
Improving the Non-Functional
Properties of Android Applications

with Genetic Improvement

James Callan

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

March 19, 2024

2

I, James Callan, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work. The following chapters are based on the publications listed

below. With regards to Chapter 8, the contribution of this thesis is the completion

of a proof-of-concept implementation described in the chapter.

Chapter 3 is based on:

James Callan and Justyna Petke. “Improving Android App Responsiveness

Through Automated Frame Rate Reduction.” Proceedings of the 13th International

Symposium on Search-Based Software Engineering. Springer International Pub-

lishing. 2021.

Chapter 4 is based on:

James Callan, Oliver Krauss, Justyna Petke, and Federica Sarro “How do An-

droid developers improve non-functional properties of software?.” Empirical Soft-

ware Engineering, volume 27, no.5. Springer. 2022.

Chapter 5 is based on:

James Callan, and Justyna Petke. “Improving responsiveness of Android ac-

tivity navigation via genetic improvement.” Proceedings of the ACM/IEEE 44th In-

ternational Conference on Software Engineering: Companion Proceedings. 2022.

Chapter 6 is based on:

Janes Callan and Justyna Petke. “Multi-Objective Improvement of An-

droid Applications.” arXiv preprint arXiv:2308.11387 (2023). Under Review at

Springer’s Automated Software Engineering journal.

Chapter 7 is based on:

James Callan and Justyna Petke. “Reducing the Network Usage of Android

Applications with Genetic Improvement.” To be submitted to the 13th Genetic Im-

provement Workshop at ICSE 2024.

Additional works

1. Giovani Guizzo, Aymeric Blot, James Callan, Justyna Petke, and Federica

Sarro. “Refining Fitness Functions for Search-Based Automated Program

Repair: A Case Study with ARJA and ARJA-e.” Proceedings of the 13th

3

International Symposium on Search-Based Software Engineering. Springer

International Publishing. 2021.

2. James Callan, and Justyna Petke. “Optimising SQL queries using genetic

improvement.” IEEE/ACM International Workshop on Genetic Improvement

(GI). IEEE, 2021.

3. James Callan, and Justyna Petke. “Multi-objective Genetic Improvement: A

Case Study with EvoSuite.” Proceedings of the International Symposium on

Search Based Software Engineering. Springer International Publishing. 2022

4. Dominik Sobania, Alina Geiger, James Callan, Alexander Brownlee, Carol

Hanna, Rebecca Moussa, Mar Zamorano, Justyna Petke, and Federica Sarro.

“Evaluating Explanations for Software Patches Generated by Large Language

Models.” International Symposium on Search-Based Software Engineering,

Challenge Track, Accepted. 2023.

5. Alexander E.I. Brownlee, James Callan, Karine Even-Mendoza, Alina

Geiger, Carol Hanna, Justyna Petke, Federica Sarro, and Dominik Sobania

“Enhancing Genetic Improvement Mutations Using Large Language Models”

International Symposium on Search-Based Software Engineering, Challenge

Track, Accepted. 2023.

6. David Williams, James Callan, Serkan Kirbas, Sergey Mechtaev, Justyna

Petke, Thomas Prideaux-Ghee, Federica Sarro: “User-Centric Deployment of

Automated Program Repair at Bloomberg.” International Conference on Soft-

ware Engineering, Software Engineering In Practice Track, Accepted. 2024.

Abstract

There are 3.5 billion Android applications on the Google Play Store. However, sur-

prisingly little work exists on automatically improving the source code of Android

apps, especially when compared to traditional software. Genetic Improvement is a

technique for automatically improving software which has proven successful in the

past. However, its applicability in the Android domain is yet to be explored. In this

thesis, we explore how GI can be used to improve Android apps.

The first contribution of this thesis is an investigation into applying GI to An-

droid with minimal changes from the standard technique, however, we achieved

limited success. Next, we mined git repositories to try to find the changes that real

developers make to improve the non-functional properties of applications. With

what we learned in this study, we modified and successfully applied GI to improve

the responsiveness of Android applications. We then moved on to multi-objective

improvement, improving execution time and memory usage, but failing to improve

network usage. We also provide a benchmark of tested applications that can be used

to evaluate future automated improvement tools. We developed a profiler to find the

most network-intensive methods to target and a novel mutation operator. Our final

contribution is an adapted version of GI framework for network usage optimisation.

We found that Genetic Improvement is an effective tool for improving multiple

non-functional properties of Android apps. We found that by using simulation-

based testing, rather than testing variants on devices, we could make GI faster and

more practical. We found that there were many opportunities for GI to more closely

mimic the types of changes made by developers and that caching in particular is an

effective change type. We recommend future work further explores this direction.

Impact Statement

This thesis can impact a number of groups of people, including Android Developers

who can use the software developed to automatically improve the applications that

they develop, and also researchers who are working on both genetic improvement

(GI) and the automatic optimisation of Android applications.

In our first piece of work, we attempt to improve the frame rate of apps. How-

ever, found that, in its current state, GI is not suitable for this particular task. In

the work, we gained many insights into how GI can be applied to Android and

highlighted the most pressing current limitations to future researchers.

Next, we mined real developer commits which improved the non-functional

properties of Android apps. This work will give developers knowledge on the kinds

of changes they can make to their applications to improve them in the future. It will

also inform future research into improving the non-functional properties of apps

about the types of changes that are most effective.

With the results of this study, we rethought the framework to improve it, based

on the results of our study and experiences applying GI to Android. We applied this

framework to successfully optimise navigation responsiveness, providing a fully

open-source tool for the automatic improvement of the responsiveness of Android

apps to both developers and researchers.

Then, we extended this tool with three Multi-objective algorithms, allowing

more than one property to be improved simultaneously, or for trade-offs between

properties to be found. Again we made this tool public so that Android developers

can use it for their apps. However, when applying this approach to improving the

network usage of apps, we failed to find improvements, showing researchers that

Impact Statement 6

genetic improvement needed modifications to be applied to this particular problem.

Finally, we tried to adapt genetic improvement to improve the network usage

of applications. We began by developing a profiler to detect the most network-

intensive methods in applications so that we could target them. We made this tool

freely and openly available to developers to find the parts of their apps that use

the most network and researchers can use it in future work in this area. We also

provide a version of our framework with new mutation operators to target network

usage specifically. Unfortunately, these operators were not successful in finding

improvements but may be useful to researchers improving other properties, again

we make this tool openly available.

Acknowledgements

Firstly, I’d like to thank my supervisor, Professor Justyna Petke, for her motivation,

patience, and guidance throughout my degree and for teaching me countless valu-

able lessons. Working with Justyna has been a great pleasure and I couldn’t have

asked for a better supervisor.

Thank you to everyone in CREST and SOLAR for both the invaluable help

you have given me in my research and for the great times we have had socialising.

A special thanks to Dr. Max Hort and Dr. Giovani Guizzo for our many great trips

to the pub.

Finally, I would like to thank all of my friends and family, especially my par-

ents Chris and Colette Callan, who have been there for me throughout my entire

education. And Paige, for supporting me for all for of those years. Without her, I

never would have even started this degree, let alone made it to the end.

Contents

1 Introduction 19

2 Background and Related Work 21

2.1 Android Applications . 21

2.1.1 Compilation . 22

2.1.2 Testing . 23

2.1.3 Measuring Non-Functional Properties of Android Apps . . . 24

2.2 Non-functional Improvements to Android Apps 25

2.2.1 Offloading . 26

2.2.2 Prefetching . 27

2.2.3 OLED Screen Management 28

2.2.4 Device Configuration . 29

2.2.5 Refactoring . 29

2.2.6 Summary . 30

2.3 Genetic Improvement . 31

2.3.1 Representation . 31

2.3.2 Mutations . 31

2.3.3 Fitness . 32

2.3.4 Search . 32

2.4 Applications of Genetic Improvement 35

3 Improving Frame Rate 38

3.1 Improvement of Android App Responsiveness Using GI 40

Contents 9

3.2 Research Questions . 42

3.3 Methodology . 42

3.3.1 Framework . 42

3.3.2 Validation . 44

3.3.3 Benchmarks: Mobile application Selection 45

3.3.4 Physical setup . 47

3.4 Results . 48

3.4.1 RQ1: Improvements to responsiveness 48

3.4.2 RQ2: Types of Improvements 49

3.4.3 RQ3: Cost of Improving Responsiveness 51

3.5 Threats to Validity . 52

3.6 Conclusions . 52

4 How Do Developers Improve the Non-Functional Properties of Android

Apps? 54

4.1 Methodology . 57

4.1.1 Overview of Methodology 58

4.1.2 Corpus . 58

4.1.3 Step 1: Identifying NFP-improving Commits Based on

Keyword Search . 59

4.1.4 Step 2: Identifying NFP-improving Commits Based on Au-

tomated Classification . 62

4.1.5 Step 3: Categorisation of Mined Performance NFP-

improving Commits . 68

4.2 Results . 70

4.2.1 RQ1: Numbers of NFP-Improving Commits Found 70

4.2.2 RQ2: How Android developers improve NFPs 72

4.2.3 RQ3: Types of NFP commits 79

4.3 Discussion . 89

4.3.1 Recommendations for NFP Mining 89

Contents 10

4.3.2 Recommendations for Performance NFP-Improving

Tooling . 92

4.4 Threats to Validity . 95

4.5 Related Work . 96

4.6 Conclusions . 99

5 Improving Responsiveness with Local Genetic Improvement 101

5.1 Improving Android Navigation Response Time Using GI 102

5.1.1 Mutation Operators . 103

5.1.2 Android Testing . 104

5.2 Research Questions . 105

5.3 Methodology . 106

5.3.1 Implementation . 106

5.3.2 Benchmarks . 107

5.3.3 Validation . 109

5.3.4 Experimental Setup . 109

5.4 Results . 110

5.4.1 RQ1: Effectiveness of Genetic Improvement 110

5.4.2 RQ2: Most effective transformations 112

5.4.3 RQ3: Cost of Genetic Improvement 114

5.5 Threats to Validity . 117

5.6 Conclusions and Future Work . 118

6 Multi-Objective GI for Android 120

6.1 Multi-Objective Optimization . 121

6.2 Multi-Objective GI for Android 122

6.2.1 Representation . 123

6.2.2 Fitness . 124

6.2.3 Search . 126

6.3 Research Questions . 128

6.4 Methodology . 130

Contents 11

6.4.1 Genetic Improvement Framework 130

6.4.2 Benchmarks . 131

6.4.3 Experimental Setup . 133

6.5 Results and Discussion . 134

6.5.1 RQ1: Known Improvements 134

6.5.2 RQ2: Improvements of Current Apps 135

6.5.3 RQ3: Multi-Objective Search 139

6.5.4 RQ4: Comparison to SO-GI 142

6.5.5 RQ5: Cost of GI . 143

6.5.6 RQ6: Comparison to Linter 143

6.6 Threats to Validity . 144

6.7 Conclusion . 146

7 Reducing Network Usage with Genetic Improvement 148

7.1 Approach for Improvement of Android App Network Usage 149

7.1.1 Network Usage Profiler . 152

7.1.2 Novel Mutation Operator Targeting Network Usage 153

7.2 Research Questions . 154

7.3 Methodology . 156

7.3.1 Framework for Network Usage Optimization 156

7.3.2 Benchmark of Network-Intensive Android Applications . . 158

7.3.3 Experimental Setup . 159

7.4 Results . 159

7.4.1 RQ1: Network Used . 160

7.4.2 RQ2: Improvements to network usage 160

7.4.3 RQ3: Cost of Genetic Improvement 161

7.5 Threats to validity . 162

7.6 Conclusions . 163

8 Conclusions 165

8.1 Contributions . 165

Contents 12

8.2 Limitations & Future Work . 166

8.3 Summary . 169

Appendices 170

A Classifier Training 170

A.1 Algorithm Changes in Commits 173

A.1.1 KM commits . 173

A.1.2 CM commits . 173

Bibliography 175

List of Figures

2.1 Android Application Compilation Process. 22

2.2 The Genetic Improvement Process Using a Genetic Programming

Style Meta-Heuristic. 34

3.1 Genetic improvement framework for Android applications. 40

3.2 Boxplots of the Time Taken for Each Run on Each Project in Hours 51

4.1 Histogram showing the distribution of commits amongst different

categories. 79

4.2 An Example of the Caching Pattern. 81

4.3 An Example of the Change in Operation Order Pattern. 82

4.4 Data Structure Size Reduction Pattern 83

4.5 An Example of the Early Return Pattern 85

4.6 Box plot showing the relationship between repository category and

number of performance NFP-improving commits. 92

5.1 Local Android GI Framework, using the Local Search Meta-Heuristic103

5.2 The most effective patch found. This patch which removes a mostly

redundant, yet expensive check. 113

5.3 Boxplot of the times taken by each GI run for each project 115

5.4 A scatter plot showing the correlation between test suite execution

time and GI execution time . 116

5.5 A scatter plot showing the correlation between build time and GI

execution time . 117

List of Figures 14

6.1 GI framework for Android app improvement, with search based on

a genetic algorithm. In the case of local search, only mutation is

applied. 124

6.2 An example of a program variant that deletes the statement with ID

608 and then copies the statement with ID 1307 to position 265 into

the block with ID 365 in the file Example.java 124

6.3 An example of the In-Method Cache Operator. The resultant code

stores the results of a method call f oo, with parameters a, b and c.

This stored result can then be used later in the same method. 128

6.4 An example of the Class Cache Operator. The result of a method

call is stored in a field of the class for later use in any method. . . . 129

6.5 Execution time improvements (%) achieved by GIDroid using three

MO algorithms on 21 versions of 7 Android apps. 137

6.6 Memory consumption improvements (%) achieved by GIDroid us-

ing three MO algorithms on 21 versions of 7 Android apps. 137

6.7 Pareto Front from NSGA-II experiments on the FB1 Benchmark. . . 140

6.8 Time taken by GIDroid using different MO algorithms to evolve 10

generations, each with 40 individuals. 142

7.1 Overview of the GIDroid framework for optimization of non-

functional properties of Android applications using genetic im-

provement. 150

7.2 An example of an instrumented HttpUrlConnection request.

First, a HttpURLConnection object is instantiated, and then its in-

put stream is read with a buffered input stream. We instrument the

code to log the method name (ThisClass.getAndroid) and the data

received over the network. 151

7.3 An example of an instrumented volley request. An object which

extends the Request class is created and we can find the response in

the overridden onResponse method. 151

List of Figures 15

7.4 An example of an instrumented okhttp request. The execute

method is called on an OkHttpClient object and returns a response.

As before, we log the method name and the data received. 152

7.5 Process for creating a new if statement wrapper. First, a statement

to be wrapped is selected from the target method. Next, either a

primitive local variable or a method of a non-primitive local variable

with a primitive return type is selected. This selection is based on

the distance of the variable from the statement. Then an operator is

selected based on the type of the primitive that was selected. Then,

a value to compare to is selected, again, based on the type of the

primitive. Finally, an if statement is constructed from the selected

components and inserted into the target method. 155

7.6 An example of the ‘add condition’ operator, checking if the method

isNeeded of the local variable asset return true. The introduced

if statement is highlighted in bold text. This mutation avoids un-

necessary HTTP requests. 156

7.7 Time taken by Genetic Improvement when using Genetic Program-

ming for each of our benchmarks 162

7.8 Time taken by Genetic Improvement when using Local Search . . . 162

List of Tables

2.1 Tools available in the Android SDK for measuring the performance

of apps. 24

3.1 The number of test cases and % line coverage for each of the se-

lected classes. 48

3.2 Improvements found by our GI framework in poorly tested UI classes. 48

3.3 Improvements found by our GI framework in well-tested classes. . . 48

4.1 Properties of Repositories Mined Based on Keyword Search. 60

4.2 Keywords Used to Search for Commit Types, from Initial Selection

and Keyword Expansion stages. Note that extensions of keywords

are also captured during search, e.g., speeding, performance, and

other. 63

4.3 Decision tree classification of NFP-improving commits allows an

accurate classification (0.80 recall) with a tolerable level of irrele-

vant commits mixed in (0.73 precision). 64

4.4 Comparing our keyword search to our classification-based approach

on two datasets. The 368 number of relevant commits for the

Mazuera-Rozo et al. dataset was taken from their work https://

github.com/amazuerar/perf-bugs-mobile/blob/

master/bug-fixing-commits-performance.csv. We

note that authors report 380 in their paper, but 11 commits don’t

exist anymore. 64

4.5 Properties of Classifier Mined Repositories. 66

https://github.com/amazuerar/perf-bugs-mobile/blob/master/bug-fixing-commits-performance.csv
https://github.com/amazuerar/perf-bugs-mobile/blob/master/bug-fixing-commits-performance.csv
https://github.com/amazuerar/perf-bugs-mobile/blob/master/bug-fixing-commits-performance.csv

List of Tables 17

4.6 Comparison between categories identified by keyword search vs.

classifier. Percentages from total cumulate to >100% as some com-

mits address multiple NFP. 69

4.7 RQ1: Number of NFP-improving Commits in Each Repository (%

of Total Commits in Repository). Repositories with zero NFP-

improving commits are not listed. The “Total NFP Commits” col-

umn does not count duplicates (as some commits could have im-

proved multiple properties at once). 71

4.8 RQ2: Age in Days of Repositories When Commits Were Made (CM

repositories are highlighted in italic). 73

4.9 RQ2: Number of commits changing both functional and non-

functional properties. 76

4.10 RQ2: Median Commit Sizes. ‘Other’ category represents all com-

mits that were not deemed to improve any of the four NFPs of interest. 77

4.11 RQ2: Commits Improving Multiple Properties. 77

4.12 RQ2: Commits with Trade-Offs Between Properties. 77

4.13 RQ3: Categories of Commits by Non-functional Property (% of

commits improving a particular NFP). 78

4.14 Correlation between properties of repositories and the number of

NFP-improving commits found in them. 90

5.1 Applications and targeted activities in our benchmark 109

5.2 CPU times (CPUTs) of activity launch before and after GI. 110

5.3 Percentage improvement to CPU time after GI. 110

5.4 Launch times (LTs) before and after the application of GI. 111

5.5 Percentage Improvements to launch times after GI. 111

5.6 Comparison of test suit execution time, build time, and GI run time . 115

6.1 Parameter settings for the MO algorithms used in our study. 133

List of Tables 18

6.2 No. of times GIDroid finds patches that contain edits semantically

equivalent to developer patches, providing at least the same % per-

formance improvement (Rep.) and no. runs where an improvement

was found (Imp.). Each MO run was repeated 20 times. 135

6.3 Normalised Hypervolumes of the Pareto fronts found by GIDroid

across our experiments, by algorithm. 136

6.4 A effect size for each algorithm on each benchmark. Effect

sizes larger than 0.5 show positive improvement. differences:

N=negligible, S=small, M=medium, L=large 140

6.5 Maximum improvements to execution time and memory use found

by GIDroid using SO-GI (no bandwidth improvements were found). 141

6.6 Improvements (%) from repairing linter warnings, for benchmarks

where viable improvements were found. 145

7.1 The potential operators and values that primitives can be compared

with and to, depending on the type of the primitive selected for the

newly created if statement. 154

7.2 Android applications and commit sha of version targeted for im-

provement and links to their repositories. 159

7.3 Network used by applications identified by our profiler which had

network-using methods covered by unit tests, the number of KLoC

in each application, and the most network-intensive method name. . 160

7.4 Number of potentials if statements which could be inserted for

each benchmark. 161

A.1 Quadratic Discriminant Analysis of NFP finding two in three commits172

Chapter 1

Introduction

Android applications (or apps for short) are one of the most widely used types of

software [1]. They are designed for direct user interaction, with the main entry point

for the software being its UI components. Due to the small size of Android devices

(phones and tablets) compared to traditional desktop devices, their hardware capa-

bilities are naturally limited. These two factors result in non-functional properties

being especially important to both users and developers. In fact, non-functional

properties are so important to Android users that 1/3 of instances of users aban-

doning applications [2] and 59% of bad reviews were due to poor performance [3].

Banerjee and Roychoudhury [4] analysed 170,000 user reviews of mobile applica-

tions, and classified reasons for user downvotes. Three out of five identified cate-

gories related to non-functional properties. Khalid et al.’s [5]’s study of iOS appli-

cations also showed that unresponsive, resource-heavy applications and those with

network-related issues were among the top most frequent sources of complaints.

Liu et al. [6] found that out of 60,000 randomly sampled applications, over 10,000

contained reported or repaired performance issues. Gao et al. [7] reported that users

would leave negative reviews for applications that had advertisements that nega-

tively impacted performance. Gao et al. [8] found a strong correlation between

performance cost and negative user reviews.

However, despite the impact of non-functional properties on user experience

and the prevalence of bugs in source code which affect them [9], there is limited

work into improving Android performance.

20

In the past, work improving the non-functional properties of Android apps has

utilised approaches including prefetching, offloading, OLED screen management,

and device configuration. However, there has been limited work into automatically

refactoring Android applications. Genetic Improvement (GI) has proven successful

in improving non-functional properties through patch generation. GI uses meta-

heuristics to generate patches that improve some aspect of a program. In this thesis,

we will explore how we can use GI to improve the non-functional properties of

Android applications.

The contributions of the thesis are as follows:

1. An open-source tool, GIDroid, for running Genetic Improvement in Android.

2. Three novel mutation operators for Genetic Improvement specifically devel-

oped to provide improvements to memory, execution time, and network use.

3. A profiler for detecting network-intensive methods in Android.

4. An empirical study detailing the ways in which developers improve the non-

functional properties of Android apps.

5. Experiments showing that improvements of up to 50% to frame rate, 30% to

responsiveness, 35% to execution time, and 69% to memory consumption are

possible with GI in the Android domain.

We make all tools and results available at our website solar-group.github.

io/os/android.html

This thesis is structured as follows. We begin by discussing the related work

and background of this work. Next, we detail our work in improving the frame rate

of Android applications with GI. In the fourth Chapter, we show how we improved

the responsiveness of Android applications using GI with only local testing. Then,

we discuss a study in which we mined real developer commits to see how they

actually improve the non-functional properties of Android Applications. In Chapter

6, we discuss how we modified our framework with the information gathered from

commits to improve GI for multi-objective optimization of Android apps. Next, we

detail our attempts to reduce the network usage of apps with GI. Finally, we discuss

the threats to the validity of our work and the general conclusions made.

solar-group.github.io/os/android.html
solar-group.github.io/os/android.html

Chapter 2

Background and Related Work

This chapter is concerned with the background knowledge needed to understand the

work presented in the thesis, along with the related work from the literature, needed

to contextualize the work. We begin by discussing the Android environment. In

particular, how Android app development differs from traditional software devel-

opment. Then we discuss the previous approaches used to improve non-functional

properties of Android applications.

Next, we discuss Genetic Improvement. Discussing how GI works, and how

it can be applied to software. Finally, we present the previous applications of GI

found in the literature.

2.1 Android Applications

Android applications are programs that are able to be installed and run on devices

running the Android Operating System. The majority of apps are developed for

mobile phones, with 2.87 million apps on the Google Play Store alone [10]. Android

applications are what does generally written mean generally written in languages

that run in the Java Virtual Machine (JVM), although other languages can be used.

These languages are primarily either Java or Kotlin, but components of apps can

also be compiled native code written in C/C++.

Despite this, Android applications differ from traditional JVM-based software

in a number of ways.

2.1. Android Applications 22

Java/Kotlin Source Code JVM Byte Code

Obfuscated JVM Byte CodeDex Code

Compile

ProGuard
Transpile

Transpile

Figure 2.1: Android Application Compilation Process.

2.1.1 Compilation

The first way that Android apps differ from traditional software is in compilation.

In a standard JVM-based language like Java or Kotlin, the source code is simply

compiled into JVM byte code, and can then be optionally packaged into a jar file.

In Android, we must perform extra steps. Android Applications are not run with the

JVM. Instead, they are run with either the Dalvik Virtual Machine (DVM), in An-

droid versions up to 4.4, or the Android RunTime (ART)1 in more recent versions.

The DVM works in a similar way to the JVM, translating byte code into machine

code at run time. However, the ART performs compilation at installation time,

making installation slower, but offering performance benefits at run time. However,

rather than running the same byte code as the JVM, Android has its own byte code

called dex code. To get dex code from Java or Kotlin source code, we must first

compile it to JVM byte code, then transpile it to dex code. Optionally between

these two steps we can obfuscate the byte code using a tool called ProGuard. This

process is illustrated in Figure 2.1.

Next, we must package the code into an Android Application Package (APK)

or, less commonly, an Android App Bundle (AAB). APKs are the standard file

format for applications, whereas AABs contain everything needed for the Google

Play Store to generate an APK whilst allowing for smaller file sizes. In this process,

we combine the application’s byte code and resources into an executable file that

1https://source.android.com/docs/core/runtime

https://source.android.com/docs/core/runtime

2.1. Android Applications 23

can be installed and run on an Android device. An application’s resources include

XML files defining the layouts of UI elements, images, audio files, and the strings

displayed in the app.

Finally, the application can be installed and run on a device or emulator.

We generally perform this whole process using the Gradle build system, using

the Android-specific Gradle plugin. Gradle can manage most of the tasks needed

to successfully deploy an application, including compilation, testing, dependency

management, and linting.

2.1.2 Testing

The other major difference between traditional software and Android applications is

the way that they are tested. There are two types of tests that can be used to validate

the behavior of Android applications: connected tests, local tests [11].

Firstly there are connected tests. These tests run on either devices or emula-

tors. These tests can exercise any Android code and are suggested to be used for

integration testing. We can utilise testing libraries such as Espresso 2 to interact

with the actual application under test. These tests are, however, very slow. They

require the entire application to undergo compilation, packaging, installation, and

launch.

Secondly, Android apps can be tested using local tests. These tests require

much less time to compile and run than connected tests, as they only require the

source code of the application to be compiled into JVM byte code. However, many

of the APIs that apps use are not available in these tests and are replaced with stubs.

The missing APIs include UI rendering, File IO, and sensor reading. Crucially,

there is no way to access the state of the application as no application is actually

launched. This severely restricts the amount of code that can be exercised with unit

tests and they are mostly only useful for small, static methods.

Finally, random input generation techniques can be used to perform system

testing on apps. The first of these techniques is Monkey [12], which is devel-

oped and maintained by the Android Development team. Monkey simply simu-

2https://developer.android.com/training/testing/espresso

https://developer.android.com/training/testing/espresso

2.1. Android Applications 24

Tool Property
systrace Memory Usage
dumpsys-gfxinfo UI rendering
dumpsys-netstats Network Usage
dumpsys-batterystats Energy Usage
dumpsys-meminfo Memory Usage
perfetto Memory Usage, CPU Time

Table 2.1: Tools available in the Android SDK for measuring the performance of apps.

lates random touches on the device or emulator on which the application is running.

These simulated inputs aim to find crashes in the app. There is a large body of

work aiming to improve upon Monkey. This began with Amalfitano et al. [13] us-

ing a model-based approach to generate simulated inputs which could more effec-

tively explore code and uncover more crashes. It continued with more model-based

approaches, including Azim et al.’s [14] A3E, Choi et al.’s [15] SwiftHand, and

Yang et al.’s [16] ORBIT. Other works, including Mahmood et al.’s EvoDroid [17]

and Mao et al.’s Sapienz [18] opted for search-based approaches, where input se-

quences are stochastically generated and improved with search algorithms, aiming

to optimise the amount of code which is exercised and the number of crashes which

are induced. However, no assertions can be made when using these tools so they

cannot find bugs in the same way that traditional unit/integration tests can, making

them useful for regression testing.

2.1.3 Measuring Non-Functional Properties of Android Apps

When improving non-functional properties we must be able to measure them.

Whilst some non-functional properties, such as code quality, can be measured stat-

ically, many require the application to be exercised. For example, to measure the

speed of a method in an application, we must actually run the method.

To exercise apps we can use the previously described testing techniques, how-

ever, the choice of technique may limit the properties that can be measured. If

testing is performed on an actual device, many of the tools that would be used to

measure the non-functional properties are not available.

Only a small selection of tools is made available through the Android operating

2.2. Non-functional Improvements to Android Apps 25

system. The tools made available through the Android SDK are shown in Table 2.1

One of the most useful tools available is dumpsys. dumpsys provides a wide

range of information about different apps and services on a device, this includes

information about memory usage, battery usage, and UI performance.

Whilst the other tools are useful, they do not provide their information in a

concise machine-readable format like dumpsys, being more useful to human de-

velopers than automated tools.

When measuring non-functional properties using unit tests many other tools

can be used as the tests just become a normal process. For example, the Linux time

tool [19] can be used to measure the execution time of a method.

2.2 Non-functional Improvements to Android Apps
Hort et al [20] conducted a survey into the work on improving the NFPs of An-

droid apps. Below we detail the works listed in the survey, along with more recent

publications.

To find more recent works, we searched a number of online repositories for

related works. The repositories were IEEE Access, ACM Digital Library, DBLP,

and Google Scholar. We used a keyword search of the titles and abstracts of papers

for keywords relating to Android (Android, Mobile) and non-functional properties

(speed, performance, memory, bandwidth, network, efficiency) and Genetic Im-

provement to identify relevant papers. We also searched the proceedings of relevant

venues (ICSE, FSE, ASE, GECCO, SSBSE, and MOBILESoft).

We have identified the main approaches for improving the NFPs of Android

applications as:

1. Offloading

2. Preloading

3. OLED Screen Management

4. Device Configuration

5. Refactoring

In this section we will discuss the previous work that concerns these ap-

2.2. Non-functional Improvements to Android Apps 26

proaches.

2.2.1 Offloading

Offloading involves not only running the application on the actual Android device

on which it is installed but also running the application on an external server. Most

of the research in this area attempts to find the parts of the application that should

be run remotely and when the application on the device and the application on the

server should communicate. The main aim of offloading is to reduce the energy used

by the Android application on the device, thus extending its battery life. However,

it can also improve the responsiveness of the application if the remote code can be

run quicker than it would on the device.

Das et al. [21] introduced the APPS system which supports both class-level of-

floading and thread migration to an external server, decreasing the execution time of

applications by 60% and decreasing the energy usage by 70%. Montella et al. [22]

used offloading to successfully adapt an application to run on low-resource devices

by running its most expensive portions remotely. Chen et al. [23] derived the best

dynamic offloading in ultra-dense networks where the high number of nodes in the

network made regular offloading prohibitively complex. They did this by finding

optimal times to offload computation, accounting for both the state of the mobile

device and the state of the network. Kwon et al. [24] perform offloading on areas

of code that are marked by developers as suspect. This achieves a 25-50% decrease

in energy usage. Gordon et al. [25] run copies of apps both locally and on a remote

server, in order to avoid deciding which will be faster. This results in an up to 2-3x

speedup. Gordon et al. [26] introduced the COMET system to allow unmodified,

multi-threaded applications to automatically run across multiple machines on the lo-

cal network. COMET achieves this by implementing a distributed shared memory

accross different machines and only sharing the fields which have been modified to

minimise the interactions between different machines. Kemp et al. [27] introduced

the Cuckoo framework for simplifying the development of applications that can

exploit offloading and then chose what to offload at runtime. Chun et al. [28] de-

veloped the CloneCloud which partitioned applications into components that could

2.2. Non-functional Improvements to Android Apps 27

be run on a clone version of the program in the cloud. Kosta et al. [29] focused on

increasing the scalability of mobile offloading by introducing multiple virtual ma-

chines in the cloud, allowing multiple components to be offloaded at once. Saari-

nen et al. [30] showed that offloading communications components of applications

could lead to energy savings. Ding et al. [31] achieved energy savings of 80% by

finding and offloading using the most energy-efficient WiFi access points available.

Khairy et al. [32] used supervised learning to better predict when to offload, re-

ducing both energy usage and execution time. Berg et al. [33] created safe points in

execution from which offloading can happen. This allowed the applications to func-

tion correctly in cases where offloading was interrupted by executing the offloaded

process locally. Ki et al. [34] combined offloading with two other energy saving

techniques, dynamic voltage/frequency scaling and hybrid memory allocation, to

make more energy efficient systems.

That being said, offloading requires external server architecture to be set up

and engineering effort to modify applications or operating systems to allow them to

take advantage of offloading. This setup would then only be available to users with

internet access and may not be viable for users on limited data plans.

2.2.2 Prefetching

Prefetching involves downloading online assets at launch time and storing them

until they are needed. This saves waiting for resources to be downloaded whilst

the application is in use. Prefetching must be carefully considered so that large

unnecessary files are not downloaded, increasing the network and memory usage

of the application. Resources may also become outdated between download and

usage, the ability to avoid this is known as freshness. If prefetching is performed on

a cellular network rather than WiFi, it may result in higher energy usage [35].

Higgins et al. [36] provide a self-adjusting cost-benefit algorithm for deter-

mining when prefetching should be performed. They achieve this by only making

network requests when the network is not already busy. This algorithm is run as

a part of the operating system so no changes of source code are needed. Bau-

mann et al. [35] propose the Every Byte Counts algorithm for choosing the best

2.2. Non-functional Improvements to Android Apps 28

time for prefetching based on probabilistic models of application usage and net-

work traffic. This algorithm reduces the network usage of pre-fetching by 10% and

improves the freshness, or the time between the acquisition of a network asset and

its usage, by 36%. Mohan et al. [37] explore the prefetching of mobile ads in bulk

to reduce energy usage. They find that prefetching ads can reduce the energy usage

of mobile apps by 50% without impacting revenue. However, Chen et al. [38] found

that 57 out of the top 100 free apps on the Google Play store could only reduce the

energy consumption of ads with prefetching by an average of 3.2%. Zhao et al. [39]

reduce the latency experienced by users by prefetching http requests before users

trigger the requests.

Whilst pre-fetching has proven successful, it has also been show to quickly take

up large amounts of the limited storage available on Android devices [40]. More-

over, prefetching can only be applied to areas of code which access the network and

cannot take advantage of local caching opportunities.

2.2.3 OLED Screen Management

Both prefetching and offloading can improve the energy usage of apps. However,

much of the work on improving energy consumption concerns OLED screen man-

agement.

Lin et al. [41] developed an app that allowed users to select an area of interest in

the screen and dim the rest of the screen, whilst keeping it readable. Chen et al. [42]

dimmed the parts of the touch screen covered by users’ fingers, achieving energy

savings of 13%. Lin et al. [43] reduced energy consumption by combining dynam-

ically disabling pixels and scaling resolution. Lin et al. [44] proposed an algorithm

for scaling images without impacting their visual quality by segementing images

into different regions and dimming those which the user is less likely to be look-

ing at. Linares-V’asquez et al. [45] propose an approach that uses multi-objective

optimization to find energy-efficient colour schemes whilst also maintaining the

contrast accross the UI, such that it is still readable, and the schemes are faithful to

the original application. Li et al. [46] wrote a tool that rewrote web pages to use

darker and more energy-efficient colour schemes, finding energy savings of 40%.

2.2. Non-functional Improvements to Android Apps 29

Anand et al. [47] used tone mapping techniques to increase the brightness of im-

ages, allowing the LED backlight to be dimmed, saving up 68% of display power.

Chen et al. [48] dimmed areas of the screen, whilst highlighting the components of

images being displayed which were important to the structure of the image using

a highly parallelised region detection algorithm which could be run entirely on a

GPU in real-time.

Approaches involving OLED screen management can however only affect the

UI power usage and not any of the power used by other expensive components such

as GPU sensors. Also, if the area of the screen that the user is interested in is

dimmed, it may adversely affect their experience.

2.2.4 Device Configuration

Android devices have a number of configuration options that can improve the en-

ergy consumption and execution time of applications. Rao et al. [49] found the

most energy-efficient options for CPU frequency and memory bandwidth options

for a number of applications. To achieve this, they simply measure energy usage

and performance for 18 different configurations for these parameters. When the ap-

plication is running, they can the modify the CPU frequency and memory bandwidth

to reduce energy consumption based on the previous measurements. Pyle et al. [50]

improved energy usage by switching WiFi to a lower power usage state when its

audio streams are silent. However, these techniques can come at the cost of per-

formance. Kim et al. [51] achieved speed-ups by configuring devices to perform

sequential IO calls with the pack command rather than seperately. Kim et al [52]

achieved a 13% speed-up by tuning 5 parameters of the Ext-4 file system.

2.2.5 Refactoring

In refactoring, source code is modified to improve some properties of the software,

whilst maintaining its functionality.

Lin et al. [53] proposed ASYNCDROID, a refactoring tool that helps a devel-

oper to convert incorrectly used asynchronous constructs into correct ones. How-

ever, this approach requires developers to identify each line of code that they wish

2.2. Non-functional Improvements to Android Apps 30

to execute asynchronously and there is no indication of the actual impact on perfor-

mance of these changes. Lyu et al. [54] automatically refactored inefficient database

writes, found in loops, into more optimal code.

Saborido et al. [55] investigated the cost of various versions of the map data

structure for memory usage, execution time, and energy usage. They then suggest

the most optimal version to use in different situations.

Cito et al. [56] automatically detected and throttled recurrent requests for ad-

vertisement and analytic requests. Li et al. [57] found http requests which could be

bundled into single larger, but more energy-efficient requests. Banerjee et al. [4]

found parts of code that violated energy usage guidelines and automatically refac-

tored them, decreasing the energy usage of apps. Banerjee et al. [58] devel-

oped EnergyPatch to detect and fix resource leaks, improving energy efficiency.

Cruz et al. [59] refactored apps to follow known energy-efficient design patterns

Morales et al. [60] automatically improved the design quality of Android apps,

whilst controlling for energy efficiency. Bokhari et al. [61] exposed and optimized

’deep parameters‘ in Android applications. Deep parameters are variables added

into source code to modify the arguments of function calls [62]. These parameters

are then tuned to reduce the energy usage of the application.

