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Abstract—Graph convolutional networks (GCN) have recently
been studied to exploit the graph topology of the human body for
skeleton-based action recognition. However, most of these meth-
ods unfortunately aggregate messages via an inflexible pattern
for various action samples, lacking the awareness of intra-class
variety and the suitableness for skeleton sequences, which often
contain redundant or even detrimental connections. In this paper,
we propose a novel Deformable Graph Convolutional Network
(DeGCN) to adaptively capture the most informative joints. The
proposed DeGCN learns the deformable sampling locations on
both spatial and temporal graphs, enabling the model to perceive
discriminative receptive fields. Notably, considering human action
is inherently continuous, the corresponding temporal features are
defined in a continuous latent space. Furthermore, we design
an innovative multi-branch framework, which not only strikes
a better trade-off between accuracy and model size, but also
elevates the effect of ensemble between the joint and bone
modalities remarkably. Extensive experiments show that our
proposed method achieves state-of-the-art performances on three
widely used datasets, NTU RGB+D, NTU RGB+D 120, and NW-
UCLA.

Index Terms—Skeleton-based action recognition, graph convo-
lutional network, deformable convoltuion.

I. INTRODUCTION

HUMAN action recognition plays a significant role in
many applications, including human-computer interac-

tion and video surveillance [1]–[3]. In recent years, different
from the conventional approaches that use RGB video for
input, skeleton-based human action recognition has received
much attention due to its compact representations and robust-
ness to background changes.

Early-stage approaches to skeleton-based action recognition
mainly focus on designing hand-crafted features [4], [5], which
cannot consider various characteristics of human action simul-
taneously. With the development of deep learning, many data-
driven methods based on recurrent neural networks (RNN)
[6]–[8] or convolutional neural networks (CNN) [9], [10] have
been proposed, but they structure the skeleton data as a vector
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Fig. 1: Comparison between popular global graph convolu-
tion (left) and our deformable graph convolution (right)
methods on spatial graphs with four different samples of
“reading”. The colored lines denote the sampling locations
of the graph convolution. Our method adaptively samples the
most relevant joints based on their similarity.

sequence or a pseudo-image. These approaches are challenging
to model the graph topology of the human body, which is
essential for accurately understanding human actions, resulting
in unsatisfactory recognition performance.

Recently, graph convolutional network (GCN) [11] has
become one of the most popular approaches for skeleton-
based action recognition due to its superiority in leveraging
the structural information of graphs. Fundamentally, there are
two kinds of GCNs to process graph data: spectral and spatial.
Spectral methods [5]–[9] achieve convolution in the Fourier
domain by mapping convolutional filters and graphs using
the eigen-decomposition of their Laplacians. For instance,
MLGCN [12] learns convex combinations of Laplacians, each
one dedicated to a particular setting of the manifold enclosing
the graph data. Additionally, learning convolutional filters and
the Laplacian operators [13], embedded in a Chebyshev basis,
was validated to help increase the discrimination power of
graph representation. While these spectral methods make con-
volutions well defined, the learned filters rely on the Fourier
basis (i.e., Laplacian eigenbasis), making the model graph-
dependent and less adaptable to highly varied topologies.
Moreover, they require solving an eigen-decomposition of
the Laplacian, which is both computationally expensive and
sensitive to intra-class variability [14], [15]. In contrast, spatial
methods [16]–[22] achieve convolution in the input domain
without any preliminary step of spectral decomposition. They
mainly rely on message passing, via attention matrices that
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capture context and connectivity between nodes, deeming
these methods more effective compared to spectral one. ST-
GCN [16] is the first work to apply spatial GCN to a skeleton-
based action recognition task, which aggregates messages from
its neighbor joints along the natural connectivity of the human
body. However, it is difficult to capture correlations between
non-directly connected joints (e.g., two hands) in this fixed
hand-crafted topology. For this reason, the key of many recent
works [17]–[20], [22]–[25] lies in how to adaptively capture
the potential correlations between joints.

However, most of these graph convolution algorithms still
learn the representations of each joint via an inflexible
message-passing scheme for various human actions. For ex-
ample, Li et al. [17] exploit the higher-order polynomial of
predefined adjacency matrices to expand the receptive field
of graph convolutions. In this case, since the messages are
aggregated by the joints from local body parts, it is ineffec-
tive to obtain information from distant joints. On the other
hand, Shi et al. [18] construct a complete skeleton graph
to capture long-range dependencies by setting the adjacency
matrix as learnable parameters. Chen et al. [22] learn pair-
wise correlations to model channel-wise topologies. Sahbi
[15] explores various constraints, such as orthogonality and
stochasticity, acting as regularizers on learned matrix operators
to more effectively learn topological properties. However, their
representation capability is still limited due to high intra-
class variances of human actions. For example, a person
can perform the same action of “reading” in quite different
ways, including standing, sitting, or lying down, as shown
in Fig. 1(left). In this case, the negatively correlated joints
with high variances can lead to different representations even
within the same action category, especially for the action
samples where most of the joints are non-informative (e.g.,
distinguishing “writing” and “typing”). This performance
bottleneck raises an important question: why not adaptively
select the most informative joints for message passing in
graph convolution? The simple answer is: the skeleton graph
is inherently discrete, and the hard selection process is non-
differentiable, causing difficulties in end-to-end learning.

In this paper, we propose a novel deformable graph convo-
lutional network (DeGCN) for skeleton-based action recog-
nition. Our contributions are three-fold: (i) We propose a
deformable spatial graph convolution (DeSGC) module to
adaptively capture the most relevant joints. We sample only
k joints with the highest similarity to each joint as neighbors
when performing the graph convolutions (Fig. 1(right)). In
other words, the non-informative joint nodes intervening in
message passing are adaptively eliminated. Notably, the simi-
larity is used only for sampling operations, and the weight for
message passing of sampled joints is designed with a separate
pathway, allowing more focus on each task. (ii) We design a
deformable temporal graph convolution (DeTGC) module to
obtain dynamic and continuous receptive fields on temporal
graphs. The key insight is to set the sampling locations as
data-driven learnable parameters. Since the locations are real
numbers rather than integers, we extract corresponding frame
features via interpolation. (iii) We present a novel multi-
branch framework that includes temporal scale-wise modeling

(TSM) and a joint-bone fusion (JBF) stream to achieve a better
trade-off between accuracy and model size. Our experiments
demonstrate that our framework brings significant performance
boosts with a comparable number of parameters.

