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Abstract

The key motivation of this paper lies in the development of a high-level decision-
making framework for autonomous overtaking maneuvers on two-lane country roads with
dynamic oncoming traffic. To generate an optimal and safe decision sequence for such
scenario, an innovative high-level decision-making framework that combines model pre-
dictive control (MPC) and switching control methodologies is introduced. Specifically,
the autonomous vehicle is abstracted and modelled as a switched system. This abstrac-
tion allows vehicle to operate in different modes corresponding to different high-level
decisions. It establishes a crucial connection between high-level decision-making and low-
level behaviour of the autonomous vehicle. Furthermore, barrier functions and predictive
models that account for the relationship between the autonomous vehicle and oncom-
ing traffic are incorporated. This technique enables us to guarantee the satisfaction of
constraints, while also assessing performance within a prediction horizon. By repeatedly
solving the online constrained optimization problems, we not only generate an optimal
decision sequence for overtaking safely and efficiently but also enhance the adaptabil-
ity and robustness. This adaptability allows the system to respond effectively to potential
changes and unexpected events. Finally, the performance of the proposed MPC framework
is demonstrated via simulations of four driving scenarios, which shows that it can handle
multiple behaviours.

1 INTRODUCTION

Autonomous overtaking is one of the most common yet chal-
lenging driving maneuvers, improving trip efficiency by avoiding
a slower or stationary preceding vehicle (see [1–10]). In the
early years of autonomous vehicle research, the primary focus
was predominantly on trajectory planning and tracking. Chai
et al. [3] proposed several optimization frameworks for solving a
series of vehicle trajectory planning problems. The approaches
of using a gradient operation [11], a swarm intelligent algo-
rithm [12], a fuzzy adaptive strategy [2], and a deep neural
network [13] have been explored to enhance the search capabil-
ity. These optimisation-based approaches gained considerable
attention and found practical applications in the field of path
planning.

In general, there are three sequential steps in the control
architecture for autonomous vehicles (see Figure 1). A percep-

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2024 The Authors. IET Intelligent Transport Systems published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

tion module fuses sensor readings to increase the reliability of
information on both the environment and the status of the
autonomous vehicle. The decision maker uses the perception
outputs to make a decision from a set of possible choices, such
as {“Following lane”, “Slowdown”, “Stop”, “Overtaking”}. Based on
the decision, the path planner generates a reference path that
is followed by the low-level controller. In other words, deci-
sion making, path planning, and motion control constitute a
complete control scheme [14].

Decision-making is responsible for evaluating potential colli-
sion risks of each possible maneuver based on current traffic
states and then making an appropriate decision with min-
imised collision risks. The existing studies on decision-making
can be roughly categorised into three categories, that is, rule-
based methods [15–19], learning-based schemes [20–24] and
Monte Carlo Tree Search (MCTS) [25–28]. For instance, Wang
et al. [15] proposed a predictive maneuver-planning method

IET Intell. Transp. Syst. 2024;18:1259–1271. wileyonlinelibrary.com/iet-its 1259

https://orcid.org/0000-0001-8104-4408
https://orcid.org/0000-0002-2839-6778
mailto:w.chen@lboro.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-its
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fitr2.12507&domain=pdf&date_stamp=2024-03-27


1260 WANG ET AL.

FIGURE 1 The control architecture. The grey shaded block shows the
component discussed here.

FIGURE 2 Autonomous overtaking with the emerging traffic.

for autonomous vehicle navigating in public highway traffic
based on pre-defined switched rules. Jula et al. [18] proposed
a rule-based minimum safety spacing calculation method in
lane-changing and lane-merging scenarios based on vehicle
kinematics. This rule-based method has gained widespread
adoption in various applications such as risk assessment in tra-
jectory planning [29], maneuver modelling [30], and overtaking
[31]. An integrated rule-based decision-making and motion con-
trol framework was presented in [19] to achieve emergency
avoidance in complex driving scenarios. However, rule-based
methods have several drawbacks. For example, the approach
is error-prone, and correct behaviour can only be guaranteed
through exhaustive testing. Due to the nature of driving and
road conditions, it is impossible to anticipate and account for
all possible scenarios during the design stage. Any oversight or
omission can lead to potentially dangerous consequences such
as colliding with popping up oncoming vehicles, as illustrated in
Figure 2. In contrast, Johansson et al. [20] investigated a deep
reinforcement learning method for decision-making in the high
level. Although this approach yields a promising performance,
there is still a concern about how to guarantee collision-free dur-
ing both the training and the deployment process by the virtue
of reinforcement learning methods. Learning-based methods
depend on the training scenarios and it is hard to use them in
safety-related applications since it is very difficult to obtain data
for all possible dangerous cases [23, 32, 33].

In addition, MCTS, a promising method for solving com-
plicated sequence optimisation problems, has also shown its
advantages in solving decision-making for unmanned vehicles
[25–28]. For example, a cooperative motion planning algo-

FIGURE 3 Autonomous overtaking with the oncoming traffic.

rithm for autonomous highway driving was developed in [25]
using MCTS, which relies on a manually designed coopera-
tive cost function. This method can handle multiple vehicle
interactions in a merging scenario in the simulator without
requiring inter-vehicle communication. A deep-MCTS algo-
rithm for vision-based autonomous driving was presented in
[26], which can predict driving maneuvers to help improve the
stability and performance of driving control. Although MCTS
yields promising performance by summing costs of distance to

other road users into final cost function, there is still concern about
how to guarantee the specification of a minimum safe distance
between the autonomous vehicle and other road users, thereby
improving safety margins in highly dynamic and uncertain envi-
ronments. Hence, it is a vital task to integrate safety constraints
into the decision-making process to ensure that the autonomous
system operates safely in all situations.