2.2.6 Summary

The approaches that have proven successful so far are either limited in their ap-

plicability or require patterns to be defined (prefetching, device configuration, and

refactoring), require external hardware (offloading, OLED screen management), or

are not fully automatic (offloading, refactoring). Bokhari et al.’s work [61] is the

only approach that could be generically applied to source code, with no need for

patterns, external hardware, or user input. Deep Parameter optimisation is a form of

Genetic Improvement, finding optimal variants of source code using meta-heuristic

search. Genetic Improvement has shown promise in improving the non-functional

properties of traditional software and we believe that it could be used to improve

many more non-functional properties in Android than just energy usage.

2.3. Genetic Improvement 31

2.3 Genetic Improvement
According to our review (see Section 2.2), Genetic Improvement has yet to be fully

explored for improving the non-functional properties of Android Applications. [63]

Genetic Improvement [63] uses meta-heuristics to generate patches for pro-

grams that improve them with regard to some property. Genetic Improvement has

been used to repair programs, improve their non-functional properties, and trans-

plant functionality between programs.

2.3.1 Representation

Genetic improvement attempts to find patches for source code. The source code

variants used in genetic improvement are represented as a set of edits. This greatly

reduces the size of the individuals which, thus reducing the memory footprint of

the GI process compared to representing individuals with the whole source code of

the program, which is standard in Genetic Programming – the most popular search

strategy in GI. To find improvements, we must generate patches. These patches con-

sist of a series of edits or mutations to source code, which could include line [64],

statement [65], and bytecode [66, 67] changes.

The edits used rely on the plastic surgery hypothesis, which states:

“Changes to a codebase contain snippets that already exist in the code-

base at the time of the change, and these snippets can be efficiently

found and exploited.” [68]

2.3.2 Mutations

When using GI we must decide upon what kinds of changes we will make and

define the search space of patches which we will explore.

GI aims to recreate the patches developers often make, consisting of the move-

ment and deletion of code in the existing code base. The standard statement-level

mutation operators used in Genetic Improvement [63] are:

delete(s1) : Removes statement s1

copy(s1,s2) : Copy statement s1 in front of s2

swap(s1,s2) : Swap statements s1 and s2

2.3. Genetic Improvement 32

replace(s1,s2) : Replace statement s1 with statement s2

Similar mutation operators have also been used for lines of source code [64]

and lines of byte code [66, 67].

Other mutation types have been used which do not simply remove and move

code. Brownlee et al. [69] used mutations that inserted return and break statements,

in some cases wrapped in if statements to speed up programs. Deep parameter op-

timisation exposes so-called deep parameters and modifies their values [62]. The

mutation operators depend on the type of the parameter being mutated. In the case

of integers, mutations will increase or decrease the value of the parameter. Mu-

tations that replace data structures with others that have the same interfaces but

different implementations (e.g. ArrayList vs LinkedList in Java) have been used to

improve NFPs of software [70, 71].

2.3.3 Fitness

After patches are generated they are evaluated and the fitness of a patch is measured.

To evaluate a patch, the test suite of the software is run. When repairing a

faulty program, we take the number of passing tests as the fitness. The fitness

measurement is an indicator of how good a patch is in achieving a given objective

When improving non-functional properties, all tests must pass for us to consider

a patch valid. During this test suite’s execution, the non-functional property that

is being improved is measured to determine the fitness of the patch. For example,

when improving the execution time of software we could use the time taken for

the test suite to execute as a fitness measurement, which we would then aim to

minimise.

2.3.4 Search

To generate and search for patches that improve programs, heuristics or meta-

heuristics are used. Meta-heuristics are a class of algorithms that can be applied

to a wide array of problems in order to find optimal, or near-optimal, solutions.

According to Blum and Roli:

“Metaheuristics are high level concepts for exploring search spaces by

2.3. Genetic Improvement 33

using different strategies. These strategies should be chosen in such a

way that a dynamic balance is given between the exploitation of the

accumulated search experience (which is commonly called intensifica-

tion) and the exploration of the search space (which is commonly called

diversification). This balance is necessary on one side to quickly iden-

tify regions in the search space with high quality solutions and on the

other side not to waste too much time in regions of the search space

which are either already explored or don’t provide high quality solu-

tions.” [72]

In the context of GI, these algorithms are used to generate initial patches ran-

domly, then iteratively improve the patches based on the selection of the fittest in-

dividuals, and the insertion and removal of edits in selected patches.

Blot and Petke [73] performed an empirical comparison of the most commonly

used GI search algorithms, and their variants. In particular, they compared 8 vari-

ants of GP and 6 variants of LS. Thus, we explain the main components of each

below.

In GP a population of patches is stochastically generated. Next, the fitness of

these patches is measured. A new population is then created by repeatedly selecting

individuals from the existing population. An Illustration of GI using GP to evolve

increasingly optimal versions of software is shown in Figure 2.2.

Selection can be completed in a number of ways. In roulette wheel selection,

each individual x in a population of size N has an associated probability of being

selected Pr(x) which is proportional to its fitness f (x). We set Pr(x) to the fitness of

x, i.e., f (x), divided by the sum of the fitness for each individual y in the population:

Pr(x) =
f (x)

∑
N
y=1 f (y)

(2.1)

In tournament selection [74], groups of N individuals are selected, often 2, and

either the fittest individual in the group is selected or a roulette wheel selection is

run on the group.

Selections are then repeatedly made based on this distribution until N individ-

2.3. Genetic Improvement 34

Source Code

Population Modified Population

Mutation + Crossover

Fitness MeasurementSelection

Test Cases

Figure 2.2: The Genetic Improvement Process Using a Genetic Programming Style Meta-
Heuristic.

uals have been selected. This results in a population with a higher average fitness as

there are likely to be multiple instances of high-fitness individuals and no instances

of low-fitness individuals.

Mutation operators (removing/adding new edits) are then applied randomly.

Crossover can also be used to combine patches, splitting the lists of edits for a patch

in two and recombining with a segment of another selected patch’s edit list, or

appending a section of one patch to another. This process repeats for a set number

of iterations or until a certain fitness is reached.

Local Search (LS) is another commonly used search algorithm. In local search,

an empty patch is initialised and its fitness tested. Single random edits are then

added or removed and the fitness is measured, if the fitness is improved the edited

patch replaces the empty patch as the current best. This process repeats for a set

number of evaluations, continually updating the current best solution. In the end,

the current best is given as the best solution.

In general, different search algorithms offer different balances between explo-

ration of the search landscape and exploitation of local optima in the landscape.

In the case of GP, a more diverse set of individuals can be evaluated. But in LS

improvements that have been found can be built upon, offering more exploitation.

When improving one property of a program, others may be affected. For ex-

ample, if a variable is cached for use later it may improve execution time at the

2.4. Applications of Genetic Improvement 35

detriment of memory usage. Multi-Objective Search Algorithms (MOSAs) can be

used to consider these trade-offs during search and find the best trade-offs. A naive

MOSA may just take weighted averages of different objectives. However, this re-

quires a good understanding of the relationships between the objectives. The con-

cept of Pareto dominance can instead be used to determine whether one solution is

better than another. One individual x with objective values of {x0,x1, ..,xn} Pareto

Dominates another individual y, if all of x’s objectives are as good as y’s and at least

one objective is better, that is:

∀i ∈ 1..n : xi ≥ yi
and

∃i ∈ 1..n : xi > yi

The set of solutions that are not Pareto dominated by any others is the Pareto

Front. Solutions in the Pareto Front are considered to be optimal trade-offs and

the whole Pareto front is given instead of the single best patch. This allows devel-

opers to see which trade-offs are possible and select the most appropriate for the

deployment environment of their software.

Once edit types, selection operators, mutation/crossover operators, and an ap-

propriate meta-heuristic have been selected, we can use GI to improve any number

of properties of a particular piece of software – as much of the previous work using

GI has shown.

2.4 Applications of Genetic Improvement
Whilst there have been a number of works that try to find transformations to the code

of Android applications, they have either required patterns, only been applicable to

small areas of code, or only targeted energy efficiency

GI has shown promise in improving many properties of traditional software

and is generally applicable to all areas of code.

Genetic Improvement has been used a number of times in the field of Auto-

matic Program Repair (APR). Le Goues et al. [75] searched for variants of programs

that pass all tests in a test suite, the similarity of the variant to the original code was

also improved using delta debugging and structural difference algorithms to make

2.4. Applications of Genetic Improvement 36

patches more similar to those that developers would write. Arcuri et al. [76] co-

evolved source code and test cases based on a formal specification of the program,

repairing bugs.

Genetic Improvement has also been used to improve other properties of, ex-

tend, or modify the functionality of programs on several occasions. Petke et al. [77]

used GI to transplant functionality into a program to specialise it to a particular

task. Barr et al. [78] used GI to transplant functionality between various programs,

including video encoding functionality from the x264 system, to the VLC media

player. Al Najar et al. [79] evolved programs that could more accurately forecast

shoreline evolution. Federiks et al. [80] used GI to evolve grammars for better

procedural generation of stories in games. O’Brien et al. [81] retargeted quantum

programs for different hardware using GI.

Furthermore, one of the most common applications of Genetic Improvement

has been the optimisation of various different non-functional properties of software.

Execution time has been one of the most common properties that previous work

using genetic improvement has targeted. Langdon et al. [82] improved the execution

time of the SEEDS image segmentation algorithm by 13%. Sitthi-amorn et al. [83]

improved the execution time of a shader by over 80%, whilst sacrificing some of

the fidelity of the images it produced. Langdon et al. [84] improved the speed of

the bowtie2 tool by 45% for genome comparison using GI. Petke et al. [77] used

GI to transplant code and improve execution time by 17%. Langdon et al. [85]

improved the execution time of CUDA code for 3D medical imaging by 35%.

Walsh et al. [86] used GI to automatically parallelise code, thus improving the ex-

ecution time. Bruce et al., [87] decreased the execution time of a face detection

algorithm by up to 45% using deep parameter optimisation. Langdon et al. [88],

evolved LLVM representations of geographical open standards and achieved up to

2% better performance than code optimised by compilers. Zhong et al. [89] used

genetic improvement to speed up Python programs by up to 94% automatically con-

verting Python into statically typed Cython code, which is generally more efficient.

Genetic Improvement has also proven useful in improving the energy con-

2.4. Applications of Genetic Improvement 37

sumption of software. Burles et al. [71] found energy-efficient replacements for

data structures using GI. Bokhari et al. [61] used ‘deep parameter optimisation’ for

energy optimisation on Android devices. White et al. [90] used genetic program-

ming in order in to improve energy consumption of software on embedded systems.

White et al. [91] optimised the energy consumption of random number generation

software using genetic improvement. Schulte et al. [92] applied GI to compiled

machine code in order to find energy optimisation.

Other work has targetted memory consumption and bandwidth usage.

Wu et al. [62] exposed and modified ‘deep parameters’ to improve and find trade-

offs between both memory and execution time. Basios et al. [70] swapped between

‘Darwinian data structures‘ to improve both memory usage and execution time.

Carbognin et al. [93] used GI to evolve novel congestion policies for network

components, increasing network throughput by 5%.

Despite the resource-constrained environment of Android applications making

them prime targets for improvement, GI had only been used once before the work

presented in this thesis for Android applications. Bhokari et al. [61] improved the

energy usage of applications using deep parameter optimisation. Therefore, in this

thesis, we investigate how GI can be applied, and how effective it can be at the

improvement of non-functional properties of software in the mobile domain, with

a focus on Android. We start with trying to improve a property that is especially

important to mobile phone users – Android app responsiveness.

Chapter 3

Improving Frame Rate

In this Chapter, we detail our initial experiments in applying Genetic Improvement

to improve non-functional properties of Android applications. We start by applying

single-objective GI to the responsiveness of Android apps.

Responsiveness is one of the most important qualities of Android applications

to their users. Inukollu et al. found that 59% of users would give a bad review to

an unresponsive app [3]. Khalid et al. [5] found that unresponsiveness was one of

the most frequent reasons that users left bad reviews on mobile applications. Lim

et al. [2] found that unresponsiveness was to blame 1/3 of the times when users

abandoned applications.

In order to apply GI to responsiveness, we must first define a fitness func-

tion which we can measure. Responsiveness, however, can be difficult to quan-

tify. Moreover, measurements such as execution time are inherently noisy and do

not necessarily reflect user experience if long-running background operations are

measured. Inspired by previous work [94], we propose using the frame rate of an

application as a metric for responsiveness.

To explore this idea, we define a new framework for applying Genetic Im-

provement to improve the non-functional properties of Android. This framework

allows Genetic Improvement to run on a desktop PC, whilst fitness measurements

are delegated to devices or emulators. We use the gfxinfo tool which is built into

the Android operating system to measure frame rate.

We identified the 20 most popular Android applications. However, GI relies

3.1. Improvement of Android App Responsiveness Using GI 39

on testing to evaluate the fitness of individual program variants. In particular, we

require tests that exercise the UI of applications, generating frames, to measure the

frame rate of the application. Out of the 20 apps, only 4 had tests exercising UIs,

thus we focused our experiment on those apps.

We find improvement of up to 50% in frame rate, although closer inspection

reveals many of the patches to be invalid. This is due to weak test suites — used as

proxies for correct program behavior, as is common in GI work. Nevertheless, we

found a valid mutation that reduced the frame rate by 43%. Subsequently, we apply

GI on code with high test-suite coverage. However, in these cases, no consistent

improvements were found.

Our results show that although GI could be successful in the improvement of

Android apps’ responsiveness, any such test-based technique is currently hindered

by the availability of test suites covering UI elements.

The rest of the chapter is structured as follows:

1. Section 3.1 details how we have modified GI to be suitable for Android. In-

cluding changes changes to the testing and compilation components of an

existing framework.

2. Section 3.2 lists and explains the research questions that we wish to answer

about how suitable GI is to the improvement of the frame rate of Android

apps.

3. Section 3.3 describes the experiments we ran to answer our research ques-

tions.

4. Section 3.4 details the results of the experiments described in our method-

ology, showing how effectively GI can improve the frame rate of Android

apps.

5. Section 3.6 discusses the conclusions of this research.

3.1. Improvement of Android App Responsiveness Using GI 40

Figure 3.1: Genetic improvement framework for Android applications.

3.1 Improvement of Android App Responsiveness

Using GI

The main challenge of applying GI in the Android domain to improve responsive-

ness lies in defining and evaluating the fitness function. In the past, responsiveness

has been measured using the execution time [26, 29, 95] of test cases. Whilst this

may capture responsiveness, it will be negatively impacted by long-running back-

ground processes which do not impact the actual responsiveness of the application.

Gordon et al. [25] measured the “user-perceived latency” of interactions with appli-

cations, which is the time between a user input and the completion of the action it

triggers. This metric requires user scenarios to be manually defined, including start

and end points and does not allow us to utilise developer-defined UI tests. How-

ever, we chose to use frame rate as a proxy for responsiveness, as it is both easily

measured and directly captures delays in updates to the UI. An application whose

frames are not rendered in a timely manner will be unresponsive. Therefore, fixing

3.1. Improvement of Android App Responsiveness Using GI 41

these delays will result in a more responsive application. We believe that frame rate,

and thus responsiveness can be improved through source code transformations.

To measure an application’s frame rate, we must exercise the application’s UI

on a device or emulator, so we cannot rely solely on local unit tests. This means

that applications must be packaged and installed on a device or emulator, which is

a costly process. It also removes our ability to use optimisation techniques such as

in-memory compilation.

Therefore, we propose the general framework shown in Figure 3.1. The im-

provement process takes place across two devices: a desktop and an emulator or

mobile device. All communication between the desktop device is performed by the

Android debug bridge, running on the desktop device.

In the desktop environment, new patches are generated, through mutation and

selection (Stage 1), patches are applied, and applications are built and packaged

(Stage 2). Finally, local unit tests are run to determine whether or not a patch should

be installed on the actual device (Stage 3). This step is important to vastly increase

GI efficiency, as it reduces the number of program variants that need to be packaged

and installed on a device or emulator, in order to measure their fitness. Patched ap-

plications that pass unit testing are then installed (Stage 4). On the Android device,

modified versions of the application are exercised by the test package, and fitness

measurements can be taken (Stage 5).

This framework could be easily used to improve any non-functional property,

simply by specifying different measurement tools. It could also be extended to au-

tomated program repair by removing the measurement of a non-functional property

and using the number of passing tests as the fitness function. Different search al-

gorithms and mutation operators could also be tried in Stage 1 of the process. This

framework also allows for parallelisation of the fitness evaluation process, by con-

necting multiple devices or emulators, though careful measures need to be taken to

achieve reliable measurements (depending on the fitness function of interest).

3.2. Research Questions 42

3.2 Research Questions
In order to investigate the effectiveness of genetic improvement for the purpose of

improving Android app responsiveness, we set out to answer the following research

questions:

RQ1 How effectively can genetic improvement optimise the responsiveness of An-

droid applications?

This question will explore how well simple line-level modifications to An-

droid applications can improve their responsiveness and how easily we can

automatically find effective transformations.

RQ2 What type of source code changes are effective at decreasing frame rate in

Android applications?

The changes that we find to have the largest impact on frame rate could be

used to inform developers of ways in which they can improve the responsive-

ness of their apps. They could also be useful in inspiring future automated

techniques for improving the responsiveness of Android applications.

RQ3 How expensive is it to improve the frame rate of Android applications using

genetic improvement?

This question will allow us to quantify whether it is worth it to run GI in this

manner. We will be able to present the balance of cost running vs the im-

provement to allow developers to make an informed decision about applying

GI. We will also explore how the cost varies between applications and what

impacts the cost of running GI.

3.3 Methodology
In order to answer our research questions we implemented the framework presented

in Figure 3.1, and run it on a selection of Android applications.

3.3.1 Framework

We realise the abstract framework presented in Figure 3.1 in the Gin GI tool [96].

We chose it as among non-functional property improvement GI tooling, Gin is scal-

able to large real-world software and is optimised for Java — a popular choice for

3.3. Methodology 43

Android software. We utilise the pre-existing functionality from Gin which allows

the generation and modification of source code files with line-level changes. We

also use the existing local search algorithm from Gin. By default, local search is

run for 100 steps, at each step either copying, deleting, or replacing a randomly se-

lected line of code. We elected to run it for 400 steps to try to increase the chances

of finding effective changes.

In order to run on Android and gather data for fitness evaluation, we have

modified the components that compile the projects being improved and run their

tests. We also added the functionality to install applications on Android devices and

measure their frame rendering statistics.

3.3.1.1 Fitness

There are a number of different metrics which can be used to measure frame rate.

They include the frames per second (FPS), the average time taken to render a frame,

and the number of delayed frames. In order to measure the frame rate of an appli-

cation, we first need to run it, exercising its UI. We use UI tests for this purpose

and use the built-in dumpsys gfxinfo tool to gather various measures. The tool gives

detailed statistics about the render times of frames of a particular process. These

statistics include the number of janky frames (those that take longer than 1/60th

of a second to render), the median and, various percentiles (50th, 75th, 90th, 95th,

99th) of frame render time are given. We ran the whole test suite of our selected ap-

plications 100 times, measuring all these metrics, and found that the 95th percentile

of frame render time to be least noisy, thus we use it as our frame rate measurement.

Improving this metric will mean that the largest delays in responsiveness have been

fixed.

3.3.1.2 Testing

Patch evaluation consisted of running all test cases that covered the area of code

being modified to ensure that the functionality of the project had been preserved.

UI tests also had to be run to measure the frame rate of the application. To improve

the efficiency of the GI process, we identify test cases that cover the given class for

improvement, using jacoco [97]. Next, we use espresso [98] to identify UI tests.

3.3. Methodology 44

Finally, we split the UI tests into two, based on 60% delayed frame rate measure.

The reason for this split is two-fold: first, running tests on the emulator or device

is expensive, so we want to avoid unnecessary runs; second, we want to have a

held-out test suite to check the generalisability of improvements found. Therefore,

for Stage 3 and Stage 5 of our GI process presented in Figure 3.1 we use UI tests

causing the largest frame delays (over 60% frame delays), as well as all non-UI tests

covering a given class. If all tests pass at Stage 3, we keep this program variant and

evaluate its improvement in Stage 5, where each test is run 10 times, and the median

95th percentile frame render time is recorded. Due to the measurement of frame rate

sometimes missing the test execution and not capturing the full execution of the test,

small 3-second delays were added to the end of each UI test. This allowed the frame

rate measurement to be consistently captured. Each performance test suite was then

run until 200 frame measurements had been recorded. Before this the measurement

could experience noise, leading to false positive improvements. Once 200 frames

have been recorded we can see if the patch is in fact an improvement by comparing

the median proportion of delayed frames in each test to that of the current best

solution.

3.3.1.3 Search

Before we used the default local search implemented in Gin, we conducted a pre-

study, to see if genetic programming (also implemented in Gin) might have been a

better choice. Local search showed more promising results than GP as it was able

to find optimised solutions faster. This is in line with the findings of Blot et al. [73].

We performed 20 runs on each of the selected classes in each of the projects. This

allows us to collect a large amount of data and be confident about the efficacy of

our setup, despite the non-deterministic nature of GI. We perform statistical tests on

our results in order to quantify the effectiveness of GI at finding improvements.

3.3.2 Validation

For each final patch from each GI run, we use all tests covering a given class for

validation purposes. We ran each 10 times and recorded median frame rate improve-

3.3. Methodology 45

ment. This allowed us to run statistical tests on the results and see which patches

offered significant improvements. The number of delayed frames was measured in

the same way as during the GI runs. We performed this evaluation on a real device

rather than an emulator, to ensure that improvements were valid in a real-world en-

vironment and test for device overfitting. We also conducted a manual analysis of

the patches to confirm their validity.

3.3.3 Benchmarks: Mobile application Selection

We aim to improve real-world software and, therefore, choose to use real open-

source applications. Since we are using the Gin improvement tool, our modifica-

tions are limited to Java source code. Android applications may consist of mixtures

of Kotlin and Java source code, but only the part of the application being modified

needs to be written in Java. In our GI framework, each patch is validated using the

test suite of the application. This limits us to improving open-source applications

with areas of code that are well-tested. Moreover, we need UI tests to measure

frame rate. Therefore, a number of criteria had to be met by applications used in

this study:

• The application must be open source and at least partly written in Java.

• The application must be able to be compiled and deployed on an Android

Emulator.

• The application must have sufficient areas of code covered by a test suite (at

least one class with 40% line coverage).

• The application must contain at least one test that exercises it’s UI.

• The application must contain at least one non-trivial UI class. 1

Checking these criteria for a given app is costly (particularly test coverage).

The application must be downloaded, compiled, installed and tested. The coverage

of the unit tests and the instrumented tests must be measured separately. Fortu-

nately, Pecorelli et al. [99] performed an analysis of all applications from FDroid,

documenting both the number of tests and the coverage of those tests.

1Based on manual judgment we decided to select applications with at least one UI class with at
least 100 lines of code.

3.3. Methodology 46

In order to curate a set of applications to evaluate our approach on, we checked

applications analysed in [99] in descending order of line coverage. We then dis-

carded applications that were not written in Java, those that could not be compiled,

those whose tests could not be run successfully, and those that were too small for

meaningful improvement to be found. If an application was not discarded, the areas

of the application covered by its test suite had to be checked.

The first step in this process was to remove unreliable tests which would oc-

casionally fail without any changes to the application - for two reasons. Firstly, the

jacoco test coverage plugin [97] requires all tests to pass so unreliable tests could

disrupt the coverage measurement. Secondly, unreliable tests may produce false

negatives in patch validation. If a test fails due to unreliability, rather than due to

the applied patch, it will make a valid patch appear invalid. Thus, they must be

excluded from the experiments and, therefore, should be excluded from coverage

measurements. In some cases, build files had to be modified to remove conflicting

dependencies or enable test coverage measurement. No source code was modified

in this process.

When running GI on a desktop application, automated test generation tools

such as EvoSuite [100], can be used to supplement test suites and increase code

coverage. Sadly there are limited tools available for automated test generation for

Android applications and none that can automatically generate regression tests were

found. We found 3 tools that could generate automatic UI test input, however, none

worked on the recent versions of Android on which we ran our experiments. Even

if they did work they generated no assertions, so could not be used to confirm patch

validity. Therefore, the existing test suite of the application had to be relied on to

validate patches.

Due to the large cost of validating a suitable application and the rarity of these

applications, this process was repeated until 4 applications were found. Beyond

this point line coverage was less than 15% so it was unlikely that more suitable

applications would be found. Overall, we examined 192 applications, and 188 were

discarded.

3.3. Methodology 47

3.3.3.1 Profiling

Next, we profile each application we want to improve to identify code where

changes influencing frame rate are most likely to be found. We thus focused on

the UI implementing classes, the activity, view, and fragment classes. For each ap-

plication, we select the class which is most covered by the jankiest UI tests, that has

at least 100 lines of code. We added the second condition, as classes with few lines

of code are unlikely to hold improvements.

However, UI tests often contain very few assertions, relative to the amount

of code that they exercise, and unit tests for UI classes are very uncommon. Our

proposed GI approach uses testing as a proxy for correctness. Because of this, while

targetting UI-related classes may find the strongest improvements, it may also find

invalid improvements due to the weaknesses of the test oracle.

Therefore, for each application, we select a class for improvement that is best

covered by the whole test suite, and covered by at least one UI test, so we could

measure frame rate.

In order to identify covered classes we used the jacoco Android coverage tool

on each of the selected test cases Firstly, as jacoco only runs on whole test suites,

we added JUnit’s @Ignore decorators to all tests but the test case being investi-

gated. We then ran jacoco on the modified test suite and extracted the coverage

information, this process was repeated for each test. The classes which were most

commonly exercised were then manually analyzed to check for suitability, as de-

scribed above.

Table 3.1 shows the final set of applications we found using our selection pro-

cedure, including the classes we identified using our profiling procedure and their

test coverage.

3.3.4 Physical setup

Our experiments were run on a research cluster, with 16GB of RAM and an In-

tel Xeon e5 CPU, with an emulator using Android version 7. The evaluation of

improvements was performed on a NOKIA 9 running Android version 10.

3.4. Results 48

Table 3.1: The number of test cases and % line coverage for each of the selected classes.

App Name Class Name Line Cov.(%)

AntennaPod
PreferenceActivity (Exp1) 43
MainPreferencesFragment (Exp2) 68

Gnu Cash
AccountsListFragment (Exp1) 64
GnuCashApplication (Exp2) 76

MicroPinner
MainDialog (Exp1) 44
MainPresenterImpl (Exp2) 75

WikimediaCommons
AboutActivity (Exp1) 45
RecentSearchesContentProvider (Exp2) 63

Table 3.2: Improvements found by our GI framework in poorly tested UI classes.

Project No. imps. found Max. % dec in 95th per. render time
AntennaPod 0 0.0
Gnu Cache 1 11.11
MicroPinner 1 5.56
Wikimedia Commons 8 50.00

3.4 Results
Below we present the results of our experiments. In our first set of experiments

(Exp1), we ran GI 20 times on the class in each of the four projects which was most

covered by janky UI tests. In our second experiment, for each project, (Exp2) we

ran GI on the class with the highest line coverage, which was also covered by at

least one UI test.

3.4.1 RQ1: Improvements to responsiveness

In order to answer RQ1, we present the improvement of frame rate before and after

our patches are applied. Improvement is presented as the percentage decrease in

the 95th percentile of frame render time. We also performed the Mann-Whitney U

statistical test with the null hypothesis: “There is no difference between the frame

Table 3.3: Improvements found by our GI framework in well-tested classes.

Project No. imps. found Max. % dec in 95th per. render time
AntennaPod 0 0.00
Gnu Cache 0 0.00
MicroPinner 1 5.26
Wikimedia Commons 0 0.00

3.4. Results 49

rate of the unpatched application and the patched application.” for each patch

discovered. This is to determine whether or not the improvements were statistically

significant at the 95% confidence level. We treat those improvements as which

are not statistically significant as 0% improvements. Tables 3.2 and 3.3 show our

results.

We find that only 11 out of 160 of the GI runs performed found statistically

significant improvements and 8 of those were in one application. In the vast major-

ity of cases, no improvements were found and the GI execution simply returned an

empty patch. In 7 cases in the first experiment, patches were found that suggested

improvements during search, however, validation resulted in them being found not

to offer statistically significant improvements.

We also measure the execution time and memory usage of the patches where

statistically significant improvements to frame rate were found, in order to quantify

the way frame rate improvements affect other metrics for responsiveness. However,

we find that where improvements are found, there is very little effect on either mem-

ory consumption or execution time. These measurements are noisy and may not be

sensitive to the types of improvements that we found.

There is also the chance that the applications simply are not unresponsive

enough to find significant improvements. Visual observation of UI tests does show

noticeable improvements, though not significant. This shows that indeed frame rate

measurements we take are more sensitive to UI changes, and have a real, albeit

small, impact. If tests were deliberately made to expose the unresponsive areas of

applications, we may have an even better chance of finding improvements.

Answer to RQ1:. In most cases in our experiments, GI did not improve

the frame rate of Android Applications. However, in cases where ap-

plication test suites are effective, real improvements of up to 50% can

be found.

3.4.2 RQ2: Types of Improvements

To understand the types of improvement that can improve the frame rate of an ap-

plication, we undertook a manual investigation of patches. We investigated the edits

3.4. Results 50

of the patch which was found to offer the most improvement in each project in order

to find the most effective changes.

One patch in particular offered significantly better improvements than any

other. A patch to the WikiMedia Commons application offered improvements of

50% to frame render time. This patch contained 3 edits, 1 more than any other

patch found. 2 of these edits remove text from the screen, making the whole patch

invalid. However, one of the changes removes a line setting the gravity of a drop-

down menu’s animation. Running this single change alone still produces a 43%

improvement to frame render time, showing that it is the most important change.

When deploying the modified version of the app we can see that opening and clos-

ing the drop-down menus is significantly smoother and there is no obvious visual

impairment to the animation. This improvement will not have large effects on the

execution time or memory consumption of the test suite, however, it does make the

application run more smoothly from a user’s perspective, fixing a stuttering anima-

tion.

It is possible that there are other opportunities for this kind of change available.

However, the majority of open-source applications have no tests, and those that do

have very poor coverage [99].

In the cases where improvements found turned out to be invalid, again the

classes being improved did not have adequate coverage and the tests which did

cover were not very robust. Some patches removed lines of text that were meant

to be displayed or prevented a dialog box from being displayed. In some cases, the

lines which were removed were covered but there were no assertions to check that

the text was being displayed correctly. Much stronger regression testing would be

needed to remove the risk of invalid patches being produced. This issue was not

found for the single improving patch produced for well-covered classes, only for

the UI classes with lower coverage.

Answer to RQ2: The most effective change across our experiments

was found to remove a line. This change modified the animation of a

drop-down menu to run more smoothly.

3.4. Results 51

(a) Times taken for experiments on UI classes.
(b) Times taken for experiments on well-covered

classes.

Figure 3.2: Boxplots of the Time Taken for Each Run on Each Project in Hours

3.4.3 RQ3: Cost of Improving Responsiveness

In order to answer RQ3, to evaluate the cost of improvement, we timed the execution

of each GI run. The results of this evaluation can be found in Figure 3.2. The runs

took between 2 and 16 hours to complete. All of the experiments took a total of 883

hours of compute time.

The execution time varied greatly between projects and the runs on particular

projects. This variance comes from differing lengths of test suites and the number

of patches that could be built, and therefore tested, that were found. Trying to target

classes that are covered by small, fast test suites would help to reduce the cost of

GI.

Running tests on the emulator is very expensive, and almost certainly respon-

sible for the long runtimes. When analysing the Wikimedia commons setup used

for the About Activity class we find that running the unit test filter only requires a

median of 5s over 10 runs. Whereas compiling, installing, and running the UI tests

once takes a median of 2 minutes and 12 seconds over 10 runs. When running GI

on Android in the future, it may be significantly faster to target properties that can

be measured exclusively using local tests, removing the need for an emulator or real

device.

3.5. Threats to Validity 52

Answer to RQ3: GI takes between 2 and 16 hours to run in our setup.

The mean time taken by a run in this setup is 6.3 hours. The main

factor determining the time taken is the time taken by the test suite of

the application.

3.5 Threats to Validity
In this section, we discuss the threats to the validity of this work. Firstly, we only

attempt to improve a small number of applications, this is primarily down to the

lack of availability of apps tested whose UI is tested. However, the apps that we

do test are from a wide range of domains and developers. We also attempt to make

improvements to multiple classes in each project, finding similar results throughout.

Another threat is using tests to validate our improving patches. As we observed

in our results, if test suites are weak, some patches generated by GI may not preserve

the functionality of the application. But, we also demonstrated that standard code

review can find disruptive changes, and we can even still extract effective changes

from these patches.

Finally, noise in measurements is a threat to the validity of this work. If mea-

surements are noisy, there is a chance that the improvements we observe are just ran-

dom fluctuations in our measurement. We mitigate this threat in two ways, firstly,

we measure the 95th percentile of the frame render time which filters out minor

changes in how most frames are rendered and allows us to only observe when large

changes occur. Secondly, when discussing our results, we use statistical tests upon

repeated observations to ensure the improvements we observe exist.

3.6 Conclusions
In this chapter, we developed a framework for the application of Genetic Improve-

ment to Android Applications. In particular, for the improvement of frame rate,

we evaluated our framework by applying it to 4 open-source Android applications.

However, we found that Genetic Improvement could only find a single patch that

could improve frame rate without disrupting the functionality of the application. We

do however show, that it is feasible to use meta-heuristic search to generate patches

3.6. Conclusions 53

for Android Apps. Whilst genetic improvement is capable of finding improvements

to the frame rate of Android applications it is greatly limited by the number and

distribution of available tests. In order for genetic improvement to be applied suc-

cessfully, applications need more UI tests to allow janky areas of code to be exposed

and more unit testing of UI elements to increase the code coverage.

Another possibility is that the current mutation operators used by GI are sim-

ply not well suited to improving the NFPs of Android apps. Therefore, in the next

chapter, we undertake a mining study to see the types of changes that real devel-

opers make to improve the NFPs of Android apps. This study will allow us to

understand how well-suited the current operators are, and which other operators

could be developed in the future.

Chapter 4

How Do Developers Improve the

Non-Functional Properties of

Android Apps?

Given the limited success of our initial approach, we decided to look into the ways

in which real developers make changes to improve the NFPs of Android apps. With

this knowledge, we will be able to adjust our approach to more accurately mimic

the changes which realm developers make and thus find better patches.

We pose that software repositories offer researchers a wealth of information

about the behaviour and techniques used by actual developers. These can be used

to find patterns that can be mimicked by search-based software engineering ap-

proaches for optimisation of non-functional software properties ([101]). Although

several previous studies focus on performance bugs in traditional software, such

as the study by Jin [102], only a few studies on mining performance improving

commits in the Android domain exist (e.g., [21, 103]). Moreover, those do not pro-

vide fine-grained enough information to guide developers of search-based software

development tooling. Previous studies were also concerned with finding general

patterns across as many projects as possible, thus employed a sampling strategy

that would alleviate the expensive manual analysis cost. This leads to an under-

approximation of the true number of non-functional-property-improving changes.

To fill this gap we mined the most popular Android repositories, using single-

55

keyword search, and analyse all returned results, to find patterns that could be

utilised in search-based automated software improvement tooling. We focus on

four non-functional properties in particular: execution time, memory consumption,

bandwidth usage, and frame rate. We chose these as they are most related to mobile

app performance, the key issue for users, as previous studies show [4, 20].

First, we mined the repositories of the 20 most popularly downloaded mo-

bile applications, according to Fossdroid, and manually examine the resultant 3,132

commits, finding 229 were actually NFP-improving ones. 1 Although this process

should give us a good overview of non-functional property improving strategies for

performance, it only allows for analysis of a relatively small number of reposito-

ries. However, the detailed analysis provides us with a corpus of data on which we

can train a classifier that could help gather and analyse more data. Therefore, we

devised such a classifier and analysed a further randomly selected set of 80 reposi-

tories, manually analysing 495 commits found, which added 331 non-functional

property improving commits to our dataset. We categorised all the commits found,

to help us identify emerging patterns. We also report on whether current automated

improvement tools already allow for such transformations to be found, and if not,

if such tools could be extended to provide new, useful software transformations.

Finally, we examined features of the repositories we analysed. This is to provide

recommendations for software developers, for what types of mobile applications

non-functional improvements are likely to be found.

Our results show that non-functional property improvements to app perfor-

mance are rare: from 74,408 commits mined across 100 repositories, only 560

were deemed to improve execution time, memory consumption, frame rate or band-

width (229 identified by manual search and 331 by using a classifier). However,

we can still draw interesting conclusions about their nature. In particular:

• In 10.7% of cases, developers were willing to sacrifice one non-functional

property over another, while in 6.5% of cases, developers were able to im-

1In comparison, [103] found 371 energy-aware commits from a sample of 2,189 curated commits.
It should be noted these span different numbers of repositories, and different keywords, correspond-
ing to relevant non-functional software properties.

56

prove upon multiple properties at once. This shows the need for tooling that

can handle multi-objective optimisation.

• The strongest indicators for the number of non-functional-property-

improving commits in a repository was the total number of commits, number

of contributors, and number of stars.

• Current search-based improvement tooling mimics 5 out of 23 non-

functional improvement strategies found.

