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The socioeconomic impact of pollution naturally comes with uncertainty due to, e.g., current new 
technological developments in emissions’ abatement or demographic changes. On top of that, the 
trend of the future costs of the environmental damage is unknown: Will global warming dominate 
or technological advancements prevail? The truth is that we do not know which scenario will be 
realised and the scientific debate is still open. This paper captures those two layers of uncertainty 
by developing a real-options-like model in which a decision maker aims at adopting a once-

and-for-all costly reduction in the current emissions rate, when the stochastic dynamics of the 
socioeconomic costs of pollution are subject to Brownian shocks and the drift is an unobservable 
random variable. By keeping track of the actual evolution of the costs, the decision maker 
is able to learn the unknown drift and to form a posterior dynamic belief of its true value. 
The resulting decision maker’s timing problem boils down to a truly two-dimensional optimal 
stopping problem which we address via probabilistic free-boundary methods and a state-space 
transformation. We completely characterise the solution by showing that the optimal timing for 
implementing the emissions reduction policy is the first time that the learning process has become 
“decisive” enough; that is, when it exceeds a time-dependent percentage. This is given in terms 
of an endogenously determined threshold function, which solves uniquely a nonlinear integral 
equation. We numerically illustrate our results, discuss the implications of the optimal policy and 
also perform comparative statics to understand the role of the relevant model’s parameters in the 
optimal policy.

1. Introduction

In 2006, the economist Nicholas Stern presented the famous report The Economics of Climate Change: The Stern Review that 
was commissioned by the British government. It called for immediate and strong actions to reduce greenhouse gas emissions to 
prevent significant losses in global gross domestic product (GDP) with considerably cheaper actions (see Stern 2006, Summary of 
Conclusions). Even though many experts did not agree with all the assumptions and conclusions made in the report (see Nordhaus 
(2007), Tol (2006) and Weitzman (2007) for an overview), the Stern Review has contributed considerably to raise awareness of 
global warming. Sustainability is nowadays one of the most important topics. State unions and governments are making bold policy 
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statements, companies across a spectrum of industries are making their own policy moves, and this is only the beginning. The 
European Union’s climate target plan is at least a 55% reduction in greenhouse gas (GHG) emissions by 2030, the UK’s is 80% 
by 2050 (against 1990), and Germany’s is 38% by 2030 (against 2005), as set in the Effort Sharing Regulation (ESR). Industries 
(e.g. consumer packaged goods, etc.) will have to keep a check on emissions and meet the given standards, via their own policy 
moves towards net zero targets (e.g. Nestlé by 2050, Unilever by 2029, etc.). The public’s principles are also aligned towards this 
direction, as “today’s consumer asks even more than before for sustainability” (Mark Schneider, CEO Nestlé) and “sustainability is 
the top issue for investors” (Larry Fink, CEO BlackRock), which puts even more emphasis towards achieving these targets. However, 
more than 15 years after the Stern Review, many important political questions remain largely unanswered and the debate on climate 
policies is still convoluted, especially due to the uncertainty and the irreversibility inherently related to those actions. By using the 
words of Allen et al. (2009), “Global efforts to mitigate climate change are guided by projections of future temperatures. But the 
eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric GHG concentrations remains 
uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming”.

To begin with, the standard cost-benefit analysis used by businesses and policy makers for decision making is inappropriate for 
environmental policies, primarily due to the presence of uncertainty in the evolution of the ecosystem and its resulting social and 
economic impacts (see La Riviere et al. (2018), Pindyck (2007) for an overview), as well as the involvement of two important kinds 
of irreversibility.

The socioeconomic uncertainty stems from the fact that the damages and costs of environmental pollution and GHG emissions 
(e.g. carbon dioxide (CO2) – the main pollutant driving global warming) are barely foreseeable. This is due to e.g. the diverse 
and complex effects of an increase in the average global temperature, such as rising sea levels, increasing frequency and intensity 
of catastrophic events, storms, hurricanes, heat waves, as well as decreasing the cold stress, reducing energy demand for heating. 
Moreover, GHG emissions are fundamental for the energy system, food production, etc., and their sources are in fact every company 
and household.

In terms of irreversibilities, on one hand, environmental damage can be partially or even completely irreversible. Consider for 
example CO2, which stays in the atmosphere for hundreds of years and its atmospheric concentration reduces very slowly, or the 
potentially permanent damages caused by an increased average temperature. Clearly, these kinds of irreversibilities imply a sunk 
benefit that is associated with early policy adoption. On the other hand, there are also always sunk costs associated with policy 
adoption. For example, the loss of employment, GDP reductions and significant investments in abatement equipment by companies 
to avoid pollution; opportunity costs that bias in favour of waiting for new information and delaying the policy adoption. The effects 
of uncertainty and these types of irreversibility are therefore ambiguous.

Nowadays, the literature on optimal pollution management is huge, so that any attempt of a review would necessarily lead to 
a non exhaustive list of contributions. We therefore focus solely on the branch of works dealing with optimal timing decisions in 
environmental economics, which is where our contribution lies. In this regard, an early influential contribution is Pindyck (2000), 
which also provides an overview of former studies. This work studies how uncertainty over future costs and benefits of reduced 
environmental degradation interact with the irreversibility of the sunk costs associated with an environmental regulation, and 
the sunk benefits of avoided environmental degradation. The ways in which various kinds of environmental and socioeconomic 
uncertainties can affect optimal policy design are then discussed in Pindyck (2007). More recently, the optimal timing and size of 
pollution reduction in polluted areas is considered in Lappi (2018) and the carbon emissions reduction is considered in Huang et al. 
(2021) from the viewpoint of individual companies aiming for the minimisation of costs from carbon taxes and investment costs, 
while Murto (2007) focuses on the maximisation of production gains against investment costs. Furthermore, a model for the optimal 
switching decision from a fossil-fueled to an electric vehicle, from an individual’s perspective, is developed in Falbo et al. (2021). 
In terms of applications of Bayesian learning methods from a real-options perspective, a model for evaluating energy assets and 
potential investment projects under dynamic energy transition scenario uncertainty is developed in Flora and Tankov (2023). This 
leads to irreversible investment problems (entry/exit problems) under Bayesian uncertainty, which are then solved numerically and 
for which empirical analysis is provided. An investment in a renewable energy project, when decision makers are uncertain about 
the timing of a subsidy revision and therefore update their belief in a Bayesian fashion is considered in Dalby et al. (2018); a detailed 
numerical analysis provides insights about the role of policy uncertainty in the case of fixed feed-in tariffs. The interplay between 
the inspections performed by a regulator and noncompliance disclosure by a production firm are investigated in Kim (2015). The 
model leads to a dynamic game where the regulator chooses the timing of inspections and the company whether it should disclose a 
random occurrence of noncompliance.

In this paper, we wish to introduce and analyse a model that captures the issues of uncertainty and irreversibilities in the timing 
problem faced by governments, regulatory bodies or unions of states, for adopting environmental policies, inspired by Pindyck (2000)

(see also Lappi (2018), Pindyck (2002) and the discussion in Pindyck (2007)), while also introducing additional uncertainty around 
the future social and economic costs of pollution, which may be largely unpredictable. The main goal is to rigorously investigate how 
the considered increased economic uncertainty interacts with irreversibilities in the decision of when to optimally adopt the policy.

In the course of this, we take the point of view of a social planner that faces a real-options-like irreversible investment decision 
with sunk cost 𝐼 for the once-and-for-all reduction in the current emissions with rate 𝐸 > 0 to a smaller rate 𝐸 ≥ 0. This reflects the 
fact that major new environmental policies are unlikely to be revised often. We assume that the pollution stock (e.g. the average 
atmospheric concentration of CO2), modelled in the spirit of Nordhaus (1991) (see also Pindyck (2000)), generates damage that can 
be measured and put into monetary terms. Therefore, there exists a stochastic process 𝑋 = (𝑋𝑡)𝑡≥0 modelling the random evolution 
of social and economic costs, associated to each unit of pollution stock 𝑃 = (𝑃𝑡)𝑡≥0 (or 𝑃 = (𝑃𝑡)𝑡≥𝜏 after the policy adoption at time 
2

𝜏). The social planner’s aim is to choose an optimal (random) time 𝜏 to adopt the policy, so that the reduced future costs (𝑋𝑡𝑃𝑡)𝑡≥𝜏
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are closer to socially optimal levels, by incurring a sunk investment cost 𝐼 (e.g. pollution abatement equipment) associated to the 
adopted environmental policy (e.g. carbon tax). This sunk cost creates an incentive to wait for new information, contrary to the 
desire for policy adoption that would decrease future costs, leading to an interesting trade-off for the social planner who wishes to 
minimise the overall future expected costs.

As in existing literature, the first layer of economic uncertainty comes through the stochastic fluctuations in the dynamics of the 
socioeconomic impact of pollution 𝑋. The socioeconomic costs however could be increasing on average over time (e.g. African 
crop yields could be reduced by up to 50% due to climate change) if global warming dominates, or decreasing (e.g. more efficient 
agriculture due to high-developed farms with the same soil and climatic prerequisite, access to high-quality seeds, pesticides) if the 
yield gap is closed due to technological advancements Tol (2018). The truth is that we do not know which scenario will be realised, 
but being aware of this kind of uncertainty, we introduce a second layer of economic uncertainty in our model by assuming that the 
social planner has only partial information about 𝑋. This reflects an uncertainty over the uncertainty (see Pindyck (2007) and also 
Barnett (2022) for a general dynamic equilibrium model under Knightian uncertainty). The main purpose of this work is therefore 
to provide a new framework to deal with this extensive uncertainty over future social and economic costs of pollution in the optimal 
timing of environmental decisions.

Given that each of these uncertainties aggravates in time, especially over long time horizons, we firstly assume that 𝑋 is a 
geometric Brownian motion, which considers that the exacerbations are of exponential type. The unpredictable nature of future costs 
of environmental pollution is modelled by an unpredictable drift 𝜇 (expected/average future impact) which is considered random 
and non-observable by the social planner in our novel modelling approach. To be more precise, we let 𝜇 be a discrete random 
variable that can take two values 𝜇 ∈ {−𝛼, 𝛼} for some 𝛼 > 0, a setup that represents the most crucial situation in a tractable way. If 
𝜇 = 𝛼, then the cost per unit of pollution increases exponentially on average, incentivising a rather early policy adoption to reduce 
emissions. However, if 𝜇 = −𝛼, then the cost per unit of pollution decreases exponentially on average, potentially due to inventions 
and technological advancements tackling future environmental pollution, incentivising the delay of policy adoption. This indeed 
reflects the contrary dynamic stemming from pessimistic projections of increasing future costs of pollution, based on the slow global 
progress so-far (e.g. CDP report CDP (2023) states that change is not happening at the scale required), political challenges and lack 
of global cooperation to take aligned actions (e.g. according to the SBTi report SBTi (2023), 50% of companies are off track to meet 
their climate targets), versus the optimism for successfully reducing the socioeconomic costs of pollution by major business players. 
These include Tesla, whose mission is to accelerate the world’s transition to sustainable energy via electric vehicles, innovations in 
energy storage and solar technology (e.g. Solar Roof, Powerwall), Breakthrough Energy Ventures, whose aim is to provide the world 
affordable, abundant clean energy via breakthrough technologies in energy, transportation, and agriculture, as well as Microsoft, 
Alphabet Inc., Amazon, Virgin Group, etc., with investments in carbon removal technologies and clean energy projects.