The autonomous vehicle controller needs to make com-
plex decisions regarding how and where to drive. Especially, it
becomes even more challenging when autonomously overtak-
ing a leading vehicle on two-lane country roads in the presence
of oncoming vehicles. For example, the autonomous vehicle
has lower priority on the opposite lane. This means that the
autonomous vehicle always needs to give way to oncoming vehi-
cles. In addition, if the distance from the front car is too small,
the field of view of the autonomous vehicle becomes partially
blocked. However, if the distance from the front car is too
large, the overtaking time would be quite long, resulting in more
uncertainties and a prolonged duration during the overtaking
maneuver. As illustrated in Figure 3, there are several stages
as follows: (1) Depart from the original lane. (2) Occupy the
opposite lane to drive past a slow moving (or stationary) vehi-
cle travelling in the same direction. (3) Return to the original
lane. The success of overtaking on such a road is significantly
affected by many factors, for example, the wide range of natu-
ral/traffic conditions (e.g. the layout of the road, visibility), the
distance between the autonomous vehicle and the surrounding
ones whose behaviours could be widely varying. Moreover, both
the longitudinal and lateral motions are involved in this process.

To complete the overtaking maneuver successfully and safely,
the autonomous vehicle has to evaluate the available gaps in the
opposite direction. This necessitates the autonomous vehicle to
drive on the path of potential oncoming vehicles for a signifi-
cant period of time, often at high speeds [6, 7, 9]. In addition,
the information of leading vehicle’s trajectory and road bound-
aries are also required. This means that the overtaking process
must satisfy many constraints simultaneously, and this property
also brings many more challenges for completing overtaking
maneuvers safely, especially on a single-lane two-direction road.
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WANG ET AL. 1261

Therefore, it is important to properly make a series of overtak-
ing decisions that improve the trip efficiency and simultaneously
satisfy the safety in the high level. The decision-maker is then
integrated effectively with a trajectory planning module at the
low level to successfully complete overtaking maneuvers.

To effectively deal with the aforementioned challenges
and provide an alternative solution, model predictive control
(MPC)-based optimisation methods are receiving significant
attention because they can generate an optimal path/decision
by solving an input and state constrained optimisation problem
based on the latest available information in a receding prediction
horizon fashion (see [16, 34–47]). This means that MPC method
is applicable in real time and can avoid moving obstacles. For
example, Dixit et al. proposed a high-level decision-making pro-
cess based on the MPC method in [44], and this algorithm was
executed in the absence of surrounding vehicles. A finite state
machine was employed as a high-level decision-maker in [16],
where MPC was chosen as a trajectory planner. Reference [45]
investigated a multi-mode switching longitudinal autonomous
driving system based on MPC, which is serving as the upper-
level controller. While these papers did not consider oncoming
vehicles (as depicted in Figures 2 and 3), in practice, however, it
is inevitable that a vehicle may emerge suddenly on the oppo-
site lane from a crossing road after overtaking is initiated (see
Figure 2), or the sensors of the autonomous vehicle did not
detect an oncoming vehicle (e.g. due to a limited sensor range
or partially blocked field view of the sensors) before executing
the overtaking action.

To tackle two-way overtaking problems which may encounter
oncoming vehicles, a number of works have been reported,
which can be roughly divided into two categories, that is,
mechanism-based and learning-based models. The mechanism-
based models mainly use risk-related indices for overtaking
decisions. Game theory, as a representative mechanism-based
approach, has been widely embraced for modelling human
decision-making in driving, especially the mutual dependence
between the interacting drivers (e.g. [48–50]). Although the
game-based approach is promising, as [49] pointed out, there
are still many improvements to be made for game-based driv-
ing decision models, for example, the sufficient traffic data
for modelling, the proper design of payoff function based on
understanding how drivers value different objectives, and so
on. On the other hand, in recent years, many learning-based
models have been proposed to describe overtaking decision
(e.g. DQN model [51], hidden Markov model [52], RL [53],
DRL [20]). For example, Johansson et al. [20] designed a tra-
jectory planner based on a DRL method using a discrete action
space, where these discrete actions are connected to a low-level
controller to complete the control of the autonomous vehicle.
However, due to the limited control accuracy of the discrete
action space, it cannot guarantee collision-free during training
and execution. Reference [53] used a risk-based approach to
estimate risk states during RL training, and a MCTS was also
used to reduce unsafe behaviours of the agent while training. In
general, learning-based models have shown powerful capabili-
ties in describing complex driving behaviours, especially when
high-quality driving data are available. A drawback of learning-

based models is that the learned decision strategies/policies can
have difficulty in situations not covered by the training episodes.
Therefore, it is very challenging to develop a reliable and robust
decision-maker that is able to not only guarantee safety but also
perform overtaking in an optimal manner under diverse traf-
fic conditions. Motivated by the above-mentioned observations
and recognising the abundance of excellent works in lower-
level path planning and dynamics control (see, e.g. [2, 3, 11–13,
54–56]), this paper specifically focuses on decision-making at a
higher level for autonomous overtaking under two-lane country
roads subject to oncoming vehicles by integrating optimisation
methods and switching control techniques.

Here, we are interested in, for a given traffic scenario, how
to make a right decision and when to perform overtaking
quickly while guaranteeing safety. We develop a process to rep-
resent the relationship between the high-level decisions and real
control inputs for the vehicles with the help of the concept
of switched systems. During the prediction horizon, the con-
trol inputs (i.e. the steering angle and the acceleration of the
autonomous vehicle) are updated based on the optimal action
made by the MPC-based decision-maker. That is, the inputs
are regarded as a switched controller and the optimal decision
variable is regarded as a switching signal. A cost function for
online optimisation is proposed where a coupled term on the
relative distance (i.e. the distance between the autonomous vehi-
cle and the oncoming one) and velocity tracking error is also
included. This optimisation is repeatedly solved based on the
latest available information of the traffic, giving the autonomous
vehicle the ability to quickly respond to changes or unexpected
events.

