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Abstract

INTRODUCTION: Overlooking the heterogeneity in Alzheimer’s disease (AD) may

lead to diagnostic delays and failures. Neuroanatomical normative modeling captures

individual brain variation and may inform our understanding of individual differences

in AD-related atrophy.

METHODS:We applied neuroanatomical normative modeling to magnetic resonance

imaging from a real-world clinical cohort with confirmed AD (n= 86). Regional cortical

thickness was compared to a healthy reference cohort (n = 33,072) and the number

of outlying regions was summed (total outlier count) and mapped at individual- and

group-levels.

RESULTS: The superior temporal sulcus contained the highest proportion of outliers

(60%). Elsewhere, overlap between patient atrophy patterns was low. Mean total out-

lier count was higher in patients who were non-amnestic, at more advanced disease

stages, and without depressive symptoms. Amyloid burden was negatively associated

with outlier count.
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DISCUSSION: Brain atrophy in AD is highly heterogeneous and neuroanatomical nor-

mative modeling can be used to explore anatomo-clinical correlations in individual

patients.

KEYWORDS

Alzheimer’s disease, amyloid PET, heterogeneity, MRI, neuroanatomical normative modeling,
neurodegeneration

1 BACKGROUND

For decades, the “typical” Alzheimer’s disease (AD) patient has been

portrayed as an older adult with marked episodic memory impairment

and lossof greymatter volume in themedial temporal lobe (MTL).How-

ever, AD can present in several forms, which vary in the age of onset,

clinical presentation, and neuropathological and genetic profiles,1 and

it is a continuum, rather than a series of discrete clinical entities, which

goes from normal cognitive status to mild cognitive impairment (MCI)

to dementia.2,3 Advances in diagnosis, treatment, and understanding

of the pathophysiological mechanisms of AD require research to move

beyond the idea of a typical AD patient,4 as this implies an interindi-

vidual homogeneity that is not reflected in the real-world clinical

population. Not all AD patients present with a typical phenotype and

age of onset, and failure to recognize this frequently leads to diagnostic

delays and errors.5

The dominant approach in case-control studies is to compare

the average atrophy patterns in AD patients with those in healthy

individuals. While this method enables the important detection of

hallmarks of typical AD, such as MTL atrophy,6 it provides limited

information about the variability of disease mechanisms within this

clinical population.7 In case-control studies AD patients are grouped

together, hence considered comparable to each other and clearly

distinct from healthy controls. This implies an underlying assump-

tion of intragroup homogeneity and defines the disease as a discrete

entity rather than as a continuum. Moreover, this approach sug-

gests that typical AD likely represents a more homogeneous group,

often made the reference standard in AD research and clinical

trials.

Neuroanatomical normative modeling is an emerging statistical

technique that differs from the prevailing approach of clustering,7

which has been the predominant avenue for the exploration of het-

erogeneity in dementia to date (see Habes et al. for a review8).

Neuroanatomical normative modeling shifts the focus from group

averages to intracohort variation,9 aiming to gather individual-level

information by comparison with extensive datasets of healthy con-

trol participants.7,9 This is done by estimating centiles of varia-

tion of a brain measure (eg, cortical thickness) across the nor-

mative population and then assessing how much each individual

deviates from the respective distribution.4 Moreover, it examines

the extent to which an individual deviates from the norm at any

given brain region, providing a map of individual variability.4 Widely

used in psychiatric research over recent years,10–17 this technique

has had limited use in AD research so far.18,19 In a recent appli-

cation by Verdi and colleagues, neuroanatomical normative models

revealed a largely heterogeneous distribution of cortical atrophy

in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) research

cohort.20,21

In the present study, for the first time, we applied neuroanatom-

ical normative modeling employing hierarchical Bayesian regression

to a real-world clinical cohort, mapping structural variation in diag-

nostically challenging patients who required biomarker confirmation

of AD. The Imperial Amyloid PET Cohort (APC) was established at

Imperial College Healthcare NHS Trust (ICHT) in 2013 and includes

all patients seen at the Imperial Memory Clinic and receiving amyloid

positron emission tomography (PET) imaging as part of their diagnos-

tic workup22 in line with appropriate use criteria.23 The objectives of

the current study were to (1) assess intragroup neuroanatomical het-

erogeneity in a real-world clinical cohort of patients with confirmed

AD; (2) explore anatomo-clinical correlations at an individual level; (3)

examine the associationbetweenglobal amyloidburdenanddeviations

in cortical thickness.