Learning the sampling process for both spatial and temporal
skeleton graphs in a differentiable way, without rigidly mod-
eling topology (i.e., receptive field of the kernel) that may
include non-informative joints, distinguishes this model from
all the aforementioned related work. This allows the model
to accommodate intra-class variations and better understand
fine-grained representations through end-to-end learning. To
quantitatively verify the effectiveness of our DeGCN, we
conduct extensive experiments and benchmark our results
against competitive baselines on three widely used skeleton-
based action recognition datasets, NTU RGB+D [26], NTU
RGB+D 120 [27] and NW-UCLA [28]. Extensive experimen-
tal results show that the proposed DeGCN achieves state-of-
the-art performances on these three datasets.

II. RELATED WORK

A. GCN-based Action Recognition

In recent years, GCN-based methods [16], [18]–[20], [22],
[23], [25], [29]–[31] for skeleton-based action recognition
have shown significant performance boosts compared with
other methods, by capturing more semantic relationships be-
tween joints. Specifically, numerous graph convolution al-
gorithms are developed based on two approaches: local
message-passing [16], [17], [19], [20] and global message-
passing [18], [22], [23], [29], [31]. The local message-
passing approach mainly focuses on designing predefined
topologies that aggregate messages from local neighborhoods.
On the other hand, the global message-passing approach
constructs a fully-connected skeleton graph by correlation
modeling, which typically has more robust recognition perfor-
mance than the former due to dynamic topologies. However,
considering that different human action samples often have
different informative joints, it is not necessary to rigidly ag-
gregate all joints, especially non-informative joints. In contrast,
our approach can adaptively samples and aggregates the most
informative joints for each action sample (See Fig. 1).

The previous work [32], named AdaSGN, closest to our
work addresses the problem of eliminating non-informative
joints. AdaSGN first pretrains several data-driven transform
matrices with different numbers of joints for downsampling
on the spatial dimension. The corresponding transformed
features are then passed through a spatial modeling module
and fed into a policy network, which selects the optimal joint
number. By contrast, our DeGCN adaptively explores the most
informative joints instead of specifying the number of joints,
by taking into account the sample-wise correlations between
joints. This increases the flexibility of the model for various
action samples. Moreover, our deformable graph convolution
algorithm is devised not only for spatial but also for temporal
graphs, making the action sequences continuous in a latent
space.
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B. Deformation Modeling

In the early stage of deep learning, convolutional neural
networks (CNNs) [33] have achieved significant success in
various computer vision tasks, such as image classification
[34], and object detection [35]. However, it is difficult to ac-
commodate geometric variations into their fixed hand-crafted
structures. To address this issue, a number of works for defor-
mation modeling have been proposed, and they generally focus
on how to adaptively direct important locations on images. Dai
et al. [36] learn the 2D offsets from preceding feature maps,
and add them to the regular grid sampling locations. Zhu et al.
[37] propose Deformable-DETR that combines the advantages
of deformable convolution [36] and DETR [38]. DPT [39]
designs a plug-and-play module that learns the offsets and
scales of each patch, and integrates it into Pyramid Vision
Transformer [40]. However, these continuous offsets cannot
be applied directly to inherently discrete data structures, such
as skeleton graphs. In contrast, our approach can adaptively
explore the most informative joint nodes for both spatial and
temporal graphs of skeleton action sequences.

Recently, Park et al. [41] apply deformation modeling to
the graph data structure to perform deformable convolution
in multiple latent spaces. They first select neighbor nodes
by generating several kNN graphs corresponding to different
numbers of hops. The deformation is then performed by
adding the offset vectors using an MLP network in a latent
space. Obviously, this approach is not suitable for applying
to our task, since it is difficult to capture the correlations of
structurally distant but semantically important joints (e.g., two
hands). In contrast, our approach directly specifies the most
informative neighbor joints with semantic information of the
human body in the global skeleton graph, by a differentiable
sampling process. In other words, we can simultaneously
perform selection of neighbor joints and deformation of re-
ceptive fields. It is more flexible and intuitive. Furthermore,
our deformable graph convolution algorithm is devised not
only for spatial but also for temporal graphs.

In addition, the kernel-based approach [21] maps graph
signals from an input space into a high-dimensional Hilbert
space using kernel function. This implicit mapping can en-
hance the discrimination power of the graph representations
and also adapt the receptive field without explicitly realigning
nodes, thereby making it permutation-agnostic. While the
experimental results have demonstrated its outstanding perfor-
mance, modeling the kernel-based graph convolution requires
a careful design. By contrast, our approach is not restricted
by the constraints associated with a kernel function, including
considerations such as neural consistency, yet it maintains the
capability to dynamically adjust the receptive field.

III. DESIGN OF DEGCN

In this section, we elaborately introduce a novel framework,
Deformable Graph Convolutional Networks, named DeGCN.
In particular, four main improvements are made in our ap-
proach, i.e., Deformable Spatial Graph Convolution (DeSGC)
module, Deformable Temporal Graph Convolution (DeTGC)

module, Temporal Scale-wise Modeling (TSM), and Joint-
Bone Fusion (JBF) stream. We give a coarse-to-fine (from
network to module) overview below.

A. Preliminaries

1) Notations: A human skeleton graph is represented as
G = {V, E}, where V = {v1, ..., vN} is the set of N joints, and
E is the set of intra-skeleton and inter-frame edges. Suppose
that the input skeleton data is X 2 RC⇥T⇥N , where C and T
denote the 3D Cartesian coordinates and the number of frames
of the skeleton sequence, respectively.

2) Graph Convolutional Networks: Given the input data
X and the output data Y 2 RC0⇥T⇥N , where each joint vi’s
features xi 2 RC⇥T and yi 2 RC0⇥T , the vanilla spatial graph
convolution operation widely used in skeleton-based action
recognition [16] is formulated as

yi = �(
X

vj2N (vi)

WXxjaij), (1)

where �(·) is an activation function and N (·) is the set
of neighbor joints, WX 2 RC0⇥C denotes a weight matrix
for feature transformation, and aij is the correlation strength
between vi and vj , an element of the normalized adjacency
matrix A 2 RN⇥N .

B. Overview

The overall architecture of our method is presented in Fig. 2.
On a high level, we adopt joint, bone, and velocity modal-
ities as inputs and treat them separately via corresponding
feature extraction streams, following recent studies [22], [29],
[42]. Additionally, in our work, considering that there is an
inherently natural connectivity between the joint and bone
modalities, we capture their correlation through the proposed
JBF stream. Consequently, our model has a three-input four-
stream structure, and each prediction result is ensembled at
the inference stage, as shown in Fig. 2(a).

