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THE \bfitchi -RAMSEY PROBLEM FOR TRIANGLE-FREE GRAPHS\ast 

EWAN DAVIES\dagger AND FREDDIE ILLINGWORTH\ddagger 

Abstract. In 1967, Erd\H os asked for the greatest chromatic number, f(n), amongst all n-vertex,
triangle-free graphs. An observation of Erd\H os and Hajnal together with Shearer's classical upper
bound for the off-diagonal Ramsey number R(3, t) shows that f(n) is at most (2

\surd 
2+o(1))

\sqrt{} 
n/ logn.

We improve this bound by a factor
\surd 
2, as well as obtaining an analogous bound on the list chromatic

number which is tight up to a constant factor. A bound in terms of the number of edges that is
similarly tight follows, and these results confirm a conjecture of Cames van Batenburg et al. [Electron.
J. Combin., 27 (2020), P2.34].
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1. Introduction. The classical Ramsey question for triangle-free graphs asks
for the value of R(3, t)1 or, equivalently, the smallest independence number amongst
n-vertex triangle-free graphs. Every graph G satisfies \alpha (G) \cdot \chi (G) \geqslant | G| , which
suggests a natural ``\chi -Ramsey"" question first asked by Erd\H os [17] in 1967. He asked
for the greatest chromatic number of a triangle-free graph in terms of its number of
vertices, n, or number of edges, m (see also Appendix B in the first edition of [4]).
Denoting the maximum for the vertex problem by f(n), an early suggestion of the
correct growth rate of f(n) was given by Ajtai, Koml\'os, and Szemer\'edi's [2] upper
bound R(3, t) = \scrO (t2/ log t), which shows that every n-vertex triangle-free graph has
independence number at least \Omega 

\bigl( \surd 
n log n

\bigr) 
and so Hall ratio

\rho (G) = max
\varnothing \not =H\subseteq G

| H| 
\alpha (H)

= \scrO 
\bigl( \sqrt{} 

n/ log n
\bigr) 
.

The Hall ratio is a natural lower bound for the chromatic number. Erd\H os and Haj-
nal [16] (see [21, pp. 124--125] for details) noted that iteratively pulling out the large
independent sets guaranteed by Ajtai, Koml\'os, and Szemer\'edi's result and giving
each one a different color matches this bound. That is, f(n) = \scrO (

\sqrt{} 
n/ log n). A

well-known result of Shearer [30] gives the best-known constant in the theorem of
Ajtai, Koml\'os, and Szemer\'edi, which can be used to sharpen the bound to

f(n) \leqslant (2
\surd 
2 + o(1))

\sqrt{} 
n/ log n.

The classical Ramsey and \chi -Ramsey problems for triangle-free graphs were considered
by Kim [24], who constructed n-vertex, triangle-free graphs with independence num-
ber \scrO (

\surd 
n log n). Specifically, for the \chi -Ramsey problem in triangle-free graphs, Kim

\ast Received by the editors August 2, 2021; accepted for publication (in revised form) January 27,
2022; published electronically April 28, 2022.

https://doi.org/10.1137/21M1437573
\dagger Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, CO 80309

USA (research@ewandavies.org).
\ddagger Department of Pure Mathematics and Mathematical Statistics (DPMMS), University of Cam-

bridge, Cambridge, CB3 0WB, UK; Corresponding address: Institute of Mathematics, University of
Oxford, Oxford, OX2 6GG, UK (illingworth@maths.ox.ac.uk).

1R(3, t) is defined to be the least n such that every n-vertex graph contains either a triangle or
an independent set of size t.
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THE \chi -RAMSEY PROBLEM FOR TRIANGLE-FREE GRAPHS 1125

proved that f(n) \geqslant (1/9 - o(1))
\sqrt{} 
n/ log n, and brought attention to the upper bound

that follows from Shearer's result. Improving Kim's lower bound, Fiz Pontiveros, Grif-
fiths, and Morris [18] and Bohman and Keevash [9] followed the triangle-free process
to its asymptotic end, showing that there are n-vertex triangle-free graphs with Hall
ratio (and hence chromatic number) at least (1/

\surd 
2  - o(1))

\sqrt{} 
n/ log n, so there is a

factor of four between these upper and lower bounds for f(n).
A bound in terms of the number of edges was given by Poljak and Tuza [29]