2 METHODS

2.1 Subjects

Of 256 amyloid-positive patients from the Imperial APC Cohort

scanned between 2014 and 2021, we included thosewho had a clinical

magnetic resonance imaging (MRI) scan performed within 12 months

of amyloidPET (n=186).Of these, 82wereexcludeddue tounavailable

or ineligible T1-weighted images, motion artifacts, other pathologies

affecting brain integrity (ie, normal pressure hydrocephalus, multiple

sclerosis, and large infarcts), or segmentation failure.Of the remainder,

18 were scanned externally and were excluded by the model, leaving

a total of 86 patients, hereafter termed the clinical cohort (Figure S1A).

The reference cohort consisted of a group of 33,072 cognitively normal

adults pooled from publicly available neuroimaging datasets under a

previous study24; within this group, 17,586 (53.2%) participants were

aged between 49 and 87 years, which was the age range in the clinical

cohort studied. The adaptation dataset consisted of a group of 20

cognitively normal (CN) older adults who had an MRI scan at ICHT for

research purposes.
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2.2 MR image acquisition

All subjects had whole-brain T1-weighted volumetric images. Of the

104 patients in the clinical cohort, 86 (83%) were scanned at ICHT

using a 1.5T Siemens MAGNETOM Avanto (repetition time = 900 ms;

echo time = 3.37 ms; 160 slices/slab, voxel size of 1 × 0.5 × 0.5 mm),

while the remaining 18 were scanned externally and these were

excluded from the model. Participants in the adaptation dataset were

scanned at ICHT using a 3T Siemens MAGNETOM Verio (repetition

time = 900 ms; echo time = 2.52 ms; 176 slices/slab, voxel size of

1 × 1 × 1 mm). The imaging protocol for the reference cohort is

reported in.20

2.3 MR image analysis

2.3.1 Cortical segmentation

Cortical reconstruction and volumetric segmentation were performed

using the FreeSurfer 6.0 recon-all function (https://surfer.nmr.mgh.

harvard.edu/),25 as detailed in Figure S2. To compare directly with the

reference cohort, we used the Destrieux atlas of 148 cortical parcel-

lations (74 in each hemisphere), classified as gyral or sulcal.26 Cortical

segmentation procedures for the reference cohort are described

elsewhere.24

2.3.2 Neuroanatomical normative modeling

Hierarchical Bayesian regression proposed by Kia and colleagues was

used, given its advantages over other methods for normative mod-

eling of real-world clinical data27,28 (see Supplementary Appendix 1

for details). Hierarchical Bayesian regression was previously trained

on the reference cohort (compiled by Kia and colleagues) consisting

of a large sample of healthy controls who did not have any known

clinical symptoms at the time of scanning, using age and sex as the

covariates to index population variability in cortical thickness across

all 148 regions of interest (ROIs) (see Table S1 for cohort details).7 This

model was then optimized using cortical thickness data from controls

scanned at the same acquisition site as the clinical cohort (n = 20).

This gives stable estimates of the transferred model parameters in

an adapted transfer learning approach. This recalibrated model was

then used to generate regional cortical thickness z-scores for each par-

ticipant in the clinical cohort, relative to the normative range of the

reference cohort (Figure S1B). Here, z-scores of <−1.96 were defined

as outliers, representing the bottom 2.5% of the normative range and

indicating an extreme negative deviation of cortical thickness. This

threshold has been adopted in similar studies to which our outputs

can be conceptually compared.20,21,29 Analysis of outliers was limited

to negative deviations as the primary interest of this study was AD-

related neurodegeneration as indexed by lower cortical thickness. The

total outlier count was calculated by summing the number of outlier

regions for each patient. To assess the spatial distribution of these

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional (eg, PubMed) sources. Previous work

has applied neuroanatomical normative modeling to psy-

chiatry with the aim of conceptualizing disorders as

deviations fromexpected functioning and parsing disease

heterogeneity. Only one recent study on the Alzheimer’s

Disease Neuroimaging Initiative research cohort has

applied this technique to Alzheimer’s disease.

