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Abstract
Aim  Code-free deep learning (CFDL) allows clinicians without coding expertise to build high-quality artificial intelligence 
(AI) models without writing code. In this review, we comprehensively review the advantages that CFDL offers over bespoke 
expert-designed deep learning (DL). As exemplars, we use the following tasks: (1) diabetic retinopathy screening, (2) retinal 
multi-disease classification, (3) surgical video classification, (4) oculomics and (5) resource management.
Methods  We performed a search for studies reporting CFDL applications in ophthalmology in MEDLINE (through PubMed) 
from inception to June 25, 2023, using the keywords ‘autoML’ AND ‘ophthalmology’. After identifying 5 CFDL studies 
looking at our target tasks, we performed a subsequent search to find corresponding bespoke DL studies focused on the same 
tasks. Only English-written articles with full text available were included. Reviews, editorials, protocols and case reports or 
case series were excluded. We identified ten relevant studies for this review.
Results  Overall, studies were optimistic towards CFDL’s advantages over bespoke DL in the five ophthalmological tasks. 
However, much of such discussions were identified to be mono-dimensional and had wide applicability gaps. High-quality 
assessment of better CFDL applicability over bespoke DL warrants a context-specific, weighted assessment of clinician intent, 
patient acceptance and cost-effectiveness. We conclude that CFDL and bespoke DL are unique in their own assets and are 
irreplaceable with each other. Their benefits are differentially valued on a case-to-case basis. Future studies are warranted 
to perform a multidimensional analysis of both techniques and to improve limitations of suboptimal dataset quality, poor 
applicability implications and non-regulated study designs.
Conclusion  For clinicians without DL expertise and easy access to AI experts, CFDL allows the prototyping of novel clini-
cal AI systems. CFDL models concert with bespoke models, depending on the task at hand. A multidimensional, weighted 
evaluation of the factors involved in the implementation of those models for a designated task is warranted.
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Key messages

What is known

What is new

Code-free deep learning (CFDL) and bespoke deep learning (DL) have been widely applied in ophthalmic tasks.
While CFDL may offer advantages over bespoke DL, including lower cost, faster development, and clinician
friendliness, the two approaches have not been directly compared.  

While there is general optimism in the literature towards the advantages of CDFL over bespoke DL, discussions
about these advantages are often mono-dimensional and lack broad applicability assessments. A high-quality
assessment requires a context-specific, weighted consideration of factors like clinician intent, patient acceptance,
and cost-effectiveness.   

Future research on CFDL applications in ophthalmology should focus on a more multidimensional analysis of this
technique, with particular attention to improving suboptimal dataset quality, applicability implications, and study
designs.  

Keywords  Machine learning · Code-free deep learning · Automated-machine learning · Artificial intelligence

Abbreviations
AI	� Artificial intelligence
DL	� Deep learning
ML	� Machine learning
CFDL	� Code-free deep learning
AutoML	� Automated machine learning
OCT	� Optical coherence tomography
DR	� Diabetic retinopathy
ACC​	� Accuracy
SN	� Sensitivity
SP	� Specificity
AUROC	� Area under receiver operating curve
UWF CFP 	� Ultra-widefield pseudocolor fundus 

photographs
AUPRC	� Area under precision-recall curve
PPV	� Positive predictive value
RVO	� Retinal vein occlusion
SCR	� Sickle cell retinopathy
PR	� Precision-recall
WTP	� Willingness to pay
QALYs	� Quality-adjusted life years
FDA	� US Food and Drug Administration

Introduction

Building machine learning (ML) and deep learning (DL) 
algorithms requires technical, mathematical and engi-
neering knowledge of artificial intelligence (AI) [1]. 

