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Abstract

Adsorption cooling and desalination systems have a distinct advantage over

other systems that use low‐grade waste heat near ambient temperature. Since

improving their performance, including reliability and failure prediction, is

challenging, developing an efficient diagnostic system is of great practical

significance. The paper introduces artificial intelligence (AI) and an

automated machine learning approach (AutoML) in a real‐life application

for a computational diagnostic system of existing adsorption cooling and

desalination facilities. A total of 1769 simulated data points containing data

indicating a failure status are applied to develop a comprehensive AI‐based
Diagnostic (AID) system covering a wide range of 42 input parameters. The

paper introduces a conditional monitoring system for adsorption cooling and

desalination systems. The novelty of the presented study mainly consists of

two aspects. First, the intelligent system predicts the health or failure states of

various components in a complex three‐bed adsorption chiller installation

using the extensive input data sets of 42 different operating parameters. The

developed AID expert tool, based on selecting the best from 42 models

generated by the DataRobot platform, was validated on the complex, existing

three‐bed adsorption chiller. The AID system correctly identified healthy

and failure states in various installation components. The developed expert

system is very efficient (AUC= 0.988, RMSE = 0.20, LogLoss = 0.14) in

predicting emergency states. The proposed method constitutes a quick and

easy technique for failure prediction and represents a complementary tool

compared to the other condition monitoring methods.
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1 | INTRODUCTION

1.1 | Adsorption cooling and
desalination systems

The progressing effects of global warming have led to the
development of eco‐friendly adsorption cooling and
desalination systems. They can already compete with
compressor‐based equipment, as they allow more effi-
cient conversion and management of low‐grade waste
heat at near‐ambient temperatures,1–3 taking part in
implementing the net zero emissions strategy. Moreover,
the adsorption refrigeration‐desalination technologies fit
into the ecologically sustainable development con-
cepts.4–9 They utilize low‐temperature thermal energy
sources, including heat produced in cogeneration, waste
heat, and solar and geothermal energy.8,10,11

An adsorption chiller typically comprises critical
components such as an evaporator, a condenser, and a
minimum of two beds housed in separate reactors. These
beds are filled with adsorbents and adsorbates, function-
ing as a working pair. The solid, porous sorbent within
these beds exhibits a notable affinity for the refrigerant,
characterized by a high sorption capacity. Heat transfer
within the system, specifically between the hot and cold
water and the sorbent, is facilitated through submerged
coils within the beds.

The working principle of a typical adsorption chiller
is as follows. The refrigerant's vapor (e.g., water) flows
from the evaporator to the adsorption bed, generating the
cooling effect in the evaporator. The adsorption process is
sustained until the pressure within the bed approximates
the saturation pressure of water. Cooling water flows
through heat exchanger pipes inside the adsorption beds
to increase the sorption capacity.

Subsequently, to initiate the regeneration phase of the
adsorption bed, hot water is introduced into the coil of
the heat exchanger, triggering the release of vapor from
the bed.

Adsorption cooling and desalination systems represent
a cutting‐edge, thermally driven technology garnering
increasing attention for its efficiency and sustainability.
This technology stands out in the competitive landscape
of cooling and desalination methods due to its dual‐
functionality. It can concurrently produce desalinated
water and cooling effects within an adsorption chiller.
This system leverages renewable energy sources such as
solar, geothermal, and waste heat, making it a versatile
solution.

Particularly noteworthy is the technology's ability to
process feed water with high salinity levels, yielding low‐
salinity, potable water with minimal operational costs
and a reduced environmental footprint. It harnesses

low‐grade heat sources, which can be derived from
various origins, including waste heat from industrial
processes, marine engines, and solar energy. The
significance of sorption‐based thermal energy manage-
ment becomes evident, considering over 90% of the
world's primary energy consumption is heat. Moreover,
using water as a refrigerant in sorbent–water working
pairs offers numerous advantages. Water is environmen-
tally benign, nonflammable, abundantly available, and
has a high latent heat of evaporation, making it an ideal
choice. For instance, conventional adsorption materials
like silica gels are eco‐friendly, inexpensive, and highly
effective, capitalizing on water's significant phase
change enthalpy.

Considering the above, adsorption chillers contribute
to reducing fossil fuel consumption, promoting the
efficient use of renewable and waste energy, and assisting
in mitigating global climate change. Thus, they are
emerging alternatives in the context of Net‐Zero Emis-
sions strategies, demonstrating their potential to contrib-
ute to sustainable energy solutions.

