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A B S T R A C T

Infusing autonomous artificial systems with knowledge about the physical world they inhabit is a critical
and long-held aim for the Artificial Intelligence community. Training systems with relevant data is a typical
approach; however, finding the data required is not always possible, especially when much of this knowledge
is commonsense. In this paper, we present a comparison of topology-based and semantics-based methods for
extracting information about object-action and object-state association relations from knowledge graphs, such
as ConceptNet, WordNet, ATOMIC, YAGO, WebChild and DBpedia. Moreover, we propose a novel method for
extracting information about object-action and object-state associations from knowledge graphs. Our method is
composed of a set of techniques for locating, enriching, evaluating, cleaning and exposing knowledge from such
resources, relying on semantic similarity methods. Some important aspects of our method are the flexibility
in deciding how to deal with the noise that exists in the data, and the capability to determine the importance
of a path through training, rather than through manual annotation.
1. Introduction

Infusing autonomous artificial systems with knowledge about the
physical world they inhabit is a critical and long-held aim for the Arti-
ficial Intelligence (AI) community. Training systems with relevant data
is a typical approach; however, finding the data required is not always
possible, especially when much of this knowledge is commonsense. A
method that can correctly identify positive and negative associations
between entities by exploiting knowledge stored in Knowledge Graphs
(KGs) in the presence of noise can increase the quality of data that a
machine can utilize. This can improve the performance of autonomous
AI systems, such as cognitive robotic systems operating in a household
environment, Computer Vision modules, and other AI application do-
mains. Yet, constructing a generic method for extracting positive and
negative associations seems a far catch for the time being.

Humans are able to identify meaningful associations, by relying
not only on observations, but also on their commonsense knowledge.
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Machines, on the other hand, require a vast amount of data, in order
to be properly trained and learn the various association relationships.
KGs, such as ConceptNet [1], WordNet [2], ATOMIC [3], WebChild [4],
YAGO [5] and DBpedia [6] contain to some extent knowledge about
association relations, which can help data-driven models to train classi-
fiers. The knowledge that exists in such KGs though is typically inserted
via crowd-sourced methods and often contains a portion of inaccurate
or noisy data. As a result, when extracting or retrieving knowledge from
such KGs, evaluation procedures are critical [7].

In this paper, we compare a number of methods of different nature
that are commonly used in practice for the extraction of associations
from KGs, concentrating our attention on the household application
domain. We organize the methods into topology-based and semantics-
based ones, and also introduce a novel semantics-based approach to
extract associations from KGs, which can achieve or improve state-of-
the-art performance, while offering flexibility in ironing out noise. Its
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main characteristic is the exploitation of patterns of relations, which
carry important information as to which associations to trust and
which to dismiss. Moreover, we evaluate the aforementioned methods
over various KGs, such as ConceptNet, ATOMIC, WebChild, YAGO and
DBpedia, which, to the best of our knowledge, constitutes one of the
most extensive evaluations of these methods over association relations.
Moreover, we compare how data-driven models perform over the same
task, i.e., that of link prediction between two elements.

More specifically, the problem we investigate is, given a directed
KG, whether two nodes are associated or not, one of which relates
to a household object class and the other to an action or an object
tate class. The methods considered in our study are domain-agnostic
nd are not confined to the household domain; nonetheless, as we
xplain in the sequel, their use is very popular for this particular
omain, therefore our choice helps obtain a common reference level
or a comparative analysis. Furthermore, the plethora of features that
his domain introduces makes the problem non-trivial.

The main contributions of this paper are the following:

• A comparative analysis of popular methods for extracting associ-
ations from KGs, focusing on the household domain.

• The proposal of a new, enhanced method that better exploits the
semantic knowledge that exists in the KG, in order to extract
object-action/state association relations.

• An extensive analysis of the object-related information exist-
ing in ConceptNet, ATOMIC, WebChild, YAGO and DBpedia for
association relations.

• The generation of a dataset of positive and negative object-action
and object-state relations, comprising labels that are commonly
used for benchmarking both research and practical approaches.

ur method and the dataset are publicly available.2
This paper is based on and significantly extends the work presented

n [8], by: (a) studying methods for extracting object-state (in addition
o object-action) associations and (b) considering a much broader
et of KGs for the evaluation of the different methods, whereas [8]
oncentrates on ConceptNet, exclusively.

The rest of the paper is organized as follows: Section 2 presents the
otivation of our study. Section 3 discusses related work. The existing

nd proposed approaches for extracting object-action and object-state
elations are presented in Section 4. The experimental assessment is
escribed in Section 5, the results are discussed in Section 6, and the
tudy concludes in Section 7.

. Motivation

Filtering information to infer associations from problem-agnostic
Gs in the presence of noise is a long-lasting goal in many fields related

o AI research. In this paper, we focus on an instance of the problem
ertaining to the identification of associations among concepts that
xists in a KG, that of positive and negative object-action and object-
tate association. We were motivated mostly by the plurality of methods
hat are being used in practice for that purpose and to that particular
omain; therefore, we decided to compare their performance, aiming
o identify which characteristics of each take advantage of the nature
f the underlying data, e.g., the structure, semantics, context etc.

The types of associations we are focusing on constitute valuable
nformation for a wide spectrum of application areas, especially in the
ield of Robotics. Cognitive and social robots need to operate in envi-
onments populated by a wide variety of objects; the identification of
roper correlations among the objects and the actions that the humans
erform on them or the states obtained by these objects can become
n important leverage in understanding how to classify or even to

2 https://github.com/valexande/AssociationKG
2

operate novel appliances [9]. It can also significantly enhance human–
robot interactions and collaboration [10,11]. But even in the fields,
such as Computer Vision or Ambient Intelligence and smart spaces,
the identification of object-action-state associations can help address
traditional problems, such as action or activity recognition [12–14].

Finally, through this comparative analysis, we also wanted to spot
differences in the data that exist in some of the most popular KGs,
which may affect the performance of the methods. For example, the
overuse of certain properties, as noticed for instance in ConceptNet
with the RelatedTo property, tends to work inversely to the semantic
information that it can offer. Our criteria for choosing which KGs to
consider were: (a) the KG has a taxonomy linked to WordNet, as the
relation with WordNet is needed in our methodology, (b) the KG con-
tains object-state relations OR object-affordance relations (affordances of
one object are the real-world actions that can be performed on/with
that object), and (c) the KG is publicly available.

The challenge for the methods we consider mostly lies in the ex-
istence of the noise in the KGs. As noise in a KG we consider: (i)
conflicting information, (ii) wrongly annotated information (due to the
crowdsourced nature of many knowledge graphs), (iii) the heterogene-
ity of granularity of node population in the KG, meaning that in some
areas of the KG there may exist many interconnected nodes about
some sub-domain, which leads to an over-fitting of knowledge for these
sub-domains, whereas in some other areas nodes describing another
sub-domain may be sparse, and (iv) the heterogeneity of granularity
in properties, meaning that some properties are used so often that they
could be considered as super properties, among others (see Section 5.3
and Section 6). Scalability is another challenge faced, especially since
we are contrasting the performance against generic repositories.

3. Related work

This section first presents studies about general purpose associations
(i.e., the entities which are associated can be of any type). Then, it
proceeds to studies with object-action associations, and concludes with
studies about object-state associations. This loosely-defined relatedness
between two concepts falls under the broader task of link prediction in
Knowledge Graphs, which we refer to as associations in our study.

3.1. General purpose associations

Retrieving commonsense information from problem-agnostic repos-
itories has been used to tackle challenges in a variety of AI-related
disciplines. ConceptNet is used by the authors of [15] to find word
similarities, which they subsequently utilize to improve the perfor-
mance of sentence-based picture retrieval methods. The authors use the
labels detected in an image to retrieve information from the ConceptNet
triplets that contain the detected labels. In [16], the authors use KGs
to solve the problem of zero-shot label learning in photos by building
KGs based on labels identified visually and correlations established in
external sources. The authors utilize WordNet to populate the graph
and Wu Palmer similarity3 to generate property labels. The authors
of [17], use Bayesian logic networks to give labels to the objects in
a picture and rely on commonsense knowledge derived from WordNet
and ConceptNet. With the help of WordNet hypernyms, seed words
are disambiguated. ConceptNet attributes like LocatedAt and UsedFor,
which can help locate an object’s location, are also obtained. The sys-
tem can then construct a compact semantic knowledge base using this
method with only a limited number of objects. In [18,19], the authors
infer the label of the room through the objects that the cognitive robotic
system perceived from its vision module. The authors use the DBpedia
comment boxes of the objects in the room in order to infer the label of
the room.

3 https://www.nltk.org/howto/wordnet.html

https://www.nltk.org/howto/wordnet.html
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𝐺
𝑅

The studies listed above aim to incorporate knowledge from general-
purpose Web resources identified in a KG without paying close atten-
tion to the veracity of the information retrieved from such resources.
Furthermore, they rely on the simplistic premise that if two nodes are
connected by an edge, they are semantically related. On the other hand,
we are interested in techniques that may filter out the noise or incorrect
information that may exist in such Web resources, before adding new
knowledge to a KG. Furthermore, we offer a mechanism for associating
objects with actions and states which is not covered in these studies.
In contrast to the prior studies, we evaluate several approaches across
a larger number of KGs.

The study of Zhou et al. [20] is more comparable to ours. To antic-
ipate a path between two nodes in the ConceptNet graph, the authors
train a Long Short-Term Memory (LSTM) model. The authors collect the
most qualitative pathways for a set of node pairs, defining quality as the
most natural set of edges connecting two nodes. For instance, the path
Lead

HasProperty
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Toxic

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Lethal

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Poison is considered the

most natural among those connecting Lead and Poison. The quality of
paths is annotated manually by a group of volunteers. A data-driven
model predicts a path between two ConceptNet nodes in [21,22]. The
quality of a path is hand-coded by the authors. Our method, on the
other hand, uses training rather than manual annotation to identify
the relevance of a path. This has two advantages: (𝑖) it considers the
structural and semantic properties of the underlying KG to a greater
extent, and (𝑖𝑖) it is more adaptable to changes in the KG or application
domain.

