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Abstract—Beam prediction and tracking (BPT) are key tech-
nology for millimeter wave communications. Typical techniques
include Kalman filtering (KF) and Gaussian process (GP) regres-
sion. However, KF requires explicit system dynamics, which is
difficult to obtain for complicated scenarios. In contrast, thanks
to the data-driven manner, GP regression circumvents this chal-
lenging, which, however, suffers from prohibitive computational
complexity. To tackle this issue, we propose a novel hybrid model
and data driven approach, referred to as data-induced intelligent
Kalman filtering (DIIKF). DIIKF learns the system dynamics via
the data-driven manner, which can enjoy the advantages of both
KF and GP while overcoming their drawbacks. In view that the
system dynamics is available, we further propose long-term pred-
iction and design an efficient algorithm. Simulation results show
that our method approaches the optimal oracle solution (in terms
of effective achievable rate), with the linear complexity order.

Index Terms—Beam prediction, beam tracking, hybrid model
and data driven, Gaussian process, intelligent Kalman filtering.

I. INTRODUCTION

Millimeter wave (mmwave) communications, occupying 30-

300 GHz spectrum resources and offering significant under-

utilized bandwidth, have been considered as one of the most

promising solutions to meet high-speed wireless data demands

in the era of 5G and beyond [1]. To estimate the channel state

information for mmwave communications, different method-

ologies have been investigated, among which the most widely

accepted one is beam training and tracking [2]–[4].

In general, the beam training and tracking scheme consists

of two stages, i.e., initial beam alignment and beam tracking.

In the first stage, the optimal beam is often found via hierar-

chical or adaptive search [2]–[4]. As a result, large overhead,

caused by wide-range beam sweeping, is involved in this stage.

To alleviate this issue, beam tracking is invoked in the second

stage, so as to avoid frequent search. Compared to the initial

beam alignment, the number of beams used for tracking should

be as small as possible. If the tracking fails, the search-based

alignment operation is invoked again. It is hoped that both the

frequency of alignment and the number of beams used for trac-

king can be small. Unfortunately, they are conflicting goals.

To mitigate the conflict, the vital means is beam prediction.

Apparently, it is expected that the beam subspace predicted can

be as small as possible, while still containing the real beam.

This design goal constitutes the most important performance

metric, which is referred to as prediction efficiency or success

rate. As a key operation close to the physical environments, the

complexity of beam prediction (including sample complexity

and inference complexity) greatly determines the usability of

an algorithm in practice. Hence, a beam prediction algorithm

having good real-time performance is desired. Till now, var-

ious algorithms have been proposed, which roughly fall into

two categories, i.e., the classical KF based methods [5]–[7] and

the recent machine learning (ML) based methods [8]–[13].

For almost any prediction algorithm, the most crucial step

is to construct an appropriate prediction model. The KF tech-

nique addresses this issue by explicitly building a dynamical

model for the underlying physical system. Specifically, two

stochastic differential equations (SDEs), referred to as state-

space and measurement equations, are established. Then, the

Kalman filter is invoked to recursively predict future states. A

prominent advantage of the KF method is low computational

complexity, which enables real-time applications. In particular,

the scaling of the computational complexity is linear in terms

of the number of sample points O(N), as opposed to the cubic

scaling O(N3) of GP regression. Unfortunately, the dynamics

model is almost always derived manually, which thus limits its

application scope, especially for complicated environments.

In contrast to KF, ML addresses the issue of prediction mod-

eling by employing the data-driven mode. In fact, the salient

ability of ML is that it can automatically extract meaningful

patterns and derive an appropriate model from observed sam-

ples directly. The ML-based beam prediction methods fall into

two categories, i.e., reinforcement learning based algorithms

[11]–[15] and supervised learning based algorithms (including

GP-based algorithms) [16]–[18]. However, the existing ML-

based algorithms suffer from low convergence rate (e.g., the

reinforcement learning based solutions), large sample com-

plexity (e.g., supervised learning based methods) or large com-



putational complexity (e.g., the GP-based designs). Moreover,

most of them can only predict the beam for the most recent

time-slot, which still requires frequent beam sweeping.

