and thus Haar-distributed. The
unconditional state is an average of conditional states ρIB,
which would be prepared if information about the unitary
interaction were somehow retrieved. The purity distribution
of conditional states may be of interest too and will therefore
be considered in what follows.

III. THE UNCONDITIONAL STATE

Let us first analyze some remarkable properties of the
unconditional state, resulting from the Haar average, and
consider their thermodynamical implications. Throughout the
paper, we will use a convention such that the indices of all
matrices and coefficients will always follow the order in-
ner system-boundary-environment. Also, we shall set dX :=
dim(HX ).

A. A decoupling theorem

Quite remarkably, the scattering map of Eq. (1) has the
effect of totally suppressing any initial correlation between the
boundary and the inner part of the system.
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Proposition 1. For any given initial state ρ, the expectation
value over the Haar measure of the reduced IB state after the
scattering interaction defined in Eq. (1) is a factorized state:

〈ρIB〉 = ρI ⊗ IB

dB
, (4)

with

ρI = TrBE (ρ). (5)

The proof of this proposition is deferred to Appendix B.
Notice that the local parts of this unconditional state might

have been predicted by inspection, since the maximally mixed
state in the boundary is a result of the Haar-averaged mixing
with the environment, while the inner system is untouched
by the interaction, which thus will not alter its local state.
However, the complete destruction of correlations, regardless
of the dimensions involved, is not trivial. This proposition
complies with what is known from the study of Hawking
radiation [23], in a form and to a degree that will be made
more explicit in the next subsection.

Before moving on to quantifying the statistical deviation
from the unconditional state, it is worthwhile to say a few
words about its thermodynamic implications. If one takes
the stance that thermalization can be justified by localized,
yet unknown, surface interactions with an environment, this
statement shows that environmental thermalization must be
entirely mediated by the surface, i.e., it cannot act on the bulk
of a system directly through previous correlations, regardless
of the subsystem sizes at play.

B. Fluctuations around the unconditional state

Lévy’s lemma (see Appendix E for a discussion of its
derivation) is a powerful standard tool to characterize the
Haar-generated distribution of conditional states. Let us first
recall the lemma.

Lemma 1. (Lévy’s lemma) Given a Lipschitz function
f : Sd → R defined on the d-dimensional hypersphere Sd and
a point φ ∈ Sd chosen at random, the probability P for f to
deviate from its mean value is given by

P[| f (φ) − 〈 f 〉| � ε] � 2exp

(
− (d + 1)ε2

9π3η2

)
, (6)

where ε is an arbitrarily small positive constant and η is the
Lipschitz constant of f , i.e., η : | f (φ1) − f (φ2)| � η|φ1 −
φ2|, ∀(φ1, φ2) ∈ Sd .

The above lemma can be applied anytime one deals with
pure global quantum states which, for a Hilbert space of
dimension d , live on the surface of a (2d − 1)-dimensional
hypersphere, and is in fact key to thermodynamic typicality
arguments, as in [4]. In our case, though, the action of the
random, Haar-averaged unitaries is constrained to the BE
subspace, so we cannot apply the lemma directly.

Yet let us consider an initial state that is separable across
the inner-boundary sector, i.e., a state of the form

ρ =
∑

j

p jρI, j ⊗ ρBE , j (7)

=
∑

j,k

p j pBE , j,kρI, j ⊗ |ψBE , j,k〉〈ψBE , j,k |, (8)

where p j and pBE , j,k are positive probabilities adding up to
one when summed over j and k respectively, the ρ ′

I, js are
quantum states of the inner sector, and |ψBE , j,k〉 are unit vec-
tors of the Hilbert space HB ⊗ HE .

Observe now that, in general, the action of global, Haar-
averaged unitaries on any given pure state results in a
probability distribution of pure states that is independent from
the original pure state. Hence, the probability distribution
resulting from the action of Haar-averaged unitaries acting on
|ψBE , j,k〉 ∈ HB ⊗ HE in each element of the sum above does
not depend on j and k. Such a probability distribution may be
parametrized, for all j and k, on the (2dBdE − 1)-dimensional
hypersphere of pure states on HB ⊗ HE . Let φ denote the
variables that parametrize such a hypersphere, and |φ〉 the
corresponding pure state of the BE subsystem. Then note that
the conditional state resulting from the BE Haar average on
the state of Eq. (8) is characterized by a specific choice of the
φ variables, while j and k are just summed upon. Hence, the
initial state ρ is mapped into the following conditional state:

∑
j,k

p j pBE , j,kρI, j ⊗ |φ〉〈φ| = ρI ⊗ |φ〉〈φ|, (9)

where ρI =∑ j p jρI, j = TrBE (ρ). Then, as proved in detail in
Appendix F, Lévy’s lemma may be applied to obtain the fol-
lowing characterization of the distribution of trace distances
of the scattered states:

P

⎡
⎣‖ρIB,φ − �(ρ)‖1 � ε +

√
d2

B − 1

dE dB + 1

⎤
⎦ � 2e− dBdE ε2

18π3 .

(10)

Let us also recall that, by virtue of Helstrom’s theorem [37],
the minimum error probability in discriminating between two
quantum states ρ and σ , optimized over all POVMs, is given
by 1

2 − 1
4‖ρ − σ‖1. In this precise sense, states at vanish-

ing trace distance become operationally indistinguishable, an
argument that was also applied to justify perceived thermody-
namic regularities in the appropriate limit [4].