(see also [19, 28]), who showed that every m-edge triangle-free graph G has chromatic
number \chi (G) = \scrO (m1/3/(logm)2/3). This is tight up to a constant factor due to Kim's
construction or the triangle-free process. An improved constant follows from a more
refined method due to Gimbel and Thomassen [19], together with a theorem of Molloy
that we discuss below. These improvements were observed in [12, Prop. 4.6] which
states the bound \chi (G) \leqslant (21/335/3 + o(1))m1/3/(logm)2/3. Gimbel and Thomassen
also showed that any triangle-free graph G that can be embedded on an orientable or
nonorientable surface of genus g has \chi (G) = \scrO (g1/3/(log g)2/3), which is tight up to
a constant factor.

Cames van Batenburg et al. [12] recently highlighted the problems of tightening
the asymptotic constants above, and of giving bounds for more refined graph coloring
parameters including the fractional and list chromatic numbers.

1.1. Definitions. Our terminology is standard, but we briefly introduce the
required notions of graph coloring here. Recall that a k-coloring of a graph is a
partition of its vertex set into k independent sets (color classes). The chromatic
number of a graph G, denoted \chi (G), is the least k for which G has a k-coloring.

A fractional coloring of weight at most k is a probability distribution on the
independent sets of a graph such that every vertex has probability at least 1/k of
being in the random independent set. The fractional chromatic number, \chi f (G), of
a graph G is the least k for which G has a fractional coloring of weight at most k.
Equivalently, \chi f (G) is the solution to a fractional relaxation of the natural integer
program that gives \chi (G).

Given a graph G, a list assignment L is an assignment of a list L(v) \subseteq \BbbN to each
vertex v of G. An L-coloring of G is a coloring c : V (G) \rightarrow \BbbN that is consistent with L
(each vertex v has c(v) \in L(v)) and proper (c(u) \not = c(v) whenever uv is an edge). The
list chromatic number, \chi \ell (G), of a graph G is the least k such that G is L-colorable
for any list assignment L whose lists have size at least k.

It is straightforward to show that every G has \rho (G) \leqslant \chi f (G) \leqslant \chi (G) \leqslant \chi \ell (G)
by the definition of \rho , considering the uniform probability distribution over the color
classes in a \chi (G)-coloring of G, and by considering list assignments where every vertex
is given the same list.

1.2. Results. Table 1 summarizes the best known upper bounds in terms of
the number of vertices. Given the difficulty of improving Shearer's Ramsey number
bound, one should compare upper bounds for \chi f , \chi , \chi \ell to his bound for \rho .

Our first result improves the upper bound for chromatic number by a factor of\surd 
2, thus matching the bound for the fractional chromatic number established in [12].

We apply this new bound and a tactic of Gimbel and Thomassen [19] to improve the
previous best bound in terms of the number of edges [12, Prop. 4.6].

Theorem 1.1. As n \rightarrow \infty , any triangle-free graph on n vertices has chromatic
number at most (2 + o(1))

\sqrt{} 
n/ log n.

As m \rightarrow \infty , any triangle-free graph with at most m edges has chromatic number
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1126 EWAN DAVIES AND FREDDIE ILLINGWORTH

at most (35/3 + o(1))m1/3/(logm)2/3.

Table 1
Upper bounds for n-vertex triangle-free graphs G.

Parameter Previous bound This work

\rho (G) (
\surd 
2 + o(1))

\sqrt{} 
n/ logn [30]

\chi f (G) (2 + o(1))
\sqrt{} 

n/ logn [12]

\chi (G) (2
\surd 
2 + o(1))

\sqrt{} 
n/ logn [30, 24] (2 + o(1))

\sqrt{} 
n/ logn

\chi \ell (G) (2
\surd 
2 + o(1))

\surd 
n [12] (4

\surd 
2 + o(1))

\sqrt{} 
n/ logn

A particularly noticeable feature of the previous bounds in Table 1 is the upper
bound for the list chromatic number, which does not have the same growth rate as
the lower bound provided by the triangle-free process. We give a short argument to
rectify this. As with the case of chromatic number, we use this new result to obtain
a bound in terms of the number of edges that is tight up to a constant factor.