Hand-crafting ML or DL models can be laborious even 
for highly experienced AI engineers [1]. Code-free deep 
learning (CFDL) is a novel subtype of DL [2] that enables 
people without coding expertise to construct AI systems 
[2]. Automated machine learning (AutoML) is one form 
of CFDL that automates the time-consuming tasks of ML 
model development, including tasks of feature selection 
and hyperparameter optimization [3]. With commercial 
platforms like Google and Apple offering user-friendly, 
open-access interfaces for the public to develop their own 
CFDL models [2], there has been a lot of interest surround-
ing this new form of AI in the ophthalmological field.

In recent years, ophthalmologists began exploring the 
potential of CFDL in screening, disease diagnoses and 
outcome prognoses [2] and comparing their behaviour to 
equivalent bespoke ML/DL models designed for similar 
purposes [4]. CFDL has already shown strong discrimi-
native capacities in multiple tasks using a variety of oph-
thalmic imaging modalities, including optical coherence 
tomography (OCT) scans and fundus photos [2]. Further-
more, multiple studies have reported on CFDL algorithms 
that have matched or even surpassed the performance of 
comparable bespoke DL models [5–8]. With this growing 
evidence supporting the potential of CFDL, it is undoubt-
edly changing the landscape of AI development in ophthal-
mology and has the potential to empower ophthalmologists 
with tools to develop their own algorithms.

Although CFDL is spearheading positive advancements 
in AI, there remain barriers that are limiting its widespread 
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adaptation. One of these limitations is the ‘black box’ nature 
of those models—meaning that the model decisions can no 
longer be understood by humans when the model becomes 
sufficiently complex [9, 10]. ‘Black box’ in ML stems from the 
opaque process between the data input and the final derivation 
of outputs [11]. This is particularly prominent for CFDL, as 
the selection of techniques in the model’s iterative process of 
testing and modifying hyperparameters remains hidden [12]. 
In contrast, bespoke ML/DL involves experts manually choos-
ing the architecture to build the model around and intuitively 
adjusting the hyperparameters [12]. Hence, it is plausible that 
bespoke ML/DL offers clinicians better insight into the algo-
rithm’s inner mechanisms and a lesser black box [13]. For 
that reason, CFDL’s suitability in ophthalmological tasks of 
different natures can be debatable.

In this article, we aim to review current CFDL and tradi-
tional bespoke DL applications in ophthalmology. As exem-
plars, we use five important tasks in our field: (1) diabetic 
retinopathy screening, (2) retinal multi-disease classifica-
tion, (3) surgical video classification, (4) oculomics and (5) 
resource management. Our goal is to explore whether CFDL 
can replace bespoke DL and whether ophthalmologists are 
approaching decisions regarding AI’s implementation in a 
context-aware and holistic manner.

Methods

We performed a focused search for studies reporting CFDL 
applications in ophthalmology through MEDLINE/ PubMed 
on June 25, 2023, using the keywords ‘autoML’ AND ‘ophthal-
mology’. A subsequent search in PubMed on the same date was 
performed to find equivalent DL studies performing the same 
ophthalmological tasks as those in the identified CFDL stud-
ies. Only English-written articles with full text available were 
included. Reviews, editorials, protocols and case reports/series 
were excluded. We identified ten relevant studies and included 
them in the review. The search process and literature findings are 
summarised in Fig. 1 and Tables 1, 2, 3, 4, and 5 respectively.

Results

Diabetic retinopathy screening

A CFDL diabetic retinopathy (DR) screening algorithm 
was developed by Jacoba et al. [14] using 16,681 handheld 
camera images acquired from a local DR screening pro-
gramme. The resultant model detected referable DR with a 
high accuracy (ACC) (above 90%). The ACC and F1 score 
remained at high levels when the model was internally 
and externally validated (ACC = 97% and F1 score = 96%; 
ACC = 97% and F1 score = 96%, respectively). It was 
claimed that the CFDL model was likely to meet the 

regulatory performance threshold for AI systems after the 
CFDL model had been compared with the performance of 
commercial AI systems reported in the US Food and Drug 
Administration (FDA)-approved documents [15]. Further-
more, all reported values of model sensitivity (SN) and 
specificity (SP) (both internally and externally validated 
values) were found to surpass the minimum diagnostic 
thresholds recommended for DR screening devices in the 
UK [16]. CFDL was suggested to be helpful for improving 
healthcare accessibility. However, the study suffered from 
limitations of a non-clinical-trial design, training data pau-
city, the absence of a side-by-side comparison to bespoke 
DL models and the inability to demonstrate the clinical 
effectiveness of the developed CFDL model [14].