The approach that we use to analyse the problem involves the introduction of Bayesian learning via the a posteriori belief process 
Π𝑡 = ℙ(𝜇 = 𝛼|𝑋𝑡 ). The idea is that given the social planner’s partial information on 𝑋, their belief about the true drift 𝜇 is updated 
continuously as new information arrives via the real-time observation of the evolution of socioeconomic impact of pollution 𝑋, 
given by its natural filtration 𝑋𝑡 (this technique goes back to Shiryaev (2010) in a different context). Even though the two layers 
of uncertainty, the stochasticity of the dynamics of 𝑋 and its unobservable random drift, are initially independent, they become 
correlated via the learning process. The two layers of uncertainty essentially take the form of the belief process Π about the true 
drift and the updated dynamics of 𝑋, whose drift is now dictated by the observable process Π, and they are driven by a common 
noise. There are some very recent studies with a similar mathematical background, such as an investment timing project Décamps 
et al. (2005), an optimal dividend problem De Angelis (2020) and a Dynkin game De Angelis et al. (2021), when the drift of an 
asset or firm’s revenues is random and unknown to the manager, and an inventory management problem with unknown demand 
trend Federico et al. (2021). The reason for this growing interest in such models is that often the drift term of the underlying 
random process is unknown to decision makers, and estimating this parameter is a challenging task. As we have stressed before, 
this uncertain nature appears also in the evaluation of adopting environmental policies. However, to the best of our knowledge, 
the complete rigorous treatment of such a novel feature has never appeared before in the literature of optimal timing problems in 
environmental economics.

Decision makers with partial observations thus need to decide an optimal strategy, while simultaneously learning (updating their 
beliefs about) the unknown uncertainty via Π. The resulting formulation under this framework of increased uncertainty leads to a 
three-dimensional optimal stopping problem with an underlying state space (𝑋, 𝑃 , Π). We firstly show rigorously that the problem 
can be reduced to a two-dimensional optimal stopping problem. A similar dimensionality reduction from a two- to a one-dimensional 
setting was conjectured in Pindyck (2000) for the full information version of this problem. Such one-dimensional optimal stopping 
problems (as in Pindyck (2000)) can often be solved analytically via the traditional guess-and-verify-approach. This is non-feasible in 
the resulting two-dimensional setting in our paper though, since explicit solutions are typically not available due to the problem’s 
associated PDE variational formulation. The resulting novel problem is indeed considerably harder to analyse than its standard full 
information version. The methodology employed to deal with the resulting genuine two-dimensional problem with coupled diffusive 
coordinates, includes a combination of probabilistic techniques and a state-space transformation to achieve enough regularity of the 
value function and the complete characterisation of the optimal stopping strategy (see also De Angelis et al. (2021), Décamps et al. 
(2005), Federico et al. (2021), and Johnson and Peskir (2017)).

Our main result is the proof of a fine regularity of the problem’s value function, and, more importantly, of the complete and 
practically implementable characterisation of the optimal stopping time: It is optimal to reduce emissions when the estimate Π of 
the unknown cost trend becomes “decisive” enough, i.e. exceeds the boundary 𝑐(𝑍) ∈ (0, 1), where 𝑍 is a deterministic process (like 
3

a “time” coordinate, whose speed is however determined by the size of socioeconomic costs’ volatility). In particular, we show that 
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the continuous curve 𝑐 uniquely solves a nonlinear integral equation, which is a considerable generalisation of the full information 
case whose optimal policy adoption time is the hitting time of a constant barrier. We would like to stress that, besides its theoretical 
importance, this is also a fundamental step in inferring application-driven conclusions. As a matter of fact, at any time 𝑡 ≥ 0, the 
optimal policy adoption depends solely on the decision maker’s degree of certainty Π𝑡 about increasing future costs, exceeding 
a deterministic 100𝑐(𝑍𝑡)%–confidence level (see Section 3 for detailed results). An interesting outcome is the fact that 𝑡 ↦ 𝑐(𝑍𝑡)
turns out to be increasing, reflecting the fact that as time passes and more information is revealed about the a priori unknown 
socioeconomic cost trend, the decision maker becomes more reluctant to rush a policy adoption and is willing to wait until the 
certainty (based on the information gathering) for an increasing cost trend is higher. This provides a rigorous quantitative way to 
capture this important real-life phenomenon.

The theoretical results are complemented by a numerical analysis aimed at determining how the different model parameters 
influence the optimal decision policy. Amongst various findings, we observe that the two layers of uncertainty induce different 
effects on the expected optimal timing of policy adoption. While an increase in the volatility 𝜎 of the socioeconomic cost process 𝑋
induces an increase in the expected optimal time of pollution reduction – in line with the classical “value of waiting” paradigm in 
real options – increasing the average rate 𝛼 of increase/decrease of future socioeconomic costs 𝑋, the variances of both the learning 
process Π and of the unknown trend of 𝑋 increase, with the effect that decision makers become more proactive and act earlier on 
average.

The outline of the rest of the paper is as follows. In Section 2 we introduce the decision maker’s optimal timing problem, where the 
two layers of economic uncertainty interact with the irreversibility of the emissions reduction choice. Then, in Section 2.1, we derive 
the equivalent three-dimensional Markovian formulation of the problem via filtering techniques. The main result and its implications 
are presented in Section 3, together with comparative statics analysis of how certain model parameters affect the optimal strategy. 
Section 4 then provides a constructive proof of the main theorem. This is distilled through a series of subsections and intermediate 
results. In particular, in Section 4.1, we prove that the three-dimensional problem can be reduced to a truly two-dimensional one. 
In Section 4.2, we thus provide preliminary properties of the value function of the considered optimal stopping problem and of the 
boundary separating the action and waiting regions. The complete characterisation of the optimal policy adoption timing is then 
achieved in Section 4.4, via a state-space transformation developed in Section 4.3. Section 4.5 describes the algorithm to numerically 
illustrate the barrier which characterises the optimal stopping time. Finally, we present our conclusions in Section 5, where we also 
discuss problems with a similar structure that can be treated by techniques analogous to those employed in the present paper and 
we present ideas for future research directions. Appendix A concludes this work by collecting the proofs of technical results.

2. The optimal timing problem with uncertainty over uncertainty

Let (Ω,  , ℙ𝜋) be a complete probability space, rich enough to accommodate a one-dimensional Brownian motion (𝐵𝑡)𝑡≥0 and 
a discrete random variable 𝜇 taking values −𝛼 and 𝛼, with probability 1 − 𝜋 and 𝜋, respectively. Formally, the probability space 
(Ω,  , ℙ𝜋 ) is constructed by taking Ω ∶= 𝐶([0, +∞), ℝ) ×{−𝛼, 𝛼}, for some 𝛼 > 0, and  as a 𝜎-algebra satisfying the usual conditions. 
The probability measure ℙ𝜋 is then given by the product measure ℙ𝜋 ∶=𝕎 ⊗Λ(𝜋), where 𝕎 denotes the standard Wiener measure 
and Λ(𝜋) ∶= (1 −𝜋, 𝜋) is the discrete probability measure that assigns probability 1 −𝜋 on −𝛼 and probability 𝜋 on 𝛼, for some fixed 
𝜋 ∈ (0, 1). Then, the couple 

(
(𝐵𝑡)𝑡≥0, 𝜇

)
is a canonical element in Ω.

Let 𝑃 = (𝑃𝑡)𝑡≥0 be some pollutant stock, e.g. the average atmospheric concentration of CO2, that evolves over time according to 
the ordinary differential equation (ODE)

𝑑𝑃𝑡 = (𝛽𝐸 − 𝛿𝑃𝑡)𝑑𝑡, 𝑃0 = 𝑝 > 0, (2.1)

where 𝐸 > 0 denotes the current level of emissions, 𝛽 > 0 is a scale parameter and 𝛿 > 0 is the dissipation rate of the pollutant. In 
particular, the ODE (2.1) admits a closed form solution for all 𝛿 > 0, given by

𝑃
𝑝
𝑡 = 𝛽𝐸

𝛿

(
1 − 𝑒−𝛿𝑡

)
+ 𝑝𝑒−𝛿𝑡, for all 𝑡 ≥ 0. (2.2)

Remark 2.1. It is worth mentioning that, the dynamics of the pollution stock in (2.1) are in line with the one used by Nordhaus 
Nordhaus (1991) to evaluate greenhouse gas reducing policies, in the context of climate change. Note that, Nordhaus (1991) assumed 
that social costs come from higher temperatures driven by an increasing atmospheric concentration of greenhouse gases, while here 
we will allow social costs to be generated by the pollution stock 𝑃 directly.

In this framework, we assume that the instantaneous cost or society’s disutility from pollution does not only depend on the current 
level of pollution stock 𝑃 , but also on the current level of social and economic costs 𝑋 = (𝑋𝑡)𝑡≥0 generated by a unit of pollution. 
Given that there is uncertainty around 𝑋 and its real-life exacerbation in long time horizons, we model it as an Itô-diffusion evolving 
according to the stochastic differential equation (SDE)

𝑑𝑋𝑡 = 𝜇𝑋𝑡𝑑𝑡+ 𝜎𝑋𝑡𝑑𝐵𝑡, 𝑋0 = 𝑥 > 0, (2.3)

where 𝜇 ∈ ℝ denotes the average rate of increase/decrease of future costs, the process (𝐵𝑡)𝑡≥0 models all the exogenous shocks 
affecting the environmental sustainability (e.g. related technological achievements and new scientific discoveries in related fields, or 
4

the lack of means to tackle global warming) and the volatility 𝜎 > 0 denotes their extend.
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The main novelty of our model is that future social and economic costs of pollution are considered unpredictable, which plays 
a crucial role in the debate on environmental policies. Hence, we assume that the social planner has only partial information about 
the level 𝑋 of socioeconomic impact of pollution and cannot observe (estimate) the random rate 𝜇 of expected (average) future 
costs. This reflects the additional uncertainty around the instantaneous trend of technological advances and socioeconomic impacts 
of pollution (for the importance of uncertainty over existing uncertainty, see e.g. Pindyck (2007)). Moreover, the discrete random 
variable 𝜇 ∈ {−𝛼, 𝛼}, for some 𝛼 > 0, represents in a tractable way the most crucial situation, which is in line with recent contrasting 
opinions of experts.

The social planner has a prior belief on that 𝜇 = 𝛼, given by some fixed 𝜋 ∈ (0, 1), and can only observe the evolution of the 
overall socioeconomic impact of pollution 𝑋. The process 𝑋𝑥 = (𝑋𝑥

𝑡 )𝑡≥0 satisfying the dynamics in (2.3) is therefore a geometric 
Brownian motion whose drift depends on the unobservable random variable 𝜇 and it is such that

𝔼ℙ𝜋
[
𝑋𝑥
𝑡

]
= 𝔼ℙ𝜋

[
𝑥𝑒𝜎𝐵𝑡−

𝜎2
2 𝑡
(
1{𝜇=𝛼}𝑒

𝛼𝑡 + 1{𝜇=−𝛼}𝑒−𝛼𝑡
)]

= 𝔼𝕎
[
𝑥𝑒𝜎𝐵𝑡−

𝜎2
2 𝑡
]
𝔼Λ(𝜋) [(1{𝜇=𝛼}𝑒𝛼𝑡 + 1{𝜇=−𝛼}𝑒−𝛼𝑡)] = 𝑥(𝜋𝑒𝛼𝑡 + (1 − 𝜋)𝑒−𝛼𝑡

)
, (2.4)

where 𝔼ℙ𝜋 [ ⋅ ] , 𝔼𝕎 [ ⋅ ] , 𝔼Λ𝜋 [ ⋅ ] denote the expectations under the probability measures ℙ𝜋 , 𝕎, Λ(𝜋), respectively. Notice that the 
second equality follows due to the independence of the process (𝐵𝑡)𝑡≥0 and the random variable 𝜇.