In the following sub-sections, we describe each stream
and its components in detail, including the feature extraction
stream (Section III-C), the JBF stream (Section III-D) and the
temporal scale-wise modeling (Section III-E).

C. Feature Extraction Stream

In each of our three feature extraction streams, which
takes a single modality as input, a simple multi-branch form
is conducted to learn diverse representations, as shown in
Fig. 2(b). Each branch comprises an initial block for data-
to-feature transformation and nine basic blocks (i.e., L = 9)
for extracting rich spatial-temporal representations, followed
by a global average pooling layer and a fully connected layer.
The initial block consists of a conventional graph convolution
(GC) module implemented by Equation (1) and our temporal
modeling (TM) module. The basic block replaces the GC
module of the initial block with our spatial modeling (SM)
module. Details of each modeling module are described in
Section III-E and Section IV.
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Fig. 2: Architecture overview of our proposed DeGCN. (a) is a multi-modal ensemble performed in our approach. (b) is the
feature extraction stream, with single-modality as input. (c) is the proposed joint-bone fusion (JBF) stream, with joint and bone
modalities as input. Note that the multi-branch form is conducted in both (b) and (c). (d) is the proposed temporal scale-wise
modeling (TSM) consisting of spatial modeling (SM) and temporal modeling (TM) modules, in which different input colors
represent different temporal scales. The dotted lines denote residual connection.

Notably, the learnable parameters of each branch are ran-
domly initialized and are not shared between streams. Then,
each stream is trained in an end-to-end manner by summing
the cross-entropy losses of its multiple branches. We can
obtain the prediction result via element-wise summation at the
inference stage.

D. Joint-Bone Fusion Stream
The bone modality, which is first introduced in 2s-AGCN

[18], is represented through the semantic connection of the
human body. Along with the joints, it is an indispensable
clue to constitute the skeleton graph. However, most existing
methods ignore the correlation between these two modalities
and treat them separately.

To address this issue, we further design a joint-bone fusion
(JBF) stream in a mid-fusion manner, as shown in Fig. 2(c). In
detail, we first extract discriminative representations through
the stream consisting of an initial block and two basic blocks
(i.e., L1 = 2) for each modality. We then fuse them via
element-wise summation with a batch normalization layer.
Subsequently, the fused output is passed through seven basic
blocks (i.e., L2 = 7) to learn the correlated representations in
a multi-branch form, similar to the feature extraction stream.
Experimental results show that the proposed JBF stream can
significantly boost the effect of ensemble between the joint
and bone modalities (Section V-D).

E. Temporal Scale-wise Modeling

The multi-branch structure, which is conducted in both
of the aforementioned two types of streams, is effective
in improving recognition performance by learning various
representations. However, it has a critical drawback that the
model size increases linearly with the number of branches.
Thus, we design a temporal scale-wise modeling (TSM) and
apply it to basic blocks to reduce the redundant parameters
and computations of each branch.

1) Spatial Modeling: A human action consists of several
partial actions, which means that key joints in short-term and
long-term actions can often be different. Inspired by this, our
main idea is to learn the representations for each temporal
scale individually. Specifically, we first split the channel of
X 2 RCin⇥T⇥N obtained from the previous temporal mod-
eling module evenly to obtain the features {X(s)}Ss=1 that
corresponds to S temporal scales. We then perform our pro-
posed deformable spatial graph convolution (DeSGC) for each
X(s) to learn temporal scale-specific spatial representations,
and the extracted representations are concatenated, as shown
in the spatial modeling module of Fig. 2(d). Note that we set
the output channel sizes of each DeSGC module to 1/S, to
maintain the original size, and we also use temporal scale-wise
residual connections to facilitate training.
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2) Temporal Modeling: To extract action representations
with different durations, we adopt the multi-scale tempo-
ral modeling module following [22]. Considering that our
proposed deformable temporal graph convolution (DeTGC)
module can adaptively learn the discriminative receptive field,
as we explain in Section IV-B, we replace each vanilla
temporal convolution with the DeTGC modules, as shown
in the temporal modeling module of Fig. 2(d). Each branch
contains a 1⇥ 1 convolution for channel reduction.

3) Discussion: Different from the most existing methods
[16], [18], [20], [22], [23], our proposed TSM independently
learns the spatial representations for each temporal scale. It can
be seen that the extracted multi-scale representations are fused
by 1⇥1 convolution layers of the following temporal modeling
module without additional parameters. Hence, considering
most existing spatial graph convolution approaches, including
our DeSGC, consist of several point-wise convolutions, apply-
ing our TSM can reduce the parameters for modeling spatial
relations by almost S times. Furthermore, this application can
be extended to any method of adopting multi-scale temporal
modeling modules (See Section V-E). In the next section, we
describe how to extract spatial-temporal representations with
the DeSGC and DeTGC modules.

IV. DEFORMABLE GRAPH CONVOLUTION

Human actions usually involve high intra-class variances
(e.g., Fig. 1), which actually motivated us to focus more on
the joints with important meanings for action recognition to
accommodate these variations and understand the fine-grained
representations better. Moreover, this becomes more prominent
as the graph grows larger along the temporal dimension.
Therefore, one of the desirable characteristics of a robust
GCNs-based algorithm for skeleton-based action recognition
is the ability to aggregate messages by capturing the most
relevant joints. In this section, we present the DeSGC and
DeTGC modules to perform deformable graph convolutions
on spatial and temporal graphs, respectively, and discuss their
advantages over previous works.

A. Deformable Spatial GC (DeSGC)
Different from the grid data such as images, the skeleton

graph is not globally continuous in the spatial dimension,
which means that the indices of adjacent joints may not be
adjacent. In this case, the negatively correlated joints with high
variances can lead to different representations even within the
same action category, especially for the action samples where
most of the joints are non-informative (e.g., distinguishing
“writing” and “typing”). In this sub-section, we first describe
how to perform the key joint selection on spatial graphs.
Here, a calibration offset is introduced to make the sampling
operation differentiable. We then describe the corresponding
aggregation pathway, which is designed separately from the
selection pathway. The architecture of the proposed DeSGC
module is shown in Fig. 3(a).