A corresponding study using bespoke DL models on 
the same dataset as Jacoba et al. could not be found. We 
therefore compared it to another study from India report-
ing on a bespoke DL model that was developed by Nunez 
et al. [17] on 32,494 handheld camera images retrieved 
from two local DR screening campaigns (SMART-INDIA 
1 and SMART-INDIA 2). The bespoke DL model achieved 
an area under the receiver operating curve (AUROC), SN 
and SP of 0.99, 93.86% and 96% respectively for refer-
able DR detections. Yet, external validation had not been 
performed. It was proposed that the model could serve as 
a useful tool for helping policymakers establish scalable 
and cost-effective DR screening programmes in the com-
munity. However, the result findings were limited by the 
monoethnic and small-sized training dataset, as well as the 
lack of external validation [17].

Retinal multi‑disease classification

Antaki et al. [18] and Abitbol et al. [19] shared a similar 
interest in designing automated systems performing multi-
retinal disease classifications. Antaki et al. [18] utilised 
2137 ultra-widefield pseudocolor fundus photographs 
(UWF CFP) from a publicly available dataset to train 
CFDL classifiers. The resultant multi-disease classifier 
achieved an area under precision-recall curve (AUPRC), 
SN and positive predictive value (PPV) of 0.876, 77.93% 
and 82.59% respectively for the detection of retinal vein 
occlusion (RVO), retinitis pigmentosa and retinal detach-
ment. The SN and PPV were relatively maintained at 
79.38% and 95.00% respectively when the model was 
externally validated. The CFDL model was deemed a fea-
sible solution for the task. However, the finite amount of 
input photographs and partial representativeness of the 
dataset to the real-world population were regarded as chal-
lenges for the model to be implemented [18].

The DL model in Abitbol et al.’s [19] study was con-
structed using 224 UWF CFPs collected from a hospital’s 
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records and was intended for the delineation of RVO from 
other retinal vascular diseases (e.g. DR and sickle cell retin-
opathy (SCR)). The developed four-class classifier was able 
to detect RVO at a per-class AUROC and ACC of 0.912 
and 88.4% respectively. SP for all four classes reached more 
than 90% and SN for both SCR and RVO identifications 
were stated to be high enough for efficient screenings (94.7% 
and 78.7% respectively). The multi-class model was gener-
ally regarded as an effective tool in performing multi-retinal 
vascular disease classification. Yet, several model shortcom-
ings, such as the small training dataset and the lack of exter-
nal validation, were noted [19].

Surgical video classification

Touma et al. [20] developed a CFDL system for the classi-
fication of surgical phases in pre-recorded cataract surgery 
videos and planned to utilise the system for the creation of 
a surgical video library. Two publicly available datasets 
(122 videos) were used to train the model. The resultant 
model was able to classify with an AUPRC, ACC and SP 
of 0.855, 96.0% and 98% respectively in the internal data-
set. When externally tested, the algorithm’s ACC and SP 

dropped slightly to 93% and 96.2% respectively. The CFDL 
model was claimed to perform better than bespoke models 
derived by AI experts. However, Touma et al. [20] revealed 
that the model’s limited generalisability and explainability 
were likely to impede the model’s implementation.

Similarly, Yeh et al. [21] used 298 cataract surgical vid-
eos recorded during the residency training of 12 surgeons to 
build traditional DL models for the classification of surgi-
cal phases in cataract surgical videos. The best-performing 
DL model was able to achieve an ACC of 84%, AUROC of 
0.99 and a precision of 0.92. It was concluded that DL was 
highly accurate in the classification. However, more training 
samples were believed to be needed in future studies [21].