The efficiency of cooling‐desalination systems depends
on several parameters, mainly on the sorption processes in
the adsorbent bed12–14 and the operating conditions, that
is, the temperature and mass flow rates of cooling, hot and
chilled water.15–17

The evaporation of the refrigerant in the evaporator is
the main stage of the adsorption chiller's operating cycle.
The harnessing of heat from the water flowing through
the heat exchanger enables the production of so‐called
chilled water. Due to the low operating pressures in the
760–2340 Pa range, the evaporator of the adsorption
chillers is essential to the adsorption cooling‐desalination
(ACD) facility.18–20

The condensation phase occurs under certain physi-
cal circumstances as it proceeds in the entire volume of
saturated vapor and starts due to the vapor subcooling
below the saturation temperature at a given pressure. As
the vapor condenses, a rapid volume reduction occurs in
the pipe wall's direct vicinity, resulting in unidirectional
adsorbate flow toward the wall. Many condensers'
variants always work by effectively removing heat from
the gas stream using cooling media.21

The possibility of improving the chiller performance
using a multistage cycle was numerically shown in Ali
et al.22 Artificial intelligence (AI) methods were employed to
optimize adsorption processes.16,17 The Adaptive Neuro‐
Fuzzy Inference System (ANFIS) was used to study the effect
of the evaporator's thermal conductivity and adsorption bed
on the AC performance. Simulations in ANSYS Fluent
software confirmed the possibility of improving the heat
transport conditions in the bonded sorbent bed.23,24

Performance analyses of adsorbate–adsorbent systems at
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different bed configurations and cycle conditions can be
found in several papers.25–27

The computational tools developed allow engineers and
scientists to suggest how to improve the efficiency of
adsorption cooling‐desalination systems. However, nothing
was mentioned in the literature about conditioning monitor-
ing as an effective way to increase ACDS performance. To fill
the gap in the literature, we developed an Artificial
Intelligence‐based Diagnostic (AID) model via an automated
machine learning (AutoML) approach, allowing accurate
identification of the failure conditions of the adsorption
cooling and desalination systems. Both the developed model
and the whole methodology of the AutoML platform
applications are the primary outcomes of the paper.

1.2 | Review of previous studies on fault
diagnostics with AI approach

Advances in computing capacity and algorithms have
increased interest in numerical modeling and AI
methods to diagnose operating states.28–31

The need for higher energy conversion efficiency and
reliability of industrial systems has been growing in
many sectors of the economy.32 Predictive analytics are
becoming essential tools for forecasting these critical
variables. Condition monitoring of an energy system's
health may reduce downtime and enhance its perform-
ance. Since the overall investment costs decrease when
technology becomes smarter (IEA report on intelligent
grid analysis), disturbance forecasting and diagnosis are
crucial for the equipment and associated energy man-
agement systems' sustainable and reliable operation.

As disturbance prediction and diagnosis are crucial
for the equipment and associated energy management
systems' sustainable and reliable operation, several works
dealing with this issue can be found in the literature.33–35

The transient analysis of residual patterns in diagnosing
faults in heating, ventilating, and air conditioning
systems (HVAC) was presented in Cho et al.35 The
authors underlined that a fault detection technology is
necessary for efficient energy management to detect
performance deterioration properly and respond quickly
to faults, improving reliability and system safety.

AI methods show the potential to supervise changes
in the equipment's operating conditions, detect the
location of faults, and predict or prevent potential
failures that may generate significant financial losses.29

The authors proposed, for example, intelligent data
analytics for fault diagnosis in photovoltaic technology
using deep convolutional neural networks (CNNs). They
noted that the developed ConvNet algorithm allowed for
covering all possible failure cases. A graphical and

unified analysis of the unsymmetrical shunt faults was
depicted in Chen.36 A review of the main trends,
challenges, and prospects for applying artificial neural
networks (ANN) for fault detection and diagnosis in
photovoltaic technology is depicted in Li et al.37 The
authors underlined the difficulty in adequately configur-
ing the model and reaching an open database on
photovoltaic system failures.

More extensive literature concerning wind turbines
can be found.38,39 The possibility of conducting surveil-
lance and fault diagnosis in wind turbines using
automatic machine‐learning techniques was confirmed
by Vives et al.40 Several machine‐learning methodologies
were evaluated through simulations to predict and detect
electrical and mechanical failures. An integrated mon-
itoring and diagnosis system using machine learning
algorithms tailored to different wind turbine components
was also proposed in the studies. A review of failure
modes, condition monitoring, and fault diagnosis tech-
niques, including AI methods, can be found in large‐
scale wind turbine bearings.38 The authors concluded
that monitoring wind turbine bearings is necessary to
improve the electric energy output and reduce operation
and maintenance costs. A new idea for the design and
integration of energy harvesters and damage detection
methods of wind turbine blades, where the devices are
self‐powered and wireless, was proposed by Du et al.39

Fault feature extraction of low‐speed roller bearing based
on the teager energy operator and complementary
ensemble empirical mode decomposition (CEEMD) was
presented in Han et al.41 Saari et al. used the support
vector machine (SVM) technique to identify windmill‐
bearing faults.42 The proposed approach was able to
detect improper behavior earlier than using traditional
methods without any false alarms. A frequency‐shift
multiscale noise tuning stochastic resonance method for
fault diagnosis of generator bearing in wind turbine was
shown in Li et al.43 Optimal parameters were selected
through modified signal‐to‐noise ratio and genetic
algorithms (GAs).