The main contributions of this paper are summarised as fol-
lows. First, as a contrast to conventional pre-defined rule-based
methods, our approach seeks to streamline the decision-making
process in autonomous overtaking. We achieve this by incorpo-
rating switching techniques and abstracting the decision-making
under complex environmental conditions through an MPC-
based framework that effectively captures interactions with
other road users. Furthermore, the introduced switched sys-
tem serves as a bridge, connecting high-level decisions to the
actual control inputs implemented on the autonomous vehi-
cle at the lower level. Consequently, we can select the safe and
optimal action to execute maneuvers. Second, the proposed
method can deal with dynamic environments, as well as avoid-
ing collisions. Furthermore, the performance of the proposed
approach is validated within four typical driving scenarios,
containing a stopped/moving leading vehicle or oncoming
vehicles. This demonstrates its feasibility, effectiveness and
adaptivity when operating in a dynamic and uncertain traffic
environment.

The rest of this paper is organised as follows: In Section 2,
problem formulation for autonomous overtaking on two-lane
country roads with oncoming vehicles is introduced. A decision-
making framework based on MPC and switching approaches
is proposed in Section 3, while four driving scenarios are set
to verify the effectiveness of the proposed decision-making
framework in Section 4. Finally conclusions are discussed in
Section 5.
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1262 WANG ET AL.

Notations. The set of real numbers is denoted by ℝ. The set of
integers is denoted by ℤ. ℝ>0 ∶= (0,∞). ℤ>0 denotes the set
of positive integers. xT denotes the transpose of x.

2 PROBLEM FORMULATION

Here, we only consider the optimal decision-making for
the high-level control design of autonomous overtaking for
a two-way road in the presence of oncoming vehicles or
other unexpected events (e.g. emerging vehicles or changing
behaviours of other vehicles). We propose a high-level decision-
making framework by integrating an MPC-based optimisation
method and switching control approaches. The decision vari-
ables include following lane, slowdown, stop, and overtaking.
This allows us to initiate, execute, hold or even abandon an over-
taking maneuver. To enable the design of the high-level control
system, representations of the autonomous vehicle and its sur-
rounding environment are required. This includes a simplified
vehicle model, physical and safety constraints, performance
specification, and information about oncoming vehicles, all of
which will be introduced in this section.

2.1 Vehicle model

When high-level decision-making for autonomous vehicles is
of concern, a kinematic model is widely used due to its low
parameter dependency [57], described as

ẋ = v cos 𝜃,

ẏ = v sin 𝜃,

�̇� =
v

l
tan𝜑,

v̇ = a, (1)

where z = [x, y, 𝜃, v]T are the states of the model and u =

[𝜑, a]T are control inputs. Specifically, (x, y) are the coordinates
of the centre point of the rear axle, 𝜃 is the heading angle of the
vehicle body with respect to the x axis, v is the linear forward
velocity, 𝜑 is the steering angle of the front wheel with respect
to the vehicle’s longitudinal line and a is the longitudinal accel-
eration. l is the distance between the front axle and the rear
axle, which can be seen from Figure 4. To facilitate the high-
level decision-making, the link between the kinematic model
and the MPC-based high-level decision-making is realised by
determining the control variables u = [𝜑, a]T using each corre-
sponding decision variable. This means that the model switches
into different modes based on the different decision variables.
Therefore, we can represent the system as a switched system,
where the decision variable defines the switching mode. We take
advantage of this representation in the sequel to build up the
link between the high-level decisions and low-level real control
inputs applied to the autonomous vehicle. More details will be
discussed in Section 3.

FIGURE 4 Kinematic model for a rear-wheel driving car.

FIGURE 5 The illustration of an elliptical constraint.

To successfully complete the overtaking and ensure the
safety, it is important to abstract the behaviour of both the
autonomous and surrounding vehicles, model the road lay-
out, and carefully incorporate all the information into the
decision-making process. This includes taking into account all
safety constraints.

2.2 Constraints

1) State/Control variables constraints: To take physical limita-
tions and other constraints of the autonomous vehicle into
consideration, the following constraints are considered:

y ∈ [ymin, ymax], 𝜃 ∈ [𝜃min, 𝜃max], v ∈ [vmin, vmax]

𝜑 ∈ [𝜑min, 𝜑max], a ∈ [amin, amax]. (2)

2) Safety constraints: Inspired by [40], to keep a safe distance
between the autonomous vehicle and any nearby Vehicle i

with position (xi , yi ), we introduce an elliptical constraint of
the form: (

x − xi

Δxi + 𝛽

)2

+

(
y − yi

Δyi

)2

≥ 1, (3)

where Δxi , Δyi are calculated by incorporating the geometry
(length and width) of Vehicle i and the autonomous vehicle
(see Figure 5). These are assumed available from sensing. 𝛽
is an optional tuning parameter to manipulate the behaviour
of the proposed optimisation approach.

2.3 Performance indexes

1) Tracking performance indexes: As shown in Figures 2 and 3, the
autonomous vehicle needs to return to the original lane after
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WANG ET AL. 1263

finishing the overtaking maneuver. Assume that the desired
trajectory is (Vlre f ,Ylre f ), representing the tracking reference
signal of the left lane. Then, the corresponding tracking
indexes are designed as follows:

Jtrv = 𝛾1(v −Vlre f )2 (4a)

Jtry = 𝛾2(y −Ylre f )2, (4b)

where constants 𝛾1, 𝛾2 > 0. Jtry guides the autonomous
vehicle into the centre of the left lane.