Theorem 1.2. As n \rightarrow \infty , any triangle-free graph on n vertices has list chromatic
number at most (4

\surd 
2 + o(1))

\sqrt{} 
n/ log n.

As m \rightarrow \infty , any triangle-free graph with at most m edges has list chromatic
number at most (12 \cdot 32/3 + o(1))m1/3/(logm)2/3.

This result confirms Conjecture 6.1 from [12], though we do not believe the given
constants are tight. In particular, they are worse than what we prove for the usual
chromatic number.

Turning to a bound in terms of genus as studied by Gimbel and Thomassen [19],
using Theorem 1.2 we obtain the correct growth rate for the list chromatic number
as well as sharpening the constant for chromatic number with an application of The-
orem 1.1. The key observation underlying the proof is that the genus and number of
edges are at most a constant factor apart in the critical range.

Corollary 1.3. As g \rightarrow \infty , any triangle-free graph of genus at most g has
chromatic number at most (3 \cdot 62/3 + o(1))g1/3/(log g)2/3.

As g \rightarrow \infty , any triangle-free graph of genus at most g has list chromatic number
at most (12 \cdot 62/3 + o(1))g1/3/(log g)2/3.

The same bounds hold for graphs that can be embedded on a closed nonorientable
surface of genus at most 2g.

Due to our Theorem 1.1, there is now an asymptotic factor
\surd 
2 between the best

known upper bounds for chromatic number and Hall ratio. Cames van Batenburg
et al. [12] conjectured that it is possible to remove this

\surd 
2 for the fractional chro-

matic number, and suggested this may be possible for the chromatic number, too.
Our results establish bounds on the list chromatic number of triangle-free graphs that
are tight up to the constant factor, but one might ask whether bounds of the same
order hold for an even more general notion of graph colouring known as correspon-
dence coloring or DP-coloring. In section 4 we discuss these constant factors, related
work, some nice conjectures, and the correspondence coloring version of the \chi -Ramsey
question.

2. Proof ideas and tools. We first outline the proof of the bound in terms of
the number of vertices in Theorem 1.1. The key idea underpinning our improvement
is induction, splitting into cases depending on the maximum degree of the graph.
If some vertex of the graph has large degree, then we give its neighborhood (which
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THE \chi -RAMSEY PROBLEM FOR TRIANGLE-FREE GRAPHS 1127

is an independent set by triangle-freeness) one color and color the remainder of the
graph by induction. Otherwise, the graph has small maximum degree and so we may
apply a result bounding the chromatic number of a triangle-free graph in terms of its
maximum degree. We will use a recent groundbreaking result of Molloy [27], which is
a chromatic strengthening of Shearer's lower bound for the independence number.

Theorem 2.1 (Molloy). As \Delta \rightarrow \infty , any triangle-free graph of maximum degree
\Delta has (list) chromatic number at most (1 + o(1))\Delta / log\Delta .

We are now in position to sketch the proof of Theorem 1.1. We will ignore all
o(1) terms. Let G be an n-vertex triangle-free graph---we are trying to prove that
\chi (G) \leqslant 2

\sqrt{} 
n/ log n and will assume the result holds for all smaller n. First, if G has

maximum degree at most d(n) :=
\surd 
n log n, then Molloy's theorem immediately gives

the result. Otherwise, some vertex v of G has degree greater than d(n). Let G\prime be
G with all neighbors of v deleted. As G is triangle-free, the neighborhood of v is an
independent set, so \chi (G) \leqslant \chi (G\prime )+ 1. Also, n\prime = | G\prime | < n - d(n) and induction gives

\chi (G\prime ) \leqslant 2
\sqrt{} 
n\prime / log n\prime .

For this sketch, consider log n\prime and log n as identical and so

\chi (G\prime ) \leqslant 2

\sqrt{} 
n - d(n)

log n
\leqslant 2

\sqrt{} 
n

log n
 - 1,

where the final inequality follows by squaring both sides and cancelling terms. As
\chi (G) \leqslant \chi (G\prime ) + 1, we are done. The full proof has no new ideas, we merely have to
overcome the technical challenge of the o(1) terms. We do this in section 3, as well
deriving the bound in terms of the number of edges.