1) Key Joint Selection Pathway: In essentially discrete data
such as spatial skeleton graph, the first problem to consider
is which joint should be sampled as neighbors given the

center joint xc 2 RCin⇥T of the kernel. To this end, one
intuitive approach is to sample the neighboring joints based
on the strength of their semantic connections for each action
sample. Indeed, several recent works [18], [24], [43] show
that calculating the similarity between two joints is one of
the effective methods for determining whether there is a
semantically connection between two joints and representing
how strong the connection is. Thus, we also measure the
similarity between the two joint features xi and xj as

⇡ij = aij + ↵ · �( 1
T

TX

t

h�(xi), (xj)i), (2)

where aij denotes the adjacency matrix component, ↵ is a
learnable scalar for balancing the intensity of sample-specific
similarity, �(·) denotes activation function, h·, ·i is normalized
inner-product operation, �(·) and  (·) denote linear projection
functions. Instead of performing the inner-product with Cin

channels, xi and xj are linearly projected multiple times using
different projection functions (i.e., multi-head mechanisms) to
capture various correlations, and both of these functions are
chosen as the 1 × 1 convolutional layers, following [44]. The
first term in Equation (2) is the data-driven similarity, and the
second term is the temporal average of the sample-specific
similarities obtained by applying self-attention [44]. Given the
similarities, our goal is to sample only k joints with the highest
similarity and define them as neighbors of xc. However, if
the sampling operation is implemented in a conventional non-
differentiable algorithmic manner, the similarity ⇡ij cannot be
trained using prevalent gradient descent algorithms. Therefore,
we approximate the one-hot vectors corresponding to the top-k
indices to design a differentiable sampling strategy.

2) Calibration Offset: In general, a joint is correlated
simultaneously with several other joints, which means that the
similarities between joints follow a multimodal distribution, as
shown in Fig. 3(b). In this case, to obtain differentiable one-
hot vectors of top-k indices, we construct k well-calibrated
probability distributions by adding a weighted one-hot offset
to each of the indices and taking a softmax function. We
define the m-th top-k well-calibrated probability distribution
of a joint vi as {b⇡(m)

ij }Nj=1, where the probability b⇡(m)
ij is

formulated as

b⇡(m)
ij =

exp(⇡ij +�b⇡(m)
ij )

PN
j=1 exp(⇡ij +�b⇡(m)

ij )
. (3)

Note that the calibration offset �b⇡(m)
ij = � if j 2

{pi1, ..., pik} and 0 otherwise, where pim denotes the m-th
top-k index. It can be seen that the expectations of each
probability distribution are calibrated by the hyper-parameter
� to be close to the corresponding pim. In this way, we can
obtain sparse and differentiable one-hot vectors by adjusting
the size of �, as shown in Fig. 3(c).

3) Deformable Spatial Sampling: With the above deriva-
tion, we sample k neighbor joints with the highest similarity
by multiplying the calibrated one-hot vectors. Specifically, the
m-th neighbor joint of xc is sampled as follows:
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x̃(m)
c =

NX

j=1

✓(xj)b⇡(m)
cj , (4)

where ✓(·) denotes a linear projection function for feature
transformation, mapping channels from Cin to Cout, similar
to the �(·) and  (·) in Equation (2). Equation (4) can be
interpreted as that each neighbor joint is sampled by calcu-
lating the expectation according to their calibrated probability
distribution.

4) Aggregation Pathway: Next, we construct a weight func-
tion to aggregate the sampled k neighbor joints. Specifically,
we first calculate the weight matrix as in [22]:

w(xi, xj) = bij + � · ⇠(�( 1
T

TX

t

(�(xi)�  (xj)))), (5)

where bij denotes the learnable adjacency matrix component,
� is a learnable scalar for balancing the intensity of sample-
specific weight, ⇠(·) denotes a linear transformation projected
to Cout for distance-to-weight transformation. Note that �(·)
and  (·) in Equation (5) are shared with Equation (2). We then
extract the k weights corresponding to the sampled joints using
calibrated one-hot vectors, similar to Equation (4). The weight
of m-th neighbor joint at the center joint xc is formulated as

bwc,m =
NX

j=1

w(xc, xj)b⇡(m)
cj . (6)

Note that bwc,m is only for message aggregation and is
distinguished from the selection pathway.

5) Spatial Graph Convolution: After defining the de-
formable sampling strategy and the weight function, we refor-
mulate Equation (1), such that the proposed deformable spatial
graph convolution can be formulated as

yc =
kX

m=1

bwc,mx̃(m)
c , (7)

where Y = {yi}Ni=1 2 RCout⇥T⇥N . Note that we use three
multi-head in parallel to extract diverse representations and
fuse them via element-wise summation (See Fig. 3(a)).

6) Discussion: We provide a more in-depth analysis of
DeSGC compared with vanilla GC as follows: (1) The entire
process of our deformable graph convolution is differentiable
through calibration offset. Thus, the receptive field can be
adaptively learned in an end-to-end manner according to
the pair-wise similarities for each action sample. Notably,
different from the deformation vector generated by the input
features as in [41], our calibration offset is a hyper-parameter
that is used to approximate one-hot vectors, not changing
the indices of key joints. (2) From Equation (7), it can
be seen that only the k sampled joints participate in graph
convolution, which becomes sparse and effective since the
non-informative connections are eliminated. (3) Considering
that non-informative joints may also exist in the k joints, we
design the aggregation pathway for weighted message-passing
separately from the selection pathway to further mitigate
these irrelevant connections (See Section VI). Consequently,
it becomes easier for us to accurately sample and aggregate
the most informative joints.

B. Deformable Temporal GC (DeTGC)

While human action is essentially continuous, skeleton
sequences are sampled discretely at a specific frame rate. This
inevitably leads to a loss of information between frames, which
gets worse as several pooling layers reduce the number of
frames. However, the sampling locations of the vanilla tem-
poral convolution (TC) [16] are set manually and discretely,
which is not reasonable for modeling essentially continuous
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action sequence. In this sub-section, we first describe how
to perform deformable and continuous sampling on temporal
graphs in a differentiable way, and then discuss its superiority
over vanilla TC.

1) Deformable Temporal Sampling: We first interpret the
sampling strategy of the vanilla TC at frame tc as follows:

t(r)c = tc + tr, (8)

where tr 2 R denotes the r-th relative sampling location,
which is defined whthin the receptive field R determined by
the kernel size. For example, if the kernel size is set to 3, R
is {�1, 0, 1}. In this case, the sampling locations are discrete
and fixed, which constrains the representation of complete
continuous information. To obtain a continuous and dynamic
receptive field, we first define the number of the locations ⌘ to
sample, which is a hyper-parameter. We then uniformly sample
⌘ locations over the maximum range of R, and set them as
learnable parameters t̃r. Here, the same configurations for the
maximum range of R are set as the one suggested in [22]. By
substituting the existing fixed tr in Equation (8) with a new
learnable t̃r, we arrive at

t̃(r)c = tc + t̃r, (9)

where r = 1, ..., ⌘. In this case, since the learned index
t̃(r)c is a real number rather than a fixed integer, we extract
the corresponding features via linear interpolation to obtain
continuous data.