2) Road boundary indexes: We consider two lanes defined by three
boundaries: left, yrl , middle, yrm , and right, yrr , ones (see
Figures 2 and 3). During overtaking maneuvers, a vehicle
must stay inside the edges of the road. This is ensured here
by using barrier functions that are designed such that the
boundaries of the road have the highest (i.e., +∞) poten-
tial and the centret of the lane has the lowest potential (see,
e.g. [58] and [44]). Depending on the stage of the overtak-
ing manoeuvre, we define two barrier functions based on a
widely used barrier function in literature.
∙ When overtaking is not happening, the autonomous vehi-

cle stays in the original lane, and we only need to consider
the left boundary and the middle boundary. Hence, the road
potential function is given as follows:

Jroadlm =
1
2
𝜂m

∑
j

(
1

y − yr j

)2

, (5)

where 𝜂m is a scaling factor and yr j is the y-
coordinate of the jth road edge with j ∈ {l ,m} ∶=

{le ft boundary,middle boundary}.
∙ When overtaking is happening, the autonomous vehi-

cle is able to go across the middle boundary, while the
boundaries of left boundary and right boundary need to be
concerned. Thus, the road potential function is

Jroadlr =
1
2
𝜂r

∑
j

(
1

y − yr j

)2

, (6)

where 𝜂r is a scaling factor and j ∈ {l , r} ∶=

{le ft boundary, right boundary}. Figure 6 shows a plot
of this potential for a y-axis cross-section of a two-lane
road under different scaling factors.

2.4 Autonomous overtaking process
description

Let q be the discrete decision of the autonomous
vehicle. More specifically, q ∈ {1, −1, −2, 2} ∶=
{ following lane, slowdown, stop, overtaking}. Let (X OV

ri ,Y OV
ri )

be the position of oncoming Vehicle i on the opposite right
lane, which provides a sketchy path reference of the vehi-
cle i of concern as an input to the low-level controller of

FIGURE 6 Road edge potentials. Three vertical grey lines mark lane
dividers dashed line and road edges.

the autonomous vehicle. After taking into account all the
constraints and specifications as described above, the overall
performance index is given by

J (q) =
q2 − 4
−3

Jroadlm +
q2 − 1

3
Jroadlr + Jtry + Jpv , (7)

where Jroadlm, Jroadlr and Jtry are given in (5), (6) and (4), respec-
tively. The safety requirement during the overtaking is reflected
by Jpv . It describes the relative distance between the autonomous
vehicle and the oncoming one and the velocity tracking error,
given by

Jpv =
q2 − 4
−3

1

𝛾3|x − X OV
ri | + 𝜖

Jtrv , (8)

where 𝛾3 > 0 and 𝜖 is a small positive number to avoid the
denominator being zero in the calculation.

Remark 1. Driving on the left lane is the goal of the autonomous
vehicle, so tracking the desired trajectory should be taken into
consideration in the whole overtaking process. That is, there
is no q coupled on Jtry in (7). Moreover, the first two terms
q2−4

−3
Jroadlm and

q2−1

3
Jroadlr of (7) correspond to the road bound-

ary constraints mentioned in Section 2.2. In fact, “
q2−4

−3
” could

be changed to any other functions of q as long as it equals to

1 and 0, when q = ±1 and q = ±2, respectively. Similarly,
q2−1

3
could be also changed.

With the above problem formulation, the overtaking pro-
cess on a two-way road is described as follows. When the
autonomous vehicle is running on the original lane and
approaching the desired velocity, both Jtrv and |x − X OV

ri | are

decreasing. This means that
Jtrv|x−X OV

ri
| does not play a main role

in the performance index. Therefore, q = 1, rather than q = ±2,
minimises cost J (q) given in (7). When the sensor detects that
the distance between the autonomous vehicle and the leading
vehicle is closing to the safe distance, and the opposite lane does
not allow the autonomous vehicle to initiate overtaking maneu-
vers, the optimal solution to (7) is q = −1 (slowdown). In this
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1264 WANG ET AL.

case, Jtrv is increasing, while |x − X OV
ri | is still decreasing. Cor-

respondingly, we have that
Jtrv|x−X OV

ri
| is getting bigger and bigger,

which plays a main role in the performance index. Therefore, to
minimise the total cost function, q equals to ±2. In other words,
when the opposite lane is available for overtaking, decision
q = 2 (overtaking) is obtained; when the opposite lane is busy,
action q = −2 (stop) is obtained. When the autonomous vehicle
restarted after executing q = −2 (stop) action, Jtrv plays a main
role and action q = 2 (overtaking) is obtained, since oncoming
vehicles have passed. When overtaking process is in proceeding,
that is, q = 2, the distance |x − X OV

ri | is getting bigger (since all
oncoming vehicles are driving away from the autonomous vehi-

cle) and the value of Jtrv is around zero. Then,
Jtrv|x−X OV

ri
| does

not play a main role. Hence, the optimal decision q = 1 (follow-

ing lane) is made according to other terms in the performance
index (7) and the autonomous vehicle returns to the original
lane. It shall be highlighted that the above decision-making pro-
cess continuously execute with all the updated information of
the surrounding traffic. This allows the autonomous vehicle to
respond to the changing environment in a safe and rational way,
which will be explained further and demonstrated in simulation
studies.

Remark 2. We consider only the relative distance in X -direction
between the autonomous vehicle and the first oncoming vehicle,
which does not drive pass the autonomous vehicle. That means
x ≤ X OV

ri when consider the direction of the autonomous
vehicle as positive direction.

3 DECISION-MAKING BASED ON MPC
AND SWITCHING APPROACHES

3.1 Switching control approach

The main purpose of the MPC approach is to find the opti-
mal high-level decision consequence by repeatedly solving an
online constrained optimisation problem. In this subsection,
we demonstrate that the high-level decision-making can be
represented as a switched system. Specifically, we treat the
decision-making as a switching control process that facilitates
the autonomous vehicle switching from one sub-operation
mode to another one. For each sub-operation mode, we define
specific pairs of control inputs with respect to decision vari-
ables applied on the vehicle. Under these pairs of control
inputs, the autonomous vehicle exhibits different behaviours
that could be described by the kinematic model which is
given by (1), but with different control inputs with respect
to different decision variables. This will be presented by the
following model (9). This approach enables us to link the high-
level decision (such as slowdown or overtaking) to lower-level
behaviours and status of the autonomous vehicle (e.g. position,
velocity). Furthermore, it also allows us to evaluate the rela-
tionship between the autonomous vehicle and other vehicles
(e.g. leading or oncoming vehicles) to ensure safety and other
desirable properties.