• Future automated techniques for improvement of non-functional properties

could be enhanced by incorporating automated caching, SQL query, and im-

age transformations. We propose detailed transformation patterns to aid

researchers and developers in the design and adoption of such strategies.

Overall our results provide recommendations for software engineers, aiming

to provide better tooling for automated software improvement; and for researchers,

providing patterns of how developers improve mobile applications’ non-functional

properties related to mobile app performance, as well as a classifier that can help

with future mining studies in this domain.

All our data and scripts are freely available to allow for reproduction (https:

//github.com/SOLAR-group/NonFunctionalAndroidCommits),

replication and extension of our work.

The rest of this chapter is organised as follows:

1. Section 4.1 describes our methodology for mining commits related to non-

functional properties.

2. Section 4.2 presents results of our mining study;

3. In Section 4.3 we discuss the implications of our study in software engineer-

ing research and practice.

4. Section 4.4 presents threats to validity.

5. Section 4.5 presents related work.

6. Section 4.6 concludes this chapter.

7. Appendix A contains additional material.

https://github.com/SOLAR-group/NonFunctionalAndroidCommits
https://github.com/SOLAR-group/NonFunctionalAndroidCommits

4.1. Methodology 57

4.1 Methodology
In order to answer how Android developers improve the performance-related non-

functional properties of software (performance NFPs) , and how we can use this

knowledge to potentially devise new software transformations for tools for auto-

mated software improvement, we mine open-source Android projects for commits

that improve four non-functional software properties (NFPs): execution time, mem-

ory consumption, bandwidth usage, and frame rate. Along with energy efficiency,

previous research shows these are often found in user reviews ([58, 5]), yet have not

been extensively tackled in the literature ([20]). 2

We aim to answer the following research questions:

RQ1 With what prevalence do developers improve performance NFPs of Android

apps?

NFPs of mobile applications impact user satisfaction, however it is not clear

to what extent Android developers change their code to improve perfor-

mance NFPs. The aim of this question is twofold: understanding if there

exist NFP commits in Android open-source repositories to extract general

patterns from, and understanding their characteristics.

RQ2 How and when do Android developers improve app’s performance NFPs?

We want to know at which stage in software development do performance

NFP-improving commits occur, whether these are considered as standalone

improvements, and whether these improve multiple NFPs or prioritise one

whilst possibly sacrificing another. These should give us an overview of the

current Android development practice with respect to performance NFP im-

provement.

RQ3 What type of code changes do Android developers make to improve app’s

performance NFPs?

We want to also investigate what sort of changes developers make to source

code to improve its performance NFPs. Examining these changes will allow

2We omit energy commits, as very similar studies targeting these have already been conducted
(e.g., [103]), with [4] already implementing a refactoring tool for energy bugs.

4.1. Methodology 58

us to compare current search-based improvement techniques to real-world

commits and make suggestions for how these techniques can be improved.

To answer these research questions we have manually curated a corpus

of 560 non-functional property improving commits, which were collected

by analysing a total of 74,408 commits mined from 100 open-source Android

repositories. In the following section we explain in detail our collection pro-

cedure. We have made this corpus publicly available to allow for replica-

tion and extension of our work (https://github.com/SOLAR-group/

NonFunctionalAndroidCommits).

4.1.1 Overview of Methodology

Below we present the methodology used to create our corpus. It consists of

three steps:

Keyword mining: In this step we collect a set of performance NFP-improving

commits by filtering them first based on keywords and then manual analy-

sis.

Classifier mining: In this step we expand this set by using a classifier trained on

the commit messages gathered in the previous step.

Categorisation: In this step we attempt to manually group the commits into cate-

gories. These categories allow us to find common patterns used to improve

the four non-functional properties of interest: runtime, memory consumption,

bandwidth and frame rate.

4.1.2 Corpus

In the first step, we mined the twenty most popularly downloaded Android appli-

cations according to Fossdroid3, and extracted a total of of 28,028 commits. As it

would have been infeasible to manually inspect such a large set to identify NFP-

improving commits, we have adopted a semi-automatic approach that examines

every commit message based on keyword search (as detailed in Section 4.1.3). This

lead us to a total of 3,132 commits, which were then manually analysed in order

3https://fossdroid.com/

https://github.com/SOLAR-group/NonFunctionalAndroidCommits
https://github.com/SOLAR-group/NonFunctionalAndroidCommits
https://fossdroid.com/

4.1. Methodology 59

to label them as performance NFP-improving commits or not. A final set of 229

NFP-improving commits was deemed to improve one of the four non-functional

properties of interest. We note that in previous work [103] opted for two-word key-

phrases rather than keywords to massively narrow down the number of commits

to manually analyse. [21] only mined commits from the main modules of applica-

tions, missing any changes to back-end modules. We opted not to take these actions,

and avoid missing possible useful software transformations by mining all commits

with generic keywords.

In the second step, we leverage this curated set of NFP-improving commits,

to train a classifier to be able to automatically identify such commits. This al-

lowed us to automatically analyse a much larger set of commits (46,378), mined

from 80 randomly selected F-droid repositories, and filter out irrelevant (i.e., not

NFP-improving) commits with a precision of 95%, as detailed in Section 4.1.4.

Specifically, we used the classifier to automatically identify 331 additional NFP-

improving commits by randomly sampling F-droid. We initially found a total of

495 commits, which were then manually validated by two of the authors to make

sure they improve any of the four non-functional properties of interest. This manual

check led to the identification of 331 performance NFP-improving commits.

The final size of our manually curated corpus thus consists of 560 NFP-

improving commits (229 from the first and 331 from the second step) . We

then manually categorised these commits by the type of change which was made to

improve the NFP, by analysing their commit messages and diffs. This resulted in

23 categories of improvement types being found.

Next, we detail how we mine NFP-improving commits by using keyword

search (Section 4.1.3) and the classifier (Section 4.1.4), as well as how we man-

ually validate the NFP-improving commits and categorise them (Section 4.1.5).

4.1.3 Step 1: Identifying NFP-improving Commits Based on

Keyword Search

We mined 28,028 commits from the twenty most popularly downloaded applica-

tions according to Fossdroid (as of 18/03/2020), a website which offers an alterna-

4.1. Methodology 60

Table 4.1: Properties of Repositories Mined Based on Keyword Search.

Repository Type of App Comm. Stars Age (Days) Contrib. Forks KLoC

Aeons End Game 26 5 963 1 5 3.0
AFH Downloader Network. 69 18 1407 2 7 2.4
Android CUPS Print Printing 274 142 1802 14 45 4.9
ANNO 1404 Game 13 1 1127 2 2 5.0
Apple Flinger Game 463 22 972 37 - 11.8
Calculator Calculator 1142 190 4220 18 286 32.8
Call Recorder Audio 1590 97 1523 10 - 6.1
DNS66 Network. 341 1400 1304 15 153 7.8
Editor Text Editor 405 110 1038 14 38 5.3
F-Droid App Store 6157 1382 3492 99 - 85.1
Firefox Browser 2592 1500 1249 82 585 309.2
FOSS Browser Browser 927 427 1292 22 165 15.9
Frozen Bubble Game 157 71 3829 4 64 38.4
G-Droid App Store 625 78 557 60 - 17.2
Gadgetbridge Network. 5163 74 1587 298 40 103.9
Gloomy Dungeons Game 2 46 73 2006 4 38 91.2
MaterialOS Themes 139 117 1834 7 37 14.5
Mi Mangu Nu Books 1827 230 1839 23 60 33.3
Mighty Knight Game 18 11 1250 2 12 1.0
NewPipe Video Stream. 6054 8000 1711 439 1200 82.9

tive user interface to the standard F-Droid web page. These applications are diverse

in nature (e.g., gaming applications, streaming applications, browsers) and size,

having between 13 and 6,157 commits. Details of each application repository can

be found in Table 4.1 and Table 4.5. Whilst the repositories of these applications

are hosted on a variety of platforms (GitHub, GitLab, etc.), all repositories use the

git version control system. The git log command was used to generate a list of

commit messages, which was then parsed and searched for sets of relevant commits,

that suggest improvements to the following four non-functional properties:

1. Execution Time: Decreasing the amount of time needed for computation.

2. Memory Consumption: Decreasing the amount of RAM used.

3. Bandwidth Usage: Reduction of the load on the network.

4. Frame Rate: Decreasing frame rendering and display rate.

In order to identify relevant performance NFP-improving commits, each

repository was mined by searching every commit message for a series of keywords

(or parts of words in some cases, e.g. “effic” to capture all words similar to “effi-

cient”, “inefficient”, etc.) associated with the particular property, by following a

4.1. Methodology 61

three-step process, as described below, and then manually validated.

Initial Selection. An initial set of keywords was generated by a combination

of our knowledge of relevant terminology (which we have gained by writing NFP-

improving commits ourselves) and the examination of the language used in commit

messages written by others. We then augmented this set with 15 keywords4 used

in previous work conducting similar analysis ([102, 9, 21, 104, 105].) Any com-

mit containing any of these keywords was selected for manual evaluation. Every

selected commit message was manually evaluated to see if it actually suggests that

an NFP has been improved or not. This approach aims to highlight as many com-

mits as possible that could improve non-functional properties and therefore result

in many false positives being manually evaluated. This helps to reduce the number

of false negatives and allows us to detect as many relevant commits as possible.

Keyword Expansion. Synonyms for all keywords were searched for using

the SEThesaurus ([106]), a natural language processing (NLP) tool for finding syn-

onyms in an SE context. Terminology found during manual evaluation of commits

which suggests improvement but was not present in the initial keyword set was

added to a new keyword set. Another search took place with the new keywords in

the same way as the original search. The keywords used can be found in Table 4.2.

Keyword Validation. To validate the keywords we conducted a text analysis

by tokenising and lemmatising all words over all commit messages. The result-

ing 12,230 tokens were grouped according to the commits relevant (229), irrelevant

(3132 - 229), and filtered out (27028 - 3132), based on the keywords used. These

tokens were then ranked by how often they occur in each group. From these rank-

ings we attempted to identify possible keywords that we may have missed. First we

removed all tokens that occur less than 10 times in the commits identified as improv-

ing performance NFPs: This resulted in the identification of 76 tokens, which could

potentially be used as keywords. Then we further filtered out tokens by focusing

only on those that occur in the relevant group more or as often than those occur-

4The keywords taken from previous work were: ‘wait’, ‘tim’, ‘stuck’, ‘react’, ‘latenc’, ‘through-
put’, ‘suboptimal’, ‘bloat’, ‘utilization’, ‘ANR’, ‘OOM’, ‘bottleneck’, ‘hot-spot’, ‘length’, ‘con-
sumption’

4.1. Methodology 62

ring in the irrelevant group. This step allowed us to filter out words such as ‘and’,

which are common in all commits. Of the 6 remaining tokens, three were already

included as keywords (i.e., memory, faster, and leak). The remaining three were

save, reduce and low. These three terms may be considered as additional keywords

to identify additional NFP commits, yet their use could increase the already high

manual effort needed to inspect the selected commits. In fact, in our study, these

three keywords (save, reduce, low) relate to 111 filtered out commits. After manual

inspection, we found that of these 111 commits only a single one could be identified

as relevant; this commit also contains the word ‘mem’ instead of ‘memory’, sug-

gesting that using keyword search may miss those commits that use abbreviations

like this or contain misspellings of keywords. However, as most commits contain

more than one keyword, the keyword set used herein can capture the majority of

those commits too. As only three more relevant keywords were identified out of the

12,230 unique tokens present in the relevant commits, and they led to the identifi-

cation of only one additional relevant commit out of 111, we are confident that the

set of keywords used to conduct our study is comprehensive and effective.

Furthermore, the first author of this paper manually analysed the resultant

commit set. Some commit messages were found ambiguous as to whether or not

they offer any improvement. Developers sometimes write commit messages about

what they have done but not why they have done it. Such commits were also inde-

pendently analysed by another author. If the second author also found the commit

to be ambiguous and not explicitly labeled as and improvement, it was discarded.

We also discarded those commits which were merged with a single child commit

as they were considered duplicates. We refer to the final set of manually curated

commits gathered in this step as the “manual set”.

4.1.4 Step 2: Identifying NFP-improving Commits Based on Au-

tomated Classification

While in the previous step, we use keyword search to narrow down the number of

commits for manual investigation, in this step we explore the use of an automated

classifier, which leverages on the manual set obtained from Step 1.

4.1. Methodology 63

Table 4.2: Keywords Used to Search for Commit Types, from Initial Selection and Key-
word Expansion stages. Note that extensions of keywords are also captured
during search, e.g., speeding, performance, and other.

Property Keywords

Execution Time speed, time, perform, slow, fast, optimi, wait, tim,
stuck, react, suboptimal, utilization, ANR, bottleneck,
hot-spot, length, effic

Memory memory, leak, size, cache, buffer, bloat, consump-
tion, OOM space, storage

Bandwidth network, bandwidth, size, download, upload, socket
latenc, throughput,

Frame Rate frame, lag, respons, latenc , hang

The classifier we propose has been trained with the classified data from Step 1,

i.e., all commits manually excluded after the keyword search are labeled as irrel-

evant, while all commits included are labeled as relevant.5 In addition, we have

included 368 commits manually identified as relevant towards execution time in

previous work ([9]) to the relevant commit set. We train the classifier using only

the commit messages of the commit.6

In order to search for an accurate prediction model, we have investigated a total

of 20 classification algorithms exploiting 6 different settings for feature selection.

The settings were derived from the featurization of text tokens via TF/IDF, Bag

of Words ([107]), and an adapted version of Bag of Words where only words oc-

curring with a discriminative significance in either the irrelevant or relevant groups

were used in the feature vector. Next, we present only the best result of these at-

tempts, while more information about the training of the classifier can be found in

Appendix A. The best classifier was achieved via stemming as a pre-processing step,

TF/IDF for featurization using a Decision Tree classifier. We assessed its effective-

ness via cross-validation by using 10 hold-out repetitions (80%/20% train/test split),

5We decided to group all relevant commits into one single group, as preliminary analysis showed
that attempting to classify the commits into multiple classes (i.e., execution time, memory, band-
width and frame rate) produces classes that are too small for building an accurate classification
model (the Recall in all groups was less than 0.1).

6We considered also using issue messages to identity commits. However, the analysis of our
KM data set showed that only 13% of commits had associated issues. Most (52%) of those issues
were associated with 10 or more commits, meaning that only a small fraction of their messages and
comments would be related to the commit that we are interested in.

4.1. Methodology 64

Table 4.3: Decision tree classification of NFP-improving commits allows an accurate clas-
sification (0.80 recall) with a tolerable level of irrelevant commits mixed in (
0.73 precision).

Precision Recall F1-score

Relevant 0.73 0.80 0.76
Irrelevant 0.95 0.92 0.93

Table 4.4: Comparing our keyword search to our classification-based ap-
proach on two datasets. The 368 number of relevant commits
for the Mazuera-Rozo et al. dataset was taken from their work
https://github.com/amazuerar/perf-bugs-mobile/blob/
master/bug-fixing-commits-performance.csv. We note that
authors report 380 in their paper, but 11 commits don’t exist anymore.

Our Dataset [9]
Total Commits 28,028 420,352

Our Keyword Search
Identified 3,132 32,308
Relevant 229 368

Classifier
Identified 669 3477
Relevant 219 355
Missed 10 13
Additional 440 3109

each time using a different seed. The results show a good level of classification

with a precision of 73% and recall of 80% in the relevant class (see Table 4.3) .

In order to show the reduction in manual effort required when using our clas-

sifier we run it on two datasets. Table 4.4 shows a comparison of commits iden-

tified via keyword search or via the classifier. For the dataset from Mazuera-

Rozo et. al. [9] we applied the keywords from Table 4.2, after compiling the git

logs from the repositories used in the dataset by Mazuera-Rozo et. al. [9]. The ta-

ble shows that keyword search requires a much higher manual effort as the search

returns several thousand keywords (3,132 in our dataset and 32,308 from Mazuera-

Rozo et al.) containing only a few relevant commits (229 and 368). The classifier

returns only 669 commits, with 219 from the manual identified ones contained (only

10 missed), and an additional 440 commits that may be relevant, but were filtered

by the keyword search.

https://github.com/amazuerar/perf-bugs-mobile/blob/master/bug-fixing-commits-performance.csv
https://github.com/amazuerar/perf-bugs-mobile/blob/master/bug-fixing-commits-performance.csv

4.1. Methodology 65

As the cross-validation confirms the effectiveness of the classifier, we re-train

it on the entire available dataset in order to classify performance NFP-improving

commits on unseen data, thus further validating our classifier in a real usage sce-

nario, and extending our corpus of NFP-improving commits with the commits cor-

rectly classified as such.

To this end, we randomly selected 80 repositories from F-Droid and used the

classifier to automatically classify all 46,378 commits extracted from these repos-

itories .7 Details of the repositories are provided in Table 4.5. The classifier iden-

tified 475 commits relevant commits. Two of the authors manually analysed these

commits, as they did in Step 1, to check whether the commits classified as relevant

are actually NFP-improving commits, i.e., true positives. They found that only 164

commits were false positives, giving a manually evaluated precision of 66.87 % for

this classifier, and 331 commits added to our corpus. 8

To further verify our classifier, we evaluated its performance on 5 randomly

selected repositories from the set that was mined with the classifier. We perform

keyword mining on these repositories in order to identify the false negatives of the

classifier. Of the 5 repositories selected, 3 were found in both CM and KM to con-

tain no performance NFP-improving commits. In the repositories where commits

were found, one was found to have 5 performance NFP-improving commits com-

pared to 3 found by the classifier, and in the other, the same 3 commits were found

by both approaches. These repositories are all small yet representative of many of

the repositories which were mined. In order to evaluate the classifier on a larger

repository with many commits, we also ran it on the Koreader repository where

the most CM commits were found (147 overall, see Table 4.7). We manually anal-

yse all commits found using keyword search. In this project we found 2 additional

relevant execution time commits, 2 additional memory commits, 1 additional frame-

rate-improving commit and the same set of bandwidth-improving commits with the

7We had to set a limit on the number of repositories due the manual effort required to analyse the
precision of the classifier.

8We note that a lot of these were small repositories, as the 40 repositories in which NFP-
improving commits were found had altogether 39,420 commits, while the other 39 had altogether
6,958 commits.

4.1. Methodology 66

keyword search. This means that the classifier only missed 5 relevant commits.

Our final manually curated corpus of performance NFP commits thus contains

a total of 560 commits, which we use to answer our RQs.

Table 4.5: Properties of Classifier Mined Repositories.

Name Commits Stars Age (Days) Contrib. Forks KLoC

Alwayson 362 75 882 5 13 10.0

Android-inventory-agent 982 41 3584 14 25 12.2

Android-usb-serial-monitor-lite 50 140 3237 2 77 2.2

Anewjkuapp 1332 12 2423 14 6 27.4

Ankieditor 47 21 1226 2 6 41.6

Atmospherelogger 65 14 3354 1 4 3.0

Audioanchor 243 109 662 12 21 8.3

Audiometer 61 20 1493 3 7 1.3

Ausweisapp2 52 275 1311 9 42 137.6

Autoairplanemode 20 15 1398 3 8 1.9

Avare 1790 114 2940 28 116 55.2

Blexplorer 92 46 2080 4 23 1.7

Boogdroid 189 9 1819 5 3 4.0

Botbrew-gui 135 49 3141 1 15 5.10

Changedetection 219 584 938 11 72 14.9

Cmus-android-remote 45 11 2512 1 5 4.4

Controlloid-client 95 62 683 2 8 15.1

Covid19stats 81 139 273 4 39 2.0

Dailypill 251 5 401 2 2 1.10

Dandelion 651 102 1753 16 36 21.2

Droid48 96 59 3747 2 22 19.2

Easytoken 102 44 2364 1 13 4.2

Easywatermark 125 596 153 5 60 7.10

Gears2 63 17 3521 1 11 3.6

Gigaget 128 205 2219 2 52 5.5

Glesquake 14 15 2312 1 6 150.3

4.1. Methodology 67

Glt-companion 482 9 2106 5 3 11276.9

Gpodroid 69 25 3523 2 3 3.2

Http-shortcuts 1144 354 2067 8 66 59.10

Headingcalculator 38 1.2 2329 1 1 1.2

Holokenmod 90 10 2083 3 2 5.2

Kerneladiutor 1347 21 1335 60 6 55.6

Koreader 7908 8104 2828 164 857 119.3

Languagepack 609 112 3147 31 189 1833.10

Lifecounter 2.2 17 2647 1 5 2.2

Lightning-browser 2125 1726 2879 72 744 23.10

Listmyaps 112 60 2670 2 21 2.3

Logmein-android 270 13 2394 7 11 1.10

Mlauncher 6 7 1968 1 2 0.2

Media-button-router 93 25 1949 1 6 1.3

Memento 82 142 1474 8 55 9.4

Memopad 61 7 3503 2 1 1.8

Openbikesharing 388 61 2327 28 52 4.10

Open-money-tracker 559 13 457 8 3 11.10

Openfoodfacts-androidapp 7218 576 2055 113 401 417.2

Openmw-android 862 192 1071 6 25 12.4

Permissionsmanager 54 4 1063 2 2 1.4

Pi-hole-droid 53 111 1400 4 15 147.6

Pixivformuzei3 870 90 603 11 11 5.0

Portauthority 1004 181 2200 14 53 4.10

Privacy-friendly-netmonitor 393 117 1510 14 30 8.1

Privacy-friendly-passwordgenerator 290 23 1497 4 12 8.3

Privacy-friendly-reckoning-skills 72 10 1326 5 2 4.9

Proexpense 276 40 188 3 12 16.2

Qbittorrent Client 930 211 2483 5 21481 29.0

Qrscan 96 25 1076 2 8 0.4

Rbb 2347 34 3150 1 4 27.6

search based launcher 257 40 2905 3 18 2.0

4.1. Methodology 68

Smssync 1816 926 3608 21 468 42.7

Siteswap-generator 193 10 1174 2 4 8.2

Synctool 142 22 941 2 10 8.8

Tvhguide 364 44 3518 2 25 5.8

Taxiandroidopen 127 87 2573 1 115 8.0

Towercollector 561 97 1756 3 17 28.4

Trickytripper 301 43 3264 6 13 25.8

Ushahidi-android 949 205 4240 10 156 0.5

Vitosha-blackjack 16 7 1968 1 3 3.0

Voipms-sms-client 451 148 2283 4 49 12.9

Votar 65 14 2538 3 6 3.10

Weather 142 40 1753 7 13 22

Wulkanowy 1119 114 1351 23 18 100.2

Yashlang 161 23 473 1 1 26.10

Zeus 920 187 673 12 34 40.0

4.1.5 Step 3: Categorisation of Mined Performance NFP-

improving Commits

To gain a greater understanding of the set of commits, we manually classified them

by the type of change that was made. For each performance NFP (i.e., execution

time, memory consumption, bandwidth, and frame rate) the set of extracted com-

mits was examined and categories were generated, based on commit type. Commits

were inserted into relevant categories or into new categories if they could not be

classified inside current ones. Commits that could be classified into more than one

category due to multiple changes were added to both categories. If two categories

had a large shared membership or it became difficult to place a commit into either

category, the categories were combined into a single category encompassing the

traits of both.

Some commits were unclassifiable, e.g., due to improvements being buried in

a large list of changes, or changes requiring domain-specific knowledge that is not

explained in the commit message. If many commits were left without a category,

4.1. Methodology 69

Table 4.6: Comparison between categories identified by keyword search vs. classifier. Per-
centages from total cumulate to >100% as some commits address multiple NFP.

Keyword Classifier Discrepancy

Total 229 (100%) 331 (100%) -
Execution Time 125 (54.5%) 211 (64.2%) 9.7%
Memory Usage 73 (31.9%) 115 (34.3%) 2.3%
Bandwidth 26 (11.4%) 5 (1.5%) 9.9%
Framerate 15 (6.6%) 15 (4.6%) 2%

the uncategorised commits were re-examined to determine if any categories had not

been uncovered in the first class. Next another author examined the categorised

commits to analyse whether or not they belonged to a given category. In case of

disagreement the commit was placed in the unknown category, this occurred in 15

instances. The two authors also independently examined the issues associated

with these commits in order to gather any extra information that could aid us in

categorising them. In the case of non-classifiable commits we had to rely on the

description of the optimisation written by the developer in the commit message as

evidence that there was an improvement.9

Table 4.6 summarizes the categories of the two separate datasets of found com-

mits via keyword and classifier search respectively. The results show only around

two percent discrepancy in the memory usage and framerate categories. The Execu-

tion time is represented 9.7% stronger via the classifier, and the bandwidth is around

9.9% less via the classifier. The reason for this may be a slight bias towards run time

performance, but may also be simply because bandwidth is not as relevant for many

projects. 19 out of 26 bandwidth commits we identified via keyword search are only

from two repositories (see Table 4.7), and thus may simply be overrepresented in

the keyword dataset. The analysis implies that the classifier can produce datasets

that reflect the real-world considerations of Android developers towards NFP.

9An example of a commit which could not be classified can be
found at https://github.com/ar-/apple-flinger/commit/
bbc70cdc0a8190153195f46fe8c873def6ca3e98

https://github.com/ar-/apple-flinger/commit/bbc70cdc0a8190153195f46fe8c873def6ca3e98
https://github.com/ar-/apple-flinger/commit/bbc70cdc0a8190153195f46fe8c873def6ca3e98

4.2. Results 70

4.2 Results
In this section, we present the results of our mining for commits improving exe-

cution time, memory consumption, bandwidth usage, and frame rate. We report

on these non-functional property improving (NFP) commits returned from our key-

word search (KM) and those returned using our classifier (CM) separately. We

investigate how developers improve the four NFPs, and categorise them to see

whether source-code level changes could be implemented in automated software

improvement tooling, targeting the mobile domain.

4.2.1 RQ1: Numbers of NFP-Improving Commits Found

Table 4.7 shows the number of commits which were found to improve each partic-

ular NFP in each of the repository mined, split between KM and CM commits. We

also report on what percentages of total commits improve each of the four NFPs

considered.

KM commits: We found NFP-improving commits in 12 out of 20 most pop-

ular Android repositories. 229 out of a total of 28,028 were deemed to improve

1 of our four NFPs considered. Execution time is the most commonly improved

non-functional property in our KM set of commits (with 125 commits identified),

appearing to be the most important non-functional property to Android developers.

The next most common improvement was memory usage, with 73 commits. In three

repositories, the number of commits improving memory consumption was actually

greater than those improving execution time, showing its importance varies across

projects. Bandwidth is improved less often than the previous two properties. It is

to be expected, as some applications use little to no network data. A lot of network

traffic also consists of large files, such as videos, pictures, or application APKs. De-

creasing the network data used by these files is often not possible with source code

changes. Frame rate is not improved very often. This could be due to developers

being willing to tolerate frame rate in their applications, or that changes which im-

prove frame rate are less well-known amongst developers. Also we found that the

changes are larger than those for memory and execution time, so may require more

effort to implement (see Table 4.10).

4.2. Results 71

Table 4.7: RQ1: Number of NFP-improving Commits in Each Repository (% of Total
Commits in Repository). Repositories with zero NFP-improving commits are
not listed. The “Total NFP Commits” column does not count duplicates (as
some commits could have improved multiple properties at once).

App Name Execution Time Memory Bandwidth Frame Rate Total NFP
Commits Commits Commits Commits Commits

Android CUPS Print 1 (0.36%) 1 (0.36%) 1 (0.36%) 0 3 (1.09%)
Apple Flinger 1 (0.22%) 0 0 0 1 (0.22%)
Calculator 11 (0.96%) 1 (0.09%) 0 1 (0.09%) 13 (1.14%)
Call Recorder 0 2 (0.13%) 0 1 (0.06%) 3 (0.19%)
DNS66 4 (1.17%) 8 (2.34%) 1 (0.29%) 0 10 (2.93%)
F-Droid 56 (0.89%) 15 (0.24%) 9 (0.15%) 6 (0.10%) 85 (1.38%)
Firefox 10 (0.35%) 4 (0.15%) 2 (0.08%) 2 (0.08%) 18(0.66%)
Frozen Bubble 1 (0.64%) 3 (1.91%) 1 (0.64%) 0 3(1.91%)
G-Droid 2 (0.32%) 0 2 (0.32%) 0 3(0.48%)
Gadgetbridge 9 (0.17%) 17 (0.33%) 0 2 (0.04%) 28 (0.62%)
Mi Mangu Nu 6 (0.33%) 6 (0.33%) 0 0 12 (0.66%)
NewPipe 24 (0.41%) 16 (0.26%) 10 (0.17%) 3 (0.05%) 50 (0.82%)

KM Total 125 73 26 15 229

Alwayson 9 (2.48%) 1 (0.27%) 0 1 (0.27%) 11 (3.03%)
Android-inventory-agent 1 (0.10%) 1 (0.10%) 0 0 2 (0.20%)
Android-usb-serial-monitor-lite 1 (2.0%) 0 0 0 1 (2.0%)
Anewjkuapp 5 (0.37%) 0 0 0 5 (0.37%)
Atmospherelogger 2 (3.07%) 0 0 0 2 (3.07%)
Audioanchor 1 (0.41%) 0 0 0 1 (0.41%)
Avare 15 (0.83%) 8 (0.55%) 0 2 (0.11%) 22 (1.34%)
Changedetection 2 (0.91%) 0 0 1 (0.45%) 3 (1.36%)
Cmus-android-remote 1 (2.22%) 0 0 1 (2.22%) 1 (2.22%)
Controlloid-client 3 (3.15%) 0 2 (2.10%) 0 3 (3.15%)
Easytoken 0 1 (0.98%) 0 0 1 (0.98%)
Easywatermark 1 (0.8%) 0 0 0 1 (0.8%)
Gigaget 2 (1.56%) 1 (0.78%) 0 0 3 (2.34%)
Glt-companion 6 (1.24%) 4 (0.82%) 0 0 10 (2.07%)
Http-shortcuts 2 (0.17%) 0 0 0 2 (0.17%)
Kerneladiutor 1 (0.07%) 5 (0.29%) 0 0 6 (0.37%)
Koreader 54 (0.67%) 23 (0.25%) 0 3 (0.03%) 71 (0.89%)
Lightning-browser 26 (1.22%) 21 (0.98%) 0 2 (0.09%) 45 (2.11%)
Listmyaps 1 (0.89%) 1 (0.89%) 0 1 (0.89%) 2 (1.78%)
Media-button-router 1 (1.07%) 0 0 0 1 (1.07%)
Open money tracker 1 (0.17%) 0 0 0 1 (0.17%)
Openbikesharing 0 1 (0.25%) 0 0 1 (0.25%)
Openfoodfacts-androidapp 6 (0.08%) 2 (0.02%) 1 (0.01%) 0 8 (0.11%)
Openmw-android 2 (0.23%) 1 (0.11%) 0 0 3 (0.34%)
Pixivformuzei3 10 (1.14%) 8 (0.91%) 0 1 (0.11%) 17 (1.95%)
Portauthority 27 (2.68%) 25 (2.39%) 2 (0.19%) 1 (0.09%) 50 (4.88%)
Privacy-friendly-reckoning-skills 1 (1.38%) 0 0 0 1 (1.38%)
Proexpense 0 2 (0.72%) 0 1 (0.36%) 3 (1.08%)
Qbittorrent-client 2 (0.21%) 0 0 0 2 (0.21%)
Rbb 4 (0.17%) 2 (0.08%) 0 0 6 (0.25%)
Search-based-launcher-v2 1 (0.38%) 0 0 0 1 (0.38%)
Siteswap generator 1 (0.51%) 0 0 0 1 (0.51%)
Smssync 2 (0.11%) 2 (0.11%) 0 1 (0.05%) 3 (0.16%)
Towercollector 6 (1.06%) 2 (0.35%) 0 0 8 (1.42%)
Trickytripper 1 (0.33%) 0 0 0 1 (0.33%)
Tvhguide 3 (0.82%) 2 (0.54%) 0 0 5 (1.37%)
Ushahidi android 4 (0.31%) 1 (0.10%) 0 0 5 (0.42%)
Voipms-sms-client 4 (0.88%) 0 0 0 4 (0.88%)
Weather 1 (0.70%) 0 0 0 1 (0.70%)
Wulkanowy 2 (0.17%) 2 (0.08%) 0 0 4 (0.26%)

CM Total 211 113 5 15 331

Total 346 188 31 30 560

4.2. Results 72

CM commits: We found NFPs in 40 out of 80 randomly selected reposito-

ries. We find that our automatic classifier mostly selected performance improving

commits (211) . The next most commonly captured improved property was mem-

ory consumption with 115 out of 331 CM commits. Bandwidth and frame rate

improving commits were, as with KM, much less common. With 15 frame rate

commits and only 5 bandwidth-improving commits found.
Answer to RQ1: Our study reveals that non-functional property im-

proving commits are rare, with our single-keyword search not return-

ing any NFP-improving commits for 8 out of 20 most popular Android

repositories considered. In the remaining 12 only 229 NFP-improving

commits were found, for the four properties of interest. Our CM reposi-

tories tell a similar story as we found that only 40 out of 80 repositories

contain NFP-improving commits related to performance .

4.2.2 RQ2: How Android developers improve NFPs
To answer RQ2 we first analyse general characteristics of the commits found, i.e.,

age of commits, functionality changes made at the same time as NFP-improving

changes, commit size, multiple NFPs improved at once, and optimisation trade-offs

between NFPs . This should give us an overview of the current software develop-

ment practice with respect to NFP improvement.

Age of Repository When Commits Are Made. To determine when developers

make commits that improve performance NFPs , we look at the age of the repository

when a commit was made in days, i.e., how long after the first commit was it made

(see Table 4.8). In this table we show the median number of days between the

first commit and the commits of each category, we also show the upper and lower

quartiles to show the spread of the ages. We find that the age of the repository

when these commits are made varies greatly between repositories. Not only that,

but the spread of this figure also varies. For example, in the F-Droid repository

(highlighted in the table), NFP-improving commits were spread out in age, even

more so than other commits. Perhaps making NFP commits throughout the life

cycle of the application rather than in small time windows is one of the reasons

F-Droid was found to have the most NFP-improving commits.

4.2.
R

esults
73

Table 4.8: RQ2: Age in Days of Repositories When Commits Were Made (CM repositories are highlighted in italic).

Repository
Execution Time Commits Memory Commits Band. Commits Frame. Commits Other Commits

LQ. Med. UQ. LQ. Med. UQ. LQ. Med. UQ. LQ. Med. UQ. LQ. Med. UQ.

Android CUPS Printer 1210 1210 1210 1206 1206 1206 1264 1264 1264 - - - 410 518 708

Apple Flinger 18 18 18 - - - - - - - - - 26 379 411

Calculator 1789 2000 2396 2444 2444 2444 - - - 1445 1445 1445 1092 1568 2003

Call Recorder - - - 594 844 1095 - - - - - - 212 478 698

DNS66 99 132 142 131 134 166 3 3 3 - - - 10 166 250

F-Droid 1179 2047 2472 1150 1875 2724 1637 1778 1992 1744 2158 2380 1430 1949 2431

Firefox 172 276 350 59 103 212 394 465 536 117 117 117 187 363 606

Frozen Bubble 1642 1642 1642 1505 1642 1654 1642 1642 1642 - - - 1282 1638 2270

G-Droid 87 98 110 - - - 122 122 122 - - - 45 76 124

Gadgetbridge 688 1222 1448 427 688 723 - - - 376 525 674 479 868 1406

Mi Mangu Nu 444 620 732 480 616 824 - - - - - - 371 674 1154

NewPipe 819 1277 1440 879 903 1271 1204 1374 1482 760 785 900 614 947 1360

Alwayson 209 719 739 763 763 763 - - - 716 716 716 410 668 727

Android-inventory-agent 92 92 92 2847 2847 2847 - - - - - - 2388 2459 2788

Android-usb-serial-monitor-lite 28 28 28 - - - - - - - - - 16 26 72

Anewjkuapp 403 1177 1200 - - - - - - - - - 221 543 1604

4.2.
R

esults
74

Atmospherelogger 132 134 135 - - - - - - - - - 131 439 2669

Audioanchor 533 533 533 - - - - - - - - - 130 336 533

Avare 584 1003 1493 287 1135 1274 - - - 393 517 641 387 763 1319

Changedetection 35 47 59 - - - - - - 130 130 130 23 40 126

Cmus-android-remote 8 8 8 - - - - - - 8 8 8 3 5 9

Controlloid-client 54 54 82 - - - 54 54 54 - - - 13 50 115

Easytoken - - - 34 34 34 - - - - - - 7 11 13

Easywatermark 57 57 57 - - - - - - - - - 23 37 44

Gigaget 11 12 14 27 27 27 - - - - - - 8 15 83

Glt-companion 462 928 1026 894 974 1060 - - - - - - 357 979 1519

Http-shortcuts 251 272 294 - - - - - - - - - 653 1121 1816

Kerneladiutor 594 594 594 459 590 613 - - - - - - 114 301 597

Koreader 727 1402 2314 933 1727 2289 - - - 1381 1580 2420 617 1115 2303

Lightning-browser 554 954 1704 1059 1104 1202 - - - 318 584 849 800 1310 1725

Listmyaps 248 248 248 248 248 248 - - - 2 2 2 24 31 186

Media-button-router 332 332 332 - - - - - - - - - 6 16 262

Open-money-tracker 601 601 601 - - - - - - - - - 530 602 1193

Openbikesharing - - - 193 193 193 - - - - - - 83 200 541

Openfoodfacts-androidapp 1218 1648 1813 919 1230 1540 1859 1859 1859 - - - 717 1003 1427

4.2.
R

esults
75

Openmw-android 544 793 1042 1827 1827 1827 - - - - - - 321 1292 1717

Pixivformuzei3 162 274 364 85 89 92 - - - 393 393 393 119 273 383

Portauthority 226 601 794 647 739 791 1088 1146 1205 615 615 615 273 676 831

Privacy-friendly-reckoning-skills 277 277 277 - - - - - - - - - 78 110 277

Proexpense - - - 174 175 176 - - - 167 167 167 20 43 150

Qbittorrent-client 227 246 264 - - - - - - - - - 394 615 960

Rbb 122 267 433 127 222 317 - - - - - - 216 350 543

Search-based-launcher-v2 939 939 939 - - - - - - - - - 952 988 1014

Siteswap-generator 10 10 10 - - - - - - - - - 46 197 397

Smssync 1380 1578 1775 1293 1520 1746 - - - 1182 1182 1182 1135 1551 1837

Towercollector 14 34 167 528 886 1244 - - - - - - 674 972 1447

Trickytripper 611 611 611 - - - - - - - - - 445 1088 1499

Tvhguide 37 52 173 227 386 545 - - - - - - 23 69 210

Ushahidi-android 663 683 915 667 667 667 - - - - - - 710 974 1417

Voipms-sms-client 724 726 960 - - - - - - - - - 694 1002 1667

Weather 209 209 209 - - - - - - - - - 107 166 1047

Wulkanowy 598 796 993 275 275 275 - - - - - - 702 946 1174

4.2. Results 76

Table 4.9: RQ2: Number of commits changing both functional and non-functional proper-
ties.