2. Interpretation: This study illustrates the potential of

applying neuroanatomical normative modeling to a real-

world clinical cohort. Shifting the focus fromgroupmeans

to intragroupvariation inAlzheimer’s disease could trans-

form the way this disease is studied, diagnosed, and

conceptualized by researchers, with considerable impli-

cations for clinical trials.

3. Future directions: Future studies are needed to replicate

and extend our findings to other clinical cohorts. More

granular measures of clinical features such as cognition,

affective symptoms, and severity, as well as apolipopro-

tein E genetic status, will be needed to better understand

the factors underlying structural heterogeneity.

deviations (ie, areas with marked lower cortical thickness), we built

individualized outlier maps. Figure S1B illustrates an overview of our

method.

2.4 Amyloid PET image acquisition

All patients included in this study were scanned using a Siemens

Biograph 64 PET/computed tomography (CT) scanner. The ligand

changed from18F-florbetapir (Amyvid) to18F-florbetaben (Neuraceq)

in December 2017, following the cessation of 18F-florbetapir man-

ufacture in the UK. Amyloid PET acquisition for this cohort was as

previously described.30

2.5 Amyloid PET review and analysis

2.5.1 Clinical interpretation

Amyloid PET images were visually read by an expert nuclear medicine

radiologist as amyloid-positive or amyloid-negative using greyscale

images and the cerebellum as the reference region.31 Equivocal cases

were independently read by two nuclear medicine radiologists and by

a third when there was disagreement.
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TABLE 1 Demographic and clinical information of Alzheimer’s
patients.

Aβ-pos
(n= 86)

Demographics

Mean age± SD (years) 67.56± 8.06

Age range 49.1–87.4

Sex (female), n (%) 42 (48.8%)

Presentation (amnestic/non-amnestic) 64/22

Non-amnestic 22

Visuospatial, n (%) 7 (32%)

Language, n (%) 11 (50%)

Behavioral, n (%) 4 (18%)

Alzheimer’s disease stage

(dementia/MCI)

48/38

Depressive symptoms 82

Ongoing, n (%) 24 (29%)

Past, n (%) 7 (9%)

None, n (%) 51 (62%)

Appropriate use criteria23

Indication 1

Persistent or progressive unexplainedmild cognitive

impairment

51.2%

Indication 2

Dementia with atypical clinical course or etiologically

mixed presentation

44.2%

Indication 3

Dementia with early age of onset (age< 65)

39.5%

Abbreviations: Aβ, amyloid beta;MCI, mild cognitive impairment.

2.5.2 Amyloid quantification

Quantification of amyloid PET images was performed using Her-

mes BRASS version 4.0 (Hermes Medical Solutions AB, Stockholm,

Sweden), a fully automated PET-only driven method fully described

elsewhere.32 This method provides a regional standardized uptake

value ratio (SUVR), computed across 48 ROIs,32 and a global amy-

loid beta (Aβ) index. The SUVR is the ratio between tracer uptake

within each ROI to that in the reference region which, in this study,

was the cerebellum.33 The Aβ index corresponds to the total weight

of global amyloid deposition, and it ranges between −1 (Aβ-negative
appearance) and+1 (Aβ-positive appearance).32,34

2.5.3 Clinical measures

To examine how individual deviation profiles related to clinical fea-

tures, we retrospectively collected patients presenting phenotype

(amnestic vs non-amnestic), disease stage (MCI vs dementia) at the

time of MRI, and history of depressive symptoms (Table 1) through a

structured reviewof clinical records. The definition ofMCI and depres-

sion history adopted in this study are described in Petersen et al.

200435 and in Loreto et al. 2022,36 respectively.