Remark 2.2 (Full information). The case of a known constant rate 𝜇 (in practice, estimateable), such that the economic uncertainty 
is fully observable and derived solely from the diffusion term has been considered in Pindyck (2000). In this case, the process 𝑋
defined by (2.3) is a geometric Brownian motion and its closed form solution is given by

𝑋𝑥
𝑡 = 𝑥 exp

{(
𝜇 − 1

2
𝜎2
)
𝑡+ 𝜎𝐵𝑡

}
, for all 𝑡 ≥ 0.

Overall, if at time 𝑡 ≥ 0, the level of pollution is 𝑝 and the marginal social and economic cost is 𝑥, then the cost generated by the 
environmental pollutant is 𝑥𝑝. Taking this into account, we consider a social planner whose target is to choose a (random) time 𝜏 at 
which an environmental policy should be adopted in order to reduce the emissions rate from 𝐸 to some lower 𝐸. In this paper, we 
consider 𝐸 = 0 without loss of generality. Hence, the pollutant stock after the policy adoption, denoted by (𝑃𝑡)𝑡≥𝜏 , will follow the 
dynamics

𝑑𝑃𝑡 = (𝛽𝐸 − 𝛿𝑃𝑡)𝑑𝑡 = −𝛿𝑃𝑡𝑑𝑡, for all 𝑡 > 𝜏, 𝑃𝜏 = 𝑃𝜏 . (2.5)

In particular, the ODE (2.5) admits a closed form solution given by

𝑃
𝑝
𝑡 = 𝑃 𝑝𝜏 𝑒

−𝛿(𝑡−𝜏), for all 𝑡 ≥ 𝜏. (2.6)

Finally, it is natural to assume that any environmental policy adoption yields other societal and economic costs, e.g. due to loss of 
employment, reductions in the GDP, costly investments in abatement equipment. We assume that this investment cost is completely 
sunk and given by the constant 𝐼 > 0.

Given a constant discount rate 𝑟 > 0 and any initial values 𝑥, 𝑝 > 0, the social planner’s objective is to find a stopping time 𝜏 of the 
filtration 𝑋𝑡 generated by 𝑋 (representing the information flow generated by observing the actual evolution of the socioeconomic 
costs of pollution), at which it is optimal to spend the investment costs 𝐼 in order to permanently reduce the emissions from rate 𝐸
to 𝐸. This target can be formulated via a (non-Markovian) optimal stopping problem over an infinite time horizon given by

inf
𝜏≥0 𝔼

ℙ𝜋
⎡⎢⎢⎣

𝜏

∫
0

𝑒−𝑟𝑡𝑋𝑥
𝑡 𝑃

𝑝
𝑡 𝑑𝑡+ 𝑒

−𝑟𝜏𝐼 +

∞

∫
𝜏

𝑒−𝑟𝑡𝑋𝑥
𝑡 𝑃

𝑝
𝑡 𝑑𝑡

⎤⎥⎥⎦ , (2.7)

where the infimum is taken over all stopping times 𝜏 of the process (𝑋𝑥
𝑡 )𝑡≥0. Notice that, the first integral in the expectation in (2.7)

represents the cumulative costs until the policy is adopted, while the second one the cumulative costs after the policy adoption.

Remark 2.3. The mathematical analysis in this paper applies also in the case of a stochastically evolving stock of pollutants, namely 
when

𝑑𝑃𝑡 = (𝛽𝐸 − 𝛿𝑃𝑡)𝑑𝑡+ 𝜂𝑑𝐵𝑡, 𝑃0 = 𝑝 > 0,

where the parameters 𝐸, 𝛽, 𝛿 are as in (2.1), while (𝐵𝑡)𝑡≥0 is a Brownian motion (independent of 𝐵) modelling the shocks affecting 
the atmospheric stock of pollutants and the volatility 𝜂 > 0 denotes their extend (see Athanassoglou and Xepapadeas (2012), Section 
3 in Pindyck (2002) and Section 5 in Pindyck (2000), among others).

Such dynamics will neither interfere with the learning process of the decision maker nor affect the analysis resulting to the 
two-dimensional problem (4.8) (cf. Section 2.1). The only difference is that the expected values of the stock of pollutants should be 
used in the calculations, instead of the explicit expressions (2.2) and (2.6). All subsequent analysis of the resulting two-dimensional 
5

problem should be identical (see also Example 1 in Section 5.1).
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2.1. Markovian formulation of problem (2.7)

In order to solve the problem (2.7), we first observe that a Markovian reformulation is needed, since the unpredictable and 
non-observable nature of 𝜇 implies that 𝑋 is not a Markov process. The first step of our forthcoming analysis is thus to express the 
optimal stopping problem (2.7) in a Markovian framework.

The social planner’s information is modelled by the filtration 𝑋 = (𝑋𝑡 )𝑡≥0 generated by 𝑋 and augmented with ℙ𝜋 -null sets, 
which is right-continuous (cf. (Bain and Crisan, 2009, Theorem 2.35)). The social planner can then update their belief on the true 
value of 𝜇 according to new information as it gets revealed. In other words, by relying on filtering techniques (see, e.g. Liptser and 
Shiryaev (2001)), we can define the social planner’s Bayesian learning process Π = (Π𝑡)𝑡≥0 on (Ω,  , ℙ𝜋 ) as the 𝑋 -càdlàg martingale

Π𝑡 ∶= ℙ𝜋
(
𝜇 = 𝛼 |||𝑋𝑡 ), Π0 = 𝜋 ∈ (0,1). (2.8)

Then, by (Shiryaev, 1978, Section 4.2), the process (𝑋𝑥,𝜋, Π𝜋) uniquely solves the SDE{
𝑑𝑋𝑥,𝜋

𝑡 =
(
𝛼Π𝜋𝑡 − 𝛼(1 − Π𝜋𝑡 )

)
𝑋𝑥
𝑡 𝑑𝑡+ 𝜎𝑋

𝑥
𝑡 𝑑𝑊𝑡, 𝑋𝑥,𝜋

0 = 𝑥 > 0,
𝑑Π𝜋𝑡 =

2𝛼
𝜎
Π𝜋𝑡 (1 − Π𝜋𝑡 )𝑑𝑊𝑡, Π𝜋0 = 𝜋 ∈ (0,1),

(2.9)

where 𝑊 = (𝑊𝑡)𝑡≥0 is the so-called innovation process, which is defined by

𝑊𝑡 ∶=

𝑡

∫
0

𝜇 + 𝛼 − 2𝛼Π𝜋𝑠
𝜎

𝑑𝑠+𝐵𝑡,

and it is an 𝑋 -adapted Brownian motion under the probability measure ℙ𝜋 . We note that the process (𝑋𝑥,𝜋, Π𝜋) is also 𝑊 -adapted 
and, thus, we have 𝑋 = 𝑊 . It is clear that (𝑋𝑥,𝜋 , Π𝜋) is now a Markov process under this new formulation.

Consider now a new probability space (Ω̃, ̃ , ̃ℙ), on which we define a Brownian motion 𝑊 , adapted to its natural filtration 𝑊 , 
augmented by ℙ̃-null sets of ̃ . On such a space, let (𝑋, ̃Π) evolve as in (2.9), but with 𝑊 replaced by 𝑊 . Since (2.9) admits a 
unique strong solution, then

Lawℙ𝜋 (𝑋,Π, 𝜏) = Lawℙ̃(𝑋, Π̃, 𝜏),

where 𝜏 is an 𝑊 -stopping time. Then, by means of the tower property in the expectation of (2.7), and using (2.8)–(2.9) and the 
aforementioned equality in law, the optimal stopping problem (2.7) becomes

inf
𝜏≥0 𝔼̃

[ 𝜏

∫
0

𝑒−𝑟𝑡𝑋𝑥,𝜋
𝑡 𝑃

𝑝
𝑡 𝑑𝑡+ 𝑒

−𝑟𝜏𝐼 +

∞

∫̃
𝜏

𝑒−𝑟𝑡𝑋𝑥,𝜋
𝑡 𝑃

𝑝
𝑡 𝑑𝑡

]
. (2.10)

From now on, with a slight abuse of notation, we shall write (𝑋, Π, 𝜏) as well as (Ω,  , ℙ, 𝔼) instead of (𝑋, ̃Π, ̃𝜏) and (Ω̃, ̃ , ̃ℙ, ̃𝔼), 
respectively.

Then, with regards to the Markovian nature of (2.10), given any initial values (𝑥, 𝑝, 𝜋) ∈ℝ+ ×ℝ+ × (0, 1), we consider the optimal 
stopping problem

𝑉 (𝑥, 𝑝, 𝜋) ∶= inf
𝜏≥0 𝔼𝑥,𝑝,𝜋

[ 𝜏

∫
0

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡+ 𝑒−𝑟𝜏𝐼 +

∞

∫
𝜏

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡
]
, (2.11)

where 𝔼𝑥,𝑝,𝜋[ ⋅ ] ∶= 𝔼[ ⋅ |||𝑋0 = 𝑥, 𝑃0 = 𝑝, Π0 = 𝜋] and the infimum is taken over all 𝑋 -stopping times 𝜏 . Solving (2.11) then consists 
of finding the optimal timing 𝜏∗ for adoption the environmental policy that achieves the minimum overall expected socioeconomic 
costs 𝑉 .

3. The main result and its implications

Our main result provides a complete characterisation of the optimal policy adoption time and it is provided in the theorem below. 
In order to consider the potential optimality of the immediate emissions reduction policy or its perpetual postponement, which are 
certainly plausible choices in environmental economics (especially in environmental policy adoption discussions), we make the only 
standard assumption that 𝑟 > 𝛼. The rest of this paper is then devoted to develop a constructive proof of such a theorem.

Theorem 3.1. Assume 𝑟 > 𝛼, recall the Bayesian learning process Π𝜋 defined by (2.8) and denote its transition density by 𝑝𝑡(𝜋, 𝜋′), for 
(𝜋, 𝜋′) ∈ (0, 1)2, define the auxiliary “time-coordinate” process

𝑍𝑧𝑡 ∶= 𝑧+
1
2
𝜎2𝑡, 𝑡 ≥ 0, with 𝑧 = 𝑧(𝑥,𝜋) ∶= 𝜎2

2𝛼
ln( 𝜋

1 − 𝜋
) − ln(𝑥),
6

and introduce the continuous, nondecreasing function
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𝑚(𝑧) ∶= inf{𝜋 ∈ (0,1) | 𝑞(𝑧,𝜋) < 0}, 𝑧 ∈ℝ,

where

𝑞(𝑧,𝜋) ∶= 𝛽𝐸𝑒−𝑧
(

𝜋

1 − 𝜋

) 𝜎2
2𝛼
((

(𝛼 − 𝑟)𝜃 + 2𝛼𝜌
)
𝜋 − (𝛼 + 𝑟)𝜌

)
+ 𝑟𝐼, (𝑧,𝜋) ∈ℝ × (0,1),

𝜃 ∶= 2𝛼(2𝑟+ 𝛿)
(𝑟− 𝛼)(𝑟+ 𝛼)(𝑟+ 𝛿 − 𝛼)(𝑟+ 𝛿 + 𝛼)

and 𝜌 ∶= 1
(𝑟+ 𝛿 + 𝛼)(𝑟+ 𝛼)

.