Type of Commit
No. of Commits

KM CM

Exec. Time Commits 17 (14%) 24 (11%)
Memory Commits 10 (14%) 10 (9%)
Bandwidth Commits 8 (30%) 1 (20%)
Frame Rate Commits 2 (13%) 5 (33%)

Functionality Changes in Commits. Table 4.9 shows the number of commits of

each type in which functional changes were also made. For the KM commits three

of the types contained very similar numbers (14%), however bandwidth improv-

ing commits contained more (30%). This is mostly due to many of the bandwidth

commits coming from repositories in which commits tended to be larger and con-

tain many changes. The CM commits are similar, with the exception of frame rate,

where 1/3 of commits also modified functionality.

Size of Commits. To determine the size of non-functional property improving com-

mits we consider four measures: the number of files changed, the number of chunks

changed, the number of classes modified, and the number of lines of code insert-

ed/removed. Git splits the diff of each commit into chunks, where a chunk is the

set of lines containing a change and the surrounding lines. If changes are close

together they will be contained within the same chunks, so chunks can be used to

measure the distribution of changes. These measures will provide a holistic picture

of both the size of commits and the distribution of the changes that are made. Some

of the commits contained multiple changes which will inflate their size, however so

do many standard commits. We also take median values to attempt to mitigate this

distortion and allow for a valid comparison. We compare the size of our identified

performance NFP-improving commits to the size of every other commit found in

the repositories. As commits from both categories will contain multiple changes,

we do not attempt to distinguish between functional changes and non-functional

changes in individual commits.

As shown in Table 4.10 we can see that KM commits improving performance

4.2. Results 77

Table 4.10: RQ2: Median Commit Sizes. ‘Other’ category represents all commits that were
not deemed to improve any of the four NFPs of interest.

Type of commit
Files changed Chunks changed Classes changed Lines inserted Lines removed

KM CM KM CM KM CM KM CM KM CM

Exec. Time 2 2 5 5 4 2 16 9 12 6
Memory 1 2 4 4 3 2 16 7 6 5
Bandwidth 3 1 13 1 10 1 51 10 13 1
Frame Rate 1 3.0 9 16 7 4.5 47 77 4 4
Other 1 1 3 2 1 1 6 4 2 1

Table 4.11: RQ2: Commits Improving Multiple Properties.

Execution Time Memory Bandwidth Frame Rate

KM CM KM CM KM CM KM CM

Exec. Time 125 211 6 15 5 5 0 5
Memory 6 15 73 115 2 0 0 3
Bandwidth 5 5 2 0 26 5 0 0
Frame Rate 0 5 0 3 0 0 15 15

NFPs tend to be larger than a generic commit, in every measure. They often span

multiple files, multiple chunks and change multiple class definitions. They also add

in more lines than they remove. For the CM commits, execution time and memory

improving commits are of similar size to those in the KM set, spanning multiple

files and make larger changes than other commits. The CM bandwidth commits

are smaller than those in KM set, however still make larger changes than non NFP-

improving commits. Finally, the CM frame rate improving commits are very large

(median lines inserted of 47 for KM and 77 for CM). This could be due to the large

rate of frame improving commits which also alter the functionality of their projects,

as shown in Table 4.9.

Table 4.12: RQ2: Commits with Trade-Offs Between Properties.

Optimised
Impaired Exec. Time Memory Bandwidth Frame Rate

KM CM KM CM KM CM KM CM

Execution Time 0 0 20 25 0 0 0 0
Memory 6 2 0 0 0 0 0 0
Bandwidth 0 0 9 0 0 0 0 0
Frame Rate 0 0 0 0 0 0 0 0

4.2. Results 78

Table 4.13: RQ3: Categories of Commits by Non-functional Property (% of commits im-
proving a particular NFP).

Category Subcategory
Execution Time Memory Bandwidth Frame Rate

KM CM KM CM KM CM KM CM

Add Condition - 2 (1.6%) 13 (6.2%) 4 (5.5%) 2 (1.8%) 1 (3.8%) 2 (40.0%) 1 (6.7%) 2 (13.3%)
Add Delay - 0 2 (<1%) 0 0 0 0 2 (13.3%) 0
Animation Length Reduction - 1 (<1%) 0 0 0 0 0 1 (6.7%) 0
Caching - 20 (16.0%) 25 (11.8%) 0 1 (<1%) 8 (30.8%) 0 0 2 (13.3%)
Change In Operation Order - 2 (1.6%) 6 (2.8%) 0 2 (1.8%) 0 0 0 1 (6.7%)
Data Structure Replacement - 8 (6.4%) 9 (4.3%) 0 2 (1.8%) 0 1 (20.0%) 0 1 (6.7%)
Data Structure Size Reduction - 0 0 6 (8.2%) 4 (3.5%) 0 0 0 0
Decrease Asset Size - 1 (<1%) 1 (<1%) 3 (4.1%) 5 (4.4%) 0 0 0 0
Different Algorithm Use String Builder 0 4 (1.9%) 0 0 0 0 0 0

Use Char instead of String 0 3 (1.4%) 0 0 0 0 0 0
Improve Regex Performance 2 (1.6%) 4 (1.9%) 0 0 0 0 0 0
Other 5 (4.0%) 12 (5.7%) 0 1 (<1%) 0 0 0 1 (6.7%)

Early Return - 2 (1.6%) 2 (<1%) 0 0 0 0 0 0
Freeing Up Memory - 0 0 10 (13.7%) 0 0 0 0 0
Increase in Concurrency Move code to background 7 (5.6%) 9 (4.3%) 1 (1.4%) 1 (<1%) 0 0 5 (33.3%) 0

Alter timing 3 (2.4%) 0 0 0 0 0 0 0
Use a thread pool 0 2 (<1%) 0 0 0 0 0 0

Layout Optimisation - 0 6 (2.8%) 0 0 0 0 0 0
Leak Fix - 0 0 35 (47.9%) 74 (65.5%) 0 0 0 0
Make Final - 2 (1.6%) 0 0 0 0 0 0 0
Make Static - 0 0 0 1 (<1%) 0 0 0 0
Network Throttling - 0 0 0 0 3 (11.5%) 0 0 0
Parameter Change - 0 12 (5.7%) 0 0 0 1 (20.0%) 0 0
Remove Caching - 1 (<1%) 0 1 (<1%) 0 0 0 0 0
Remove Redundancy - 34 (27.2%) 56 (26.5%) 0 15 (13.3%) 10 (38.5%) 3 (60.0%) 2 (13.3%) 2 (13.3%)
SQL Query Change Primary Key 0 2 (<1%) 0 0 0 0 0 0

Specify column 0 2 (<1%) 0 0 0 0 0 0
Combine Queries 0 3 (1.4%) 0 0 0 0 0 0
Move file into Database 1 (<1%) 2 (<1%) 0 0 0 0 0 0
Remove unneeded JOIN 1 (<1%) 0 0 0 0 0 0 0
Flatten queries 3 (2.4%) 0 0 0 0 0 0 0
Add table indices 3 (2.4%) 0 0 0 0 0 0 0
Use transactions 1 (<1%) 1 (<1%) 0 0 0 0 0 0
Parameter Binding 0 1 (<1%) 0 0 0 0 0 0

Time Out Reduction - 1 (<1%) 7 (3.3%) 0 0 0 0 0 0
Use Different Library - 1 (<1%) 8 (3.8%) 2 (2.7%) 3 (2.7%) 0 0 0 1 (6.7%)
Unknown - 20 (16.0%) 35 (16.6%) 14 (19.2%) 4 (3.5%) 5 (19.2%) 0 5 (33.3%) 6 (40.0%)

Multiple Improvements. Table 4.11 shows how often commits improve multiple

properties at the same time. The vast majority of NFP-improving commits improve

one property at a time. This is true across both CM and KM commits. However,

in 6.5% of cases (5.7% of KM and 7.0% of CM) developers are able to improve

multiple properties at once. It is possible that some commits do improve multiple

properties in ways that developers are not aware of or do not report, as this is not

the primary purpose of the commit.

Tradeoffs. Some commit messages report that changes that improve one non-

functional property negatively affect others. Table 4.12 shows that memory and

execution time improvements are often traded off against each other. The most of-

ten impaired property is memory. This is due to the use of caching. Caching can be

used to avoid having to repeatedly call the same code by storing the result. If the

code not being called accesses the network, caching can reduce bandwidth usage.

Sometimes caches can be too big so their size must be reduced. This can have a

negative impact on execution time.

4.2. Results 79

Figure 4.1: Histogram showing the distribution of commits amongst different categories.

Answer to RQ2: Our study reveals that developers commit changes

aiming at improving the performance non-functional properties of mo-

bile apps throughout the lifecycle of the development process. Roughly

one in three commits contain also functionality changes. Performance

NFP-improving commits tend to be larger than those that do not focus

on improvement of NFPs . Most interestingly, these commits tend

to spread across multiple files, meaning that automated approaches to

improving NFPs should also run on code spread over multiple files.

Execution time and memory can often be improved at once, although

memory is much more frequently sacrificed to improve other NFPs.

Approaches such as caching, which sacrifice memory for other proper-

ties, should be considered when improving performance NFPs.

4.2.3 RQ3: Types of NFP commits

Subsequently, we discuss the results of the manual categorisation of NFP-improving

commits, as explained in Section 4.1.5. This should help us establish whether

changes made by developers are already automated by existing tooling, and if not,

whether new refactorings could be suggested for future work. In order to answer

RQ3, our categorisation is presented in Table 4.13, we also show this data in Fig-

ure 4.1 as a histogram for easy comparison.

Add Condition: Conditions were added in 8 KM and 19 CM commits, this allowed

4.2. Results 80

applications to avoid additional computation unless it was actually necessary.

Execution Time: 2 KM and 13 CM commits improved execution time by

using caching. This is the most obvious application of caching as one can use

it to avoid repeatedly performing the same computation unnecessarily.

Memory: 4 KM commits and 2 CM commits optimised memory usage by

adding new conditions.

Bandwidth: 1 KM and 2 CM commits utilised caching to avoid making un-

necessary network requests.

Frame Rate: 1 KM and 2 CM commits utilised new conditions to avoid un-

necessary work on the UI thread, thus improving the frame rate.

Pattern: Wrap blocks of code in if statements, or add new conditions to ex-

isting if statements.

Add Delay: Delays were introduced in 2 KM and 2 CM commits, these delays

allowed background execution to finish before proceeding, thus improving

performance NFPs.

Execution Time: 2 CM commits improved execution time using increased

delays.

Frame Rate: 2 KM commits utilised delays to improve frame rate.

Pattern: Insert calls to the Time.sleep() method into code.

Animation Length Reduction. Visual changes, such as changes to animations or

UI elements, are used in 2 KM commits to reduce the frame rate of an

application.

Frame Rate: 1 KM commit animation length reduction improved the appli-

cation execution time.

Frame Rate: 1 KM commit used programmatic animation changes were used

to improve the application frame rate.

Pattern: When animations are done programmatically we recommend using

profilers to identify hotspots. Frames could also be removed from animations

to speed them up and a trade-off between speed and smoothness could be

found.

4.2. Results 81

f o r (i n t i = 0 ; i < 100 ; i ++){
. . .
i n t x = foo () ;
. . .

}y
i n t y = foo ()
f o r (i n t i = 0 ; i < 100 ; i ++){

. . .
i n t x = y ;
. . .

}

Figure 4.2: An Example of the Caching Pattern.

Caching. Caching data to avoid rerunning code was one of the largest categories

of change, with 28 KM and 28 CM changes being made.

Execution Time: 20 KM and 25 CM commits improved execution time using

caching. This is the most obvious application of caching as we one use it to

avoid repeatedly performing the same computation unnecessarily.

Memory: Whilst caching can often increase memory usage if used to avoid

memory-intensive computation it can actually save memory. However, this is

uncommon, with only 1 CM commit showing this use of caching.

Bandwidth: 8 KM commits utilised caching to avoid making unnecessary

network requests.

Frame Rate: 1 CM commit utilised caching to avoid making unnecessary

work on the UI thread, improving frame rate.

Pattern: Caching is a common pattern for decreasing the execution time of

an application. It can often be easily implemented by assigning the results

of a method call to a variable and replacing future calls to the method with

that variable. An example of a caching pattern being applied can be found in

Figure 4.2.

Change in Operation Order. 2 KM and 9 CM commits altered the order of oper-

ations. This involved swapping the order in which lines of code are executed,

4.2. Results 82

i f (foo ()) {
. . .

}
e l s e i f (b a r ()) {

. . .
}y
i f (b a r ()) {

. . .
}
e l s e i f (foo ()) {

. . .
}

Figure 4.3: An Example of the Change in Operation Order Pattern.

such as conditions in if statements.

Execution Time: 2 KM and 6 CM commits improved the execution time of

code by changing the order of operations.

Memory: 2 CM commits were found to reduce the memory consumed.

Frame Rate: Only 1 CM commit changed the order of operations in order to

improve the application frame rate.

Pattern: Change in operation order can be achieved by swapping lines or

blocks of code, or nodes in the abstract syntax tree. The swap operator has

already been utilised in program repair ([75]), but is yet to be widely adopted

in automated search-based techniques for improvement of NFPs of software

([63]). An example of this pattern can be seen in Figure 4.3.

Data Structure Replacement. Data structure replacements were used in 8 KM

and 12 CM commits. A data structure replacement could consist of swap-

ping an ArrayList for a LinkedList where the LinkedList is more

efficient.

Execution Time: 8 KM and 9 CM commits replaced data structure to

improve execution time.

Memory: 2 CM commits implemented the usage of more memory-efficient

4.2. Results 83

i n t [] x = new i n t [4 0 9 6]y
i n t [] x = new i n t [2 0 4 8]

Figure 4.4: Data Structure Size Reduction Pattern

data structures.

Bandwidth: 1 CM commit replaced a data structure transmitted over the net-

work with a smaller equivalent to improve bandwidth usage.

Frame Rate: 1 CM commit used a more efficient data structure to improve

frame rate.

Pattern: Various NFPs can be improved by finding data structures and auto-

matically replacing them with compatible ones. Similar approach has been

implemented by Basios et al. [70], although their tool is not publicly avail-

able.

Data Structure Size Reduction. Reduction in the size of data structures, such as

arrays, were used in 6 KM and 4 CM commits.

Memory: All KM and CM commits improved the memory consumption of

applications by reducing the sizes of data structures.

Pattern: Reduce the size of data structures. This can be achieved, for instance,

by changing the size of declared arrays. Program analysis could be required

to prevent overflows. An example of this pattern can be seen in Figure 4.4.

Decrease Asset Size. Changes to assets such as images and fonts, mostly to im-

prove the efficiency of loading said assets, account for 3 KM changes and 5

CM changes.

Execution Time: 1 KM and 1 CM commit improved the execution by reducing

asset size and speeding up their loading.

Memory: 3 KM commits and 5 CM commits improved memory by reduc-

ing the amount of memory that large assets consume.

Pattern: Use compression algorithms, such as gzip, to reduce the size of

assets.

4.2. Results 84

Different Algorithm. The implementation of more efficient algorithms constituted

7 KM commits and 24 CM commits.

Execution Time: 7 KM and 23 CM commits implemented more time efficient

versions of algorithms.

Memory: 1 CM commit replaced one algorithm with another more memory

efficient one.

Frame Rate: 1 CM commit implemented a more efficient algorithm to im-

prove frame rate.

Subcategories:

Use String Builder: In 4 CM commits, String Builders were used in place of

naive string construction to improve execution time.

Use char instead of String: In 3 CM commits, method calls with Strings

for arguments, such as indexOf, were replaced with equivalent methods with

char arguments to improve execution time.

Improve Regex Performance: In 2 KM and 4 CM commits, regular expres-

sions were modified to execute more quickly.

Other: 5 KM and 12 CM commits consisted of changes to algorithms that

could not be grouped with others. We detail each of these changes in Ap-

pendix A.1.

Early Return. Earlier return statements were introduced in 2 KM and 2 CM com-

mits, preventing whole methods from executing when unnecessary.

Execution Time: 2 KM and 2 CM commits used earlier returns to speed up

application execution time.

Pattern: Insertion of a return statement. An example of this pattern can be

found in Figure 4.5.

Freeing Up Memory. Adjustments to the amount of memory in use when devices

were low on memory was another common change made to 10 KM commits.

Memory: All commits which used this strategy were used to reduce the mem-

ory consumption of applications.

Pattern: Program analysis would be required to identify which resources

4.2. Results 85

. . .
i f (foo ()) {

. . .
i n t x = b a r () ;

}
. . .
re turn x ;y
. . .
i f (foo ()) {

. . .
i n t x = b a r () ;
re turn x ;

}
. . .
re turn x ;

Figure 4.5: An Example of the Early Return Pattern

could be freed from memory.

Increase in Concurrency Multi-threading changes were used in 15 of the KM and

12 of the CM changes.

Execution Time: 10 KM and 11 CM commits used more multi-threading to

speed up applications.

Memory: 1 CM commit used more concurrency to become more memory

efficient.

Frame Rate: 5 KM commits improved frame rate by using multi-threading to

reduce the load on the UI thread.

Subcategories:

Move code to background: 6 KM and 4 CM improved execution time, 1

CM commit improved memory consumption, and 3 KM commits improved

frame rate by executing code on separate threads.

Alter timing: 3 KM commits improved execution time by altering the timing

of threads.

Use a thread pool: 2 CM commits found improvements to execution time by

4.2. Results 86

introducing thread pools to manage thread execution more efficiently.

Layout Optimisation. 6 CM commits modified the layouts of applications. This

consists of flattening layouts to reduce nesting.

Execution Time: All 6 CM commits were used to speed up applications.

Pattern: Automatic layout flattening is obtained by removing layout compo-

nents and replacing them with their child components. This can be achieved

with the lint tool10.

Leak Fix Fixing memory leaks was the most common approach to decrease mem-

ory consumption, with 35 KM and 74 CM commits.

Memory: Leak fixes were made in 35 KM commits, which is almost half of

KM memory improving changes. 74 CM commits fixed leaks.

Pattern: Automatically detecting objects that are being unnecessarily instan-

tiated or not properly disposed of, using a tool like infer11, and removing

them with program repair techniques like GenProg ([108]).

Make Final: 2 KM commits introduced the final keyword to local variables, al-

lowing more efficient code to be compiled.

Execution Time: both commits improved execution time.

Pattern: Add the static keyword to local variables.

Make Static: 1 CM commit added the static keyword to a method in order to re-

duce memory usage.

Memory: The only commit in this category improved memory usage.

Pattern: Add the static keyword to methods.

Network Throttling. Network throttling (which is an intentional slowing down of

internet speed) was used in 3 KM commits to improve bandwidth usage. In

fact, while this may not reduce the total amount of bandwidth used, it can still

be useful to reduce the load on the network by speeding it up for other users.

Bandwidth: All 3 KM commits used Network throttling to improve band-

width usage.

Pattern: Create a network monitor that reduces the networking of the appli-

10https://developer.android.com/studio/write/lint
11https://fbinfer.com/

https://developer.android.com/studio/write/lint
https://fbinfer.com/

4.2. Results 87

cation when traffic is high, a tool like android-varanus12 could be used to this

end.

Parameter Change. 13 CM commits simply changed parameters in various func-

tion calls, speeding up the application.

Execution Time: 12 CM commits were used to decrease execution time.

Bandwidth: 1 CM commit was used to improve frame rate.

Pattern: Techniques such as deep parameter optimisation [62], have proven

useful for finding optimal parameters in source code.

Remove Caching: 2 KM commit removed a cache to improve NFPs.

Execution Time: 1 commit in this category improved execution time by re-

moving a costly caching operation.

Memory: 1 commit in this category improved memory consumption.

Pattern: Replace cached variables with method calls.

Remove Redundancy. The removal of redundant function calls or iterations is the

largest category we identified, with 46 KM and 65 CM commits found.

Removing unnecessary code can be an easy and simple way to optimise soft-

ware.

Execution Time: 34 KM and 56 CM changes improved execution time by

removing unnecessary execution of code.

Memory: 15 CM commits removed code instantiating objects, thus reducing

memory consumption.

Bandwidth: 10 KM and 3 CM changes removed unnecessary network access,

reducing bandwidth usage.

Frame Rate: 2 KM and 2 CM commits removed redundant code that was

causing frame rate to be low.

Pattern: Remove lines or blocks of code, or nodes in the abstract syntax

tree. This operation is standard in Genetic Improvement [63] tooling used

for automated improvement of non-functional software’s properties, such as

execution time, energy consumption, but also for automated program repair.

12https://github.com/Yelp/android-varanus

https://github.com/Yelp/android-varanus

4.2. Results 88

SQL Query. A large number of changes (11 KM and 11 CM) to SQL requests

appear to improve performance NFPs. These changes were only present in

7 projects. Some of the changes removed unnecessary JOIN statements, and

others changed the order of JOIN statements.

Execution Time: All SQL query commits improved execution time.

Subcategories

Change Primary Key: 2 CM commits improved execution times by chang-

ing the primary keys used in SQL tables.

Specify Column: 2 CM commits moved from selecting all columns to se-

lecting individual columns, speeding up query execution.

Combine Queries: 3 CM commits combined multiple queries together to

save executing them each individually.

Move File to DB: 1 KM commit and 2 CM replaced file I/O with an in mem-

ory database to improve the execution time.

Remove Unneeded JOIN: 1 KM commit improved execution time by re-

moving an unnecessary JOIN statement.

Flatten Queries: 3 KM commits flattened queries containing sub-queries

into a single select query, improving execution time.

Add table indices: 3 KM commits added indices to tables to speed up SQL

queries.

Use transactions: 1 KM commit and 1 CM commit wrapped a series of

queries up into a single transaction, allowing them to be executed more

quickly.

Parameter Binding: 1 CM commit introduced parameter binding, which

allows similar queries to be made repeatedly with only their parameters

changed.

Time Out Reduction. In total, 1 KM and 7 CM commits made changes to the

length of timeouts, waiting for other computations to complete.

Execution Time: 1 KM commit and 7 CM commits reduced unnecessarily

long timeouts to improve the execution time.

4.3. Discussion 89

Pattern: Change timeout values in source code.

Use Different Library. 3 KM 11 CM commits replaced the libraries they used

with more efficient alternatives.

Execution Time: 1 KM and 8 CM commits used different faster libraries.

Memory: 2 KM and 3 CM commit used a more memory efficient library.

Frame Rate: 1 CM commit used a more efficient library to improve frame

rate.

Pattern: Use a set of similar libraries and automatically replace their existing

usages in code.

Unknown. Some of the commits (41 KM and 46 CM) were not classifiable as

the type of optimising change was not obvious from the commit message or

the diff. In fact, some changes were bundled within large commits making

optimisations hard to pinpoint, yet from the developer message it was clear

that execution time, memory consumption, bandwidth, or frame rate had been

improved.
Answer to RQ3: Our study provides 18 categories of non-functional

property-improving code changes. For execution time simply remov-

ing redundancies leads to most improvements (27 % for KM and 27

% for CM commits). For memory optimisation leak fix is the predom-

inant strategy (48% for KM and 66 % for CM commits). Redundancy

removal is also the favoured strategy to improve bandwidth, followed

by caching, while an increase in concurrency leads to a better frame

rate.

4.3 Discussion
In this section, we discuss potential avenues for future research that stem from our

study.

4.3.1 Recommendations for NFP Mining

Our work shows that a more fine-grained mining of NFP commits is feasible. The

classifier that we presented has a good chance of finding commits with a recall

of 0.8 (4 in 5 commits are found in our test set). The precision of 0.72 suggests

4.3. Discussion 90

Table 4.14: Correlation between properties of repositories and the number of NFP-
improving commits found in them.

Property Correlation Coefficient (ρ) p− value

Total commits 0.754 < 2.2e−16
No. Stars 0.678 1.10e−13
No. Contribs. 0.601 2.34e−10
Age of Repo. 0.169 0.107
No. Forks. 0.043 0.697
KLoc 0.033 0.756

that around 3 in 4 commits will be relevant. This means that the manual effort

to identify relevant commits is much less than searching via keywords. This is

confirmed by our mining via the classifier where we find 331 relevant commits by

analyzing 495 commits. In comparison via keyword search we mined 229 relevant

commits by manually checking 3,132 commits. I.e. analyzing 1.50 commits via

classifier returns one relevant commit, vs. 13.68 commits for one relevant commit

via keyword search.

This enables the mining of repositories for NFP commits on a larger scale

than previously possible as the manual effort is reduced significantly. With larger

datasets in the future, it may even be possible to expand the classification to identify

categories and subcategories of NFP that a commit falls under.

4.3.1.1 Characteristics of Repositories Containing NFP-improving

Commits

As we observed that the number of performance NFP-improving commits greatly

varies among the mined repositories, we further analyse these repositories in an at-

tempt to find the characteristics of those repositories that contain many commits.

This can allow future NFP mining studies to target the most commit rich reposito-

ries.

Table 4.1 and Table 4.5 show the properties (i.e., the total number of com-

mits made in the repository, the number of stars a repository has, the number of

developers who have contributed, the age of the repository, the number of times the

repository has been forked, and the number of lines of code in the repository) of

4.3. Discussion 91

the repositories together with the number of performance NFP-improving commits

found in each of them.

In order to quantify the relationship between each property and the number

of NFP-improving commits found, we calculate the Pearson Correlation Coeffi-

cient ([109]). Pearson’s correlation (ρ) measures the linear relationship between

two pairs of observations. It ranges from +1 (indicating perfect correlation) to - 1

(indicating perfect inverse correlation), no correlation is indicated by 0. The results

of this analysis are shown in Table 4.14.

We find that the total number of commits in a repository shows the strongest,

statistically significant, positive correlation with the number of performance NFP-

improving commits (ρ = 0.754, p-value < 2.20e − 16) . We also find strong,

statistically significant, positive correlations between the number of NFP-improving

commits and both the number of stars (ρ = 0.678, p-value = 1.10e−13) and the

number of contributors (ρ = 0.601, p-value = 234e−10) . We find no statistically

significant correlation with the age of a repository (ρ = 0.169, p-value = 0.107) ,

the number of lines of code in a repository (ρ = 0.043, p-value = 0.756) , or the

number of forks of the repository (ρ = 0.033, p-value = 0.697) .

We also attempt to see if there is a relationship between the categories of ap-

plications and the number of performance NFP-improving commits we found. We

present in Figure 4.6 a box plot of the categories reported on F-Droid for each ap-

plication against the number of performance NFP-improving commits we found in

it. We can observe that there are no categories that tend to have significantly more

commits than others, however the applications in the connectivity category have the

highest median number of NFP-improving commits.

The above results suggest that it would be preferable to target large repositories

that receive many stars by GitHub users and have a large number of contributors,

when mining for performance NFPs commits.

4.3. Discussion 92

Figure 4.6: Box plot showing the relationship between repository category and number of
performance NFP-improving commits.

4.3.2 Recommendations for Performance NFP-Improving

Tooling

Our analysis of commits improving execution time, memory consumption, band-

width usage, and frame rate of mobile applications provides several findings. In

particular, our main goal has been to establish how Android developers improve

these four NFPs, and whether we could utilise this knowledge to enhance automated

software improvement tooling.

After careful analysis of the literature, we found that 5 out of 23 improvement

strategies (see Section 4.2) are already mimicked by software mutation operators in

automated software improvement tooling, as described below.

Deletion of redundancy has been used in many fields, ranging from slicing to

newer strategies such as genetic improvement ([63]). The delete operator, which

can be applied at various granularity levels, e.g., line or statement level has proved

effective in automated program repair ([75]). Similarly, 75% of the non-functional

properties studied were improved through the removal of a redundancy (used to im-

4.3. Discussion 93

prove execution time, memory consumption, and frame rate). Android applications

contain many lines of redundant code and its removal is one of the main techniques

developers use to improve the four NFPs considered in this work.

Burles et. al. [71] and Basios et. al. [70] swap the data structures to improve

non-functional properties. This is also reflected in our mined data. Both the execu-

tion time and memory consumption commit sets contained changes which consisted

of simply swapping one data structure for a more efficient one. This suggests that

patches produced with their techniques will be similar to those made by humans.

The early return category is small but offers a simple software transformation.

Rather than assigning a value to a variable, just return the value. This will only

be valid if the return value will not change in the rest of the method. This could

be used as an opportunity to insert early returns. Recently, Brownlee et. al. [69]

incorporated this type of operator in their automated software improvement tooling

for Java software.

Switching the order of operations in which these are executed is also mimicked

by the swap operator in genetic improvement research. Such swaps have been done

at the statement ([96]) and expression level ([92, 110]).

The parameter change category is reminiscent of deep parameter optimisa-

tion ([62]), where parameters are exposed and automatically tuned to improve some

property. Bokhari et. al. [61] successfully applied deep parameter optimisation to

energy consumption in Android. Our results suggest that deep parameter optimisa-

tion could be effective for improving other properties in Android.

Although the changes mentioned above have been incorporated into automated

software improvement tooling, these have generally not been applied in the Android

ecosystem, but just to traditional software.

Our study has also revealed several improvement strategies that are not yet

employed in current search-based software improvement tools.

One such strategy is caching. Caching has been repeatedly used to improve

execution time, memory consumption, and bandwidth usage. Caching is useful as

it reduces calls to areas of code by storing their output. The stored value is then

4.3. Discussion 94

reused instead of calling the code. However, it does increase memory usage. The

trade-off between the NFPs that caching improves must be balanced with the cost

to memory, pointing to multi-objective optimisation. A caching pattern could be as

simple as replacing multiple calls to a function, with the same arguments, with a

single call to the function. The result of this call should be stored in a variable, and

the original calls to the function replaced by the variable. Another option would

be to cache a function called in a loop, replacing the function call in the loop with

a variable storing the result of the function which is called before the loop, as in

Figure 4.2.

Changes to assets, such as pictures, are found among the commits that im-

prove execution time and memory consumption. Assets can be resized to improve

memory consumption (and potentially bandwidth usage) or handled differently to

improve execution time. When modifying assets, the changes made must result in

the asset still being acceptable to the users. Measuring this acceptability and finding

reasonable modifications poses an interesting challenge. However, a few genetic

improvement approaches have tried to allow for decrease of output quality, when

improving for other properties, such as energy consumption ([111]), or shader sim-

plification ([83]). This, however, has not been regarded as a code changing operator

itself, but as a side-effect of the other software transformations.

SQL queries were modified a substantial number of times in order to improve

execution time. Using search-based techniques to transform SQL queries could

allow developers to automatically achieve large improvements to execution time in

applications that have many database interactions. Das et al. [21] found also that

not only databases but also file systems led to speed bugs, suggesting that I/O could

be a good target for improvement.

Many search-based techniques only focus on making changes within a single

file. Table 4.10 suggests that a multi-file approach may be more useful for generat-

ing patches to improve non-functional properties. The number of chunks also sug-

gests that patches are distributed widely across source code and changes are found

in many locations. Thus, for Android applications, changes could be deliberately

4.4. Threats to Validity 95

spread out across multiple files.

4.4 Threats to Validity

Although we cannot claim that our results can apply to any type of mobile appli-

cation, we mitigate the conclusion validity threat by mining commits from applica-

tions diverse in many ways, including their type, size, number of commits made,

and number of contributors.

Moreover, developers of open-source applications may view non-functional

properties at a different priority than their closed-source counterparts. However, the

user base is the same (Android mobile users), and open-source repositories provide

a rich amount of data that can be analysed to improve current software engineering

practices. The number of NFP-improving commits we analysed may give a partial

picture of the commits which are actually made by developers, and it was limited

by the manual effort needed to analyse the 3,132 commits. However, this is in par

with the number of commits examined in previous studies (e.g., [103, 21]). Some

commits which improve NFPs may have been missed by the keyword search. This

may have been due the sets of keywords used being incomplete or the commits not

having messages which reflect the non-functional properties which they improve.

To mitigate the former, the keywords were repeatedly expanded to try to catch as

many commits as possible and had a very large false positive rate (73%), so it is

unlikely that many were missed. It is also likely that developers did not report trade-

offs that were made. The classifier may also be influenced by the keywords used,

as it was trained on the gold set based on keywords search and manual analysis. We

do provide the source code of both the keyword search and classifier (https://

github.com/SOLAR-group/NonFunctionalAndroidCommits) so that

they can be expanded in the future.

Finally, the NFP-improving commits could be categorised differently. The

aim of the current categorisation was to provide meaningful classes from which in-

sights could be drawn towards possible new mutation operators for non-functional

property improvement using search-based approaches, such as genetic improve-

https://github.com/SOLAR-group/NonFunctionalAndroidCommits
https://github.com/SOLAR-group/NonFunctionalAndroidCommits

4.5. Related Work 96

ment ([63]). To alleviate such a threat and facilitate this aim, we provide our de-

tailed commit categorisation online (https://github.com/SOLAR-group/

NonFunctionalAndroidCommits).

4.5 Related Work

There have been a few studies that mined for non-functional property improving

commits in Android applications. Moura et al. [103] performed a study on soft-

ware repositories mining “energy aware commits”. They mined commits which

attempted to improve the energy efficiency of an application and categorised the

commits that did. They used a two-word-key-phrases approach, to narrow down the

returned results to 2,189 commits, rather than 112,900 commits that were initially

returned from single keyword search. The majority of the commits found in this

study (∼ 70%), belong to categories which concern device configuration, e.g. Volt-

age Scaling. Das et al. [21] mined Android repositories for “performance related

commits”. They found such messages in only 7% Android application repositories

considered. Moreover, their categorisation was more top-level than what we pro-

pose, classifying commits into, e.g., “Memory”, “File system”, and other. They

have also used one set of keywords for all performance-related issues. Their study

restricted their searches to the main application modules. The patterns that they

extracted mostly concerned what was being fixed, rather than how it was fixed, mak-

ing direct comparison difficult. Although there are a few similarities, we both find

changes to regular expressions to be useful for improving performance, we find that

developers move computation to the background, and we find that caching is used

to improve performance. In their work, Das et al. [21] find that developers improve

multiple properties 10.4% of the time, whereas we only found that in 6.5% of cases

We have also attempted to use as many keywords as possible, this includes all of

the relevant keywords from the related work, and keywords which we determined

from analysing commit messages, this is detailed in Section 4.1 .

Mazuera-Rozo et al. [9] performed a similar study, producing a topology of

Android performance bugs, and pointed out several other studies that focused on

https://github.com/SOLAR-group/NonFunctionalAndroidCommits
https://github.com/SOLAR-group/NonFunctionalAndroidCommits

4.5. Related Work 97

non-functional bugs. We are concerned with non-functional property optimisation

rather than repair, and thus we describe the types of changes which can improve

NFPs, whilst they describe the bugs which can be detrimental to them. In their

study they uncovered a number of bug types, for which we have found related fixes.

These include the leak fix category, the data structure replacement category, and the

layout optimisation category. Interestingly, we find around 3-4x the number of com-

mits dealing with caching for execution time improvement than they do. They also

do not capture many of the categories for improving memory usage and bandwidth

usage that we do, in particular the Remove Redundancy category. This may be due

to our usage of a larger keyword set. As we are concerned with a detailed analysis

of the improvement strategies found with respect to four specific performance non-

functional property improvement criteria, we use a more comprehensive keyword

search than the three aforementioned studies. Consequently, we manually analyse

more commits. Moreover, we train a classifier to gather additional data, which we

make open source. We also categorise and analyse commits in ways that allow the

comparison to existing, and derivation of new, mutation operators for automated

software engineering approaches for non-functional property improvement, such as

genetic improvement [20, 63].

Linares-Vasquez et al. [45] attempted to uncover ways in which developers

address performance bottlenecks in Android, they did this by surveying develop-

ers. They found that developers use similar techniques to the caching and SQL

query categories uncovered in this study. Our approach aims to find a more com-

plete picture of the changes developers make by directly exploring the content of

the changes they made, as developers may exclude techniques used less frequently

when answering a survey.

Chen et al. [105] perform a similar study to Linares-Vasquez et al. [9], but

on 100 projects with C/C++ code. Changes to C/C++ are likely to be different to

Java as there is more direct access to lower-level operations like memory allocation.