Inequality (10) applies only to separable inner-boundary
initial states (which also include cases where the environment
is initially completely uncorrelated, although this requirement
was not explicitly needed), as Lévy’s lemma does not allow
one to make any direct inference for initial entangled states,
where the effect of random unitaries on off-diagonal elements
must be taken into account. Under such a separability assump-
tion, the dimension of the inner Hilbert space does not play
any role in bounding the typical fluctuations. We will explore
more general initial states and address situations where the
inner Hilbert space does play a role by investigating the purity
distribution of the scattered states in the next section.

Notice also that, as typical in such cases [4], our argument
does not demonstrate an exponential shrinking of the devia-
tion from the average when the trace distance is arbitrarily
small, although this is recovered in the limit dE 
 dB: As
one should expect, concentration of measure occurs, even
under partial averaging, as the environment dimension grows,
regardless of the other dimensions involved.
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IV. MEAN SCATTERED PURITY
OF INITIAL PURE STATES

A scenario which is amenable to an insightful evaluation
is that of initial pure states. Denoting with {|i〉}, {|b〉}, and
{|e〉} the bases of choice in the spaces HI , HB, and HE , and
with ψibe arbitrary state vector coefficients, one would have
for pure states:

ρ = |
〉〈
| =
∑

ii′bb′ee′
ψibeψ

∗
i′b′e′ |ibe〉〈i′b′e′|. (11)

Through a rather lengthy calculation, reported in Appendix C,
one then obtains the following mean purity:

〈μ(ρIB)〉 = dB + dE

dBdE + 1
− dB

(
d2

E − 1
)

(dBdE )2 − 1
(� − �), (12)

where we have defined

� :=
∑

i,i′,(be),(be)′
i �=i′,(be)�=(be)′

|ψi(be)|2|ψi′(be)′ |2, (13)

� :=
∑

i,i′,(be),(be)′
i �=i′,(be)�=(be)′

ψi(be)ψ
∗
i′(be)ψi′(be)′ψ

∗
i(be)′ . (14)

Notice that, in general, (� − �) � 0.
When the system-environment state is factorized, a global

initial pure state may be written as (
∑M

i ci|Ii〉 ⊗ |Bi〉) ⊗ |E〉,
such that the only additional parameters at play, other than the
Hilbert spaces’ dimensions, are the Schmidt coefficients c′

is of
the IB initial state, on which the mean purity must necessarily
depend. As shown in Appendix D, the latter then reads

〈μ(ρIB)〉 = dB + dE

dBdE + 1
+ dB

(
1 − d2

E

)
(dBdE )2 − 1

∑
jl

j �=l

|c j |2|cl |2, (15)

where {c j} are the Schmidt coefficients of the initial IB state.
Clearly, Eq. (15) implies that, when the initial state of the

IB system is also separable, i.e., when |
〉 = |I〉 ⊗ |B〉 ⊗ |E〉,
one recovers the well-known result in the absence of inner
system-boundary separation [6,44]:

〈μ(ρIB)〉 = dB + dE

dBdE + 1
. (16)

This is actually true regardless of the initial correlations be-
tween boundary and environment. Indeed, when |
〉 = |I〉 ⊗
|BE〉 =∑dI

i=1

∑dBdE
j=1 γiτ j |�i〉|Tj〉:

� − � =
∑
ii′ j j′

[|γiτ j |2|γi′τ j′ |2 − γiτ jγ
∗
i′ τ

∗
j γi′τ j′γ

∗
i τ ∗

j′ ]

=
∑
ii′ j j′

[|γiτ j |2|γi′τ j′ |2 − |γiτ j |2|γi′τ j′ |2]

= 0, (17)

so that Eq. (12) reduces to the standard bipartite system-
environment case.

If, on the other hand, the initial inner system-boundary
state is maximally entangled, assuming, as is reasonable, dB �
dI , one can insert c j = 1/

√
dB ∀ j to obtain, from Eq. (15), the

mean purity

〈μ(ρIB)〉 =
(
d2

B − 1
)
dE + d2

E − 1(
d2

Bd2
E − 1

) , (18)

which, in the limit dE → ∞, yields 〈μ(ρIB)〉 = 1/d2
B: the

boundary’s dimension constrains the equilibrium mean purity
to a value higher than the minimum value 1/(dI dB).

This corresponds to the fact that full mixing (and, in set-
tings where the total energy is set, full thermalization) cannot
be achieved via interaction with a boundary, unless further
boundary-inner subsystem interactions are also taken into
account.

The fundamental difference between our scattering model
and the conventional scenario in which the whole system
interacts with an environment lies in the fact that in the latter
case the expectation value of the purity is independent of the
initial state, while in the former case, in general, this is clearly
not true. This is the case even in the limit of infinite dimension
of the environment:

lim
dE →∞

〈μ(ρIB)〉 = 1

dB
(1 − � + �). (19)

Here Lévy’s lemma cannot be applied directly to bound the
fluctuations around these mean values, as the random unitary
transformations do not in general result in a state distribution
that can be parametrized on a hypersphere. At variance with
the case considered in Sec. III B, in fact, the initial state is
in this case not separable: nonvanishing off-diagonal entries
in an entangled basis prevent the simple decomposition and
parametrization that was possible as a consequence of apply-
ing the Haar average on the state of Eq. (8). However, we have
checked numerically the validity of Eqs. (12) for initial GHZ
and W states. For N qubits, these two classes of states, which
are important for the study of multipartite entanglement [38],
are defined as (note that these states describe both system and
environment)

|GHZ〉N = 1√
2

(|0〉⊗N + |1〉⊗N ), (20)

|W 〉N = 1√
N

(|10 . . . 0〉 + |01 . . . 0〉 + · · · + |00 . . . 1〉).