TABLE 1 The control inputs uq(k) (k), k ∈ ℤ≥1, in the predictive
kinematic model and its relationships with decision variables.

(𝝋q(k)(k), aq(k)(k)) logical conditions

(0, c2 ) q(k) = 1 & v(k) < Vlre f

(0,0) q(k − 1) ≠ −2 & q(k) = 1 & v(k) = Vlre f

(0, c2 ) q(k − 1) = −2 & q(k) = 1

(0, −c1 ) q(k) = −1

(−c4, c2 ) q(k) = 2 & x − X LV
l

≤ Xel & y ≥ −y f

(0, c2 ) q(k) = 2 & x − X LV
l

≤ Xel & y < −y f

(c3, c2 ) q(k) = 2 & x − X LV
l

> Xel & y ≤ yz

(0, c2 ) x − X LV
l

> Xel & y > yz

(𝜑(k − 1), 0) q(k) = −2

More precisely, we first discretize the system (1) by using
Euler method with sampling time Ts . Hence, the system (1) can
be rewritten as

z (k + 1) = fq(k)(z (k), uq(k)(k)), (9)

where z (k) = [x(k), y(k), 𝜃(k), v(k)]T , uq(k)(k) = [𝜑q(k)(k),
aq(k)(k)]T are determined by decision variable q(k) with
q(k) ∈ {1, −1, −2, 2} that can be interpreted as the switch-
ing modes and f (0, 0) = 0. Moreover, the control and state
sequences must satisfy

z (k) ∈ ℤ (10a)

uq(k)(k) ∈ 𝕌, (10b)

where ℤ is a subset of ℝ4 and 𝕌 is a subset of ℝ2, each set
containing the origin in its interior.

Remark 3. In this study we assume that the autonomous vehicle
cannot reverse, that is, v(k) ≥ 0 for all k ∈ ℤ≥1. In addition, due
to safety reasons, the overtaking maneuvers must be finished
as soon as possible. To sum up, the constraints on the decision
variable q(k) are summarised as

q(k + 1) ≠

{
−1, q(k) = ±2,

−2, q(k) = 1.
(11)

Here, we mainly focus on how to obtain the sequence of
optimal decision action q∗(k) on the high level. Therefore, to
give a sketchy tracking reference to the low-level control of the
autonomous vehicle, based on the optimal decision q∗(k), we
use the logic shown in Table 1 to update control inputs u(k) in
the predictive model. Note that (X LV

l
,Y LV

l
) is the position of

the leading vehicle in the left lane.
In Table 1, constants Xel , y f , yz ∈ ℝ>0 and c1, c2, c3, c4 ∈

𝕌 ∩ ℝ>0 are to be determined later. In Table 1, for the second
case when q(k) = 2, that autonomous vehicle runs on the right

lane for a while with steering angle 𝜑 = 0. Noting that, the focus
of this paper is not on path planning and trajectory following,
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WANG ET AL. 1265

a simple rule-based low-level control (given in Table 1) is used
to capture and represent the behaviour of the autonomous
and other vehicles for the purpose of decision-making. Once
an action such as overtaking or lane-following is decided, the
command will be passed to a lower-level path planning module
that will generate a realistic path based on more detailed models
and other information using optimisation or other search tools.
This path will be used as a trajectory reference for the lowest
level controller to follow.

3.2 MPC-based framework

During the overall maneuver, the constraints (2) and (3) should
always be satisfied. Let (X OV

r j
(k),Y OV

r j
(k)) and V OV

r j
(k) be the

position and the longitudinal speed of the oncoming Vehicle j

at instant kTs , respectively. Then, the prediction for the posi-
tion of the oncoming Vehicle j at time (k + 1)Ts is calculated as
follows:

X OV
r j (k + 1) = X OV

r j (k) +V OV
r j (k)(k − 1)Ts

Y OV
r j (k + 1) = Y OV

r j (k). (12)

Similarly, given the position (X LV
l

(k),Y LV
l

(k)) and the longi-
tudinal speed V LV

l
(k) of the leading vehicle at instant kTs , the

prediction of its position at time (k + 1)Ts is given as

X LV
l

(k + 1) = X LV
l

(k) +V LV
l

(k)(k − 1)Ts

Y LV
l

(k + 1) = Y LV
l

(k). (13)

Thus, the overall optimisation problem is formulated as
follows:

min
q(k)

N−1∑
i=0

J (q(i; k)) (14a)

s.t . z (i + 1; k) = fq(i;k)(z (i; k), uq(i;k)(i; k)) (14b)

z (i; k) ∈ ℤ, uq(i;k)(i; k) ∈ 𝕌 (14c)

q(i; k) ∈ {1, −1, −2, 2} (14d)

q(i + 1; k) ≠

{
−1, q(i; k) = ±2

−2, q(i; k) = 1
(14e)

(
x(i; k) − X LV

l
(i; k)

ΔX + 𝛽

)2

+

(
y(i; k) −Y LV

l
(i; k)

ΔY

)2

≥1

(14f)(
x(i; k) − X OV

ri (i; k)

ΔX + 𝛽

)2

+

(
y(i; k) −Y OV

ri (i; k)

ΔY

)2

≥1

(14g)

ALGORITHM 1 Implementation of hierarchical framework

/*High-level decision-making*/

1) Initialisation: At initial time step, i.e., k = 0, initialize the state
z (0) = [x(0), y(0), 𝜃(0), v(0)]T . Given parameters 𝛾1, 𝛾2, 𝛾3, 𝜂m , 𝜂r , 𝜖, and
sampling time Ts .