Consider trying the same proof strategy for the list chromatic number, in pursuit
of Theorem 1.2. If there is a vertex of large degree, then we cannot necessarily color
its neighborhood with one color as there may be no color appearing on the lists of all
its neighbors. In place of degree we use the notion of color-degree.

Definition 2.2. Let G be a graph with list-assignment L. For a vertex v and a
color c \in L(v), the color-degree of c at v is

degL(v, c) = | \{ u : uv \in E(G), c \in L(u)\} | .

Suppose that we have a graph G and list assignment L which assigns lists of size
k to the vertices of G. If some color-degree, say degL(v, c), is large, then we color
the neighbors of v whose lists contain c with color c, remove c from all other lists
and delete the colored vertices. What remains is a graph G\prime of order n  - degL(v, c),
and crucially the graph G admits an L-coloring provided \chi \ell (G

\prime ) \leqslant k  - 1. Indeed, set
L\prime (u) = L(u) \setminus \{ c\} for every vertex u and note that if \chi \ell (G

\prime ) \leqslant k  - 1, then G\prime is L\prime -
colorable and the vertices in V (G)\setminus V (G\prime ) can all be colored with c. We bound \chi \ell (G

\prime )
from above by induction. In order to carry out the same argument as above, we need
an analogue of Molloy's theorem with \Delta replaced by the maximum color-degree, and
such results (with larger leading constants) have been proved by Amini and Reed [5]
and Alon and Assadi [3].

Theorem 2.3 (Alon--Assadi). The following holds for all sufficiently large d.
Let G be a triangle-free graph with lists L(v) for every vertex v. If, for every vertex v
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1128 EWAN DAVIES AND FREDDIE ILLINGWORTH

and color c \in L(v),

| L(v)| \geqslant 8d/ log d,

degL(v, c) \leqslant d,

then G admits an L-coloring.

If the factor of 8 could be replaced with 1 + o(1), then our bound for the list
chromatic number would match those for the fractional and usual chromatic number,
that is, be a factor

\surd 
2 away from the bound for the Hall ratio. We discuss this further

in section 4.
The bound in terms of the number of edges given in Theorem 1.2 follows from the

bound in terms of the number of vertices, via a simple argument that resembles its
counterpart for the chromatic number and uses a list-partitioning idea present in [12].
We give this argument in the next section.

3. The proofs. In this section we give the proofs of Theorems 1.1 and 1.2. We
stress that for the bounds in terms of n the main ideas appeared in section 2, and
what remains is a technical exercise.

Proof of Theorem 1.1. Let f(x) = (2+A(x))
\sqrt{} 

x/ log x, whereA = o(1) is smooth,
nonnegative and nonincreasing (specified more precisely later). For the first stated
bound it suffices to show that any n-vertex triangle-free graph G has chromatic num-
ber at most f(n). We will induct upon n, and we may choose A so that the theorem
holds for all n \leqslant 20. Assume from now on that n \geqslant 20.

First, suppose that every vertex of G has degree at most d(n) =
\surd 
n log n. Then,

by Theorem 2.1 there is an \varepsilon (x) = o(1) such that

\chi (G) \leqslant (1 + \varepsilon (n))
d(n)

log d(n)
\leqslant (1 + \varepsilon (n))

d(n)

log(n1/2)

= 2(1 + \varepsilon (n))

\sqrt{} 
n

log n
.

Thus, we are done in this case provided

(3.1) A(x) \geqslant 2\varepsilon (x).

In the second case there is some vertex v with degree greater than d(n). Let G\prime be
the graph obtained from G by deleting all the neighbors of v. Then G\prime has fewer than
n - d(n) vertices and

\chi (G) \leqslant \chi (G\prime ) + 1 \leqslant f(n - d(n)) + 1,

where the second inequality follows by induction. Hence, to complete the proof we
need

(3.2) f(n) - f(n - d(n)) \geqslant 1

for all n \geqslant 20. It remains to check that it is possible to choose an A such that (3.1)
and (3.2) hold. We will assume that A decays sufficiently slowly so that (3.1) holds.