(21)

Defining ρGHZ = |GHZ〉〈GHZ|N and ρW = |W 〉〈W |N , a direct
calculation leads to the following mean scattered purities:

〈
μ
(
ρGHZ

IB

)〉 = dB + dE

dBdE + 1
− 1

2

dB
(
d2

E − 1
)

(dBdE )2 − 1
,

〈
μ
(
ρW

IB

)〉 = dB + dE

dBdE + 1
− 2NI (N − NI )

N2

dB
(
d2

E − 1
)

(dBdE )2 − 1
,

(22)

where D = dI dBdE = 2N [here the X subsystem comprises
NX = log2(dX ) qubits]. Interestingly, the average scattered
purity of W states is affected by the inner subsystem dimen-
sion. Also, it can be seen that the average purity of initial W
states is larger than the GHZ one (for given dB and dE ) for
all NI other than for NI = N/2 (in which case they are equal),
since 2NI (N − NI )/N2 � 1/2.
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FIG. 1. Purity of the state resulting from a random scattering boundary-environment interaction for [see Eqs. (22) and (23)] (top left) ρW ,
(top right) ρGHZ, (bottom left) ρ̃W , and (bottom right) ρ̃GHZ initial states. Each value on the x axis labels a different UBE random extraction.
The straight horizontal lines in the plots represent the expected values of the purity, computed with Eqs. (22) and 23, where in (a) and (b)
dI = dB = 2, whereas in (c) and (d) dI = 2, dB = 4.

We have also considered the case where three-qubit GHZ
and W states interact with an NE = N − 3 qubit environ-
ment prepared in a fiducial state ρ̃GHZ := |GHZ〉〈GHZ|3 ⊗
|0〉〈0|⊗(N−3)

E , ρ̃W := |W 〉〈W |3 ⊗ |0〉〈0|⊗(N−3)
E , finding〈

μ
(
ρ̃GHZ

IB

)〉 = 〈
μ
(
ρGHZ

IB

)〉
,

〈
μ
(
ρ̃W

IB

)〉 = dB + dE

dBdE + 1
− 4

9

dB
(
d2

E − 1
)

(dBdE )2 − 1
. (23)

Note that these formulas apply to both NI = 1, NB = 2 and
to NI = 2, NB = 1, since the Schmidt coefficients across the
inner boundary partition are the same in both setups.

The results of the numerical analyses [39] are shown in
Fig. 1. In the top row, we simulated 500 scattering processes of
two-qubit GHZ and W states [Eqs. (20)]. For each scattering,
a unitary matrix of dimension 2(NB+NE ) is drawn at random ac-
cording to the Haar measure, tensored with the identity on the
inner qubit, and applied to the global (I + B + E) state. The
resulting state is then reduced by tracing out the environment,
and the purity of the reduced (I + B) state is computed. This
is repeated for different dimensions dE of the environment. In

the bottom row, the same process is applied to a global state
composed of three-qubit GHZ and W states tensored with an
environment of the form |0〉〈0|⊗NE

E . As can be appreciated in
the figure, the fluctuations around the expected value of μ are
quite large for an environment composed of NE = 1, NE = 2
qubits, but are almost completely damped for NE = 7.

V. CONCLUSIONS

Summing up, we have considered a scattering scenario
where random unitary transformations act jointly on an envi-
ronment and a boundary subsystem rather than on the whole
system, which comprises an inner subsystem too, and derived
the following:

(1) A proof that any single, Haar-distributed scattering
event is able to disentangle completely boundary and inner
subsystems.

(2) A proof that, for initially separable inner-boundary
states and large enough environments, the conditional scat-
tered states concentrate exponentially in trace norm around
the average conditional state, by virtue of Lévy’s lemma.
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(3) An analytical formula for the mean purity of initially
pure scattered states in terms of the subsystems’ dimensions
and initial state’s coefficients.

(4) An analytical formula for the mean scattered purity of
initially globally pure states uncorrelated with the environ-
ment, in terms of the Schmidt coefficients of the initial state.

As well, by addressing initial GHZ and W states, we have
provided numerical evidence for the concentration of measure
of scattered purities with increasing environmental dimension.

Two main traits of random scattering interactions may
be inferred from our analysis and are worth emphasizing:
(1) concentration of measure—and, with it, the typicality
approach it entails—does not require interactions involving
the whole system, as can be seen by noting that Eq. (10)
implies exponential concentration in trace distance for any

dB in the limit dE → ∞; (2) full thermalization (in the sense
of attaining the maximally mixed state), however, cannot be
achieved by partial interactions, as indicated by the dE → ∞
limit of Eq. (18), where the mean purity is lower bounded by
the boundary dimension.

Our approach and findings are a step towards a general-
ized study of thermalization and equilibration for structured
systems and restricted interactions and may be of interest to
quantum thermodynamics approaches based on typicality, to
their application to mesoscopic conductors, as well as to other
fundamental investigations, such as the study of black hole
entropies. Some of these generalizations will require the ex-
tension of our results for typical purities to initial mixed states,
allowing one to take into account more general situations,
such as uncorrelated environments in thermal Gibbs states.

APPENDIX A: INTEGRALS OVER THE UNITARY GROUP

Here we just summarize the results of [42], which are relevant for the purposes of our model.
The maps (1) and (3) involve the calculation of integrals of the form∫

U
dU [U ∗

i, jUk,l ],
∫

U
dU
[
U ∗

i1, j1U
∗
i2, j2Uk1,l1Uk2,l2

]
, (A1)

where
∫

U means integrating over the Haar measure. Integrals of this kind can be tackled using Schur’s lemma (see, e.g., [43,44]),
but here we follow the, somewhat easier, approach described in [42].

