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Abstract—By sharing the same hardware platform, spectral
resource as well as transmit waveform, dual-functional radar-
communication (DFRC) based integrated sensing and communi-
cation (ISAC) framework has been envisioned as a key technology
for future wireless networks. Most DFRC beamforming works
focus on block-level precoding, which fails to exploit constructive
interference. To tackle this issue, we propose symbol-level joint
radar sensing and communication beamforming algorithms in
this paper. First, we formulate the problem of joint radar-comm-
unication beamforming based on symbol-level precoding (SLP) by
incorporating constructive interference into SLP, so as to improve
the energy efficiency. To address the formulated problem, we
tailor a highly parallelizable iterative algorithm, which is shown
to converge to stationary points. To achieve better performance,
we further propose an efficient recursive optimization algorithm.
In particular, the recursive algorithm monotonously improves the
performance of interest as the recursive procedure proceeds.

Index Terms—Integrated sensing and communication, symbol-
level precoding, parallel optimization, recursive design.

I. INTRODUCTION

The integrated sensing and communication (ISAC) technol-

ogy has attracted considerable attention recently, because it

can improve spectral and/or energy efficiency, reduce hardware

cost and power consumption [1], [2]. The current DFRC

systems can be classified into three categories, i.e., the radar-

centric designs [3]–[5], communication-centric designs [6]–[8]

and joint designs [9]–[11]. For the first category, information

signalling is modulated in a known radar waveform. Although

performance loss in terms of radar sensing is negligible, since

the radar signalling remains largely unchanged, the data rate is

very limited. For the communication-centric mode, the design

priority focuses on communication, and thus the radar sensing

is a secondary function added on to a communication system.

The main approach is to exploit communication waveform to

extract radar information through target echoes. For this design

mode, a possible drawback is that the sensing performance is

scenario-dependent and difficult-to-tune.

Compared with the first two categories, the joint design or

optimization mode is the most flexible, which can facilitate

to balance different design requirements from communication

and sensing and often offers a better trade-off between the two

functions. Among various research problems, joint waveform

optimization (WO) is pivotal to pursue a desired performance

tradeoff by adopting appropriate performance metrics [9].

Most desired waveforms can be obtained by optimizing spatial

precoders, e.g., waveform (or beam-pattern) similarity based

WO [9], [10] or mutual information based WO [12], [13].

In contrast to most communication-only precoding or beam-

forming designs, space-time processing is indispensable for an

ISAC task, so as to accomplish the radar sensing task.

It is well-known that one of the most primary motivations

of ISAC is to improve the energy efficiency [14]. However,

for most DFRC designs, the block-level precoding scheme

is chosen to optimize a communication performance metric,

which fails to fully exploit multi-user interference. An efficient

scheme to exploit multi-user interference is symbol-level pre-

coding (SLP) [15], where the interference is exploited from

an instantaneous point of view. In particular, the concept of

constructive interference (CI) was exploited in [16]–[19] to

improve system performance. Notably, as the first work on

optimization based CI precoding, a low-complexity vector pre-

coding scheme was proposed in [16] for the limited feedback

downlink multi-user multi-input single-output (MISO) system.

Despite the advantages of SLP above, only very limited works

have incorporated SLP into DFRC designs [20], [21]. Besides,

the high computational complexity is seldom considered.

In this paper, we propose efficient symbol-level joint radar

sensing and communication beamforming algorithms. First, to

exploit the multi-user interference and thus improve the energy

efficiency of the DFRC system, we formulate the problem

of joint radar-communication beamforming optimization based

on SLP and, particularly, incorporate the CI constraints into

the problem of interest. To address the formulated non-convex



problem, we propose an efficient parallelizable iterative algo-

rithm, which can exploit latent separability of the optimization

problem. We also show that the iterative algorithm converges

to the stationary points. To exploit the space-time processing

feature, we propose a recursive design idea for the SLP-based

DFRC beamforming problem, and further propose an efficient

recursive algorithm and reveal useful insights. In particular, we

show that the recursive algorithm can monotonously improve

the performance as the recursive procedure proceeds.