The function
\sqrt{} 

x/ log x is concave for x \geqslant 6. If we choose the nonnegative function
A decaying sufficiently slowly, then f ought to be concave, too. Indeed, if we choose
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THE \chi -RAMSEY PROBLEM FOR TRIANGLE-FREE GRAPHS 1129

A so that | A\prime \prime (x)| \leqslant 1/(10x2), then a quick calculation2 shows that for all x \geqslant 10,
f \prime \prime (x) < 0 (note that A\prime \leqslant 0 \leqslant A). By concavity, for all n \geqslant 20,

f(n) - f(n - d(n)) \geqslant f \prime (n)d(n) =
\bigl( 
1 + A(n)

2

\bigr) \bigl( 
1 - 1

logn

\bigr) 
+ nA\prime (n).

Choosing A so that | A\prime (x)| \leqslant 1/(x log x) and A(x) \geqslant 8/ log x gives (3.2). One should
worry that the conditions we have placed on the derivatives of A might preclude it
from tending to zero. Happily, integrating these shows that this is not the case.

Now for the bound in terms of the number of edges. We apply the method of
Gimbel and Thomassen [19]. For d = ((m logm)/3)1/3, let V1 \subseteq V (G) be those
vertices of degree at most d, and let V2 = V (G) \setminus V1.

The subgraph of G induced by V1 can be properly colored with at most (1 +
o(1))d/ log d colors by Theorem 2.1. On the other hand, 2m \geqslant 

\sum 
v\in V2

deg(v) \geqslant | V2| d
and so | V2| \leqslant 2m/d = 2\cdot 31/3 \cdot m2/3/(logm)1/3. Applying the first part of this theorem
we obtain

\chi (G) \leqslant (1 + o(1))
d

log d
+ (2 + o(1))

\sqrt{} 
| V2| 

log| V2| 
\leqslant (33/5 + o(1))

m1/3

(logm)2/3
,

which concludes the proof.

Before we prove Theorem 1.2, we recall the Chernoff bound.

Theorem 3.1 (Chernoff bound, [20, Cor. 2.3]). Fix p \in (0, 1), and let the random
variable X \sim Bin(k, p) be binomially distributed. Then for \varepsilon \in (0, 1),

Pr(X \leqslant (1 - \varepsilon )kp) \leqslant 2e - \varepsilon 2kp/3.

Proof of Theorem 1.2. Let g(x) = (4
\surd 
2 + B(x))

\sqrt{} 
x/ log x, where B = o(1) is

smooth, nonnegative, and nonincreasing. We may choose B so that Theorem 1.2
holds for all small n. Assume from now on that n \geqslant n0 for some fixed n0.

Associate with each vertex v a list L(v) of colors such that | L(v)| \geqslant g(n). It
suffices to show that there is a proper coloring of G from these lists. First, suppose
all color-degrees are at most d(n) =

\surd 
2/4 \cdot 

\surd 
n log n. Now

8d(n)

log d(n)
\leqslant 

8d(n)

log(n1/2)
\leqslant g(n),

where the first inequality holds provided n0 \geqslant e8. Provided n0 is large enough,
Theorem 2.3 guarantees that there is an L-coloring of G.

Otherwise, there is some vertex v and color c \in L(v) with degL(v, c) > d(n). Let
G\prime be the graph obtained from G by deleting all the neighbors of v with color c on their
list. Then G\prime has fewer than n - d(n) vertices, and G admits an L-coloring provided
\chi \ell (G

\prime ) \leqslant g(n)  - 1. By induction, we have \chi \ell (G
\prime ) \leqslant g(n  - d(n)) and hence to show

\chi \ell (G) \leqslant g(n) it suffices to prove that g(n) - g(n - d(n)) \geqslant 1. We finish as in the proof
of Theorem 1.1: choosing the nonnegative function B so that | B\prime \prime (x)| \leqslant 1/(10x2)
guarantees that g is concave for x \geqslant 10. Thus, for n \geqslant 20

g(n) - g(n - d(n)) \geqslant g\prime (n)d(n)

=
\bigl( 
1 +B(n) \cdot 

\surd 
2
8

\bigr) \bigl( 
1 - 1

logn

\bigr) 
+ nB\prime (n) \cdot 

\surd 
2
4 .

2With g(x) =
\sqrt{} 

x/ log x we have f \prime (x) = (2 +A(x))g\prime (x) +A\prime (x)g(x) and g\prime (x) = log x - 1

2
\surd 

x(log x)3
.

D
ow

nl
oa

de
d 

11
/1

0/
23

 to
 1

44
.8

2.
8.