In general, for some degrees of the polynomials p, q in U ∗ and U , one wants to compute

∫
U

dU
[
U ∗

i1, j1 . . .U ∗
ip, jp

Uk1,l1 . . .Ukq,lq

] =
∫

U
dU

[
p∏

a=1

U ∗
ia, ja

q∏
b=1

Ukb,lb

]
≡
∫

U
dU
[
U ∗

IpJp
UKqLq

] ≡ 〈Ip, Jp|Kq, Lq〉, (A2)

where we have defined Xp = (x1, x2, . . . , xp). It is shown in [42] that the only nonzero integrals are the ones in which the degrees
are such that p = q (thus we will drop this index), K = I and L = JQ, where JQ represents any permutation Q of the p indices in
the set J = ( j1 j2 . . . jp) [i.e., JQ = ( jQ(1) jQ(2) . . . jQ(p) )]:

〈Ip, Jp|Kq, Lq〉 = 〈I, J|I, JQ〉. (A3)

When p = 1 ∫
U

dU [U ∗
i, jUk,l ] =

∫
U

dU [U ∗
i, jUi, j] = 〈i, j|i, j〉 = 1

d
, (A4)

where d is the dimension of U .
When p = 2, the nonzero integrals are the following:

(i1 �= i2, j1 �= j2) :
∫

U
dU
[
U ∗

i1, j1U
∗
i2, j2Ui1, j1Ui2, j2

] = 1

d2 − 1
; (A5)

(i1 �= i2, j1 �= j2) :
∫

U
dU
[
U ∗

i1, j1U
∗
i2, j2Ui1, j2Ui2, j1

] = − 1

d (d2 − 1)
; (A6)

(i1 = i2, j1 �= j2) :
∫

U
dU
[
U ∗

i1, j1U
∗
i1, j2Ui1, j1Ui1, j2

] = 1

d (d + 1)
,∫

U
dU
[
U ∗

i1, j1U
∗
i1, j2Ui1, j2Ui1, j1

] = 1

d (d + 1)
; (A7)

(i1 �= i2, j1 = j2) :
∫

U
dU
[
U ∗

i1, j1U
∗
i2, j1Ui1, j1Ui2, j1

] = 1

d (d + 1)
; (A8)

(i1 = i2, j1 = j2) :
∫

U
dU
[
U ∗

i1, j1U
∗
i1, j1Ui1, j1Ui1, j1

] = 2

d (d + 1)
. (A9)
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Knowing how to deal with this kind of integrals allows one to compute relevant quantities such as the mean reduced state ρS

of a bipartite system-environment (SE ) density matrix:

ρS = TrE (〈ρSE 〉H ) = TrE

{∫
U

dU [UρSEU †]

}

= TrE

⎧⎨
⎩
∫

U
dU

dS∑
acge=1

dS∑
ik=1

dE∑
bdh f =1

dE∑
jl=1

U(ab)(cd )U
∗
(e f )(gh)ψi jψ

∗
kl |ab〉〈cd| · |i j〉〈kl| · |gh〉〈e f |

⎫⎬
⎭

= TrE

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dS∑
ikae=1

dE∑
jlb f =1

ψi jψ
∗
kl

∫
U

dU [U(ab)(i j)U
∗
(e f )(kl )]︸ ︷︷ ︸

= 1
dS dE

δab
e f δ

i j
kl

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= TrE

⎧⎨
⎩ 1

dSdE

∑
i j

|ψi j |2
dS∑

a=1

dE∑
b=1

|ab〉〈ab|
⎫⎬
⎭ = 1

dSdE

dE∑
ξ=1

〈ξ |
dS∑

a=1

dE∑
b=1

|ab〉〈ab| · |ξ 〉 = 1

dS

dS∑
a=1

|a〉〈a|. (A10)

APPENDIX B: PROOF OF PROPOSITION 1

Proof. Due to the linearity of averaging and partial tracing, it will suffice to prove this statement for initially pure states.
So, substituting Eq. (11) into Eq. (1) and expressing the scattering unitaries in terms of their components in the BE basis,
UBE =∑dB

i,k=1

∑dE
j,l=1 U(i j)(kl )|i j〉〈kl|, yields

�(ρIBE ) = TrE

[∫
U

dU (II ⊗ UBE )ρIBE (II ⊗ UBE )†

]

=
dE∑

ξ=1

〈ξ |
∫

U
dU

∑
jklm
mnop

∑
sbe

s′b′e′

U(i j)(kl )ψsbe|i j〉〈kl|sbe〉〈s′b′e′|mn〉〈op|ψ∗
s′b′e′U ∗

(op)(mn)|ξ 〉

=
dE∑

ξ=1

∑
jklm
mnop

∑
sbe

s′b′e′

ψsbeψ
∗
s′b′e′ 〈ξ |i j〉〈kl|sbe〉〈s′b′e′|mn〉〈op|ξ 〉︸ ︷︷ ︸

δ
ξ
j δ

k
bδl

eδ
m
b′ δm

e′ δ
ξ
o

∫
U

dU [U ∗
(op)(mn)U(i j)(kl )]