To tackle the aforementioned issues, in this paper we pro-

pose a novel hybrid model and data driven approach, referred

to as DIIKF. DIIKF can exploit the advantages of both KF and

ML methods while overcoming their drawbacks. In contrast to

the GP-based algorithms, whose scaling of the computational

complexity is cubic, the scaling of DIIKF is linear. Moreover,

inheriting from KF, DIIKF is also applicable to non-stationary

scenarios. Compared to the conventional KF-based methods,

there is no need to manually derive the state and measurement

equations, because they can be implicitly learned via the data-

driven manner. These features enable real-time applications in

practice. In view that the system dynamics has been available,

we propose to predict the long-term behavior of the underlying

beam process, which can lower the frequency of beam training

and thus further improves system performance.

II. SYSTEM MODEL

Consider a mmwave communication system, which consists

of one base station (BS) equipped with N transmit antennas

and K single-antenna users. Typical scenarios include indoor

or outdoor communications (e.g., a pedestrian walks along a

street), vehicle-to-everything (V2X), and so on. Without loss

of generality, we take the V2X scenario as an example. To

facilitate system implementation, we consider the codebook-

based analog beamforming. The beams are chosen from a

predefined codebook C of size M , i.e., C =
{
f1, · · · , fM

}
.

Due to the sparsity of mmwave channels, an extended Saleh-

Valenzuela geometric model is considered here. The channel

vector between the BS and user k is given by

hk =
√
N/β

Lk∑
l=1

αla(φl, ψl), (1)

where β is the average path-loss, Lk is the number of paths,

and αl is the complex path gain of the l-th path. In Eq.(1), φl
and ψl represent the elevation angle and azimuth angle of the

l-th path, respectively. For simplicity, the case of single-user

and uniform linear array is investigated in this paper, and the

subscript k is omitted next.

The signal received by the user for beam fi ∈ C is given by

yi =
√
PhHfis+ wi, (2)

where P is the transmit power, s with |s| = 1 is pilot symbol,

and wi ∼ CN (0, 1) is received noise. The effective achievable

rate is often used to measure the throughput performance [19]

Reff = (1− TB/TS) log
(
1 + P |hHfi|2

)
, (3)

where TB and TS denote the duration of beam training within

a time-slot and the duration of entire time-slot, respectively.

It can be observed from (3) that to achieve a high through-

put, the time allocated for beam training TB should be as little

as possible, so as to reserve more time for data transmission.

To reduce TB, the key is to design a good prediction algorithm,

which enables to predict a small but correct beam subspace.

Next, we propose DIIKF to realize this nontrivial goal.

III. DATA-INDUCED INTELLIGENT KALMAN FILTERING

Motivated by the fact that KF is inference-efficient (via the

Kalman filter) but modeling-inefficient and GP is modeling-

efficient but inference-inefficient, we propose DIIKF to exploit

the advantages of KF/GP while overcoming their drawbacks.

A. Outline and Theoretical Foundation

The core of DIIKF is to model and learn system dynamics

via the ML techniques (e.g., the GP in this paper) and execute

statistical inference (e.g., prediction) via KF (e.g., the discrete-

time Kalman filter), as shown in Fig. 1. The key components

of DIIKF include data collection, implicit representation of

system dynamics (via GP), explicit representation of system

dynamics (via SDE), and model representation conversion.

mm

Fig. 1. The principle of hybrid model and data driven based DIIKF approach.

To train a ML system or prediction model, we first collect

the training samples. For the BPT problem, the dataset can be

collected online [15]. Then, we choose an appropriate learning

model, and train the model to obtain an implicit representation

of system dynamics. With the implicit representation of system

dynamics available, we further convert the implicit representa-

tion into an explicit representation, i.e., a SDE that describes

system evolution, so as to use the Kalman filter. Now, the first

important issue is what ML model should we choose.

In practice, the system dynamics is almost always charac-

terized via a system of SDEs, which can be written as

dx(t) = f(x)dt+ σ(x)dξ(t), (4)

where x(t) and ξ(t) represent the system state and Brownian

motion, respectively. In (4), f(x) and ξ(t) (modulated by the

volatility term σ(x)) characterize the deterministic part and

stochastic part of system evolution, respectively. It seems that

we can obtain the system dynamics via estimating f(x) and

σ(x). However, it is a difficult task, because the data samples

for f(x, t) and σ(x) are unavailable. To tackle this issue, we

need the following theorem [20]. Note that a brief introduction

of GP is provided in Appendix A.

Theorem 1. There exist a Borel measurable function F and
a basic GP (e.g., a GP with the SE kernel kSE) such that the
probability measure of the GP (with transform F (·) as input)
coincides with the probability measure of the SDE in (4).