Interesting studies in the area of explainable recommendation over
KGs are [23–25], where the notion of patterns of relations is also
introduced. Similarly to our study a relation pattern is a specific se-
quence of relations that contains semantically rich information for two
entities. But as it is easily understood the problem we are addressing
is different than the one in the aforementioned studies, as in our work
we concentrate more on information retrieval for entity linking. Also,
even though the authors use various datasets to prove the scalability
of their method, they use the same underlying KG, which is Amazon’s
KG.4

3.2. Object-action associations

Many studies in the field of cognitive robotics have focused on the
representation and recognition of object-action relations. The seman-
tic correlation of physical entities is captured in the KnowRob [26]
and RoboSherlock [27] projects, but object-action relations are ei-
ther learnt entirely through observed data or captured in a problem-
specific method. The authors integrate ConceptNet knowledge into a
KG in [28]. They build ConceptNet subgraphs with only two properties
given an object or action label in order to train a data-driven model
that can predict if an object is associated to an activity. RoboCSE [29],
which employs embeddings to encode object and action labels and infer
object-action links based on the similarity of their vectors, follows a
similar method. Our proposed method combines both semantically rel-
evant and commonsense information stored in general-purpose repos-
itories, which can be used to supplement and enhance the findings of
the previous studies.

The studies [30,31] propose a method where Markov Logic Net-
works are used in order to relate real-world objects with their affor-
dances, in a zero-shot learning problem that tackles the need of training
classifiers. Even though their method seems more scalable than a data-
driven model, the information that the method can utilize exists solely
in the Markov Logic Network, which cannot access external knowledge
(e.g., a Semantic Web KG). On the other hand, our method is not
restricted to a specific KG, as it can retrieve information from any given
KG, which has different types of relations.

4 https://aws.amazon.com/neptune/knowledge-graphs-on-aws/
3

3.3. Object-state associations

The problem of object-state association is referred in the literature
as state detection, and is mostly encountered in the field of computer
ision. The problem of state detection usually serves as a stepping stone
o achieve action recognition.

In [32], state detection is studied in the context of videos con-
aining manipulation actions performed upon seven classes of objects.
he authors formulate state detection as a discriminative clustering
roblem and attempt to address it by optimization methods. [33]
epresents state-altering actions as concurrent and sequential object
luents (states) and utilize a beam search algorithm for fluent detec-
ion and action recognition. Similarly, [34] explores state detection in
andem with action recognition. The method is based on the learning
f appearance models of objects and their states from video frames
hich are used in conjunction with a state transition matrix which
aps action labels into a pre-state and a post-state. In [35], the states

nd transformations of objects/scenes on image collections are studied
nd the learned state representations are extended to different object
lasses. [36,37] examine the causal relations between human actions
nd object fluent changes. [38] develops a weakly supervised method to
ecognize actions and states of manipulated objects before and after the
ction, proposing a weakly supervised method for learning the object
nd material state that are needed for recognizing daily actions. [39]
esigns a Siamese network to model precondition states, effect states
nd their associate actions. Jiang in [40] defines a Multi-Agent Sys-
em framework, where each agent maintains an incomplete and noisy
erspective of the world. Jiang on top of the different perspectives
hat each agent has, develops a graph neural network that exploits the
nformation in the various KGs to learn how to predict a post-state for
he objects when an action is performed on them.

In most cases, state detection is a problem encountered in computer
ision and is used as a means for action recognition. Therefore, the
mount of object-state relations is restricted and classifiers are trained
or each individual object-state relation. We treat the identification of
bject-state associations as a standalone problem and develop a method
o address it that relies only on information available in a KG, which
s more scalable than a classifier. Moreover, our method can identify a
reater amount of object-state relations.

. Methodology

In order to evaluate the performance of each method, we follow
number of steps for preparing the data, shown in Fig. 1. The first

wo pre-processing steps in this pipeline are described in Section 4.2,
ut first we start with the formulation of the problem in Section 4.1.
hen, we analyze the methods that utilize the topological features of
he underlying KG (Section 4.3), and continue with the methods that
ely on the semantics of the nodes and their connections (Section 4.4).

Our proposed Relation Pattern Method is included in the latter
roup. Finally, the decision problem regarding a given association,
.e., whether the association is positive or negative (the ‘Conclusion’
tep in Fig. 1), can be answered by comparing the confidence value of
ach method to a threshold (Section 4.5). This threshold can be learned
rom the training data, as we explain in our experimental evaluation.

.1. Problem formulation

The problem we aim to solve is: given a directed knowledge graph
= (𝐸,𝑅), where 𝐸 denotes the set of nodes that correspond to entities,
denotes the set of edges that correspond to relations (i.e., 𝑅 contains

triples of the form
(

𝑡1, 𝑟, 𝑡2
)

where 𝑡1, 𝑡2 ∈ 𝐸 and 𝑟 denotes a relation
between 𝑡1 and 𝑡2), and a pair of nodes

(

𝑒1, 𝑒2
)

with 𝑒1, 𝑒2 ∈ 𝐸, where
𝑒1 represents an action or a state and 𝑒2 an object (𝐸 may contain
other types of nodes as well), find whether 𝑒1 and 𝑒2 are related. If 𝑒1
is an action and 𝑒 is an object, we consider these two nodes related
2
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Fig. 1. Pipeline of the Problem.

if the following question yields a positive answer: ‘‘Can the action 𝑒1
be performed by/on the object 𝑒2?". For instance, the question ‘‘Can the
action Fold be performed by the object Knife?’’ should yield a negative
answer. Similarly, if 𝑒1 is a state and 𝑒2 an object, we consider the
two nodes 𝑒1 and 𝑒2 related if the following question yields a positive
answer: ‘‘Can object 𝑒2 be in the state 𝑒1?’’. For example, the question
‘‘Can the object Knife obtain the state Dirty?’’ should yield a positive
answer.

4.2. Pre-processing of subgraphs

We first describe how we can generate a graph 𝐺′ that helps us
answer the aforementioned questions, from a given knowledge graph
𝐺 and a given collection of labels 𝐿 that relate to real-world objects,
actions, and states, and then, we show the methods we assessed to
tackle the aforementioned problem. We extract the object, action and
state labels from the Something-Something Dataset,5 a dataset that is
commonly used by the Computer Vision community (see Section 5.1
for more details); yet, any set of object, action, state labels can be
used to create 𝐺′. Moreover, notice that for each KG (i.e., ConceptNet,
ATOMIC, WebChild, YAGO and DBpedia), we get a different 𝐺′ and
a different set of labels 𝐿 (see Section 5.1 for more details). Now, for
every 𝐺 and 𝐿, we take every label 𝑙𝑖 ∈ 𝐿 and generate a graph 𝑆𝑖, by
appending information relevant to 𝑙𝑖 from each KG 𝐺 that we have at
hand. We construct 𝐺′ by unifying all |𝐿| graphs 𝑆1, . . . , 𝑆

|𝐿|, i.e., every
graph 𝑆𝑖 is a subgraph of 𝐺′. Notice that for constructing 𝐺′, we do not
omit any noise (see Section 2).

Step 1: For each object, action or state label, we search for a
node with the same lemmatized label in the KG at hand and extract
a subgraph containing a set of the properties found that are considered
relevant to the domain of interest. More specifically, for ConceptNet we
hand-picked the relations shown below. ConceptNet, due to its very
good documentation,6 enabled us to comprehend what each relation
represents and we omitted only 2 relations: Desires, which, while seem-
ingly relevant, is human centric and explains the emotions that are
elicited in humans as a result of an event, and ExternalURL, to avoid
appending information from external sites other than WordNet.

The edge types for ConceptNet that we consider are:

{𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇 𝑜, 𝑈𝑠𝑒𝑑𝐹𝑜𝑟, 𝐶𝑎𝑝𝑎𝑏𝑙𝑒𝑂𝑓,𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝐴𝑡,𝐻𝑎𝑠𝐴,

𝐼𝑠𝐴, 𝑆𝑦𝑛𝑜𝑛𝑦𝑚,𝐴𝑛𝑡𝑜𝑛𝑦𝑚,𝐷𝑒𝑓𝑖𝑛𝑒𝑑𝐴𝑠, 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑇 𝑜, 𝑃 𝑎𝑟𝑡𝑂𝑓,

𝐸𝑡𝑦𝑚𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇 𝑜, 𝐸𝑡𝑦𝑚𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑙𝑦𝐷𝑒𝑟𝑖𝑣𝑒𝑑𝐹 𝑟𝑜𝑚,

𝐻𝑎𝑠𝐿𝑎𝑠𝑡𝑆𝑢𝑏𝑒𝑣𝑒𝑛𝑡,𝐻𝑎𝑠𝑃 𝑟𝑒𝑟𝑒𝑞𝑢𝑖𝑠𝑖𝑡𝑒, 𝐶𝑟𝑒𝑎𝑡𝑒𝑑𝐵𝑦, 𝐶𝑎𝑢𝑠𝑒𝑠,

5 https://paperswithcode.com/dataset/something-something-v1
6 https://github.com/commonsense/conceptnet5/wiki/Relations
4

Fig. 2. Part of the subgraph for the label Knife. The red node is pruned in Step 2. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑠𝐴𝑐𝑡𝑖𝑜𝑛,𝐷𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝐹 𝑟𝑜𝑚,𝐷𝑒𝑟𝑖𝑣𝑒𝑑𝐹 𝑟𝑜𝑚,𝑀𝑎𝑑𝑒𝑂𝑓,

𝑀𝑎𝑛𝑛𝑒𝑟𝑂𝑓, 𝐹𝑜𝑟𝑚𝑂𝑓,𝐻𝑎𝑠𝐶𝑜𝑛𝑡𝑒𝑥𝑡,𝐻𝑎𝑠𝐹 𝑖𝑟𝑠𝑡𝑆𝑢𝑏𝑒𝑣𝑒𝑛𝑡,

𝐴𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝐻𝑎𝑠𝑃 𝑟𝑜𝑝𝑒𝑟𝑡𝑦,𝐻𝑎𝑠𝑆𝑢𝑏𝑒𝑣𝑒𝑛𝑡, 𝐿𝑜𝑐𝑎𝑡𝑒𝑑𝑁𝑒𝑎𝑟,

𝑆𝑦𝑚𝑏𝑜𝑙𝑂𝑓}

For DBpedia, we also omitted some properties in order for the
subgraphs which are created to reflect the nature of our problem. We
give some examples here, but notice that more properties than the
ones mentioned here were omitted (a complete list existing in our
documentation). The property wikiPageWikiLink was omitted because
we did not want information that does not belong into the DBpedia
ontology. The property wikiPageRedirects was omitted because in most
cases Wikipedia redirection lists contain noise, as they relate entities
with other contextually irrelevant entities. For instance, the object
pan is related, among others, with Pediatric acute-onset neuropsychiatric
syndrome (PANS), Peter Pan, and Pan the God.