A supervisory control and data acquisition (SCADA)
system was used to monitor wind turbines' performance,
allowing the acquisition of measurement data from wind
turbines, which can then be processed using AI
methods.44 Chandrasekhar et al.45 presented an approach
based on machine learning to predict the damage to wind
turbine blades. The proposed Gaussian Processes meth-
odology indicated a blade's edge frequencies, considering
the second blade state. These relationships between the
pairs of blades have been learned when the blades are in
healthy conditions. The proposed approach was able to
identify when the blades start behaving differently from
one another over time. The system identified the early
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onset of damage 6 months before it was identified and
remedied.

A novel virtual sample generation method for
predictive maintenance within combined heat and power
plants was proposed by Olesen and Shaker.46 The
approach relies on random walks and particle swarm
optimization (PSO) methods. According to the results,
applying the technique to a public data set found that
having just 10 run‐to‐failure incidents combined with
generated virtual samples could compete with the
accuracy of having 50 run‐to‐failure incidents for
training.

The adaptive neuro‐fuzzy inference system (ANFIS)
method, consisting of backpropagation and least‐squares
learning algorithms, was implemented in Yalçın et al.47

Leakage locations in a water distribution system were
estimated. The hybrid algorithm was trained with
variables measured during regular system operation, that
is, acceleration, pressure, and flow rate.

Practical predictive analysis for energy efficiency and
fault detection using AI was conducted in Crespo
Márquez et al.48 The authors proposed an ANN‐based
tool adapted to the existing operating conditions and
dynamically triggers preventive maintenance activities.
Comparative analysis between a machine learning
algorithm implementation and an ANN in detecting
minor faults of induction motor bearings was discussed
in Esakimuthu Pandarakone et al.49 SVM, naive Bayes
classifier algorithm, k‐nearest neighbour algorithm,
decision tree (DT), random forest (RF), and deep
learning with a CNN architecture were selected and
discussed. The study helped understand the difference
between the diagnostic approaches and their effective-
ness in detecting bearing faults in an induction motor.

1.3 | Motivation and scope of research

Intelligent and efficient waste energy use belongs to the
urgent actions to address environmental and energy
management challenges.50–55 Moreover, improving en-
ergy efficiency and reducing energy demand and green-
house gas emissions constitute significant tasks.3,56,57

The capability to exploit heat waste and renewable and
recycled heat from low‐temperature sources is part of the
4th Generation District Heating (4GDH) concept.58–60

The reduction of energy consumption for air‐
conditioning purposes and the possibility of using low‐
temperature, waste thermal energy sources motivates the
use of advanced computational methods such as the
computational fluid dynamics and AI approach.61–65

The analysis of the applied diagnostic solutions in the
industry indicates that AI methods allow for the early

detection of possible failures. The service period and
reliability of the facility reduce capital costs and enhance
system utilization. It enables it to meet the power
demands and maintains the system's performance, safety,
and stability, improving the energy conversion and
management processes.29 This issue is of great interest
in the energy sector since the system's malfunction
constitutes an economic loss, and downtimes are
punished by significant market opportunity costs.46 The
discussed issues on reducing service periods and
improving reliability align with the other initiatives
concerning investigating novel adsorbents and opera-
tional strategies.66–72

Thus, effectively predicting potential failures will
significantly improve low‐grade waste thermal energy
conversion efficiency and reliability, so it should be
considered in management and operational strategy
scenarios.

Therefore, the major objectives and contributions of
the research are to perform a unique computational AI‐
based diagnostic model to identify a three‐bed adsorption
cooling‐desalination system's health and failure opera-
tion states. The paper fills gaps in the literature and
introduces a novel and comprehensive AID system for
adsorption cooling and desalination installations. This
comprehensive AI‐based approach covers a wide range of
42 input parameters. The AID model was successfully
validated on a complex, three‐bed adsorption chiller
under chilled and freshwater production modes.

The novelty of the presented study mainly consists of
two aspects. First, the prediction of healthy and failure
states of various components in a complex three‐bed
adsorption chiller installation using the extensive input
data sets of 42 different operating parameters acquired
from the system. Second, the efficient AutoML approach
with the DataRobot application was used in the study.
The tool allowed the selection of the most effective
model, which turned out to be the Gradient Boosted
Trees Classifier. The developed AID model was success-
fully validated on the complex, three‐bed adsorption
chiller. The AID model correctly identified healthy and
failure states in various installation components under a
wide range of operating parameters.

To the best of our knowledge, this is the first
framework for predictive analysis in adsorption cooling
and desalination systems. Monitoring the diagnostic
function of a four‐bed two, two‐evaporator adsorption
chiller was described by Chen et al.73 However, the
digital twin approach was applied in this case.

No reports are dedicated to applying AI algorithms for
failure state prediction of such devices, and the lack of such
studies results from the high complexity of the systems
considered. Moreover, the novel idea of automating the
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entire machine learning pipeline (AutoML) approach was
introduced in the paper as a hot topic in industry and
academia nowadays.74,75

The three‐bed adsorption chiller system considered in
the study is a complex low‐pressure cooling and
desalination equipment. Due to low operating pressures
and temperatures, these devices cannot be easily used.
Moreover, selecting, acquiring, and preparing adequate
signals to develop the presented expert system requires
many techniques, including experts' knowledge. This
justifies using an effective AutoML‐based approach using
state‐of‐the‐art meta‐learning methods.76–78 Thus, this
paper's innovation is also a condition monitoring
methodology in cooling and desalination systems.