Theorem 1 shows that a “simple” ML model that incorpo-

rates the neural network and basic GP can completely charac-

terize the probabilistic properties of dynamical system (4).

Remark 3.1 Theorem 1, in fact, constitutes the theoretical

foundation of the DIIKF approach. First, as a bridge, it links

two different branches of system modeling methodologies. In

particular, it provides an efficient ML model/structure for the

dynamical system, which avoids heuristic (and even) random

selection of the prediction model. Moreover, it guarantees that

the ML model does not cause any systematic error.

B. Data-Driven Implicit System Dynamics Learning

Based on Theorem 1, the ML model consists of two parts,

i.e., a nonlinear transform and a basic GP. As an example,

the GP with the SE kernel kSE is chosen as the basic GP. As

for the nonlinear transform, it is represented by a deep neural

network with parameters (i.e., weights and biases) collected

into ΘT. The basic GP is denoted by kSE(·, ·|ΘB), where ΘB

collects the parameters of the GP kernel. Let Θ = {ΘT,ΘB}.

Now, the key problem is to learn the implicit representation

of system dynamics from a dataset D by optimizing Θ.

In contrast to most ML applications, the dataset D contains

m sub-datasets S1, · · · , Sm of m tasks, i.e., D = {S1, · · · ,
Sm}. For example, each Si corresponds to the beam trajectory

of a vehicle (e.g., the i-th vehicle), and Si takes the form

Si = {(t1,a1), (t2,a2), · · · , (tni
,ani

)}, (5)

where ti is the sampling time and ai is the beam direction.

For the uniform linear array, ai is simplified as ai = ψti . We

highlight that since the learning of implicit system dynamics

belongs to multi-task learning category, it is problematic to

extend the single-task learning methods directly to the multi-

task case, because the data distributions (in essence, the system

parameters) of different sub-datasets are different.

To tackle this issue, we reinterpret the generation of D from

the perspective of stochastic process and hierarchical Bayes

model, in view the fact that these different sub-datasets share

many features, e.g., a similar trend. Specifically, {Si} can be

regarded as different realizations of a stochastic process, and

the stochastic process is characterized by a set of parameters,

which describe the similarities of different realizations.

1) Reinterpretation via Stochastic Process: Mathematical-

ly, each Si can be regarded as the discrete sampling version of

a continuous-time beam direction fi(t), while fi(t) is thought

of as sampling from the underlying physical system.

2) Hierarchical Bayes Modeling: Instead of fixed values,

a prior distribution, denoted by P(Θ), is imposed on Θ. For

simplicity, Θ is assumed to be distributed as N (0, σ2
ΘI), i.e.,

P = N (0, σ2
ΘI). Given D, it is sufficient to update the prior

P(Θ) into the posterior Q(Θ), so as to match D.

Note that the update of Θ requires an optimization criterion.

A natural criterion is that the obtained posterior can maximize

the generalization performance, or equivalently, minimize the

transfer-error. Based on this optimization criterion, we derive

an effective posterior in the following theorem [20].

Theorem 2. With the aim of minimizing the generalization or
transfer error, an efficient posterior Q�(Θ) is given by

Q�(Θ)

=
P(Θ) exp

((
1 +

∑m
i=1 n

−1
i

)−1 ∑m
i=1

1
ni
Z(Si,Θ)

)

EΘ∼P
[
exp

((
1 +

∑m
i=1 n

−1
i

)−1 ∑m
i=1

1
ni
Z(Si,Θ)

)] ,

where Z(Si,Θ) denotes the marginal log-likelihood for Si

and Θ. In particular, for GP, Z(Si,Θ) is calculated as

Z(Si,Θ) =− 1

2
yT
i (Ci + σ2

i I)
−1yi−

1

2
log det(Ci + σ2

i I)−
ni
2

log 2π. (6)

See Appendix A for the definitions of matrix Ci and vector yi.

To facilitate the use of Kalman filter and reduce complexity,

a point estimate of Θ is preferable. The optimal point estimate

is the MAP (maximum a posterior) estimate, i.e.,

Θ� = argmax
Θ

Q�(Θ). (7)

Equivalently, we can also obtain the optimal estimate Θ� more

simply by maximizing the numerator of Q�(Θ), i.e.,

Θ� = argmax
Θ

lnP(Θ) +

(
1 +

m∑
i=1

1

n i

)−1 m∑
i=1

Z(Si,Θ)

ni
.