Oculomics

Both Korot et al. [22] and Munk et al. [23] designed algo-
rithms that predict sex from fundus photographs. Korot 
et al. utilised 175,825 fundus photos from the UK Biobank 
dataset to train a CFDL model. The resultant algorithm 
was able to predict with an AUROC, ACC, SN, SP and 
PPV of 0.93, 86.5%, 88.8%, 83.6% and 87.3% respectively. 
The ACC, SN, SP and PPV dropped to 78.6%, 83.9%, 

Fig. 1   Search strategy
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72.2% and 78.2% respectively when the model was exter-
nally validated. The foveal region was found to be a salient 
feature for the model’s predictions. In summary, the CFDL 
was proven to be a robust framework for predicting sex. 
However, the algorithm suffered from limitations related 
to the uncertain representativeness of the training dataset 
to the real-world population and the unclear clinical use-
fulness of the algorithm [22].

Munk et al. [23] developed a similar traditional DL 
classifier that predicts sex from fundus and OCT images. 
It was revealed that the model had an AUROC of 0.80 for 
predictions made with fundus image information, 0.84 for 
predictions made with OCT cross-section images and 0.90 
for predictions made with OCT volumes. Optic disc bio-
markers were also revealed to be salient information used 
for the sex and age prediction [23].

Resource management

CFDL and bespoke DL technologies were also used to fore-
cast hospital admissions for resource management purposes in 
ophthalmological departments [24, 25]. Nakayam et al. [24] 
utilised 356,611 visit records documented from January 01, 
2014, to December 31, 2019, at the Hospital da Universidade 
Federal de São Paulo to train a CFDL model for forecasting 
emergency patient volumes in January 2020. It was found that 
predictions of emergency patient volume and trauma cases were 
close to the actual volumes recorded in January 2020. The accu-
racy metrics in daily volume prediction presented an average 
weighted quantile loss of 0.09, weighted absolute percentage 
error of 0.12 and root means a square error of 31.61 [24].

Similarly, Chen et al. [25] developed a DL model to 
forecast ‘no-show’ patients at a paediatric ophthalmic 

Table 3   CFDL- or non-CFDL-guided surgical video classification

Authors Touma et al. [20] Yeh et al. [21]

Model/software CFDL models trained with Google Cloud AutoML Video 
Intelligence Classification

DL models: VGG model and VGG16 model (convolutional 
neural network [CNN]–recurrent neural network [RNN] 
model)

Task Classification of phases in cataract surgery Classification of phases in cataract surgery
Dataset 144 cataract surgery videos from Cataract-21 and Cata-

ract-101 datasets
298 cataract surgical videos routinely recorded during resi-

dency training of 12 surgeons across 6 different sites
Performance metrics ACC 96%

PR 81%
RC 77.1%
AUPRC 0.855
F1 score 79%
SN 46.2–100.0%
SP 98.0%
PPV 81.0%

- Overall top 1 prediction accuracy for the VGG model is 
76% (93% for top 3 accuracy) and 84% for the VGG16 
model (97% for top 3 accuracy)

- Microaveraged AUROC was 0.97 for the VGG model and 
0.99 for the VGG16 model

- Microaveraged average precision score was 0.83 for the 
VGG model and 0.92 for the CNN-RNN model

Externally validated 
performance 
metrics

ACC 93%
PR 54.2%
RC 61.1%
SN 61.1%
SP 96.2%
PPV 54.2%

NR

Other means of 
model perfor-
mance assessment

NR NR

Findings - The CFDL model performed better than DL models in 
the classification of surgical phases

- Discriminative performance dropped when model was 
tested on an independent dataset

- The DL model with a CNN plus RNN architecture showed 
highly accurate predictions for routine steps of cataract 
surgery

- Visualization of the gradient map was also used to view 
important features

Limitations - Limited generalizability
- Uncertainty on automatic segmentation and classification 

of surgery videos
- Black-box nature

- Relatively few videos with rare steps
- Uncertain level of training of surgeons in videos
- Limited size and variability in the overall training set