2) Find the optimal decision q∗(k) that gives the minimum value of the cost
function (14a) and subject to the physical and safety constraints
(14b)–(14g).

3) Execute the first decision q∗ (i; k), i = 0.

/*Lower-level path planning process*/

1) Check the value of the optimal decision variable q∗ transmitted from high
level.

2) Choose control inputs uq∗ = [𝜑q∗ , aq∗ ]T for switching system (9) based
on Table 1.

3) Feedback the physical information of autonomous vehicle to high level,
and then high-level decision-making framework will re-solve the
optimisation problem (14) to calculate the new optimal decision passed to
the lower level.

4) k ← k + 1 and go to step 2) of high level.

where J (q(i; k)) is defined in (7), uq(i;k)(i; k) is given in Table 1
and N is the planning horizon.

After solving the above constrained optimisation problem,
the following optimal decision sequence can be achieved

q∗(k) =
[
q∗(i; k), q∗(i+1; k), … , q∗(i + N − 1; k)

]T
. (15)

For each MPC update step, only the first value in the control
sequence q∗(0; k) is implemented as the decision action to the
autonomous vehicle. At the next time step (k + 1), a new opti-
misation problem is solved over a shifted prediction horizon
again with the updated state z (0; k + 1) = z∗(1; k). This can be
summarised in Algorithm 1.

Remark 4. The formulation (14) shows that, to facilitate the
decision design in autonomous overtaking, we abstract the
decision-making process under a complex environment where
interactions with other road users are captured. This safety-
constrained solution allows constraints to be specified to ensure
that the minimum safe margin between the ego vehicle and
other road users is respected (i.e. refer to (14f)-(14g)) despite
the behaviour of the other road users not being fully predictable.
This formulation enables us to formulate the generation of safe
and optimal decisions in uncertain and dynamic environments.

Remark 5. The optimisation problem formulation in Equa-
tion (14) differs from the conventional MPC-based trajectory
planning problem. Our approach treats decision-making as a
switching control process based on various high-level decision
commands. Consequently, analysing the duration problem and
stability of the proposed framework becomes a challenging
task. It is important to note that the main contribution of the
paper is to propose this new high-level decision-making frame-
work by integrating MPC and switching control approaches
and demonstrate its efficiency. However, detailed theoretical
analysis will be our future work. This framework establishes a
crucial connection between high-level decision-making and the
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1266 WANG ET AL.

autonomous vehicle’s lower-level behaviour and status, enabling
trajectory planning at the lower level for overtaking maneuvers.
The core concept of this paper can be seen as a benchmark for
researchers interested in designing high-level decision-making
frameworks using various optimisation-based methods.

4 TESTING DRIVING SCENARIOS

In this section, we illustrate the effectiveness of the proposed
MPC-based decision-maker through four simulated practical
traffic scenarios. Here, we consider the discrete decisions of the
autonomous vehicle in the high level by using integer variables.
Therefore, the formed optimisation problem can be regarded as
mixed-integer programming (MIP). Because YALMIP supports
several MIP solvers, all the driving scenarios are built and tested
on MATLAB platform with YALMIP Toolkit [59]. The central
component in the optimisation problem is the decision vari-
ables, and these variables are represented in YALMIP by sdpvar

objects. The optimisation problem resulting from the integration
of the YALMIP solver and the conventional MPC solving pro-
cess is typically addressed using a receding horizon strategy. In
this approach, only the first computed sample of the control
input within the prediction horizon is applied to the system,
while the remaining samples are discarded. Subsequently, the
process is iteratively repeated, adapting to an updated optimi-
sation problem based on the new initial conditions at the next
sample. The main idea of the implementation of the proposed
high-level decision-making framework is given in Figure 7.

4.1 Testing environment

For all the driving scenarios, we use Driving Scenario Designer
provided by MATLAB to set the testing environment (e.g. see
Figure 8). The initial value of the autonomous vehicle is set as
z0 = [3m; 1.3m; 0rad ; 15m∕s]T . Both lanes are set to be 3.6-m
wide and all the vehicles are 1.9-m wide. Other information
about the lanes are given in Table 2.

Next, we will present four driving scenarios in details. The ini-
tial positions and velocities of surrounding vehicles in different
scenarios are given in Table 3.

FIGURE 7 Implementation of the proposed high-level decision-making
framework.

FIGURE 8 The testing environment designed by Driving Scenario
Designer.

TABLE 2 Reference information of the left lane and right lane, and
boundaries of lanes as shown in Figure 2.

Lanes Ylre f Vlre f Yrre f

Values 1.3(m) 25(m∕s) −2.3(m)

Boundaries yrl yrm yrr

Values 3.1(m) −0.5(m) −4.1(m)

Scenario I: The autonomous vehicle starts on the left lane and
its sensors detect that there is one leading vehicle moving slowly
on the left lane, and there is no oncoming vehicle on the right lane.
The autonomous vehicle needs to overtake the leading one by
occupying the opposite road without any collisions.

Scenario II: The leading vehicle is parked on the left lane.
The oncoming vehicle is approaching at a high speed on the
opposite direction.

Scenario III: The leading vehicle is not in stationary but moving
forward slowly. Different from Scenario I, the oncoming vehicle
is not far from the autonomous one.

Scenario IV: Different from the above three scenarios, in this
case, we consider a dynamic environment. Besides the parked
leading vehicle, we consider two oncoming vehicles: one is a typ-
ical fast-moving vehicle which is not far from the autonomous
vehicle, while the other one emerges suddenly (e.g. from the
crossing road [see Figure 2]). In addition, to verify the effective-
ness of our MPC-based method, in this scenario, we compare
with the existing rule-based method proposed in paper [19].
This benchmarked rule-based method concludes four decision
variables (i.e. initialisation, acceleration, emergency breaking and
quick lane change), and it works very well for addressing over-
taking problem in a static environment. However, it may not be
flexible when it deals with dynamic environments.