The other three KGs we considered, i.e., ATOMIC, YAGO, and
WebChild, do not provide a detailed documentation for the relations
they contain and we therefore decided to use all the relations.

The subgraphs contain either 1-hop or 2-hop paths from the object,
action, or state label (see Section 5 for more details).

Step 2: In this step, we include context information. We collect
information from WordNet by examining the super-classes of each node
in the subgraph formed in Step 1; if any super-class of a node fits into a
domain-specific category of super-classes, the node is kept in the graph;
otherwise, it is deleted. The super-classes we consider are:

{𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙_𝑒𝑛𝑡𝑖𝑡𝑦, 𝑡ℎ𝑖𝑛𝑔, 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑔𝑟𝑜𝑢𝑝,
𝑚𝑒𝑎𝑠𝑢𝑟𝑒, 𝑠𝑒𝑡, 𝑐𝑎𝑢𝑠𝑎𝑙_𝑎𝑔𝑒𝑛𝑡, 𝑚𝑎𝑡𝑡𝑒𝑟, 𝑜𝑏𝑗𝑒𝑐𝑡, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠,
𝑐ℎ𝑎𝑛𝑔𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑜𝑟𝑙𝑑, 𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒, 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛}

We have chosen this set of classes based on the findings of [41]
that practically every node in the WordNet directed acyclic graph that
refers to a real-world object, action, or state has at least one of these
as a super-class. When interested in household appliances, for example,
this enrichment based on WordNet super-classes can provide domain-
specific notions. Fig. 2 is a portion of the subgraph produced from the
ConceptNet KG for the label Knife. The node that was pruned in Step
2 is highlighted in red, which was omitted because it was considered
out of context.

After creating a subgraph for each object, action and state label, as
described in Steps 1 and 2, we end up with a set of graphs {𝑆1,… , 𝑆𝑛},
such that 𝑆𝑖 =

(

𝐸𝑖, 𝑅𝑖
)

for 𝑖 = 1,… , 𝑛, where 𝐸𝑖 is the set of nodes
and 𝑅𝑖 the set of edges in 𝑆𝑖. Thus, the final graph is defined as
𝐺′ =

(

𝐸′, 𝑅′), where 𝐸′ =
⋃𝑛 𝐸 and 𝑅′ =

⋃𝑛 𝑅 .
𝑖=1 𝑖 𝑖=1 𝑖

https://paperswithcode.com/dataset/something-something-v1
https://github.com/commonsense/conceptnet5/wiki/Relations
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4.3. Topology-based relevance

In order to determine whether two nodes are related, we consider
two of the most popular methods found in relevant literature [42,43]
that exploit the topology of a graph.

Connecting Paths Method: This method considers each sequence
f edges that starts at the object node and ends at the action or state
ode after a finite number of steps, or vice versa . The method omits
aths that contain loops, but does not take into account the type of
dges a path contains. Given two subgraphs 𝑆1 and 𝑆2, which corre-
pond to an object node and an action (or state) node, respectively, as
tated in Section 4.1, the connectPath metric for 𝑆1 and 𝑆2 is defined
s:

𝑜𝑛𝑛𝑒𝑐𝑡𝑃 𝑎𝑡ℎ(𝑆1, 𝑆2) =
|𝐶1 ∪ 𝐶2|

|𝑃1 ∪ 𝑃2|
(1)

where 𝐶1 is the set of paths that start from the object node and reach the
action (or state) node, 𝐶2 is the set of paths that start from the action
(or state) node and reach the object node, 𝑃1 is the set of all paths that
tart from the object node and 𝑃2 the set of all paths that start from
he action (or state) node. Since (𝐶1 ∪ 𝐶2) ⊆ (𝑃1 ∪ 𝑃2), it follows that
0 ≤ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑃 𝑎𝑡ℎ ≤ 1.

Example 1. Let 𝑆𝑘𝑛𝑖𝑓𝑒 be the subgraph for the object node knife and
𝑆𝑓𝑜𝑙𝑑 be the subgraph for the action node fold, created from the Con-
ceptNet KG and let 𝑆𝑘𝑛𝑖𝑓𝑒 have two paths that start from the node knife,

namely Knife
CapableOf
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Cut and Knife

LocatedAt
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Pocket

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Wallet

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Fold and 𝑆𝑓𝑜𝑙𝑑 have only one path, Fold

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Cooking

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Spatula

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Knife. Then, the connectPath metric will

return

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑃 𝑎𝑡ℎ(𝑆𝑘𝑛𝑖𝑓𝑒, 𝑆𝑓𝑜𝑙𝑑 ) =
|𝐶𝑘𝑛𝑖𝑓𝑒 ∪ 𝐶𝑓𝑜𝑙𝑑 |

|𝑃𝑘𝑛𝑖𝑓𝑒 ∪ 𝑃𝑓𝑜𝑙𝑑 |

= 1 + 1
2 + 1

= 0.667

Recent studies using this method, with minor adjustments, have
ocused on inferring object-action relations [16,21] as well as object
dentification [15,20].
Common Nodes Method: Given two subgraphs, the Common Nodes

Method divides the number of common nodes by the total number of
nodes. When two nodes refer to the same entity in the KG at hand
(ConceptNet, ATOMIC, YAGO, DBpedia and WebChild), i.e., the nodes
have the same label, they are called common. Duplicate nodes are
removed, leaving each node with only one instance. The commonNodes
metric between two subgraphs 𝑆1 and 𝑆2 is defined as

𝑜𝑚𝑚𝑜𝑛𝑁𝑜𝑑𝑒𝑠(𝑆1, 𝑆2) =
|𝐸1 ∩ 𝐸2|

|𝐸1 ∪ 𝐸2|
(2)

where 𝐸𝑖 is the set of nodes in 𝑆𝑖. Essentially, the commonNodes metric
etween two graphs is the Jaccard similarity of the sets of nodes in
hese graphs. Example 2 shows how the commonNodes metric works.

xample 2. Let 𝑆𝑘𝑛𝑖𝑓𝑒 and 𝑆𝑓𝑜𝑙𝑑 be the subgraphs from Example 1,
or the nodes knife and fold, respectively. These two subgraphs have no
ommon node, and 7 distinct nodes in total.

𝑜𝑚𝑚𝑜𝑛𝑁𝑜𝑑𝑒𝑠(𝑆𝑘𝑛𝑖𝑓𝑒, 𝑆𝑓𝑜𝑙𝑑 ) =
|𝐸𝑘𝑛𝑖𝑓𝑒 ∩ 𝐸𝑓𝑜𝑙𝑑 |

|𝐸𝑘𝑛𝑖𝑓𝑒 ∪ 𝐸𝑓𝑜𝑙𝑑 |
=

|{𝐾𝑛𝑖𝑓𝑒, 𝐶𝑢𝑡, 𝑃 𝑜𝑐𝑘𝑒𝑡,𝑊 𝑎𝑙𝑙𝑒𝑡} ∩ {𝐹𝑜𝑙𝑑, 𝐶𝑜𝑜𝑘𝑖𝑛𝑔, 𝑆𝑝𝑎𝑡𝑢𝑙𝑎}|
|{𝐾𝑛𝑖𝑓𝑒, 𝐶𝑢𝑡, 𝑃 𝑜𝑐𝑘𝑒𝑡,𝑊 𝑎𝑙𝑙𝑒𝑡} ∪ {𝐹𝑜𝑙𝑑, 𝐶𝑜𝑜𝑘𝑖𝑛𝑔, 𝑆𝑝𝑎𝑡𝑢𝑙𝑎}|
0
7
= 0

where 𝐸𝑘𝑛𝑖𝑓𝑒 is the set of nodes in the 𝑆𝑘𝑛𝑖𝑓𝑒 subgraph and 𝐸𝑓𝑜𝑙𝑑 is the
et of nodes in the 𝑆𝑓𝑜𝑙𝑑 subgraph.