Then, aiming at the minimisation of the overall socioeconomic costs of pollution in (2.11) for any (𝑧, 𝜋) ∈ℝ × (0, 1), it is optimal to adopt 
the emissions reduction policy at the stopping time

𝜏∗ = 𝜏∗(𝑧,𝜋) ∶= inf{𝑡 ≥ 0 ∶ Π𝜋𝑡 ≥ 𝑐(𝑍𝑧𝑡 )},
where 𝑐 ∶ℝ → [0, 1] is the unique continuous nondecreasing solution to the integral equation

0 =

∞

∫
0

𝑒−𝑟𝑡

⎛⎜⎜⎜⎝
𝑐(𝑧+ 1

2 𝜎
2𝑡)

∫
0

𝑞
(
𝑧+ 1

2𝜎
2𝑡, 𝜋′

)
𝑝𝑡(𝑐(𝑧), 𝜋′)𝑑𝜋′

⎞⎟⎟⎟⎠𝑑𝑡, (3.1)

such that 𝑐(𝑧) ≥𝑚(𝑧), for all 𝑧 ∈ℝ.

Besides the theoretical interest of proving Theorem 3.1 and completing the analysis of our problem, this result provides a way 
to numerically implement our theoretical findings and therefore to understand the role of various model parameters in the optimal 
strategy.

We firstly notice that, the decision maker learns about the true value of the expected future cost trend 𝜇 via the learning process 
Π𝑡 ∈ [0, 1], for 𝑡 ≥ 0. The latter process begins at time 0 from the decision maker’s initial belief 𝜋 ∈ (0, 1) about 𝜇 = 𝛼, and it is then 
updated continuously as new information arrives via the real-time observation of the evolution of socioeconomic impact of pollution 
𝑋, given by its natural filtration 𝑋𝑡 . The emissions reduction policy should be optimally adopted at 𝜏∗, namely as soon as the learning 
process Π𝜏∗ exceeds a deterministic threshold 𝑐(𝑍𝜏∗ ) ∈ [0, 1]. Essentially, the latter can be viewed as a 100𝑐(𝑍𝑡)%–confidence level, 
for 𝑡 ≥ 0, which triggers the policy adoption when exceeded by the decision maker’s degree of certainty Π𝑡 about increasing future 
costs 𝜇 = 𝛼, at the optimal stopping time 𝑡 = 𝜏∗. In other words, the decision maker should optimally adopt the emissions reduction 
policy as soon as they are “confident enough” that the socioeconomic costs of pollution are on average increasing.

One of the powers of the aforementioned result is that the optimal policy is completely characterised in a way that does not 
involve explicitly the stock of pollutants process 𝑃 and its socioeconomic costs 𝑋, but in a way that only their driving parameters are 
involved. To be more precise, even though the desired confidence level 100𝑐(𝑍𝑧𝑡 )% is deterministic, since it is driven by the auxiliary 
“time-coordinate” process 𝑍𝑧𝑡 = 𝑧 +

1
2𝜎

2𝑡, it is important to note that the speed with which it increases depends on 𝜎, namely how 
volatile the socioeconomic costs of pollution are, cf. (2.9). At the same time, the confidence level’s starting value

100𝑐(𝑧)% = 100 𝑐
(
𝜎2

2𝛼
ln
(

𝜋

1 − 𝜋

)
− ln(𝑥)

)
%

depends on all parameters of 𝑋 and the decision maker’s a priori belief 𝜋 about a high future impact 𝜇 = 𝛼 of costs. In addition, we 
observe that all these parameters together with the ones driving the evolution of 𝑃 are part of the integral equation whose solution 
is the actual function 𝑐, hence the shape of the confidence level function 𝑧 ↦ 100𝑐(𝑧)% depends on all model parameters – this is 
the case also for the lower bound 𝑚(𝑧) of admissible confidence levels 100𝑐(𝑧)%, which is defined via the critical quantity 𝑞(𝑧, 𝜋). 
Further analysis of the optimal policy result in Theorem 3.1, the implications of the monotonicity of 𝑐 and the effect of parameters 
on such a policy are provided in the subsequent discussion.

3.1. Decision making phases

In Fig. 1, we plot the boundary function 𝑧 ↦ 𝑐(𝑧) and the lower threshold 𝑧 ↦ 𝑚(𝑧), as defined in Theorem 3.1. The parameters 
used, as well as the description of the numerical algorithm, are collected in Section 4.5.

The first main conclusion one can draw from Fig. 1 is that, based on the configuration of model parameters defining the initial 
value 𝑧 = 𝑧(𝑥, 𝜋) ∶= 𝜎2

2𝛼 ln(
𝜋

1−𝜋 ) − ln(𝑥) of the process 𝑍 , introduced in Theorem 3.1, we may start our observations of the state space 
process (𝑍, Π) from either one of three types of regions (e.g. for 𝑧 < −3.5, −3.5 < 𝑧 < 2, 𝑧 > 2 in Fig. 1).

In particular, the optimal timing problem for adopting an emissions reduction policy can experience the following three Phases:

(I). Immediate adoption. If 𝑧 is “relatively small” – that is, if the initial socioeconomic cost of pollution 𝑥 is relatively large with respect to 
the adjusted likelihood ratio ( 𝜋

1−𝜋 )
𝜎2∕(2𝛼) – the initial belief 𝜋 of an increasing trend of future costs would be above 𝑐(𝑧), which would 

most likely require the optimal immediate adoption of the policy – unless we are absolutely certain of a decreasing future cost trend, i.e. 
7

𝜋 ≈ 0.
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Fig. 1. A numerical calculation of the boundary function 𝑧↦ 𝑐(𝑧) solving (3.1) and dominating the threshold 𝑧↦𝑚(𝑧) defined in Theorem 3.1.

Fig. 2. A numerical calculation of the boundary function 𝑧 ↦ 𝑐(𝑧) solving (3.1) with respect to different dissipation rates 𝛿 of the pollutant stock from the atmosphere, 
and the expected time to the policy adoption 𝔼[𝜏∗|𝜏∗ <∞] as a function of 𝛿.

(II). Dynamic decision making. If 𝑧 takes a “relatively intermediate” value, we are in a dynamic decision making phase, where we decide 
to adopt the policy – while learning the unknown future cost trend – when the stochastically-evolving learning process Π𝜋𝜏 exceeds the 
critical deterministically-evolving threshold 𝑐(𝑍𝑧𝜏 ) at some time 𝜏 ≥ 0.

(III). Never adopt. If 𝑧 is “relatively large” – that is, if the initial socioeconomic cost of pollution 𝑥 is relatively small compared to the adjusted 
likelihood ratio ( 𝜋

1−𝜋 )
𝜎2∕(2𝛼) – or if we start from Phase (II) and Π𝜋𝑡 remains below the increasing (in time) threshold 𝑐(𝑍𝑧𝑡 ), we end 

up in this third phase, where we most likely never adopt the policy – unless we are absolutely certain of an increasing future cost trend, 
i.e. Π𝜋𝜏 ≈ 1 at some time 𝜏 ≥ 0.

In order to explore further the most interesting Phase (II) appearing in Fig. 1, we can make two more observations: (a) While 
learning in Phase (II), i.e. as time passes and 𝑍⋅ increases, implying that 𝑐(𝑍⋅) increases (see also properties of 𝑐 in Theorem 3.1), 
the decision maker requires a higher certainty about increasing future costs, in order to optimally adopt the policy; (b) The duration 
of time for which the observation process (𝑍, Π) could stay in Phase (II), before adopting the policy or moving to Phase (III) and 
becoming “too late” for adopting the policy, is driven strongly by the value of the socioeconomic costs’ volatility 𝜎, since it determines 
the speed of the time-coordinate process 𝑍 (see Theorem 3.1).

3.2. Sensitivity analysis: optimal timing of environmental policy adoption

Next, we aim at obtaining further results in terms of the sensitivity of the critical belief threshold 𝑐(𝑧) and the expected optimal 
timing for adopting the environmental policy 𝔼[𝜏∗|𝜏∗ <∞] with respect to several important model parameters.

We see from Fig. 2 that the critical belief threshold 𝑐(𝑧) is increasing with higher dissipation rates 𝛿 of the pollutant stock from 
the atmosphere. That is, decision makers become more reluctant to adopt the policy if the pollutant emitted will dissipate at a faster 
rate, irrespective of their actions, which also results in the delay of the optimal policy adoption observed in the right-hand panel. 
8

Essentially, they require their belief in an increasing future cost trend to reach a higher certainty level in order for the adoption of an 
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Fig. 3. A numerical calculation of the boundary function 𝑧 ↦ 𝑐(𝑧) solving (3.1) with respect to different sizes 𝛼 (resp. −𝛼) of the average rate of increase (resp. 
decrease) of future socioeconomic costs of pollution, and the expected time to the policy adoption 𝔼[𝜏∗|𝜏∗ <∞] as a function of 𝛼.

emission reduction policy to be optimal. However, if the dissipation rate of pollutants is slow, then the importance of their actions 
increases, making the policy adoption optimal even for lower confidence levels about the future evolution of socioeconomic costs.

In Fig. 3, we observe an interesting phenomenon. There is no clear monotonicity of the critical belief threshold 𝑐(𝑧) with respect 
to changes in the absolute value 𝛼 of the average rate of increase/decrease of future socioeconomic costs of pollution. It seems 
though that, if we have more extreme alternative scenarios for the trend of future socioeconomic costs, i.e. higher 𝛼-values, then the 
dynamic decision making phase (see Phase (II) in Section 3.1) shrinks in terms of time, and makes it more likely for the decision 
maker to end up in either an immediate policy adoption or never adopting the policy (both Phase (I) and Phase (III) in Section 3.1

extend). Essentially, this provides a quantitative way to capture the fact that, as the alternatives diverge from each other, the decision 
maker can learn sooner, i.e. after a relatively shorter time period, whether it is optimal to adopt the policy or not. Contrary, when 𝛼
decreases and the two alternatives come closer to each other, the dynamic decision making phase is extended, so the decision maker 
requires a larger time-window to learn the unknown costs, while examining whether a policy adoption would be optimal.

Besides the aforementioned effects of a changing absolute value 𝛼 of the average rate of increase/decrease of future socioeconomic 
costs of pollution on the decision maker’s learning process, we can further conclude from the right-hand panel of Fig. 3, that the 
optimal timing of adopting the environmental policy decreases on average as 𝛼 increases. In view of the dynamics of Π𝜋 in (2.9), 
such higher values of 𝛼 (also higher spread in alternative scenarios) result in the increase of the volatility in the decision maker’s 
learning process about the unknown cost trend. This consequent increase in the second layer of uncertainty in our model (in the 
decision maker’s prediction mechanism), results in more proactive decision makers, who are willing to bring forward their actions. 
Interestingly, this phenomenon is contrary to the philosophy of the “value of waiting”, according to which decision makers usually 
become less proactive and are willing to postpone their actions in times of increased uncertainty (see Dixit and Pindyck (1994) and 
McDonald and Siegel (1986), among others, for works presenting the classical “value of waiting” effect, and Section 4 in Thijssen 
and Bregantini (2017) for an instance where the “value of waiting” paradigm does not hold in the context of a costly sequential 
experimentation and project valuation). A result agreeing with the “value of waiting” is obtained in this model only in terms of the 
(more classical) first layer of uncertainty, which is presented below.