Moreover, the parameters required by the proposed frame-
work are selected as follows:

∙ Prediction horizon: N = 5
∙ Sampling time Ts = 0.5(s)
∙ Parameters in cost functions and in constraints are given in

Table 4.

4.2 Simulation results

∙ In Scenario I, we set the overall simulation time to 12 s. The
simulation results are shown in Figures 9-I, 10, and 11. It can
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WANG ET AL. 1267

TABLE 3 The initial positions and velocities of surrounding vehicles in different scenarios.

Scenarios I II III IV

Leading (70 m; 1.3 m; 6 m∕s) (60 m; 1.3 m; 0 m∕s) (52 m; 1.3 m; 6 m∕s) (70 m; 1.3 m; 3 m∕s)

Oncoming 1 − (140 m; −2.3 m; −20 m∕s) (39 m, −2.3 m; −15 m∕s) (104 m; −2.3 m; −25 m∕s)

Oncoming 2 − − − (101 m; −139.8 m; −25 m∕s)

FIGURE 9 Time histories of decisions in four scenarios.

FIGURE 10 The time histories of states and control inputs of the
autonomous vehicle in Scenario I.

FIGURE 11 A series of screenshots for the overtaking process in
Scenario I.

TABLE 4 Parameter specification.

Weights Values Parameters Values Parameters Values

𝛾1 167 l (m) 3 c1 (m∕s2 ) 3.5

𝛾2 228 𝜖 (m) 10−5 c2 (m∕s2 ) 1.5

𝜂m 3 𝛽 (m) 1 c3 (m∕s2 ) 0.008

𝜂r 3 ΔX (m) 4 c4 (m∕s2 ) 0.009

𝛾3 0.016 ΔY (m) 1.6 y f (m) −1.9

− − − − yz (m) 0.83

− − − − Xel (m) 0.5

be seen from Figure 9-I that q(0) = 1 and the autonomous
vehicle starts to change to the opposite lane to overtake the
slowly-moving leading vehicle at 0.5 s (i.e. q(1) = 2) since the
sensor does not detect the oncoming vehicle in the whole
overtaking process (see Figure 11). From Figure 9-I, we can
see that the autonomous vehicle returns to the original lane
after 9 s, that is, q(19) = 1. That is, the overall overtak-
ing maneuvers last for 9 s. This paper mainly focuses on
the high-level decision-making by assuming there are well-
designed lower-level path planning and trajectory following.
Therefore, only a simple rule-based low-level controller is
implemented in the simulations to illustrate the effectiveness
of our high-level decision-making on MATLAB Driving Sce-
nario Designer platform and also which is why we obtain
non-smooth results (e.g. see heading angle 𝜃 in Figure 10).
In real implementation, much detailed and smooth paths will
be generated by the path planning module after a high-level
decision, which is generated by the high-level decision-maker
and passed to the path planning layer. A series of screenshots
of the overtaking process can be seen in Figure 11.

∙ In Scenario II, the overall simulation time is 23 s. Accord-
ing to the settings of this scenario, the simulation results
are shown in Figures 9-II, 12, and 13. Figure 13 is used
to illustrate the overtaking process. At the beginning, the
autonomous vehicle accelerates to track the desired veloc-
ity on the original lane. After 0.5 s, the sensors of the
autonomous vehicle detect that there is a vehicle parked
on the lane, so the autonomous vehicle decides to over-
take (i.e. q(1) = 2). However, as shown in Figure 13, the
opposite lane has been occupied by an oncoming vehicle
that is close to the autonomous vehicle. Thus, due to the
safety constraints (3), the autonomous vehicle automatically
finds the optimal solution to (14), stops (i.e., q(4) = −2) and
waits for future gaps (see Figure 9-II and the velocity of the
autonomous vehicle in Figure 12). From Figures 9-II, 12, and
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1268 WANG ET AL.

FIGURE 12 The time histories of states and control inputs of the
autonomous vehicle in Scenario II.

FIGURE 13 A series of screenshots for the overtaking process in
Scenario II.

FIGURE 14 The time histories of states and control inputs of
autonomous vehicle in Scenario III.

13, we know that the autonomous vehicle decides to re-start
overtaking (i.e. q(10) = 2) at 5s (i.e. the waiting time is 3 s)
when the opposite lane is free, and it goes back to the origi-
nal lane when the high-level decision changes from “overtake”
to “following lane” at 15 s.

∙ In Scenario III, the overall simulation time is 12.5 s, and
the simulation results are shown in Figures 9-III, 14, and
15. When the autonomous vehicle detects that there is a
slowly moving leading vehicle in front of it and the oppo-

FIGURE 15 A series of screenshots for the overtaking process in
Scenario III.

FIGURE 16 The time histories of states and control inputs of the
autonomous vehicle in Scenario IV.

site lane is busy, the autonomous vehicle decides to slow
down q = −1 first (see Figures 9-III and 14) until the oncom-
ing vehicle bypasses it 1.5 s later, which makes the opposite
lane clear (see the second screenshot in Figure 15). Hence,
the autonomous vehicle automatically restarts overtaking
(i.e. q(4) = 2). After 7 s, the autonomous vehicle bypasses the
leading vehicle and returns back to the original lane; hence,
q(17) = 1. This overtaking process can be seen in Figure 15.