Recent studies using this method, with minor adjustments, have
ocused on object identification and on finding the similarity of two
5

odes in a knowledge graph [15,44,45]. p
.4. Semantics-based relevance

We first describe the very popular Wu-Palmer similarity measure
WUP), which was introduced in [46,47]. Then, we introduce our
elated Pattern Method, which uses a KG’s path pattern to determine
hether two nodes are semantically related.
Wu-Palmer Similarity Measure: WUP calculates relatedness using

ordNet’s acyclic graph, which takes into account the depth of two
odes in WordNet taxonomies, as well as the depth of their Least
ommon Subsumer (LCS). The LCS of two nodes in the WordNet acyclic
raph is the most specific common ancestor of these nodes. This metric
alculates similarity based on how near nodes in the WordNet acyclic
etwork are to one another. The WUP similarity between an object
ode (𝑛𝑜) and an action (or state) node (𝑛𝑎) is defined as

𝑈𝑃 (𝑛𝑜, 𝑛𝑎) = 2 ∗
𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝑆(𝑛𝑜, 𝑛𝑎))
𝑑𝑒𝑝𝑡ℎ(𝑛𝑜) + 𝑑𝑒𝑝𝑡ℎ(𝑛𝑎)

, (3)

where 𝑑𝑒𝑝𝑡ℎ(⋅) is the depth of an entity in the WordNet graph. More-
over, the depth of the LCS is never 0, thus the score can never be zero
(the depth of the root of the taxonomy is one).

Example 3. The WUP similarity for the object knife and the action
fold is

WUP(𝑘𝑛𝑖𝑓𝑒, 𝑓𝑜𝑙𝑑) = 2 ∗
𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝑆(𝑘𝑛𝑖𝑓𝑒, 𝑓𝑜𝑙𝑑))
𝑑𝑒𝑝𝑡ℎ(𝑘𝑛𝑖𝑓𝑒) + 𝑑𝑒𝑝𝑡ℎ(𝑓𝑜𝑙𝑑)

= 2 ∗
𝑑𝑒𝑝𝑡ℎ(𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙_𝑒𝑛𝑡𝑖𝑡𝑦)

𝑑𝑒𝑝𝑡ℎ(𝑘𝑛𝑖𝑓𝑒) + 𝑑𝑒𝑝𝑡ℎ(𝑓𝑜𝑙𝑑)

= 2 ∗ 2
12 + 6

= 0.221

Many studies use the WUP similarity in a wide spectrum of domains.
Recent studies, such as [16,41], use WUP scores to infer object-action
relations and object identification.

Relation Pattern Method: We next propose a new method, which
is based on the idea that some paths connecting two nodes carry
semantically more meaningful information than others. The Example 4
presents such a case.

Example 4. The path knife
Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ node0

ReceivesAction
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ cut may

appear more often in the knife-cut object-action pair compared to paths
composed of other relations, in the ConceptNet KG. Because the relation
𝑆𝑦𝑛𝑜𝑛𝑦𝑚 may relate the knife with a similar object which may receive
the same set of actions that knife receives.

On the other hand, the path knife
RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ node0

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ cut

may not contain the same semantically meaningful information, as it
may connect through the property 𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑇 𝑜 the knife with a com-
pletely irrelevant entity in the KG, on which the action cut cannot be
performed.

Similar examples can be given for ATOMIC, YAGO, WebChild and
DBpedia. An important aspect of our proposed method is the flexibility
in deciding how to deal with the noise that exists in the data, and
the capability to determine the importance of a path through training,
rather than through manual annotation.

Notice, that although in the KGs we can find both bi-directional re-
lations (e.g., RelatedTo, Synonym) and uni-directional ones (e.g., Used-
For), we decided not to take into account the directionality of the edges,
in order to keep the pattern generation method generic. Of course, more
fine-grained patterns can also be considered.

A relation pattern is any connecting path that is composed of at
least one of the relations that one can consider as important for the
problem at hand. We regard the presence of a relation pattern between
an object-action or an object-state pair in the KG to be an indication
that the two nodes are related. If  = {𝑝𝑎𝑡𝑡𝑒𝑟𝑛1,… , 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑛} is the set
of all relation patterns, the goal is to assign a weight of importance
𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 to each 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 ∈  , indicating how certain we are that the
attern yields proper associations.
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For the Relation Pattern method, we consider path patterns based
on their frequency of appearances in a set of positive and negative
object-action/state relations. For instance, given the relation pattern
RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ we would count its appearances in the positive

object-action/state (𝐴) relations and in the negative object-action/state
relations (𝐵). Next, we would compute the score 𝐶 = 𝐴−𝐵. We would
o this for each path pattern that was found at least once in an object-
ction/state relations, and we would short based on the number 𝐶 of
ach path pattern. Here, notice that the procedure is separate for object-
ction and for object-state. Moreover, we have to comment that we
sually would cut at the first 100 path patterns, because after the 100
irst the 𝐶 numbers would start to have negative values.

Next, we describe the process of assigning weights to the rela-
ion patterns. For a relation pattern 𝑝, we characterize the results as
rue Positive (TP), False Positive (FP), True Negative (TN), and False
egative (FN) according to the following definitions:

• TP is when a pair of object-action/state nodes is both present in
the ground truth and connected through 𝑝.

• FP is when a pair of object-action/state nodes is not present in
the ground truth, but connected through 𝑝.

• TN is when a pair of object-action/state nodes is neither present
in the ground truth nor connected through 𝑝.

• FN is when a pair of object-action/state nodes is present in the
ground truth, but not connected through 𝑝.

Then, we define the weight of importance 𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 for 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 as the
1-score

𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 = 2 𝑃 ⋅ 𝑅
𝑃 + 𝑅

, (4)

where 𝑃 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 ) and 𝑅 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁).
Example 5 shows how the weight of importance 𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 works in

ractice for a relation pattern. The example uses ConceptNet as an
nderlying KG.

xample 5. Consider the relation pattern
(

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

UsedFor
←←←←←←←←←←←←←←←←←←←←←←←←←→

)

and the
et of subgraphs {𝑆𝑘𝑛𝑖𝑓𝑒, 𝑆𝑐𝑢𝑡, 𝑆𝑠𝑡𝑎𝑏, 𝑆𝑓𝑜𝑙𝑑}, which represent the nodes
nife, cut, stab and fold, respectively. For this example, let the knowl-
dge graph 𝐺′ be composed only from the subgraphs {𝑆𝑘𝑛𝑖𝑓𝑒, 𝑆𝑐𝑢𝑡, 𝑆𝑠𝑡𝑎𝑏,
𝑓𝑜𝑙𝑑}. The knife is related with cut and stab, but not with fold, ac-
ording to the ground truth. For each such pair of object-action nodes,
e search for a relation path

(

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

UsedFor
←←←←←←←←←←←←←←←←←←←←←←←←←→

)

connecting the two
odes (see Section 4.3).

TP is 2 because the pairs knife-cut and knife-stab are related in the
round truth and the relation path

(

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

UsedFor
←←←←←←←←←←←←←←←←←←←←←←←←←→

)

is a connecting
ath in both. FP is 1 because the pair knife-fold is not related in the
round truth and the relation path

(

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

UsedFor
←←←←←←←←←←←←←←←←←←←←←←←←←→

)

is a connecting
ath. FN is 0 because we do not have a pair that is related in our
round truth and does not have

(

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

UsedFor
←←←←←←←←←←←←←←←←←←←←←←←←←→

)

as a connecting
ath. Using this information, we get the following scores.

= 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

= 2
2 + 1

= 0.666 𝑎𝑛𝑑

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

= 2
2 + 0

= 1

𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛( RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

UsedFor
←←←←←←←←←←←←←←←←←←←←←←←←←→

)
= 4

5
= 0.8

The final score of Example 5 shows that the weight of importance
𝑝𝑎𝑡𝑡𝑒𝑟𝑛( RelatedTo

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,
UsedFor

←←←←←←←←←←←←←←←←←←←←←←←←←→
)

can predict 80% of the positive and negative

bject action relations. In other words, it shows the proportion of
bject-action pairs that can be classified correctly (i.e., related or not
6

elated), by this relation pattern. s
Other heuristics can, of course, be employed instead. Since it is
ppropriate to examine multiple patterns before deciding on a rela-
ionship between two labels, patterns can be grouped together based
n their performance, domain-specific importance, or other factors. For
xample, the weighted sum of the weights of each individual pattern or
ther heuristics-based metrics can be used to quantify the performance
f a cluster 𝑊𝐶 . As a baseline, we use an even simpler method in our
nalysis, treating any patterns with weights above a certain threshold
s equally important.

For the Relation Pattern method with Clusters based on the proce-
ure that we computed for the Relation Pattern method, we compute all
he possible combinations that provide groups of path patterns that are
omposed of the same type(s) of relations. For example, if we have 5
ath patterns that are composed only from the RelatedTo property then
hat would result in cluster, similarly if we 3 path patterns composed
orm the relations RelatedTo and UsedFor then this would be another
ath pattern.

.5. Answering the decision problem

All the methods described in Sections 4.3 and 4.4, except our
elation Pattern Method, result in a relevance score 𝑠𝑟. Thus, to answer

he decision problem of Section 4.1, we can simply compare this score
o a relevance threshold 𝑡 and yield a positive answer, if 𝑠𝑟 ≥ 𝑡, or
negative answer, otherwise. This threshold 𝑡 can be pre-determined

y experts, or learned by using a training set of labeled samples. In
his paper, we evaluate those methods assuming that this threshold 𝑡 is
earned.

Our Relation Pattern Method does not yield a relevance score, but
nstead, it suggests relation patterns that can be exploited to answer
he decision problem of Section 4.1. To suggest which patterns, among
ll possible options, should be exploited, it relies on the weight compu-
ation of Eq. (4). Specifically, it computes the average pattern weight
𝑎𝑣𝑔 from a training set of labeled samples, and suggests those patterns

hat yield a weight 𝑤 ≥ 𝑤𝑎𝑣𝑔 .

. Evaluation

This section describes how we constructed the ground truth from
he Something-Something Dataset, followed by an explanation of the
xperimental setup and the findings obtained by the evaluation of each
ethod.

