
Health burden from food systems is highly unequal across 1 

income groups 2 

Lianming Zheng1,2, Wulahati Adalibieke3,4, Feng Zhou3,4,*, Pan He5,*, Yilin Chen1,2,6, Peng Guo1,2, 3 

Jinling He1,2, Yuanzheng Zhang3,4, Peng Xu1,2, Chen Wang1,2, Jianhuai Ye1,2, Lei Zhu1,2, Guofeng Shen3, 4 

Tzung-May Fu1,2, Xin Yang1,2, Shunliu Zhao7, Amir Hakami7, Armistead G. Russell8, Shu Tao1,2,3,4, Jing 5 

Meng9,*, Huizhong Shen1,2,* 6 

1Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban 7 

Environmental Health Risks, School of Environmental Science and Engineering, Southern University 8 

of Science and Technology, Shenzhen 518055, China 9 

2Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of 10 

the Greater Bay Area, Southern University of Science and Technology, Shenzhen 518055, China 11 

3Institute of Carbon Neutrality, Peking University, Beijing 100871, China 12 

4Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking 13 
University, Beijing 100871, China 14 

5School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT, United Kingdom 15 

6School of Urban Planning and Design, Peking University, Shenzhen Graduate School, Shenzhen 16 
518055, China 17 

7Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON K1S 5B6, 18 
Canada 19 

8School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 20 
30332, United States 21 

9The Bartlett School of Sustainable Construction, University College London, London WC1E 7HB, 22 
United Kingdom 23 

*Corresponding author, e-mail: zhouf@pku.edu.cn; hep3@cardiff.ac.uk; jing.j.meng@ucl.ac.uk; 24 

shenhz@sustech.edu.cn 25 

  26 

mailto:hep3@cardiff.ac.uk
mailto:jing.j.meng@ucl.ac.uk
mailto:shenhz@sustech.edu.cn


Abstract 27 

Food consumption contributes to the degradation of air quality in regions where food is produced, 28 

giving rise to an often-neglected form of environmental inequality, i.e., the contrast between the 29 

environmental health burden caused by the food consumption of a specific population and that 30 

they encounter as a consequence of food production activities. Herein, we explore this inequality 31 

within China’s food system, by linking air pollution–related health burden from the production side 32 

to the consumption side at high levels of spatial and sectorial granularity. Our findings reveal that 33 

low-income groups bear a 70% higher air pollution-related health burden from the food production 34 

than is caused by their food consumption, while high-income groups benefit from a 29% lower 35 

health burden relative to their food consumption. We show that current interventions such as 36 

agricultural management, dietary transition, crop reallocation, and economic policies do not 37 

uniformly address both environmental pressure and inequality, emphasizing the need for a 38 

combination of measures to establish a sustainable and equitable food system. 39 

Introduction 40 

Agricultural intensification and redistribution have significantly increased food productivity and the 41 

abundant and diverse food supply1,2. However, these practices have also resulted in an uneven 42 

distribution of the environmental footprint of the food system. Emissions embedded in the food 43 

system are spread across various food-producing regions that may be far from where the food is 44 

consumed. Globally, 26%–64% of the population cannot fulfill their crop demand solely through 45 

crop production within a 1000-km radius3. In China, Henan, Hebei, and Shandong provinces 46 

accounted for about one-third of agricultural NH3 emissions4, while local food consumption only 47 

constituted 11%–19% of the national food consumption5. Consequently, food contributes one of 48 

the greatest disparities in consumption-based PM2.5 pollution exposure among all goods6, 49 

potentially leading to significant environmental inequality among different groups of people. In the 50 

context of the United States, for example, it has been observed that the per-capita food 51 

consumption among Whites/others causes 49–61% higher exposure to air pollution than that 52 

among Blacks/Hispanics6. 53 

In alignment with the United Nations Sustainable Development Goals, the modern food system 54 

needs to feed the global population to provide nutritional security with low environmental impact 55 

and without contributing to social injustice7-13. To avoid a disproportionate allocation of health 56 



outcomes to a small subset of the population, a key step is to explicitly evaluate the inequality of 57 

the health damage attributed to the food system, which is rarely discussed. Key factors such as 58 

food categories, spatial heterogeneity, and potential drivers (e.g., household wealth) have not 59 

been adequately explored, impeding efforts to reduce inequality. Taking food categories as an 60 

example, ruminant meat, especially beef, has the highest environmental impact compared to non-61 

ruminant meat, whereas plant-based foods have the least impact14,15. However, the manner and 62 

degree to which food categories affect general health-related inequalities remain unknown, and it 63 

is unclear whether existing intervention strategies aimed at alleviating environmental burdens and 64 

mitigating the negative health effects of the food system can provide co-benefits in reducing 65 

related inequalities. 66 

Expanding on this concept, we examine the air pollution–related inequality within China’s food 67 

system. As the world’s leading agricultural producer, China has experienced significant agricultural 68 

intensification due to its large population and relatively limited per-capita arable land area 69 

compared to the global average16. These factors and a diverse dietary transition17 make China’s 70 

food system an important case for understanding air pollution–related inequality. 71 

Results 72 

Spatial heterogeneity in air pollution–related health impact 73 

We quantified air pollution–related health damage, represented by premature mortality, 74 

throughout the food supply chain. Our analytical framework integrates several components: a 75 

high-resolution emission inventory (1 km × 1 km for cropland ammonia emissions and livestock 76 

management, 10 km × 10 km for all other sectors); a provincial-level input–output table; and an 77 

advanced backward sensitivity analysis technique implemented within a regional chemical 78 

transport model (CMAQ-Adjoint)18. Using the adjoint model enabled us to trace air pollution–79 

related health damage from production to consumption across nine distinct food categories at a 80 

high level of spatial and sectoral granularity (Methods and Data). This finer resolution surpasses 81 

previous studies and enables the investigation of air pollution–related inequality within the food 82 

system. 83 

In general, the food system in China was responsible for approximately 0.26 million premature 84 

deaths related to ambient PM2.5 exposure in 2017. Most (74%) of these deaths are attributed to 85 