However, their arguments pattern is similar to the change parameter pattern that

we found and the memorization is similar to our caching pattern. Jin et al. [102]

4.5. Related Work 98

conducted a study across a number of different programs in different languages, but

did not include Android applications. However, they did find fix patterns similar

to change parameter, change order of operations, and add condition, showing that

some changes made in Android may applicable in other types of software. We

also find that changes in Android are larger than those in C/C++. Only a median of

lines of code are changed in C/C++ commits, but for all categories, we find median

changes of 10+ lines and in some cases up to 70+ lines.

Our work uncovers a number of new patterns with respect to those discussed in

related work. We find changes to animations, layouts, and assets that have not been

discussed in previous work, these categories all seem to be particularly relevant UI-

focused Android applications. We also find that searching for source code changes

results in a number of patterns that have not been discussed in previous work, like

remove redundancy, early return, different library, data structure changes and time

out reduction.

The idea of mining repositories for software-improving commits has shown

promise in the automated program repair field. Long et al. [112] mined Java reposi-

tories to automatically find fix patterns to apply to buggy software. Kim et al. [113]

manually evaluated human-written patches from GitHub to generate patches which

could then be automatically applied to buggy software. Bader et al. [114] lever-

age the version history of a piece of software to extract fix patterns to suggest to

developers. Martinez et al. [115] showed that repair templates generated by min-

ing existing code could be used to generate a large number of bug fixes. Several

of the automated program repair techniques mentioned the use of search-based ap-

proaches, which have been utilised for improvement of non-functional properties,

in the field of genetic improvement, in particular. Therefore, we believe that the

results of our study could be similarly used to provide recommendations for future

tooling [116].

4.6. Conclusions 99

4.6 Conclusions

In this chapter, we have explored the ways in which Android application developers

improve non-functional properties, in order to guide the development of new auto-

matic transformations to improve the NFPs of Android applications. To this end

we analysed 74,408 commits from 100 repositories, finding 560 commits that im-

prove four performance-related non-functional properties (NFPs): execution time,

memory consumption, bandwidth usage, and frame rate. We employed a combina-

tion of keyword search, and a classifier to filter irrelevant commits, and manually

analysed over 3,000 commits to obtain our corpus. We have found that devel-

opers more commonly improve the execution time of their applications than other

NFPs. However, manual changes to improve non-functional properties are uncom-

mon, suggesting that automated tools could aid developers in this challenging task.

Moreover, we find that developers occasionally improve multiple non-functional

properties at once (5.2% of cases), or sacrifice one property for another (10.7%

of cases). This suggests developers are willing to take multi-objective approaches.

However, the rarity of these changes suggests a need for automatic tools that could

propose a Pareto of solutions for the developer to choose from ([117]). We have

also found similarity between 5 current mutation operators in automated software

improvement and the changes that app developers make. Code removal was a very

common technique used by app developers for improving multiple non-functional

properties, as was data structure replacement. However, we also identify a number

of changes, which GI is currently not capable of making. It would be interesting

to explore whether the corresponding mutation operators, which have already been

successfully used to optimise NFPs of traditional software, are effective in automat-

ically improving NFPs of mobile applications too. We have also found novel ways

in which real commits could be more closely mimicked by tools for automated NFP

improvement, for example, by making changes across multiple files simultaneously.

Our results highlight a need for automated tools which improve the non-

functional properties of Android applications and provide initial guidance on what

types of changes such tools could implement. These changes include automatic

4.6. Conclusions 100

caching to improve speed and bandwidth, SQL query transformation to improve

speed, and image modification to reduce memory consumption and execution time.

In later Chapters of this thesis, we explore how GI can integrate these types of

changes.

Chapter 5

Improving Responsiveness with

Local Genetic Improvement

Despite the negative results we found when attempting to improve the frame rate of

Android apps, we believed that with the insights gathered in the previous chapter

we could improve our framework and find better improvements to responsiveness.

Firstly, we observe that there are a very limited number of ways in which framerate

can be improved with patches to source code and thus it may not be the most effec-

tive target. However, we observe that there are many ways in which execution time

can be improved, including transformations that are possible when using Genetic

improvement. Thus, if we can find a type of execution time that can be used as a

metric for responsiveness, we may be more likely to find improvements.

We observe that one simple source of poor responsiveness is slow navigation

between activities. Most non-trivial applications consist of multiple activities, often

including a main activity and a settings activity. When a user navigates between

activities, specific methods are called. If these methods are sufficiently fast, the

user will not notice a delay when moving between activities. But if they are slow,

the user will notice a delay or unresponsive transition, as the application will hang

whilst these methods execute. By simply measuring the execution times of these

transition methods, we can easily quantify the responsiveness of activity transitions

for any application. In the cases where these transitions are slow, reducing their

execution time will improve the responsiveness of the application.

5.1. Improving Android Navigation Response Time Using GI 102

In order to make automated improvement of navigation responsiveness issues

more practical, we explore GI for this purpose. We introduce an additional caching

mutation operator, proven effective for execution time improvements, which we

found in the work described in the previous chapter.

We use simulation-based testing in order to speed up the GI process as com-

pared to Chapter 3. We evaluate our technique on 7 applications and analyse how

well the improvements found with simulation-based testing translate to real appli-

cations.

The conclusions of this chapter are as follows:

1. We can achieve improvements of up to 30% to the navigation repsonsiveness

of Android applications.

2. These improvements do not result in changes to application functionality.

3. Improvements found using local Robolectric tests translate to improvements

on real devices.

4. Finally, the main limitation to our approach is the lack of testing in Android

apps.

The rest of this chapter is divided as follows:

1. Section 5.1 describes our approach, using only local unit testing, to improve

the navigation responsiveness of Android apps.

2. Section 5.2 lists the research questions we wish to answer about our approach.

3. Section 5.3 describes the methodology used to answer our questions.

4. Section 5.4 discusses and analyses our results.

5. Section 5.5 describes the threats to the validity of our work.

6. Section 5.6 details the conclusions of our experimentation and analysis.

5.1 Improving Android Navigation Response Time

Using GI
In order to apply GI to Android lifecycle transitions, we propose the system pre-

sented in Figure 5.1.

The input to the framework is the application’s source code (including tests)

5.1. Improving Android Navigation Response Time Using GI 103

Figure 5.1: Local Android GI Framework, using the Local Search Meta-Heuristic

with a list of activities’ callback methods to be optimised. The tests are split into

2 categories: performance and validation. After each software mutation the two

sets of tests are run to check if the given mutant is more time-efficient, yet still

maintains the same behaviour as original software. Although in this work we apply

local search to navigate the space of mutations to callback methods, other search

strategies can be used in the future. As shown in Figure 5.1, meta-heuristics can

easily be substituted in place of local search. Our framework then outputs the best

found software variant.

In the following subsections we describe our fitness evaluation procedure and

mutation operators in more detail.

5.1.1 Mutation Operators

To generate mutants, we use 5 mutation operators on the abstract syntax tree (AST).

4 of these operators have been used previously in genetic improvement:

1. Delete Statement Remove a statement from the AST.

2. Copy Statement Add a copy of an existing statement in AST to a new loca-

5.1. Improving Android Navigation Response Time Using GI 104

tion

3. Replace Statement Insert one statement in the AST in place of another.

4. Swap Statement Swap two AST statement nodes.

We also introduce a new operator, the Cache Operator. This mutation finds

target methods which are called at least twice within a parent method with the same

parameters. A random subset of these target methods is then selected for caching.

A single call to the target method is inserted above the first caching location and its

result stored in a new variable. All of the previously selected instances of the target

method are then replaced with the newly created variable.

5.1.2 Android Testing

The main challenge of applying GI to the Android domain comes from tests needing

to exercise APIs which are exclusive to Android devices and emulators, such as GPS

sensor information or UI components.

When testing in Android, tests can be split into two categories:

1. Unit Tests: In the context of Android, these are tests which can be run

on desktop operating systems. They do not utilise any device specific func-

tionality, such as GPS sensors.

2. Connected Tests: These tests can only be run on actual Android devices

or emulator. They require a whole application to be compiled, packaged, and

installed.

Normally, in order to test variants of Activity classes, we would need to use

connected tests. This is because the APIs which are needed to render the UI com-

ponents that we wish to test are only available on Android devices. When applying

Genetic Improvement, each fitness evaluation (in which code compiles) would re-

quire the compilation, packaging, installation, and on device testing. This would be

prohibitively expensive.

To avoid this cost, the Robolectric testing library [118] can be utilised. This

library implements the Android specific APIs, whose use is normally restricted to

connected tests. This library allows the testing of UI elements of applications on

desktop devices using JUnit, removing the expensive steps usually needed for UI

5.2. Research Questions 105

testing. Crucially, Robolectric allows us to test the activity transitions of applica-

tions locally and significantly more quickly than we would otherwise be able to.

This allows us to avoid the significant overhead of running instrumented tests

on actual devices or emulators.

To evaluate each software variant, we split relevant tests into two groups:

1. Validation Tests All tests which cover the lifecycle transitions which we wish

to optimise. These are used to determine validity of the mutated software

variant.

2. Performance Tests Tests which only exercise the lifecycle transitions which

we wish to optimise. The execution time of these tests is used to determine

the fitness of a mutant. The performance test set is a subset of the validation

set.

We use the execution time of the performance tests on unmodified source code

as a baseline to compare the improvements found.

5.2 Research Questions
In order to evaluate the utility of using Genetic Improvement to improve the navi-

gation responsiveness of Android applications, we propose the following research

questions:

RQ1 How effectively can genetic improvement optimise the responsiveness of An-

droid applications?

This question will explore how well we can decrease the delays experienced

by users when navigating through Android applications, using a fully auto-

mated search-based approach. We will also explore how well the approach

generalises across different applications.

RQ2 Which types of source code changes are most effective when improving navi-

gation responsiveness in Android applications?

The changes that we find to have the largest impact on navigation speed could

be used in the future by developers who are trying to improve the responsive-

ness of their apps. They could also be useful in future automated techniques,

5.3. Methodology 106

whether that be avoiding changes which are unlikely to be successful, or ap-

plying any fix-patterns we uncover to applications.

RQ3 How expensive is it to improve the responsiveness of Android applications

using genetic improvement?

This question will allow us to quantify how feasible it is to run our setup

and balance that with the improvements found. We can also find out what

affects the cost of setup and how it varies between applications. With this we

may also be able to propose ways to speed up GI, and discover the type of

applications that GI will be most suitable for.

5.3 Methodology
To answer our RQs we modified an existing genetic improvement tool, Gin [96], to

work with Android applications written in Java.

Next, we evaluate it on a systematically selected set of real-world applications,

to check if indeed navigation responsiveness improving edits can be found.

5.3.1 Implementation

We chose Gin, as it targets method-level modifications. This is unlike other GI

tooling, which largely focuses on class-level changes. Furthermore, Gin has been

optimised for Java software, a common choice of programming language for An-

droid developers. We use a simple local search strategy, default in Gin. We apply

a single mutation to the current best patch (this is an empty patch at the start of

search). If the execution time is shorter for the mutated code, than the current best

patch, it is set as the current best. This continues for N individuals, in our case

200 as this was found to be a good trade-off between time spent searching and im-

provements found in our initial test experiments. Once all 200 patches have been

evaluated, the current best is returned as the best patch found.

We have extended Gin to compile and test Android applications, as the existing

code is only compatible with standard Java code.

We measure the execution time of performance tests using the linux time tool,

this allows us to capture the CPU time of test execution, which is significantly less

5.3. Methodology 107

noisy than just measuring the execution time. This is due to the other processes

on the system running at the same time. Any time that is spent waiting whilst

these other processes are running on the CPU would be added into an execution

time measurement. Whereas, CPU time only captures the time when the process is

actually running

In order to find the areas of code to improve, we first profiled the time taken

by the lifecycle transitions using either pre-existing tests which started activities, or

created our own test which did this. These tests were also used during search as our

Performance Tests.

We then selected the activities with the greatest start-up time for improvement.

We then found the areas code which were exercised by the activities start-up, within

the activity class, to transform to find improvements.

In order to check the validity of the mutants produced during search, we run

all of the tests which cover the areas of code selected for mutation. In many cases,

there are numerous Robolectric tests first create an activity and then test some of an

activities behaviour, giving us confidence that invalid mutants will be detected.

5.3.2 Benchmarks

In order to evaluate our approach, we run it on a number of real world applications.

In order to run our setup on an application it must meet the following requirements:

1. Applications must be written, at least partly, in Java. Gin currently only sup-

ports the modification of Java code. However, our extension can run tests

written in either Java or Kotlin.

2. The application must have passing tests written using the Robolectric library

which exercise activity transition code.

With these requirements, we checked every application listed on the

FDroid [119] online application repository. We found 97 applications which con-

tained both activities written in Java, and utilised the Robolectric Library.

Next we manually analysed each application, the tests which used Robolec-

tric were first checked to see if they actually exercised the code of interest or not.

As Robolectric is a generic library which implements many different device spe-

5.3. Methodology 108

cific APIs, often the test did not exercise the UI components we were interested in.

Most commonly, these tests used the Uri.parse method as this is not available

in standard Android unit testing and must otherwise be performed on an Android

device/emulator.

When investing the applications which used Robolectric, we found that the

transitions which entered activities was far more complex than the code which

exited them. Most of the time the onDestroy() method was the only exiting

method overridden and only consisted of a few lines of code. Because of this we

chose to focus our setup on the methods used when entering or launching an activity.

Next, we checked the coverage of these tests using the Android Studio Cover-

age tools. In some cases, we needed to change the versions of dependencies in order

to get the tests to run, however no source code was modified at this stage. We ran

every Robolectric test in the application’s test suite and investigated how well each

activity was covered. Then for the activities that were covered we also collected the

parts of code which were covered only when an activity was instantiated. This was

done either using pre-existing tests or tests which we created. This allowed us to

see exactly which areas of code were used when activities are launched.

We then selected the activities with over 100 lines of code in their transition

callback methods. This gives a reasonable opportunity for improvements to be

found. Finally, if multiple activities were found that were suitable, we chose the

activity with the greatest launch time.

Our search yielded 7 suitable applications, these applications and the activities

which we targeted for improvement are shown in Table 5.1. The main limitation is

the lack of suitable tests, this is unsurprising as open-source Android applications

tend to be very poorly tested [99]. If Robolectric tests could be automatically gen-

erated, our approach could be applied to almost any application. However, unlike

with traditional software, where tools like EvoSuite [100] can be used, there exist

no tools for automatically generating Android unit tests. Whilst random test input

generation tools exist, such as Monkey [12] and Droidbot [120], they do not gen-

erate assertions. Therefore, they are not useful for checking the validity of a patch,

5.3. Methodology 109

Table 5.1: Applications and targeted activities in our benchmark

Application Target Activity
Amaze File Manager MainActivity

Anki Android CardTemplateEditor
Budget watch TransactionViewActivity

Catima MainActivity
Gift Card GiftCardViewActivity

Loyalty Card LoyaltyCardViewActivity
Rental Calculator PropertyWorksheetActivity

other than for potentially finding crashes that are not present in the original app.

These tools were also developed for, and sometimes only run on, Android 4.4, the

latest release of Android is version 11, further limiting their utility. Therefore, we

chose not to use random test input validation to validate our patches.

5.3.3 Validation

In order to validate the patches produced by GI, we undertake a number of checks.

First the performance tests are rerun 10 times each for each of the best found patch

in each run and the empty patch. This allows us to check whether the improvements

found are genuine and not just noise. We also use statistical tests to check whether

the improvements are significant or not.

Next we undertake manual analysis. This consists of both looking at the source

code and running the app on an actual device. We check the patches to see if they

do in fact appear to be improvements and navigate between the affected activities

to look for a noticeable impact on the navigation responsiveness.

5.3.4 Experimental Setup

We run our set up 20 times on each of our 7 benchmarks, this is due to the stochastic

nature of local search. With 20 runs we can see how our system performs in the

average case, with different randomly selected mutations.

All computation was performed on a high performance cloud computer, with

16GB RAM.

5.4. Results 110

Table 5.2: CPU times (CPUTs) of activity launch before and after GI.

Application Orig. CPUT (s) Med. improved CPUT (s) Min Improved CPUT (s)
Amaze File Manager 1.15 1.07 0.98
AnkiDroid 1.55 1.17 1.09
Budget Watch 0.96 0.88 0.87
Catima 1.12 1.07 0.97
Gift card 0.88 0.84 0.83
Loyalty Card 0.90 0.82 0.78
Rental Calculator 0.90 0.87 0.85

Table 5.3: Percentage improvement to CPU time after GI.

Application Med. improvement in CPU time Max improvement in CPU time
Amaze File Manager 6.7% 14.5%
AnkiDroid 24.1% 29.6%
Budget Watch 8.6% 9.5%
Catima 4.4% 13.2%
Gift card 5.2% 6.4%
Loyalty Card 8.7% 13.1%
Rental Calculator 3.9% 6.0%

5.4 Results
Below we present the results of our experiments, answering our research questions

5.4.1 RQ1: Effectiveness of Genetic Improvement

In order to answer RQ1, we first measure the CPU time of the targeted activity

transitions of both patched and unmodified applications. The CPU times of each

variant of source code is measured 10 times and the median reading taken.

We also perform the Mann-Whitney U test [121], author = H. B. Mann on the

data collected here with the null hypothesis:

“Test running on the patched source code have the same CPU time as

those running on unpatched code.”

Those which did not show statistical significance at the 95% confidence level

were set to 0% improvement.

The results of this can be seen in Table 5.2 for the absolute improvement in

CPU time, and Table 5.3 for percentage improvements. It is worth noting that CPU

represents only a small fraction of the actual execution time, as much of a processes

execution time is spent waiting for it’s code to be run on the CPU.

5.4. Results 111

Table 5.4: Launch times (LTs) before and after the application of GI.

Application Original LT (ms) Med improved LT (ms) Max. LT (ms)
Amaze File Manager 8330 7420 6368
AnkiDroid 4952 3808 3429
Budget Watch 1606 1541 1521
Catima 2223 2133 2119
Gift card 2059 2004 1977
Loyalty Card 6963 6721 6700
Rental Calculator 991 963 956

Table 5.5: Percentage Improvements to launch times after GI.

Application Med. imp. in launch time Max imp. in launch time
Amaze File Manager 10.9% 23.6%
AnkiDroid 23.1% 30.8%
Budget Watch 4.1% 5.3%
Catima 4.0% 4.7%
Gift card 2.6% 4.0%
Loyalty Card 3.5% 3.8%
Rental Calculator 2.8% 3.5%

These results show that GI is indeed capable of finding improvements to the

CPU time taken by the code which instantiates activities. We find median improve-

ments of between 4.4% and 24.1%, and maximum improvements of between 6.4%

and 29.4%. We find the greatest improvement for the least responsive application.

To further validate our improvements, we installed them on a real Android

device, a NOKIA 3.2 running Android version 10, and measured the time taken to

open the activity which had been improved. In this case, we measure the launch

time of an activity. An improvement in this figure will result in faster transitions

between activities during usage. This means that an improvement to the activity’s

launch time will result in a more responsive app.

In order to perform these measurements, we specified UI tests, using the

espresso testing library. Each test simply consisted of an ActivityRule, which

launched the activity being improved. The application was then patched, compiled,

packaged, installed and tested, with the execution time of the test execution be-

ing recorded. This does however have an overhead, the time spent launching the

app, which will be included in measurements and may decrease the relative size of

5.4. Results 112

improvements as this cost is unaffected by our patches.

Again we repeated 10 measurement for each patches version of the application

and performed the Man-Whitney U test, at the 95% confidence level, with the null

hypothesis:

“Patched activities will have the same launch time as unpatched activi-

ties.”

Again, all non significant improvements were set to zero. The results of these

measurements can be seen in Table 5.4 and Table 5.5. These improvements were

found to have medians of between 3.9% and 24.1% and maximums of between

6.0% and 29.6%. Thus, showing the time taken to launch activities has decreased

shows an improvement in responsiveness.

We can see that the improvements found during GI do in fact translate into

real improvements to execution on actual devices. For two applications, very large

improvements were found of over 20%. These improvements knocked seconds off

the launch times of activities, offering massive improvements to responsiveness. In

every other case some improvements were found, although smaller. In these cases,

the CPU time was relatively low to begin with, so finding improvements was much

more difficult.

It is also worth noting that when visually inspecting the best patches, there is a

clear difference observed when navigating into the improved activity.

Overall, GI is capable of improving the responsiveness of Android applica-

tions. GI is best suited in situations where applications are suffering from respon-

siveness issues, rather than searching for minor optimisations for already responsive

apps.
Answer to RQ1: Genetic Improvement can find statistically significant

improvements to the navigation responsiveness of Android apps of up

to 30.8%.

5.4.2 RQ2: Most effective transformations

To find the most effective types of improvement, we analyse the patches which

produced the best improvements for each project.

5.4. Results 113

Figure 5.2: The most effective patch found. This patch which removes a mostly redundant,
yet expensive check.

For the Amaze File Manager project, the most effective change consisted of the

removal of redundant code. A number of components are created, but they are never

used and have no effect on the application execution. Therefore removing them of-

fers a good improvement in responsiveness. Visual inspection reveals no difference

in functionality, however, the application renders significantly more quickly.

In the AnkiDroid app, and overall, our best improvement was very simple, it

removed the call to a costly check in the case where an activity is created without

an application, this patch is shown in Figure 5.2. This seems highly unlikely to

occur, as activities should only be created by an application, therefore the high

cost appears unjustified. There was no noticeable difference to this when using the

patched application normally. However, the patch offers a choice between a huge

optimisation, or better protection from a very unlikely edge case, and clearly the

existing code is causing responsiveness issues. Interestingly, this patch was found

in 3 separate GI runs.

For the Budget Watch application, the code which set the title of the page was

removed, this involved querying a database multiple times in a large conditional to

attempt to determine what the correct title should be. This does result in a missing

title, however the title is not a key component of the app’s functionality and would

probably go unnoticed by most users, so the trade off may be worth it.

In the Catima project, a line that fetches an intent that is never utilized is re-

moved in the best patch. This is a very simple patch, however produces a reasonable

improvement.

5.4. Results 114

For the Gift Card project, the best patch simply changed the order of opera-

tions when creating the activity. This changed the order of initialization between

a button on the screen and the taskbar. When adding these two components to the

activity, they are likely to interact with the already existing components, checking

for conflicts. So perhaps, in this configuration, the process is quicker.

For the Loyalty Card application, the best change is relatively large, re-

ordering a large section of code. In this patch, a BarcodeImageWriteTask is sub-

mitted before some of the other rendering jobs are competed, whereas before it was

submitted last. This results in this task executing whilst the other UI components

are being set up, thus speeding up the overall rendering.

The best Rental Calculator patch, again, changes the load order of the activities

components, along with loading the text on the screen in a different order.

Overall, there appear to be 2 types of effective improvement. The removal of

redundant code and changing the order in which activities load their components.

Unfortunately, the newly introduced caching operator was not present in any of

the produced patches. This is because the caching operator is only applicable in

specific circumstances, i.e., when the same function is called repeatedly. In the

code which we targeted, there were no caching opportunities found, so the operator

could never be utilised. In the future, isolating and focusing on these 2 types of

change may provide quicker search and better results. In some cases, the changes do

slightly affect the way that the application looks or functions. However, this offers

developers the option to have a more responsive, but slightly different application.

Answer to RQ2: We have found that the removal of redundant code

and changing the order in which activities load their components are

the two most effective types of changes for improving the navigation

responsiveness of Android applications.

5.4.3 RQ3: Cost of Genetic Improvement

To quantify the cost of improvement, we measure the execution time of each run

of our set up. We present the time taken in a box-plot in Figure 5.3, grouped by

project.

5.4. Results 115

Figure 5.3: Boxplot of the times taken by each GI run for each project

Table 5.6: Comparison of test suit execution time, build time, and GI run time

Application Test Suite Exec Time (s) Build Time (s) GI Exec. Time (h)
Amaze File Manage 87 32 4.04
AnkiDroid 10 3 0.802
Budget Watch 36 16 1.91
Catima 25 19 1.67
Gift Card 31 8 1.91
Loyalty Card 41 36 1.91
Rental Calculator 45 5 1.64

We see that the cost of GI varies by project and takes between 36 minutes

and 6 hours, in the worst case, to complete. Whilst this can a relatively long time,

the improvement is fully automated, requiring no human interaction. The median

time across all runs and applications is only 1.75 hours. If there is a responsiveness

problem, then running GI will be a cost-effective approach to solving this problem.

If the code targeted is relatively static, GI is likely to be more suitable as it will only

have to be run occasionally and the improvements will have a large impact over

long periods of time.

5.4. Results 116

Figure 5.4: A scatter plot showing the correlation between test suite execution time and GI
execution time

In order to understand what causes the execution time of GI to vary by project,

we calculate the correlation between various attributes of the projects with the me-

dian execution time of GI for that project. In particular, we investigate what caused

the Amaze file manager runs to be longer than the runs for other applications. We

believe that the attribute with the main impact on the running time of GI will be

the execution time of the test suite, as this seems to be where GI spends most of its

time. We also compare the build time of each application to the overall run time.

These are the main factors that seem like to impact the running time of GI. Due

to the caching used by gradle during GI to speed up runs, we first clean the gradle

cache and then run the same build/test task that is run during GI.

In order to calculate the correlation between these two properties, we calculate

Pearson’s correlation co-efficient [122] (R). R is a value between 1 and -1, repre-

senting positive and negative correlations respectively. The closer to zero R is, the

less of a correlation there is. We also calculate p-values, determining the statistical

significance of the correlation, and consider those with 95% confidence statistically

significant.

For the test suite execution time, we calculate R = 0.956, p− value = 0.0007,

suggesting a very strong statistically significant correlation between these two fac-

5.5. Threats to Validity 117

Figure 5.5: A scatter plot showing the correlation between build time and GI execution
time

tors. A graph of this correlation can be seen in Figure 5.4, including Amaze File

Manager with its very long test execution time. This is likely the cause of run-

ning GI on Amaze file manager being so costly. For build time, we calculate

R = 0.65, p− value = 0.112, suggesting the correlation is not statistically signif-

icant, this relationship is shown in Figure 5.5.

When running our set up, minimising test execution time is likely to result in

quicker runs. Guizzo et al. [123] showed that regression test selection can be used

to speed up GI, whilst still producing valid patches. This technique would almost

certainly be useful in this domain and could offer a significant speed-up.
Answer to RQ3: We find that our setup takes between 36 minutes and

6 hours to run. We find a strong correlation between the time taken by

tests and the run time of GI but no statistically significant correlation

between the build time of the apps and the time taken by GI.

5.5 Threats to Validity
In this section, we discuss potential threats to validity to our study.

Firstly, we use testing to validate patches. Although testing does not guarantee

correctness, the GI approaches ultimately simply return a list of edits that can then

undergo a standard code review process. This is standard practice in GI that operates

5.6. Conclusions and Future Work 118

on source code. Moreover, during search, we exclusively utilise local unit testing,

not testing patches on actual devices or emulators. We also utilise the Robolectric

library to simulate Android UI rendering. Patches that are produced are validated

using this library and any discrepancies between this library and the actual APIs

may result in patches that are correct with respect to Robolectric, but patches that are

not actually correct. In order to mitigate this threat, we take a number of additional

steps to validate our patches. The first step was to manually investigate the diff of

the source code before and after we patch application. We also then installed and ran

the patched applications on a real device. We ran all existing tests and performed

visual inspections to confirm the validity of the patches.

Another threat to validity comes from the fact that we only used 7 subjects in

our empirical evaluation, thus results might not generalise. Nevertheless, we made

our best effort to mitigate this threat. Since our approach relies on source code

modification, we chose a popular open-source Android app repository, F-Droid.

Although we found 97 apps to which our approach could potentially be applied,

after manual analysis, only 7 of those had suitable test coverage. This is a gen-

eral roadblock to the wider application of GI in the Android domain. Most, if not

all, automated test generation tools currently only generate test input, rather than

assertions, and thus more research is needed in this domain.

To mitigate this threat further, we make all our code and results freely avail-

able, allowing other researchers and developers to use and extend our tool for other

software.

5.6 Conclusions and Future Work

Responsiveness is one of the most important properties of mobile software. Al-

though several approaches exist for automated improvement of responsiveness is-

sues, they either require network or hardware access. Moreover, arguably more

lightweight approaches that target anti-patterns in source code, often do not come

with available tooling and target specific performance bug types.

In this work we applied a GI-based approach to 7 diverse mobile applications,

5.6. Conclusions and Future Work 119

showing improvements in time to navigate between activities to up to 30%. We

carefully evaluated our results in order to verify the functionality of our tool.

Our results show that significant improvements to app responsiveness can be

found with negligible changes to app functionality. This calls for the use of multi-

objective approaches that would explore the space of responsiveness-improving so-

lutions that might have minimal impact on other properties of the given app. There

may also be properties which are being hindered by improvements which improve

responsiveness, multi-objective approaches may be able to find trade-offs between

responsiveness and other properties.

We also identify one challenge to the wider uptake of GI in the mobile domain,

namely the availability of mobile applications with good test coverage of their UI

elements. We also find that GI takes a relatively long time to find improvements,

exploring a large search space. In the future, more intelligent mutation operators

may allow us to find improvements more quickly.

We also release our framework, so that researchers could replicate our results,

extend it with new mutation operators, while practitioners could already apply it to

their Java-based Android applications.

Our tool is available at: https://github.com/androidresponsiveness/

AndroidResponsivenessGI/

Given the success of our framework for this task, in the next chapter, we at-

tempt to apply it to a more challenging problem. We adapt the framework to not

only improve a single property but apply it to the improvement of multiple proper-

ties at once and explore the trade-offs that can be found between properties.

https://github.com/androidresponsiveness/AndroidResponsivenessGI/
https://github.com/androidresponsiveness/AndroidResponsivenessGI/

Chapter 6

Multi-Objective GI for Android

Given our success in the previous chapter, we decided to apply GI to a more com-

plex problem. We note that when improving a single property, we can have negative

impacts on others. For example, assigning more memory to n array when it is ini-

tialized may save time in the long run if many elements are inserted, saving the need

for more allocations in the future. However, if only a few insertions are made and

no reallocations are needed, the memory usage of the software will be unnecessarily

high. Another example would be caching, if we introduce a caching mechanism into

GI, we may make faster programs that use too much memory. In this case, if a user

is running an optimised version of the application along with other applications, it

may result in slowdowns whilst the OS attempts to free up memory. Whilst existing

approaches for automated improvement of Android apps are capable of improving

multiple properties simultaneously, e.g., by removing unnecessary computation and

reducing runtime and energy use, in most cases such correlations have not been

considered [20].

Extending GI to improve multiple properties can be accomplished by swapping

out these single-objective algorithms with multi-objective ones. This allows us to

consider patches that find trade-offs between various properties, rather than just

those that improve one, without consideration of the impact on others. We can thus

provide a choice to developers between different versions of source code, showing

different trade-offs. Nevertheless, only a few works explore the potential of multi-

objective GI and only in the desktop domain [124, 62].

6.1. Multi-Objective Optimization 121

The rest of this paper is structured as follows:

1. Section 6.1 describes how GI can be applied in a setting with multiple objec-

tives.

2. Section 6.2 presents challenges of applying GI to the Android domain and

our proposed framework that overcomes these challenges.

3. Section 6.3 presents research questions we aim to answer to evaluate our ap-

proach.

4. Section 6.4 outlines our methodology.

5. Section 6.5 presents our results showing how effective is MO-GI at improving

three non-functional properties of Android apps.

6. Threats to validity are presented in Section 6.6, with Section 6.7 concluding.

6.1 Multi-Objective Optimization

Performance properties such as runtime and memory consumption often are at odds

with each other, i.e., one can improve runtime by caching results, thus increasing

memory use, and vice versa. In order to improve such conflicting properties, multi-

objective (MO) algorithms have been proposed [125], which produce a Pareto front

of non-dominated solutions. A solution x Pareto dominates another y if all of x’s

objectives are as good as y’s and at least one objective is better than y’s.

Past work utilising MO algorithms for GI is sparse, with the majority of work

focusing on single-objective improvement. However, in the work where MO im-

provement has been successful Genetic Algorithm (GA) based algorithms have been

used. Wu et. al. [62] and Callan et. al. [126] used NSGA-II [127], White et. al. [91]

used SPEA2 [128], with Mesecan et. al. [124] comparing four MO algorithms, with

SPEA2 and NSGA-III [129] performing best.

In each algorithm, a population of solutions (in our case program variants)

is generated and their fitnesses are measured. In order to generate new patches,

mutation, and crossover operators are used to generate child populations and then

individuals are selected for the next generation from both child and parent popula-

tions.

6.2. Multi-Objective GI for Android 122

The algorithms vary in their selection phases. The algorithms use Pareto dom-

inance to compare different individuals who may find trade-offs between different

properties.

Both NSGA-II and NSGA-III sort the population into Pareto fronts based on

their fitnesses. The population of the next generation is then selected from the top

fronts, one at a time, until a set number of individuals are chosen. If a front needs to

be split, as it is too big for the population size, it is sorted by a crowding metric, and

the least crowded members are selected. In NSGA-II, crowding is based on distance

from other individuals in the fitness landscape. Whereas in NSGA-III, crowding is

based on reference lines and the number of individuals that are closest to them,

or niched to them. NSGA-III selects individuals spread across as many niches as

possible in the final front to maintain diversity.

Unlike the NSGA algorithms, SPEA2 does not separate the population into

Pareto fronts. Instead, the strength of each individual is calculated. This is equal

to the number of other individuals that the individual Pareto dominates. The raw

fitness of an individual is then calculated as the sum of the strengths of all other

individuals which it dominates. Like the NSGA algorithms crowding metric is cal-

culated. For this, all other individuals are sorted into a list based on proximity to

the individual of interest. The metric is inversely proportional to the distance of the

kth individual in the list. The parameter k is equal to the square root of the total

population size. Finally, the raw fitness and the crowding metric are simply added

together and used to select individuals.

It is yet unclear which multi-objective approach works best for the purpose

of genetic improvement, thus we explore the capabilities of these three algorithms

shown successfully in previous work.

6.2 Multi-Objective GI for Android

There are a number of practical changes when using genetic improvement to en-

hance the performance of Android apps when compared to traditional desktop en-

vironments.

6.2. Multi-Objective GI for Android 123

Android applications make use of APIs for features like UI elements which

are only present on actual devices. The Android library available when testing

applications on desktop operating systems overwrites the APIs such that they throw

errors when invoked. Most Android code utilises the Context class [130], in the

applications we use in our experiments, the context class is explicitly imported in

over 1/3 of files. This does not include the instances where it is implicitly imported

as a nested dependency. This class gives the code access to the shared state of the

application but is only available on devices. This means that in order to run tests

that exercise any component of an application’s code that accesses this state, the

entire application must be compiled, packaged, transpiled, installed, and launched

before it can be tested. This can take a considerable amount of time, often longer

than the tests themselves [131].

Android apps are generally built using Gradle with the Android Gradle plugin.

This makes them incompatible with much of the tooling surrounding automatic

compilation and testing of code [11, 132].

Another challenge of applying GI to the mobile domain is the accurate mea-

surement of the fitness function. Previous work has only applied GI to problems

that take seconds/minutes to run. In the mobile domain, it was shown that apps that

run in more than 150ms are considered to be ‘laggy’ by users [133]. Therefore,

although previous work used approximate fitness measurements, these are not ap-

propriate in the mobile domain as they may not capture such minor, yet important,

differences in non-functional behaviour.

In order to overcome the aforementioned challenges, we propose the GI frame-

work shown in Figure 6.1. The framework is split into two main components: the

Search, and the Fitness sections. These components can be swapped out depending

on the properties being improved.

6.2.1 Representation

We use a program representation consisting of a list of edits, which are applied

sequentially to the source code. This representation has been used in GI many

times in the past and has proven successful [63]. We use a list of edits, rather than

6.2. Multi-Objective GI for Android 124

Andr oi d
App

Robol ect r i c
Test s

Mut at i on + Cr ossover

Gr adl e
Compi l at i on

Fi t ness
Sear ch

Fi t ness
Resul t s

New
Popul at i on

Candi dat e
Pat ches

Selection

Figure 6.1: GI framework for Android app improvement, with search based on a genetic
algorithm. In the case of local search, only mutation is applied.

| g i n . e d i t . s t a t e m e n t . D e l e t e S t a t e m e n t Example . j a v a :608
| g i n . e d i t . s t a t e m e n t . CopySta tement Example . j a v a :1307 −>
Example . j a v a . j a v a : 3 2 0 : 3 6 5 |

Figure 6.2: An example of a program variant that deletes the statement with ID 608 and
then copies the statement with ID 1307 to position 265 into the block with ID
365 in the file Example.java

representing the whole program in the genome, as may be done in traditional genetic

programming, to reduce the memory footprint of the search process. An example

of this representation, as used in GIDroid, is shown in Figure 6.2.

6.2.2 Fitness

In the Fitness section in our framework (see Figure 6.1), we measure the properties

that we are improving. As in previous GI work, we patch the application, compile

it and run unit tests on it. If all unit tests pass, the patch is considered valid, if not,

it is discarded. Then, the property being improved is measured. For example, if we

are improving execution time, the time taken by the test suite is measured. Multiple

different properties are measured in the case of MO improvement.