.1. Data collection

We decided to extract the set of labels for our evaluation from the
omething-Something Dataset rather than using a random collection
f action, state and object labels in order to get appropriate coverage
f entities for the household domain. Something-Something is a big
ollection of short video clips (about 108k) depicting actions done on
nd with everyday objects. The activities involve either one type of
bject (for example, opening a bottle) or two different types of objects
for example, putting coins inside a box). The Something-Something
ataset has become a de-facto benchmark for the evaluation of systems
ddressing the task of action recognition due to its large number of
ample videos. The dataset includes a brief description for each clip
hat includes action, state, and object(s) labels.
Ground Truth Creation: We initially extracted all object-action-

tate labels. All plural object labels were changed to their singular
ounterparts, for example notes was replaced with note. Then, we
emoved certain object and action labels that were not relevant to
he context, as they were not household objects, and ended up with
48 object labels, 25 action labels and 24 state labels. Notice that
hese labels, apart from being relevant, were not randomly selected.

e counted the number of appearances of the object-action and object-

tate associations that each pair produces in the video descriptions
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of Something-Something. Therefore, the 148*25 object-action relations
appear in 39 514 different video descriptions, and the 148*24 object-
state relations appear in 39 019 different video descriptions. Out of
the total 108 499 video descriptions that Something-Something has,
we considered these portions a normal coverage of object-action and
object-state relations, over (maybe) the largest dataset when it comes
to object-action and object-state relations.

Next, for the remaining action, object and state labels, we issued
a query to each KG that we evaluated, in order to identify which
labels are indeed part of the graph. For the ConceptNet KG, we used
the ConceptNet Web API,7 for DBpedia, we used the Virtuoso SPARQL
endpoint8 (the SPARQL query can be found in Listing 1), while for
ATOMIC, WebChild and YAGO, we developed our own Python script
to search for each label. All the KGs contained 148 object labels, 25
action labels, and 24 state labels, except ATOMIC and DBpedia which
contained 24 action labels. Finally, since some actions have the same
label with some objects (3 in total), we renamed these labels as follows:
(a) pile → pileO and pile → pileV, (b) stack → stackO and stack → stackV,
and (c) cover → coverO and cover → coverV, to refer to the object and
action label, respectively.

Eventually, the object-action and object-state pairs that existed
in the description of at least one video in the Something-Something
Dataset were automatically characterized as positive pairs. The remain-
ing were manually annotated, in order to determine if they are negative
or if they are positive.

Listing 1: SPARQL query for DBpedia

PREFIX dbpr: <http://dbpedia.org/resource/>
PREFIX dbpo: <http://dbpedia.org/ontology/>
PREFIX owl: <http://www.w3.org/2002/07/>
SELECT ?property1 ?entity1 ?property2 ?

entity2
WHERE {
{
dbpr:<Input> ?property1 ?entity1.
?entity1 rdf:type owl:Thing
OPTIONAL {
?entity1 ?property2 ?entity2.
?entity2 rdf:type owl:Thing. }
FILTER (?property1 != dbpo:

wikiPageRedirects
&& ?property1 != dbpo:wikiPageWikiLink
&& ?property2 != dbpo:wikiPageRedirects
&& ?property2 != dbpo:wikiPageWikiLink)
}
UNION
{
?entity1 ?property1 dbpr:<Input>.
?entity1 rdf:type owl:Thing.
OPTIONAL {?entity2 ?property2 ?entity1.
?entity2 rdf:type owl:Thing.}
FILTER (?property1 != dbpo:

wikiPageRedirects
&& ?property1 != dbpo:wikiPageWikiLink
&& ?property2 != dbpo:wikiPageRedirects
&& ?property2 != dbpo:wikiPageWikiLink)
}
}

7 https://pypi.org/project/ConceptNet/
8 https://dbpedia.org/sparql
7

5.2. Experimental setup

The methods described in Section 4 were evaluated for each KG
using 10-fold cross validation over the total number of positive and
negative relations captured by each KG, as detailed in Section 5.1. We
used Sklearn9 to split our data into 10 folds.

To train the multiple models, each iteration of the 10-fold cross-
validation method was used. The training folds specifically helped to
identify the appropriate threshold for each method that optimizes the
F1 score (see Example 6) for the Connecting Path Method, the WUP
similarity and the Common Node Method. The training phase of the
Relation Pattern Method assisted in calculating the weights of impor-
tance 𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 of each relation pattern 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑖 ∈  , as explained in
ection 4.4. During testing, we evaluated each method’s performance
sing the given thresholds and weights. Patterns that did not perform
ell throughout training were completely removed.

xample 6. Consider the thresholds 𝑡ℎ𝑟𝑐𝑝 = 0.6, 𝑡ℎ𝑟𝑐𝑛 = 0.5 and
ℎ𝑟𝑤𝑢𝑝 = 0.47 for the Connecting Path, Common Node and WUP similar-
ty, respectively, the negative object-action relation knife-fold and the
orresponding subgraphs 𝑆𝑘𝑛𝑖𝑓𝑒 and 𝑆𝑓𝑜𝑙𝑑 . The Connecting Path score
or this pair is 0.66 (see Example 1), it is therefore classified as a False
ositive pair (if the score was below 0.6 then it would be classified as a
rue Negative). Similarly, the Common Node and WUP similarity scores
re, 0 and 0.22, respectively, (see (2) and Example 3), therefore they
lassify the pair as a True Negative. Analogously, given the positive
bject-action relation knife-cut and the corresponding subgraphs 𝑆𝑘𝑛𝑖𝑓𝑒
nd 𝑆𝑐𝑢𝑡, and for the sake of the example let the Connecting Path
core for this pair be 0.56, while for the Common Node and the
UP similarity the scores be 0.67 and 0.71, respectively. Then, the

onnecting Path metric classifies the knife-cut pair as a False Negative
if the score was above the threshold it would classify them as a True
ositive). But, the Common Node and WUP similarity metrics classify
he pair as a True Positive.

Another variant of this method would have been to limit the antic-
pated results to those with a confidence score greater than a certain
hreshold, i.e., restrict the anticipated results only to these that are
bove/below a threshold. However, we found that this method works
est when the minimal confidence criterion is 0 (confidence ratings are
xtremely low in far too many cases), thus we decided to not report
esults for this variation.

Of course, when such similar paths are viewed as a group rather
han as individuals, they gain practical importance. As a result, for
ach knowledge graph, we additionally present the performance of
wo or three (if there exist as many) clusters of patterns. We take a
traightforward technique to determine what a cluster is: any pattern
hat its weight exceeds a certain threshold is considered relevant. As a
esult, even if a single pattern is detected in the graph, the object-action
r object-state pair associated with it, is considered related. We chose a
elatively broad threshold for including patterns in the cluster, namely
ny pattern with a weight greater than 0.1, because we simply want to
valuate a baseline scenario.

More complex methods can be used, such as taking into account
he weight of importance among the patterns in each cluster or using
omain-specific criteria. Even with this as a starting point, we can see
hat grouping pathways can enhance F1-scores. However, by neglecting
he relative relevance of each individual pattern, we introduce noise,
s evidenced by the precision scores when compared to the highest
erforming patterns, an issue that may be addressed with a more
dvanced approach.
KG Embedding-based Baseline. Recent works in the field of KG

mbeddings for the task of link prediction [48] represent nodes of

9 https://scikit-learn.org/stable/modules/cross_validation.html

https://pypi.org/project/ConceptNet/
https://dbpedia.org/sparql
https://scikit-learn.org/stable/modules/cross_validation.html
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Table 1
ConceptNet knowledge graph and object-action relations from something-something.

Method Accuracy Recall Precision F1 score

Connecting Path 0.534 0.752 0.552 0.637
WUP 0.555 0.951 0.551 0.698
Common Node 0.551 0.956 0.548 0.697
AllenAI-Commonsense (top-1) 0.502 0.191 0.596 0.289
AllenAI-Commonsense (top-3) 0.582 0.599 0.608 0.603
AllenAI-Commonsense (top-5) 0.596 0.748 0.595 0.663

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.551 0.964 0.548 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.539 0.985 0.536 0.695

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.558 0.906 0.557 0.69

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.891 0.56 0.688

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.835 0.564 0.673

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

RelatedTo-Synonym 0.539 0.985 0.546 0.703
UsedFor-Synonym 0.582 0.636 0.569 0.601
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a KG as vectors in a low-dimensional space, which are generated by
considering both textual (e.g., through word/sentence embeddings) and
structural (e.g., through graph traversals) features of those nodes.

As an indicative method for this family of algorithms, in this work
we employ AllenAI-CommonSense [49] as a baseline, which constitutes
the state of the art for link prediction in ConceptNet. This method
employs a pre-trained BERT [50] model that is fine-tuned on Concept-
Net, using Graph Convolutional Networks (GCN) [51] for embedding
the ConceptNet graph. This model returns a list of possible relations
between a given pair of ConceptNet nodes, ranked in descending order
of likelihood. We consider that the answer to the object-action problem
formulated in Section 4.1 is positive for two query nodes, when the
relation ‘‘ReceivesAction’’ is within the top-𝑘 answers for those query
nodes (for 𝑘 ∈ {1, 3, 5}).

5.3. Results

Next, we summarize the overall performance measurements for each
method, over the knowledge graphs of ConceptNet, YAGO, WebChild,
ATOMIC and DBpedia. Moreover, we compare the performance of
ConceptNet using only the object, action and state labels which exist
in YAGO, WebChild, ATOMIC and DBpedia, respectively.

In the following tables, we display the accuracy, precision, recall
and F1-score for the Connecting Path, Common Node and WUP simi-
larity metrics, as well as for the Relation Pattern Method and Relation
Pattern Method with clusters. Notice that due to the plurality of relation
patterns we display only the Top-5 relation patterns with respect to
F1-score performance (i.e., the Top-5 relation patterns that achieved
the best F1-score). Analogously, we display only the Top-3 clusters of
relation patterns with respect to F1-score, if there exist as many (see
Tables 5–20).