NH3 emissions, an important precursor of ambient PM2.5, during food production, such as crop 86 



cultivation and livestock breeding. The remainder (26%) are caused by emissions of primary PM 87 

and other precursors, including SO2 from power plants and NOx from motor vehicles, during the 88 

distribution, aggregation, processing, packaging, and marketing of food products. This food–89 

induced air pollution-related mortality represents 12% of overall annual mortality from exposure 90 

to ambient PM2.5 in China. Of this mortality, meat contributes 55%; grain contributes 30%; and 91 

vegetables, fruits, and nonmeat animal products (including eggs and dairy) account for the 92 

remaining 15% (see Supplementary Text S1 for a comparative analysis of our results and previous 93 

studies). 94 

Northern and Eastern China are the regions most affected by food production (Figs. 1a and S1), 95 

and 41% of the mortality is attributable to food production (defined as “MP”) concentrated in 96 

Shandong, Henan, Hebei, and Jiangsu (Fig. S1). The Gini coefficient, representing the inequality of 97 

spatial disparity for MP, is estimated to be 0.31 on average and ranges from 0.30 to 0.64 by food 98 

type (Fig. 1d and Fig. S2). 99 

 100 

 101 

Fig. 1 | Provincial-level distributions and inequalities of premature mortalities due to food 102 

production and consumption in China. Annual premature mortality rates from (a) food production 103 

(MP rates) and (b) food consumption (MC rates). (c) Difference between MP rates and MC rates (ΔM 104 

rate). (d) The Gini coefficients of MP rates and MC rates. The provincial boundary shapefile is 105 



sourced from https://www.resdc.cn/DOI/DOI.aspx?DOIID=122. 106 

 107 

The distribution of premature mortality rates based on food consumption (“MC” rates) is more 108 

dispersed than that of MP rates (Fig. 1b). The largest provinces associated with per-capita food 109 

consumption and the highest air pollution–related mortalities are Shanxi, Inner Mongolia, 110 

Shandong, Hubei, and Jiangsu. Two categories of regions emerged. The first category pertains to 111 

highly developed regions with wealthy populations, such as Beijing, Shanghai, Zhejiang, and 112 

Guangdong, which show higher MC rates than the others. The second category represents 113 

concentrated food-producing regions with developed agricultural production, such as Henan and 114 

Hebei, where MC are far below MP. The spatial inequality of MC is significantly lower than that of 115 

MP, with a Gini coefficient of 0.21 on average (ranging from 0.23 to 0.53 across different food types; 116 

Fig. 1d and Fig. S2). The low inequality of MC is attributed to a convergence toward a modernized 117 

diet characterized by high meat consumption in the last few decades5, which is consistent with 118 

global patterns19,20. 119 

Inequality by food categories 120 

We calculated the difference between MP and MC rates, presented as ΔM rate in Fig. 1c (Methods 121 

and Data). Positive ΔM rates indicate that people in the region face a larger health burden from 122 

food production than that caused by food consumption (“production-oriented”), whereas negative 123 

ΔM rates signify the opposite (“consumption-oriented”). Overall, the ΔM rates vary geographically 124 

across the country. The consumption-oriented provinces include (1) regions with poor crop-125 

growing conditions (e.g., Qinghai and Tibet) that face constraints with regard to food production 126 

and (2) highly developed regions (including provincial-level municipalities, such as Chongqing and 127 

Beijing, and coastal provinces, such as Zhejiang) where the industrial focus has shifted from 128 

agriculture to other industries21. Notably, the results of ΔM rates are strongly influenced by 129 

population size, as the considerably difference between the MP and MC rates in the total mortality 130 

would be scaled down owing to the high population in per-capita terms (e.g., Guangdong, as shown 131 

in Fig. S1) and vice versa (e.g., Tibet, Hainan, and Qinghai). 132 

Henan exhibited the highest positive ΔM rate, with 1.06 premature deaths per 10,000 population. 133 

This region experiences severe food-induced air pollution, which locally causes 2.95 premature 134 

deaths per 10,000 population. Comparatively, food consumption in Henan is responsible for 1.88 135 



premature deaths per 10,000 population nationwide. Thus, the population in Henan bears a 57% 136 

higher health burden due to food production than that caused by their food consumption. 137 

Conversely, Beijing exhibited the lowest ΔM rate, with a value of −1.32 (0.74 and 2.06 for the MP 138 

and MC rates, respectively, and a 64% lower health burden). Because the Gini coefficient does not 139 

apply to the ΔM rate with positive and negative values, we developed a Supply–Demand Health 140 

Inequality Index (SDHII) to estimate national inequality in the ΔM rates. This index was employed 141 

to evaluate the national degree of health inequality compared with an ideal state of complete 142 

equality (Methods and Data; Fig. S3) and to ensure the comparability of the inequality between 143 

specific sectors and food categories. 144 

 145 

 146 
Fig. 2 | Inequality within the food system across food types. Shown are ΔM rates (difference in 147 

mortality rates attributable to PM2.5 exposure from food production versus consumption) of each 148 

province, sorted in ascending order. The provinces with ΔM mortality rates >0 (on the right side of 149 

the curves) are “production-oriented” provinces, indicating that the mortality from local food 150 

production surpass that attributed to food consumption. Conversely, if the ΔM rates are <0 (i.e., 151 