2.6 Statistical analysis

2.6.1 Standard case-control comparisons

To test how a standard case-control approach performs in this clin-

ical cohort as opposed to the neuroanatomical normative modeling

approach, we conducted standard case-control comparisons on a sub-

group of patients and a subgroup of CN adults. Cortical thickness

extracted using FreeSurfer was compared between age- and sex-

matched groups of patients from the Imperial APC clinical cohort

(n = 79) and CN individuals from the ADNI reference cohort (n = 79)

(mean age ± SD = 68.69 ± 7.32 years, 68.71 ± 7.23 years, respec-

tively; females: 50% in both groups). Analysis of covariance (ANCOVA),

with age and sex as the covariates, was used to compare mean overall

thickness. Region-level comparison was performed using two-tailed t-

tests at each region, adjusting for multiple comparisons using the false

discovery rate (FDR).

2.6.2 Total outlier count analysis

The total outlier count ranges between 0 (no mapped regions are

outliers) and 148 (all mapped regions are outliers). The distribution of

the total outlier countwas tested for normality using the Shapiro–Wilk

test, which showed positively skewed data. ANCOVAs, with age

and sex as covariates, were run to test for the effect of Group (with

grouping based on sex, phenotype, disease stage, or depression his-

tory) on log-transformed outlier count data. The Pearson correlation

coefficient was used to test for the association between total outlier

count and age.

2.6.3 Analysis of spatial distribution of outliers

We mapped outlier regions on the Destrieux atlas to visualize their

spread and distribution at the individual- and the group-level. ANOVAs

or Mann–Whitney non-parametric tests were run to investigate the

associations between clinical features andpercentageof outliers in sin-

gle ROIs in specified ones, or across all ROIs. Multiple comparisons

were Bonferroni corrected. Intragroup dissimilarities in patterns of

outliers were quantified using Hamming distancematrices andmedian

Hamming distances were compared between groups (with grouping

based on clinical features or disease severity). Furthermore, all 30 (15

in each hemisphere) temporal gyri and sulci of the Destrieux atlas

(temporal) were grouped separately from the remaining 118 (59 in

each hemisphere) extratemporal gyri and sulci (extratemporal). The

mean percentage of temporal outliers was compared with that of

extratemporal outliers using analysis of variance (ANOVA). A two-way

ANOVA was run testing for the interaction between outlier loca-
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tion (temporal vs extratemporal) and phenotype (amnestic vs non-

amnestic).

2.6.4 Exploratory analyses of brain-phenotype
associations

We ran three separate ANCOVAs, covarying for age and sex, to investi-

gate the association between total outlier count and disease severity

(MCI vs dementia), disease phenotype (amnestic vs non-amnestic),

or depression history (ongoing vs no symptoms). When disease phe-

notype and depression history were used as independent variables,

disease severity was included as a covariate. The total outlier count

was log-transformed to meet the normality assumption. Outlier maps

were built to compare the spatial distribution of outliers between

these groups. Hamming distance matrices and median Hamming dis-

tances were used to assess intra-group dissimilarity, and differences in

medianHammingdistancesbetweengroupswereassessedusing linear

regression.

2.6.5 Amyloid quantification

Linear regression analysis was used to test for the association between

total outlier count and mean SUVR. Outlier maps were compared

between patientswith higher (high SUVR, n=37) and lower (lowSUVR,

n = 49) levels of amyloid, defined as an SUVR respectively above or

below the groupmedian.

3 RESULTS

Clinical and demographic features are provided in Table 1.

3.1 Cortical thickness of clinical AD versus ADNI
controls

After controlling for age and sex, mean cortical thickness was signifi-

cantly lower in the clinical cohort (mean ± SD = 2.29 ± 0.13) than in

the ADNI control group (mean ± SD = 2.46 ± 0.11; F(1,154)= 88.78,

p < 0.001). Region-level comparisons adjusted for multiple compar-

isons highlighted significantly lower thickness in 104 of 148 regions of

the clinical cohort (Figure S3).

3.2 Total outlier count

Themedian number of outlier regions in the clinical cohort (n=86)was

21.5 (interquartile range [IQR]= 35) and the total outlier count ranged

between 1 and 120. Females had a significantly higher number of out-

liers (median = 31.5, IQR = 52) than males (median = 17.5, IQR = 33;

U = 565, p = 0.002), while there was no association between age and

total outlier count (r=−0.17, p= 0.11).