=
dE∑

ξ=1

∑
sbe

s′b′e′

∑
io

ψsbeψ
∗
s′b′e′ |si〉〈s′o|

∫
U

dU [U ∗
(oξ )(b′e′ )U(iξ )(be)] =

dE∑
ξ=1

∑
sbe

s′b′e′

∑
io

ψsbeψ
∗
s′b′e′ |si〉〈s′o| 1

dBdE
δo

i δ
be
b′e′

= 1

dBdE

∑
ξss′bei

ψsbeψ
∗
s′be|si〉〈s′i| =

∑
ss′be

ψsbeψ
∗
s′be|s〉〈s′| ⊗ 1

dB

dB∑
i=1

|i〉〈i| = ρI ⊗ ρB, (B1)

where for the fourth equality we have used the results of Appendix A. �

APPENDIX C: EXPECTATION VALUE OF THE PURITY

Here we explicitly show how to get to Eq. (12). Substituting Eq. (11) into Eq. (3) and expressing the scattering unitaries in
terms of their components in the BE basis, UBE =∑dB

i,k=1

∑dE
j,l=1 U(i j)(kl )|i j〉〈kl|:

〈μ(ρIB)〉 = TrIB

{∫
U

dU [TrE ((II ⊗ UBE )ρIBE (II ⊗ UBE )†)]2

}

=
∫

U
dU

∑
γ γ ′ββ ′ξξ ′

〈(γ β )ξ |
∑
ibe

i′b′e′

∑
jklm
nopq

ψibeψ
∗
i′b′e′U( jk)(lm)U

∗
(pq)(no)| jk〉〈lm|ibe〉〈i′b′e′|no〉〈pq|(γ ′β ′)ξ 〉〈(γ ′β ′)ξ ′|

×
∑
i2b2e2

i3b3e3

∑
rstu
vwxy

ψi2b2e2ψ∗
i3b3e3U(rs)(tu)U

∗
(xy)(vw)|rs〉〈tu|i2b2e2〉〈i3b3e3|vw〉〈xy|(γ ′β ′)ξ ′〉
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TABLE I. Decomposition of I into a sum of the nonzero integrals (A5)–(A9). In the second to fourth columns, each of these factors is
multiplied by their multiplicity

∑
n0n1n2n3

I (ξ �= ξ ′) II (β �= β ′) III (βξ = β ′ξ ′)

n0 = n1 �= n2 = n3 dBdE (dE − 1) (A5) dBdE (dB − 1) (A6) dBdE (A7)
n0 = n3 �= n1 = n2 dBdE (dE − 1) (A6) dBdE (dB − 1) (A5) dBdE (A7)
n0 = n1 = n2 = n3 dBdE (dE − 1) (A8) dBdE (dB − 1) (A8) dBdE (A9)

=
∑

γ γ ′ββ ′ξξ ′

∑
beb′e′

b2e2b3e3

ψγ beψ
∗
γ ′b′e′ψγ ′b2e2ψ∗

γ b3e3

∫
U

dU [U ∗
(β ′ξ )(b′e′ )U

∗
(βξ ′ )(b3e3 )U(βξ )(be)U(β ′ξ ′ )(b2e2 )]

≡ I + J, (C1)

where we have split the sum into two components:

I :=
∑

γ ββ ′ξξ ′

∑
n0n1n2n3

ψγ n0ψ
∗
γ n1

ψγ n2ψ
∗
γ n3

∫
U

dU
[
U ∗

(β ′ξ )n1
U ∗

(βξ ′ )n3
U(βξ )n0U(β ′ξ ′ )n2

]
,

J :=
∑

γ γ ′ββ ′ξξ ′
(γ �=γ ′ )

∑
n0n1n2n3

ψγ n0ψ
∗
γ ′n1

ψγ ′n2ψ
∗
γ n3

∫
U

dU
[
U ∗

(β ′ξ )n1
U ∗

(βξ ′ )n3
U(βξ )n0U(β ′ξ ′ )n2

]
. (C2)

In the above equalities we have also shortened the notation, merging the boundary and environment indices pertaining to both
the coefficients of |
〉 and U into a single one. Let us take care of I first:

I =
∑
γ βξξ ′
ξ �=ξ ′

∑
n0n1n2n3

ψγ n0ψ
∗
γ n1

ψγ n2ψ
∗
γ n3

∫
U

dU
[
U ∗

(βξ )n1
U ∗

(βξ ′ )n3
U(βξ )n0U(βξ ′ )n2

]
︸ ︷︷ ︸

=:I(ξ �=ξ ′ )

+
∑

γ ββ ′ξ
β �=β ′

∑
n0n1n2n3

ψγ n0ψ
∗
γ n1

ψγ n2ψ
∗
γ n3

∫
U

dU
[
U ∗

(β ′ξ )n1
U ∗

(βξ )n3
U(βξ )n0U(β ′ξ )n2

]
︸ ︷︷ ︸

=:II(β �=β ′ )

+
∑
γ βξ

∑
n0n1n2n3

ψγ n0ψ
∗
γ n1

ψγ n2ψ
∗
γ n3

∫
U

dU
[
U ∗

(βξ )n1
U ∗

(βξ )n3
U(βξ )n0U(βξ )n2

]
︸ ︷︷ ︸

=:III(βξ=β ′ξ ′ )

. (C3)

We should now further decompose the sums above to get to a sum of integrals like Eqs. (A5)–(A9). Writing it explicitly would
be rather unmanageable, though. Arguably the best way to work it out is to group the decomposition into a table. Using Table I,
after a little bookkeeping we obtain

I = (d (dE − 1) + d (dB − 1))

⎛
⎜⎜⎝∑

n0n2γ
n0 �=n2

∣∣ψγ n0

∣∣2∣∣ψγ n2

∣∣2
(d2 − 1)