2) Temporal Graph Convolution: We follow the feature
aggregation approach of the vanilla TC, i.e., a single 1-
D convolution with the kernel size ⌘ along the temporal
dimension:

zc =
⌘X

r=1

wrT (Y, t̃(r)c ), (10)

where T (·, ·) denotes the sampling function via linear inter-
polation and wr denotes the r-th element of the convolutional
filter.

3) Discussion: Compared with vanilla TC, our proposed
DeTGC improves in various areas: (1) In TC, the kernel size
is a hyper-parameter that directly determines the size of the
receptive field, whereas in our method, it is only a factor used
to initialize the sampling locations. (2) The proposed DeTGC
is a fully differentiable module and can be trained in an end-to-
end manner, thus eventually obtaining dynamic and continuous
receptive fields that can be suitable for different layers and
datasets. In other words, we can get rid of the constraint
of selecting the kernel size according to the input sequence
length. (3) The continuous data mitigates the information loss
caused by pooling. These demonstrate that our DeTGC has a
more robust representation capability and flexibility.

V. EXPERIMENTS

A. Datasets
We conduct extensive experiments on three widely used

large-scale skeleton-based action recognition datasets, NTU
RGB+D [26], NTU RGB+D 120 [27], and NW-UCLA [28],
for a fair comparison with SOTA methods [22], [31].

1) NTU RGB+D: [26] is a large-scale human action recog-
nition dataset containing 56,880 sequences over 60 classes. It
provides the 3D Cartesian coordinates of 25 joints, which are
captured from 3 Microsoft Kinect v2 cameras with different
viewpoints, for each human in an action sample. Each ac-
tion sample is performed by 40 volunteers in different age
groups. The authors recommend two evaluation benchmarks:
(1) Cross-Subject (X-Sub), where the 40 subjects are divided
into training and testing groups. (2) Cross-View (X-View),
where the data from camera views 2 and 3 are used for
training, and data from camera view 1 is used for testing.

2) NTU RGB+D 120: [27] is an extended version of NTU
RGB+D with an additional 60 action classes, with a total
of 113,945 sequences. Similarly, the authors recommend two
evaluation benchmarks: (1) Cross-Subject (X-Sub), where the
106 subjects are divided into training and testing groups. (2)
Cross-Setup (X-Set), where the data from samples with even
setup IDs are used for training, and data from samples with
odd setup IDs are used for testing.

3) NW-ULCA: [28] is a human action recognition dataset
containing 1,494 sequences over 10 classes captured from 3
Kinect cameras. Following the evaluation protocol from [28],
we use the viewpoints of the first two cameras for training and
the other for testing.

B. Implementation Details
Our extensive experiments are implemented with an

RTX3090 GPU using the PyTorch framework. We set the
calibration offset � to 10, and the number of sampling joints
k and ⌘ to 8 and 4, respectively. During the training, the
stochastic gradient descent (SGD) with momentum 0.9 and
weight decay 0.0004 is applied in the optimization. The
training epoch is set to 80, and a warmup strategy [45] is
used in the first 5 epochs to make training more stable. The
initial learning rate is set to 0.1 and decays with a cosine
schedule [46]. In addition, label smoothing [47] with a weight
of 0.1 is adopted. Each sample is resized to 64 frames by linear
interpolation as in [22]. The activation function is chosen as
the LeakyReLU [48] function.

C. Comparison with the State-of-the-Art
In this sub-section, we compare the proposed DeGCN with

other state-of-art methods on three datasets. It is worth noting
that, with the development of GCN-based methods, each of the
various algorithms adopted different data transformation mod-
ules, which resize the original skeleton sequence to different
lengths, we thus only provide the recognition accuracies and
numbers of parameters except FLOPs for fair comparisons.
Table I and Table II show the recognition performance of
our DeGCN exceeds existing methods for all benchmarks.1
Compared with the ST-GCN [16] in table I, which is the
first GCN-based method and is currently the most popular
backbone for skeleton-based action recognition, our model
outperforms by around 10% and 20% in accuracy on both

1For benchmarks that lack reporting in table I, our experiments based on
their public codes are presented.
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TABLE I: Top-1 Accuracy(%) and Parameter Comparison with State-of-the-art Methods on NTU RGB+D and NTU RGB+D
120 Datasets. The Upper Block of Methods is for Non-graph-based Methods. “-” Denotes the Experimental Results Not
Provided in the Reference, and “*” Indicates the Result Based on Using Public Codes. Bold and Underlined Figures Indicate
the Best and Second Best Results for Each Dataset, Respectively.

Method Conference NTU RGB+D NTU RGB+D120 #params (M)X-Sub X-View X-Sub X-Set
ST-LSTM [49] ECCV16 69.2 77.7 - - -
GCA-LSTM [50] CVPR17 74.4 82.8 - - -
Ta-CNN+ (4-ensemble) [51] AAAI22 90.7 95.1 85.7 87.3 4.24
ST-GCN [16] ECCV18 81.5 88.3 71.7* 72.2* 3.10*
AS-GCN [52] CVPR19 86.8 94.2 78.2* 77.7* 9.50*
2s-AGCN (2-ensemble) [18] CVPR19 88.5 95.1 82.7* 84.5* 6.94*
MS-AAGCN (4-ensemble) [29] TIP20 90.0 96.2 - - 15.12
Shift-GCN (4-ensemble) [53] CVPR20 90.7 96.5 85.9 87.6 2.76*
MS-G3D (2-ensemble) [20] CVPR20 91.5 96.2 86.9 88.4 6.40
DynamicGCN (4-ensemble) [23] ACMMM20 91.5 96.0 87.3 88.6 -
Shift-GCN++ (4-ensemble) [54] TIP21 90.5 96.3 85.6 87.2 1.80
MST-GCN (4-ensemble) [55] AAAI21 91.5 96.6 87.5 88.8 12.00
AdaSGN (3-ensemble) [32] ICCV21 90.5 95.3 85.9 86.8 5.36*
CTR-GCN (4-ensemble) [22] ICCV21 92.4 96.8 88.9 90.6 5.84
FGCN (2-ensemble) [56] TIP22 90.2 96.3 85.4 87.4 -
STF (2-ensemble) [25] AAAI22 92.5 96.7 88.9 89.9 -
InfoGCN (4-ensemble) [31] CVPR22 92.7 96.9 89.4 90.7 6.28
InfoGCN (6-ensemble) [31] CVPR22 93.0 97.1 89.8 91.2 9.42
ML-STGNet (2-ensemble) [57] TIP23 91.9 96.2 88.6 90.0 5.76
DeGCN (4-ensemble, Ours) - 93.6 97.4 91.0 92.1 5.56

TABLE II: Top-1 Accuracy Comparison with State-of-the-
art Methods on Northwestern-UCLA Dataset. Bold and Un-
derlined Figures Indicate the Best and Second Best Results,
Respectively.