“consumption-oriented” provinces), the opposite holds true. The inequalities are quantified as the 152 

Supply–Demand Health Inequality Index, indicated in parentheses in the legend for each food type. 153 

 154 



Grain, poultry, and pig were identified as the top three food types associated with the highest 155 

inequality, whereas vegetables, fruits, and nonmeat animal-sourced foods (eggs and dairy) 156 

demonstrated minor inequality (Fig. 2 and Table S1). The low level of inequality associated with 157 

vegetables and fruits can be attributed to their smaller environmental footprint, perishable nature, 158 

and difficulties in storage22. When considering inequality across protein types, the disparity is 159 

considerably greater for animal-sourced protein than for plant-sourced protein, particularly for red 160 

meat and poultry (Fig. S4). In highly developed and coastal provinces, the health cost of producing 161 

1 kg of protein was significantly higher than the cost of consuming 1 kg of protein (e.g., 2–9 times 162 

higher in Beijing, Shanghai, and Tianjin compared with the current consumption cost; Fig. S4, right 163 

end of the curves). 164 

We investigated the inequality of the food system between rural and urban areas at different 165 

income levels. Pronounced gaps in ΔM rates exist between rural and urban areas (Fig. S5) due to 166 

the rural-urban differences in MP and MC rates (Fig. S6). Depending on food type, 57%–94% of the 167 

rural population is exposed to higher health risks from production (Table S2) than they should be 168 

according to their consumption, compared to only 0%–22% for their urban counterparts. 169 

Particularly for red meat, over 90% of the rural population bears an excess health burden, 170 

compared to 0%–16% for the urban population. 171 

MC rates increase with income (Fig. 3a). The highest mortality rate occurred in the second highest 172 

income group, D9 (2.45 deaths per 10,000 population). However, a significant decline was 173 

observed in the top income group, D10 (1.43 deaths per 10,000 population; Fig. 3a). This decline 174 

is attributed to the lowest contribution of meat consumption to per-capita deaths in D10 compared 175 

to other high-income groups (D6–D9), suggesting that the highest income group is more health-176 

conscious and consumes a more appropriate amount of meat. In contrast, MP are generally 177 

negatively correlated with income, although the lowest income groups (D1–D2) do not follow this 178 

trend due to harsh local conditions for crop growth (e.g., rural areas in Gansu, Qinghai, and Tibet). 179 

Overall, low-income groups (D1–D5) experienced 70% more health damage than high-income 180 

groups (D6–D10), but food consumption in the former caused 29% less health damage, leading to 181 

positive ΔM rates among low-income groups, negative ΔM rates among high-income groups, and 182 

net inequality over income, which is dominated by animal-based food (Fig. 3b). The ΔM rate of D6 183 

is as low as that of the highest income groups D9–D10, mainly because these groups comprise 184 



urban areas in provinces with poor planting conditions (e.g., urban areas in Qinghai and Shanxi), 185 

resulting in the lowest MP rate from grain among all income groups. 186 

 187 

 188 

Fig. 3 | Mortality disparity across income groups. (a) Relationship between income and premature 189 

mortality, including premature mortality rates attributed to food production (MP rates) and 190 

consumption (MC rates). The shading indicates the range between the 25th and 75th percentiles. 191 

(b) Mortality rate differences attributable to PM2.5 exposure from food production vs. consumption 192 

(ΔM per 10,000 population) by income decile. The impacts of various food types on ΔM rates differ 193 

among income groups, with each type contributing positively or negatively. The net ΔM rates are 194 

presented as black dots. 195 

 196 

To trace the sources of inequality caused by food supply between income groups, we calculated 197 

net ΔM by deducting the portion that achieved a balance between mutual trade across specified 198 

income groups (Methods and Data). The connection between income and net ΔM was evident (Fig. 199 

4a). Generally, higher income groups (D6–D10) exhibit fewer net ΔM because of their limited food 200 

exports to lower income groups (D1–D5), whereas the lower income groups bear greater health 201 

damage from supplying food to higher income groups. Notably, D3–D5 suffered more from food 202 



supply (positive net ΔM) than the D7–D10 groups (Fig. 4a, upper right), while net less health cost 203 

(negative net ΔM) is observed in D7–D10 (Fig. 4a, lower left). Similar results were observed across 204 

all food types (Fig. 4b), indicating that high-income groups transfer the environmental externalities 205 

through interregional food trades, while low-income groups bear excess health damage, regardless 206 

of food type. By comparing premature mortalities resulting from self-production and consumption 207 

and interregional food trade, we found that the proportion of self-production and consumption 208 

increased with income (Fig. S7 and S8). This suggests that agricultural products in developed 209 

regions are primarily produced to meet local demand rather than being traded on the national 210 

market for revenue. Considering all end-use sectors, we found that food contributes 41.7% of the 211 

total inequality of all end-uses in China (Fig. S9 and Table S3), being the largest among all goods 212 

and services. 213 

 214 

 215 

Fig. 4| Mortality tracing between income groups. Each cell represents the gap of premature 216 

mortality after deducting the equivalent mortality due to mutual food supply between two given 217 

income groups (defined as “net ΔM”). Each group serves as the food supplier for the other group. 218 

This result represents the difference in mortality between the two designated regions after 219 

accounting for their production–consumption tradeoff. As each region is simultaneously a source 220 

and receptor, we defined “R1” and “R2” to establish the direction for statistical and visual purposes. 221 

If the number of deaths is positive, the group in “R1” caused a net ΔM toll suffered by “R2,” while 222 

negative means the opposite. For instance, the positive result in the cell at the intersection of the 223 