Due to the complexity of the Android build system and significant use of UI

elements, a minor change usually requires a time-costly process of installation on

the actual device for testing. Our framework thus utilises only the local tests which

run on the JVM. This would normally limit the components that could be tested

to only those which do not use the device-only APIs. If we attempt to use these

6.2. Multi-Objective GI for Android 125

APIs in a local test, we will simply call stubbed versions of the methods that throw

exceptions. However, by using the simulation-based Robolectric testing library, we

are able to test any application component with fast local tests. Robolectric has

two main features that allow us to test apps. Firstly, the simulation of the applica-

tion and Android environment, which creates a headless version of the application

within a local JVM. Secondly, shadowing which allows the bytecode of classes to be

overwritten at runtime. This is used to overwrite the API calls with simulated API

calls and allows the simulated app to be exercised. Shadowing is useful for mock-

ing hard dependencies and can be used to avoid the complex setup needed when

testing certain components. Using this simulation-based approach, we can quickly

compile and test application variants, and use measurement tools that aren’t avail-

able in the Android operating system. Callan et. al. [134] found that improvements

that could be demonstrated with unit tests written in the Robolectric library trans-

lated to improvements on Android applications run on real devices, in every case

where improvements were found. Thus, with a combination of Robolectric testing

and manual review of improvements, we can be confident whether we have found

an actual improvement or not. We use the Gradle build system with the Android

plugin to compile and test applications.

Khalid et. al [5] identified execution time, memory, bandwidth, and energy

usage as the most complained about and impactful non-functional properties of An-

droid apps. In this work, we will attempt to improve execution time, memory, and

bandwidth. Previous work on automatically improving energy usage of Android

apps [61, 60] found energy estimates to be too noisy, thus requiring external de-

vices for physical energy measurements. Although GI can be used to optimize en-

ergy consumption [61], we want to provide a general, easy-to-use tool that does not

require extra hardware. It is worth mentioning that thus far the primary technique

for improving bandwidth has been prefetching [37]. No attempts have been made

to improve it using source-code transformations, despite such changes being made

by developers [135]. We are the first to try to do so.

6.2. Multi-Objective GI for Android 126

6.2.3 Search

The Search section of our framework for Android app improvement (see Figure 6.1)

determines how the search space of patches is navigated. Most GI work so far has

used single-objective algorithms, such as genetic programming and local search.

Only a few consider more than one objective. We pose that consideration of multi-

ple objectives in the mobile domain is especially important, due to limited resources.

To fill this gap, we propose to utilise multi-objective approaches in the search pro-

cess. Multi-objective algorithms will allow us to evolve patches that will balance

different trade-offs, producing Pareto fronts of solutions. The user will then be left

with a choice of which patch fulfills their particular needs. The multi-objective

approach will provide relevant information on how runtime reductions might for

impact memory use etc.

To start our search we need to generate an initial set of patches. Our patch

representation is not of fixed size and may contain any number of edits. We create an

initial population containing individuals consisting of single random edits. Further

creation is guided by a given search algorithm, where mutations and crossover are

applied to create new patches.

6.2.3.1 Mutation and Crossover

Patches are created via mutation and crossover on the list of edits representation. In

the single-objective search used in GI so far crossover typically appends the lists of

edits together from patches selected using binary tournament selection. We apply

this type of crossover in our MO algorithms as well. A mutation simply adds or

deletes an edit. In our case we operate on the statement-level, thus each mutation

can delete, remove, or replace another statement. Additionally, we investigated

which other mutation operators might be beneficial in the Android domain.

Callan et. al’s work [135] showed that one of the most common techniques

for improving non-functional properties of Android apps is caching. Caching was

found to be effective across all properties studied and improved a number of dif-

ferent applications in different domains. Outside of the changes already imple-

mented by standard GI mutation operators (remove code, change order of opera-

6.2. Multi-Objective GI for Android 127

tions), caching is the most generically applicable strategy found, and thus, the most

suitable for multi-objective improvement. Based on a manual analysis of the com-

mits from Callan et al.’s work, in which caching is used, we propose using two

caching mutation operators. Caching could prove useful for the three properties

that we wish to improve. Firstly, if we no longer need to execute a method as we

already have the result we will save time. If the method has a larger memory foot-

print than the stored result, we will reduce the memory footprint of the app. Finally,

if the cached method accesses the network, we will be able to avoid this operation

and reduce network usage. However, caching may negatively impact memory usage

if the stored result is large. This will mean that we will have to consider possible

tensions between objectives when we run our search.

First, we utilise the simple In-Method Caching Operator from the previous

Chapter. This operator simply stores the result of calling a method in a local variable

and replaces future calls to this method with the local variable (see Algorithm 1).

An example of this operator can be seen in Figure 6.3. The second caching operator

creates new fields in the associated class for storing cached method calls. This Class

Caching Operator allows cached variables to persist beyond the end of individual

method calls and could prove particularly useful if a method is called repeatedly.

An example of this operator is shown in Figure 6.4. We wrap the statement which

accesses the cached variable with a null guard so that the first time it is called we

actually call the method. For both of these operators, we consider method call

expressions to be cachable to the same variable only if their arguments consist of

the same variables. As shown in Algorithm 2, the class caching operator can be

applied to any method call expression. However, as local variables do not persist

after a method is executed, there must be at least two instances of the expression

for it to be cached. These operators will not disrupt the source code syntax as they

simply replace a method call expression with a variable name expression which is

the same type as the method’s return type.

6.3. Research Questions 128

Algorithm 1 Find method calls to cache in Method M
1: function METHODCACHEFINDER(C)
2: seen = /0
3: cachable = /0
4: for each expression e in M do
5: if e is a method call expression then
6: if e ∈ seen then
7: cachable = cachable∪ e
8: else
9: seen = seen∪ e

10: end if
11: end if
12: end for
13: Return cachable
14: end function

Original Code Mutated Code

i n t x = foo (a , b , c) ; int cachedVar1 = foo(a,b,c);
i n t y = foo (a , b , c) ; i n t x = cachedVar1 ;

i n t y = cachedVar1 ;

Figure 6.3: An example of the In-Method Cache Operator. The resultant code stores the
results of a method call f oo, with parameters a, b and c. This stored result can
then be used later in the same method.

6.3 Research Questions
To evaluate how effective the multi-objective GI approach for improvement of An-

droid apps’ runtime, memory, and bandwidth use is, we pose the following research

questions:

RQ1: Can MO-GI optimize Android apps in the same way as real developers?

In order to validate our approach, we want to see if MO-GI can reproduce real-world

improvements that Android developers have manually implemented in the past.

RQ2: How effective is MO-GI at optimising Android apps without known im-

provements?

Answering this question will allow us to see how well our approach generalises. In

particular, if it’s able to find improvements in current code.

RQ3: Which MO algorithm is the most effective for MO-GI for Android?

6.3. Research Questions 129

Algorithm 2 Find method calls to cache in Class C
1: function CLASSCACHEFINDER(M)
2: cachable = /0
3: for each method m in C do
4: for each expression e in m do
5: if e is a method call expression then
6: cachable = cachable∪ e
7: end if
8: end for
9: end for

10: Return cachable
11: end function

Original Code Mutated Code

c l a s s C1 { c l a s s C1 {
p u b l i c vo id foo () { int cachedVar1;

i n t x = a () ; p u b l i c vo id foo () {
} if (cachedVar1 == null){

} cachedVar1 = a();
}
i n t x = cachedVar1;
}

}

Figure 6.4: An example of the Class Cache Operator. The result of a method call is stored
in a field of the class for later use in any method.

There are a number of different MO algorithms available. We want to ensure that

our approach utilises the most effective one, thus we investigate and compare a

selection of MO algorithms successfully used in the GI domain in the past.

RQ4: How do the improvements found by MO-GI compare to those found by

SO-GI for Android apps?

We wish to see if using MO algorithms limits GI’s ability to improve apps, when

compared to improving only a single objective. This is especially important in cases

where one improvement can enhance two objectives (e.g., deletion can improve both

runtime and memory use). We want to see if MO are still competitive in such cases.

RQ5: What is the runtime cost of MO-GI for Android?

Any improvements found by MO-GI must be considered against the cost of running

6.4. Methodology 130

it. The improvements found must justify this cost.

RQ6: How does GI compare with available state-of-the-art techniques for An-

droid performance improvement via code modification?

We want to compare GIDroid with state-of-the-art tools that are readily available to

developers to see if our tool could offer an attractive alternative.

6.4 Methodology
In order to answer our research questions, we propose a series of experiments, run-

ning both multi- and single-objective GI on a benchmark of real-world Android

applications.

To answer RQ1, RQ3, and RQ5, we run GI with three multi-objective algo-

rithms on a set of applications, in some of which we know potential improvements

are present, in order to validate our approach. To answer RQ2, we use the same

setup to improve the latest versions of applications, to see if our framework can find

yet-undiscovered optimizations

Next, to answer RQ4, we run GI with a single-objective hill climbing algo-

rithm, to compare with a multi-objective approach. With this set of experiments,

we can evaluate whether or not our multi-objective algorithms can find improve-

ments that are as good as those found by single-objective search. This allows us to

compare the trade-offs found by different search algorithms.

Finally, to answer RQ6, we use an Android linter to identify performance is-

sues within our benchmarks. Linters are the only tools available to Android de-

velopers which can identify issues with source code that may affect performance

properties we target. By manually repairing these issues we can see how our tool

compares in terms of both effort and effectiveness with respect to existing tools

available to developers.

6.4.1 Genetic Improvement Framework

We implement our multi-objective GI approach for Android in a tool called GIDroid,

and use it to answer our RQs. Although there are many existing GI frameworks,

Zuo et. al [136] found that PYGGI [137] and the Genetic Improvement In No time

6.4. Methodology 131

tool (Gin) [96] were the only GI tools that could be readily applied to new software,

with a more recent tool by Mesecan et. al [124] not yet available. However, none of

the aforementioned work can be run on Android applications. Whilst Gin is com-

patible with most Java programs, and thus could potentially be easiest to extend, it

is not compatible with the Android compilation and testing environments.

In GIDroid, we implement three MO algorithms: NSGA-II [127] as it is one of

the most widely used multi-objective algorithms; NSGA-III [129], that was specifi-

cally developed for problems with 3 or more objectives in mind; and SPEA2 [128],

which has recently proven successful for MO-GI in the desktop domain [124]. We

use MO algorithms, as we believe that we will be able to find better improvements

to some properties if we are able to sacrifice others. In particular, with our caching

operators – these operators are likely to negatively impact the memory consump-

tion of the applications, however a small increase in memory consumption may be

worth it if it can sufficiently improve another property. The parameters used in these

implementations can be found in Table 6.1.

To measure execution time we use Linux’s time tool [19], we measure memory

usage with the Java Runtime’s memory allocation tracking [138] and we use Linux’s

built-in process-level network traffic tracking [139] to measure bandwidth.

6.4.2 Benchmarks

Genetic improvement requires a set of tests that cover the areas of code being im-

proved, in order to validate that a non-functional property-improving patch does

not negatively affect the app’s functionality. Unfortunately, most open-source An-

droid applications do not have test suites, and those that do are limited, achieving

a median line coverage of 23% [99]. Furthermore, there is not a single tool that

we have found in an extensive search of the literature which can automatically gen-

erate unit tests for Android applications. All automated testing tools for Android

found ([140, 141, 14, 142, 17, 18, 143, 120, 144]) focus on testing UI via input

generation in order to induce crashes and only run on devices/emulators, so would

not be compatible with our framework. Moreover, they do not generate assertions

— crucial for capturing correct app behaviour.

6.4. Methodology 132

This meant that we had to manually construct unit tests for every single bench-

mark. We first had to attempt to understand each application and the component

being improved and then attempt to create thorough, high-quality tests for them. In

many cases, we had to account for asynchronous code, which was scheduled by the

target code, and ensure that it executed completely during test execution. In other

instances, we had to hunt down various parts of the state of the application to ensure

they were correct. For each test we created, we ensured that it covered the meth-

ods which we wished to improve. We also added assertions about the state of the

components of the application that were modified during execution. We achieved at

least 75% branch coverage for methods used in our study. We do, however, note that

developers would find this process simpler, as they already have an understanding of

the application. They would get many other benefits from writing tests [145, 146] so

the cost cannot be only placed upon the application of GI. Given the cost associated

with manual testing, we set a threshold of 20 benchmarks for all our experiments.

To validate our approach, we first run GIDroid on applications with known

performance issues. [135] has recently conducted a study of the changes that An-

droid developers make to improve app performance. They propose that some of

those changes are within the GI search space. For instance, moving an operation

outside of a FOR loop, if it only needs to be executed once. While others are not

yet achievable, e.g., requiring new code to be added that could not be achieved via

mutation of the existing code base. We thus use [135]’s criteria to iteratively anal-

yse the commits from their dataset that improve runtime, bandwidth, or memory

use, until we reach our 20 benchmark target. In particular, we found 14 commits in

previous work, spread over different versions of 7 applications. Since we also want

to find improvements in current software, we stop our selection procedure here and

use the current versions of the 7 apps, giving us a total of 21 benchmarks.

Once we had our set of versions of apps, we prepared them for GI. Firstly, we

had to ensure the apps would build. Over time, a number of changes have been

made to the Android build tools, making older versions of code incompatible with

modern Android Studio. We require these build tools to function with Android

6.4. Methodology 133

Table 6.1: Parameter settings for the MO algorithms used in our study.

Parameter Value
Mutation Rate 0.5
Crossover Rate 0.2
No. Generations 10
No. Individuals 40
Selection Binary Tournament
Crossover Append Lists of Edits
Mutation Add/Remove an Edit
Reference Points Worst Observation (for

each prop. and bench.)

Studio, so we can test and measure the test coverage of applications confirming

that they can be safely improved. This meant that we had to update build scripts

with newer versions of libraries and build tools. In some cases, there were bugs

such as unescaped apostrophes in resource files, which prevented applications from

building. These bugs were fixed. In a few cases, the benchmarks also used outdated

non-Gradle build systems, so we wrote the necessary build scripts, and modified the

project’s directory structure, to be compatible with Gradle and thus with GIDroid.

No source code was modified in this process.

We ran the PMD static analyser on the 7 applications and ran GIDroid on the

classes which showed the most performance issues. This way we could see how our

approach compares against human effort for finding performance-improving code

transformations of existing code bases, for the 14 previously patched app variants.

We could also see whether our approach is able to find yet unknown performance

improvements in the current versions of the 7 apps.

6.4.3 Experimental Setup

For each version of code we improve, we run GIDroid 20 times with 400 evalu-

ations. To minimise measurement noise, we use the Mann-Whitney U test at the

5% confidence level to determine whether there is an improvement of a given prop-

erty (i.e., runtime, memory or bandwidth use). For the evolutionary algorithms, we

divide these 400 evaluations into 10 generations with 40 individuals each, as was

shown to be effective in previous work, including in the Android domain [147, 134].

6.5. Results and Discussion 134

We set the number of evaluations to 400 as, even when using simulation-based test-

ing, the evaluation of an individual is slow, taking up to 2 minutes. We use the

Genetic programming parameters in Table 6.1 as they have been used successfully

in the past [126].

We had 2520 runs in total, taking a mean of 3 hours per run, resulting in

roughly 7500 hours of computing time to test our approach.

All of our experiments were performed on a high-performance cloud computer,

with 16GB RAM and 8-core Intel Xenon CPUs. We ran jobs across 10 nodes, each

running separately to avoid interference between fitness measurements.

6.5 Results and Discussion
In this section, we present and analyse the results of our experiments, answering our

Research Questions (Section 6.3). Throughout this section we will refer to the CPU

time (s) of the test process as execution time, the size of the occupied Java heap as

memory consumption (MB), and the number of bytes sent and received by the test

process as network usage (B). Each of these objectives is a fitness function that we

aim to minimize.

6.5.1 RQ1: Known Improvements

Figure 6.5 and 6.6 show the improvements found in the benchmarks in which we

knew improvements were possible. We find improvements to both execution time

and memory, but not bandwidth. We believe this is due to the nature of the bench-

marks. Although feasible, only one application had bandwidth improvements in its

history that would be achievable by GI. This improvement1 required 2 insertions

and 2 deletions at once to be achieved and thus was more difficult to evolve over

time.

We find improvements to execution time of up to 26% and memory of up to

69%. We manually analysed the patches found in order to determine whether GI

was capable of finding the same patches that developers made to improve their

1https://github.com/erikusaj/fdroidTvClient/commit/
bf8aa30a576144524e83731a1bad20a1dab3f1bc

https://github.com/erikusaj/fdroidTvClient/commit/bf8aa30a576144524e83731a1bad20a1dab3f1bc
https://github.com/erikusaj/fdroidTvClient/commit/bf8aa30a576144524e83731a1bad20a1dab3f1bc

6.5. Results and Discussion 135

Table 6.2: No. of times GIDroid finds patches that contain edits semantically equivalent
to developer patches, providing at least the same % performance improvement
(Rep.) and no. runs where an improvement was found (Imp.). Each MO run was
repeated 20 times.

Application Version NSGAII NSGAIII SPEA2
Rep. Imp. Rep. Imp. Rep. Imp.

Port Authority 1 4 16 8 18 3 15
Port Authority 2 0 17 0 15 0 14
Port Authority 3 0 13 0 14 0 18
Port Authority 4 4 15 8 17 10 13
Port Authority 5 5 19 3 19 0 12
Port Authority 6 4 13 7 18 2 11

Tower Collector 1 10 14 6 13 8 20
Tower Collector 2 0 15 0 18 0 19

Gadgetbridge 1 0 15 0 12 0 13

Fosdem Companion 1 3 13 4 12 7 14

Fdroid 1 0 19 0 17 0 13
Fdroid 2 8 14 4 12 6 16

Lightning Browser 1 2 12 3 18 4 17

Frozen Bubble 1 13 15 12 16 12 18

applications. The result of this analysis can be found in Table 6.2. In 64% of

benchmarks GIDroid is able to find patches containing edits semantically equiva-

lent to developer patches, providing at least the same % performance improvement.

In other words, aside from reproducing improvements, in some cases, we find addi-

tional edits, further improving app performance.

Answer to RQ1: We find that MO search can find improvements of up

to 26% for execution time and up to 69% for memory consumption on

code where there are known improvements. In 64% of benchmarks, we

are able to automatically produce edits that are semantically equivalent

to developer patches.

6.5.2 RQ2: Improvements of Current Apps

Next, we analyse the results of the experiments on the benchmarks of current ver-

sions of applications, to see how well our approach generalizes to code in which

6.5. Results and Discussion 136

Table 6.3: Normalised Hypervolumes of the Pareto fronts found by GIDroid across our
experiments, by algorithm.

Application Version NSGAII NSGAIII SPEA2

PortAuthority 1 (PA1) 0.145 0.186 0.458
PortAuthority 2 (PA2) 0.223 0.267 0.327
PortAuthority 3 (PA3) 0.259 0.285 0.249
PortAuthority 4 (PA4) 0.429 0.225 0.112
PortAuthority 5 (PA5) 0.247 0.073 0.196
PortAuthority 6 (PA6) 0.053 0.053 0.143
PortAuthority Current (PAN) 0.051 0.133 0.59

Tower Collector 1 (TC1) 0.03 0.019 0.127
Tower Collector 2 (TC2) 0.027 0.052 0.088
Tower Collector Current (TCN) 0.254 0.017 0.309

Gadgetbridge 1 (GB1) 0.611 0.568 0.158
Gadgetbridge Current (GBN) 0.008 0.384 0.007

Fosdem Companion 1 (FS1) 0.318 0.383 0.359
Fosdem Companion Curr. (FSN) 0.105 0.138 0.021

Fdroid 1 (FD1) 0.016 0.206 0.012
Fdroid 2 (FD2) 0.022 0.042 0.525
Fdroid Current (FDN) 0.206 0.065 0.233

Lightning Browser 1 (LB1) 0.322 0.159 0.028
Lightning Browser Curr. (LBN) 0.038 0.037 0.039

Frozen Bubble 1 (FB1) 0.097 0.094 0.076
Frozen Bubble Current (FBN) 0.024 0.024 0.026

there are no known improvements.

The performance of each algorithm on versions of software is shown in Fig-

ure 6.5 and Figure 6.6. We find improvements to the execution time of up to 35%

and to memory consumption of up to 32%. Again no improvements were found

to bandwidth. We believe this is due to the nature of our benchmarks, where only

FDroid 2 uses bandwidth extensively.

We have compiled the best changes found by GIDroid in these experiments to

demonstrate the capabilities of GIDroid. We detail each of these patches below:

6.5. Results and Discussion 137

Figure 6.5: Execution time improvements (%) achieved by GIDroid using three MO algo-
rithms on 21 versions of 7 Android apps.

Figure 6.6: Memory consumption improvements (%) achieved by GIDroid using three MO
algorithms on 21 versions of 7 Android apps.

6.5.2.1 Port-Authority (PAN)

In the Port Authority application, our best change found consisted of removing an

unnecessary try-catch statement, which resolved the IP address of a URL. It would

not only attempt to resolve URLs, but also, redundantly, IP addresses. Furthermore,

6.5. Results and Discussion 138

the resolved IP address is then passed to the constructor of the InetSocketAdress

class, which already performs IP resolution, rendering the statement completely

redundant. The error handling is also performed in the same way when the IP

address is passed to the InetSocket.

6.5.2.2 F-Droid (FDN)

The improvement for F-droid refactored an if/else statement. Before, the statement

checked if an object was null or not, instantiating it if it were null, and cancel-

ing its animation if not. However, after this statement, the object was instantly

re-initialised. Meaning that in the case where the object was null, it would be in-

stantiated once and then instantiated immediately after. We refactor the statement

to remove the null clause and only cancel the animation if the object is not null.

6.5.2.3 Tower Collector (TCN)

In the TowerCollector, the best-evolved change consisted of changes to the way in

which a database is handled. It ensured that the connection to the database is closed

when no longer needed and that the database is only instantiated when it is actually

needed. This change reduces memory usage but slightly increases execution time

due to an extra function call.

6.5.2.4 Frozen Bubble (FBN)

In the Frozen Bubble application, the best improving change consisted of modifying

how new rows of bubbles were instantiated in a row. We found that checking for -1

in the newly generated row was redundant as the row cannot contain a -1, it can only

contain positive integers. We also found that the game pushed the sprite to the back

of the board, but inspecting the application with and without this change shows no

noticeable difference.

6.5.2.5 Fosdem-Companion (FSN)

In the Fosdem application the most improving change consists of moving the in-

stantiation of two objects outside of a loop. This means the same object can be

reused in the loop, with the need for a new object to be assigned, thus saving both

memory and execution time.

6.5. Results and Discussion 139

6.5.2.6 Gadget-Bridge (GBN)

In the best change for the GadgetBridge Application we cache the method call

which resolves the name of a file that is repeatedly used and removes the redun-

dant rendering of a view that is already visible.

6.5.2.7 Lightning Browser (LBN)

In Lightning Browser, the best-evolved mutation consists of removing a check for

whether or not a list of bookmarks is null. The list is an argument decorated with

@NonNull so should never be null, and in the case that it is there will be no errors.
Answer to RQ2: We find that MO search can find improvements of up

to 35% for execution time and up to 32% for memory consumption on

code where there are no known improvements. Many of these changes

consist of caching method calls and removing unnecessary code.

6.5.3 RQ3: Multi-Objective Search

In order to compare the different algorithms used in search, we consider the proce-

dure proposed by Li et. al [148], for comparing different multi-objective algorithms

in a search-based software engineering context. We choose to measure the hyper-

volume (HV) of the data, as it is considered to be a good indication of the general

quality of the Pareto fronts produced and is considered appropriate when there is no

preference between the different properties being improved. In order to measure the

hypervolume we specify the reference points as the worst observation for all fitness

measurements, for each objective, as done in previous work [149, 150]. Due to dif-

ferent fitness scales, we normalise the values. Normalised hypervolume values are

presented in Table 6.3. We find that across our experiment we find patches spread

across the Pareto front (see Figure 6.7), showing that trade-offs between properties

must be considered in the search process, due to the natural tension between them.

We find that NSGA-II performs similarly to NSGA-III, with the biggest hyper-

volume in 5 cases for both algorithms. We find that SPEA2 performs best, finding

the best fronts in 11 cases. In general, the different algorithms seem to perform

similarly in terms of the best improvements found, as shown in Figure 6.5 and Fig-

ure 6.6. We find that the caching operators we introduced turned out to be highly

6.5. Results and Discussion 140

Table 6.4: A effect size for each algorithm on each benchmark. Effect sizes larger than 0.5
show positive improvement. differences: N=negligible, S=small, M=medium,
L=large

Benchmark
Exec. Time Mem. Con.

NSGA-II NSGA-III SPEA2 NSGA-II NSGA-III SPEA2
PortAuthority 1 1.0 (L) 1.0 (L) 0.93 (L) 1.0 (L) 1.0 (L) 1.0 (L)
PortAuthority 2 0.98 (L) 1.0 (L) 1.0 (L) 1.0 (L) 1.0 (L) 1.0 (L)
PortAuthority 3 0.97 (L) 0.97 (L) 0.97 (L) 1.0 (L) 1.0 (L) 0.93 (L)
PortAuthority 4 0.99 (L) 0.99 (L) 1.0 (L) 1.0 (L) 1.0 (L) 1.0 (L)
PortAuthority 5 0.67 (M) 0.81 (L) 0.18 (L) 0.82 (L) 1.0 (L) 0.79 (M)
PortAuthority 6 0.88 (L) 0.99 (L) 0.71 (M) 0.91 (L) 1.0 (L) 0.9 (L)
PortAuthority Current 1.0 (L) 1.0 (L) 0.67 (M) 1.0 (L) 1.0 (L) 1.0 (L)

Tower Collector 1 1.0 (L) 1.0 (L) 0.89 (L) 0.98 (L) 1.0 (L) 0.92 (L)
Tower Collector 2 1.0 (L) 1.0 (L) 1.0 (L) 1.0 (L) 1.0 (L) 1.0 (L)
Tower Collector Current 0.92 (L) 1.0 (L) 0.85 (L) 1.0 (L) 0.67 (M) 0.98 (L)

Gadgetbridge 1 0.87 (L) 0.96 (L) 0.53 (N) 1.0 (L) 1.0 (L) 0.54 (N)
Gadgetbridge Current 1 1.0 (L) 1.0 (L) 1.0 (L) 1.0 (L) 1.0 (L) 1.0 (L)

FosdemComp. 1 1.0 (L) 0.95 (L) 0.67(M) 1.0 (L) 1.0 (L) 0.83 (L)
FosdemComp. Current 1.0 (L) 0.95 (L) 0.67(M) 1.0 (L) 0.83 (L) 1.0 (L)

Fdroid 1 0.77 (L) 0.92 (L) 0.73 (L) 0.82 (L) 1.0 (L) 0.76 (L)
Fdroid 2 0.99 (L) 0.93 (L) 0.92 (L) 1.0 (L) 1.0 (L) 1.0 (L)
Fdroid Current 0.74 (L) 1.0 (L) 0.99 (L) 0.98 (L) 1.0 (L) 0.99 (L)

LightningBro. 0.79 (L) 1.0 (L) 1.0 (L) 1.0 (L) 0.95 (L) 1.0 (L)
LightningBro. Current 0.9 (L) 0.83 (L) 0.59 (S) 1.0 (L) 0.9 (L) 0.92 (L)

FrozenBubble 1 0.98 (L) 1.0 (L) 0.97 (L) 0.98 (L) 1.0 (L) 0.97 (L)
FrozenBubble Current 1.0 (L) 0.93 (L) 0.88 (L) 1.0 (L) 1.0 (L) 1.0 (L)

Figure 6.7: Pareto Front from NSGA-II experiments on the FB1 Benchmark.

6.5. Results and Discussion 141

Table 6.5: Maximum improvements to execution time and memory use found by GIDroid
using SO-GI (no bandwidth improvements were found).

Application Version Exec. Time (%) Mem. Con. (%)

PortAuthority 1 23.39 71.69
PortAuthority 2 21.2 53.05
PortAuthority 3 23.13 33.76
PortAuthority 4 26.32 60.59
PortAuthority 5 28.03 59.13
PortAuthority6 24.44 24.43
PortAuthority Current 29.9 9.32

Tower Collector 1 16.01 30.82
Tower Collector 2 26.92 34.61
Tower Collector Current 20.9 32.43

Gadgetbridge 1 29.52 31.29
Gadgetbridge Current 26.73 5.89

FosdemComp. 1 32.8 36.81
FosdemComp. Current 10.31 13.62

Fdroid 1 21.82 17.06
Fdroid 2 27.94 33.01
Fdroid Current 14.14 32.18

LightningBrow. 1 28.45 8.96
LightningBro. Current 23.71 32.43

FrozenBubble 1 16.67 36.11
FrozenBubble Current 19.88 4.09

effective, appearing in 26% of improving patches.

We also evaluate the effect size of the improvements found by each of the MO

algorithms, as show in Table 6.4. We use the Vargha and Delaney A measure ([151])

to calculate the magnitude of the differences between the observations of the NFPs

of original applications and the improved versions. This measure is non-parametric

so does assume data is normally distributed. We find that in all but 8 cases we find

large effect sizes, and only find negligible differences in 2 cases.

Answer to RQ3: We find that the SPEA2 achieves the highest hyper-

volume of the 3 algorithms that we compared. We also find that the

caching operator appears in 26% of patches.

6.5. Results and Discussion 142

Figure 6.8: Time taken by GIDroid using different MO algorithms to evolve 10 genera-
tions, each with 40 individuals.

6.5.4 RQ4: Comparison to SO-GI

Next, we run single-objective genetic improvement on each of our benchmarks. We

measure the effects of the changes found by SO-GI on our other properties. The

results of this evaluation can be found in Table 6.5. We found improvements to

execution time of up to 33% and memory consumption of up to 72%.

We find that SO search generally performs better when improving individual

properties than multi-objective search. However, a multi-objective search was capa-

ble of finding improvements to both execution time and memory in a similar time as

a single-objective search could find improvements to individual properties. Single-

objective search produces results that improve one property in 753 of 1260 cases

(21 benchmarks ∗ 20 runs ∗ 3 properties) but in 47% of these cases, patches are

detrimental to another property.

Answer to RQ4: We find that SO search performs better than multi-

objective search when improving individual properties. However, in

47% of cases, these patches are detrimental to other properties.

6.5. Results and Discussion 143

6.5.5 RQ5: Cost of GI

In order to evaluate the applicability of our approach, we analyze its cost. Figure 6.8

shows a boxplot of the time taken in hours for our experiments. We find that the

time taken varies a lot between different benchmarks and in some cases even across

different runs on the same benchmark. We find that MO-GI takes between 0.1 hours

and 20.6 hours, with a median time across the benchmarks of 2.6 hours. The main

source of variation across the benchmarks is the difference in time taken by the

test suites. In the slowest benchmark, the test suite takes 8 seconds to execute,

whereas the quickest one takes 2 seconds. In the slowest experiments, there were

more patches that compiled, rather than instantly failing, further slowing down the

experiments.

We find that SO-GI takes longer than MO-GI, with a minimum of 0.4 hours, a

maximum of 19.0 hours, and a median of 3.5 hours. SO-GI can only find improve-

ments to one property at a time, showing the much-improved efficiency of using

MO-GI. Despite hour-long runtimes, we note that this is a one-off cost. Given that

users consider apps running for 150ms laggy, which might lead to them abandoning

an app, we deem the cost of running MO-GI worth it.

Answer to RQ5: We find that MO-GI takes between 0.1 hours and

20.6 hours, with a median time across the benchmarks of 2.6 hours.

We find that MO-GI is quicker than SO-GI which takes a median of

3.5 hours.

6.5.6 RQ6: Comparison to Linter

In order to compare our approach to the currently available tooling for improving

performance for Android, we run a well-known Linter (PMD) on all of the bench-

marks which we improved. We configured it to provide warnings when any of its

performance rules were violated. We then manually analyzed each of the warnings

that it provided, and in the cases where they could be repaired without disrupting

the functionality of the application, we repaired them.

We then measured the performance differences between the repaired and un-

repaired versions of the applications. We found that in our 21 benchmarks, 5 had

6.6. Threats to Validity 144

either no warnings or warnings that could not be repaired without introducing buggy

behavior. For example, a warning about instantiating an object in a loop could be

“unfixable” as a reference to each instantiated object is held in an array. So, moving

the instantiation outside of the loop would result in an array with the same reference

repeated multiple times.

In all cases where possible, the fixes were easily created and very similar to the

examples given in the PMD documentation.

Of the 16 where fixes were possible, only 9 actually offered any improvement.

The maximum improvement to execution time was 4.5%, while to memory it was

10.42%, when compared with 35% and 69%, respectively, achieved by GIDroid. No

improvements to bandwidth usage were found. Only a single one of these patches

improved multiple properties, and 6 were detrimental to other properties. Of those

improvements, none had any impact on the bandwidth of the applications. The

linters were, however, significantly quicker than GI, taking a maximum time of 20

minutes to repair the warnings. However, unlike GI this process is not automatic

and requires a developer to be engaged at all times and the improvements found

were much smaller than those found by GI.

Answer to RQ6: We find that our setup is more effective than linters

for improving the non-functional properties of Android apps. We find

improvements to execution time that are 6.6x larger than those found

by the linter 7.8x larger for memory consumption.

6.6 Threats to Validity
There are a number of threats to the validity of our study. We discuss these next,

including steps we took to mitigate them.

The measurements we use for our fitnesses are noisy. To mitigate this threat,

we repeat each measurement 20 times during search and after the search is com-

plete. We use the Mann-Whitney U test at the 5% confidence level to determine

whether there is an improvement. We tested our measurements on known improve-

ments and found that they are consistently detected.

Furthermore, we use tests to determine whether or not a patch is valid. This

6.6. Threats to Validity 145

Table 6.6: Improvements (%) from repairing linter warnings, for benchmarks where viable
improvements were found.

Application Version Exec. Time Mem. Con. Time (min.)

PortAuthority 1 -2.5 2.8 2
PortAuthority 5 2.4 10.4 9
PortAuthority Current 0.9 -2.8 1

TowerCollector 2 0 1 0 5
TowerCollector Current 0.0 1.9 7

Fdroid 1 4.5 0 13
Fdroid Current 2.3 -0.2 9

LightningBrow. 1 -2.2 0.4 1
LightningBrow. Current 0.9 -1.6 5

FrozenBubble 1 3.5 -0.1 20
FrozenBubble Current -1.6 0.4 15

does not guarantee correctness. However, the patches produced can undergo the

standard code review procedure as any other code being integrated into a project

would. We conducted a manual analysis of all the patches on the Pareto fronts (1753

total), to ensure the improvements reported here do not disturb app functionality.

Through manual analysis, we found that 1352 out of the 1753 best patches found

did not disrupt the functionality of the apps, demonstrating the strength of our test

suites. Disruptive patches included the removal of some error handling and the

deletion of some components rendered on screen that could not be detected with

unit tests. They would be easily discarded by code review.

Using stochastic search may result in us finding improvements out of sheer

luck. In order to avoid this issue, reliably compare different algorithms, and demon-

strate generalisability of our approach, we run each of the algorithms tested 20 times

on each of our 21 benchmarks.

The search algorithms we use rely on parameters such as mutation and

crossover rate. The values of these parameters can have an effect on the effective-

ness of the algorithms. To mitigate this threat, we use the same parameters across

all experiments for fair comparison. We use settings used in previous work that

found improvements in software.

6.7. Conclusion 146

We tested our approach on 21 versions of 7 Android apps, which poses a threat

to generalisability to other software. However, these apps are diverse in size and

type. Moreover, we found improvements in current app versions, which were pre-

viously undiscovered. Unfortunately, currently, the big obstacle to wider adoption

is test availability. For each benchmark, these took us hours to produce. However,

the benefits of testing go beyond the applicability of our approach. We envision

with the development of more fine-grained automated test generation tooling for

Android and better testing practices, further benefits of GI can be unlocked.

To mitigate such threats further, we will make all our code and results freely

available upon publication, allowing other researchers and developers to use and

extend our tool and validate our work.

6.7 Conclusion

In this chapter, we use multi-objective genetic improvement (MO-GI) to automati-

cally improve Android apps. We are the first to apply MO-GI with three objectives

to improve software performance and evaluate the feasibility of MO-GI for band-

width and memory use in the Android domain. To evaluate the effectiveness of the

proposed approach we developed GIDroid, which contains 3 MO algorithms and 2

novel cache-based mutation operators. We have tested GIDroid on 21 benchmarks,

targeting runtime, memory, and bandwidth use. We find improvements to the exe-

cution time of up to 35% and memory consumption of up to 65%.

However, we find that for the benchmarks we used, our approach cannot find

improvements to bandwidth, even though they are within GIDroid’s search space.

We believe that only certain parts of applications actually affect the network usage

of the app. In our experiments, we did not specifically target code that accessed

the network and thus may not present any opportunities for improvement. There

is also the chance that the changes that could improve network usage are either not

possible or very difficult to achieve with current mutation operators. Network usage

specific operators may offer a better chance at improvement and should be explored

in the future.

6.7. Conclusion 147

In the next chapter, we explore the problem of improving network usage. We

attempt to profile apps to find their most network-intensive methods and modify the

mutation operators used to specifically improve bandwidth usage.

Chapter 7

Reducing Network Usage with

Genetic Improvement

Following the negative results attained in the previous chapter, we decided to see if

the GI technique could be adapted further to specifically target network usage.

Work improving network usage for Android apps, has mostly utilised prefetch-

ing. Prefetching allows online assets which are fetched to be cached locally. If the

asset is fetched multiple times, the amount of network usage will be reduced. How-

ever, the primary aim of pre-fetching is to avoid having to wait for assets to be

downloaded when they are needed and improve the responsiveness of applications.