∙ The simulation results of Scenario IV are shown in
Figures 9-IV, 16, and 17 with 25 s simulation time. From
Figure 17, one can see that the left lane is occupied by a
slower vehicle and the opposite lane is busy with oncoming
vehicles. Therefore, initially the autonomous vehicle decides
to slow down (i.e. q(1) = −1), and this coincides with human
behaviours as human drivers usually slow down first to see
whether the leading vehicle will accelerate or not before fully
stops (i.e. q = −2). When t = 2.5 s, oncoming vehicle 1
bypasses; hence, the autonomous vehicle makes the decision
to start to overtake the leading vehicle (i.e. q(5) = 2). From
Figures 9-IV and 17, one can see that during the overtak-
ing process, another oncoming vehicle emerges suddenly (e.g.
from the crossing road) at t = 5 s and the autonomous vehi-
cle makes emergency stop (q(10) = −2) and gives way to
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WANG ET AL. 1269

FIGURE 17 A series of screenshots for the overtaking process under the
proposed model predictive control (MPC)-based framework in Scenario IV.

FIGURE 18 A series of screenshots for the overtaking process under
rule-based framework [19] in Scenario IV.

oncoming vehicle 2. After about 1.5 s, the opposite lane is
free and the autonomous vehicle re-starts the overtaking (i.e.
q(12) = 2) and it returns back to the original lane at t = 19
s (i.e. q(38) = 1). The results in this scenario demonstrate
that the proposed framework is able to cope with sudden-
emerging vehicles in the dynamic environment. However,
when we use the existing benchmarked rule-based method
proposed in paper [19] to make a decision for such a dynamic
environment in the high level, it has collision dangerous, as
can be seen in Figure 18 around t = 6 s.

Remark 6. Here, we mainly focus on the high-level decision-
making framework, and we assume that the low level can
perfectly execute the command from the high level. For exam-
ple, in the high level, we set prediction horizon N = 5 and
sampling time Ts = 0.5. By using Matlab command “tic; toc”,
it can be easy to check that the maximum computational time
for calculating the optimal decision at each time step is 0.35
s (except for the computational time of the first time step,
which is 3.1 s due to the initialisation of the algorithm), which
is less than the sampling time of 0.5 s. Hence, the real-time
applicability of the proposed algorithm can be achieved.

5 DISCUSSION

Our simulation results display the autonomous behaviour under
different practical traffic scenarios on two-lane country roads.
Just like a human driver, the autonomous vehicle is content to
slow down to see whether the leading vehicle will accelerate or
not. If the leading vehicle is moving reasonably close to our
desired speed, we may consider the effort of overtaking not worth
it. However, if the leading vehicle’s speed is below tolerance, the
automatic behaviour is to overtake, but only if the opposite lane
is clear of oncoming vehicles; Otherwise, the autonomous vehi-
cle will keep the same speed as the leading vehicle to wait for a
further safe gap to re-start overtaking.

The constraints and cost function given in Section 2 all work
together to generate the above behaviour. This interplay, how-
ever, necessitates that the weighting parameter values must be
chosen holistically. One procedure for parameter selection is to
select a few of the parameters as independent, with others assigned
progressively. For example, inspired by [44] and [58], for a 3.6-
m wide lane with normalised parameters, 𝛾1, 𝛾2 can be chosen
as 167 and 228, respectively, and 𝛾3 can be chosen as 0.016.
𝜂m and 𝜂r can be chosen based on the desired overlap of road
edges and the width of vehicle (see, e.g., Figure 6). For safety
constraints (3), the larger the 𝛽, the more conservative the algo-
rithm. Conversely, the smaller the 𝛽, the more progressive the
algorithm. In addition, for a wider lane, it is allowed to chose
larger Δyi .

It is well-known that determining the appropriate dura-
tion for behaviours poses a significant challenge in long-term
behavioural planning problems. The motion planners employed
in autonomous driving vehicles typically comprise a behaviour
planner and a trajectory planner. The role of the behaviour
planner is to make high-level decisions based on the output
of perception and prediction, which involves extrapolating per-
ception outputs to future timestamps. During the duration of
the planning horizon, typically ranging from 5 to 10 s into the
future (as illustrated in [60, 61]), the trajectory planner leverages
the decisions of the behaviour planner and a coarse trajectory
to generate a smooth trajectory at a lower level. Therefore,
such a challenge is dealt by not only high-level decision-making,
but also the lower-level control. Our paper mainly focuses on
the framework design of high-level decision-making. The sam-
pling time used in the high level is the time period to update a
decision and it is usually greater than that in the low level. Sim-
ilar to human driving, high-level decision-making is relatively
slow in autonomous driving and it is not desirable to change
decisions like overtaking too frequently. If the behaviours of
surrounding vehicles change, the low-level path planning would
automatically adjust the planned path accordingly. That is, the
final trajectory outputted by the trajectory planner might differ
significantly from the one generated by the behaviour planner.
However if necessary, we could change the sampling time. In
our future work, we will tackle this challenge by constructing a
hierarchical framework.
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1270 WANG ET AL.

6 CONCLUSIONS

This paper has presented a high-level decision-making frame-
work designed to enable safe and optimal decision-making
for autonomous overtaking maneuvers in dynamic environ-
ments, particularly on two-lane country roads with oncoming
vehicles. The proposed decision-making process integrates
with the lower-level trajectory planning model to execute
overtaking maneuvers effectively. Ensuring the correctness of
decisions relies on establishing a strong connection between
high-level decision-making and the behaviour and status of
the autonomous vehicle. To achieve this, we abstract the
behaviours of both the autonomous vehicle and surrounding
vehicles, incorporating them into an MPC-based decision-
making framework, which is further enhanced with switching
control methods.

While we have showcased the effectiveness of our proposed
framework through four numerical simulations, including a
comparison to the benchmarked rule-based method, analysing
theoretical properties of the algorithm, such as convergence,
remains challenging. In the future, we intend to employ a more
dependable platform to investigate real-world scenarios and
adapt our proposed method accordingly, ensuring guaranteed
performance. Moreover, theoretical analysis will be conducted.
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