Method Acc.(%)
Lie Group [58] 74.2
Actionlet ensemble [59] 76.0
HBRNN-L [6] 78.5
Ensemble TS-LSTM [60] 89.2
AGC-LSTM (2-ensemble) [52] 93.3
Shift-GCN (4-ensemble) [53] 94.6
DC-GCN+ADG (4-ensemble) [61] 95.3
CTR-GCN (4-ensemble) [22] 96.5
FGCN (2-ensemble) [56] 95.3
InfoGCN (4-ensemble) [31] 96.6
InfoGCN (6-ensemble) [31] 97.0
DeGCN (4-ensemble, Ours) 97.2

benchmarks of both datasets, respectively. Compared with
the current state-of-the-art method InfoGCN [31], our model
improves performance by 0.9% and 1.6% over InfoGCN (4-
ensemble) on X-sub benchmarks of NTU-RGB+D and NTU-
RGB+D 120, respectively, with similar model size. Even,
our model is 0.6% and 1.2% higher than InfoGCN with 6-
ensembles, which has 1.69⇥ more parameters than ours. These
improvements are significantly higher than the increase rates
of InfoGCN (0.3% and 0.5%, respectively) with the same
number of ensembles compared to the previous SOTA method
CTR-GCN [22]. These results are also keeping pace in the
typical 3D action recognition dataset Northwestern-UCLA. As
Shown in Table II, the proposed DeGCN again achieves the
best accuracy of 97.2%, surpassing the previous state-of-the-
art methods.

D. Ablation Studies
In this sub-section, we employ a model that replaces our

basic block with an conventional ST-GC [16] module as a
baseline. Ablation experiments are carried out for different
network settings and analyzed with cross-subject (X-sub)
benchmark on NTU RGB+D 120 using the joint modality.

1) Deformable Graph Convolution: To verify the effective-
ness of the proposed deformable graph convolution, we com-
pare our method with different methods, including: (1) local
GC, implemented by the baseline [16], (2) global GC, which
aggregates all joints as a weights function in Equation (6)
for spatial modeling and as implemented in [43] for temporal
modeling, and (3) the proposed deformable GC, which cor-
responds to the DeSGC module for spatial modeling and the
DeTGC module for temporal modeling. It can be seen from
Table III, among all the compared strategies, our deformable
graph convolutions significantly improve performance for both
spatial and temporal modeling. In particular, our deformable
GC outperforms global GC by eliminating non-informative
joints, underscoring the superiority of the separated selection
pathway over relying solely on the aggregation pathway (i.e.,
weight function). These results validate the effectiveness
of our approach, which improves performance by adaptively
conducting deformable sampling.

2) Component Studies: We conduct ablation experiments
on the contributions of each DeGCN component and analyze
them in terms of accuracy and model size. The results are
shown in Table IV, from which it can be seen that the
performance gradually improves as more components are
used. Specifically, when configuring spatial-temporal modeling
modules with the proposed DeSGC and DeTGC, our model
improves performance by 2.2% over the baseline. Then, ap-
plying TSM reduces the parameters by 2.1 times without
degrading the performance. This clearly verifies that it is
efficient to learn spatial representations separately for each
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TABLE III: Top-1 Accuracy Comparison with Different GC
Methods in Spatial and Temporal Modeling on NTU RGB+D
120 X-Sub

Method Acc.(%)
Spatial Temporal

Local GC 83.8 83.8
Global GC 85.1 83.6
Deformable GC 85.5 84.4

TABLE IV: Top-1 Accuracy Comparison with Different Com-
ponents on NTU RGB+D 120 X-Sub. “+” Denotes Maintain-
ing the Current Setting and Adding More

Method FLOPs Param. Acc.(%)
Baseline 1.65G 1.21M 83.8
+ DeSGC 1.81G 1.45M 85.5"1.7
+ DeTGC 1.78G 1.42M 86.0"2.2
+ TSM 0.86G 0.69M 86.1"2.3
+ 2-Branch 1.72G 1.39M 87.6"3.8

TABLE V: Top-1 Accuracy Comparison with Multi-Modal
Ensemble on NTU RGB+D 120 X-Sub

Method FLOPs Param. Acc.(%)
Baseline (4-ensemble) 6.60G 4.84M 89.3
Joint 1.72G 1.39M 87.6
Bone 1.72G 1.39M 88.5
Velocity 1.72G 1.39M 83.7
JBF 1.72G 1.39M 89.6
Joint+Bone 3.44G 2.78M 89.9"0.6
Joint+Bone (3-branch) 5.16G 4.17M 90.1"0.8
Joint+Bone+JBF 5.16G 4.17M 90.7"1.4

Joint+Bone+Velocity+JBF 6.88G 5.56M 91.0"1.7

temporal scale. Finally, for a fair comparison, we adopt a
two-branch structure with a similar model size to be the
baseline. Our model ultimately results in a 3.8% performance
improvement.

3) Multi-Modal Ensemble with JBF: We evaluated each
modality and their weighted fusion results, as shown in
Table V. After combining the joint modality with the bone
modality, the performance of the model can be improved from
87.6% to 89.9%. Furthermore, the performance reaches 90.7%
when the JBF stream is applied to the ensemble. In contrast,
without the JBF stream, our three-branch DeGCN increases by
only 0.2% to 90.1% with the same parameters. This shows that
the proposed JBF stream can significantly elevate the effect of
ensemble by learning the correlation between the joint and
bone modalities. Finally, Our full model reaches 91.0% in
accuracy and outperforms the baseline model by 1.7% with
the same ensemble setup.