The DataRobot application used in the paper is one of
the best AutoML platforms. It has more models, auto
preprocessing and feature engineering, and many valida-
tion methods than other tools, thus allowing the
implementation of the state‐of‐the‐art meta‐learning
approach. Moreover, this platform can run various
state‐of‐the‐art open‐source algorithms parallel to differ-
ent versions, testing thousands of possible data prepro-
cessing and parameter settings combinations and deploy-
ing the best models in real‐time. Considering the above,
the work constitutes a research and development
elaboration built in the modern Industry 4.0 domain
and provides novel achievements in enhancing the state‐
of‐the‐art mathematical models performed via meta‐
learning techniques for measurement‐oriented purposes.

Moreover, since overall investment is decreasing
while its technology has become smarter due to
harnessing helpful information about the installation,
allowing accurate energy management, the developed
AID system provides for improving the energy efficiency
of cooling and desalination systems.

2 | OBJECTS AND METHODS

The diagnostic system of the adsorption cooling‐
desalination facility is built by utilizing machine learning
methods. According to the literature review presented
above, several AI methods allow for predicting failure
states. They differ in the approach to the problem, the
selection of hyperparameters, and computing times. This
causes considerable work to compare and select the most
appropriate AI method. Therefore, in this article, we
chose the AutoML platform, which makes this process
much easier, faster, and more accurate.

DataRobot platform (https://www.datarobot.com/) that
includes AutoML can run multiple predictive models
simultaneously, providing time‐consuming model develop-
ment and selection automation. This approach enables

obtaining high‐quality models characterized by high‐level
scalability.79 It also allows for various learning techniques
based on the supplied data, including supervised
and unsupervised learning. The two main approaches
implemented by the DataRobot are classification and
regression. The classification task was employed in this
paper for condition monitoring in an adsorption cooling‐
desalination system equipped with a three‐bed adsorption
chiller (Figure 1).

The system is at the AGH University of Science
and Technology Energy Center in Krakow, Poland.
The unit produces up to 40 dm3 of fresh water daily in
desalination mode or delivers 1.5 kW of cooling power
in cooling mode.20,80 The unit's sections have acquisi-
tion and control systems that monitor all critical
operating parameters. The evaporator was supplied
with a refrigerant (water) distributor and a tubular
heat exchanger system. The sorption section consists
of three beds in a horizontal arrangement, and
thyristor controllers maintained the proper tempera-
ture in the hot and cooling water circuits. The
individual beds are connected to the evaporator and
the condenser. Steam pipelines are closed using
electromechanical valves. The basic parameters of
the adsorption beds are given in Table 1.

Additionally, because the sorbent mass is 12 kg,81 the
specific cooling power SCP equals 241.7W/kg.

The acquired data were split into learning and test
data, unknown to the model during the model learning
process, to evaluate its performance. The 90/10 split ratio
of the learning/test data was employed, meaning that
90% (1769) points are learning data, and 10% (197) points
are test data. The input variables (features) include
pressures, temperatures, and the working medium's mass
flow rates at various installation points.

FIGURE 1 The three‐bed adsorption chiller.

KRZYWANSKI ET AL. | 5
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The output variable (target) is the valid/invalid
indicator taking the values from the set (yes, no)
informing of the occurrence of a failure state (“yes”) or
failure‐free operation of the installation (“no”).

Even though the failure states were simulated, the
similarity to real‐world situations is kept. Since the
system is set to detect failures and abnormal operating
conditions, more failure cases were collected during the
measurement campaigns. Thus, such a distribution
corresponds to situations where a system is somewhat
unreliable and works improperly, which justifies the
applicability of the acquired data.

The information on a situation corresponding to the
installation's failure was identified based on the input
values. Exceeding the acceptable ranges, defined in the
provided data set, of at least one of all inputs indicated
the existence of a failure condition of the whole system,
which may lead to damage and eventually to the
emergency stopping of the installation. The developed
comprehensive AID system considers various input
parameters. It covers the 42 inputs listed and is described
with acceptable change limits in Table 2. The measure-
ment points described in Table 2 are located in the
complex installation shown in Appendix S1.

3 | RESULTS AND DISCUSSION

Binary classification models were explored in the study.
The DataRobot system runs several algorithms of
different versions and tests thousands of possible
combinations of data preprocessing and parameter
settings.79 The modeling blueprint is given in Figure 2.

The AutoML platform developed a total of 42 various
models in the final project. A leaderboard, which is a
rank‐order list of models according to performance
metrics and constraints, including the prediction speed,
is shown in Figure 3.