If a pre-fetching scheme is too aggressive it may fetch assets that are never actu-

ally needed and thus increase network usage. Thus far, only one work has found

improvements to network usage through modifications to the source code of apps.

This is despite the fact that developers do make many kinds of changes to source

code which improve network usage, as shown in Chapter 4.

In the previous Chapter, we attempted to improve the network of Android ap-

plications using genetic improvement, however, were unsuccessful. We believe that

a combination of the benchmarks used not being network intensive and the limited

power of the current GI mutation operators were to blame.

Thus, we propose using a profiler to identify the most network-intensive areas

of code and applying genetic improvement with novel, network-specific mutation

operators to the identified code.

7.1. Approach for Improvement of Android App Network Usage 149

We apply our approach to 7 applications that we have identified as being

network-intensive. However, we find no improvements, suggesting that network

usage may not be an appropriate target for GI.

Overall, with this work, we provide the following contributions:

1. A new profiler to identify network-intensive methods in Android applications.

2. A set of Android applications that use network extensively, for future research

in network usage optimization.

3. A set of mutation operators that mimic modifications made by developers that

improve network usage, including a novel operator that avoids unnecessary

HTTP requests.

4. An empirical study showing the effectiveness of our approach at finding

improvements to network usage.

Our framework and profiler, as well as all the results obtained, are available on the

following website, so others can verify and extend our work: https://github.

com/SOLAR-group/NetworkGI

The rest of the chapter is structured as follows:

1. Section 7.1 describes how we refine the approach in the previous chapter to

improve network usage.

2. Section 7.2 lists the research questions we have about our approach for im-

proving network usage.

3. Section 7.3 describes the methodology we use to answer our RQs.

4. Section 7.4 details the results of our experiments.

5. Section 7.5 explains the threats to the validity of our work and how we miti-

gate them.

6. Section 7.6 lists the conclusions of our work.

7.1 Approach for Improvement of Android App Net-

work Usage
We use the framework used in Chapter 6, also presented in Figure 7.1.

GIDroid is a framework for applying genetic improvement to Android appli-

https://github.com/SOLAR-group/NetworkGI
https://github.com/SOLAR-group/NetworkGI

7.1. Approach for Improvement of Android App Network Usage 150

Figure 7.1: Overview of the GIDroid framework for optimization of non-functional prop-
erties of Android applications using genetic improvement.

cations. GIDroid generates variants of Android applications in the form of lists

of edits to their source code. These edits include the “traditional” GI operators,

which can copy, replace, delete and swap statements in the AST, along with two

caching operators to avoid unnecessary method calls. These variants are then im-

proved with the use of search algorithms (such as genetic programming). GIDroid

randomly generates variants and validates them with unit tests, particularly tests

written in the simulation-based library Robolectric [118]. This saves on the time

needed to transpile, package, and install the applications on actual devices or emu-

lators, speeding up the GI process. If all tests pass, the variant is considered valid,

if it is invalid its fitness will be set to the worst possible value. During test execu-

tion, the non-functional property/ies being improved can be measured and then set

as the fitness for valid patches. The fitness is then given to the search algorithm to

generate further variants.

We modify the framework in two key ways. Firstly, rather than using the PMD

static analyzer to detect target methods for modification, we develop our own pro-

filer, specifically for identifying methods that make large HTTP requests. The PMD

static analyzers performance patterns only concern memory usage and execution

7.1. Approach for Improvement of Android App Network Usage 151

URL u r l = new URL(” h t t p : / / www. a n d r o i d . com / ”) ;
HttpURLConnect ion u r l C o n n e c t i o n =
(HttpURLConnect ion) u r l . openConnec t ion () ;
B u f f e r e d R e a d e r b r =
new B u f f e r e d R e a d e r (u r l C o n n e c t i o n . g e t I n p u t S t r e a m ()) ;
S t r i n g s t r C u r r e n t L i n e ;
whi le ((s t r C u r r e n t L i n e = br . r e a d L i n e ()) != n u l l) {

Log.d(”AndroidHttpProfiler”, ”ThisClass.getAndroid”);
Log.d(”AndroidHttpProfiler”, strCurrentLine.size());
doSomething (s t r C u r r e n t L i n e) ;

}

Figure 7.2: An example of an instrumented HttpUrlConnection request. First, a
HttpURLConnection object is instantiated, and then its input stream is read
with a buffered input stream. We instrument the code to log the method name
(ThisClass.getAndroid) and the data received over the network.

S t r i n g u r l = ” h t t p : / / www. a n d r o i d . com / ” ;
S t r i n g R e q u e s t s t r i n g R e q u e s t =
new S t r i n g R e q u e s t (Reques t . Method . GET, u r l ,

new Response . L i s t e n e r <S t r i n g >() {
@Override
p u b l i c vo id onResponse (S t r i n g r e s p o n s e){

t e x t V i e w . s e t T e x t (” Response i s : ”
+ r e s p o n s e . s u b s t r i n g (0 , 5 0 0)) ;

Log.d(”AndroidHttpProfiler”, ”ThisClass.getAndroid”);
Log.d(”AndroidHttpProfiler”, response.size());

}
} , new Response . E r r o r L i s t e n e r () {

@Override
p u b l i c vo id o n E r r o r R e s p o n s e (V o l l e y E r r o r e r r o r){

t e x t V i e w . s e t T e x t (” Tha t d idn ’ t work ”) ;
}

}) ;

Figure 7.3: An example of an instrumented volley request. An object which extends
the Request class is created and we can find the response in the overridden
onResponse method.

time, so with a more appropriate profiler, we may be able to achieve better results.

Secondly, we modify the set of mutation operators used to more closely reflect the

changes made by software developers, as identified in our mining study, described in

Chapter 4, on how developers improve non-functional properties of Android apps.

7.1. Approach for Improvement of Android App Network Usage 152

O k H t t p C l i e n t c l i e n t = new O k H t t p C l i e n t () ;
S t r i n g run (S t r i n g u r l) throws IOExcep t i on {

Reques t r e q u e s t = new Reques t . B u i l d e r ()
. u r l (u r l)
. b u i l d () ;
Response r e s p = c l i e n t . newCal l (r e q u e s t) . e x e c u t e ()
S t r i n g r e p o n s e S t r i n g = r e s p . body () . s t r i n g () ;
Log.d(”AndroidHttpProfiler”, ”ThisClass.getAndroid”);
Log.d(”AndroidHttpProfiler”, reponseString.size());
re turn r e p o n s e S t r i n g ;
}

}

Figure 7.4: An example of an instrumented okhttp request. The execute method is called
on an OkHttpClient object and returns a response. As before, we log the method
name and the data received.

7.1.1 Network Usage Profiler

In order to identify the most network-intensive areas of code, we develop a pro-

filer. This profiler identifies and instruments HTTP requests made in three popu-

lar HTTP libraries in Android (HttpUrlConnection, okhttp, and volley).

Both volley and HttpUrlConnection are official Android HTTP libraries,

whereas okhttp is a popular third-party library (appearing in almost 5% of all

applications in the Google Play store [152]) which is in fact used as the backend

of HttpUrlConnection. We show example requests made by each library in

Figures 7.2, 7.3, and 7.4. We use the Soot1 static analysis tool to find invocations

of HTTP requests in each of these libraries and then exercise the application, log-

ging the size of the data that is sent and received. In the case of HttpUrlConnection,

the static analysis looks for the invocationof the read method on a BufferedReader

which is reading the InputStream of a HttpUrlConnection object and logs the size

of the lines that are read by the buffered reader. In the case of Volley, all overridden

onResponse and onErrorResponse methods on Reponse.Listener objects are mod-

ified to log the size of the response. Finally, for OkHttp, we simply log the size

of the body of responses that are created with the Call.execute() method. Once we

have run static analysis, we can discard those applications that do not contain any

1https://soot-oss.github.io/soot/

https://soot-oss.github.io/soot/

7.1. Approach for Improvement of Android App Network Usage 153

invocations of the APIs of interest.

We then use automated testing tools to find the methods that result in the largest

and most frequent usages of the network. In particular, we use the Monkey testing

tool [12] to randomly exercise the application being profiled and exercise as much

of the code as possible. We run Monkey with 1000 random inputs. Whilst other

more advanced automated testing tools are available (e.g., Mahmood et al.’s Evo-

Droid [17] and Mao et al.’s Sapienz [18]), we choose to use Monkey as it is com-

patible with the latest versions of Android unlike the testing tools available at the

time of experimentation.

7.1.2 Novel Mutation Operator Targeting Network Usage

We introduced a new mutation operator, based on the results of our mining study,

described in Chapter 4. In particular, we found that many developer-made changes

would add conditional branching around statements, to only make the requests over

the network when they were actually necessary. This mutation operator wrapped

statements in if statements, with the goal of avoiding making unnecessary re-

quests. The conditions of the if statements consist of comparisons between local

variables and primitives. In the case that the local variable is a primitive, direct

comparison can occur. In the case where the local variable is not a primitive, we

use either one of the variable’s fields which is a primitive, or one of its methods that

returns a primitive for comparison. In order to select a variable for comparison, we

use a random selection which is weighted based on the distance between the state-

ment being wrapped and the closest use of the variable in the AST. The probability

of the comparison variable Vc being equal to variable vx given that the target state-

ment St is equal to s and the number of potential target variables ({v0,v1, ...vn}) is

n is shown in Equation 7.1.

Pr(Vc = vx|St = s) = distance(vx,s)/
n

∑
i=0

distance(vi,s) (7.1)

We use this weighting to prefer comparisons with variables that are more rele-

vant to the statement being wrapped. Figure 7.5 shows how this operator is applied

7.2. Research Questions 154

Table 7.1: The potential operators and values that primitives can be compared with and
to, depending on the type of the primitive selected for the newly created if
statement.

Type Operator Value to compare to
Boolean {==} {true, f alse}
Other {==,<,≤,>,≥} {0,1,2,3,4,5}

in practice. We select the comparison from those shown in Table 7.1, these condi-

tions are based on those suggested by Brownlee et al. [69] for injecting shortcuts

into code. They were extended to allow comparisons to integers from 0-5, rather

than just 0, as these conditions are observed in real commits [135].

7.2 Research Questions

In order to evaluate the effectiveness of our proposed framework for improvement of

network usage of Android applications, we pose the following research questions:

RQ1: How much data do Android applications send over the network through

HTTP requests?

We want to know how much of an impact HTTP requests have on network usage

in Android applications and how network-intensive the methods that our profiler

identifies are.

RQ2: How effective is Genetic improvement at reducing the network usage of

Android applications?

We want to know if genetic improvement can automatically reduce the amount

of data sent and received over the network in Android applications, and what is the

impact on the amount of data sent and received.

RQ3: How expensive is it to improve the network usage of Android applica-

tions using genetic improvement?

We want to know how long the GI process takes to find improvements. If the

process takes an exceedingly long time for small improvements it may not be worth

it for developers to use GI in a real-world setting.

7.2. Research Questions 155

Fi
gu

re
7.

5:
Pr

oc
es

s
fo

r
cr

ea
tin

g
a

ne
w
i
f

st
at

em
en

t
w

ra
pp

er
.

Fi
rs

t,
a

st
at

em
en

t
to

be
w

ra
pp

ed
is

se
le

ct
ed

fr
om

th
e

ta
rg

et
m

et
ho

d.
N

ex
t,

ei
th

er
a

pr
im

iti
ve

lo
ca

lv
ar

ia
bl

e
or

a
m

et
ho

d
of

a
no

n-
pr

im
iti

ve
lo

ca
lv

ar
ia

bl
e

w
ith

a
pr

im
iti

ve
re

tu
rn

ty
pe

is
se

le
ct

ed
.T

hi
s

se
le

ct
io

n
is

ba
se

d
on

th
e

di
st

an
ce

of
th

e
va

ri
ab

le
fr

om
th

e
st

at
em

en
t.

T
he

n
an

op
er

at
or

is
se

le
ct

ed
ba

se
d

on
th

e
ty

pe
of

th
e

pr
im

iti
ve

th
at

w
as

se
le

ct
ed

.T
he

n,
a

va
lu

e
to

co
m

pa
re

to
is

se
le

ct
ed

,a
ga

in
,b

as
ed

on
th

e
ty

pe
of

th
e

pr
im

iti
ve

.
Fi

na
lly

,a
n
i
f

st
at

em
en

ti
s

co
ns

tr
uc

te
d

fr
om

th
e

se
le

ct
ed

co
m

po
ne

nt
s

an
d

in
se

rt
ed

in
to

th
e

ta
rg

et
m

et
ho

d.

7.3. Methodology 156

(a) Code before mutation

. . .
A s s e t a s s e t = a s s e t s . g e t (0) ;
Reques t r e q u e s t = new Reques t . B u i l d e r ()
. u r l (a s s e t . u r l)
. b u i l d () ;

Response r e s p o n s e = c l i e n t . newCal l (r e q u e s t)
. e x e c u t e ()

. . .

(b) Code after mutation

. . .
A s s e t a s s e t = a s s e t s . g e t (0) ;
Reques t r e q u e s t = new Reques t . B u i l d e r ()

. u r l (a s s e t . u r l)

. b u i l d () ;
if (asset.isNeeded() == true){

Response r e s p o n s e = c l i e n t . newCal l (r e q u e s t)
. e x e c u t e ()

}
. . .

Figure 7.6: An example of the ‘add condition’ operator, checking if the method
isNeeded of the local variable asset return true. The introduced if state-
ment is highlighted in bold text. This mutation avoids unnecessary HTTP re-
quests.

7.3 Methodology
In order to evaluate our framework for the improvement of network usage of An-

droid applications, we propose the methodology described in this section.

7.3.1 Framework for Network Usage Optimization

We use the same framework as described in Chapter 6, i.e., GIDroid. However, we

modify it with the addition of our new mutation operators which specifically target

network usage. Each individual program variant is represented as a patch, where

each patch consists of a list of edits which is sequentially applied to the source code

of the problem.

Fitness Function To evaluate each program variant i.e., whether it improves

7.3. Methodology 157

network usage without sacrificing functionality, the corresponding patch is applied

to the code, and the program is run against test cases to evaluate its fitness. We

instrument the applications to log the sizes of HTTP queries, allowing us to directly

measure the bytes sent and received over the APIs of interest. We then use this

measurement as a fitness in our search algorithms, with the goal of minimizing

network usage, i.e., variants with lower fitness measurements are considered fitter.

Mutation Operators Aside from our new mutation operator (see Sec-

tion 7.1.2), we use a subset of the mutation operators used in GIDroid which were

shown in our mining study to improve bandwidth, i.e., the ‘caching’ operators, and

the ‘delete statement’ operator. We also use the same mutation rate as in previous

work. There are two types of caching operators: one caches a variable value, while

another a method call. The delete operator simply deletes a randomly selected

statement. The aim of each of these operators is to avoid making unnecessary

HTTP requests by either removing unnecessary invocations, storing their results and

reusing them, or avoiding them when some state of the application suggests that

they are unnecessary2

Crossover Operator We use the same crossover operator as used in GIDroid ,

which appends sections of individuals onto the end of others, as they have shown to

be successful in improving other non-functional properties. We also use the same

crossover rate as in previous work.

Search Strategy We evaluate both the Local Search algorithm and the Genetic

Programming algorithm available in the GIDroid framework. Genetic Programming

(GP) stochastically generates a set of patches (the population) and simulates evo-

lution upon them to find better patches. In GP each patch is applied and, if valid,

its fitness (in our case network usage) is measured. The next generation is then

created through tournament selection (size 2), where two individuals are randomly

selected, and the fittest is added to the new generation. Mutation and crossover are

then applied to add new edits and combine individuals in the new generation. This

process continues for a set number of generations where a population of improved

2We opt not to use the operator proposed by Li et al [57] as none of our benchmarks contained
sequential requests.

7.3. Methodology 158

patches is produced.

In Local Search (LS), we maintain a single best individual, at each step, we add

or remove and evaluate its fitness. If the new individual is fitter than the existing

best it becomes the best individual. This repeats for a set number of steps where we

have a single best individual. We will use 400 evaluations in each run, 400 steps in

LS an 10 individuals for 10 generations in GP.

7.3.2 Benchmark of Network-Intensive Android Applications

To evaluate our approach, we collect a set of Android applications that contain

network-intensive methods. As we need tests to validate the patches that we pro-

duce, we begin by trying to find applications with network-intensive methods that

are covered by local tests.

To identify these applications we run our profiler on 2 sets of applications.

Firstly, we profile the applications identified by Pecorelli et al. [99] as being covered

by tests in their study on the way in which every application available on the open-

source app store FDroid [119] was tested. We eliminate those applications which

do not contain any unit tests. Secondly, as the study by Pecorelli et al. [99] was

performed in 2020, we also consider all applications that have been released since

the study was performed and made available on FDroid. This resulted in a total of

4443 apps.

If our profiler identified any methods in an application that used one of the

libraries previously discussed, we checked whether it also had unit tests that covered

these methods. In the case where multiple methods were identified, the one that

resulted in the most network traffic was selected for improvement. We use the data

collected in this step to answer RQ1. In some cases, the methods identified were

simply wrappers around HTTP requests, in these cases we instead ran GI on the

methods which utilized the wrappers most often.

We also added in the application (F-Droid Client) that we previously failed

to improve, but now there is a possible improvement to be made based on real

developer commits Unlike the other applications being improved, this application

is not the latest version but a previous version of the application, one commit before

7.4. Results 159

Table 7.2: Android applications and commit sha of version targeted for improvement and
links to their repositories.

Application Repository

Adaway
Repo https://github.com/AdAway/AdAway
sha 75bee423e8635f84266c521e94cf177c1521ff6c

FDroid Client
Repo https://github.com/f-droid/fdroidclient
sha bf8aa30a576144524e83731a1bad20a1dab3f1bc

GPS Logger
Repo https://github.com/mendhak/gpslogger
sha 5437cfff42d728111f9a0ca03dc7f52a11beafc9

Mi Mangu Nu
Repo https://github.com/raulhaag/MiMangaNu
sha 84f8773985af04e0c96d2d5290f3f1245107c39e

Materialistic
Repo https://github.com/hidroh/materialistic
sha b631d5111b7487d2328f463bd95e8507c74c3566

F-Droid Build Status
Repo https://codeberg.org/pstorch/F-Droid_Build_Status/
sha 818ae54b2398d1b9ec7e2ccc8f620431f001b2b6

Ooni Probe
Repo https://github.com/ooni/probe
sha 26dd6c96dd7129b635f15c4d4bf956939a9cdb44

a network usage improving commit was made. We know that this improvement lies

in the search space of our mutation set, thus forming a baseline for our approach.

All benchmarks use developer-written tests other than F-Droid Client which we

created a test suite for.

In total, this selection process resulted in the 7 applications, shown in Ta-

ble 7.2. Whilst we found many applications that contained HTTP API usages, the

overwhelming majority were not covered by any of the application’s tests. At the

time of experimentation automated tools for unit test generation for Android did not

support the later Android versions and, thus could not be utilized to generate tests

for the methods of interest.

7.3.3 Experimental Setup

For each of our benchmarks and each search algorithm, we perform 20 runs, as

Genetic Improvement is stochastic, and statistical tests are needed to evaluate its

efficacy. The results of these runs will be used to answer RQs 2 and 3. We perform

all of our experiments on a cloud computer with 16GB RAM and 8-core Intel Xenon

CPUs.

7.4 Results

Next, we discuss and analyze the results which we attained from our experiments.

https://github.com/AdAway/AdAway
https://github.com/f-droid/fdroidclient
https://github.com/mendhak/gpslogger
https://github.com/raulhaag/MiMangaNu
https://github.com/hidroh/materialistic
https://codeberg.org/pstorch/F-Droid_Build_Status/
https://github.com/ooni/probe

7.4. Results 160

Table 7.3: Network used by applications identified by our profiler which had network-using
methods covered by unit tests, the number of KLoC in each application, and the
most network-intensive method name.

Application KLoC Network Most network-intensive method
usage (kB)

Adaway 21.6 110.2 GitHubHostsSource.getLastUpdate
FDroid Client 88.5 237.9 FDroidApp.onCreate
GPS Logger 23.2 2.4 GoogleDriveJob.updateFileContents
Mi Mangu Nu 33.1 512.1 NineManga.getMangasFiltered
Materialistic 31.1 17.1 UserServicesClient.submit
F-Droid Build Status 7.1 1.5 FdroidClient.getRunning
Ooni Probe 32.7 147.6 MeasurementsManager.downloadReport

7.4.1 RQ1: Network Used

For each of the applications found in which network requests were covered by tests

and thus suitable for Genetic Improvement, we measure the amount of network used

by the applications with random inputs from the Monkey testing tool. The results

attained are shown in Table 7.3.

We find that our profiler is capable of identifying methods in applications that

use between 1.5 kB and 512kB of data. This data is collected over only 10000

inputs, taking a few minutes to execute. For real users, this could result in large

amounts of data usage if they use the applications often, demonstrating the need for

network usage reduction in Android applications.

Answer to RQ1: We find that our profiler is capable of identifying

methods in applications that use between 1.5 kB and 512kB when ex-

ercised with 10000 random inputs. This is only over the course of a

few minutes and real usage is likely to result in large amounts of data

being transmitted.

7.4.2 RQ2: Improvements to network usage

Unfortunately, we did not find any improving patches in our experiments. One

possible reason is that the potentially improving mutations are too sparsely dis-

tributed in the search space. Both Genetic Programming and Local Search rely on

being able to find small improvements and build upon them, so-called “exploita-

tion”. However, for this particular problem, search algorithms that can explore the

7.4. Results 161

Table 7.4: Number of potentials if statements which could be inserted for each bench-
mark.

Application Search Space Size
Adaway 11,088
FDroid Client 157,859
GPS Logger 32,457
Mi Mangu Nu 236,918
Materialistic 196,962
F-Droid Build Status 44,352
Ooni Probe 10,065

search space in a more intelligent way may be more useful. We are also limited by

time. Test executions in Android are slow, often taking minutes to evaluate a single

variant. If we wish to perform 1000s of evaluations and explore large areas of the

search space, we require faster ways to test or validate that the variant is equivalent

to the original program.

To investigate this, we calculate the number of potential if statements that

could be added to each of our benchmarks. We find that each benchmark has be-

tween 10,000 and 250,000 potential conditions that could be inserted. We show

these values in Table 7.4. With the relatively long-running tests needed to evaluate

each mutant, 400 evaluations are simply not enough to explore the 10s of thousands

of potential edits in the search space in a reasonable amount of time, posing the

need for effective heuristic search strategies.

Answer to RQ2: We find that our approach is unable to find improve-

ments to network usage. We believe that this is because we cannot

effectively explore the very large search spaces of this problem.

7.4.3 RQ3: Cost of Genetic Improvement

As shown in Figure 7.7, running GI with the Genetic Programming Meta-Heuristic

takes between 0.4 and 7.0 hours, with a median time of 4.3 hours. Alternatively,

as shown in Figure 7.8 when using Local Search we find that Genetic Improvement

takes between 0.3 and 7.6 hours, with a median time of 4.8 hours. The difference

between the two approaches is due to Local Search producing more compiling vari-

ants which must then be tested, taking more time. This is not surprising as every

7.5. Threats to validity 162

Figure 7.7: Time taken by Genetic Improvement when using Genetic Programming for
each of our benchmarks

Figure 7.8: Time taken by Genetic Improvement when using Local Search

individual in Local Search is a single edit away from a variant that compiles and

passes all tests, whereas variants generated in Genetic Programming may be mul-

tiple edits away. However, this may allow GP to explore the search space more

quickly than LS and be more successful in future work.

Answer to RQ3: We find that running GI with the GP meta-heuristic

takes between 0.4 and 7.0 hours. We find that when using Local Search

GI takes between 0.3 and 7.6 hours. The median time taken by GP (4.3

hours) is less than that taken by LS (4.8 hours).

7.5 Threats to validity
We present threats to validity to this work and our mitigation methods.

Using unit tests to assess whether two programs are equivalent can lead to

7.6. Conclusions 163

false positives or variants that pass all tests but are not equivalent to the original

program. This threat can be mitigated through a standard code review of any patches

suggested by GI by the developers of the project being improved.

Genetic Improvement is a stochastic process. This means that in some cases it

can get “lucky” and find strong improvements that it wouldn’t find in a normal run.

We mitigate this threat by performing 20 runs for each of our benchmarks for each

of our search algorithms. This gives us confidence that we know how our approach

will perform in a standard run.

Whilst Madaan et al. [153] have shown that large language models can be used

to improve the execution time of C++ programs, we found that we could not repro-

duce the changes made by developers for the improvement of the non-functional

properties of Android applications (Chapter 6).

Finally, we make our tool and results publicly available so that our work can

be validated and replicated. These are available at https://github.com/

SOLAR-group/NetworkGI

7.6 Conclusions
In conclusion, we propose an approach for the identification and improvement of

network-intensive methods in Android applications. We augment an approach that

was previously successful in improving execution time and memory consumption,

but not network usage, to specifically target network usage by only making changes

that could improve network usage.

We implement a profiler, which instruments http libraries so that we can ob-

serve the size of the network traffic being sent and received. We then exercise the

applications so that the http requests will be performed and the network usage can

be measured.

Additionally, we implement a new mutation operator, based on real developer

commits. This operator wraps statements in conditionals, to prevent unnecessary

network traffic.

We identify 7 applications with network-intensive methods that are covered

https://github.com/SOLAR-group/NetworkGI
https://github.com/SOLAR-group/NetworkGI

7.6. Conclusions 164

by the applications’ unit tests and evaluate our approach on them. We find that our

approach cannot successfully explore the tens of thousands of potential changes that

could be made to our benchmarks to find patches that improve network usage. In

the future, work into either more efficiently exploring the search space or reducing

its size may be beneficial to this approach

We do however provide the implementation of our tool and results so that fu-

ture researchers can improve this approach and hopefully find success for this im-

portant problem.

Chapter 8

Conclusions

Non-functional properties are very important in Android, concerning both users and

developers. They can lead to bad reviews and even deletion of apps. One approach

which has shown promise for improving non-functional properties of traditional

software is Genetic Improvement, a technique which automatically generates and

improves patches to the source code of software with respect to a particular property.

However, the application of GI in the mobile domain has not been well explored.

Thus in this thesis we investigate how GI can be applied to Android apps to improve

non-functional properties.

8.1 Contributions
We initially targeted frame rate for improvement, however, achieved limited success

(Chapter 3). A large reason for this was the weakness of the test suites available in

the applications we were improving. This remains one of the largest challenges of

applying GI to Android apps. We also found that testing applications running on

devices or emulators was impractical and slow.

Next, we decided to identify the types of changes that developers made and find

the areas of GI that could be improved or tuned to more closely mimic real changes

(Chapter 4). We identified 18 categories of commits, 5 of which had already been

mimicked by existing GI techniques, and identified 4 new ways in which the GI

process could be improved to more closely replicate these commits.

After this study, we made another attempt at applying GI to Android appli-

8.2. Limitations & Future Work 166

cations (Chapter 5). In this case we removed the need for emulators or Android

devices by using a simulation-based testing library (Robolectric). With this simula-

tion, we were able test new variants more quickly and were not restricted to only the

applications which used the built-in test-framework. With this setup, we were able

to improve the time taken to load new screens on apps, whilst navigating around,

them by up to almost 30%.

Following this success, we extended this approach to improve multiple objec-

tives simultaneously (Chapter 6). We experimented with 3 different MO algorithms

and found that all were capable of finding improvements. We were able to improve

memory consumption by up to 33%, and execution time by up to 35% in these apps.

We were unable to reduce network usage with GI in this setting, we believe that this

is due to the benchmarks used not offering much room for improvements and lim-

itations in the kinds of changes that GI can make. We also found that SO found

similar improvements to MO search when applied separately for each objective.

Finally, we attempted to refine GI specifically to improve network usage

(Chapter 7). We did this by building a profiler to identify the most network-intensive

methods and modifying the mutation operators to reflect the changes made by real

developers as found in our mining study. This included the addition of a new op-

erator which can wrap statements in if statements. However, unfortunately, we did

not find any improvements.

8.2 Limitations & Future Work

There are still several large challenges in applying GI both generally to software

and specifically to Android apps. In our approach, we are only able to evaluate a

few hundred patches during an attempt at improvement. However, in the desktop

domain, there are often thousands of patches evaluated [84]. Our approach is cur-

rently limited by the slow speed of Android testing and may be able to produce

better improvements if it were faster and more of the fitness landscape could be

explored.

The majority of previous work has only used simple operators, which only

8.2. Limitations & Future Work 167

remove, and move statements around in source code. In Chapter 6, we showed

that a caching operator was able to find improvements by simply leveraging in-

formation about how many times a method is called in a particular method or

class. By leveraging patterns of changes made by real developers, as proposed

by Krauss et al. [154], we may be able to make edits which are more likely to find

improvements. This could then reduce the size of the search space that needs to be

explored, which was one of the main limitations found in this work.

Another potential future application of this work could be applying the MO

techniques to single objective problems with multiple metrics. For example, im-

proving execution time, but exploring the potential trade-offs that can be made be-

tween the time taken to launch the app and its speed once it has been initialized.

In this thesis, we explored improving multiple different objectives and found

that we could find trade-offs between them. However, Mkaouer et al. [155] showed

that MO-GI could find improvements and trade-offs between 8 different metrics for

a single objective (code quality).

One limitation that is common to all automated patch generation techniques

is having the patches integrated into code bases by the developers reviewing them.

In Chapter 6, we submitted 6 pull requests with improving changes. They were all

either ignored or rejected without explanation. Often, developers will reject bug

fixes suggested by automated tools. For example, Bader et al [114]. deployed an

automated repair tool at Meta, repairing bugs found by static analysis. Only 42 %

of the patches were accepted by developers, in 9% of cases the developers actually

created semantically equivalent versions of the patches which were suggested au-

tomatically. In 2022, Winter et. al. [156] deployed their tool Fixie at Bloomberg.

They found that developers were reluctant to accept patches from automated tools.

One suggestion for how to improve acceptance was to introduce changes at more

relevant times.

With this feedback, we developed a system to give suggestions to develop-

ers when they are most relevant. We propose building a system that will take the

suggestions made by Bloomberg’s internal static analysis tool (RSAT) and suggest

8.2. Limitations & Future Work 168

them to developers when two conditions are met:

1. The developer has made a change to the code base, which results in one or

more GitHub check failing.

2. The developer has made changes to the lines of code that the suggested patch

modifies.

If these conditions are met, the developer will be looking to fix the failing

check and will suggest a patch that will only affect the lines that they are interested

in, thus not polluting pull requests with irrelevant suggestions.

This project is still ongoing at Bloomberg and thus is beyond the scope of

this thesis. The project was recently improved by a team of Masters students, who

extended the tool from a proof-of-concept, with many limitations on the types of

PRs to which it could be applied to. The tool has been extended to be able to handle

PRs with multiple commits and multiple suggested changes.

This is a promising area of research and hopefully in the future interesting

results will be found based on the app and its deployment within Bloomberg.

For Android apps specifically, applications mostly have very small or no test

suites which reduces the applicability of GI [99]. This is one of the main challenges

in evaluating the techniques discussed in this thesis. This problem could be miti-

gated if more automated test generation tools were created that could produce tests

for Android apps. Currently, much of the literature is focused on exercising the UI

of applications to induce and expose crashes. However, GI may introduce bugs that

do not introduce crashes, e.g. the patch in Chapter 5 which deletes text from the

screen, making these techniques unsuitable. They must also be run for relatively

long periods. This would be unsuitable for GI as hundreds of patches are evaluated.

Instead, unit tests which both exercise the app’s code and check that the app’s state

after execution is correct are more suitable.

8.3. Summary 169

8.3 Summary
In conclusion, we have shown that Genetic improvement can be successfully used

to improve the nonfunctional properties of Android applications in both single and

multi-objective settings. This is despite the differences between Android appli-

cations and the desktop software in which GI has been applied in the past. We

have explored and overcome many of the challenges that are faced when improving

Android applications with fully automated techniques. This includes automatically

modifying and testing apps, measuring an app’s non-functional properties, and mak-

ing changes that more closely resemble those made by developers. However, there

are still several challenges that must be further mitigated in the future if this tech-

nique is to be widely adopted. These challenges are primarily making changes that

developers will actually accept, and speeding up the process of Genetic Improve-

ment. To aid in this endeavor, we provide all of our results and tools as fully open

source with permissive licenses to encourage future work in this direction in the

hopes that the future of Android applications will be more performant. All publica-

tions, reproduction repositories, and tools produced in the completion of this thesis

can be found at https://solar.cs.ucl.ac.uk/os/android.html

https://solar.cs.ucl.ac.uk/os/android.html

Appendix A

Classifier Training

In order to build an accurate classifier for NFP-improving commits, we investigated

several different options as detailed in this Appendix. The source code and the re-

sults obtained are provided in our online repository (https://github.com/

propMiner/propMining). For clarity, we compare three different classes. un-

known are commits that have not been analysed, and were excluded by the keyword

search. irrelevant commits were identified via keyword search but deemed not rel-

evant towards non-functional properties by one or more of the examiners. Finally,

relevant commits encompass all commits identified to deal with a non-functional

property after a keyword search.

We initially attempted to generate the classifier for all four subclasses of rel-

evant commits, execution time, memory, bandwidth, and frame rate. This yielded

no satisfactory results as the class’s bandwidth and framerate had no recall (not a

single commit) and the other two groups yielded less than 0.1 recall (i.e., less than

1 in 10 commits found).

We also attempted to balance the data. This was done in two ways. The first

was to balance the irrelevant commits (3,132) with the relevant class (229) as the

drastic difference lets classifiers overfit towards the irrelevant class. The balanc-

ing yields large margins in the test and training sets (accuracy 0.8, with the same

recall in both classes). However, when attempting to reproduce this on the entire

dataset the precision in the relevant classes dropped to 0.07. In this case, the classi-

fier misses 20% of commits but yields no advantage over keyword search as many

https://github.com/propMiner/propMining
https://github.com/propMiner/propMining

171

commits that are not relevant are identified as such. The second attempt was bal-

ancing the classes of commits to reduce the under-representation of bandwidth and

frame rate (see Table 4.6). This reduced the recall to 0.02 meaning that the classifier

finds only 2 in 100 commits. We also investigated algorithms specifically targeted

towards unbalanced data, to no avail. All of the balancing was done by keeping

all commits of the respective smallest class, and randomly removing commits from

other classes until they were the same size.

Since balancing the data worsens the precision drastically, we continued train-

ing classifiers with the datasets as they were recorded (i.e., without balancing). This

investigation was conducted with all combinations of text preprocessing and featur-

isation. In all cases we did a preliminary tokenisation and stop word removal of all

commit messages. For string processing, we used:

• Lemmatisation - reducing word inflections to a word root

• Stemming - removing word endings to approximate word roots

For the featurisation of the remaining word roots we used:

• TF/IDF - term frequency / inverse document frequency essentially ranking

words in the source

• Bag of words - counting words in the commit messages

• Improved bag of words - the adaption was that we reduce to words that we

identified as discriminative between the relevant and irrelevant sets. E.g.

when a word occurs more often in one or the other it is included, otherwise it

is not used in bag of words.

Table A.1 shows the best classifier found with this. Quadratic Discriminant

Analysis yields a recall of 0.68 meaning two in three commits are identified, and

a precision of 0.36 meaning that about three commits have to be consulted manu-

ally to yield one relevant commit. This is much better than keyword search (13,67

commits on average) but still represents a loss of information. The best results were

yielded by using Lemmatisation as a preprocessing step and an improved bag of

words to create the feature vectors.

Quadratic Discriminant Analysis was the best algorithm found out of the fol-

172

Table A.1: Quadratic Discriminant Analysis of NFP finding two in three commits

Precision Recall F1-score

Relevant 0.36 0.68 0.47
Irrelevant 0.97 0.90 0.94

lowing twenty algorithms:

• Multi-layer Perceptron Classifier

• C-Support Vector Classification

• Linear C-Support Vector Classification

• Gaussian Process Classifier

• Decision Tree classifier

• Extra Tree Classifier

• Random Forest Classifier

• Ada Boost Classifier

• Bagging Classifier

• Gaussian Native Bayes

• Multinomial Native Bayes

• Bernoulli Native Bayes

• Complement Native Bayes

• Quadratic Discriminant Analysis

• Linear Discriminant Analysis

• Stochastic Gradient Descent Classifier

• Ridge Classifier

• Passive Aggressive Classifier

We chose Quadratic Discriminant Analysis as it supports the highest recall

in the relevant category while still being a reasonable filter. Multinomial Native

Bayes has the highest accuracy overall (0.95) but only a recall of 0.32, meaning

two out of three relevant commits are lost. Quadratic Discriminant Analysis is

highly dependent on the feature selection, as selecting regular bag of words actually

produces a recall of 1.0 for relevant commits (no loss), but with a precision of 0.09,

meaning that it requires an average of 11 commits to find one relevant one. This is

A.1. Algorithm Changes in Commits 173

similar to the results that the keyword search itself produces. Further information is

captured in the GitHub repository.

In an attempt to improve the quality of our classifier, we then added the dataset

from [9], which are the results discussed in the main body of this work. The re-

sults of this analysis are available in our online repository consisting of csv tables

with 10 runs of a random training/test split and a final line with the averages over

all runs. All of the Classifiers using TF/IDF are outperformed by classifiers using

other featurisation methods. In a similar vein, lemmatisation outperformed stem-

ming. In general our improved bag of words slightly outperforms bag of words.

The exception is the best classifier Decision Tree which performs best when using

TF/IDF with stemming. It achieves a recall of 0.80 (i.e. 4 out of 5 commits) with a

precision of 0.72 meaning that about 3 in 4 commits will be found.