3.3 Regional distribution of outliers

The proportion of outliers was comparable between the left hemi-

sphere (lh; median = 21.5%, IQR = 18%) and right hemisphere (rh;

median = 19%, IQR = 17%; U = 2620, p = 0.65) (Figure 1A). The supe-

rior temporal sulcus (STS) featured the highest proportion of outliers

in both hemispheres (lh: 52%, rh: 60%) (Figure 1B). Specifically, this

was classified as an outlier in both hemispheres in 48% of patients, in

either the left or right in 17% of patients, and in none in 35%. Patients

with bi-hemispheric STS outliers had significantly lower mean cortical

thickness and younger age than the other two groups and presented

with more non-amnestic symptoms andmore advanced disease stages

than those with no STS outliers (Table 2). Hamming distance matri-

ces indicatedwithin-group dissimilarity (Figure 1C,D) (median=35.25,

IQR= 20.75).

3.3.1 Temporal lobe

The mean percentage of temporal outliers was 31.5% (SD = 13.7%),

ranging between 7% in the left lingual gyrus and 56% in the

STS. This was significantly higher than the extratemporal regions

(19.1% ± 10.5%, F(1,146)= 29.39, p < 0.001), where it ranged from

0% in the left suborbital sulcus to 47% in the right supramarginal

gyrus. There was no interaction between outlier location and pheno-

type (F(1,144)= 0.003, p = 0.96), suggesting a comparable difference

between the proportion of temporal and extratemporal outliers in

amnestic (mean difference = 12%) and non-amnestic (mean differ-

ence= 13%) groups.

3.3.2 Disease stage

The total outlier count was significantly higher in the AD-dementia

group (median = 30, range 2 to 120) than in the MCI-AD group

(median = 17.5, range 1 to 109; F(1,82)= 8.33, p = 0.005). In AD-

dementia, the most frequently outlying region was the STS in both

hemispheres (lh: 67%, rh: 69%). In MCI-AD, the most frequently out-

lying region was the STS in the right (50%) and the planum polare in

the left hemisphere (37%) (Figure 2A).26 In both groups, outliers were

widespread across the brain with a limited overlap of outlying regions

outside the temporal lobe (Figure 2A), suggesting highly heteroge-

neous patterns of atrophy not explained by disease severity. Greater

within-groupdissimilarity (F(1,82)=8.15, p<0.01)was found in theAD-

dementia group (median= 41, IQR= 22) relative to theMCI-AD group

(median= 28, IQR= 21) (Figure 2B,C).

3.3.3 Presenting phenotype

The total outlier count was significantly higher in the non-amnestic

(median = 37.5, range 11–120) than in the amnestic (median = 19.5,

range 1–109) group (F(1,81)= 5.49, p= 0.02). In the amnestic group, the
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TABLE 2 Comparison of clinical and demographic characteristics according to STS outlier status.

No

STS outliers

(n= 30)

Left or right STS outliers
(n= 15)

Left and right STS outliers
(n= 41) Significance

Mean age± SD (years) 71.11± 6.31c 70.35± 8.26c 63.93± 7.71a,b F(2,83)= 9.59,

p< 0.001

Mean cortical thickness± SD (mm) 2.38± 0.093c 2.31± 0.064c 2.21± 0.13a,b F(2,83)= 21.31,

p< 0.001

Sex (% female) 30%d 66.7%d 56.1% χ2(2)= 7.03,

p= 0.03

Disease stage (% dementia) 40%c 46.6% 70.7%a χ2(2)= 7.25,

p= 0.03

Phenotype (% amnestic) 93.3%c 66.7% 34.14%a χ2(2)= 8.72,

p= 0.01

Note: Bonferroni-adjusted significance. STS, superior temporal sulcus.
aSignificantly different from “No STS outliers.”
bSignificantly different from “Left or right STS outliers.”
cSignificantly different from “Left and right STS outliers.”
dTrend towards significance (p= 0.057).

most frequently outlying region was the STS in the right hemisphere

(53%) and the inferior temporal sulcus in the left hemisphere (47%).