We also observe in Fig. 4 that the critical belief threshold 𝑐(𝑧) is clearly non-monotonic with respect to the volatility 𝜎 of the 
socioeconomic costs of pollution. It seems that as the economic uncertainty around socioeconomic costs increases, i.e. higher 𝜎-

values, we get a larger dynamic decision making phase (see Phase (II) in Section 3.1). Therefore the decision maker requires a 
larger time-window to learn the unknown costs towards an optimal policy adoption. On the contrary, in times of low uncertainty 
the dynamic decision making phase shrinks in terms of time, and makes it more likely for the decision maker to end up in either 
an immediate policy adoption or never adopting the policy (both Phase (I) and Phase (III) in Section 3.1 extend). That is, with low 
volatility in socioeconomic costs, the future costs become less unpredictable and the current knowledge of decision makers would 
suffice to make an optimal decision to immediately or never adopt the policy. We can further conclude from the right-hand panel 
of Fig. 4 that the decision makers become more reluctant to adopt the emissions reduction policy (optimal timing increases on 
average), if there is a higher first layer of uncertainty about the socioeconomic costs, which is consistent with the philosophy of the 
aforementioned “value of waiting”.

3.3. Sensitivity analysis: optimal socioeconomic costs

In what follows, we focus on the sensitivity of the expected socioeconomic costs, under the optimal policy adoption strategy of 
Theorem 3.1, with respect to several important model parameter.

We begin with the more intuitive observations from the top panels of Fig. 5, namely, that the optimal expected socioeconomic 
costs are higher when the decision makers degree of certainty 𝜋 about increasing future socioeconomic costs of pollution increases, 
9

and lower when the dissipation rate 𝛿 of the pollutant stock from the atmosphere increases. In other words, the more certainty there 
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Fig. 4. A numerical calculation of the boundary function 𝑧 ↦ 𝑐(𝑧) solving (3.1) with respect to different extents of volatility 𝜎 in the socioeconomic costs of pollution, 
and the expected time to the policy adoption 𝔼[𝜏∗|𝜏∗ <∞] as a function of 𝜎.

Fig. 5. A numerical calculation of the optimal expected socioeconomic costs 𝑥 ↦ 𝑉 (𝑥, 𝑝, 𝜋) solving (2.11) with respect to different: beliefs 𝜋 about an increasing 
average rate of future socioeconomic costs of pollution, dissipation rates 𝛿 of the pollutant stock from the atmosphere, extents of volatility 𝜎 in the socioeconomic 
10

costs of pollution, and sizes 𝛼 of the average rate of increase/decrease of future socioeconomic costs of pollution.



Journal of Economic Dynamics and Control 161 (2024) 104841M. Basei, G. Ferrari and N. Rodosthenous

Fig. 6. A numerical calculation of the expected stock of pollutants in the atmosphere 𝔼[𝑃𝜏∗ |𝜏∗ <∞] until the optimal adoption of the emissions reduction policy 
at time 𝜏∗ , with respect to different extents of volatility 𝜎 in the socioeconomic costs of pollution and sizes 𝛼 of the average rate of increase/decrease of future 
socioeconomic costs of pollution.

is around increasing future costs of pollution and the slower the pollutant stock dissipates from the atmosphere, the higher the overall 
costs of pollution will be on average, even under the optimal environmental policy adoption.

Then, we observe some interesting features in the bottom panels of Fig. 5, in terms of the two layers of uncertainty in our model. 
Namely, the first layer of uncertainty in the socioeconomic costs 𝑋 per unit of pollution, which is increasing in 𝜎, and the second 
layer of uncertainty due to the unknown trend of future costs, which is captured by the learning process Π and is increasing in 𝛼. In 
particular, the optimal expected socioeconomic costs are decreasing in 𝜎 and increasing in 𝛼. This implies that, when implementing 
the optimal policy adoption strategy, a higher first layer of uncertainty in our model works in the decision maker’s favour (as it is 
usually observed in decision theory, e.g. financial option values are increasing in volatility), while, on the contrary, a higher second 
layer of uncertainty in our model works against the decision maker.

3.4. Sensitivity analysis: expected stock of pollutants until policy adoption

The interesting outcomes observed previously in Section 3.3, in terms of the optimal cost of pollution against the two layers of 
uncertainty in our model, are extended in this section to their effect on the expected pollution until the optimal adoption of the 
emissions reduction policy at time 𝜏∗.

To be more precise, we observe that, even though the overall socioeconomic cost of pollution is decreasing with the first layer of 
uncertainty in the socioeconomic costs 𝑋 per unit of pollution (see Fig. 5 for 𝜎 and Section 3.3), the average stock of pollutants in the 
atmosphere up to the policy adoption is increasing in Fig. 6. Intuitively, this occurs due to the delay in the optimal policy adoption, 
observed in Fig. 4 (see Section 3.2 for details), which results in giving more room for pollution stock to increase on average. A similar 
contradictory effect is also observed with respect to the second layer of uncertainty due to the unknown trend of future costs and the 
associated learning process Π, since the overall socioeconomic cost of pollution is increasing (see Fig. 5 for 𝛼 and Section 3.3), while 
the average stock of pollutants in the atmosphere up to the policy adoption is decreasing in Fig. 6. This is related intuitively to 
the decision maker’s willingness to be more proactive and optimally adopt the policy sooner than later, as observed in Fig. 3 (see 
Section 3.2 for details), such that emissions are reduced before the pollution stock gets a chance to increase too much.

4. On the proof of Theorem 3.1: characterising the optimal emissions reduction time

In this section we develop a constructive proof of Theorem 3.1, leading to the solution to the problem (2.7) and the characterisa-

tion of the optimal emissions reduction time. This will be distilled through a series of subsections and intermediate results.

4.1. Reformulation of problem (2.7)

In the next couple of Sections 4.1.1–4.1.2, we exploit the Markovian formulation of the problem in (2.11) in order to obtain the 
values of the two most extreme strategies of the social planner, i.e. never adopt or immediately adopt the environmental policy. 
These, in turn, will be helpful in the dimensionality reduction of our problem in Section 4.1.3.

4.1.1. Never adopt the policy

Suppose that the social planner decides to postpone the policy forever, i.e. chooses 𝜏 =∞ in (2.11). Then, in view of (2.4), using 
11

the explicit expression (2.2) of 𝑃 𝑝, invoking Fubini’s theorem, the total value 𝑉∞ of this strategy is
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𝑉∞(𝑥, 𝑝, 𝜋) ∶= 𝔼𝑥,𝑝,𝜋
⎡⎢⎢⎣

∞

∫
0

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡
⎤⎥⎥⎦

= 𝔼𝜋
⎡⎢⎢⎣

∞

∫
0

𝑒−𝑟𝑡𝑋𝑥
𝑡

(
𝛽𝐸

𝛿

(
1 − 𝑒−𝛿𝑡

)
+ 𝑝𝑒−𝛿𝑡

)
𝑑𝑡

⎤⎥⎥⎦
=

∞

∫
0

𝑒−𝑟𝑡 𝔼𝜋
[
𝑋𝑥
𝑡

](𝛽𝐸
𝛿

(
1 − 𝑒−𝛿𝑡

)
+ 𝑝𝑒−𝛿𝑡

)
𝑑𝑡

=

∞

∫
0

𝑒−𝑟𝑡𝑥
(
𝜋𝑒𝛼𝑡 + (1 − 𝜋)𝑒−𝛼𝑡

)(𝛽𝐸
𝛿

(
1 − 𝑒−𝛿𝑡

)
+ 𝑝𝑒−𝛿𝑡

)
𝑑𝑡

=

{
𝛽𝐸𝑥(𝜃𝜋 + 𝜌) + 𝑥𝑝(𝜃0𝜋 + 𝜌0), if 𝑟 > 𝛼,

+∞ if 𝑟 ≤ 𝛼,

(4.1)

where 𝔼𝜋 denotes the expectation conditioned on Π0 = 𝜋, and where we define, under the assumption that 𝑟 > 𝛼, the constants

𝜃 ∶= 2𝛼(2𝑟+ 𝛿)
(𝑟− 𝛼)(𝑟+ 𝛼)(𝑟+ 𝛿 − 𝛼)(𝑟+ 𝛿 + 𝛼)

> 0, 𝜃0 ∶=
2𝛼

(𝑟+ 𝛿 − 𝛼)(𝑟+ 𝛿 + 𝛼)
> 0,

𝜌 ∶= 1
(𝑟+ 𝛿 + 𝛼)(𝑟+ 𝛼)

> 0, 𝜌0 ∶=
1

𝑟+ 𝛿 + 𝛼
> 0.

(4.2)

4.1.2. Adopt the policy immediately

Suppose now that the social planner decides to adopt the policy immediately, i.e. chooses 𝜏 = 0 in (2.11). Then, in view of (2.4), 
using the explicit expression (2.6) of 𝑃 𝑝 and invoking Fubini’s theorem, the resulting value 𝑉0 is

𝑉0(𝑥, 𝑝, 𝜋) ∶= 𝐼 + 𝔼𝑥,𝑝,𝜋
⎡⎢⎢⎣

∞

∫
0

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡
⎤⎥⎥⎦ = 𝐼 +

∞

∫
0

𝑒−𝑟𝑡𝑥
(
𝜋𝑒𝛼𝑡 + (1 − 𝜋)𝑒−𝛼𝑡

)
𝑝𝑒−𝛿𝑡𝑑𝑡

=

{
𝑥𝑝(𝜃0𝜋 + 𝜌0) + 𝐼, if 𝑟+ 𝛿 > 𝛼,
+∞ if 𝑟+ 𝛿 ≤ 𝛼,

(4.3)

for the previously defined positive constants 𝜃0 and 𝜌0 in (4.2).

4.1.3. Reformulation of problem (2.11): dimensionality reduction

Given that in environmental economics, especially in environmental policy adoption discussions, the aforementioned two strate-

gies in Sections 4.1.1–4.1.2 are clearly plausible, we require that they are also admissible. Hence, we make the following assumption 
on the problem’s parameters, essentially ruling out the possibility of these strategies having value +∞, i.e. yielding an infinite 
expected cost.

Assumption 4.1. We assume that the discount rate 𝑟 and the highest average rate of environmental pollution costs 𝛼 satisfy 𝑟 > 𝛼.

After rewriting the problem in the Markovian framework (2.11), it is obvious that the value function depends on all initial values 
𝑝, 𝑥 > 0 and 𝜋 ∈ (0, 1). Therefore, (2.11) seems to be a three-dimensional optimal stopping problem. However, thanks to the linearity 
of the running cost function, we will show that it reduces to a truly two-dimensional one, involving the process (𝑋𝑥,𝜋, Π𝜋), while 
the deterministic evolution of the pollution stock 𝑃 𝑝 will eventually affect the optimal timing of adopting the environmental policy 
only indirectly. A similar dimensionality reduction was conjectured in Pindyck (2000) for the full information case (from a two-

to a one-dimensional problem); here we rigorously prove that such a reduction is possible, while extending it to our setting of the 
three-dimensional problem (2.11).