Once Θ� is obtained, the implicit system dynamics has been

determined, based on which Bayesian inference can be made

when faced with new tasks. But, the inference is based on GP

regression, which leads to large computational complexity.

C. SDE Representation and Efficient Inference

To enable efficient inference, explicit system dynamics, i.e.,

the SDE describing system state evolution, is required. For

simplicity, we consider the one-dimensional case and denote

the transform of the neural network by z = F (t). We utilize

the spectral factorization method [21] to convert the basic GP

model obtained from Θ� into an SDE representation.

1) Step 1: By computing the Fourier transform of the basic

kernel (e.g., kSE), we obtain the power spectral density S(ω).
2) Step 2: S(ω) can be written (or approximated via Taylor

series expansion) as a rational function taking the form

S(ω) =
1

pn(ω2)
, (8)

where pn(·) represents a polynomial of nth order.

3) Step 3: A stable rational transfer function H(iω) can be

found, which takes the form

H(iω) =
σ0

(iω)n + an−1(iω)n−1 + · · ·+ a1(iω) + a0
. (9)

Then, S(ω) can be written as S(ω) = σ2
0H(iω)H(−iω). 1

1The procedure to find the transfer function is called spectral factorization,
which consists of two steps. First, the roots (always appearing in pairs) of the
denominator are computed. Then, the denominator polynomial of H(iω) can
be constructed from the positive-imaginary-part roots only.



With the transfer function H(jω) available, we can prove

that the desired SDE can be written as

dnu(z)

dzn
+ · · ·+ a1

du(z)

dz
+ a0u(z) = σ0

dξ(z)

dz
.

Let x(z) = (u(z), du(z)/dz, · · · , dn−1u(z)/dzn−1)T and

v = (0, · · · , 0, σ0)T. The SDE can be rewritten as

dx(z) = Cx(z)dz + vdξ(z), (10)

where matrix C is given by

C =

⎛
⎜⎜⎜⎝

0 1
. . .

. . .

0 1
−a0 −a1 · · · −an−1

⎞
⎟⎟⎟⎠ .

Let b = [1, 0, · · · , 0]T whose dimension matches with x(t).
Then, the measurement equation can be written as

b(t) = bTx(z(t)) + η(t),

where η(t) denotes the measurement noise.

In practice, only discrete-time observations can be obtained.

Let tk and ek with ek ∼ N (0, σ2
m) (k = 1, 2, · · · ) denote the

sampling time and observation noise, respectively. Under the

assumption that the system parameters keep constant within

each time-slot, we can obtain the discrete-time model:

x(zk+1) = (I+CΔzk)x(zk) + qk (11)

b(tk) = bTx(zk) + ek, (12)

where qk stemming from the approximation is assumed to

be Gaussian. Under the assumption that Δzk = F (tk+1) −
F (tk) (∀ k) is small, the classical discrete-time KF algorithm

can be invoked, with an appropriate initial condition x(z0) ∼
N (x0,P0) [20]. For clarity, the complete procedure of the

proposed DIIKF approach is summarized in Algorithm 1.

Algorithm 1: Data-Induced Intelligent Kalman Filtering

1: input: training datasets D = {S1,S2, · · · ,Sm}
2: initialize the neural network F with ΘT and GP with Θk

3: repeat
(a) sample a small batch of sub-datasets from D
(b) compute training loss with the sampled data

(c) update {ΘT,Θk} the gradient descent method

until convergence condition is met =⇒ Θ�

4: convert GP representation into SDE representation

5: generate: nonlinear transform F and state-space equations

6: predict online and recursively: (1) tk is fed into into F ;

(2) predict beam direction via KL with F (tk) as input

IV. LOW-FREQUENCY BEAM TRAINING VIA LONG-TERM

PREDICTION

In the classical BPT scheme, beam measurement (i.e., local

beam sweeping) is executed in each time-slot, as shown in

Fig. 2-(1). The high frequency of beam measurement degrades

system performance of interest (e.g., effective achievable rate).

In view that the SDE characterizing the variation tendency of

the underlying physical system is available, we next propose

to predict its long-term variation behavior. As shown in Fig.

2-(2), low frequency of beam measurement is involved in the

new BPT scheme, which further improves the performance.

k+ k+ k+

k+ k+ k+

Fig. 2. The comparison of the classical beam prediction (and training) scheme
and the novel long-term beam prediction (and training) scheme.