D4 row and D9 column indicates that more health damage is incurred on D4 by D9 in mutual supply. 224 

We analyzed each type of food (b) and then aggregated the results for all foods to obtain the overall 225 



outcome (a). 226 

 227 

The potential of intervention strategies to improve equality 228 

We conducted a series of simulations to explore whether current efficient interventions aimed at 229 

reducing environmental pressure and health damage could lead to co-benefits in reducing 230 

inequality. These strategies can be classified as emission mitigation, diet transition, and food 231 

production reallocation, each incorporating implementations of varying intensity (Table S4). 232 

Production-based emission mitigation scenarios lead to a noticeable improvement in inequality, 233 

reducing it by 26–35% in SDHII across all mitigation strategies (Fig. 5a). These strategies also result 234 

in a more balanced distribution of the population that experiences more or less health damage 235 

(Table S5). The reduction in inequality among all production-based mitigation interventions 236 

primarily stems from decreased inequality within grain production (Fig. S10). 237 

The effect of diet transition approaches exhibits considerable variability (ranging from −18% to 30% 238 

reduction; Fig. 5b), even with moderate scenarios, e.g., minimal adjustments of the current diet 239 

toward the recommended range, referred to as “Maint,” and consuming the average of the 240 

recommended range, referred to as “Ave.” The “Maint” scenario demonstrates a 30% decrease in 241 

inequality, whereas the “Ave” scenario exhibits a limited effect (6% reduction). This implies that 242 

the former is the most favorable dietary option, as it is the most practical choice for policy 243 

measures involving the minimal required transition in diets. The key reason for the limited 244 

effectiveness of certain dietary transition schemes (e.g., maximal adjustment to the current diet, 245 

referred to as “Max”) is that while reducing meat consumption contributes the most to improving 246 

equality, the benefits are offset by consuming plant-based foods (such as grain, vegetables, and 247 

fruits) and nonmeat animal-based foods (including dairy and eggs; Fig. S11). Moreover, diet 248 

transition scenarios exhibit limited effectiveness in reducing the unequal distribution of the 249 

population affected by disproportionate health damage, regardless of considering the details in 250 

several subscenarios (Table S5). 251 

For the food production reallocation scenarios, although the mortality rate decreases with 252 

increasing reallocation levels (Fig. S12), inequality increases slightly (Table S5 and Fig. 5c), 253 

suggesting that agricultural reallocation aimed at reducing health damage is insufficient for 254 

alleviating inequality. Nevertheless, a slightly more equitable distribution among population 255 



groups with varying levels of health damage was observed (Table S5). 256 

 257 

 258 

Fig. 5 | The changes in the food system inequality in response to different intervention strategies. 259 

These strategies include (a) emission mitigation, (b) diet transition, and (c) food reallocation. Each 260 

scenario includes specific subscenarios to reflect the impacts of different intervention intensities 261 

on inequality. For food reallocation, we conducted 20 subscenarios ranging from 1% to 20% 262 

reallocation of total food production and found no significant change in the distribution curve. To 263 

provide clarity, we provide four subscenarios (5%, 10%, 15%, and 20% reallocation) and the base 264 

case (0% reallocation) for comparison. 265 

 266 

In addition to supply and demand-side interventions, economic policies such as taxation and 267 

subsidies can complement efforts to reduce inequality. By evaluating the value of a statistical life, 268 

we quantified the appropriate food tax that should be implemented or subsidy that should be 269 

provided in each region (Fig. S13) and income group (Fig. S14). Our findings indicate that middle- 270 

to high-income groups (D6–D10) should be subject to a 4%–14% food tax to compensate for the 271 

excess damage suffered by low- to middle-income groups (D1–D5), which could cover 6%–138% of 272 

the latter’s food costs. 273 

Discussion 274 

Revealing the inequalities of health damage within the food system is crucial for understanding 275 

environmental justice and achieving the United Nations Sustainable Development Goal of reducing 276 



inequalities23. Our findings contribute to the ongoing discussion about the health effects of food 277 

systems, focusing on the equality of air-related health impacts. By linking food production and 278 

consumption, we highlight the disparities and inequalities between supply and demand ends 279 

across space and food types. Our findings uncover significant and disproportionate differences in 280 

air pollution–related health damage per-capita. Higher geographical inequality in production than 281 

consumption is observed, perhaps due to increasing agricultural intensification and resulting 282 

differences in provincial agricultural emissions. Another possible reason for the smaller demand-283 

side inequality is the convergence toward regional diets over time, possibly due to the Chinese 284 

government’s efforts to promote and guide healthy diets and improve living standards24. 285 

Our work provides a spatially resolved, food-specific analysis of health-effect inequalities within 286 

the food system. We identified optimal schemes to simultaneously reduce health damage and 287 

associated inequality, expanding the options available for developing and implementing dedicated 288 

mitigation policies. Nevertheless, substantial obstacles and challenges need to be addressed. For 289 

example, a trend of mortality may not consistently align with that of equality when adopting 290 

certain more sustainable interventions, particularly on a regional scale (e.g., the regions indicated 291 

at both ends of the curve in Fig. 5c and Fig. S12). With the expected increase in agricultural 292 

intensification, concentrating food production in certain regions could widen the differential 293 

burdens of negative externalities of food production among regions and populations. Identifying 294 

the leverage points that balance agricultural yield, emission reduction, and equitable distribution 295 

of pollution burdens presents a complex problem for policymakers. Furthermore, implementing 296 

diversified regulations and protocols to reduce inequality can be challenging. Our results show that 297 

food consumption recommendations (e.g., self-production and marketing, or import from other 298 

regions; food intake) may need to vary based on regional specifics, which could hinder the 299 

development and adoption of policy-related measures, especially when coordination between 300 

national and local policies is critical. Given the intricacy of food system transformation, 301 

policymakers must concurrently develop short- and long-term policies to address future challenges. 302 