Clinician intention - To utilise AI to help create extensive libraries contain-
ing surgical video segments of procedures (e.g. cataract 
surgery) for trainees to gain access to medical knowledge 
at all times for better self-learning

- To develop an algorithm that recognises basic and complex 
activities in cataract surgery, allowing automated and 
detailed analyses of cataract surgical videos to pool cata-
ract surgery experience from various surgeons for trainees 
seeking to improve their surgical performance from self-
directed learning
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hospital. The XGBoost model achieved an AUROC of 
0.90, precision-recall (PR) score of 0.74, SN of 45% 
and PPV of 88% in predicting ‘no-shows’ for follow-up 
patients. AUROC, PR score, SN and PPV were 0.64, 0.26, 
14% and 0.25 respectively for the prediction of the ‘no-
show’ in new patients. It was concluded that the prediction 
of no-shows was more accurate in follow-up patients than 
those new ones [25].

Discussion

For clinicians without DL expertise, and without easy access 
to experts in this area, CFDL can allow them to prototype 
novel clinical AI systems. At the same time, for AI experts, 
CFDL can potentially make the process of training mod-
els easier by accelerating the model development pipeline. 
From our review, it is clear from the studies that CFDL has 
been showing a promising horizon in multiple ophthalmo-
logical tasks including DR screening, multi-retinal disease 

differentiation, surgical video classification, oculomics 
research and resource management.

Most of the studies we reviewed were hopeful for future 
integrations of CFDL into different practice areas [14, 18, 
20, 22, 24]. However, we note that positive conclusions 
drawn on CFDL’s benefits were largely based on the sys-
tem-derived performance results [14, 18, 20, 22, 24]. Not 
all CFDL algorithms had undergone further comparison to 
bespoke DL to prove their unique value and benefits. Fur-
thermore, discussions of CFDL were mostly done mono-
dimensionally, seldomly discussing other implementation 
demands of AI, such as acceptance and applicability.

The need for publicly available datasets for external 
validation

An important practice in ensuring the broad applicability 
of AI systems is external validation [26]. It is a vital step in 
the development of viable AI-powered medical decision-
support systems [27]. Internal validation alone is insufficient 

Table 4   CFDL- or non-CFDL-guided oculomics

Authors Korot et al. [22] Munk et al. [23]

Model/software CFDL models trained with Google Cloud AutoML plat-
form

DL classifier utilising CNN

Task Sex prediction Sex and age prediction
Dataset 84,743 fundus photos from the UK Biobank 135,667 fundus images and 85,536 volumetric OCT scans 

from the Department of Ophthalmology, University Clinic 
Bern

Performance metrics ACC 86.5%
AUROC 0.93
SN 88.8%
SP 83.6%
PPV 87.3%

For sex prediction:
AUROC was 0.80 for fundus images, 0.84 for OCT cross 

sections and 0.90 for OCT volumes

Externally validated 
performance 
metrics

ACC 78.6%
SN 83.9%
SP 72.2%
PPV 78.2%

NR

Other means of 
model performance 
assessment

NR NR

Findings - The CFDL model showed robust performance for pre-
dicting sex from retinal fundus photos and was able to 
perform comparably to the bespoke ML model identified

- DL classifiers were able to effectively predict sex and age 
based on fundus images, OCT volume- and individual 
B-scans

- Sex prediction was highest using OCT volume scans, fol-
lowed by individual OCT Bscans and fundus images

- Salient regions like optic disc biomarkers were also used 
for correct gender and age prediction as revealed by the 
activation map

Limitations - Dataset not fully representative of the general UK popula-
tion

- Potential of patient-level overlap between the two datasets

- Model only qualitatively assessed the presence or absence 
of perspective biomarkers without including the quantita-
tive evaluation

Clinician intention - To harness the power of AI to explore and gain new 
insights into relationships between retinal structure and 
systemic pathophysiology