+
∑
n0γ

∣∣ψγ n0

∣∣2∣∣ψγ n0

∣∣2
d (d + 1)

−
∑

n0n2γ
n0 �=n2

∣∣ψγ n0

∣∣2∣∣ψγ n2

∣∣2
d (d2 − 1)

⎞
⎟⎟⎠

+ 2d

⎛
⎜⎜⎝∑

n0n2γ
n0 �=n2

∣∣ψγ n0

∣∣2∣∣ψγ n2

∣∣2
d (d + 1)

+
∑
n0γ

∣∣ψγ n0

∣∣2∣∣ψγ n0

∣∣2
d (d + 1)

⎞
⎟⎟⎠ (C4)

with d = dE dB.
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We can do exactly the same thing with J . First, decompose the sum as in Eq. (C3):

J =
∑
γ γ ′

γ �=γ ′

∑
βξξ ′
ξ �=ξ ′

∑
n0n1n2n3

ψγ n0ψ
∗
γ ′n1

ψγ ′n2ψ
∗
γ n3

∫
U

dU
[
U ∗

(βξ )n1
U ∗

(βξ ′ )n3
U(βξ )n0U(βξ ′ )n2

]
︸ ︷︷ ︸

I(ξ �=ξ ′ )

+
∑
γ γ ′

γ �=γ ′

∑
ββ ′ξ
β �=β ′

∑
n0n1n2n3

ψγ n0ψ
∗
γ ′n1

ψγ ′n2ψ
∗
γ n3

∫
U

dU
[
U ∗

(β ′ξ )n1
U ∗

(βξ )n3
U(βξ )n0U(β ′ξ )n2

]
︸ ︷︷ ︸

II(β �=β ′ )

+
∑
γ γ ′

γ �=γ ′

∑
βξ

∑
n0n1n2n3

ψγ n0ψ
∗
γ ′n1

ψγ ′n2ψ
∗
γ n3

∫
U

dU
[
U ∗

(βξ )n1
U ∗

(βξ )n3
U(βξ )n0U(βξ )n2

]
︸ ︷︷ ︸

III(βξ=β ′ξ ′ )

, (C5)

and then use Table I [the integrals are the same of Eq. (C3)] to obtain, after some algebra,

J = d (dE − 1)

⎛
⎜⎜⎜⎝
∑
γ γ ′

γ �=γ ′

∑
n0n2

n0 �=n2

ψγ n0ψ
∗
γ ′n0

ψγ ′n2ψ
∗
γ n2

(d2 − 1)
−
∑
γ γ ′

γ �=γ ′

∑
n0n2

n0 �=n2

∣∣ψγ n0

∣∣2∣∣ψγ ′n2

∣∣2
d (d2 − 1)

+
∑
n0γ γ ′
γ �=γ ′

∣∣ψγ n0

∣∣2∣∣ψγ ′n0

∣∣2
d (d + 1)

⎞
⎟⎟⎟⎠

+ d (dB − 1)

⎛
⎜⎜⎜⎝
∑
γ γ ′

γ �=γ ′

∑
n0n2

n0 �=n2

∣∣ψγ n0

∣∣2∣∣ψγ ′n2

∣∣2
(d2 − 1)

−
∑
γ γ ′

γ �=γ ′

∑
n0n2

n0 �=n2

ψγ n0ψ
∗
γ ′n0

ψγ ′n2ψ
∗
γ n2

d (d2 − 1)
+
∑

n0γ γ ′
γ �=γ ′

∣∣ψγ n0

∣∣2∣∣ψγ ′n0

∣∣2
d (d + 1)

⎞
⎟⎟⎟⎠

+ 1

(d + 1)

⎛
⎜⎜⎜⎝
∑
γ γ ′

γ �=γ ′

∑
n0n2

n0 �=n2

ψγ n0ψ
∗
γ ′n0

ψγ ′n2ψ
∗
γ n2

∑
γ γ ′

γ �=γ ′

∑
n0n2

n0 �=n2

∣∣ψγ n0

∣∣2∣∣ψγ ′n2

∣∣2 + 2
∑
n0γ γ ′
γ �=γ ′

∣∣ψγ n0

∣∣2∣∣ψγ ′n0

∣∣2
⎞
⎟⎟⎟⎠. (C6)

Putting it all together and rearranging a bit:

I + J = dE + dB

d + 1

⎛
⎜⎜⎜⎝
∑
γ n0n2
n0 �=n2

∣∣ψγ n0

∣∣2∣∣ψγ n2

∣∣2 +
∑
γ n0

∣∣ψγ n0

∣∣2∣∣ψγ n0

∣∣2 +
∑
γ γ ′n0
γ �=γ ′

∣∣ψγ n0

∣∣2∣∣ψγ ′n0

∣∣2
⎞
⎟⎟⎟⎠

=
[

ddB − dE

(d − 1)(d + 1)

]∑
γ γ ′

γ �=γ ′

∑
n0n2

n0 �=n2

∣∣ψγ n0

∣∣2∣∣ψγ ′n2

∣∣2 +
[

ddE − dB

(d − 1)(d + 1)

]∑
γ γ ′

γ �=γ ′

∑
n0n2

n0 �=n2

ψγ n0ψ
∗
γ ′n0

ψγ ′n2ψ
∗
γ n2

. (C7)

The calculation to get to the final expression of the average purity is rather tedious but quite trivial. It only involves some
algebra and some care in grouping the right terms to form the trace of the global state. Ultimately, this leads to