4) Hyper-parameters in DeGCN: We first evaluate the
proposed DeSGC module under various settings, including two
hyper-parameters � and k, on NTU RGB+D 120 X-Sub. The
results, shown in Table VI and Fig. 4, demonstrate that our
model is not sensitive to hyper-parameter settings around the
best result with � = 10 and k = 8. We thus adopt the same
configuration on all the benchmarks. It’s worth mentioning,
as shown in Fig. 4, both too small and too large values of
k result in gradually degraded recognition performance. This
verifies that our model is effective to select informative joints
for improving action recognition. Also, if � is too small,

TABLE VI: Top-1 Accuracy Comparison of the Proposed
DeSGC Modules with Different Values of � on NTU RGB+D
120 X-Sub

� 0 5 10 15 20
Acc. (%) 84.4 85.3 85.5 85.2 84.9

TABLE VII: Top-1 Accuracy Comparison of the Proposed
DeTGC Modules with Different Values of ⌘ on NTU RGB+D
120 X-Sub

⌘ 2 3 4 5
Acc. (%) 84.0 84.2 84.4 84.3

TABLE VIII: Top-1 Accuracy (%) Comparison of the Pro-
posed JBF and Multi-Modal Ensemble with Different Values
of L1 on NTU RGB+D 120 X-Sub

L1 0 1 2 3 4 9
Acc. (%) 88.7 89.4 89.6 89.3 89.1 89.2

as in our analysis in Section IV-A, the model degrades its
performance due to the difference between the expectation
and the real index. On the other hand, if � is too large, it
will approach the hard one-hot vector, which also degrades its
performance due to the difficulty of gradient backpropagation.
These results validate the effectiveness of our DeSGC module,
which improves performance by conducting differentiable key
joint selections.

Fig. 4: Top-1 Accuracy Comparison of the Proposed DeSGC
Modules with Different Values of k on NTU RGB+D 120 X-
Sub.

Similary, we evaluate the proposed DeTGC module with
various values of ⌘. As shown in Table VII, the model is also
not sensitive to hyper-parameter settings, and the best results
can be obtained when ⌘ is an even number of 4. Considering
the feature aggregation is performed by 1-D convolution
corresponding to the number of sampling locations, as we
describe in section IV-B, the results show that our DeTGC
improves performance with more efficient model complexity
compared to the baseline [16], which has a kernel size of 5.

Moreover, we evaluate the proposed JBF stream with vari-
ous values of L1. The recognition performances with different
fusion stages are presented in Table VIII. The results demon-
strate that the optimal performance is achieved when L1 = 2
(i.e., L2 = 7), and it degrades with too small values of L1,
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TABLE IX: Top-1 Accuracy(%) Comparison of the Models with TSM and witouth TSM on NTU RGB+D 120 X-Sub. Numbers
in Gray Denote the Results Reported in Their Papers. “*” Indicates the Result Based on Using Public Code

Method FLOPs Ratio Param. Ratio Acc. (%)
ST-GCN* [16] 1.65G - 1.21M - 83.8
ST-GCN* + TSM 0.80G # 2.1⇥ 0.66M # 1.8⇥ 84.0
MS-G3D [20] - - 3.20M - -
MS-G3D* [20] 24.44G - 3.20M - 82.1
MS-G3D* + TSM 8.89G # 2.7⇥ 1.21M # 2.6⇥ 82.2
CTR-GCN [22] 1.97G - 1.46M - 84.9
CTR-GCN* [22] 1.97G - 1.46M - 85.1
CTR-GCN* + TSM 0.97G # 2.0⇥ 0.75M # 1.9⇥ 85.1
DeGCN (Ours) 1.78G - 1.42M - 86.0
DeGCN + TSM 0.86G # 2.1⇥ 0.69M # 2.1⇥ 86.1

(a) (b)

Fig. 5: Training loss curves for (a) the entire training process
and (b) the first 15 epochs with different initialization strategy.

as the representation capabilities of each modality are limited.
Conversely, too large values of L1 also have relatively inferior
performance due to the lack of correlation representations.
Accordingly, as mentioned in Section III, we perform fusion
of the joint and bone modalities after extracting discriminative
representations through the stream consisting of an initial
block and two basic blocks for each modality.

5) Initialization of k joints: Since the selected k joints can
be changed during the training process, we compare three
different initialization strategies to investigate their effective-
ness, including random, uniform, and commonly used prior
strategies. Notably, in our approach, the initialization for the
k joints is equivalent to that of the similarity matrix. In this
context, the prior strategy denotes initializing the adjacency
matrix according to human natural connections, and both the
random and uniform strategies also follow their distribution,
respectively. As shown in Fig. 5, the training loss curve of
uniform strategy exhibited slightly slower initial convergence
compared to the prior or random strategies, as selecting the
top-k values among the same similarities for all joints is
challenging. Therefore, considering the stabilities both during
the initial phase and throughout the entire training process, we
adopt the prior strategy in our model.

E. TSM on Other GCs
Our proposed TSM can be seamlessly incorporated into

current GCNs. In this sub-section, to verify the effectiveness
of TSM, we apply our approach to other existing graph

convolution methods utilizing multi-scale temporal modeling,
including ST-GCN [16], MS-G3D [20], and CTR-GCN [22].
Our experimental results based on their public implementation
code are presented in Table IX, including FLOPs, number
of parameters, their reduction ratios, and accuracy. Note that
ST-GCN in table IX is identical to the baseline adopted in
Section V-D, i.e., the model replacing our basic block with
an conventional ST-GC module.

From the Table IX, it can be seen that the proposed TSM
is beneficial for effectively reducing the model complexity
(both FLOPs and number of parameters) without degrading
its performance. This is especially true for MS-G3D, as they
leverage several spatial graph convolution modules consisting
of point-wise convolutions for each higher-order of the adja-
cency matrix to capture all distances. These results verify that
it is efficient to learn spatial representations separately for each
temporal scale.

F. Performance on Confusing Classes

We further analyze the accuracy difference (%) between
our DeGCN and the baseline [16] for each action class on
NTU RGB+D 120 X-Sub. As shown in Fig. 6, the highest
differences tend to occur on the actions where two-hand cor-
relations are most relevant, e.g., the model offers improvement
of 13.24% for “writing”, 10.26% for “ball up paper”, and
9.16% for “reading”. These results demonstrate that our
DeGCN has a robust performance for recognizing the actions
that are very similar by focusing on the most informative
joints.

For the lower performance of our model on a small subset
of classes, we also provide a in-depth analysis as follows: (1)
the average drop of these classes is 1.63%, which is much
smaller than the increase rate of 9.96% for increased classes
with the same number. (2) Our model reduces the variance of
accuracy for all classes from 0.017 to 0.013. (3) We generate
the confusion matrices for these classes that are normalized by
the whole column (i.e., predictions for 120 classes) to verify
the precision of each class, as shown in Fig. 7. Compared with
the baseline, our model improves the precision for almost all
of these classes. (4) Considering the increase in mean accuracy
and the reduction in variance for all classes, and the increase
of precision indicate that we mitigate the overfitting of the
baseline to easy classes where the accuracy is higher than the
average.
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Fig. 6: Top-1 Accuracy Difference (%) between the proposed DeGCN and the baseline [16] with the joint input modality on
NTU RGB+D 120 X-Sub.