II. SYSTEM MODEL

Consider a MIMO DFRC base station (BS) equipped with

NT transmit antennas and NR receive antennas. To avoid

information loss of sensed targets for a radar task, it is often

required NT < NR. Meanwhile, the BS serves U single-

antenna users (UEs), denoted by U = {1, · · · , U}. The

channel vector between the BS and each UE u ∈ U is denoted

by hu ∈ C
NT×1. Let X ∈ C

NT×L be a DFRC signal matrix,

where L is the length of radar pulse or communication frame.

The matrix X has dual identities. On the one hand, from the

perspective of communication, xij (i.e., the (i, j)-th entry of

X) represents the discrete signal sample transmitted at antenna

i and time-slot j. On the other hand, from the view of radar,

xij is the j-th fast-time snapshot transmitted at antenna i.
When X is transmitted by the BS, the signals received by

the U UEs can be compactly written by

YC = HX+ ZC, (1)

where ZC ∈ C
U×L is the received noise matrix with each col-

umn distributed as CN (0, σ2
CI), and H = [h1,h2, · · · ,hU ]

H

collects all channel vectors of the UEs. Note that the transmit-

ted matrix X is a nonlinear function of transmitted information

symbols, i.e., X = X(S), where S = [s1, s2, · · · , sL] ∈ C
U×L

collects intended information symbols.

When X is transmitted to sense a target, the reflected echo

signal matrix at the receiver of the BS can be written as

YR = GX+ ZR, (2)

where, similarly, ZR denotes the received noise matrix with

each column distributed as CN (0, σ2
RI). G ∈ C

NR×NT in (2)

denotes the target response matrix and can be expressed as

G =

V∑
i=1

αib(θi)a
H(θi), (3)

where b(·) and a(·) denote the array response vectors.

Without loss of generality, the PSK modulation mode (with

constellation D of size D) is considered in this paper. Never-

theless the developed algorithms can be trivially extended to

other modulation modes. The (u, l)-th element of S is denoted

by su,l. Let su,l = ejξu,l ∈ D be the intended PSK information

symbol (with ξu,l the argument of su,l). The signal received

at UE u in time-slot l can be written as

yu,l = hH
uxl + zu,l, (4)

where xl denotes the l-th column of X.

To improve the energy efficiency, the idea of CI is exploited.

For the PSK modulation, the key of the CI design principle

can be captured by the following constraint (∀u, l) [22]∣∣Im(hH
uxle

−jξu,l)
∣∣ ≤ (

Re(hH
uxle

−jξu,l)− γu
)
tan(π/D),

where, as an SNR metric, γu measures the quality of received

signal. Note that the above CI constraint enforces that the CI

pushes received signals away from decision boundaries of the

constellation, therefore improving the received SNR without

the need to increase the transmit power [22].

Similar to [23], we choose the Cramér-Rao bound (CRB),

which measures the performance of an unbiased estimator, as

the performance metric of the radar target estimation. For the

considered scenario, the CRB of G is calculated as [23]

CRB(G) = σ2
RNR/L · tr((XXH)−1

)
. (5)

The design goal in this paper is to minimize the CRB subject to

the constraints of communication quality and transmit power,

which can be formulated as

min
X

tr
(
(XXH)−1

)
s.t.

∣∣Im(hH
uxle

−jξu,l)
∣∣ ≤(

Re(hH
uxle

−jξu,l)− γu
)
Cπ, (∀u, l)

‖xl‖2 ≤ p, (∀ l),

(6)

where p denotes the maximum transmit power for each symbol

vector, and Cπ = tan(π/D) is introduced for simplicity.

Note that problem (6) has a non-convex objective function

and consists of a large number of CI constraints, which is chal-

lenging to tackle. In particular, the computational complexity

of optimizing X is often prohibitively high, which makes it

challenging to implement an algorithm real-time. Moreover,

as the size of X increases (e.g., when L increases), this issue

becomes more pronounced. Next, we tackle these issues by

designing efficient parallelizable and recursive algorithms.