- To harness the power of AI to extract information and pat-
terns which are not obvious to the human eye and explore 
novel biomarkers with systemic associations to cardiovas-
cular and neurodegenerative diseases
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to prove the models’ ability to maintain their performance in 
contexts that are different from those from which the train-
ing data was obtained [28, 29]. Often, the testing contexts 
in internal validation are not sufficiently different from the 
training contexts (e.g. data attributes), and as such, the vali-
dated model may be prone to failing generalizability in set-
tings with distinct data contexts (i.e. data shifts) [26]. Many 
variables, including imaging equipment, ethnic distribution 
and disease manifestations in the deployment setting may 
result in model performance drops upon deployment [26, 
30]. Thus, assertions about the applicability of CFDL mod-
els may be overstated.

To ensure the robustness of models, it is generally rec-
ommended for external validation datasets to have limited 
overlap with the training set [26, 31, 32]. As such, the avail-
ability of free, open-access big data sets will be important to 
externally validate AI models in general and CFDL model 
in particular [32, 33]. These open-access datasets can save 
researchers the cost, time and effort of manually combining 
and cleansing local data from various distinctive sources 
[32, 33]. Moreover, these datasets that span a diverse variety 
of populations, settings and case mix variations add to the 
rigorousness of the validation approach [32, 33].

Systematic approach to model’s decision‑making

When it comes to opting for an AI model for a certain task, 
it is unarguable that the chosen algorithm should be the 
best candidate for the task. In other words, it should prove 
its value by showing the superior task-specific advantages 
it offers over other AI counterparts. Hence, conclusions 
regarding the beneficial use of CFDL can only be drawn 
when it has been holistically compared to traditional DL in 
the task of interest. It is most accurate for ophthalmologists 
attempting to compare between CFDL and traditional DL’s 
fittingness for a task to take into account both model per-
formance and implementation considerations. Implementa-
tion considerations include the developer’s intentions, user 
acceptance and cost-effectiveness. However, since trade-offs 
tend to exist between the different considerations [34], it is 
imperative that ophthalmologists weigh their relative impor-
tance and identify the model that has achieved a fine balance 
between the factors for the specific context. Future investi-
gative discussions of AI are encouraged to be conducted 
multidimensionally to better display the model’s context-
aligning benefits.

Developer intention

Uncovering the clinician’s ultimate goal is a crucial first 
step for assessing the fittingness of CFDL in a specific task. 
In DR screening, it is evident that developers’ objectives 
were to find a low-cost tool to cover for ophthalmologists 

in community screenings [14, 17, 35]. Cost is an important 
consideration in this screening context, especially since the 
issue of limited public funding reserved for screening pro-
jects had been identified by the developers [35]. For multi-
retinal-disease classification, the authors aimed to utilise the 
automated systems for making clinical diagnostic decisions 
[18, 19]. The developers were seen emphasising the model’s 
precision [18, 19]. Precision, in this context, is a model’s 
reliability in producing clinically correct diagnoses, consid-
ering plausible concerns of patient health being potentially 
harmed by inaccurate decisions [36].

Model interpretability is key for fostering the trustworthi-
ness and reliability of an AI system as it opens the portal for 
ophthalmologists to reason with the algorithm’s operational 
logic and ascertain clinical justifiability within an algorithm 
[37, 38]. Hence, model interpretability is considered a sig-
nificant model quality in the clinical diagnostic context. 
The knowledge of the developer’s intentions encourages a 
better understanding of the model qualities for successful 
AI integration into clinical practice with minimal clinician 
rejection. Such an awareness of developer intentions can be 
exploited to screen out CFDL as a beneficial candidate in 
incompatible ophthalmological tasks. For example, poorly 
interpretable CFDL can be ruled out as a beneficial candi-
date for the multi-retinal-disease diagnostic task.