22
8 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1130 EWAN DAVIES AND FREDDIE ILLINGWORTH

Choosing B so that | B\prime (x)| \leqslant 1/(x log x) and B(x) \geqslant 32/ log x gives \chi \ell (G) \leqslant g(n), as
required.

For the second part of Theorem 1.2, we partition V (G) according to the largest
color-degree at each vertex. Let \varepsilon > 0 be arbitrary, and without loss of generality
suppose that \varepsilon < 1/2 and m is sufficiently large. Let G be a triangle-free graph on
n vertices with m edges, and consider a list assignment L giving each vertex a list of
size at least

k = (1 + \varepsilon )2 \cdot 12 \cdot 32/3 m1/3

(logm)2/3
.

For d = ((m logm)/24)1/3, consider the partition of V (G) given by

V1 =
\Bigl\{ 
v \in V (G) : max

c\in L(v)
degL(v, c) \leqslant d

\Bigr\} 
,

V2 = V (G) \setminus V1.

Every vertex in V2 has some color-degree at least d and so has degree at least d.
Hence, degree-counting gives | V2| \leqslant 2m/d. We partition the colors in

\bigcup 
v\in V (G) L(v)

into two parts L1 and L2, and let Li(v) = L(v) \cap Li. We insist on using the colors in
L1 to color G[V1] and those in L2 to color G[V2]. Assume for now that every vertex
v satisfies

(3.3)

| L1(v)| \geqslant (4 \cdot 32/3 + \varepsilon )
m1/3

(logm)2/3
,

| L2(v)| \geqslant (8 \cdot 32/3 + \varepsilon )
m1/3

(logm)2/3
.

For every vertex v \in V1 and c \in L1(v): degL1
(v, c) \leqslant degL(v, c) \leqslant d and

8d

log d
\leqslant (4 \cdot 32/3 + o(1))

m1/3

(logm)2/3
\leqslant | L1(v)| .

By Theorem 2.3, G[V1] is L1-colorable (provided m is large enough). Next, by the
first part of this theorem,

\chi \ell (G[V2]) \leqslant (4 + o(1))

\sqrt{} 
2| V2| 
log| V2| 

\leqslant (8 \cdot 32/3 + o(1))
m1/3

(logm)2/3
,

so G[V2] is L2-colorable. As L1 and L2 are disjoint sets of colors, these colorings can
be combined to give an L-coloring of G.

We finally check that there is a partition L1 \cup L2 of the colors for which (3.3)
holds. Each color c \in 

\bigcup 
v\in V (G) L(v) is independently placed in L1 with probability

1/3 and is otherwise placed in L2. By the Chernoff bound, each vertex v \in V (G) has

Pr

\biggl( 
| L1(v)| \leqslant (4 \cdot 32/3 + \varepsilon )

m1/3

(logm)2/3

\biggr) 
\leqslant Pr(| L1(v)| \leqslant (1 - \varepsilon )k/3),

\leqslant 2e - \varepsilon 2k/9.

Similarly, each vertex v has

Pr

\biggl( 
| L2(v)| \leqslant (8 \cdot 32/3 + \varepsilon )

m1/3

(logm)2/3

\biggr) 
\leqslant 2e - 2\varepsilon 2k/9.
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We may assume that G has no vertices of degree 0 or 1, as any such vertices can
be removed before coloring G and compatible colors found when they are readded.
Then G has at most m vertices, and so k > n1/3/(log n)2/3 and 2e - \varepsilon 2k/9 = o(1/n).
A union bound over the n vertices of G now gives that there is a partition of the lists
of colors that satisfies (3.3).

We conclude this section with the short proof of Corollary 1.3, which is simply a
slightly more precise version of the argument given in [19].

Proof of Corollary 1.3. Let G be a graph on n vertices, with m edges and genus
at most g. We may assume that G is connected. By removing vertices of degree at
most d = g1/3(log g) - 2/3, which can then be colored as they are readded, we may
assume that G has minimum degree at least d. Then the number m of edges of G
satisfies 2m \geqslant dn, and hence as g \rightarrow \infty we have n = o(m).