In the short term, achieving a more equitable distribution of negative externalities in the food 303 

system may not be immediately feasible, so economic measures are recommended to compensate 304 

for excess health damage, such as implementing food taxes to subsidize food production regions 305 

(Fig. S13 and Fig. S14). In the long term, policymakers need to phase in top-level design and 306 



restrictive policies for food system emissions and the related equality, accounting for factors such 307 

as the spatial heterogeneity of health costs associated with food production, anticipated dietary 308 

transitions in the local context, and nutritional requirements due to population growth, as well as 309 

the overall sustainability goals pursued by the nation. Our research explores the potential synergies 310 

between health damage and inequalities (Fig. 5), thus providing a solid scientific foundation for 311 

effectively formulating such policies. 312 

As the world’s most populous country, China faces tremendous pressure on its food supply system 313 

due to improved living standards. While the development of agricultural intensification and mature 314 

food supply chains has satisfied the food demands, they have also led to significant food system-315 

related inequalities. It is worth noting that China is not alone in experiencing these inequalities. In 316 

a follow-up first-order analysis that expands the current assessment scale, we found that countries 317 

worldwide, particularly middle- and high-income countries, exhibit significant inequality in 318 

agricultural ammonia emissions exposure (Supplementary Text S2, Fig. S15). This observation 319 

indicates that countries with more advanced food systems may encounter greater challenges 320 

relating to agricultural emissions and associated inequalities. Our study illuminates the issue of 321 

food system inequality, offers valuable guidance for policymakers in China while also serves as a 322 

point of reference for the sustainable development of food systems worldwide. 323 

Methods and Data 324 

We developed a comprehensive modeling framework to estimate the health damage due to PM2.5 325 

pollution exposure from the food system in China and analyzed the associated health damage 326 

inequality (Fig. S16). The development of the framework includes several steps. Initially, the 327 

atmospheric emissions from the supply and demand sides of the food system were linked using 328 

the Multi-Regional Input–Output (MRIO) model25. Then, we used the Global Exposure Mortality 329 

Model (GEMM)26 to estimate premature mortality associated with ambient PM2.5 exposure and 330 

the sensitivities of premature mortality to ambient PM2.5 concentrations by grid cell. Subsequently, 331 

we coupled the concentration sensitivities into multiphase Adjoint for the Community Multiscale 332 

Air Quality (CMAQ-Adjoint) model18 to compute the sensitivities of premature mortality to 333 

emissions. These matrices encompass all pollutant species, locations, and time, allowing us to 334 

estimate their relative contributions on both the supply and demand sides. To analyze inequality, 335 

we developed a new index, SDHII, to quantify the national inequality pattern in the gap between 336 



PM2.5-related premature mortality associated with food supply and demand. The detailed 337 

procedures are described in the following sections. 338 

Linking atmospheric emissions from food production to consumption 339 

We initiated our study by developing a production-based emission inventory of all the production 340 

sectors of China in 2017, for which the global high-resolution emission inventory product (10 × 10 341 

km) published by Peking University (PKU-Inventory) for atmospheric emissions across sectors (e.g., 342 

power generation, industry, transportation, and agriculture) and fuel types (e.g., coal, oil, natural 343 

gas, and biomass) was used27. Additionally, a Chinese agricultural emission inventory with 1 × 1 km 344 

resolution developed by Adalibieke et al.28 (crop ammonia volatilization) and Wang et al.29 345 

(livestock management) was employed to calculate the emissions associated with agricultural 346 

activities. This comprehensive inventory covered ammonia emissions from the production of nine 347 

food categories, including grain, vegetables, fruits, pig, beef, sheep and goat, poultry, dairy, and 348 

eggs. The emissions from dairy and egg products considered in this study arise from the rearing 349 

processes of dairy cows and egg-laying hens. By integrating this food emission inventory into the 350 

PKU-Inventory, we expanded the current inventory to provide a detailed account of agricultural 351 

emissions. Subsequently, we reallocated all the atmospheric pollutants according to provinces to 352 

align them with the production sectors in the MRIO models using Energy Balance Sheets from the 353 

China Energy Statistical Yearbook30. The resulting provincial production-based emission inventory 354 

comprised 42 production sectors corresponding to the MRIO production sectors of the nine food 355 

categories. 356 

To establish a link between pollutant emissions between the food supply and demand sides, we 357 

employed Environmental Extended Input–Output Analysis (EEIOA) to create a consumption-based 358 

emission inventory. EEIOA is an extended application of input–output analysis that enables the 359 

explicit analysis of environmental impacts31. Initially, we employed traditional economic 360 

accounting, expressing the input–output link function as Eq. (1): 361 

𝑋 = (𝐼 − 𝐴)!"𝑌 (1), 362 

where 𝑋  represents the economic output matrix, 𝐴  is a normalized matrix of intermediate 363 

coefficients where columns correspond to the input required from sectors in a given region to 364 

produce one unit of the output of each sector in another region, (𝐼 − 𝐴)!" is the Leontief inverse 365 

matrix, and 𝑌 is a vector of the finished consumption. Subsequently, we incorporated emission 366 



information using Eq. (2): 367 

𝐸 = 𝑓(𝐼 − 𝐴)!"𝑌 (2), 368 

where 𝐸 represents atmospheric emissions embedded in flows of goods and services between the 369 

sectors. The matrix 𝑓 is diagonal, with emission intensities (emissions for unit output) for each 370 

sector along the diagonal and zeros in all the other positions. 371 

A consumption-based emission inventory (referred to as 𝑆 ) was generated using EEIOA that 372 

illustrates how emissions are embodied in the flows of goods and services among the production 373 

sectors, ultimately reaching the final consumption sectors. This inventory includes 31 provincial-374 

level administrative divisions (excluding Taiwan, Hong Kong, and Macao, as data for these regions 375 

were unavailable), 42 production sectors, and 5 consumption sectors. 376 

The consumption-based emission inventory quantifies virtual emission flows specific to each 377 

region, spanning from supply to demand sides. Subsequently, we calculated the emissions 378 

attributed to production (𝐸#) and consumption (𝐸$) at the provincial level using Eq. (3) and (4): 379 