To see this, fix some initial values (𝑥, 𝑝, 𝜋) ∈ℝ+ ×ℝ+ × (0, 1), and consider first the expectation

𝔼𝑥,𝑝,𝜋
⎡⎢⎢⎣

𝜏

∫
0

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡
⎤⎥⎥⎦ = 𝔼𝑥,𝑝,𝜋

⎡⎢⎢⎣
∞

∫
0

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡
⎤⎥⎥⎦− 𝔼𝑥,𝑝,𝜋

⎡⎢⎢⎣
∞

∫
𝜏

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡
⎤⎥⎥⎦

= 𝑉∞(𝑥, 𝑝, 𝜋) − 𝔼𝑥,𝑝,𝜋
⎡⎢⎢⎣

∞

∫
𝜏

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡
⎤⎥⎥⎦ , (4.4)

where the latter equality follows from the definition (4.1) of 𝑉∞. By invoking the tower property, it follows again from (4.1) under 
12

Assumption 4.1 that
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𝔼𝑥,𝑝,𝜋
⎡⎢⎢⎣

∞

∫
𝜏

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡
⎤⎥⎥⎦ = 𝔼𝑥,𝑝,𝜋

⎡⎢⎢⎣𝑒−𝑟𝜏
⎛⎜⎜⎝𝔼𝑥,𝑝,𝜋

⎡⎢⎢⎣
∞

∫
𝜏

𝑒−𝑟(𝑡−𝜏)𝑋𝑡𝑃𝑡𝑑𝑡
||||𝜏

⎤⎥⎥⎦
⎞⎟⎟⎠
⎤⎥⎥⎦

= 𝔼𝑥,𝑝,𝜋
[
𝑒−𝑟𝜏𝑉∞(𝑋𝜏,𝑃𝜏 ,Π𝜏 )

]
, (4.5)

where the last equality is due to the strong Markov property of the process (𝑋, 𝑃 , Π).
Using similar arguments as above, together with (4.3) under Assumption 4.1, we further obtain that

𝔼𝑥,𝑝,𝜋
⎡⎢⎢⎣

∞

∫
𝜏

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡
⎤⎥⎥⎦ = 𝔼𝑥,𝑝,𝜋

[
𝑒−𝑟𝜏

(
𝑉0(𝑋𝜏,𝑃𝜏 ,Π𝜏 ) − 𝐼

)]
. (4.6)

Then, combining (4.4)–(4.6) and recalling from (2.5)–(2.6) that 𝑃𝜏 = 𝑃𝜏 , we conclude that the value function (2.11) can be 
rewritten as

𝑉 (𝑥, 𝑝, 𝜋) = inf
𝜏≥0 𝔼𝑥,𝑝,𝜋

⎡⎢⎢⎣
𝜏

∫
0

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡+ 𝑒−𝑟𝜏𝐼 +

∞

∫
𝜏

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡
⎤⎥⎥⎦

= 𝑉∞(𝑥, 𝑝, 𝜋) + inf
𝜏≥0 𝔼𝑥,𝜋

[
𝑒−𝑟𝜏

(
𝑉0(𝑋𝜏,𝑃𝜏 ,Π𝜏 ) − 𝑉∞(𝑋𝜏,𝑃𝜏 ,Π𝜏 )

)]
= 𝑉∞(𝑥, 𝑝, 𝜋) + inf

𝜏≥0 𝔼𝑥,𝜋
[
𝑒−𝑟𝜏

(
𝐼 − 𝛽𝐸𝑋𝜏 (𝜃Π𝜏 + 𝜌)

)]
= 𝑉∞(𝑥, 𝑝, 𝜋) − sup

𝜏≥0
𝔼𝑥,𝜋

[
𝑒−𝑟𝜏

(
𝛽𝐸𝑋𝜏 (𝜃Π𝜏 + 𝜌) − 𝐼

)]
,

(4.7)

where 𝔼𝑥,𝜋[ ⋅ ] ∶= 𝔼[ ⋅ |||𝑋0 = 𝑥, Π0 = 𝜋].
Hence, the solution to the three-dimensional problem 𝑉 in (2.11) is given in terms of the solution to the two-dimensional optimal 

stopping problem with value function 𝑈 given by

𝑈 (𝑥,𝜋) ∶= sup
𝜏≥0

𝔼𝑥,𝜋
[
𝑒−𝑟𝜏𝐺(𝑋𝜏,Π𝜏 )

]
, (4.8)

where the supremum is taken over all 𝑋 -stopping times and the function

𝐺 ∶ℝ+ × (0,1)↦ℝ is defined by 𝐺(𝑥,𝜋) ∶= 𝛽𝐸𝑥(𝜃𝜋 + 𝜌) − 𝐼. (4.9)

Therefore, the main aim in the remaining of this paper is to solve (4.8) and achieve the complete characterisation of the optimal 
strategy.

It is well known in optimal stopping theory that multi-dimensional optimal stopping problems cannot be solved in general via 
the standard guess-and-verify approach. On the one hand, this solution method involves solving a partial differential equation (PDE) 
associated with the Hamilton-Jacobi-Bellman equation, but closed form solutions to PDEs can rarely be found. On the other hand, it is 
uncertain whether the usually (a priori) assumed smooth-fit condition of the value function (in two-dimensional stopping problems) 
holds along the free boundary function which defines the optimal stopping strategy. In the sequel, we employ a methodology to solve 
the problem consisting of a direct probabilistic approach and a transformation of the state-space.

Remark 4.2. In contrast to the standard full information case Pindyck (2000), it will be shown in the forthcoming analysis that the 
optimal timing for the policy adoption is not given by a simple constant threshold strategy for the socioeconomic cost process 𝑋 any 
more. Instead, we will show in Section 4.2 that such a threshold will now be a function of the Bayesian learning process Π. What 
is even more interesting is that, in the process of completely characterising the optimal emissions reduction policy adoption, we 
will eventually express the optimal timing solely in terms of the learning process crossing a time- and model parameters-dependent 
boundary (see Sections 4.3–4.4 and Theorem 3.1).

4.2. Solution to the two-dimensional optimal stopping problem (4.8)

We are now ready to begin the analysis of Problem (4.8). To that end, by relying on optimal stopping theory (Peskir and Shiryaev, 
2006, Section 2.2, Chapter I), we firstly introduce the continuation region  and stopping region  defined by

 ∶= {(𝑥,𝜋) ∈ℝ+ × (0,1) ∶ 𝑈 (𝑥,𝜋) >𝐺(𝑥,𝜋)},

 ∶= {(𝑥,𝜋) ∈ℝ+ × (0,1) ∶ 𝑈 (𝑥,𝜋) =𝐺(𝑥,𝜋)},
(4.10)

as well as the stopping time

𝜏∗ ∶= inf{𝑡 ≥ 0 ∶ (𝑋𝑥,𝜋
𝑡 ,Π𝜋𝑡 ) ∈ }, (4.11)
13

with the usual convention inf ∅ = +∞. Later, we will show the optimality of 𝜏∗, as expected.
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Before we proceed with addressing the problem, we notice that the boundary points 0 and 1 are entrance-not-exit for the diffusion 
Π𝜋 , that is, Π𝜋 never atttains 0 or 1 in finite time whenever its initial value satisfies 𝜋 ∈ (0, 1) (cf. (Borodin and Salminen, 2015, 
p.12)). The proof of the following result is omitted as it follows similar arguments to the one of (Décamps et al., 2005, Lemma 3.1).

Lemma 4.3. For all 𝜋 ∈ (0, 1), we have

ℙ(Π𝜋𝑡 ∈ (0,1) ∀ 𝑡 ≥ 0) = 1,

while, for 𝜋 ∈ {0, 1}, we have

ℙ(Π1
𝑡 = 1, ∀ 𝑡 ≥ 0) = ℙ(Π0

𝑡 = 0, ∀ 𝑡 ≥ 0) = 1.

Also, we observe from (2.9) that

𝑋𝑥,𝜋
𝑡 = 𝑥 exp

⎧⎪⎨⎪⎩
𝑡

∫
0

(
2𝛼Π𝜋𝑠 − 𝛼 −

𝜎2

2

)
𝑑𝑠+ 𝜎𝑊𝑡

⎫⎪⎬⎪⎭ , ℙ𝑥,𝜋 -a.s. (4.12)

In light of Assumption 4.1, we can prove that(
𝑒−𝑟𝑡𝑋𝑥,𝜋

𝑡

)
𝑡≥0 is a continuous super-martingale with last element lim

𝑡→∞
𝑒−𝑟𝑡𝑋𝑥,𝜋

𝑡 = 0.

This further implies, in view of Π𝜋𝑡 ∈ (0, 1) for 𝜋 ∈ (0, 1) due to Lemma 4.3, that we can adopt the convention

𝑒−𝑟𝜏𝐺(𝑋𝑥,𝜋
𝜏 ,Π𝜋𝜏 ) = 0 on {𝜏 =∞}. (4.13)

4.2.1. Well-posedness and initial properties of the value function 𝑈 defined in (4.8)

The next standard result ensures the well-posedness of the optimal stopping problem under study and its proof can be found in 
Appendix A.

Lemma 4.4. The problem (4.8) is well-posed, the stopping time 𝜏∗ in (4.11) is optimal and{
𝑡↦ 𝑒−𝑟𝑡𝑈 (𝑋𝑥,𝜋

𝑡 ,Π𝜋𝑡 ) is a supermartingale,

𝑡↦ 𝑒−𝑟(𝑡∧𝜏
∗)𝑈 (𝑋𝑥,𝜋

𝑡∧𝜏∗ ,Π
𝜋
𝑡∧𝜏∗ ) is a martingale.

(4.14)

Next we obtain some further properties of the value function 𝑈 (𝑥, 𝜋) and its proof can also be found in Appendix A.

Proposition 4.5. Consider the value function 𝑈 in (4.8). Then, we have:

(i) 𝑈 (⋅, ⋅) is non-negative on ℝ+ × (0, 1);
(ii) 𝑥 ↦𝑈 (𝑥, 𝜋) is non-decreasing on ℝ+;

(iii) 𝜋↦𝑈 (𝑥, 𝜋) is non-decreasing on (0, 1);
(iv) 𝑥 ↦𝑈 (𝑥, 𝜋) is Lipschitz continuous on ℝ+;

(v) (𝑥, 𝜋) ↦ 𝑈 (𝑥, 𝜋) is continuous on ℝ+ × (0, 1).

4.2.2. The structure of the state-space and the optimal strategy

In this section, we aim at giving a rigorous geometric description of the continuation and stopping regions defined in (4.10). 
The following lemma is a direct consequence of the continuity of the value function of the optimal stopping problem (4.8) in 
Proposition 4.5.(v).

Lemma 4.6. The continuation (resp., stopping) region  (resp., ) defined in (4.10) is open (resp., closed).

The next proposition shows that the stopping region  is up-connected in both arguments 𝑥 and 𝜋; consequently the continuation 
region  is down-connected in both 𝑥 and 𝜋 (see Appendix A for the proof).

Proposition 4.7. Let (𝑥0, 𝜋0) ∈ℝ+ × (0, 1). The following properties hold:

(i) (𝑥0, 𝜋0) ∈  ⇒ (𝑥, 𝜋0) ∈  for all 𝑥 ∈ [𝑥0, ∞),
14

(ii) (𝑥0, 𝜋0) ∈  ⇒ (𝑥0, 𝜋) ∈  for all 𝜋 ∈ [𝜋0, 1).
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In light of Proposition 4.7, we can define the boundary function 𝑏 ∶ (0, 1) →ℝ+ by

𝑏(𝜋) ∶= sup{𝑥 > 0 ∶ 𝑈 (𝑥,𝜋) >𝐺(𝑥,𝜋)}, for all 𝜋 ∈ (0,1), (4.15)

under the convention sup∅ = 0. Then, using Proposition 4.7.(i), we can obtain the shape of the continuation and stopping regions 
from (4.10) in the form

 = {(𝑥,𝜋) ∈ℝ+ × (0,1) |𝑥 < 𝑏(𝜋)},
 = {(𝑥,𝜋) ∈ℝ+ × (0,1) |𝑥 ≥ 𝑏(𝜋)}, (4.16)

and the optimal stopping time from (4.11) takes the form of

𝜏∗ ∶= inf{𝑡 ≥ 0 ∶ 𝑋𝑥,𝜋
𝑡 ≥ 𝑏(Π𝜋𝑡 )}. (4.17)

Given all aforementioned results, we can also prove the following (see Appendix A).

Corollary 4.8. The boundary function 𝑏 defined by (4.15) satisfies the properties:

(i) 𝜋↦ 𝑏(𝜋) is non-increasing on (0, 1);
(ii) 𝜋↦ 𝑏(𝜋) is right-continuous on (0, 1).