In the non-amnestic group, the STS was the most frequently outlier in

both hemispheres (lh: 77%, rh: 82%) (Figure 3A). Greater within-group

dissimilarity (F(1,84)= 8.13, p < 0.01) was found in the non-amnestic

group (median = 44.75, IQR = 15.38) than in the amnestic group

(median= 31.5, IQR= 19.62) (Figure 3B,C).

3.3.4 Comorbid depressive symptoms

The total outlier count was significantly higher in patients without a

history of depression (median= 30, IQR= 47) than in thosewith ongo-

ing depression (median = 16, IQR = 15; F(1,70)= 8.56, p = 0.005). The

STS was the most frequently outlying region in both hemispheres in

patients without (lh: 59%, rh: 65%) and with (lh: 42%, rh: 50%) ongo-

ing depression. Greater within-group dissimilarity (F(1, 73)= 24.69,

p < 0.001) was found in patients without depression (median = 42,

IQR = 24) than in those with ongoing depression (median = 25.5,

IQR= 8.8).

3.4 Case series

An important potential use of normative modeling framework in AD

involves the investigation of how individual profiles of deviations relate

to the clinical presentation and course of the disease. This allows a

closer investigation of anatomo-clinical associations at the individual

level while parsing disease heterogeneity. An example of this practi-

cal application of normative modeling is provided in Figure 4. This is

a short case series of four patients selected from the clinical cohort

who presented to our clinic with comparable clinical features but very

heterogeneous outlier profiles. For these patients,we collected further

information from the clinical records, including the clinical picture at

the time of presentation to our clinic, level of cognitive impairment at

screening (as measured by the Addenbrooke’s Cognitive Examination

[ACE] and/or the Mini-Mental State Examination [MMSE]), and course

of thediseaseover clinical follow-ups. Further details on a case-by-case

basis are provided in the legend of Figure 4.

3.5 Association between total outlier count and
amyloid burden

Mean SUVR was negatively associated with total outlier count

(p = 0.01, R2= 0.077) and positively with raw mean cortical thick-

ness (p = 0.01, R2= 0.08) (Figure S4). Both associations survived

after controlling for age (p = 0.02, R2= 0.093 for total outlier

count; p = 0.03, R2= 0.082, for mean cortical thickness). The lowest

mean regional SUVR was in the anterior division of the parahip-

pocampal gyrus (1.08 ± 0.15), while the highest was in the posterior

division of the cingulate gyrus (1.99 ± 0.31). Notably, patients classi-

fied in the low SUVR group (ie, individual mean SUVR value < group

median) showed a higher number of outlying regions and higher

F IGURE 1 Overall outlier distribution. (A) Distribution of outlier prevalence across the left (LH) and right (RH) hemispheres. (B) Outlier maps
showing spatial distribution of outliers in the clinical cohort (n= 86). The superior temporal sulci (in green) featured the highest number of outliers
(ie, regions with significantly reduced thickness compared to the norm) in both hemispheres. (C) Hamming distance plot illustrating dissimilarity
between patients in the spatial distribution of outliers. Yellow indicates greater dissimilarity. (D) Outlier distance density illustrates the spread of
outlier dissimilarity (calculated by Hamming distance).
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8 of 13 LORETO ET AL.

F IGURE 2 Outlier profiles according to disease severity. (A) Outlier maps showing distribution of outliers according to disease severity. (B)
Hamming distance plot illustrating dissimilarity between patients in the spatial distribution of outliers; the yellow color indicates greater
dissimilarity. (C) Outlier distance density illustrates the spread of outlier dissimilarity (calculated by Hamming distance). AD, Alzheimer’s disease;
MCI, mild cognitive impairment.
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LORETO ET AL. 9 of 13

F IGURE 3 Outlier profiles according to phenotype. (A) Outlier maps showing distribution of outliers according to phenotype. (B) Hamming
distance plot illustrating dissimilarity between patients in the spatial distribution of outliers; the yellow color indicates greater dissimilarity. (C)
Outlier distance density illustrates the spread of outlier dissimilarity (calculated by Hamming distance).
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10 of 13 LORETO ET AL.