In general, the differences among the Connecting Path, Common
Node and WUP similarity metrics, with respect to their F1-score are
small for each KG, when evaluating object-action relations. The same
does not hold when evaluating object-state relations, as the Connecting
Path method achieves worse scores with respect to F1-score than the
Common Node and WUP metrics. On the other hand, in almost all cases
either the Relation Pattern Method or the Relation Pattern Method
with clusters outperform the three aforementioned methods in regard
to F1-score. Moreover, when evaluating the DBpedia KG, the nodes in
DBpedia (i.e., the URIs) are not single word labels, but instead they are
small descriptions or phrases. In this case, we can see that the WUP
similarity metric achieves its worst performance. The reason for that
is because the WUP similarity metric needs single word labels in order
to provide a similarity measure, instead of small phrases. We elaborate
more on our results in Section 6.
8

One may notice that we evaluate ConceptNet two times. Tables 1
and 3 for object-action relations, and Tables 2 and 4 for object-state
relations. The reason was that, although not explicitly stated in the Con-
ceptNet documentation, RelatedTo plays the role of a super-property,
i.e., it subsumes the other relations. Thus, we wanted to see the
performance of ConceptNet with and without the RelatedTo property.

The AllenAI-CommonSense (top-𝑘) methods (Table 1), despite their
igh accuracy, underperform in F1 scores, compared to the other meth-
ds. This is due to a considerable difference noticed in the accuracy for
ositive pairs (.19) with respect to that for negative pairs (.854).

As mentioned, not all graphs have the same number of object,
ction and state labels. For this reason, we did a second round of
xperiments where we used the labels that each KG has and evaluated
he ConceptNet KG only on the object-action and object-state relations
ormed from these labels. The reason for this was that ConceptNet
s our baseline KG, and we wanted to see how ConceptNet performs
n the same batch of labels that each KG has in order to compare
erformances.

Notice that WebChild and YAGO have the same number of object
nd action labels with ConceptNet. Therefore, when we evaluate Con-
eptNet with the labels existing in WebChild and YAGO, the results will
e the same as if we evaluated ConceptNet with its own labels. The
ame holds for each KG when considering object state relations. Either
ay, we display a table for these cases even though the results are the

ame with ConceptNet when using its own labels.
Also, notice that the subgraphs of WebChild and YAGO which are

escribed in Section 4 have depth 1, and the subgraphs of ConceptNet,
TOMIC and DBpedia have depth 2. The reason for that was two-fold:

a) we wanted the subgraphs of each KG to have almost the same
umber of nodes, approximately 1000 (as 1000 nodes gave us adequate
nformation) and (b) the subgraphs of WebChild and YAGO contained
pproximately 1000 nodes having only depth 1 paths.

Finally, it is true that the relation patterns which achieved high
cores in YAGO are quite obscure, in how they could help in inferring
bject-action and object-state association relations. For this reason, we
resent 3 examples for each case. Example 7 shows 3 examples of
bject-action association relations, and Example 8 shows 3 examples
f object-state association relations.

xample 7. Object-action association relations for the relation pat-
terns which achieved high F1-scores in YAGO.

𝑙𝑖𝑓 𝑡
inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑒𝑛𝑔𝑙𝑖𝑠ℎ_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒, 𝑓𝑟𝑒𝑛𝑐ℎ_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒,

𝑘𝑜𝑟𝑒𝑎𝑛_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒, 𝑗𝑎𝑝𝑎𝑛𝑒𝑠𝑒_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒
inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑏𝑢𝑐𝑘𝑒𝑡
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Table 2
ConceptNet knowledge graph and object-state relations from something-something.

Method Accuracy Recall Precision F1 score

Connecting Path 0.526 0.384 0.453 0.415
WUP 0.536 0.856 0.588 0.697
Common Node 0.556 0.892 0.577 0.701

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←→ 0.654 0.699 0.724 0.711

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.63 0.693 0.715 0.704

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.62 0.69 0.709 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.615 0.674 0.69 0.681

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.645 0.663 0.674 0.668

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

RelatedTo 0.573 0.938 0.582 0.718
RelatedTo-Synonym 0.567 0.938 0.568 0.708
RelatedTo-AtLocation 0.557 0.865 0.565 0.684
Table 3
ConceptNet knowledge graph and object-action relations from something-something (without RelatedTo).

Method Accuracy Recall Precision F1 score

Connecting Path 0.554 0.879 0.552 0.678
WUP 0.549 0.942 0.539 0.685
Common Node 0.543 0.905 0.535 0.672

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.532 0.398 0.58 0.472

IsA
←←←←←→

IsA
←←←←←→ 0.521 0.303 0.565 0.394

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.503 0.243 0.558 0.339

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.52 0.245 0.515 0.332

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.518 0.233 0.482 0.314

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

HasContext-AtLocation-DerivedFrom 0.588 0.791 0.577 0.667
IsA-HasContext-Antonym 0.57 0.672 0.575 0.62
IsA-HasContext-Antonym 0.564 0.38 0.595 0.464
Table 4
ConceptNet knowledge graph and object-state relations from something-something (without RelatedTo).

Method Accuracy Recall Precision F1 score

Connecting Path 0.524 0.324 0.347 0.335
WUP 0.478 0.519 0.426 0.467
Common Node 0.542 0.564 0.519 0.540

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
HasProperty
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

ReceivesAction
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

ReceivesAction
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.478 0.413 0.598 0.489

Antonym
←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasProperty
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.481 0.506 0.467 0.486

DistinctFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasProperty
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.481 0.506 0.467 0.486

HasProperty
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.465 0.513 0.391 0.444

HasProperty
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.479 0.505 0.38 0.434

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

AtLocation-IsA-HasContext 0.643 0.672 0.716 0.693
AtLocation-UsedFor-ReceivesAction 0.64 0.49 0.756 0.595
AtLocation-HasProperty 0.555 0.467 0.714 0.565
9
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Table 5
Atomic knowledge graph and object-action relations from something-something.

Method Accuracy Recall Precision F1 score

Connecting Path 0.558 0.923 0.557 0.695
WUP 0.523 0.992 0.521 0.683
Common Node 0.519 0.987 0.52 0.681

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
prefix
←←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→ 0.568 0.923 0.587 0.718

xAttr
←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→ 0.588 0.943 0.579 0.717

prefix
←←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→ 0.558 0.91 0.577 0.706

xAttr
←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←→ 0.528 0.899 0.523 0.661

xAttr
←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→ 0.519 0.889 0.513 0.653

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

xAttr-prefix 0.531 0.995 0.586 0.738
prefix 0.536 0.966 0.549 0.701
xAttr 0.531 0.938 0.528 0.676
Table 6
Atomic knowledge graph and object-state relations from something-something.

Method Accuracy Recall Precision F1 score

Connecting Path 0.45 0.461 0.6 0.521
WUP 0.526 0.863 0.527 0.654
Common Node 0.546 0.891 0.55 0.68

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
xAttr
←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→ 0.58 0.92 0.74 0.821

prefix
←←←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→ 0.58 0.92 0.74 0.821

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←→ 0.56 0.89 0.69 0.78

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←→

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←→ 0.56 0.85 0.67 0.75

prefix
←←←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←→

xAttr
←←←←←←←←←←←←→ 0.56 0.84 0.65 0.732

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

xAttr-prefix 0.6 0.6 0.6 0.6
prefix 0.615 0.592 0.6 0.596
xAttr 0.53 0.584 0.6 0.592
Table 7
ConceptNet knowledge graph and object-action relations only existing in ATOMIC.

Method Accuracy Recall Precision F1 score

Connecting Path 0.561 0.938 0.563 0.704
WUP 0.522 0.934 0.524 0.671
Common Node 0.528 0.941 0.53 0.678

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.681 0.71 0.685 0.697

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.681 0.695 0.685 0.69

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.653 0.669 0.687 0.678

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.667 0.702 0.588 0.64

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.624 0.711 0.521 0.601

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

RelatedTo-Synonym 0.545 0.955 0.571 0.715
UsedFor-Synonym 0.531 0.991 0.527 0.688
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Table 8
ConceptNet knowledge graph and object-state relations only existing in ATOMIC.

Method Accuracy Recall Precision F1 score

Connecting Path 0.526 0.384 0.453 0.415
WUP 0.536 0.856 0.588 0.697
Common Node 0.556 0.892 0.577 0.701

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←→ 0.654 0.699 0.724 0.711

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.63 0.693 0.715 0.704

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.62 0.69 0.709 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.615 0.674 0.69 0.681

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.645 0.663 0.674 0.668

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

RelatedTo 0.573 0.938 0.582 0.718
RelatedTo-Synonym 0.567 0.938 0.568 0.708
RelatedTo-AtLocation 0.557 0.865 0.565 0.684
Table 9
YAGO knowledge graph and object-action relations from something-something.

Method Accuracy Recall Precision F1 score

Connecting Path 0.574 0.901 0.562 0.692
WUP 0.534 0.911 0.539 0.677
Common Node 0.54 0.936 0.541 0.685

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.66 0.708 0.689 0.698

knowslanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.656 0.684 0.679 0.681

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

knowslanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.656 0.654 0.659 0.656

genre
←←←←←←←←←←←←←→

genre
←←←←←←←←←←←←←→ 0.619 0.627 0.623 0.625

hasoccupation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hasoccupation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.577 0.575 0.58 0.577

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

inlanguage-knowslanguage 0.534 0.896 0.636 0.744
sport-about 0.518 0.601 0.327 0.424
familyname-givenname-parenttaxon 0.536 0.72 0.218 0.335
Table 10
YAGO knowledge graph and object-state relations from something-something.