Several metrics were used for the evaluation of the
developed models. For this research, we selected the
three best models for further consideration. The result of

testing is provided in the Blueprints tab, where a
blueprint represents the high‐level end‐to‐end procedure
for fitting the model, including any preprocessing steps,
algorithms, and postprocessing.79 DataRobot system
provides a sophisticated automated preprocessing feature
engineering that optimizes true signal and controls for
model overfitting and different optimization metrics,
depending on the project type (regression, binary
classification, multiclass). Since the considered case
belongs to the binary classification tasks, 10 optimization
metrics in Table 3 are available in the AID.

The Gradient Boosted Trees Classifier algorithm is
the “best”model of all 42 generated models and is chosen
in the project, and its performance is summarized in
Table 3. For the comparison of the proposed method,
implemented by the Gradient Boosted Trees Classifier
and the next two applied by AVG Blender and ENET
Blender are also included in Table 3.

High metrics were also obtained by the other
algorithms implemented in the following two top
models. Even though modified particle swarm optimiza-
tion (modified PSO), modified genetic algorithm (mod-
ified GA) and modified grew wolf optimization (modified
GWO)82–88 can be found as the latest optimization
algorithms for minimizing errors in desalination systems,
the high accuracy and precision of the developed in the
paper AID system is also reported. According to Table 3,
the best turned out to be the Gradient Boosted Tree
Classifier.

This model blueprint is utilized as the core of the
developed AID model (Figure 4). The blueprint includes
automated data pre‐processing and feature engineering.

Gradient Boosted Trees Classifier (Gradient Boosting
Classifier or Generalized Boosted Models [GBM]) is a
cutting‐edge algorithm for fitting highly accurate predic-
tive models. GBMs are considered the most versatile and
valuable modeling algorithm, requiring little preproces-
sing, efficiently handling missing data, striking the right
balance between bias and variance, and finding compli-
cated interaction terms. GBMs are a generalization of
Freund and Schapire's AdaBoost algorithm to handle
arbitrary loss functions. In concept, they are very similar
to RFs, as they fit individual DTs to random resamples of
the input data, where each tree sees a bootstrap sample of
the rows of the data set and the N arbitrarily chosen
columns where N is a configurable parameter of the
model.79 GBMs differ from RFs in a single significant
aspect. The GBM fits each successive tree to the residual
errors from all the previous trees combined rather than
fitting the trees in parallel. This is advantageous, as the
model focuses each iteration on the most challenging
examples to predict and, therefore, most beneficial to get
correct. The algorithm's two critical parameters are the

TABLE 1 Nominal parameters of adsorption beds.

Parameter Value

Cooling capacity (CC), kW 2.9

Required heating power (HP), kW 2.9

Cooling water inlet temperature, °C max. 34

Hot water inlet temperature, °C max. 85

Cooling water mass flow rate, kg/s 0.25

Hot water mass flow rate, kg/s 0.25

6 | KRZYWANSKI ET AL.
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TABLE 2 Input parameters of the AID system.

ID Parameter
Acceptable limits
of changes

1 TT01—Evaporator top steam temperature, °C 2–6

2 TT02—Cooling outlet water temperature from the condenser, °C 15–30

3 TT03—Cooling water inlet temperature to the condenser, °C 15–30

4 TT04—Temperature of hot water in the heating circuit of the bed after the hot water
tank (after the pump), °C

77–80

5 TT05—Temperature of hot water in the heating circuit before the hot water tank, °C 75–78

6 TT06—Chilled water inlet temperature to the evaporator, °C 10–12

7 TT07—Chilled water outlet temperature from the evaporator, °C 8–11

8 TT08—Cooling water temperature after condensing unit, °C 15–30

9 TT09—Cooling water temperature before condensing unit, °C 15–30

10 TT10—Cooling water temperature after the cooling water tank (after the pump), °C 15–30

11 TT11—Temperature in bed volume 1, °C 35–45

12 TT12—Temperature in bed volume 2, °C 35–45

13 TT13—Temperature in bed volume 3, °C 35–45

14 TT14—Temperature of water in evaporator—bottom, °C 3–7

15 TT15—Temperature of adsorption bed 1, °C 40–50

16 TT16—Temperature of adsorption bed 2, °C 40–50

17 TT17—Temperature of adsorption bed 3, °C 40–50

18 TT18—Temperature in the condenser, °C 20–30

19 TT19—Temperature of water—outgoing from the condenser, °C 20–30

20 TT20—Temperature of removal from evaporator °C 3–7

21 TT21—Temperature of water circulating in the evaporator, °C 8–11

22 TT22—Evaporator feedwater temperature, °C 10–20

23 PT01—Pressure in feedwater tank, kPa 5–13

24 PT02—Pressure in the brine tank, kPa 5–13

25 PT03—Pressure in the desalted water tank, kPa 5–13

26 PT04—Pressure inside the evaporator, kPa 0.5–2.5

27 PT05—Pressure inside the bed 3, kPa 0.7–5

28 PT06—Pressure inside chamber 2, kPa 0.7–5

29 PT07—Pressure inside chamber 1, kPa 0.7–5

30 PT08—Pressure in hot water outlet system, kPa 22–150

31 PT09—Pressure in the cooling water supply system, kPa 22–150

32 PT10—Pressure inside the condenser, kPa 2–5

33 PT11—Pressure in the chilled water supply system, kPa 22–150

34 LT01—Water level indicator in feedwater tank, % <10% filling the tank

35 LT02—Water level indicator in the brine tank, % <10% filling the tank

36 LT03—Water level indicator in the desalinated water tank, % <10% filling the tank

(Continues)
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learning rate and the number of trees in the model. A
correctly performed cross‐validation of both parameters
allows GBM to find the exact point in the training data
where overfitting begins and stops iteration before that.
GBMs can achieve the highest possible accuracy without
overfitting.79