𝐸# = ∑ 𝑆$              (3) 380 

𝐸$ = ∑ 𝑆#             (4), 381 

where 𝑆 represents the consumption-based inventory;	𝑝 and	𝑐 is the supply and demand sides of 382 

the inventory, respectively; 𝐸#  is a transposed matrix of 0𝐸#" 𝐸#% 𝐸#& ⋯ 𝐸#
'2 , where 𝐸#(  383 

represents the production-based emissions in a given province 𝑖, and 𝑄 is the total number of 384 

administrative divisions (31 in this study, excluding Hong Kong, Macao, and Taiwan due to data 385 

limitations). Similarly, 𝐸$  is a transposed matrix of 0𝐸$" 𝐸$% 𝐸$& ⋯ 𝐸$
'2, where 𝐸$(  denotes 386 

the consumption-based emissions in a given province 𝑖.  387 

Next, we computed the relative contribution of emissions for each province at both the supply and 388 

demand ends, denoted as: 389 

𝑟(,* =
+!,#

∑ +!,$
%
$&'

           (5), 390 

where 𝑟(,*  represents the relative share of emissions within a given region 𝑖 at the supply side, 391 

concerning region 𝑗 at the consumption end. To consolidate all relative shares of emissions along 392 

the supply chain, we employed the matrix	𝑅, defined as: 393 

𝑅 = 8
𝑟"," ⋯ 𝑟",'
⋮ ⋱ ⋮
𝑟'," ⋯ 𝑟','

;          (6), 394 



where 𝑅 incorporates all the relative shares of emissions. 395 

To appropriately allocate agricultural emissions within the food supply chain, we applied a double 396 

constraint to this portion of the emissions. First, we extracted the economic flow from the 397 

agricultural sectors to the rural and urban consumption sectors, as generated by the MRIO model. 398 

Next, we redistributed the food emissions of each province by (1) calculating the relative share of 399 

monetary flows from each province on the demand side to provinces on the demand side, yielding 400 

a supply-side constraint matrix (labeled as H1); (2) determining the total amount of annual per-401 

capita food consumption in 2017 for each food type using data from the Chinese National Bureau 402 

of Statistics5; and (3) matching the total food consumption to that of each province in the demand 403 

side and redistributing it according to H1. These steps ensured that the relative proportions of each 404 

food type in the supply side for a given province were adequately constrained. Each food type was 405 

individually distributed on the demand side based on the scaling factors. 406 

To ensure that the total amount of emissions was conserved for each food type from the supply to 407 

demand side, we calculated the relative share of the amount of food in the aforementioned result 408 

for each province on the supply side as an emission-constraint matrix (labeled as H2). Subsequently, 409 

we redistributed agricultural emissions from the supply side to the demand side using H2. Notably, 410 

we did not conduct a detailed analysis of the residential sectors because the overall estimation 411 

framework is based on the reclassification of the production sectors. Nevertheless, we treated this 412 

part as a whole and accounted for it when evaluating the contribution of each component to the 413 

premature mortality32. 414 

Health damage estimation 415 

The latest version of the CMAQ-Adjoint, version 5.0, was utilized in our study to quantify the 416 

contributions of location-, time-, and pollutant-specific emissions to premature mortality. CMAQ-417 

Adjoint is comprised of two models: a forward model, which mirrors the original CMAQ base model, 418 

and a backward model. We applied CMAQ-Adjoint to a geographical domain encompassing East 419 

Asia, defined by 124×184 horizontal grid cells at a resolution of 36 km, and 13 vertical layers 420 

extending to approximately 16 km above ground. For evaluation, a 1-year simulation using the 421 

CMAQ base model was conducted. The results have been illustrated in a previous study, indicating 422 

a general concordance with observed spatial distributions and temporal trends of multiple 423 

pollutants. 424 



The backward model allowed us to calculate sensitivities, that is, the partial derivatives of the 425 

objective function concerning related input parameters. By defining the objective function 𝐽 as the 426 

total premature mortality from ambient PM2.5 exposure within China in 2017, we incorporated the 427 

GEMM into the adjoint analysis. The objective function 𝐽 was expressed by the following equations, 428 

𝐽 = ∑𝑀-,.,/𝑃.,/?1 − 𝑒!01(3(,))B (7) 429 

𝑇0𝑧.,/2 =
567	("9

*(,)
+ )

"9:
,(*(,),.)