(a) (b)

Fig. 7: Confusion matrices obtained by the (a) baseline and
(b) DeGCN on NTU-RGB+D 120 X-Sub.

Furthermore, to validate the statistical significance of our
improvements, we conduct a paired t-test for accuracy dif-
ferences. The t-test is a commonly used statistical test that
helps determine whether the observed difference between two
sets of data is random or statistically significant. We set
the significance level ↵ as 0.05 for this experiments. From
the results yielded, it was found that the confidence of the
improvement is high (p-value ⌧ 0.05). Hence, we reject the
null hypothesis that there is no difference in mean accuracy
between the two models (i.e., the baseline and our models,
respectively), and state that we have significant evidence of
our improvements.

VI. VISUALIZATIONS OF DEFORMABLE KERNELS

A. Kernels of DeSGC
To better understand what the proposed DeGCN has learned

internally, we visualize the learned deformable sampling lo-
cations. For the DeSGC module, we illustrate the key joint
and the corresponding sampling locations of some actions, as
shown in Fig. 8. We observe that our model successfully sam-
ples the most informative joints, i.e., two arms for “reading”,
one arm for “hand waving”, and the lower body for “sitting
down”. Especially for the action “taking a selfie”, the head
node adaptively samples the arm joints of holding the phone as

"𝒓𝒆𝒂𝒅𝒊𝒏𝒈" "𝒉𝒂𝒏𝒅 𝒘𝒂𝒗𝒊𝒏𝒈"

"𝒕𝒂𝒌𝒊𝒏𝒈 𝒂 𝒔𝒆𝒍𝒇𝒊𝒆""𝒔𝒊𝒕𝒕𝒊𝒏𝒈 𝒅𝒐𝒘𝒏"

Fig. 8: Qualitative examples of the deformable sampling
locations of the proposed DeSGC module on NTU RGB+D
120. The colored lines denote the sampling locations of the
graph convolution. Our method adaptively samples the most
informative joints regardless of intra-class variety.

neighbor joints. Moreover, Fig. 9 shows the sampling locations
learned by different heads. It can be seen that our model
can explore various informative joints through each head, just
as the movements of the upper body lead to the legs when
“jumping”.
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Fig. 9: Visualization of the sampling locations with multi-head.
The three skeletons in each action represent the kernels from
different heads.

(a) (b)

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
𝑃𝑎𝑡ℎ𝑤𝑎𝑦

Fig. 10: Visualization of (a) the sampling locations and (b) the
corresponding weights for action “reading”. The thickness
of the colored lines denotes the strength of the weight. Our
method further mitigates non-informative connections via a
separated aggregation pathway.

Fig. 11: Visualization of the deformable sampling locations of
the proposed DeTGC module. Note that Blue and Skyblue,
and Red and Pink, respectively, represent ⌘ = 4 locations of
two different DeTGC modules. Gray represents the locations
of vanilla TC with a kernel size is 5.

However, for some actions with a small number of key
joints, such as “reading”, the non-informative joints may
also exist in the k sampled joints. Thus, as described in
Section IV-A, we design the aggregation pathway for weighted
message-passing separately from the sampling pathway to
further mitigate negatively correlated connections. As shown
in Fig. 10, the weights of non-informative joints (i.e., legs)
are mitigated. This is a consistent result of our motivation.

B. Kernels of DeTGC
For the DeTGC module, we provide zero-centered sampling

locations from the bottom layer to the top layer, as shown
in Fig. 11. We find that the receptive field of the bottom
layers (corresponding y-axis 1 and 2) is close to zero, which
means that the focus is on learning the initial topology via

(a) (b)

Fig. 12: Confusion matrices for “thumb up” and its Top-5
relevant classes obtained by the (a) baseline and (b) DeGCN
on NTU-RGB+D 120 X-Sub.

!"#$%&'#$ ∶ "'*"+, -. &/./*/'"
1/2#3 ∶ "'#44%5 2/' 5,%46"

!"#$%&'#$ ∶ "'*"+,"
1/2#3 ∶ "5*++' /' '*# 2/57#'"

Fig. 13: Qualitative examples of the failure cases. The three
skeletons in each action represent the kernels from different
heads.

spatial modeling, and then the range of focus tends to expand
gradually as it approaches the top layer. As such, compared
with the vanilla TC, our model can access dynamic and
continuous receptive fields from local to global, by which fluid
and effective temporal information is captured.

C. Failure Cases

We conducted a comprehensive analysis, particularly with
the baseline, and identified our failure cases in two categories:
actions requiring two-hand correlations and those heavily
reliant on global joints. In the former, as validated above,
our model demonstrated relatively robust performance by
eliminating non-informative joints. For instance, although the
“thumb up” gesture showed the largest accuracy drop, our
model exhibited improved precision across relevant classes,
as illustrated in the normalized confusion matrices in Fig. 12.
However, their accuracies still fall behind the average due
to the use of crude and noisy pre-defined hand topologies,
such as being limited to only 4 joints for NTU RGB+D.
In the latter category, as our model can explore up to k
joints for one kernel in multi-head mechanisms, its recognition
occasionally faltered for actions requiring information from all
joints, leading to confusion with locally relevant actions, such
as shoot at the basket and throw (See Fig. 13). While this
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issue is infrequent and less critical than the former, it remains
a focus for future improvements.

VII. CONCLUSION

We present DeGCN, a novel framework for skeleton-
based action recognition, which enables a sampling operation
to be differentiable and deformable, empowering end-to-end
learning of discriminative receptive fields for both spatial
and temporal graphs. The results show that our DeSGC and
DeTGC, adaptively exploring the most relevant joints for
various human actions, outperforms both existing local and
global graph convolution methods. Furthermore, we introduce
TSM and JBF to achieve a better trade-off between accuracy
and model size. TSM, which reduces redundant computation
for modeling spatial relations, effectively refines conventional
spatial-temporal modeling. The JBF stream can elevate the
effect of ensemble between the joint and bone modalities.
Our experiments on three benchmark datasets suggest that
DeGCN achieves state-of-the-art performance. Finally, our
deformable approach can be applied not only to skeleton-based
action recognition, but also to various graph-related domains
such as social network analysis and recommendation systems,
which is an interesting direction for future work. In addition,
adapting different k values for each joint would be effective
in enhancing robustness across various graph scales. We will
investigate various strategies, such as soft ranking or threshold-
based learning, to achieve this goal.
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