III. PARALLELIZABLE BEAMFORMING DESIGN

In this section, we propose an efficient parallelizable algo-

rithm by exploiting the separability of CI constraints. Appar-

ently, the non-convexity of the objective function of problem

(6) prevents efficient solving. To tackle this issue, we choose

the first-order approximation method. To this end, we need to

derive the (complex) conjugate gradient of tr
(
(XXH)−1

)
. Let

f(X) = tr
(
(XXH)−1

)
. The (complex) conjugate gradient of

f(X), denoted by ∂f/∂ZH, can be calculated as [24]

∂f/∂ZH = (XXH)−2X. (7)

Let Xn represent the n-th iteration of X. It can be verified

that the first-order problem to obtain Xn+1 is given by [24]

min
X

− Re
(
tr((XnX

H
n)

−2XnX
H)
)

s.t.
∣∣Im(hH

uxle
−jξu,l)

∣∣ ≤(
Re(hH

uxle
−jξu,l)− γu

)
Cπ, (∀u, l)

‖xl‖2 ≤ p, (∀ l).

(8)



To accelerate convergence, a quadratic term is added into the

approximate objective function. Let ρn > 0 denote a penalty

parameter. The problem in (8) can be rewritten as

min
X

− Re
(
tr((XnX

H
n)

−2XnX
H)
)
+

ρn
2
‖X−Xn‖2F

s.t.
∣∣Im(hH

uxle
−jξu,l)

∣∣ ≤(
Re(hH

uxle
−jξu,l)− γu

)
Cπ, (∀u, l)

‖xl‖2 ≤ p, (∀ l).

(9)

The rationale for the acceleration is that the objective function

becomes strongly convex, which yields better convergence.
Although problem (9) can be solved directly, it can be, in

fact, handled more efficiently. For the sake of convenience, we

define matrix Cn and explicitly write Xn as

Cn =(XnX
H
n)

−2Xn = [c1, c2, · · · , cL]
Xn =[x1,n,x2,n, · · · ,xL,n].

In view that problem (9) is separable, it is sufficient to solve L
independent sub-problems. Specifically, the l-th sub-problem

(with respect to xl) is given by

min
xl

− Re
(
xH
l cl

)
+

ρn
2
‖xl − xl,n‖2

s.t.
∣∣Im(hH

uxle
−jξu,l)

∣∣ ≤(
Re(hH

uxle
−jξu,l)− γu

)
Cπ, (∀u)

‖xl‖2 ≤ p,

(10)

where xl denotes the l-th column of matrix X.
Compared to problem (6), whose optimization variable is a

matrix, the optimization variable of each problem in (10) is a

vector, with much reduced size. Hence, problem (10) can be

solved much more efficiently. This advantage becomes more

pronounced, as L increases. Moreover, because the separability

of CI constraints is exploited, the derived algorithm can be

implemented in parallel, which is appealing in practice.

Algorithm 1: Optimization Algorithm for Problem (6)

1: initialize: optimization variable X0 and parameter {ρn}
2: repeat

(a) construct convex optimization problem (9)

(b) solve the constructed optimization problem

3: until some convergence criterion is met

4: output: (locally optimal) transmit matrix X�

Since problem (9) (or (10)) is convex, it can be efficiently

solved via a convex optimization toolbox (e.g., CVXOPT

or CVXPY). For clarity, the complete iterative procedure is

summarized in Algorithm 1. A typical convergence criterion

can be ‖Xn−Xn−1‖ ≤ ε, where ε > 0 is a small real number.

The iterative algorithm above converges to a stationary point,

which is stated in the following theorem.

Theorem 1. Let {Xn} be a sequence generated by Algorithm
1. Then, every limit point of {Xn} is a stationary point.

Proof: For the sake of convenience, the feasible set of

problem (9) is denoted by F , i.e.,

F =
{
X

∣∣ ‖xl‖2 ≤p, (∀ l), ∣∣Im(hH
uxle

−jξu,l)
∣∣ ≤(

Re(hH
uxle

−jξu,l)− γu
)
Cπ, (∀u, l)

}
.

Then, problem (9) can be equivalently written as

min
X

‖X−Xn −Cn/ρn‖2F s.t. X ∈ F . (11)

The optimal solution Xn+1 of problem (11) can be expressed

as Xn+1 = ProjF (Xn + Cn/ρn), where ProjF (·) denotes

the projection of a point onto set F . The convergence of the

iteration format above can be obtained by invoking Proposition

2.3.3 in [25]. It is referred to [24] for more details.