〈μ(ρIB)〉 = dB + dE

dE dB + 1
+ dB

(
1 − d2

E

)
(dE dB)2 − 1

∑
γ γ ′

γ �=γ ′

∑
n0n2

n0 �=n2

(∣∣ψγ n0

∣∣2∣∣ψγ ′n2

∣∣2 − ψγ n0ψ
∗
γ ′n0

ψγ ′n2ψ
∗
γ n2

)
. (C8)

�

APPENDIX D: MEAN PURITY OF INITIALLY UNCORRELATED PURE STATES

Proof. The initial state ρIBE = |
〉〈
| is such that

|
〉 = |
IB〉 ⊗ |
E 〉 =
(

M∑
i

ci|Ii〉 ⊗ |Bi〉
)

⊗
⎛
⎝∑

j

ξ j |Ej〉
⎞
⎠, (D1)
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where M = min((dB, dI ). By plugging the coefficients of the above equation into Eq. (12), we have that the last term in the sum
must (�) be null (this is due to the fact that ψi(be) ∝ δib, because of the Schmidt decomposition). So we have

� − � =
∑

i,i′,(be),(be)′
i �=i′,(be)�=(be)′

[|ψi(be)|2|ψi′(be)′ |2 − ψi(be)ψ
∗
i′(be)ψi′(be)′ψ

∗
i(be)′ ] =

∑
jklm
j �=l

|c jξk|2|clξm|2

=
∑

jl
j �=l

|c j |2|cl |2
∑

k

|ξk|2
∑

m

|ξm|2 =
∑

jl
j �=l

|c j |2|cl |2, (D2)

where the last equality follows from the fact that the reduced state of the environment is trace-one. Hence when the initial state
is separable such as is Eq. (D1), the resulting purity is

〈μ(ρIB)〉 = dB + dE

dBdE + 1
+ dB

(
1 − d2

E

)
(dBdE )2 − 1

∑
jl

j �=l

|c j |2|cl |2. (D3)

�

APPENDIX E: MEASURE CONCENTRATION
AND LÉVY’S LEMMA

d-dimensional pure quantum states can be described as
points on the surface of a (2d − 1)-dimensional unit sphere.
This can be realized by expressing a generic state in com-
plex coordinates |ψ〉 = (z1, z2, . . . , zd ), where z j ∈ C, for j =
1, 2, . . . , d , with

∑d
j |z j |2 = 1 and writing the coordinates in

real components z j = x j + iy j , so that
∑d

j x2
j +∑d

j y2
j = 1.

Heuristically, the phenomenon of measure concentration
on a unit sphere S(2d−1) in R2d translates to the fact that almost
all surface measure of the sphere is concentrated around the
equator, for any equator. That is, for any random choice of a
coordinate x j , consider an equator of width ε,

Eε :=
{

x j ∈ S(2d−1) | d (x j, 0) � ε

2

}
, (E1)

where d (x, y) = arccos〈x, y〉 ∀x, y ∈ S(2d−1) is the angular
distance. Provided a normalized surface measure ξ (S(2d−1)) =
1, it can be shown that

ξ (Eε ) � 1 − e(−kdε2 ), (E2)

where k > 0 is some constant.
Measure concentration is at the basis of Lévy’s lemma

(Sec. IV), as we show in the following. The kind of Lévy’s
lemma we will sketch the derivation of here is slightly dif-
ferent from the one applied in the next section, but the two
formulations are strictly related. For space reasons, not all the
details of the calculations will be shown; the interested reader
can find them in [45].

To proceed, we first need to define two quantities:
Definition 1. (Median): Let X be a metric space and

f : X → R a continuous function. A median M f is defined
by

ξ{x ∈ X | f (x) � M f } = 1
2 . (E3)

Definition 2. (Concentration function): Let X be a metric
space and S a subset of it, with ξ (S) = 1

2 . For any ε > 0, the
concentration function is defined as

αX (ε) := sup{ξ (X \ Nε (S))}, (E4)

where Nε (S) is the ε neighborhood of S:

Nε (S) := {x ∈ X | ∃s ∈ S : d (s, x) < ε}. (E5)

These definitions allow one to formulate the following lemma:
Lemma 2. Let X be a metric space and f : X → R a

Lipschitz-continuous function with constant 1, then

ξ{x ∈ X | f (x) � M f + ε} � αX (ε). (E6)

Proof. Take S : {x | f (x) � M f } so that ξ (S) = 1/2 and
consider a subset B ⊆ X such that f (b) � M f + ε, ∀b ∈ B.
Because f is Lipschitz continuous, all points x ∈ Nε (S) satisfy
f (x) < M f + ε, so it must be b /∈ Nε (S), ∀b ∈ B. That means
B is a subset of X : {b ∈ X | f (b) � M f + ε} ⊆ X \ Nε (S) and
thus ξ{x ∈ X | f (x) � M f + ε} � ξ (X \ Nε (S)) � αX (ε). �

In terms of probabilities, and by rescaling of the ε to ε →
ε′ = ηε for Lipschitz functions such that | f (x) − f (y)| �
η‖x − y‖ � ηε, the above lemma reads

Prob( f (x) � M f + ε′) � αX

(
ε′

η

)
. (E7)

In order to calculate the value of the concentration function
αS(2d−1) , one needs to invoke the isoperimetric inequality for
the sphere (see, e.g., [45]):

Lemma 3. (Isoperimetric inequality for the sphere): Let
A ⊆ S(2d−1) be a closed subset of the sphere and let C(a, r) :=
{x ∈ X | d (a, x) � r} ⊂ S(2d−1) a spherical cap around any
point a ∈ S(2d−1), with the radius r chosen such that
ξ (C(a, r)) = ξ (A). Then

ξ
(
Nε (A)

)
� ξ

(
Nε (C(a, r))

)
. (E8)

Therefore we have

αS(2d−1) (ε) = sup{ξ(S(2d−1) \ Nε (S)
)}

= ξ (S(2d−1)) − inf{ξ(Nε (S)
)} = 1 − inf{ξ(Nε (S)

)}
= 1 − ξ

(
C(a,

π

2
+ ε)

)
� e−dε2

, (E9)

where the details of the calculation leading to the last inequal-
ity can be found in [46].