Patient acceptance

The next step in the suitability evaluation of CFDL 
involves the acknowledgment of the patient’s acceptance. 
Knowledge of patients’ concerns and attitudes towards 
AI’s participation in their management pathway helps 
to ensure the smooth implementation of the model and 
avoid the use of CFDL in those scenarios that involve 
patients’ opposition to certain qualities in CFDL. Due to 
the absence of patient attitude information in the CFDL 
studies [14, 18, 20, 22, 24], additional questionnaire stud-
ies on patient attitude were surveyed. Uncertain model 
reliability associated with poor model interpretability 
(i.e. black box) was found to be one of the greatest con-
cerns patients have towards the use of clinical AI [39]. 
Interestingly, reluctance towards AI uses was expressed 
only when inadequately interpretable AI models were 
to proactively take part in high-stake decision-making 
[39]. However, a welcoming attitude towards AI was dis-
cerned when AI was to be utilised in low-risk settings 
[40]. Patients deemed the unsatisfactory model interpret-
ability situation less worrisome as long as the ambiguous 
model actions play no part in direct patient management 
and are not empowered to potentially inflict harm on 
patients’ well-being [39].

In addition to patient acceptance, regulatory clearance 
of any AI model, whether CFDL or bespoke, remains a 
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significant challenge. Realistically, CFDL models are 
best suited for non-clinical, potential use cases that do not 
require approval as a medical device. For example, CFDL 
can be used for post hoc analysis of clinical trial data, 
prototyping of AI system development, and development 
of AI systems for clinical trial feasibility planning and 
pre-screening.

Ensuring data privacy is also important, particularly for 
CFDL models since clinicians would typically upload data-
sets for training and testing on company-hosted websites to 
build models. Clinicians might not always be fully aware 
of how their data is stored, processed or potentially shared 
within these platforms. Therefore, delegating to legal regu-
lations may assist CFDL users to safeguard their data from 
a legal standpoint (e.g. confidentiality agreements with AI 
firms on privacy issues).

Cost factor

Cost is an integral element to pay attention to in the assess-
ment of CFDL’s compatibility with the task nature. Opera-
tional cost and cost-effectiveness are two important concepts 
in the cost domain. Operational cost is a useful indicator 
to assist tasks with clear ‘low cost’ objectives, like DR 
screening, to locate potentially cost-beneficial tools on the 
superficial level. With previous evidence proving CFDL’s 
capability of processing up to 35,000 images with less than 
US$100 needed [13], CFDL is disposed to offer low-cost 
options that support the full ML workflow [41]. Yet, in 
reality, model cost extends beyond operational costs [42]. 
Hence, cost-effectiveness is a more accurate representation 
of the cost-beneficial attribute of an AI tool. By calculating 
the cost-effectiveness with the proposed formula of willing-
ness to pay (WTP) × change in quality-adjusted life years 
(QALYs) − change in cost [43], an AI tool is better certified 
to provide long-term cost-saving benefits. The authenticity 
of the cost-friendly qualities in CFDL can also be validated.

Redefining opportunities with CFDL

In light of the limited information available, a multidimen-
sional analysis of how CFDL fits in the tasks of ophthalmo-
logical training, oculomics research and resource manage-
ment is not possible. Future model studies on such tasks, as 
well as the previously discussed screening and diagnostic 
tasks, are encouraged to incorporate investigations of task 
intention, patient opinion and cost expectation. It can only 
be concluded that CFDL opens new doors of opportunity 
for ophthalmological training, oculomics research and 
resource management. CFDL may also enable the crea-
tion of surgical video libraries for trainees’ self-learning 
given CFDL’s ability to process vast amounts of data in 