F IGURE 4 Case series. This short case series illustrates the possible use of outlier maps to gain insight into the association between atrophy
profiles and clinical history. These fourMCI patients had a similar clinical presentation, a positive amyloid PET imaging, but very heterogeneous
patterns of outlier regions. Purple-colored areas indicate outlier regions (z-score< 1.96). This finding corroborates the large heterogeneity of AD
atrophy profiles at presentation and indicates another possible application of normativemodeling for a closer investigation of anatomo-clinical
associations. (A) Aman in his 70s presenting to our clinic with a 3-year history of memory problems, intact activities of daily living (ADLs) and
preserved insight. Medical history review did not highlight significant comorbidities or depressive symptoms. On examination, he scored 94/100
on the ACE-III and 26/30 on theMMSE. Clinical follow-up revealed a slow progression of cognitive deficits. (B) Aman in his late 60s presenting
with a 4-year history of memory problems and preserved ADLs. Insight into the cognitive difficulties was limited and collateral account reported
behavioral features such as passivity and reduced empathy. No history of depression was recorded. On examination, ACE-III score was 85/100.
Follow-up visits revealed slow progression of the cognitive deficits with relative sparing of ADLs. (C) A lady in her 70s presenting with a 2-year
history of memory problemswith intact ADLs, preserved insight, and no history of depression. MMSE score was 26/30. Follow-up visits revealed a
steady decline with gradual involvement of ADLs. (D) Aman in his mid-60s presenting with a 2-year history of memory problems and intact ADLs
and no history of depression. The ACE-III score was 78/100 and follow-up visits highlighted clinical progression. TheMMSE score at 2 years
following the first examinationwas 22/30. ACE-III, Addenbrooke’s Cognitive Examination version III37; AD, Alzheimer’s disease; ADLs, activities of
daily living; MCI, mild cognitive impairment; MMSE, mini-mental state examination38; MR, magnetic resonance; PET, positron emission
tomography; totOC, total outlier count.

within-group dissimilarity than those classified in the high SUVR group

(Figure S5).

4 DISCUSSION

In this study, we applied normative modeling to a real-world clini-

cal cohort with confirmed AD and found that the total outlier count

varied widely across patients. The individual magnitude of deviation

rangedbetween1and120out of 148ROIs (median21.5).Outliermaps

revealed prominent involvement of the superior temporal sulci, which

were affected in up to 60% of patients, most frequently in younger and

non-amnestic patients. Our findings are in line with those reported by

Verdi et al. on the ADNI cohort in which the STS was among the set of

temporal outlier regions differentiating AD fromMCI and controls. On

the other hand, in Verdi et al.’s study, the STS was an outlier in about

one-third of patients (36% and 31% in the left and right hemispheres

respectively) and the highest proportion of outliers was found in the

left parahippocampal gyrus (47%).20 In the present clinical cohort, the

left parahippocampal gyruswas classified as anoutlier in30%of all sub-

jects and 31% of the AD-dementia subgroup. Differences in the outlier

maps between the two studies may be due to different clinical fea-

tures as well as cohort types, given that the ADNI study is solely based

on clinical criteria and did not involve biomarker confirmation of AD

(http://adni.loni.usc.edu). Moreover, patients meeting appropriate use

criteria for amyloid PET are, by their very nature,more likely to present

with so-called atypical features.23 As such, the study of this cohort

provides insight into AD heterogeneity and the potential limitations

of standard diagnostic approaches, which are based on the assump-

tion of disease homogeneity. Notably, we found that no brain region

deviated in more than 52 out of 86 clinical patients with confirmed

Alzheimer’s pathology. Furthermore, a relatively large proportion of

patients did not significantly deviate from the norm in any of the tem-

poral regions, despite amnestic presentation. These findings bring the

ongoing validity of a “typical Alzheimer’s diseasepatient” intoquestion.