Now consider an embedding of G on an orientable surface of genus g such that the
drawing of G has r regions. Since G is triangle-free, each region is surrounded by at
least four edges. Also, each edge bounds at most two regions and so r \leqslant m/2. Euler's
formula gives n - m/2 \geqslant n - m+r \geqslant 2 - 2g, and hence m \leqslant (4+o(1))g. The corollary
now follows by applications of Theorems 1.1 and 1.2. For nonorientable genus the
argument is the same, but we must use Euler's formula in the form n - m+ r \geqslant 2 - k,
where k is the nonorientable genus.

4. Related research and open problems.

4.1. Fractional coloring. Cames van Batenburg et al. [12, Conjs. 4.3 and 4.4]
conjectured that upper bounds for the fractional chromatic number in terms of n and
m should match Shearer's bound on the Hall ratio in triangle-free graphs. Recall that
a fractional coloring of weight at most k is a probability distribution on independent
sets such that for every vertex v we have Pr(v \in I) \geqslant 1/k and so it can be particularly
useful to study distributions with a ``local"" lower bound on Pr(v \in I) that depends
on parameters such as deg(v).

In a triangle-free graph on n vertices, taking a uniform random neighborhood
gives Pr(v \in I) = deg(v)/n and combining this distribution with one derived from
a suitable local version of Molloy's theorem should perform well. A local fractional
coloring result from [13] associates to each vertex v of a triangle-free graph a subset
w(v) of the positive reals of measure 1 such that w(u) and w(v) are disjoint for edges
uv, and w(v) \subset [0,mv) for some mv = (1 + o(1)) deg(v)/ log deg(v). Choosing a
positive real number at random with a nonincreasing density function such as

p(r) = max

\biggl\{ 
0,

\sqrt{} 
n

log n
 - r

2

n

log n

\biggr\} 
gives a random independent set \{ v : r \in w(v)\} which is more likely to contain vertices
of lower degree. Combining this with the distribution obtained by taking the neigh-
borhood of a uniformly random vertex, one recovers the fractional case of Theorem 1.1
(originally proved in [12] by a slightly more involved argument).

Kelly and Postle [23] conjectured an improved (and more natural) version of
a distribution which favors independent sets containing low degree vertices, and
specifically noted that combining this with the ``random neighborhood"" distribu-
tion matches Shearer's bound. Their conjecture is that every triangle-free graph
admits a probability distribution on independent sets such that for every vertex v,
Pr(v \in I) \geqslant (1 - o(1)) log deg(v)/ deg(v).
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4.2. List and correspondence coloring. A generalization of list coloring
known as correspondence coloring or DP-coloring permits an arbitrary matching of
colors from L(u) to L(v) to be ``forbidden"" at the edge uv. Formally, given a list as-
signment L for a graph G, we consider the sets \^L(v) = \{ (v, c) : c \in L(v)\} and a graph
H on vertex set

\bigcup 
v\in V (G)

\^L(v). To form H we put a clique on each \^L(v) and for all

edges uv \in E(G) and colors c \in L(u)\cap L(v) we connect each (u, c) to (v, c). This gives
a cover graph such that independent sets in H of size | V (G)| in H are in 1-to-1 corre-
spondence with the L-colorings of G. Correspondence coloring arises when we relax
the requirements on the edges of H between each \^L(u) and \^L(v), instead allowing an
arbitrary matching between \^L(u) and \^L(v) for each edge uv of G. The correspondence
chromatic number of G, denoted \chi c(G), is then the least k such that whenever we
start with a list assignment with lists of size k and construct a cover H in this fashion
with arbitrary matchings, the resulting H contains an independent set of size | V (G)| .
This definition and comparison to list coloring shows that we have \chi \ell (G) \leqslant \chi c(G)
for any graph G. Correspondence coloring is well studied in our setting, for exam-
ple, Bernshteyn [7] showed that Theorem 2.1 holds for the correspondence chromatic
number. Going further, Cambie and Kang [11] conjectured a version of Theorem 2.3
for correspondence coloring and with eight replaced by 1 + o(1), having proved this
in the special case of bipartite graphs.

Local versions of the results we rely on are natural in the settings of list and
correspondence coloring, where the necessary lower bound on | L(v)| is a function
of deg(v). See [10, 13, 15] for bounds in terms of degrees, and [22, Conj. 9.3.2]
for a conjectured bound in terms of color-degrees for list coloring. It is natural to
combine [22, Conj. 9.3.2] and [11, Conj. 4] and propose a local color-degree version
of Theorem 2.1 in the case of correspondence coloring (though some care with a
minimum list size is necessary; see [13]).