Since identifying the essential drivers of a machine
learning model's outcomes allows checking the quality of
the data source, the Feature Impact, that is, a statistical
measure of each feature's effect on the target variable, is a
crucial step.79 In other words, Feature Impact measures
how important a feature is in the context of a model, that
is, it estimates how much the accuracy of a model would
decrease if that feature were removed. The Feature
Impact is evaluated by altering input data and observing
the effect on a model's score. The feature engineering
procedure, provided by the DataRobot platform, includes
many tasks, such as identifying missing values and their
imputation, measuring the correlation between features,
and automatically creating the feature list according to
their importance based on the complex relationships in
the data and permutation importance79 (Figure 5).

The relative importance of each input feature ranked
from the most important (scaled to 100%) to the least
important (with importance close to 0%), is shown by

blue bars. All importance values are relative to the top‐
ranked input feature.79

The following eight parameters are of the utmost
crucial in the data sets used to develop the AID model:
the evaporator top steam temperature (TT01), hot water
flow rate in the bed heating circuit after the hot water
tank, after the pump (FT01), the pressure inside
condenser (PT10), the temperature of hot water in the
heating circuit before the hot water tank (TT05), chilled
water outlet temperature from the evaporator (TT07),
evaporator return water temperature (TT21), the temper-
ature in the condenser (TT18), the temperature of water
in evaporator—bottom (TT14). The above‐listed features
are the most important to the predictive power of a
trained model. In other words, the TT01, FT01, PT10,
TT05, TT07, TT21, TT18, and TT14 have significantly
stronger predictive power than the rest of the input
features.79

The Lift Chart demonstrates how close, in general,
model predictions are to the actual target values of the
training data. In other words, it compares the average
model predictions and the average actual target values,
sorted by the predicted values in ascending order, split
into up to 60 bins.79 The Lift Chart for the developed AID
model is given in Figure 6.

Since the orange and blue lines are close to each
other, and they cross over many times, indicating that the
model does not consistently overestimate or under-
estimate and both the blue and orange lines gradually
slope upwards, the developed AID model achieved a
good trend and accuracy in its predictions.79

The receiver operating characteristic curve (ROC
curve), that is, a graphical plot that illustrates a binary
classifier system's performance, is depicted79,89 in Figure 7.

Since the ROC curve is created by plotting the true
positive rate (hits) against the false positive rate (false
alarms) at various threshold settings, good performance
was achieved by the AID model.

TABLE 2 (Continued)

ID Parameter
Acceptable limits
of changes

37 FT01—Hot water flow rate in the bed heating circuit after the hot water tank (after the
pump), dm3/min

12–16

38 FT02—Cooling water flow rate—condenser outlet, dm3/min 15–17

39 FT03—Chilled water flow rate—evaporator outlet, dm3/min 2–4

40 FT07—Evaporator circulating water flow rate, m3/h 40–70

41 FT08—Cooling water flow—after the cooling water tank (after the pump), 30–45

42 FT10—Desalted water mass flow rate—condenser outlet, kg/h 0.3–3

FIGURE 2 The modeling blueprint.
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The cumulative lift chart, that is, a visual aid for
measuring model performance, is depicted in Figure 8.

Using about 60% of model predictions, we will get
more than 1.5 more positive class responses than random
selection.

Due to the AID model's complexity, Feature Effects
functionality shows the impact of changes in each
feature's value on the model's predictions. It depicts
how a model “understands” the relationship between
each feature and the target.79

Feature Effects plots prepared for the highest Feature
Impact, that is, the feature TT01 most related to the
target, are shown in Figure 9.

As expected, the best accuracy is observed for the
training data. However, some areas in the inputs' domain
corresponding to the more deficient model's performance
can be located for validation and holdout data sets.
Additional data sets in these areas could improve the
model's accuracy.

Since the developed system should make a yes or no
decision when detecting a failure state in the considered
fault diagnosis problem, the AID model needs to turn the
predicted probability correctly into a decision. It is
crucial for the model's functionality, and the prediction
distribution plot allows for assessing the performance of
the considered AID model based on the Gradient Boosted
Trees Classifier (Figure 10).