a computationally less expensive manner than traditional 
DL [20]. As for oculomics research, CFDL may offer ben-
efits in the early research stages, especially when there’s a 
minimal guarantee of results. CFDL could provide ophthal-
mologists with a cost-friendly platform to boldly test out 
their hypotheses in initial research stages without having to 
bear heavy financial burdens from model development. As 
demonstrated by Yeh et al. [21] and Munk et al. [23], model 
interpretability tools like saliency maps and the What-If 
tool could help keep an eye on the clinical relevance and 
plausibility of CFDL-identified novel ocular biomarkers. 
With more evidence amassed from CFDL analyses on the 
potential biomarkers, it becomes incentivising to perform 
DL studies to verify the legitimacy of the CFDL-discovered 
novel biomarkers. This is because investments in the con-
struction of traditional DL models for mass data analyses 
tend to be financially dissuasive in the face of little proof of 
success [44, 45]. In terms of resource management, CFDL 
was seen making accurate patient admission forecasts at 
an ophthalmology department and was believed to favour 
hospital resource management [24]. Taking into account the 
fact that future admission predictions are liable to high lev-
els of fluctuation in an ever-changing clinical environment 
[24], like the hit of a pandemic, readily accessible CFDL 
can be exploited to guide resource planning, e.g. staff and 
operation theatre in advance with its rough estimations of 
patient volume [24].

To summarise, CFDL should be evaluated multidimen-
sionally on a case-by-case basis in order to draw conclusions 
regarding its helpful impact. We did not emphasise perfor-
mance considerations in our evaluation since comparisons 
between CFDL and bespoke DL models are prone to bias, 
especially when different datasets are used to create models 
for the same task. Furthermore, it is more practical to com-
pare the model’s diagnostic performance to current clinically 
established gold standards of diagnoses in order to provide 
evidence supporting the use of AI in current clinical practices, 
especially since the majority of CFDL and bespoke DL models 
have achieved high accuracy (80–90%). Therefore, an exact 
value-to-value comparison in model performance measures 
has limited implications in the decision-making of a model for 
the task, given the model’s sensitivity to vary with the dataset 
and training dynamics [46, 47].

Limitations

Our model-to-model comparison per task is subject to 
biases because of the different datasets used to develop the 
CFDL and bespoke models, despite attempts to find models 
developed using similar datasets for each task. In addition, 
external validation had not been routinely performed across 
studies to verify claims of model robustness, making the 
reports on model performance liable to biases and attempts 
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of objective model-to-model performance comparisons chal-
lenging. Besides, even if the studies had externally validated 
their models’ performance, it is arguable whether the external 
validation carried was effective in proving the model’s ability 
to withstand adversarial attacks in potential deployments to 
real-world settings in view of the uncertainties towards the 
characteristic differences between the external dataset and 
training dataset.

Furthermore, regardless of patients’ relative acceptance 
of uninterpretable predictions in certain settings, ‘black-
box’ remains a persistent challenge for patients and oph-
thalmologists to fully embrace AI’s entry to an expertise 
that so heavily relies on an evidence-based practice [48, 
49]. Therefore, in reality, ‘black-box’ of all sizes will more 
or less face the same cynicism in all application settings, 
unless the ‘black-box’ is resolved. Finally, most of the 
reviewed literature were single-centre studies of observa-
tional nature and were found to have struggled with rela-
tively small dataset sizes and class imbalance issues in their 
training dataset. They could contribute to more biases in 
the analyses. Future FDA-regulated randomised controlled 
trials to study CFDL and bespoke DL performance in vari-
ous tasks are warranted. Multi-centre collaborative efforts 
to create benchmark datasets of larger sizes and diverse 
patient characteristics are also needed to improve the train-
ing datasets’ representativeness to real-world situations and 
better guarantee the model’s maintenance in performance 
when deployed.

Conclusion

CFDL has exhibited exciting results comparable to bespoke 
DL models, alongside substantial advantages in a variety 
of ophthalmological tasks like DR screening, multi-retinal 
disease classification, surgical video classification, ocu-
lomics research, and resource management. Our discussion 
highlighted the need to conduct a comprehensive assess-
ment of both implementation (model cost, objectives and 
acceptability) and performance factors, before deciding on 
the best model for the job. The main takeaway from this 
paper is that CFDL is unlikely to replace traditional DL in 
ophthalmology, and their worth varies depending on the 
task. Both models can perhaps be utilised concurrently at 
different phases of a given task.
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