0

           (8) 430 

𝑧.,/ = 𝑚𝑎𝑥	(0, 𝐶.,/ − 𝑐𝑓) (9) 431 

where (x, y) denotes a specific model grid cell; 𝑀-,.,/ represents the baseline mortality rate at grid 432 

cell (x, y); 𝑃.,/ represents the population within grid cell (x, y); 𝐶.,/ denotes the location-specific 433 

annual PM2.5 concentration at grid cell (x, y), in μg·m-3; cf is the concentration threshold below 434 

which no health association is assumed to be identifiable. The term 1 − 𝑒!01(𝑧) is the GEMM 435 

equation to calculate the population-attributable fraction (PAF)26. As suggested by Burnett et al.26, 436 

the following values for the GEMM parameters were used to calculate PAF of noncommunicable 437 

diseases and lower respiratory infections (NCD+LRI) mortality from ambient PM2.5 exposure for 438 

adults aged 25–99: θ = 0.1430, α = 1.6, μ = 15.5, v = 36.8, cf = 2.4 μg·m-3. M(x,y) is determined by the 439 

baseline mortality rate of NCDs+LRIs of the province where (x, y) is located33. Further details 440 

regarding the parameter configuration of GEMM can be found elsewhere26. 441 

We then derived the adjoint forcing term using Eq. (10), 442 

𝜑.,/ =
;<
;$(,)

= 𝑀-,.,/𝑃.,/𝜃𝑒!01=3(,)>𝑇′(𝑧.,/)
?3(,)
?$(,)

  (10) 443 

where φx,y is the adjoint forcing at grid cell (x, y); cx,y denotes the PM2.5 concentration at grid cell 444 

(x, y) at any time step; dzx,y/dcx,y is equal to the reciprocal of the number of model time steps in a 445 

year and is set to 1/43800 in our simulation (12 minutes per time step); T’(zx,y) is the derivative of 446 

T(z) at z = zx,y. In the adjoint simulation, these forcing terms were applied to all modeled PM2.5 447 

species as inputs to derive the adjoint sensitivities of mortality to location- and time-specific 448 

emissions of primary PM2.5 and precursors. Similar assessment has been conducted in our CMAQ-449 

adjoint development paper18. It should be noted that the computational expense of running the 450 

CMAQ-Adjoint model is about fourteenfold compared to the base CMAQ model. A single-day 451 

simulation using the CMAQ-Adjoint model, encompassing both forward and backward simulations 452 

in our study domain, on average necessitates 2.2 × 105 seconds of CPU time. Extrapolating this to 453 



the one-year timeframe of our study, the cumulative CPU time approximates 8.2 × 107 seconds, 454 

translating to roughly 950 days. 455 

We extracted the premature mortalities from the production sectors related to the food system 456 

using the adjoint sensitivities. The premature mortalities specified by production sectors were then 457 

linked to the consumption sectors of both rural and urban residents based on the input-output 458 

analysis. This process yielded a dataset of PM2.5-related health damage for the entire food system, 459 

facilitating further analysis of inequality. In contrast to previous methods that directly calculate 460 

sector and species contributions using the objective function in the production or emission 461 

sector34-36, our approach establishes a connection between mortality, production, and 462 

consumption sectors within the food system based on the consumption-based emission inventory. 463 

Inequality evaluation in premature mortality related to PM2.5 exposure 464 

We introduced the novel SDHII to evaluate the national inequality between PM2.5-related health 465 

damage attributed to the food supply and demand sides. The calculation process comprises two 466 

steps. 467 

First, we calculated the disparity between premature mortalities attributed to food production (MP) 468 

and consumption (MC) for each province, which is denoted as 𝛥𝑀( and represents the difference 469 

in health damage incurred in a region owing to local food production versus the health damage 470 

expected from local food consumption within the same region (accounting for local and nonlocal 471 

food sources). Mathematically, it is defined by Eq. (11): 472 

𝛥𝑀( = 𝑀@
( −𝑀A

(  (11), 473 

where 𝑀@
(  and 𝑀A

(  represent the MP rate (deaths per 10,000 population) in the supply side (i.e., 474 

province 𝑖 supplies food to other regions) and the MC rate (deaths per 10,000 population) in the 475 

demand side (i.e., province 𝑖 receives food from other provinces) for a given province 𝑖. 476 

The ΔM rates represent the level of balance between the MP and MC rates with the food system. 477 

When the mortality rates from regional food production and consumption are balanced, ΔM equals 478 

zero. If 𝛥𝑀( is >0 for a specific province, it indicates that the region experiences an excess number 479 

of deaths owing to its food supply to other regions. These provinces are referred to as “production-480 

oriented,” while provinces with lower health damage (MC > MP) are labeled as “consumption-481 

oriented.” 482 

Next, we ranked all the ΔM rates in ascending order and paired them with population data from 483 



each region, following which the SDHII was computed using Eq. (12): 484 

𝑆𝐷𝐻𝐼𝐼 = ∑ @B@!×|E1
! !E2

! |3
!&'

E
 (12), 485 

where 𝑀 and 𝑃𝑂𝑃( represent the national mortality rates and population for a given province 𝑖, 486 

respectively, and 𝑛 denotes the total number of provinces. 487 

Intuitively, SDHII corresponds to the area depicted in Fig. S3. This index represents the level of 488 

national-scale inequality in health damage. It incorporates population proportion as a weighting 489 

factor and captures the regional disparities arising from food production and consumption. When 490 

the health damage experienced by a particular region aligns with the expected damage based on 491 

food consumption, the ΔM rates for that region are zero, indicating no contribution to SDHII. In an 492 

ideal scenario, each region bears health damage proportionate to its consumption, resulting in a 493 

balanced distribution of premature mortalities and an SDHII value of 0. 494 

To trace the transfer of health damage across different income groups, we divided all the provinces 495 

into 10 income groups (labeled from D1 to D10 in the ascending order of income). Next, we 496 

conducted pairwise matching among the income groups and calculated the difference in health 497 

damage resulting from reciprocal food supply between them, enabling us to evaluate the net 498 

premature mortality caused by the intergroup food supply, which is denoted as net ΔM, and can 499 

be expressed by: 500 

net 𝛥𝑀(,* = 𝛥𝑀(,* − 𝛥𝑀*,( (13), 501 

where net 𝛥𝑀(,*  represents the net premature mortality between the selected income group 𝑖 and 502 

another given income group 𝑗. This metric evaluates the net health damage between the different 503 

income groups after offsetting the respective health damage associated with food consumption. If 504 

net 𝛥𝑀(,*  is >0, the income group 𝑗 causes excess health damage to the income group 𝑖 and gains 505 

health benefits from food trade owing to the food supply from 𝑖 to 𝑗. Conversely, if net 𝛥𝑀(,*  is <0, 506 

the group 𝑗 experiences more health damage because of the food supply to the group 𝑖. 507 