According to Figure 10, the model can separate yes
decisions from no decisions. However, a region of

decision uncertainty, where the purple and green areas
overlap, and neither part dominates, is quite broad. It
indicates that predicted probabilities in this range will
not accurately choose yes or no outcomes and may be the
result related to the data sets used in the study.79 Since
the data applied for training were acquired during the
artificial induction of emergency states, they may be
burdened by the poor understanding of the theoretical
mechanisms which rule the failure process in such a
complex system.90 Thus, additional conditions should be
considered during the model's development based on the
operating parameters to increase the model's accuracy.
More training data sets may also be beneficial.

To review the distribution of the quantitative indica-
tor of the effect of the variable on the predictions and,
therefore, to discover what drives the model, the
prediction explanations functionality is necessary to
apply (Figure 11).

Qualitative indicators of the explanation's strength:
strong (+++), medium (++), or weak (+) positive or
negative (−) influence depict the impacts of features (the
“reasons”) for each outcome the model generates.
Suppose an explanation's score is trivial and has little
or no qualitative effect. In that case, the output displays
three grayed‐out symbols (+++ or −−−), indicating
that both the impact and its directionality are minor.79

The top influential inputs are included in the Prediction
Explanations plot from Figure 11.

FIGURE 3 The leaderboard of the DataRobot system.
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The prediction runtime is a vital parameter for an
efficient diagnostic system. In other words, it is crucial to
determine how long a real‐time prediction will take. To
score as this measurement is of interest for the system's
reliability and helps to choose the best model with the
lowest overhead.79 The tradeoff between runtime and
predictive accuracy is shown in Figure 12. The currently
selected metric, that is, LogLoss, is listed on the Y‐axis,

while the X‐axis displays the estimated time in milli-
seconds to make 1000 predictions.79 Although total
prediction time includes a mixture of factors and varies
based on the final implementation and, most impor-
tantly, it does not include the time for the round‐trip API
call, that is, network latency (it ought to be tested in the
actual system), the selected Gradient Boosted Trees
Classifier for the developed AID model is the best choice.

TABLE 3 Optimization metrics of the AID system.

ID Optimization metric (GBM algorithm) Validation Cross‐validation Holdout

Gradient Boosted Trees Classifier

1 AUC 0.9923 0.9868 0.9887

2 Area under PR curve 0.9952 0.9921 0.9932

3 FVE binomial 0.8258 0.7889 0.7913

4 Gini norm 0.9846 0.9737 0.9774

5 Kolmogorov–Smirnov 0.9139 0.9029 0.9008

6 LogLoss 0.1161 0.1407 0.1390

7 Max MCC 0.9109 0.9017 0.9104

8 RMSE 0.1873 0.1998 0.2037

AVG blender

1 AUC 0.9866 0.9850 0.9835

2 Area under PR curve 0.9928 0.9910 0.9902

3 FVE binomial 0.7864 0.7686 0.75820

4 Gini norm 0.9731 0.9701 0.9671

5 Kolmogorov–Smirnov 0.8909 0.8855 0.8806

6 LogLoss 0.1423 0.1538 0.2152

7 Max MCC 0.8952 0.8807 0.8873

8 RMSE 0.2021 0.2139 0.2152

ENET blender

1 AUC 0.9862 0.9849 0.9832

2 Area under PR curve 0.9926 0.9909 0.9900

3 FVE binomial 0.7869 0.7684 0.7576

4 Gini norm 0.9724 0.9697 0.9663

5 Kolmogorov–Smirnov 0.8990 0.8820 0.8916

6 LogLoss 0.1415 0.1539 0.2152

7 Max MCC 0.8960 0.8794 0.8982

8 RMSE 0.2010 0.2140 0.2152

FIGURE 4 The blueprint for the AID model.

10 | KRZYWANSKI ET AL.
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According to Figure 12, the developed AID model has a
lower error and the highest prediction speed.

Comparing the results obtained from experiments and
the AID model for the training and test data is depicted in
Appendix S2 and Appendix S3, respectively. Columns AQ
(“Exp. Label”) and AR (“Predict. Label”) correspond to
labels from the actual and predicted by the AID model. A

marked red cell inside a sheet indicates failure conditions,
and if it appears, the whole set is counted as a set with a
detected failure by “1” in the AQ (“Exp. Label”) column.
Data in column AS (“Err [−]”) indicate the prediction
errors (Appendix S2 and Appendix S3).

The results obtained reveal that all the states of operation
given in the sheet with training data, corresponding to the
real situations of failure (value “1”) and healthy (value “0”)

FIGURE 5 The Feature Impact graph of the AID model.

FIGURE 6 The lift chart for predicted and actual target values.

FIGURE 7 The receiver operating characteristic curve for the
AID model.

KRZYWANSKI ET AL. | 11
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conditions, were correctly predicted by the developed AID.
The achieved accuracy for the set of data, containing 1769
sets of cases, is equal to 100%.

The model's accuracy is slightly worse but still high,
equal to 97.5%, for the test data sets containing cases not

seen before by the model during the development stage.
The presented data shows that the number of incorrect
system interpretations for the analyzed new 197 cases
was 5. According to the previous findings, a possible
reason for the detected errors might be an imperfect

FIGURE 8 The cumulative lift for the AID model.