Method Accuracy Recall Precision F1 score

Connecting Path 0.48 0.334 0.432 0.377
WUP 0.529 0.752 0.556 0.639
Common Node 0.532 0.773 0.554 0.645

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.518 0.665 0.548 0.601

genre
←←←←←←←←←←←←←→

genre
←←←←←←←←←←←←←→ 0.532 0.594 0.55 0.571

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

knowslanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.51 0.574 0.548 0.561

knowslanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.51 0.574 0.548 0.561

taxonrank
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

taxonrank
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.485 0.238 0.388 0.295

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

inlanguage-knowslanguage 0.548 0.9 0.541 0.677
genre-alumniof-memberof 0.566 0.745 0.545 0.63
birthplace-deathplace-homelocation 0.471 0.7 0.45 0.55
11
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Table 11
ConceptNet knowledge graph and object-action relations only existing in YAGO.

Method Accuracy Recall Precision F1 score

Connecting Path 0.534 0.752 0.552 0.636
WUP 0.555 0.951 0.551 0.697
Common Node 0.551 0.956 0.548 0.696

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.551 0.964 0.548 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.539 0.985 0.536 0.694

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.558 0.906 0.557 0.69

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.891 0.56 0.688

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.835 0.564 0.673

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

RelatedTo-Synonym 0.539 0.985 0.546 0.703
UsedFor-Synonym 0.582 0.636 0.569 0.601
Table 12
ConceptNet knowledge graph and object-state relations only existing in YAGO.

Method Accuracy Recall Precision F1 score

Connecting Path 0.526 0.384 0.453 0.415
WUP 0.536 0.856 0.588 0.697
Common Node 0.556 0.892 0.577 0.701

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←→ 0.654 0.699 0.724 0.711

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.63 0.693 0.715 0.704

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.62 0.69 0.709 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.615 0.674 0.69 0.681

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.645 0.663 0.674 0.668

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

RelatedTo 0.573 0.938 0.582 0.718
RelatedTo-Synonym 0.567 0.938 0.568 0.708
RelatedTo-AtLocation 0.557 0.865 0.565 0.684
Table 13
WebChild knowledge graph and object-action relations from something-something.

Method Accuracy Recall Precision F1 score

Connecting Path 0.437 0.777 0.434 0.557
WUP 0.435 0.841 0.458 0.593
Common Node 0.434 0.84 0.457 0.591

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
quality
←←←←←←←←←←←←←←←←←←→

quality
←←←←←←←←←←←←←←←←←←→ 0.458 0.911 0.458 0.61

haspart
←←←←←←←←←←←←←←←←←←←←→

haspart
←←←←←←←←←←←←←←←←←←←←→ 0.463 0.88 0.46 0.604

size
←←←←←←←→

size
←←←←←←←→ 0.461 0.807 0.455 0.582

state
←←←←←←←←←←→

state
←←←←←←←←←←→ 0.45 0.785 0.449 0.571

age
←←←←←←→

age
←←←←←←→ 0.47 0.668 0.468 0.55

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

quality-state 0.458 0.912 0.459 0.611
haspart-size 0.458 0.895 0.458 0.606
state-weight-motion 0.449 0.862 0.452 0.593
12
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Table 14
WebChild knowledge graph and object-state relations from something-something.

Method Accuracy Recall Precision F1 score

Connecting Path 0.462 0.34 0.292 0.314
WUP 0.437 0.568 0.414 0.479
Common Node 0.429 0.578 0.404 0.475

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
haspart
←←←←←←←←←←←←←←←←←←←←→

haspart
←←←←←←←←←←←←←←←←←←←←→ 0.451 0.575 0.324 0.414

state
←←←←←←←←←←→

state
←←←←←←←←←←→ 0.467 0.388 0.424 0.405

quality
←←←←←←←←←←←←←←←←←←→

quality
←←←←←←←←←←←←←←←←←←→ 0.459 0.434 0.292 0.349

haspart
←←←←←←←←←←←←←←←←←←←←→

size
←←←←←←←→ 0.488 0.366 0.356 0.361

size
←←←←←←←→

haspart
←←←←←←←←←←←←←←←←←←←←→ 0.474 0.38 0.316 0.345

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

haspart-quality-state 0.459 0.874 0.664 0.755
size-weight-age 0.487 0.742 0.458 0.567
Table 15
ConceptNet knowledge graph and object-action relations only existing in WebChild.

Method Accuracy Recall Precision F1 score

Connecting Path 0.534 0.752 0.552 0.636
WUP 0.555 0.951 0.551 0.697
Common Node 0.551 0.956 0.548 0.696

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.551 0.964 0.548 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.539 0.985 0.536 0.694

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.558 0.906 0.557 0.69

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.891 0.56 0.688

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.835 0.564 0.673

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

RelatedTo-Synonym 0.539 0.985 0.546 0.703
UsedFor-Synonym 0.582 0.636 0.569 0.601
Table 16
ConceptNet knowledge graph and object-state relations only existing in WebChild.

Method Accuracy Recall Precision F1 score

Connecting Path 0.526 0.384 0.453 0.415
WUP 0.536 0.856 0.588 0.697
Common Node 0.556 0.892 0.577 0.701

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←→ 0.654 0.699 0.724 0.711

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.63 0.693 0.715 0.704

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.62 0.69 0.709 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.615 0.674 0.69 0.681

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.645 0.663 0.674 0.668

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

RelatedTo 0.573 0.938 0.582 0.718
RelatedTo-Synonym 0.567 0.938 0.568 0.708
RelatedTo-AtLocation 0.557 0.865 0.565 0.684
13
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Table 17
DBpedia knowledge graph and object-action relations from something-something.

Method Accuracy Recall Precision F1 score

Connecting Path 0.553 0.727 0.45 0.556
WUP 0.492 0.252 0.534 0.342
Common Node 0.496 0.258 0.508 0.342

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

genre
←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

genre
←←←←←←←←←←←←←→ 0.494 0.441 0.63 0.519

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.489 0.495 0.508 0.501

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

type
←←←←←←←←←→ 0.486 0.425 0.532 0.473

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

type
←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.484 0.43 0.468 0.448

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

occupation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.487 0.406 0.4 0.403

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

wikiPageDisambiguates-other 0.496 0.618 0.548 0.581
Table 18
DBpedia knowledge graph and object-state relations from something-something.

Method Accuracy Recall Precision F1 score

Connecting Path 0.538 0.388 0.314 0.347
WUP 0.495 0.264 0.489 0.343
Common Node 0.499 0.182 0.508 0.268

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.49 0.442 0.533 0.483

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

type
←←←←←←←←←→ 0.472 0.439 0.536 0.482

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

type
←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

hypernym
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.489 0.436 0.327 0.374

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

language
←←←←←←←←←←←←←←←←←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

language
←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.487 0.425 0.275 0.334

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

type
←←←←←←←←←→

wikiPageDisambiguates
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

type
←←←←←←←←←→ 0.478 0.413 0.233 0.298

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

wikiPageDisambiguates-other 0.489 0.423 0.599 0.495
Table 19
ConceptNet knowledge graph and object-action relations only existing in DBpedia.

Method Accuracy Recall Precision F1 score

Connecting Path 0.534 0.752 0.552 0.636
WUP 0.555 0.951 0.551 0.697
Common Node 0.551 0.956 0.548 0.696

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.551 0.964 0.548 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.539 0.985 0.536 0.694

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.558 0.906 0.557 0.69

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.891 0.56 0.688

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

Synonym
←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.561 0.835 0.564 0.673

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

RelatedTo-Synonym 0.539 0.985 0.546 0.703
UsedFor-Synonym 0.582 0.636 0.569 0.601
Table 20
ConceptNet knowledge graph and object-state relations only existing in DBpedia.

Method Accuracy Recall Precision F1 score

Connecting Path 0.526 0.384 0.453 0.415
WUP 0.536 0.856 0.588 0.697
Common Node 0.556 0.892 0.577 0.701

Relation Pattern Accuracy Recall Precision F1 score (𝑊𝑝𝑎𝑡𝑡𝑒𝑟𝑛)
RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←→ 0.654 0.699 0.724 0.711

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.63 0.693 0.715 0.704

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

AtLocation
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.62 0.69 0.709 0.699

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

IsA
←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.615 0.674 0.69 0.681

DerivedFrom
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

HasContext
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 0.645 0.663 0.674 0.668

Cluster Relation Pattern Accuracy Recall Precision F1 score (𝑊𝐶 )

RelatedTo 0.573 0.938 0.582 0.718
RelatedTo-Synonym 0.567 0.938 0.568 0.708
RelatedTo-AtLocation 0.557 0.865 0.565 0.684
14
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Table 21
The difference in performance for the relation pattern without clusters over the KGs.

KG Object-Action Object-State Subset Object-Action Subset Object-State

ConceptNet 0.001 0.001 – –
ConceptNet (no RelatedTo) −0.213 −0.051 – –
ATOMIC 0.011 0.141 0.03 0.01
YAGO 0.006 0.032 0.002 0.01
WebChild 0.008 0.017 0.002 0.01
DBpedia −0.037 0.136 0.001 0.01
c
i

𝑠𝑝𝑖𝑙𝑙
knowslanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑒𝑛𝑔𝑙𝑖𝑠ℎ_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒,

𝑓𝑟𝑒𝑛𝑐ℎ_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒, 𝑖𝑟𝑖𝑠ℎ_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒, 𝑔𝑒𝑟𝑚𝑎𝑛_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒,

𝑛𝑜𝑟𝑤𝑒𝑔𝑖𝑎𝑛_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒
inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑝𝑒𝑟𝑓𝑢𝑚𝑒

𝑐𝑙𝑜𝑠𝑒
inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑒𝑛𝑔𝑙𝑖𝑠ℎ_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒,

𝑓𝑟𝑒𝑛𝑐ℎ_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒, 𝑖𝑟𝑖𝑠ℎ_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒, 𝑔𝑒𝑟𝑚𝑎𝑛_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒,

𝑛𝑜𝑟𝑤𝑒𝑔𝑖𝑎𝑛_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒
knowslanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑐𝑎𝑝

Example 8. Object-state association relations for the relation patterns
which achieved high F1-scores in YAGO.