Note that because F (·) is almost always a nonlinear trans-

form and Δt may span across multiple time-slots in the long-

term BPT scheme. As a result, the discretization in (11) and

(12) could be problematic in this case. To tackle this issue,

we propose an efficient discretization method below.

Lemma 1 ( [20]). The SDE in (10) is in distribution equivalent
to the following discrete-time dynamical system 2

x(zk+1) = Tkx(zk) + qk, qk ∼ N (0,Πk), (13)

where Tk and Πk are respectively given by

Tk =exp(C(zk+1 − zk))

Πk =

∫ zk+1

zk

exp(C(zk+1 − s))vvT exp(C(zk+1 − s))Tds.

With Lemma 1 available, we can characterize the predictive

distribution of beam direction b(t). Without loss of generality,

we focus on an arbitrary but fixed time tk and predict beam

b(t) for t > tk. The first-order and second-order statistics of

the predictive distribution are presented in Theorem 3 [20].

Theorem 3. The predictive distribution of b(t) is given by

b(t) ∼ N (m(t), a(t)), (t > tk), (14)

where m(t) = bTT(F (tk), F (t))x(F (tk)) and a(t) = σ2
m +

bTΠ(F (tk), F (t))b, with T(zk, z) and Π(zk, z) given by

T(zk, z) = exp(C(z − zk))

Π(zk, z) =

∫ z

zk

exp(C(z − s))vvT exp(C(z − s))Tds.

The variance a(t) is a monotone increasing function, which

implies that the predicted beam direction becomes more inac-

curate as t increases. If a(t) is relatively large (e.g., it is greater

than a predefined threshold value), we shall redetermine the

optimal beam. For example, we can find out the optimal beam

via the hierarchical search [2] or sweep the beam interval

(m(t)− c
√
a(t),m(t) + c

√
a(t)), where c > 0 is a constant.

2The equivalence means that the probability distributions of the continuous-
time SDE and the discrete-time system coincide at the sampling points {tk}.



V. NUMERICAL RESULTS

In this section, simulation results are provided to demon-

strate the performance of the proposed algorithms. Without

loss of generality, the uniform linear array is considered. Two

cases of antenna array (N = 64 and N = 128) are chosen to

evaluate different algorithms. The size of codebook C satisfies

M = N (with accuracy 1/N ). For all experiments, the channel

model in (1) includes one LOS path and three NLOS paths.

The angles of the NLOS paths are distributed uniformly in

[0, 2π). The average power ratio of the LOS path gain and

each NLOS path gain is set to 10dB. A uniform distribution

with value domain [a, b] is denoted by U(a, b). The simulation

setting and key system parameters are described below.

Two road conditions are chosen in this paper to evaluate

different algorithms, where one is a straight road (Road 1)

and the other one is a cycloid-like road (Road 2). The length

of each time-slot (i.e., transmission time interval) is set to 20

milliseconds. The width of Road 1 is 20m, while the width of

Road 2 is 15m. It is allowed to change lane in Road 1, with

probability 1/10. The initial velocity (i.e., the velocity when

the vehicle enters the coverage area) in Road 1 is distributed

uniformly as U(54, 108) (km/h), while the initial velocity in

Road 2 is distributed as U(54, 80) (km/h). With probability

0.1, the driver speeds up (or slows down) the velocity to the

maximal (or minimal) speed in each road.

We compare our methods to the classical hierarchical search

(HS) based method [2] and the state-of-the-art ML algorithms

(i.e., the stochastic bandit learning (SBL) based algorithm [14]

and direct upper confidence bound (DUCB) based algorithm).

The oracle aided algorithm is served as a benchmark, which

can always find out the optimal beam with training overhead

zero. For convenience, the BPT algorithm incorporating only

implicit system dynamics learning along with GP inference,

BPT algorithm with DIIKF only (i.e., Algorithm 1) and BPT

solution incorporating both DIIKF and long-term prediction

are named as ISDL+GPI, DIIKF and DIIKF+LTP, respectively.

The average effective achievable rate (AEAR) and probability

of successful alignment (PSA) are chosen as the performance

metrics to evaluate different BPT algorithms.
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Fig. 3. The AEAR and PSA performance of different algorithms - N = 64.