IV. RECURSIVE BEAMFORMING DESIGN

In the previous algorithm, a matrix variable is optimized

each time. In this section, we propose a recursive algorithm,

where a vector variable is optimized each time. The key of the

recursive method consists of two core operations. The first one

is to provide an initial solution, based on which the recursive

algorithm can run. The second one is to design an efficient

algorithm to optimize xl based on x1, · · · ,xl−1.

For ease of understanding, we make the following assump-

tion, i.e., each xl (transmitted in time-slot l) is optimized in

time-slot l−1. Let l denote the current time-slot. Then, X can

be decomposed as X = [X1:l,Xl+1:], and sub-matrix Xl+1:

corresponds to the “future waveform” and “future transmitted

information symbols”. Hence, up to time-slot l, we only need

to consider X1:l, and the problem can be reformulated as

min
X1:l

tr
(
(X1:lX

H
1:l)

−1
)

s.t.
∣∣Im(hH

uxie
−jξu,i)

∣∣ ≤ (
Re(hH

uxie
−jξu,i)− γu

)
Cπ,

(i = 1, · · · , l, ∀u)
‖xi‖2 ≤ p, (i = 1, · · · , l).

As a recursive algorithm, when optimizing X1:l, sub-matrix

X1:l−1 has already been available. Hence, in time-slot l − 1,

the task is to optimize vector xl given sub-matrix X1:l−1, i.e.,

min
xl

tr
(
(X1:lX

H
1:l)

−1
)

s.t.
∣∣Im(hH

uxle
−jξu,l)

∣∣ ≤(
Re(hH

uxle
−jξu,l)− γu

)
Cπ, (∀u)

‖xl‖2 ≤ p.

(12)

By leveraging the well-known matrix inversion lemma, the

objective function in problem (12) can be expressed as(
X1:lX

H
1:l

)−1
=

(
X1:l−1X

H
1:l−1 + xlx

H
l

)−1

=
(
X1:l−1X

H
1:l−1

)−1−(
X1:l−1X

H
1:l−1

)−1
xlx

H
l

(
X1:l−1X

H
1:l−1

)−1

1 + xH
l

(
X1:l−1XH

1:l−1

)−1
xl

.

Let Al−1 =
(
X1:l−1X

H
1:l−1

)−1
. The optimization problem in

(12) can be equivalently written as

max
xl

tr

(
Al−1xlx

H
l Al−1

1 + xH
l Al−1xl

)
=

xH
l A

2
l−1xl

1 + xH
l Al−1xl

s.t.
∣∣Im(hH

uxle
−jξu,l)

∣∣ ≤(
Re(hH

uxle
−jξu,l)− γu

)
Cπ, (∀u)

‖xl‖2 ≤ p.

(13)



Remark 4.1 Compared to problem (6), whose optimization

variable is a matrix, the optimization variable of problem (13)

is only a vector. Moreover, the number of constraints in (13) is

about 1/L of that of problem (6). As a result, the complexity

of problem (13) is much lower than that of problem (6).

Although problem (13) involves only a vector optimization

variable xl, it cannot be solved directly. Next, we propose an

efficient algorithm to address this problem. By introducing a

variable t, problem (13) can be equivalently written as

max
xl,t

t

s.t. t−1xH
l A

2
l−1xl ≥ 1 + xH

l Al−1xl∣∣Im(hH
uxle

−jξu,l)
∣∣ ≤(

Re(hH
uxle

−jξu,l)− γu
)
Cπ, (∀u)

‖xl‖2 ≤ p.

(14)

The successive convex approximation (SCA) technique can

be used to solve problem (14). Let xl,n and tn denote the n-th

iterations of xl and t, respectively. The (n + 1)-th iterations

can be obtained by solving the following convex problem

max
xl,t

t

s.t.
2Re

(
xH
l,nA

2
l−1xl

)
tn

− xH
l,nA

2
l−1xl,n

t2n
t

≥ 1 + xH
l Al−1xl∣∣Im(hH

uxle
−jξu,l)

∣∣ ≤(
Re(hH

uxle
−jξu,l)− γu

)
Cπ, (∀u)

‖xl‖2 ≤ p.

(15)

The iterative procedure to solve problem (13) is summarized

in Algorithm 2, which also converges to a stationary point.