𝑙𝑖𝑓 𝑡
inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑒𝑛𝑔𝑙𝑖𝑠ℎ_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒,

𝑎𝑚𝑒𝑟𝑖𝑐𝑎𝑛_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒
inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑚𝑜𝑛𝑒𝑦

𝑙𝑖𝑓 𝑡
genre
←←←←←←←←←←←←←←←→ 𝑐𝑜𝑢𝑛𝑡𝑟𝑦_𝑚𝑢𝑠𝑖𝑐,

𝑑𝑎𝑛𝑐𝑒_𝑚𝑢𝑠𝑖𝑐, 𝑟𝑜𝑐𝑘_𝑚𝑢𝑠𝑖𝑐, 𝑝𝑢𝑛𝑘_𝑚𝑢𝑠𝑖𝑐,
𝑝𝑜𝑘𝑒𝑛_𝑤𝑜𝑟𝑑, 𝑠𝑎𝑡𝑖𝑟𝑒
genre
←←←←←←←←←←←←←←→ 𝑐𝑜𝑎𝑡

𝑖𝑓 𝑡
inlanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑒𝑛𝑔𝑙𝑖𝑠ℎ_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒,

𝑚𝑒𝑟𝑖𝑐𝑎𝑛_𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒
knowslanguage
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑠𝑝𝑒𝑎𝑘𝑒𝑟

. Discussion

We start this section with a discussion over the results by comparing
ow the exploitation (and non exploitation) of the semantics of a KG
elps in inferring the answer to a specific set of commonsense ques-
ions. Table 21 lists the cases that the simple Relation Pattern Method
without clusters) outperforms (w.r.t. F1 score) the other three methods
n identifying object-action (column 1) and object-state (column 2)
elations. The Table shows the difference in F1-performance in each
ase, highlighting the cases where this is the largest (see Eq. (5)).

𝑒𝑠𝑢𝑙𝑡 = 𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑚𝑒𝑡ℎ𝑜𝑑
−𝑚𝑎𝑥{𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑐𝑜𝑚𝑚𝑜𝑛_𝑛𝑜𝑑𝑒,

𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑐𝑜𝑚𝑚𝑜𝑛_𝑝𝑎𝑡ℎ, 𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑤𝑢𝑝}

(5)

Table 22 presents the same results for the Relation Pattern with
Clusters method (see Eq. (6)). We also provide the best performance
when we use ConceptNet as an underlying KG, but with the subset of
labels that exist in each of ATOMIC, YAGO, WebChild and DBpedia,
respectively, 3rd column for object-action relations and 4th column for
object-state relations.

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑚𝑒𝑡ℎ𝑜𝑑_𝑤𝑖𝑡ℎ_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
−𝑚𝑎𝑥{𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑐𝑜𝑚𝑚𝑜𝑛_𝑛𝑜𝑑𝑒,

𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑐𝑜𝑚𝑚𝑜𝑛_𝑝𝑎𝑡ℎ, 𝑓1_𝑠𝑐𝑜𝑟𝑒_𝑤𝑢𝑝}

(6)

The negative scores in Tables 21 and 22 imply that our semantics-
based method did not achieve better F1 score than any one of the
compared methods. As one can notice our Relation Pattern Method
15
without Clusters has performed better when using the ATOMIC KG. The
reason for that is because ATOMIC has fewer types of relations (only
3 relation types in the subgraphs that we created) than the other KGs.
Therefore, it is expected that there will not exist too many different
relation patterns, and those that exist will appear more frequently in
object-action and object-state pairs.

On the other hand, one can see that the Relation Pattern Method
with Clusters achieves the best score over YAGO when we evaluate
object-action association, and the best score over WebChild when we
evaluate object-state associations. This is also expected as YAGO and
WebChild have the biggest number of different relation types (both
close to 1200 relations) which leads to many relation patterns that
appear less oftenly in object-action or object-state relations, and that
is what a cluster of relation patterns needs in order to achieve big
F1 scores. In other words, a cluster with relation patterns needs every
relation pattern that exists in it to appear in an adequate number of
object-action, or object-state pairs, instead of having just some relation
patterns to appear in almost all object-action or object-state pairs.

A more detailed analysis on the results reveals that the exploitation
of the semantics in a KG, can show when a relation in a KG can be
considered as super property of other relations. In more detail, if we see
a specific relation appearing in almost all relation patterns that achieve
the biggest scores, with respect to F1, we can confidently conclude that
this property connects too much information, which may lead to noise
in the KG. This conclusion is quite important because an appropriate
usage of the semantics in a KG can show insights on when a refinement
of the properties is needed. This conclusion becomes quite clear with
the RelatedTo property of ConceptNet. Almost all relation patterns
ontain the RelatedTo. This is because, despite not being stated directly
n the ConceptNet specification, RelatedTo serves as a super-property,

i.e. it encompasses all other relations. While it might seem that less
abstract node-to-node relationships, such as UsedFor, would yield better
results, this is not the case. The main reason is that the Relation Pattern
method is based on the frequency that a property appears in paths that
connect a set of object-action/state pairs. Therefore, some properties
such as UsedFor which we would expect (based on our commonsense),
to achieve bigger scores did not, because it was not so common,
regarding the frequency of appearance in connecting paths. The reason
for properties like this, i.e., these that based on our commonsense we
would expect to appear more in connecting paths, not achieving bigger
scores can be many. Basically, our understanding was that there was
a preference on using more general properties such as RelatedTo. Our
method can help to tackle this fact by pointing for which properties
there might be a need to define sub properties.

We also observe that certain longer paths, such as
( RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

)

in ConceptNet, achieve better perfor-
mance than shorter paths involving the same type of relations, e.g.,
(

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→,

RelatedTo
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

)

. Similar is the case in ATOMIC and DBpedia KGs,
and if we did not construct the subgraphs of YAGO and WebChild with
depth 1 then most probably the last two KGs would have revealed
the same characteristic. This may appear strange at first, because
one would anticipate that the closer two nodes in a graph are, the
more semantically linked they are. This result is most likely due to
the nature of our problem. Unlike entity resolution, for example, the
nodes with which we are attempting to find a connection are of a



Journal of Web Semantics 81 (2024) 100816A. Vassiliades et al.
Table 22
The difference in performance for the relation pattern with clusters over the KGs.

KG Object-Action Object-State Subset Object-Action Subset Object-State

ConceptNet 0.006 0.017 – –
ConceptNet (no RelatedTo) −0.018 0.152 – –
ATOMIC 0.017 −0.08 0.03 0.017
YAGO 0.036 0.032 0.007 0.017
WebChild 0.008 0.28 0.007 0.017
DBpedia 0.021 0.148 0.006 0.017
A
i
S

D

t
A
l
S

D

R

different type, namely object and action (or state). But what is even
more interesting is that any given KG with this characteristic (i.e., has
too many connections among its entities) leads to an ‘‘over-fitting’’
of knowledge to the point that it may contain noisy and conflicting
information. Therefore, the exploitation of semantic information from
a KG, can give us a hint that the knowledge in the KG needs refinement,
or pruning.

Overall, the freedom in deciding how to deal with noise in the
data is perhaps the most important benefit of employing the semantics
of a KG. When importing new data, one can decide where to focus
by carefully selecting which semantics to trust. Due to the domain-
agnostic way of addressing the KG, other methods, such as data-driven
models, which are more prone to noisy data, do not offer such adaptive
behavior. This aspect is supported by the fact that our semantics-
based method achieves better F1-scores, than the other commonly used
methodologies over the KG of DBpedia and ConceptNet which are
known for their noisy data.

Additionally, another important advantage when exploiting the se-
mantics inside a KG is the generality scalability over different knowl-
edge graphs, to find object-action and object-state relations. Tables 21
and 22 show that our Relation Pattern Method with and without
clusters, which exploit the semantics in a KG, achieved better F1-scores
than the other methods, over six different KGs. A fact that entails that
methods which exploit the semantics in a KG are more generic, and
they could be used on any KG that has different types of relations.

Notice that in our previous study [8] we compared some baseline
deep learning methods with our method. More specifically, we used
AllenAI-CommonSense [52], which constitutes the state of the art for link
prediction in ConceptNet, by employing a pre-trained BERT [53] model
that is fine-tuned on ConceptNet, using Graph Convolutional Networks
(GCN) [54] for embedding the ConceptNet graph. This model returns
a list of possible relations between a given pair of ConceptNet nodes,
ranked in descending order of likelihood (aka confidence score).

The evaluation for AllenAI-CommonSense was performed only on
ConceptNet, but the results even for one KG were not the expected ones,
as the AllenAI-CommonSense (Top-k) methods, for Top-1 returned an
F1-score of 0.289 compared to 0.699 of our method.

7. Conclusion

In this paper, we compared topology- and semantics-based methods
for extracting object-action and object-state associations from knowl-
edge graphs such as ConceptNet, WordNet, ATOMIC, YAGO, WebChild
and DBpedia. We also presented a novel method for extracting and
analyzing relationships between objects-actions and objects-states from
knowledge graphs. In terms of F1-score, our method can improve
current state-of-the-art performance. The flexibility in deciding how to
deal with the noise in the data, as well as the capacity to assess the
importance of a path through training rather than manual annotation,
are two key features of our method. In the future, we plan to use our
method in order to evaluate causal relations (i.e., in which states can
the object be before and after we perform an action on it), which is a
sensible next step that will build on the results of object-action and
object-state associations that we present in this paper. A semantics-
based method for identifying causal relations would be a significant
contribution to AI systems, as it would be more generic and scalable
16

than data-driven models, which are trained on specific datasets.
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