034114-10



TYPICALITY IN RANDOM QUANTUM SCATTERING PHYSICAL REVIEW E 109, 034114 (2024)

So far, then, for functions f with Lipschitz constant η � 1:

ξ{ f (x) � M f + ε} � αS(2d−1) (ε) � e−dε2
. (E10)

Applying Lemma 2 to the function g(x) = − f (x), one gets
ξ{g(x) � M f − ε} � αS(2d−1) (ε), thus

ξ{| f (x) − M f | � ε} � 2αS(2d−1) (ε). (E11)

By rescaling ε → εη for functions with η � 1 and inter-
preting the relative measure above as a probability, we get

Prob{| f (x) − M f | � ε} � 2e−d ε2

η2 . (E12)

Finally, an inequality can be shown which relates median and
expectation value of f , bringing the missing factors in the
exponential which appear in the version of the Lévy’s lemma
we made use of in Eq. (6).

APPENDIX F: BOUND TO STATE FLUCTUATIONS

Let us now make use of Lévy’s lemma to bound the fluctuations around the average, unconditional state 〈ρIB〉 = ρI ⊗ I/dB. To
this aim, we intend to apply the lemma to the trace distance between states, which quantifies their operational distinguishability
[37,47], in particular between the conditional state ρI ⊗ |φ〉〈φ| under the assumption of separability between the initial
inner and boundary systems [see Eq. (9)], and the unconditional, average state: f (φ) = ‖ρI ⊗ TrE (|φ〉〈φ|) − ρI ⊗ I/dB‖1 =
‖TrE (|φ〉〈φ|) − I/dB‖1. Lévy’s lemma applied to f (φ) reads

P[|‖TrE (|φ〉〈φ|) − I/dB‖1 − 〈‖TrE (|φ〉〈φ|) − I/dB‖1〉| � ε] � 2exp

(
−2dBdEε2

9π3η2

)
. (F1)

It is convenient to rearrange Eq. (F1) such that we get to an expression of the form

P[‖TrE (|φ〉〈φ|) − I/dB‖1 � γ ] � γ ′, (F2)

where

γ = ε + 〈‖TrE (|φ〉〈φ|) − I/dB‖1〉, γ ′ = 2exp

(
−2dBdEε2

9π3η2

)
. (F3)

So in order to estimate the fluctuations around the mean state we need to bound 〈‖TrE (|φ〉〈φ|) − I/dB‖1〉. Following an argument
presented in [4], it is now convenient to turn to the more accessible Hilbert-Schmidt norm ‖M‖2 =

√
Tr(M†M ) by exploiting its

relationship with the trace norm ‖M‖1 = Tr
√

M†M, which satisfies, for any n × n matrix M, the relation ‖M‖2
1 � n‖M‖2

2. We
thus have

〈‖TrE (|φ〉〈φ|) − I/dB‖1〉 �
√

dB〈‖TrE (|φ〉〈φ|) − I/dB‖2〉 �
√

dB
〈‖TrE (|φ〉〈φ|) − I/dB‖2

2

〉
=
√

dB〈Tr[(TrE (|φ〉〈φ|) − I/dB)2]〉 =
√

dB〈TrB[(TrE (|φ〉〈φ|))2]〉 − 1

=
√

d2
B − 1

dBdE + 1
, (F4)

where we inserted the average local purity (dB + dE )/(dBdE + 1) in the absence of initial IB correlations [see Eq. (C8)].
To complete the Lévy’s bound we are looking for, we make use of the following lemma [4].
Lemma 4. The Lipschitz constant η of the function f (φ) = ‖TrE [|φ〉〈φ|−] − I/dB‖1 satisfies η � 2.
Proof. One has

| f (φ1) − f (φ2)|2 = |‖TrE [|φ1〉〈φ1|] − I/dB‖1 − ‖TrE [|φ2〉〈φ2|] − I/dB‖1|2 � ‖TrE [|φ1〉〈φ1| − |φ2〉〈φ2|]‖2
1

� ‖|φ1〉〈φ1| − |φ2〉〈φ2|‖1 = 4(1 − |〈φ1|φ2〉|2) � 4||φ1〉 − |φ2〉|2, (F5)

where we used the nonincrease of the trace norm under partial tracing as well as the reverse triangle inequality. The last inequality
is equivalent to η � 2. �

The lemma above allows one to upper bound the quantity γ ′ in Eq. (F2) and thus obtain Inequality (10) (where ρIB,φ ≡
ρI ⊗ Tr[|φ〉〈φ|]):

P

⎡
⎣‖ρI ⊗ Tr[|φ〉〈φ|] − �(ρφ )‖1 � ε +

√
d2

B − 1

dBdE + 1

⎤
⎦ � 2exp

(
−dBdEε2

18π3

)
, (F6)

which bounds the fluctuations around the average state of Eq. (4).
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