4.3. A parabolic formulation of the two-dimensional optimal stopping problem (4.8)

In order to proceed further with our analysis and provide the complete characterisation of the optimal policy adoption timing, it 
is useful to make a transformation of the state-space. Notice that the process (𝑋, Π) defined in (2.9) is degenerate, in the sense that 
both components are driven by the same Brownian motion 𝑊 . Therefore, we aim at maintaining the diffusive part in only one of the 
component processes, while transforming the other component to a completely deterministic bounded variation process, leading to a 
parabolic formulation. Similar transformations were employed in the literature De Angelis et al. (2021); De Angelis (2020); Federico 
et al. (2021); Johnson and Peskir (2017).

4.3.1. The transformed state-space process (𝑍, Π)
We first define the process

𝑍𝑧𝑡 ∶=
𝜎2

2𝛼
ln
( Π𝜋𝑡
1 −Π𝜋𝑡

)
− ln(𝑋𝑥,𝜋

𝑡 ), 𝑍0 = 𝑧 ∶=
𝜎2

2𝛼
ln
(

𝜋

1 − 𝜋

)
− ln(𝑥), (4.18)

which evolves deterministically (proof follows via Itô’s formula) according to

𝑑𝑍𝑡 =
1
2
𝜎2𝑑𝑡, 𝑍0 = 𝑧, or, equivalently 𝑍𝑧𝑡 = 𝑧+

1
2
𝜎2𝑡, 𝑡 ≥ 0.

Overall, the new state-space process (𝑍, Π) is given by{
𝑑𝑍𝑡 =

1
2𝜎

2𝑑𝑡, 𝑍0 = 𝑧 ∶=
𝜎2

2𝛼 ln
( 𝜋

1−𝜋

)
− ln(𝑥) ∈ℝ,

𝑑Π𝑡 =
2𝛼
𝜎
Π𝑡(1 − Π𝑡)𝑑𝑊𝑡, Π0 = 𝜋 ∈ (0,1),

(4.19)

and its infinitesimal generator is defined for any 𝑓 ∈ 𝐶1,2(ℝ × (0, 1)) by

(𝑓 )(𝑧,𝜋) ∶= 1
2
𝜎2
𝜕𝑓

𝜕𝑧
(𝑧,𝜋) + 1

2

(2𝛼
𝜎

)2
𝜋2(1 − 𝜋)2 𝜕

2𝑓

𝜕𝜋2
(𝑧,𝜋). (4.20)

4.3.2. The transformed value function 𝑊 (𝑧, 𝜋)
For any (𝑥, 𝜋) ∈ℝ+ × (0, 1), define the transformation

𝑇 ∶= (𝑇1, 𝑇2) ∶ℝ+ × (0,1)→ℝ × (0,1), (𝑇1(𝑥,𝜋), 𝑇2(𝑥,𝜋)) =
(
𝜎2

2𝛼
ln
(

𝜋

1 − 𝜋

)
− ln(𝑥), 𝜋

)
, (4.21)

which is invertible and its inverse is given by

𝑇 −1(𝑧,𝜋) =
(
𝑒−𝑧

(
𝜋

1 − 𝜋

) 𝜎2
2𝛼
, 𝜋
)
, (𝑧,𝜋) ∈ℝ × (0,1). (4.22)

Using the latter inverse transformation, we firstly introduce the transformed version 𝑊 (𝑧, 𝜋) of the value function 𝑈 (𝑥, 𝜋) defined in 
(4.8) by

𝑊 (𝑧,𝜋) ∶=𝑈
(
𝑒−𝑧

(
𝜋

) 𝜎2
2𝛼
, 𝜋
)
, (4.23)
15

1 − 𝜋
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and secondly express the process 𝑋 as a function of the new state-space process (𝑍, Π); namely,

𝑋𝑥,𝜋
𝑡 = 𝑒−𝑍

𝑧
𝑡

( Π𝜋𝑡
1 −Π𝜋𝑡

) 𝜎2
2𝛼
, 𝑡 ≥ 0. (4.24)

In view of these, the optimal stopping problem (4.8) can be rewritten in terms of the process (𝑍, Π) defined in (4.19) as

𝑊 (𝑧,𝜋) = sup
𝜏≥0

𝔼𝑧,𝜋
[
𝑒−𝑟𝜏𝐹 (𝑍𝜏,Π𝜏 )

]
, where 𝐹 (𝑧,𝜋) ∶= 𝛽𝐸𝑒−𝑧

(
𝜋

1 − 𝜋

) 𝜎2
2𝛼 (𝜃𝜋 + 𝜌) − 𝐼, (4.25)

and 𝔼𝑧,𝜋 denotes the expectation under ℙ, conditional on 𝑍0 = 𝑧 and Π0 = 𝜋.

In view of the relationship (4.23), the value function 𝑊 (⋅, ⋅) inherits important properties which have already been proved for 
𝑈 (⋅, ⋅) in Section 4.2. In particular, we have directly from Proposition 4.5.(v) the following result.

Proposition 4.9. The transformed value function (𝑧, 𝜋) ↦𝑊 (𝑧, 𝜋) is continuous on ℝ × (0, 1).

Similarly to Section 4.2, we can also define the corresponding continuation and stopping regions by

′ ∶= {(𝑧,𝜋) ∈ℝ × (0,1) |𝑊 (𝑧,𝜋) > 𝐹 (𝑧,𝜋)},

 ′ ∶= {(𝑧,𝜋) ∈ℝ × (0,1) |𝑊 (𝑧,𝜋) = 𝐹 (𝑧,𝜋)}.
(4.26)

Given Proposition 4.9, the continuation region ′ is open and the stopping region  ′ is closed and given that 𝑇 from (4.21) is a 
global diffeomorphism, we actually have

′ = 𝑇 () and  ′ = 𝑇 (),
where  and  are the continuation and stopping regions from (4.10) under (𝑥, 𝜋)-coordinates. Hence, the corresponding optimal 
stopping time 𝜏∗ from (4.11) becomes

𝜏∗ ∶= inf{𝑡 ≥ 0 | (𝑍𝑧𝑡 ,Π𝜋𝑡 ) ∈  ′}. (4.27)

4.3.3. The transformed optimal stopping boundary

In order to obtain the explicit structure of the regions ′ and  ′ from (4.26), we recall the inverse transformation 𝑇 −1 in (4.22), 
the expression of  in (4.16) and the positivity of 𝑏, to obtain

(𝑧,𝜋) ∈ ′ ⇔
(
𝑒−𝑧

(
𝜋

1 − 𝜋

) 𝜎2
2𝛼
, 𝜋
)
∈  ⇔ 𝑒−𝑧

(
𝜋

1 − 𝜋

) 𝜎2
2𝛼
< 𝑏(𝜋) ⇔ 𝑧 > ln

(
1
𝑏(𝜋)

(
𝜋

1 − 𝜋

) 𝜎2
2𝛼
)
.

Then, by defining

𝑐−1(𝜋) ∶= ln
(

1
𝑏(𝜋)

(
𝜋

1 − 𝜋

) 𝜎2
2𝛼
)
= ln

((
𝜋

1 − 𝜋

) 𝜎2
2𝛼
)
− ln

(
𝑏(𝜋)

)
, (4.28)

we can obtain the structure of the continuation and stopping regions of 𝑊 , which take the form

′ ∶= {(𝑧,𝜋) ∈ℝ × (0,1) |𝑧 > 𝑐−1(𝜋)},
 ′ ∶= {(𝑧,𝜋) ∈ℝ × (0,1) |𝑧 ≤ 𝑐−1(𝜋)}. (4.29)

By using the expression (4.28) of the function 𝑐−1(⋅) and taking into account the fact that 𝑏(⋅) is non-increasing due to Corol-

lary 4.8.(i), we obtain for any 𝜀 > 0, that

𝑐−1(𝜋 + 𝜀) − 𝑐−1(𝜋) =

𝜋+𝜀

∫
𝜋

𝜎2

2𝛼𝑢(1 − 𝑢)
𝑑𝑢−

(
ln𝑏(𝜋 + 𝜀) − ln 𝑏(𝜋)

) ≥ 𝜋+𝜀

∫
𝜋

𝜎2

2𝛼𝑢(1 − 𝑢)
𝑑𝑢 > 0.

That is, 𝑐−1(⋅) is strictly increasing. Moreover, the definition (4.28) of 𝑐−1(⋅) and the right-continuity of 𝑏(⋅) on (0, 1) due to Corol-

lary 4.8.(i), imply that 𝑐−1(⋅) is right-continuous. These properties are summarised below.

Lemma 4.10. The function 𝑐−1(⋅) defined in (4.30) is strictly increasing and right-continuous on (0, 1).

In light of Lemma 4.10, we may now define the function

𝑐(𝑧) ∶= inf{𝜋 ∈ (0,1) |𝑧 ≤ 𝑐−1(𝜋)}. (4.30)

In the following result, we prove some properties of 𝑧 ↦ 𝑐(𝑧) and that it identifies with the optimal stopping boundary of Problem 
16

(4.25). The proof can be found in Appendix A.
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Proposition 4.11. The free boundary 𝑐 defined in (4.30) satisfies the following properties:

(i) 𝑐(⋅) is non-decreasing on ℝ;

(ii) We have 0 ≤ 𝑐(𝑧) ≤ 1 for all 𝑧 ∈ℝ with lim𝑧↓−∞ 𝑐(𝑧) = 0 and lim𝑧↑∞ 𝑐(𝑧) = 1;

(iii) 𝑐(⋅) is continuous on ℝ.

(iv) The structure of the continuation and stopping regions for (4.25) take the form

′ ∶= {(𝑧,𝜋) ∈ℝ × (0,1) |𝜋 < 𝑐(𝑧)},
 ′ ∶= {(𝑧,𝜋) ∈ℝ × (0,1) |𝜋 ≥ 𝑐(𝑧)}. (4.31)

4.4. Smooth-fit property and integral equation for the transformed stopping boundary

We firstly define (using Dynkin’s formula and standard localisation arguments that make the stochastic integral appearing in the 
application of Itô’s formula a true martingale; see, e.g., Section 25 in Peskir and Shiryaev (2006) or the proof of Theorem 4.14 in the 
Appendix) the distance of the transformed value function 𝑊 from its intrinsic value 𝐹 by

𝑤(𝑧,𝜋) ∶=𝑊 (𝑧,𝜋) − 𝐹 (𝑧,𝜋) = sup
𝜏≥0

𝔼𝑧,𝜋
[ 𝜏

∫
0

𝑒−𝑟𝑡𝑞(𝑍𝑡,Π𝑡)𝑑𝑡
]
, (4.32)

where the function 𝑞(⋅, ⋅) is defined by

𝑞(𝑧,𝜋) ∶= 𝛽𝐸𝑒−𝑧
(

𝜋

1 − 𝜋

) 𝜎2
2𝛼
((

(𝛼 − 𝑟)𝜃 + 2𝛼𝜌
)
𝜋 − (𝛼 + 𝑟)𝜌

)
+ 𝑟𝐼 for all (𝑧,𝜋) ∈ℝ × (0,1). (4.33)

In the following result, we provide properties of 𝑤 (see Appendix A for their proofs) that will be later used in order to derive its 
smooth-fit property.