A.1 Algorithm Changes in Commits
In this Appendix, we describe the commits in the “other” subcategory in the “Dif-

ferent algorithm” category, found in Section 4.2.2, in more detail. We First describe

those from the KM set, then those from the CM set. For each commit, we report its

SHA and a description of the changes made in it.

A.1.1 KM commits

• c9afd823e8da9393a167a89345301782ef3483b: Change from depth first

search to depth last.

• f3974898af9299632ea9354accb61e12393308c2: Use a look up table.

• b0e4f59f43984867c123fbffb4f345d5cc5f3814: Change if else statement to

a switch statement.

• 85ead3bd940bd445bbaff6a4a4d30ebca6b7c7a6: Use the spread operator.

• 22904667b8e79167339972d4682024d95cd3d169: Use lazy initialisation.

A.1.2 CM commits

• fc82441c9aa412be6c1448b99a34607ff98e551d: Use the SharedPrefer-

encesCompat apply method.

• 588c35967f3dd9c2d27bb8739c46922a9b7a1c24: Call free methods of class

A.1. Algorithm Changes in Commits 174

components in their free methods, rather than in the onClose method of the

class.

• 1cc32362aad23dfe5d508776274e643a307a3577: Use lzma2 compression.

• 8bc2b8d5f53b04bbaea49a52eab260e02684376e: Use String.format.

• adbcdddb5625d7cd49b80d5c560eb8998446183a: Faster text rendering

method, blitFrom instead of addBlitFrom.

• 1aedaa5c28fc6a3cae76c34ac03d808d5860aa1c: A faster algorithm for cal-

culating the position of elements on the screen.

• a9bc9ed71a84d68bf3e1652550251320c0a38cd8: Use getCount, rather than

iterating over the whole cursor.

• d9c393f20e4d869628d8e3531af4e63a4e7b851b: Use Androidx workMan-

ager begin to en-queue jobs.

• 5731360f8a894e49c5383857b629e450af9fa29d: change DOM to SAX for

UML parsing.

• 893909146d6e406ca36c5f2d95b82526a4ed6167: Use raw input (effects

rooted devices only).

• 6d1fa0cf056289457c3ca7616861a3dd362caea7: More efficient average cal-

culation.

Bibliography

[1] Simon Kemp. Digital 2022: Mobile duopoly consolidates its grip - datare-

portal – global digital insights, 2022. https://datareportal.com/reports/digital-

2022-mobile-duopoly-consolidates-grip.

[2] Soo Ling Lim, Peter J. Bentley, Natalie Kanakam, Fuyuki Ishikawa, and

Shinichi Honiden. Investigating country differences in mobile app user be-

havior and challenges for software engineering. IEEE Trans. Software Eng.,

41(1):40–64, 2015.

[3] Venkata N. Inukollu, Divya D. Keshamoni, Taeghyun Kang, and Manikanta

Inukollu. Factors influencing quality of mobile apps: Role of mobile app

development life cycle. CoRR, abs/1410.4537, 2014.

[4] Abhijeet Banerjee and Abhik Roychoudhury. Automated re-factoring of an-

droid apps to enhance energy-efficiency. In MOBILESoft, pages 139–150.

ACM, 2016.

[5] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E. Has-

san. What do mobile app users complain about? IEEE Softw., 32(3):70–77,

2015.

[6] Yepang Liu, Chang Xu, and Shing-Chi Cheung. Characterizing and detecting

performance bugs for smartphone applications. In ICSE, pages 1013–1024.

ACM, 2014.

Bibliography 176

[7] Cuiyun Gao, Jichuan Zeng, Federica Sarro, Michael R. Lyu, and Irwin King.

Exploring the effects of ad schemes on the performance cost of mobile

phones. In A-Mobile@ASE, pages 13–18. ACM, 2018.

[8] Cuiyun Gao, Jichuan Zeng, Federica Sarro, David Lo, Irwin King, and

Michael R. Lyu. Do users care about ad’s performance costs? exploring

the effects of the performance costs of in-app ads on user experience. Inf.

Softw. Technol., 132:106471, 2021.

[9] Alejandro Mazuera-Rozo, Catia Trubiani, Mario Linares-Vásquez, and

Gabriele Bavota. Investigating types and survivability of performance bugs

in mobile apps. Empir. Softw. Eng., 25(3):1644–1686, 2020.

[10] buildfire. Mobile app download statistics & usage statistics (2023),

2023. https://buildfire.com/app-statistics/#:˜:

text=There%20are%202.87%20million%20apps,on%20the%

20Google%20Play%20Store.

[11] Android Development Team. Android testing guide, 2022.

https://developer.android.com/training/testing/fundamentals.

[12] Ui/application exerciser monkey : Android developers.

https://developer.android.com/studio/test/monkey.

[13] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. A GUI

crawling-based technique for android mobile application testing. In ICST

Workshops, pages 252–261. IEEE Computer Society, 2011.

[14] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for

systematic testing of android apps. In OOPSLA, pages 641–660. ACM, 2013.

[15] Wontae Choi. Guided GUI Testing of Android Apps with Minimal Restart

and Approximate Learning. PhD thesis, University of California, Berkeley,

USA, 2017.

https://buildfire.com/app-statistics/#:~:text=There%20are%202.87%20million%20apps,on%20the%20Google%20Play%20Store.
https://buildfire.com/app-statistics/#:~:text=There%20are%202.87%20million%20apps,on%20the%20Google%20Play%20Store.
https://buildfire.com/app-statistics/#:~:text=There%20are%202.87%20million%20apps,on%20the%20Google%20Play%20Store.

Bibliography 177

[16] Wei Yang, Mukul R. Prasad, and Tao Xie. A grey-box approach for auto-

mated gui-model generation of mobile applications. In FASE, volume 7793

of Lecture Notes in Computer Science, pages 250–265. Springer, 2013.

[17] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. Evodroid: segmented

evolutionary testing of android apps. In SIGSOFT FSE, pages 599–609.

ACM, 2014.

[18] Ke Mao, Mark Harman, and Yue Jia. Sapienz: multi-objective automated

testing for android applications. In ISSTA, pages 94–105. ACM, 2016.

[19] Michael Kerrisk. Linux time. https://man7.org/linux/man-

pages/man1/time.1.html, 2019. Last accessed: February 10, 2023.

[20] Max Hort, Maria Kechagia, Federica Sarro, and Mark Harman. A survey

of performance optimization for mobile applications. IEEE Trans. Software

Eng., 48(8):2879–2904, 2022.

[21] Teerath Das, Massimiliano Di Penta, and Ivano Malavolta. A quantitative and

qualitative investigation of performance-related commits in android apps. In

ICSME, pages 443–447. IEEE Computer Society, 2016.

[22] Raffaele Montella, Sokol Kosta, David Oro, Javier Vera, Carles Fernández,

Carlo Palmieri, Diana Di Luccio, Giulio Giunta, Marco Lapegna, and Giu-

liano Laccetti. Accelerating linux and android applications on low-power

devices through remote GPGPU offloading. Concurr. Comput. Pract. Exp.,

29(24), 2017.

[23] Min Chen and Yixue Hao. Task offloading for mobile edge computing in soft-

ware defined ultra-dense network. IEEE J. Sel. Areas Commun., 36(3):587–

597, 2018.

[24] Young-Woo Kwon and Eli Tilevich. Reducing the energy consumption of

mobile applications behind the scenes. In ICSM, pages 170–179. IEEE Com-

puter Society, 2013.

Bibliography 178

[25] Mark S. Gordon, David Ke Hong, Peter M. Chen, Jason Flinn, Scott A.

Mahlke, and Zhuoqing Morley Mao. Tango: Accelerating mobile appli-

cations through flip-flop replication. GetMobile Mob. Comput. Commun.,

19(3):10–13, 2015.

[26] Mark S. Gordon, Davoud Anoushe Jamshidi, Scott A. Mahlke, Zhuo-

qing Morley Mao, and Xu Chen. COMET: code offload by migrating ex-

ecution transparently. In OSDI, pages 93–106. USENIX Association, 2012.

[27] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri E. Bal. Cuckoo:

A computation offloading framework for smartphones. In MobiCASE, vol-

ume 76 of Lecture Notes of the Institute for Computer Sciences, Social Infor-

matics and Telecommunications Engineering, pages 59–79. Springer, 2010.

[28] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and Ash-

win Patti. Clonecloud: elastic execution between mobile device and cloud.

In EuroSys, pages 301–314. ACM, 2011.

[29] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen

Zhang. Thinkair: Dynamic resource allocation and parallel execution in

the cloud for mobile code offloading. In INFOCOM, pages 945–953. IEEE,

2012.

[30] Aki Saarinen, Matti Siekkinen, Yu Xiao, Jukka K. Nurminen, Matti Kemp-

painen, and Pan Hui. Can offloading save energy for popular apps? In

MobiArch@MobiCom, pages 3–10. ACM, 2012.

[31] Aaron Yi Ding, Bo Han, Yu Xiao, Pan Hui, Aravind Srinivasan, Markku

Kojo, and Sasu Tarkoma. Enabling energy-aware collaborative mobile data

offloading for smartphones. In SECON, pages 487–495. IEEE, 2013.

[32] Ayat Khairy, Hany H. Ammar, and Reem Bahgat. Smartphone energizer:

Extending smartphone’s battery life with smart offloading. In IWCMC, pages

329–336. IEEE, 2013.

Bibliography 179

[33] Florian Berg, Frank Dürr, and Kurt Rothermel. Increasing the efficiency and

responsiveness of mobile applications with preemptable code offloading. In

IEEE MS, pages 76–83. IEEE Computer Society, 2014.

[34] Soomin Ki, Gyuri Byun, Kyungwoon Cho, and Hyokyung Bahn. Co-

optimizing CPU voltage, memory placement, and task offloading for energy-

efficient mobile systems. IEEE Internet Things J., 10(10):9177–9192, 2023.

[35] Paul Baumann and Silvia Santini. Every byte counts: Selective prefetching

for mobile applications. Proc. ACM Interact. Mob. Wearable Ubiquitous

Technol., 1(2):6:1–6:29, 2017.

[36] Brett D. Higgins, Jason Flinn, Thomas J. Giuli, Brian Noble, Christopher

Peplin, and David Watson. Informed mobile prefetching. In MobiSys, pages

155–168. ACM, 2012.

[37] Prashanth Mohan, Suman Nath, and Oriana Riva. Prefetching mobile ads:

can advertising systems afford it? In EuroSys, pages 267–280. ACM, 2013.

[38] Xiaomeng Chen, Abhilash Jindal, and Y. Charlie Hu. How much energy can

we save from prefetching ads?: energy drain analysis of top 100 apps. In

HotPower@SOSP, pages 3:1–3:5. ACM, 2013.

[39] Yixue Zhao, Marcelo Schmitt Laser, Yingjun Lyu, and Nenad Medvidovic.

Leveraging program analysis to reduce user-perceived latency in mobile ap-

plications. In ICSE, pages 176–186. ACM, 2018.

[40] Cheng Ji, Riwei Pan, Li-Pin Chang, Liang Shi, Zongwei Zhu, Yu Liang, Tei-

Wei Kuo, and Chun Jason Xue. Inspection and characterization of app file

usage in mobile devices. ACM Trans. Storage, 16(4):25:1–25:25, 2020.

[41] Han-Yi Lin, Pi-Cheng Hsiu, and Tei-Wei Kuo. Shiftmask: Dynamic OLED

power shifting based on visual acuity for interactive mobile applications. In

ISLPED, pages 1–6. IEEE, 2017.

Bibliography 180

[42] Xiang Chen, Kent W. Nixon, Hucheng Zhou, Yunxin Liu, and Yiran Chen.

Fingershadow: An OLED power optimization based on smartphone touch

interactions. In HotPower. USENIX Association, 2014.

[43] Han-Yi Lin, Chia-Chun Hung, Pi-Cheng Hsiu, and Tei-Wei Kuo. Duet: an

OLED & GPU co-management scheme for dynamic resolution adaptation.

In DAC, pages 126:1–126:6. ACM, 2018.

[44] Chun-Han Lin, Chih-Kai Kang, and Pi-Cheng Hsiu. Catch your attention:

Quality-retaining power saving on mobile OLED displays. In DAC, pages

42:1–42:6. ACM, 2014.

[45] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massi-

miliano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. Multi-objective

optimization of energy consumption of guis in android apps. ACM Trans.

Softw. Eng. Methodol., 27(3):14:1–14:47, 2018.

[46] Ding Li, Angelica Huyen Tran, and William G. J. Halfond. Making web

applications more energy efficient for OLED smartphones. In ICSE, pages

527–538. ACM, 2014.

[47] Bhojan Anand, Karthik Thirugnanam, Jeena Sebastian, Pravein G. Kannan,

Akkihebbal L. Ananda, Mun Choon Chan, and Rajesh Krishna Balan. Adap-

tive display power management for mobile games. In MobiSys, pages 57–70.

ACM, 2011.

[48] Haidong Chen, Ji Wang, Weifeng Chen, Huamin Qu, and Wei Chen. An

image-space energy-saving visualization scheme for OLED displays. Com-

put. Graph., 38:61–68, 2014.

[49] Karthik Rao, Jun Wang, Sudhakar Yalamanchili, Yorai Wardi, and Handong

Ye. Application-specific performance-aware energy optimization on android

mobile devices. In HPCA, pages 169–180. IEEE Computer Society, 2017.

Bibliography 181

[50] Andrew J. Pyles, Zhen Ren, Gang Zhou, and Xue Liu. Sifi: exploiting voip

silence for wifi energy savings insmart phones. In UbiComp, pages 325–334.

ACM, 2011.

[51] Hyukjoong Kim and Dongkun Shin. Optimizing storage performance of an-

droid smartphone. In ICUIMC, page 95. ACM, 2013.

[52] Hyeong-Jun Kim and Jin-Soo Kim. Tuning the ext4 filesystem performance

for android-based smartphones. In ICFCE, volume 133 of Advances in Intel-

ligent and Soft Computing, pages 745–752. Springer, 2011.

[53] Yu Lin, Semih Okur, and Danny Dig. Study and refactoring of android asyn-

chronous programming (T). In ASE, pages 224–235. IEEE Computer Soci-

ety, 2015.

[54] Yingjun Lyu, Ding Li, and William G. J. Halfond. Remove rats from your

code: automated optimization of resource inefficient database writes for mo-

bile applications. In ISSTA, pages 310–321. ACM, 2018.

[55] Rubén Saborido, Rodrigo Morales, Foutse Khomh, Yann-Gaël Guéhéneuc,

and Giuliano Antoniol. Getting the most from map data structures in android.

Empir. Softw. Eng., 23(5):2829–2864, 2018.

[56] Jürgen Cito, Julia Rubin, Phillip Stanley-Marbell, and Martin C. Rinard.

Battery-aware transformations in mobile applications. In ASE, pages 702–

707. ACM, 2016.

[57] Ding Li, Yingjun Lyu, Jiaping Gui, and William G. J. Halfond. Automated

energy optimization of HTTP requests for mobile applications. In ICSE,

pages 249–260. ACM, 2016.

[58] Abhijeet Banerjee and Abhik Roychoudhury. Future of mobile software for

smartphones and drones: Energy and performance. In MOBILESoft@ICSE,

pages 1–12. IEEE, 2017.

Bibliography 182

[59] Luis Cruz, Rui Abreu, and Jean-Noel Rouvignac. Leafactor: Improving

energy efficiency of android apps via automatic refactoring. In MOBILE-

Soft@ICSE, pages 205–206. IEEE, 2017.

[60] Rodrigo Morales, Rubén Saborido, Foutse Khomh, Francisco Chicano, and

Giuliano Antoniol. EARMO: an energy-aware refactoring approach for mo-

bile apps. IEEE Trans. Software Eng., 44(12):1176–1206, 2018.

[61] Mahmoud A. Bokhari, Bobby R. Bruce, Bradley Alexander, and Markus

Wagner. Deep parameter optimisation on android smartphones for energy

minimisation: a tale of woe and a proof-of-concept. In GECCO (Compan-

ion), pages 1501–1508. ACM, 2017.

[62] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. Deep

parameter optimisation. In GECCO, pages 1375–1382. ACM, 2015.

[63] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Lang-

don, David Robert White, and John R. Woodward. Genetic improvement of

software: A comprehensive survey. IEEE Trans. Evol. Comput., 22(3):415–

432, 2018.

[64] Justyna Petke, William B. Langdon, and Mark Harman. Applying genetic

improvement to minisat. In SSBSE, volume 8084 of Lecture Notes in Com-

puter Science, pages 257–262. Springer, 2013.

[65] Thomas Ackling, Bradley Alexander, and Ian Grunert. Evolving patches for

software repair. In GECCO, pages 1427–1434. ACM, 2011.

[66] Eric M. Schulte, Jonathan DiLorenzo, Westley Weimer, and Stephanie For-

rest. Automated repair of binary and assembly programs for cooperating

embedded devices. In ASPLOS, pages 317–328. ACM, 2013.

[67] Eric M. Schulte, Stephanie Forrest, and Westley Weimer. Automated pro-

gram repair through the evolution of assembly code. In ASE, pages 313–316.

ACM, 2010.

Bibliography 183

[68] Earl T. Barr, Yuriy Brun, Premkumar T. Devanbu, Mark Harman, and Feder-

ica Sarro. The plastic surgery hypothesis. In SIGSOFT FSE, pages 306–317.

ACM, 2014.

[69] Alexander E. I. Brownlee, Justyna Petke, and Anna F. Rasburn. Injecting

shortcuts for faster running java code. In CEC, pages 1–8. IEEE, 2020.

[70] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr. Dar-

winian data structure selection. In ESEC/SIGSOFT FSE, pages 118–128.

ACM, 2018.

[71] Nathan Burles, Edward Bowles, Alexander E. I. Brownlee, Zoltan A. Kocsis,

Jerry Swan, and Nadarajen Veerapen. Object-oriented genetic improvement

for improved energy consumption in google guava. In SSBSE, volume 9275

of Lecture Notes in Computer Science, pages 255–261. Springer, 2015.

[72] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimiza-

tion: Overview and conceptual comparison. ACM Comput. Surv., 35(3):268–

308, 2003.

[73] Aymeric Blot and Justyna Petke. Empirical comparison of search heuris-

tics for genetic improvement of software. IEEE Trans. Evol. Comput.,

25(5):1001–1011, 2021.

[74] Anne Brindle. Genetic algorithms for function optimization. PhD thesis,

University of Alberta, Canada, 1980.

[75] Claire Le Goues, Westley Weimer, and Stephanie Forrest. Representations

and operators for improving evolutionary software repair. In GECCO, pages

959–966. ACM, 2012.

[76] Andrea Arcuri and Xin Yao. A novel co-evolutionary approach to automatic

software bug fixing. In IEEE Congress on Evolutionary Computation, pages

162–168. IEEE, 2008.

Bibliography 184

[77] Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer.

Using genetic improvement and code transplants to specialise a C++ program

to a problem class. In EuroGP, volume 8599 of Lecture Notes in Computer

Science, pages 137–149. Springer, 2014.

[78] Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna

Petke. Automated software transplantation. In ISSTA, pages 257–269. ACM,

2015.

[79] Mahmoud Al Najar, Rafael Almar, Erwin W. J. Bergsma, Jean-Marc Delvit,

and Dennis G. Wilson. Genetic improvement of shoreline evolution forecast-

ing models. In GECCO Companion, pages 1916–1923. ACM, 2022.

[80] Erik M. Fredericks and Byron DeVries. (genetically) improving novelty in

procedural story generation. In 2021 IEEE/ACM International Workshop on

Genetic Improvement (GI), pages 39–40, 2021.

[81] George O’Brien and John A. Clark. Using genetic improvement to retarget

quantum software on differing hardware. In 2021 IEEE/ACM International

Workshop on Genetic Improvement (GI), pages 31–38, 2021.

[82] William B. Langdon, David Robert White, Mark Harman, Yue Jia, and

Justyna Petke. Api-constrained genetic improvement. In SSBSE, volume

9962 of Lecture Notes in Computer Science, pages 224–230, 2016.

[83] Pitchaya Sitthi-amorn, Nicholas Modly, Westley Weimer, and Jason

Lawrence. Genetic programming for shader simplification. ACM Trans.

Graph., 30(6):152, 2011.

[84] William B. Langdon. Performance of genetic programming optimised

bowtie2 on genome comparison and analytic testing (GCAT) benchmarks.

BioData Min., 8:1, 2015.

Bibliography 185

[85] William B. Langdon, Marc Modat, Justyna Petke, and Mark Harman. Im-

proving 3d medical image registration CUDA software with genetic pro-

gramming. In GECCO, pages 951–958. ACM, 2014.

[86] P. Walsh and C. Ryan. Automatic conversion of programs from serial to par-

allel using genetic programming - the paragen system. In PARCO, volume 11

of Advances in Parallel Computing, pages 415–422. Elsevier, 1995.

[87] Bobby R. Bruce, Justyna Petke, and Mark Harman. Reducing energy con-

sumption using genetic improvement. In GECCO, pages 1327–1334. ACM,

2015.

[88] William B. Langdon, Afnan A. Al-Subaihin, Aymeric Blot, and David Clark.

Genetic improvement of LLVM intermediate representation. In EuroGP, vol-

ume 13986 of Lecture Notes in Computer Science, pages 244–259. Springer,

2023.

[89] James Zhong, Max Hort, and Federica Sarro. Py2cy: a genetic improvement

tool to speed up python. In GECCO Companion, pages 1950–1955. ACM,

2022.

[90] David Robert White. Genetic programming for low-resource systems. PhD

thesis, University of York, UK, 2009.

[91] David Robert White, Andrea Arcuri, and John A. Clark. Evolutionary im-

provement of programs. IEEE Trans. Evol. Comput., 15(4):515–538, 2011.

[92] Eric M. Schulte, Zachary P. Fry, Ethan Fast, Westley Weimer, and Stephanie

Forrest. Software mutational robustness. Genet. Program. Evolvable Mach.,

15(3):281–312, 2014.

[93] Alberto Carbognin, Leonardo Lucio Custode, and Giovanni Iacca. Genetic

improvement of TCP congestion avoidance. In BIOMA, volume 13627 of

Lecture Notes in Computer Science, pages 114–126. Springer, 2022.

Bibliography 186

[94] Geoffrey Hecht, Naouel Moha, and Romain Rouvoy. An empirical study

of the performance impacts of android code smells. In MOBILESoft, pages

59–69. ACM, 2016.

[95] Moo-Ryong Ra, Anmol Sheth, Lily B. Mummert, Padmanabhan Pillai, David

Wetherall, and Ramesh Govindan. Odessa: enabling interactive perception

applications on mobile devices. In MobiSys, pages 43–56. ACM, 2011.

[96] Alexander E. I. Brownlee, Justyna Petke, Brad Alexander, Earl T. Barr,

Markus Wagner, and David Robert White. Gin: genetic improvement re-

search made easy. In GECCO, pages 985–993. ACM, 2019.

[97] Jacoco. https://docs.gradle.org/current/userguide/jacoco plugin.html.

[98] Espresso for UI testing. https://developer.android.com/training/testing/espresso/.

[99] Fabiano Pecorelli, Gemma Catolino, Filomena Ferrucci, Andrea De Lucia,

and Fabio Palomba. Testing of mobile applications in the wild: A large-scale

empirical study on android apps. In ICPC, pages 296–307. ACM, 2020.

[100] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation

for object-oriented software. In SIGSOFT FSE, pages 416–419. ACM, 2011.

[101] Mark Harman and Bryan F. Jones. Search-based software engineering. Inf.

Softw. Technol., 43(14):833–839, 2001.

[102] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Un-

derstanding and detecting real-world performance bugs. In PLDI, pages 77–

88. ACM, 2012.

[103] Irineu Moura, Gustavo Pinto, Felipe Ebert, and Fernando Castor. Mining

energy-aware commits. In MSR, pages 56–67. IEEE Computer Society, 2015.

[104] Mario Linares Vásquez, Christopher Vendome, Qi Luo, and Denys Poshy-

vanyk. How developers detect and fix performance bottlenecks in android

apps. In ICSME, pages 352–361. IEEE Computer Society, 2015.

Bibliography 187

[105] Yiqun Chen, Stefan Winter, and Neeraj Suri. Inferring performance bug pat-

terns from developer commits. In ISSRE, pages 70–81. IEEE, 2019.

[106] Xiang Chen, Chunyang Chen, Dun Zhang, and Zhenchang Xing. Sethe-

saurus: Wordnet in software engineering. IEEE Trans. Software Eng.,

47(9):1960–1979, 2021.

[107] Kenji Yamauchi, Jiachen Yang, Keisuke Hotta, Yoshiki Higo, and Shinji

Kusumoto. Clustering commits for understanding the intents of implementa-

tion. In ICSME, pages 406–410. IEEE Computer Society, 2014.

[108] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.

Genprog: A generic method for automatic software repair. IEEE Trans. Soft-

ware Eng., 38(1):54–72, 2012.

[109] Karl Pearson. Note on Regression and Inheritance in the Case of Two Parents.

Proceedings of the Royal Society of London Series I, 58:240–242, 1895.

[110] Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee,

and Kristin Siggeirsdottir. Fixing bugs in your sleep: how genetic improve-

ment became an overnight success. In GECCO (Companion), pages 1513–

1520. ACM, 2017.

[111] Bobby R. Bruce, Justyna Petke, Mark Harman, and Earl T. Barr. Approx-

imate oracles and synergy in software energy search spaces. IEEE Trans.

Software Eng., 45(11):1150–1169, 2019.

[112] Fan Long, Peter Amidon, and Martin C. Rinard. Automatic inference of code

transforms for patch generation. In ESEC/SIGSOFT FSE, pages 727–739.

ACM, 2017.

[113] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic

patch generation learned from human-written patches. In ICSE, pages 802–

811. IEEE Computer Society, 2013.

Bibliography 188

[114] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra.

Getafix: learning to fix bugs automatically. Proc. ACM Program. Lang.,

3(OOPSLA):159:1–159:27, 2019.

[115] Matias Martinez and Martin Monperrus. Ultra-large repair search space with

automatically mined templates: The cardumen mode of astor. In SSBSE,

volume 11036 of Lecture Notes in Computer Science, pages 65–86. Springer,

2018.

[116] Justyna Petke. New operators for non-functional genetic improvement. In

GECCO (Companion), pages 1541–1542. ACM, 2017.

[117] Mark Harman and S. Afshin Mansouri. Search based software engineering:

Introduction to the special issue of the IEEE transactions on software engi-

neering. IEEE Trans. Software Eng., 36(6):737–741, 2010.

[118] Robolectric, 2019. http://robolectric.org/.

[119] F-droid - free and open source android app repository. https://f-droid.org/en/.

[120] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Droidbot: a

lightweight ui-guided test input generator for android. In ICSE (Compan-

ion Volume), pages 23–26. IEEE Computer Society, 2017.

[121] H. B. Mann and D. R. Whitney. On a Test of Whether one of Two Random

Variables is Stochastically Larger than the Other. The Annals of Mathemati-

cal Statistics, 18(1):50 – 60, 1947.

[122] David Freedman, Robert Pisani, and Roger Purves. Statistics (international

student edition). Pisani, R. Purves, 4th edn. WW Norton & Company, New

York, 2007.

[123] Giovani Guizzo, Justyna Petke, Federica Sarro, and Mark Harman. Enhanc-

ing genetic improvement of software with regression test selection. In ICSE,

pages 1323–1333. IEEE, 2021.

Bibliography 189

[124] Ibrahim Mesecan, Daniel Blackwell, David Clark, Myra B. Cohen, and

Justyna Petke. Keeping secrets: Multi-objective genetic improvement for de-

tecting and reducing information leakage. In ASE, pages 61:1–61:12. ACM,

2022.

[125] N. Srinivas and Kalyanmoy Deb. Multiobjective optimization using nondom-

inated sorting in genetic algorithms. Evol. Comput., 2(3):221–248, 1994.

[126] James Callan and Justyna Petke. Multi-objective genetic improvement: A

case study with evosuite. In SSBSE, volume 13711 of Lecture Notes in Com-

puter Science, pages 111–117. Springer, 2022.

[127] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast

elitist non-dominated sorting genetic algorithm for multi-objective optimi-

sation: NSGA-II. In PPSN, volume 1917 of Lecture Notes in Computer

Science, pages 849–858. Springer, 2000.

[128] Mifa Kim, Tomoyuki Hiroyasu, Mitsunori Miki, and Shinya Watanabe.

SPEA2+: improving the performance of the strength pareto evolutionary al-

gorithm 2. In PPSN, volume 3242 of Lecture Notes in Computer Science,

pages 742–751. Springer, 2004.

[129] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective op-

timization algorithm using reference-point-based nondominated sorting ap-

proach, part I: solving problems with box constraints. IEEE Trans. Evol.

Comput., 18(4):577–601, 2014.

[130] Android Development Team. Android context, 2022.

https://developer.android.com/reference/android/content/Context.

[131] James Callan and Justyna Petke. Improving android app responsiveness

through automated frame rate reduction. In SSBSE, volume 12914 of Lecture

Notes in Computer Science, pages 136–150. Springer, 2021.

Bibliography 190

[132] Android Development Team. Android compilation guide, 2023.

https://developer.android.com/studio/build.

[133] Niraj Tolia, David G. Andersen, and Mahadev Satyanarayanan. Quantifying

interactive user experience on thin clients. Computer, 39(3):46–52, 2006.

[134] James Callan and Justyna Petke. Improving responsiveness of android ac-

tivity navigation via genetic improvement. In ICSE-Companion, pages 356–

357. ACM/IEEE, 2022.

[135] James Callan, Oliver Krauss, Justyna Petke, and Federica Sarro. How do

android developers improve non-functional properties of software? Empir.

Softw. Eng., 27(5):113, 2022.

[136] Shengjie Zuo, Aymeric Blot, and Justyna Petke. Evaluation of genetic im-

provement tools for improvement of non-functional properties of software.

In GECCO Companion, pages 1956–1965. ACM, 2022.

[137] Gabin An, Aymeric Blot, Justyna Petke, and Shin Yoo. Pyggi 2.0: lan-

guage independent genetic improvement framework. In ESEC/SIGSOFT

FSE, pages 1100–1104. ACM, 2019.

[138] Oracle Development Team. Javaruntime, 2020.

https://docs.oracle.com/javase/7/docs/api/java/lang/Runtime.html.

[139] Michael Kerrisk. Linux process tracking. https://man7.org/linux/man-

pages/man5/proc.5.html, 2022. Last accessed: February 10, 2023.

[140] Michael Auer, Felix Adler, and Gordon Fraser. Improving search-based an-

droid test generation using surrogate models. In SSBSE, volume 13711 of

Lecture Notes in Computer Science, pages 51–66. Springer, 2022.

[141] Domenico Amalfitano, Nicola Amatucci, Anna Rita Fasolino, and Porfirio

Tramontana. Agrippin: a novel search based testing technique for android

applications. In DeMobile@SIGSOFT FSE, pages 5–12. ACM, 2015.

Bibliography 191

[142] Young Min Baek and Doo-Hwan Bae. Automated model-based android GUI

testing using multi-level GUI comparison criteria. In ASE, pages 238–249.

ACM, 2016.

[143] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao,

Geguang Pu, Yang Liu, and Zhendong Su. Guided, stochastic model-based

GUI testing of android apps. In ESEC/SIGSOFT FSE, pages 245–256. ACM,

2017.

[144] Husam N. Yasin, Siti Hafizah Ab Hamid, and Raja Jamilah Raja Yusof.

Droidbotx: Test case generation tool for android applications using q-

learning. Symmetry, 13(2):310, 2021.

[145] Audris Mockus, Nachiappan Nagappan, and Trung T. Dinh-Trong. Test cov-

erage and post-verification defects: A multiple case study. In ESEM, pages

291–301. IEEE Computer Society, 2009.

[146] Thomas Bach, Artur Andrzejak, Ralf Pannemans, and David Lo. The impact

of coverage on bug density in a large industrial software project. In ESEM,

pages 307–313. IEEE Computer Society, 2017.

[147] Manish Motwani, Mauricio Soto, Yuriy Brun, René Just, and Claire Le

Goues. Quality of automated program repair on real-world defects. IEEE

Trans. Software Eng., 48(2):637–661, 2022.

[148] Miqing Li, Tao Chen, and Xin Yao. How to evaluate solutions in pareto-

based search-based software engineering: A critical review and methodolog-

ical guidance. IEEE Trans. Software Eng., 48(5):1771–1799, 2022.

[149] Ruihua Ji, Zhong Li, Shouyu Chen, Minxue Pan, Tian Zhang, Shaukat Ali,

Tao Yue, and Xuandong Li. Uncovering unknown system behaviors in uncer-

tain networks with model and search-based testing. In ICST, pages 204–214.

IEEE Computer Society, 2018.

Bibliography 192

[150] Yuan Liu, Ningbo Zhu, and Miqing Li. Solving many-objective optimization

problems by a pareto-based evolutionary algorithm with preprocessing and a

penalty mechanism. IEEE Trans. Cybern., 51(11):5585–5594, 2021.

[151] András Vargha and Harold D. Delaney. A critique and improvement of the

”cl” common language effect size statistics of mcgraw and wong. Journal of

Educational and Behavioral Statistics, 25(2):101–132, 2000.

[152] AppBrain. okhttp - android statistics, 2023.

https://www.appbrain.com/stats/libraries/details/okhttp/okhttp.

[153] Aman Madaan, Alexander Shypula, Uri Alon, Milad Hashemi, Parthasarathy

Ranganathan, Yiming Yang, Graham Neubig, and Amir Yazdanbakhsh.

Learning performance-improving code edits, 2023. arxiv, 2302.07867.

[154] Oliver Krauss. Amaru: a framework for combining genetic improvement

with pattern mining. In GECCO Companion, pages 1930–1937. ACM, 2022.

[155] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Mel Ó

Cinnéide, and Kalyanmoy Deb. On the use of many quality attributes for

software refactoring: a many-objective search-based software engineering

approach. Empir. Softw. Eng., 21(6):2503–2545, 2016.

[156] Emily Rowan Winter, Vesna Nowack, David Bowes, Steve Counsell, Tracy

Hall, Sæmundur Óskar Haraldsson, John R. Woodward, Serkan Kirbas, Eti-

enne Windels, Olayori McBello, Abdurahman Atakishiyev, Kevin Kells, and

Matthew W. Pagano. Towards developer-centered automatic program repair:

findings from bloomberg. In ESEC/SIGSOFT FSE, pages 1578–1588. ACM,

2022.

	Introduction
	Background and Related Work
	Android Applications
	Compilation
	Testing
	Measuring Non-Functional Properties of Android Apps

	Non-functional Improvements to Android Apps
	Offloading
	Prefetching
	OLED Screen Management
	Device Configuration
	Refactoring
	Summary

	Genetic Improvement
	Representation
	Mutations
	Fitness
	Search

	Applications of Genetic Improvement

	Improving Frame Rate
	Improvement of Android App Responsiveness Using GI
	Research Questions
	Methodology
	Framework
	Validation
	Benchmarks: Mobile application Selection
	Physical setup

	Results
	RQ1: Improvements to responsiveness
	RQ2: Types of Improvements
	RQ3: Cost of Improving Responsiveness

	Threats to Validity
	Conclusions

	How Do Developers Improve the Non-Functional Properties of Android Apps?
	Methodology
	Overview of Methodology
	Corpus
	Step 1: Identifying NFP-improving Commits Based on Keyword Search
	Step 2: Identifying NFP-improving Commits Based on Automated Classification
	 black Step 3: Categorisation of Mined Performance NFP-improving Commits

	Results
	RQ1: Numbers of NFP-Improving Commits Found
	RQ2: How Android developers improve NFPs
	RQ3: Types of NFP commits

	Discussion
	Recommendations for NFP Mining
	Recommendations for Performance NFP-Improving Tooling

	Threats to Validity
	Related Work
	Conclusions

	Improving Responsiveness with Local Genetic Improvement
	Improving Android Navigation Response Time Using GI
	Mutation Operators
	Android Testing

	Research Questions
	Methodology
	Implementation
	Benchmarks
	Validation
	Experimental Setup

	Results
	RQ1: Effectiveness of Genetic Improvement
	RQ2: Most effective transformations
	RQ3: Cost of Genetic Improvement

	Threats to Validity
	Conclusions and Future Work

	Multi-Objective GI for Android
	Multi-Objective Optimization
	Multi-Objective GI for Android
	Representation
	Fitness
	Search

	Research Questions
	Methodology
	Genetic Improvement Framework
	Benchmarks
	Experimental Setup

	Results and Discussion
	RQ1: Known Improvements
	RQ2: Improvements of Current Apps
	RQ3: Multi-Objective Search
	RQ4: Comparison to SO-GI
	RQ5: Cost of GI
	RQ6: Comparison to Linter

	Threats to Validity
	Conclusion

	Reducing Network Usage with Genetic Improvement
	Approach for Improvement of Android App Network Usage
	Network Usage Profiler
	Novel Mutation Operator Targeting Network Usage

	Research Questions
	Methodology
	Framework for Network Usage Optimization
	Benchmark of Network-Intensive Android Applications
	Experimental Setup

	Results
	RQ1: Network Used
	RQ2: Improvements to network usage
	RQ3: Cost of Genetic Improvement

	Threats to validity
	Conclusions

	Conclusions
	Contributions
	Limitations & Future Work
	Summary

	Appendices
	Classifier Training
	Algorithm Changes in Commits
	KM commits
	CM commits

	Bibliography