Intervention strategies 508 

We investigated the potential cobenefits of reducing inequality from various intervention 509 

approaches aimed at reducing emission or developing a balanced diet. We designed three 510 

intervention scenarios: agricultural emission mitigation, diet transition, and agricultural production 511 

reallocation. Each scenario includes several subscenarios that differ in implementation intensity, 512 



feasibility, and expected benefits (Table S4). 513 

We conducted five subscenarios to mitigate agricultural ammonia emissions, comprising three 514 

single and two collaborative measures, as outlined by Adalibieke et al.28. In the “Increasing 515 

mechanized deep fertilization” (FDP) scenario, the incorporation proportion of synthetic N 516 

fertilizers is set to reach 80% for wheat, maize, and rice based on the National Agriculture 517 

Mechanization Extension Plan37. In the “Optimizing fertilizer types” (FTP) scenario, we assumed 518 

that 50% of N applications were allocated to organic fertilizer and manure for major crops, 519 

vegetables, and fruits37. In the “Optimizing fertilzer rates” (OFR) scenario, the N fertilizer rate was 520 

reduced to meet the “N Surplus Benchmarks” in seven regions, as proposed by Zhang et al.38 and 521 

the European Union Nitrogen Expert Panel39. The regional “N Surplus Benchmarks” were utilized 522 

as the targeted N surplus in regions where the N surplus exceeds the benchmarks. 523 

For the diet transition scenario, we explored the potential for reducing inequality by adopting 524 

healthier dietary habits. Our dietary recommendations were based on the 2022 Chinese Dietary 525 

Guidelines (CDG 2022). The scenario considered nine food categories: grain, vegetables, fruits, pig, 526 

beef, sheep and goat, poultry, dairy, and eggs. Using CDG 2022 as a reference, we designed four 527 

subscenarios for the entire population, balancing healthfulness and feasibility to varying degrees. 528 

The four subscenarios included (1) adjusting food intake for each category to the upper limit of the 529 

recommended range in CDG (Max); (2) adjusting food intake for each category to the lower limit 530 

of the recommended range in CDG (Min); (3) adjusting food intake for each category to the average 531 

values of the recommended range in CDG (Ave); and (4) adjusting food intake for each category 532 

based on the minimum difference between the existing diet and the recommended range (Maint). 533 

For example, if the current food intake exceeded the upper limit of the recommended range, it was 534 

adjusted to the upper limit range. Conversely, if the intake was below the lower limit, it was 535 

adjusted to the lower limit. No adjustments are made if the current intake is already within the 536 

recommended range. We computed the percentage of changes in food intake owing to the dietary 537 

transition of each food category, which formed the diet transition matrix (labeled as H3), based on 538 

which we recalculated the premature mortality for each food category in each province to 539 

represent the changes in health damage and equality for each subscenario. 540 

Agricultural production reallocation aimed to mitigate health damage by redistributing crop 541 

production from high- to low-sensitivity areas. Certain regions are more susceptible to PM2.5 542 



emission, leading to more premature deaths per production unit than other regions. Herein, we 543 

assumed a fixed spatial distribution of farmlands to avoid potential environmental footprints 544 

related to alterations in land use, such as new farmland cultivation7,40. Thus, we analyzed crop 545 

reallocation by transferring production from farmlands with high PM2.5 sensitivity to existing 546 

farmlands with PM2.5 sensitivity while maintaining crop yield. This transfer of crop yield from high- 547 

to low-sensitivity areas requires a certain level of yield increase in those low-sensitivity regions. 548 

While concentrating crop production in the areas with the lowest sensitivity would ideally 549 

maximize health benefits, it is impractical owing to the limited production potential. We assumed 550 

a 30% yield increase in each crop production area and a maximum reduction of 20% in the total 551 

crop production in high-sensitivity areas considering the yield ceiling in low-sensitivity areas. 552 

Consequently, we designed 20 subscenarios to transfer production from regions with higher 553 

mortality rates per unit production (1%–20% of the total production) to regions with lower 554 

mortality rates. First, we calculated the mortality rate per unit of crop production for each province 555 

using data from the Chinese National Bureau of Statistics5. Then, starting with the province with 556 

the highest mortality rates (province A), we transferred crop yield to the province with the lowest 557 

mortality rates (province B) until the yield increase in province B reached 30% of its initial crop 558 

yield. This process was repeated for the second-best province and continued until the total 559 

transferred production yield reached 20%. We achieved the desired reallocation by sequentially 560 

allocating transferred yields to regions with the lowest mortality rates per unit. 561 

Limitations 562 

Several limitations need to be acknowledged. The impact of national food imports and exports was 563 

not considered due to a lack of data. Additionally, the results of this study are exclusively based on 564 

data from 2017. Besides, the implementation of intervention scenarios could have profound 565 

impacts on the economy, leading to changes in emissions and associated environmental impacts, 566 

which are not considered in this study. Future work could expand the study period to encompass 567 

multiple years, which would help to clarify the historical patterns and drivers of inequality. 568 
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