We broadly characterized the presenting clinical picture of our

cohort to explore anatomo-clinical associations using normative

models for the first time in AD. The AD-dementia group showed a
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significantly higheroutlier count andhigherdissimilarity in the regional

distribution of outliers. This reflects the expected greater involvement

of cortical areas as disease progresses.39 With respect to disease

phenotype, the non-amnestic group showed a significantly higher total

outlier count and greater within-group dissimilarity than the amnestic

one. This was not surprising as the non-amnestic group would have

encompassed a wider range of phenotypes, each with prominent

involvement of different networks of brain regions.1 The presence of

concomitant depressive symptoms was associated with a lower mean

outlier count and reduced within-group dissimilarity. A recent study

reported a significant association between the severity of depressive

symptoms and STS thickness in a group of patients with clinical AD.40

In our cohort, the average proportion of outliers in this region was

indeed high but comparable between patients with (46%) and without

(62%) depression. We did not identify any cortical regions selectively

involved in patients with depression, although a different pattern may

have been revealed by the analysis of subcortical structures.41

The negative association between outlier count and SUVR was an

unexpected finding as this would suggest higher cortical volumes in

patients with increased burden of amyloid pathology. This was corrob-

orated by the significant positive association between SUVR and raw

mean cortical thickness. It is possible that, within the group of amyloid-

positive patients, the SUVR starts decreasing with decreasing cortical

volumes or that this relationship is related to the assumptions required

for automated SUVR calculation. An important future step of this work

will be theassessmentof howthe regional distributionof outliers aligns

with regional variations in SUVR.

Our rationale for using the threshold of the clinical z-scores

(z < 1.96) was to design a singular marker of individualized hetero-

geneity at the regional level and across regions.42 We believe that

the exploration of such markers will have better translational value in

clinical settings for aiding personalized decision-making as they may

be easily interpreted as a standardized measure of atrophy outliers.

However, future studies could map out disease heterogeneity at the

regional level using the full range of z-scores, which would therefore

not exclude patients with scores close to this threshold. The neu-

roanatomical normative model method employed in this study treats

brain regions independently by running separate models for different

brain regions. However, it is important to note that regions are related

in terms of structural covariance across the brain, which should be

considered when interpreting the Hamming distances reported in this

study and the brain outlier maps. Future normative modeling studies

could therefore also explore how outliers generated for each region

are intercorrelated, particularly between neighbouring or bilateral

regions. Possible solutions to better understand this include consid-

ering the spatial extent and magnitude of affected voxels43 or using

normativemodels that incorporate brain connectivity data, which have

recently shown promising results.44

This study’s limitations include the relatively small sample size,

partly due to the unavailability of eligible T1-w data in clinically

acquired scans. Moreover, while scanning was conducted at the same

site, there was scanner and field strength mismatch between the clin-

ical and adaptation datasets, which may contribute to unwanted noise

in themodel. As sourcing both scanner- and site-matched controlsmay

be difficult in real-world clinical studies (as opposed to typical research

cohorts), future studies should explore the effects of different scan-

ner strengths on the model output. In this study, strict criteria were

adopted at the time of image selection and at output evaluation to

limit unwanted noise and ensure that the observed outliers represent

clinically relevant deviations (rather than deviations based on image

artefacts or inaccurate segmentation). The retrospective nature of

data collection meant that we could not gather granular quantification

of cognitive functioning and depressive symptoms. Future studies are

required to map out these relationships in addition to understanding

howdifferent pathogenicmechanisms, suchas apolipoproteinE (APOE)

genotype or co-pathologies such as vascular disease, might influence

the outlier distribution and the heterogeneity observed in this clini-

cal population. Finally, a comprehensive assessment of the association

between atrophy and depression was limited by the unavailability of

subcortical outliers, which are currently not part of our normative

model.

5 CONCLUSION

This study illustrates the possible applications of neuroanatomical nor-

mativemodels to parse neuroanatomical heterogeneity in a real-world

clinical cohort with confirmed neurodegeneration due to AD. Our find-

ings highlight striking variability across patients despite comparable

disease stages and presentations. The standard case-control approach

would have hidden the intragroup variation that we were able to

observe using neuroanatomical normative modeling, as shown by our

standard case-control comparisons on a subgroup of subjects. As AD

research finds its path to precisionmedicine, it is crucial to incorporate

novel methods of analysis that are as free as possible from the assump-

tion of intragroup homogeneity. Neuroanatomical normativemodeling

provides a systematic approach bridging big data analytics and person-

alized medicine by shifting the analytical focus from group means to

intragroup variation via analysis of individual deviations.7,9
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