Algorithm 2: Iterative Algorithm for Problem (13) or (14)

1: initialize: optimization variables xl,0 and t0; let n = 0

2: repeat
(a) construct convex optimization problem (15)

(b) solve constructed problem to update xl ⇒ xl,n+1

(c) check convergence criterion and let n ← n+ 1
3: until some convergence criterion is met

4: output: optimal solution x�
l

For completeness, the complete recursive procedure for one

communication frame is provided in Algorithm 3. To start the

recursive algorithm, an initial solution (e.g., a sub-matrix of

X) is required, which can be obtained by solving

min
X∈CNT×K

tr
(
(XXH)−1

)
s.t.

∣∣Im(hH
uxle

−jξu,l)
∣∣ ≤ (

Re(hH
uxle

−jξu,l)− γu
)
Cπ,

(l = 1, · · · ,K, ∀u)
‖xl‖2 ≤ p, (l = 1, · · · ,K).

Since the size of X above is NT ×K with NT ≤ K � L, the

complexity of solving the problem above is small.

Finally, we highlight an important property of the proposed

recursive algorithm, i.e., the monotonicity in terms of recursive

procedure, which is stated in the following theorem.

Algorithm 3: Recursive Beamforming Procedure (L � NT)

1: input: K - dimension of initial sub-matrix; {hu} - CSI

2: initialize:
(a) find an initial sub-matrix X1:K and compute AK

(b) set counter n ← K
3: repeat

(a) construct optimization problem (13) with l = n+ 1
(b) solve constructed problem via Algorithm 2 ⇒

precoded signal vector x�
l for time-slot l

(c) update counter n ← n+ 1
until n ≥ L

Theorem 2. Under the assumption that the problem used to
obtain the initial solution is feasible, the recursive algorithm
strictly monotonously decreases the objective function value
as the recursive procedure proceeds (or index l increases).

Proof: See Appendix A.

Theorem 2 shows that the proposed recursive algorithm will

not degenerate system performance. Hence, the oscillation or

degeneration phenomenon (typically, due to iterations) existing

widely in many algorithms will not occur in our algorithm.

V. SIMULATION RESULTS

In this section, simulation results are provided to demon-

strate the performance of the proposed algorithms. The dis-

tribution of receiving noise of either radar or communication

is fixed to CN (0, I). Similar to [23], the channel vector of

each UE u is distributed as hu ∼ CN (0, I), and the uniform

linear array is considered here. The mean square error (MSE)
1 and symbol error rate (SER) are chosen as the performance

metrics. We compare our algorithms against the most relevant

benchmark in [23], in which the CRB is similarly minimized

but subject to the classical block-level precoding (BLP) mode.

For the sake of convenience, the parallelizable algorithm (i.e.,

Algorithm 1) and recursive algorithm (i.e., Algorithm 3) are

named as Paral-SLP and Recur-SLP, respectively.
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Fig. 1. The monotonicity of the recursive beamforming design (Algorithm
3): U = 6, L = 64, NT = 16 and NR = 20.

First, we confirm the monotonicity of the proposed recursive

algorithm. It is seen from Fig. 1 that as the recursive process

1Similar to [23], we exclusively consider the case that the entries of the
target response matrix G in (3) are independently and identically distributed as
CN (0, 1). It corresponds to a Swerling 1 or Swerling 2 target with Gaussian
distributed complex amplitude. In this case, the CRB is equal to the MSE.



proceeds (i.e., l increases), the MSE decreases monotonously

and strictly, which coincides with our theoretical analysis. It

is also observed that the MSE decreases fast at the beginning

part of the recursive process (e.g., when l varies from 18 to

36), which implies that good radar sensing performance can

be achieved even with a small amount of resources.
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Fig. 2. Target estimation MSE of different beamforming algorithms: U = 4,
L = 32, NR = 24 and γu = 8dB.