It is interesting to note that the solution to the ``\chi c-Ramsey"" problem for triangle-
free graphs follows easily (up to a constant factor) from results of Bernshteyn [6, 7] and
Kr\'a\v l, Pangr\'ac, and Voss [25]. The independent works [6, 25] contain the lower bound
\chi c(G) \geqslant (1/2 - o(1))d/ log d for arbitrary graphs G of average degree d, so a balanced
n-vertex complete bipartite graph has \chi c(K\lfloor n/2\rfloor ,\lceil n/2\rceil ) \geqslant (1/4 - o(1))n/ log n. Then
in [7] Bernshteyn gave the strengthening of Theorem 2.1 to correspondence coloring
and, since the maximum degree is at most the number of vertices, showed that when
G is an n-vertex triangle-free graph we have \chi c(G) \leqslant (1 + o(1))n/ log n. This is
therefore tight up to a factor of at most 4. This correspondence coloring problem
behaves very differently from the list coloring problem: balanced complete bipartite
graphs are perhaps the extremal example and the extremal value is \Theta (n/ log n) rather
than its square root.

4.3. Relaxing the triangle-free condition. Coloring graphs with sparse neigh-
borhoods is natural generalization of the problems we mention here. A triangle-free
graph has independent neighborhoods, but this can be relaxed to neighborhoods in-
ducing a bounded number of edges, or bounded (fractional) chromatic number, Hall
ratio, or clique number.3 A classic problem in Ramsey theory is to upper bound the
Hall ratio of K4-free graphs in terms of the number of vertices, where the best-known
bound is due to Li, Rousseau, and Zang [26]. We do not dwell on the \chi -Ramsey
version of this problem as there is still a polynomial gap between this upper bound

3Consider a sequence of assumptions inspired by the inequalities \omega \leqslant \rho \leqslant \chi f \leqslant \chi in subgraphs
induced by neighborhoods.
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and the lower bound due to Bohman [8] proved by analyzing the K4-free process, so
improving the constant factor with our methods is an unedifying prospect.

We focus on the \chi -Ramsey question for triangle-free graphs because known up-
per and lower bounds on the Hall ratio differ by only a constant factor, and we now
match the growth rate for the list chromatic number, too. Much less is known for
more general sparse neighborhood conditions and there are usually large gaps between
known upper and lower bounds on Hall ratio. Notably, the case of graphs in which
neighborhoods induce a bounded number of edges was settled up to a small constant
factor in [14]. One can always transfer upper bounds on the Hall ratio to ones on
chromatic number by iteratively pulling out large independent sets as color classes
(see [21, pp. 124--125] or [12, Lem. 4.1]), and this raises the question of whether our
methods can improve upon such arguments. Broadly, the answer is yes as generaliza-
tions of Theorem 2.1 for these settings with good leading asymptotic constants have
been given in [1, 15] which means that one can prove analogues of our Theorem 1.1
with the same method. Rather than chasing constants in the upper bounds on chro-
matic number, we suggest that it would be interesting to focus on improving upper
bounds for the Hall ratio, and to find good lower bounds. Both of these are deep and
challenging problems.

The situation for list chromatic number is rather different, however, as there is
no obvious, generic way to transfer bounds on the Hall ratio to list chromatic number
without losing some factor of (log n)c (see, e.g., [12, Thm. 6.4] for an argument that
can be generalized). The ``\chi \ell -Ramsey"" question for graphs in which neighborhoods
induce a bounded number of edges was, in fact, already asked in [14]. Our proof of
Theorem 1.2 shows how one might match the growth rate of Hall ratio bounds in
this setting and others, but we do not have the necessary analogues of Theorem 2.3
(which gives a bound in terms of color-degree) in the more general sparse neighborhood
settings. The \chi \ell -Ramsey problem motivates the pursuit of such results, though they
are certainly worth investigating in their own rights, too.
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Sereni for organizing the March 2021 workshop ``Entropy Compression and Related
Methods,"" where we began this work. We thank Ross Kang in particular for sharing
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bound in Theorem 1.2.
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