Fig. 3 demonstrates the AEAR and PSA performance. It is

observed that the algorithms proposed in this paper outperform

the other BPT algorithms. In particular, DIIKF+LTP can even

approach the oracle-aided BPT solution. The reason for this

is that the underlying system dynamics is efficiently learned,

which can effectively guide the long-term prediction. As a re-

sult, the overhead of beam training can be greatly reduced, and

meanwhile the optimal beams can still be correctly tracked. It

is also observed that DUCB achieves the worst performance

in terms of both AEAR and PSA. The reason for this is that

it is mainly applicable for the slow-varying environment.
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Fig. 4. The run-time and long-time prediction performance - N = 128.

An appealing advantage of our approach is that it inherits

the property of low computational complexity from the classi-

cal KF technique. Thanks to the linear complexity order, it is

not surprising that the curves (in terms of accumulative run-

time) of DIIKF and DIIKF+LTP increase very slow, as shown

in Fig. 4-(a). In contrast, due to the cubic complexity order, the

time-resource required by ISDL+GPI increases remarkably.

Still thanks to the KF characteristics, DIIKF can well adapt

to the non-stationary environments, which accounts for a little

bit better performance than ISDL+GPI. Fig. 4-(b) intuitively

demonstrates the long-term performance of DIIKF+LTP. Since

a prediction toward longer future introduces larger uncertainty,

the PSA performance accordingly decreases.

VI. CONCLUSION

To exploit the advantages of both KF and ML, we proposed

a novel hybrid model and data driven approach, referred to as

DIIKF. First, we theoretically derived an efficient learning or

model structure, which lays the foundation for DIIKF. Then,

we proposed an effective method to learn the implicit system

dynamics. To avoid frequent beam training, we also proposed

an efficient long-term prediction based BPT algorithm.

APPENDIX A

GAUSSIAN PROCESS REGRESSION

A stochastic process f(x) is referred to as a GP if and only

if for any finite number of points x1, · · · ,xn (∀ i,xi ∈ R
d),

the joint probability density function p(f(x1), · · · , f(xn)) is

Gaussian [22]. A GP is completely characterized by the mean

function m(x) and covariance function k(x,x′), which are

similar to the mean and covariance for a Gaussian vector. The

mean and covariance functions are respectively defined as

m(x) =E[f(x)],

k(x,x′) =E
[(
f(x)−m(x)

)(
f(x′)−m(x′)

)]
.

(15)



The mean function is assumed to be zero next, i.e., m(x) = 0.

GP regression is to predict or infer f(x�) for an unseen x∗
based on a set of observations S = {(xi, yi) | yi = f(xi) +
wi, wi ∼ N (0, σ2), i = 1, · · · , n}, where xi ∈ X ⊂ R

d and

y ∈ R denote input vector and output label, respectively. In

contrast to many parametric regression methods, GP regression

is based on Bayesian inference, which generates a probability

distribution, rather than only a point estimate for the quantity

of interest. Given S above, we can next derive the conditional

or predictive distribution for f∗ = f(x∗) at x∗ [22].

The observed points are stacked into yo = (y1, · · · , yn)T.

Based on the Gaussian assumption, the joint probability dis-

tribution between yo and y∗ = f(x∗) + w∗ is given by[
yo

y∗

]
∼ N

(
0,

(
Coo + σ2I c∗o

cT
∗o c∗∗

))
, (16)

where the matrices/vectors are formed as [Coo]ij = k(xi,xj),
[c∗o]j = k(x∗,xj) and c∗∗ = k(x∗,x∗). Then, the conditional

distribution of f∗ = f(x∗) at x∗ is given by

p(f∗|S,x∗) ∼ N (
μ(x∗), c(x∗)

)
(17)

μ(x∗) = cT
∗o(Coo + σ2I)−1yo (18)

c(x∗) = c∗∗ − cT
∗o(Coo + σ2I)−1c∗o. (19)

The GP kernel is the crucial ingredient for a GP predictor,

because it encodes the prior knowledge about the function to

be learned. The classical squared exponential (SE) kernel is

chosen in this paper, which takes the form

kSE(x,x
′) = σ2

f exp

(
− 1

2l2
‖x− x′‖2

)
, (20)

where σ2
f and l represent the signal variance and length-scale,

respectively. The physical meaning of parameter l is that if

the GP varies rapidly, the length-scale l should be shorter [22].

Hence, the degree of GP variation can be achieved by adjusting

the parameters. It is referred to [22] for more details.
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