Next, we evaluate different beamforming algorithms from

the perspective of MSE and SER. The target estimation MSE

of different algorithms is shown in Fig. 2. Since the CI-based

SLP can exploit the interference, it is not surprising that the

SLP algorithms outperform the BLP counterpart. Interestingly,

we can observe that the recursive algorithm is superior to the

non-recursive counterpart. In fact, since the objective function

of the optimization problem considered is highly nonlinear and

non-convex, it is difficult (and even impossible) to find the

globally optimal solution. The monotonicity of the recursive

algorithm guarantees to improve the performance of interest

continuously, which alleviates possible unpredictable influence

due to the non-convexity of the optimization problem.
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Fig. 3. Target estimation MSE of different beamforming algorithms (varying
with γu): U = 4, NT = 16, NR = 24 and p = 16dB.

The performance tradeoff between radar sensing and com-

munication is shown in Fig. 3. The CRB for target estimation

becomes higher, as the SNR threshold of the UEs increases.

Equivalently, as the quality of communication becomes better,

the radar sensing performance decreases. Note, however, that

although the CRB of the SLP algorithm becomes larger as the

SNR increases, it still remains at a low level, which clearly

shows the advantage of the SLP-based design mode.
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Fig. 4. The SER of different beamforming algorithms: U = 4, L = 32,
NR = 24 and p = 15dB.

The SER performance of different algorithms is shown in

Fig. 4. It can be observed that the SER performance achieved

by the SLP-based algorithms is much better than that of the

BLP counterpart. The reason for this is that the CI constraints

enforce that the distance between the received signals and the

decision boundaries is no less than the predefined value, which

guarantees a stable SER performance, e.g., the SER achieved

declines exponentially with respect to the SNR.

VI. CONCLUSION

In this paper, we incorporated CI-based SLP mode into the

design of joint radar sensing and communication beamform-

ing. First, we proposed a highly parallelizable algorithm to

reduce the computational complexity. Then, we proposed the

idea of recursive design as well as an efficient algorithm. We

confirmed the advantages of our proposal via experiments.

APPENDIX A

PROOF OF THEOREM 2

We shall use induction to prove this theorem. Let n denote

the induction index, taking values K,K + 1,K + 2, · · · .

Step 1. For n = K, the optimization problem used to find

out an initial solution is given by

min
X∈CU×K

tr
(
(XXH)−1

)
s.t.

∣∣Im(hH
uxle

−jξu,l)
∣∣ ≤ (

Re(hH
uxle

−jξu,l)− γu
)
Cπ,

(l = 1, · · · ,K, ∀u)
‖xl‖2 ≤ p, (l = 1, · · · ,K).

(16)

According to the assumption of the theorem (i.e., problem (16)

is feasible), a solution of the problem, denoted by XK , satisfies

tr
(
(XKXH

K)−1
)
< ∞. Combining the fact XKXH

K 
 0, we

can assert that XKXH
K � 0 holds. Hence, AK = (XKXH

K)−1

is also strictly positive definite, i.e., AK � 0.



To seek the solution for n = K+1, the recursive procedure

solves the following optimization problem

max
xl

xH
l A

2
Kxl

1 + xH
l AKxl

s.t.
∣∣Im(hH

uxle
−jξu,l)

∣∣ ≤(
Re(hH

uxle
−jξu,l)− γu

)
Cπ, (∀u)

‖xl‖2 ≤ p.

(17)

Since the set of constraints of problem (17) is a proper subset

of that of problem (16) and the objective function of problem

(17) is well-defined for the entire space C
NT , the feasibility of

problem (17) indicates that the feasible set of problem (17),

denoted by Fl, is nonempty. Note that 0 /∈ Fl holds. Other-

wise, the CI constraints violate.

The solution of problem (17) is denoted by xK+1. Since

AK � 0 and xK+1x
H
K+1 
 0 hold, we can obtain

A−1
K+1 =XKXH

K + xK+1x
H
K+1

=A−1
K + xK+1x

H
K+1 � 0.

Hence, AK+1 � 0 holds. Note that the two facts AK � 0
and xK+1 �= 0 imply that xH

K+1A
2
KxK+1 > 0 holds, i.e., the

objective function must strictly decrease. The above discussion

shows that the theorem holds true for n = K.

Step 2. It is sufficient to show that the theorem holds as

well for n = N +1 if it holds for n = N > K. Note that the

required induction procedure is similar to that in Step 1, which

is omitted to avoid repetition. In view of the above discussion

and using induction, we have proven the theorem.

APPENDIX B
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