FIGURE 9 Feature effects plots for TT01, (A) training, (B) validation, and (C) holdout.

FIGURE 10 The prediction distribution plot for the AID model.

12 | KRZYWANSKI ET AL.
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FIGURE 11 The prediction explanations plot for the AID model.

FIGURE 12 Seed versus accuracy for the developed models.

KRZYWANSKI ET AL. | 13
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theoretical understanding of failure patterns and associ-
ated missing features.90 Additional data would improve
the developed comprehensive AID model.

A similar comparison was made between the two
other AutoML methods provided by BigML and R2.ai.
The accuracy of predictions was worse, equal to 93.91%
for BigML on the new, independent data and 99.15% for
R2.ai on training data.

Thus, the approach provided by DataRobot was the
best of all compared methods.

The developed AID model enhances the utilization of
the adsorption‐desalination system. It also helps meet power
demands, maintain the system's performance and stability,
and improve energy conversion and management. Thus, the
work constitutes a research and development elaboration
built in the modern Industry 4.0 domain and provides novel
achievements in enhancing the state‐of‐the‐art mathemati-
cal models for measurement‐oriented purposes.

The practical significance of the study's findings is
multifaceted.

1. The introduction of the AID system fault prediction in
cooling and desalination systems marks allows for
early detection of potential failures, reducing down-
time and associated costs.

2. Considering 42 diverse input operational parameters,
the AID system can optimize the performance of the
adsorption chiller, leading to better management of
waste energy, lowering operating costs and improving
the overall efficiency of the entire installation,

3. The AutoML application enables handling large and
complex data sets, which is crucial for data‐driven
decision‐making in advanced systems like adsorption
cooling and desalination facilities.

4. The methodology introduced in the paper accelerates
experimentation and offers new insights, which could
be pivotal in driving innovation in adsorption
technology and lead to the developing of more
advanced and efficient systems.

4 | CONCLUSIONS AND
PERSPECTIVES FOR FURTHER
RESEARCH

The paper deals with one of the most effective ways of
chilled and freshwater production via adsorption tech-
nology, utilizing multigeneration heat. The work intro-
duces a novel methodology for condition monitoring of
cooling and desalination systems.

Fault diagnosis in cooling and desalination systems is
one of the most essential parts of the condition

monitoring area. Since the system's malfunction consti-
tutes an economic loss and downtimes result in
significant market costs, failure prediction is challenging
to enhance the facilities' energy conversion and manage-
ment strategies. Thus, it is an issue of great interest in the
energy sector.

A three‐bed adsorption chiller is considered in the
study. The AutoML approach with the DataRobot
application as an efficient tool and one of the best
AutoML platforms in the market is introduced in the
paper.

A specific aspect of the AutoML approach is
facilitating the calculation process. However, proper
and appropriate selection of the inputs and the extensive
data acquisition from the presented complex system is
not easy, considering that adsorption cooling and
desalination systems are low‐pressure facilities. That is
why there are no such applications in the literature. To
our knowledge, it is the first paper dealing with failure
prediction in such complex systems, constituting the
paper's novelty.

We managed to develop a comprehensive and
innovative AID expert diagnostic system based on a total
of 42 wide‐range input parameters and providing
diagnoses for different fault types of the entire facility.
The AID model achieved high efficiency in predicting
failure conditions and constitutes a powerful diagnostic
tool for complex adsorption cooling and desalination
systems.

The accuracy of the developed AID model, using 42
various input parameters defining the installations' state,
was as high as 99.23%. The obtained findings result in
recommendations for selecting hot, cooling, and chilled
water temperatures and other operating parameters to
intensify sorption processes in the bed.

The novelty of the AutoML application enables
researchers to analyze large and complex datasets
efficiently, automate model selection and optimization,
and discover previously unseen patterns and relation-
ships within the considered data. The methodology of
condition monitoring in cooling and desalination sys-
tems based on the AutoML approach introduced in
the paper enhances the scientific process by accelerating
experimentation and providing novel insights and
discoveries.

The results obtained in the article prove the validity
of using the AutoML platform, especially for complex,
extensive systems and installations, such as adsorption
cooling and desalination systems.

Future research may concern a next‐generation AI‐
based model, prescribing the safe exploitation of cooling
and desalination systems.
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NOMENCLATURE
AI Artificial Intelligence
AC Adsorption Chiller modified PSO
ACDS Adsorption Cooling and Desalination System
AID Artificial Intelligence‐based Diagnostic system
ANFIS Adaptive‐Network‐Based Fuzzy Inference
ANN Artificial Neural Networks
AutoML Automated Machine Learning
CNN Convolutional Neural Network
DT Decision Tree
GBM Gradient Boosting Machines (or Gradient

Boosted Trees)
HVAC Heating, Ventilation and Air Conditioning
IEA International Energy Agency
RF Random Forest
SCADA Supervisory Control and Data Acquisition
SVM Support Vector Machine,
4GDH 4th Generation District Heating
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