Proposition 4.12. The function 𝑤 defined by (4.32) satisfies the following properties:

(i) 𝑧 ↦𝑤(𝑧, 𝜋) is non-decreasing on ℝ;

(ii) 𝜋↦𝑤(𝑧, 𝜋) is non-increasing on (0, 1).
(iii) 𝑤 ∈ 𝐶1,2(′) and uniquely solves on any open set , whose closure is a subset of ′, the PDE

(− 𝑟)𝑚(𝑧,𝜋) = −𝑞(𝑧,𝜋), for (𝑧,𝜋) ∈, with 𝑚|𝜕 = 𝑤|𝜕 . (4.34)

Since the transformed boundary function 𝑐(⋅) is non-decreasing on ℝ due to Proposition 4.11.(i), we observe that the process 
(𝑍𝑧, Π𝜋) does not necessarily enter immediately into the stopping region  ′ expressed by (4.31), when started from a point (𝑧, 𝜋) ∈
𝜕. Hence, a classical proof of the continuity of 𝜋 ↦ 𝜕𝑤

𝜕𝜋
(𝑧, 𝜋), for all 𝑧 ∈ ℝ, (see Peskir and Shiryaev (2006) for examples) is 

not feasible. In order to prove the latter result we follow arguments as those in the proof of (De Angelis, 2020, Lemma 5.5); see 
Appendix A for the detailed technical proof.

Proposition 4.13. Consider the function 𝑤 defined by (4.32). For each 𝑧 ∈ℝ, we have that 𝜋↦ 𝜕𝑤

𝜕𝜋
(𝑧, 𝜋) is continuous on (0, 1).

In the sequel, we employ the continuity of 𝑐 from Proposition 4.11.(iii), the regularity and monotonicity of 𝑤 from Proposi-

tion 4.12, the smooth-fit property from Proposition 4.13 and the fact that the component process (𝑍𝑡)𝑡≥0 is actually a time-variable, 
to use the local-time-space formula from (Peskir, 2005a, Theorem 3.1, Remark 3.2.(2)) on (𝑒−𝑟𝑡𝑤(𝑍𝑡, Π𝑡))𝑡≥0 and obtain the following 
result. This technical proof can also be found in Appendix A.

Theorem 4.14. For any (𝑧, 𝜋) ∈ℝ × (0, 1), the function 𝑤 defined in (4.32) can be represented by

𝑤(𝑧,𝜋) = 𝔼𝑧,𝜋
[ ∞

∫
0

𝑒−𝑟𝑡𝑞(𝑍𝑡,Π𝑡)𝟏{Π𝑡≤𝑐(𝑍𝑡)}𝑑𝑡
]
=

∞

∫
0

𝑒−𝑟𝑡

⎛⎜⎜⎜⎝
𝑐(𝑧+ 1

2 𝜎
2𝑡)

∫
0

𝑞
(
𝑧+ 1

2𝜎
2𝑡, 𝜋′

)
𝑝𝑡(𝜋,𝜋′)𝑑𝜋′

⎞⎟⎟⎟⎠𝑑𝑡,
where 𝑝𝑡(𝜋, 𝜋′) =

𝑑ℙ𝜋 (Π𝜋𝑡 ≤𝜋′)
𝑑𝜋′

denotes the transition density of (Π𝜋𝑡 )𝑡≥0.

In light of the above integral representation of 𝑤, we are now finally ready to completely characterise the boundary function 𝑐, 
and therefore complete the proof of our main Theorem 3.1. To that end, we define, for each 𝑧 ∈ℝ,
17

𝑚(𝑧) ∶= inf{𝜋 ∈ (0,1) | 𝑞(𝑧,𝜋) < 0}, (4.35)
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which uniquely exists since 𝑞(𝑧, 0+) = 𝑟𝐼 > 0, 𝑞(𝑧, 1−) =−∞ and 𝜋↦ 𝑞(𝑧, 𝜋) is continuous and decreasing.

By evaluating the integral representation of 𝑤 in Theorem 4.14 at 𝜋 = 𝑐(𝑧) for each 𝑧 ∈ℝ and using the fact that 𝑤(𝑧, 𝑐(𝑧)) = 0, 
we obtain that 𝑐 solves the integral equation (cf. (3.1))

0 =

∞

∫
0

𝑒−𝑟𝑡

⎛⎜⎜⎜⎝
𝑐(𝑧+ 1

2 𝜎
2𝑡)

∫
0

𝑞
(
𝑧+ 1

2𝜎
2𝑡, 𝜋′

)
𝑝𝑡(𝑐(𝑧), 𝜋′)𝑑𝜋′

⎞⎟⎟⎟⎠𝑑𝑡. (4.36)

Moreover, by letting

 ∶= {𝑓 ∶ℝ↦ℝ | f is non-decreasing, continuous and satisfies 𝑓 (𝑧) ≥𝑚(𝑧) for all 𝑧 ∈ℝ},

the four-step procedure (without additional challenges) developed in Peskir (2005b) via the exploitation of the superharmonic 
property of 𝑊 , can be employed to conclude that the boundary function 𝑐 defined by (4.30) is the unique solution in .

Upon collecting all the results developed in this section, the constructive proof of Theorem 3.1 is therefore complete.

4.5. Numerical algorithm

From a numerical point of view, the main challenge consists in solving the functional equation (4.36), which characterises the 
function 𝑐 in Theorem 3.1. Let us notice that, for 𝑧 ∈ℝ,

∞

∫
0

𝑒−𝑟𝑡
⎛⎜⎜⎜⎝
𝑐(𝑧+ 1

2 𝜎
2𝑡)

∫
0

𝑞
(
𝑧+ 1

2𝜎
2𝑡, 𝜋′

)
𝑝𝑡(𝑐(𝑧), 𝜋′)𝑑𝜋′

⎞⎟⎟⎟⎠𝑑𝑡
= 𝔼𝑧,𝑐(𝑧)

[ ∞

∫
0

𝑒−𝑟𝑡𝑞(𝑍𝑡,Π𝑡)𝟏{Π𝑡≤𝑐(𝑍𝑡)}𝑑𝑡
]
= 1
𝑟
𝔼𝑧,𝑐(𝑧)

[
𝑞(𝑍𝜁 ,Π𝜁 )𝟏{Π𝜁≤𝑐(𝑍𝜁 )}

]
=∶ [𝑐](𝑧), (4.37)

where the first equality follows from Theorem 4.14 and where 𝜁 ∼ Exp(𝑟) is an exponentially distributed random time with mean 
𝑟 > 0. We consider the following numerical scheme:

𝑐(0)(𝑧) =𝑚(𝑧), 𝑧 ∈ℝ,

𝑐(𝑛+1)(𝑧) = 𝑐(𝑛)(𝑧) + 𝜆̃[𝑐(𝑛)](𝑧), 𝑧 ∈ℝ and 𝑛 ∈ℕ,
(4.38)

where ̃ is the Monte Carlo approximation of operator  in (4.37) and 𝜆 > 0 is a constant parameter discussed below. The choice 
𝑐(0) ≡ 𝑚 is justified by the fact that 𝑚 is a lower threshold for 𝑐 and thus represents a convenient initial step for the iterations. If 
the functions 𝑐(𝑛) converge pointwise to some function 𝑐, we deduce from (4.38) that ̃[𝑐](𝑧) = 0 for each 𝑧 ∈ ℝ, that is, 𝑐 solves 
(4.37) and hence 𝑐 ≡ 𝑐 (recall from Theorem 3.1 that the solution to (4.37) exists and is unique). Once function 𝑐 is computed by the 
scheme in (4.38), the other functions and variables in the paper can be easily obtained.

Parameter 𝜆 helps speeding up the convergence. For the numerical tests in this paper, instead of choosing a fixed parameter, we 
consider 𝜆 = 𝜆(𝑧) (this does not impact the convergence arguments above, as long as 𝜆(𝑧) does not depend on 𝑛). In particular, we 
consider 𝜆(𝑧) = 1 −𝑚(𝑧) when 𝑚(𝑧) > 0.5 and 𝜆(𝑧) =𝑚(𝑧) otherwise. By the plot of 𝑚(𝑧) in Fig. 1, this choice empirically ensures that 
𝜆(𝑧) is small in the areas where 𝑐(𝑛) is expected to approach 0 and 1, thus avoiding excessive oscillations near the boundaries (we 
recall that 𝑐(𝑧) ∈ (0, 1)).

For the tests and plots in this paper, we consider the following values (unless specified otherwise) for the model parameters:

𝜎 = 0.2, 𝐸 = 0.5, 𝛽 = 0.4, 𝛿 = 0.2, 𝐼 = 10, 𝑟 = 0.1, 𝛼 = 0.05. (4.39)

5. Conclusions

This paper focuses on the social planner’s option to adopt an environmental policy implying a once-and-for-all reduction in the 
current emissions. In the course of this, we allow for two layers of uncertainty about the future social and economic consequences 
of the environmental damage, by letting the associated process 𝑋 fluctuate stochastically and allowing the decision maker to have 
only partial information about the trend of 𝑋. Introducing partial information about key parameters in the stochastic dynamics of 
socioeconomic costs of pollution reflects better the current real-life debate on the actions required to contrast climate change. The 
rigorous and complete treatment of this nontrivial novel problem represents the main contribution of our work. We suitably tackle 
this increased uncertainty on the after-effects of pollution and show that it plays a considerably important role in the optimal timing 
of policy adoption. A first important effect of additional uncertainty is indeed that the optimal policy adoption is no longer triggered 
by constant thresholds, as in the full information case Pindyck (2000).

As a matter of fact, without relying on the traditional guess-and-verify-approach (non-feasible in our multi-dimensional case), we 
18

show via probabilistic means and state-space transformation techniques that it is optimal to abate emissions when the stochastic 
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socioeconomic costs 𝑋 hits or exceeds an upper tolerance level 𝑏(Π), depending on the filtering estimate process Π of the unknown 
drift of 𝑋. Such a stopping rule can be equivalently expressed in terms of a boundary 𝑐, depending on a scaled time coordinate 𝑍 : 
It is optimal to reduce the stock of pollutants when the belief process Π – likelihood of having on average increasing socioeconomic 
costs – becomes “decisive enough” and exceeds the time-dependent percentage 𝑐(𝑍). Sensitivity of the optimal policy adoption with 
respect to the model’s parameters is studied by solving numerically the nonlinear integral equation which is uniquely solved by the 
boundary 𝑐.

Interestingly, our numerical study reveals that an increase in the amplitude of the two layers of uncertainty induces different 
effects on the expected optimal timing of policy adoption. On the one hand, an increase in the volatility 𝜎 of the socioeconomic 
cost process 𝑋 gives rise to a sharper estimate of the true trend of 𝑋 (as the volatility of the learning process decreases), so that 
the first layer of uncertainty (the Brownian risk) prevails and the expected optimal time of pollution reduction increases. This effect 
is in line with the classical “value of waiting” paradigm in real options. On the other hand, by increasing the average rate 𝛼 of 
increase/decrease of future socioeconomic costs 𝑋, the variances of both the learning process Π and of the unknown trend of 𝑋
increase, with the effect of making the decision maker more proactive willing to bring forward the optimal time of pollution reduction 
(on average).

5.1. Problems with a similar structure

The solution method presented in this paper applies also to different variations of the environmental policy adoption problem, as 
well as other types of problems in decision making under two layers of uncertainty.

Example 1. Firstly, in the current setup, when the social planner has only partial information on the dynamics (2.3) of socioeconomic 
costs 𝑋 = (𝑋𝑡)𝑡≥0 generated by a unit of pollution, we can consider a stochastically evolving stock of pollutants (instead of (2.1))

𝑑𝑃𝑡 = (𝛽𝐸 − 𝛿𝑃𝑡)𝑑𝑡+ 𝜂𝑑𝐵𝑡, for all 𝑡 ≤ 𝜏, 𝑃0 = 𝑝 > 0,

𝑑𝑃𝑡 = −𝛿𝑃𝑡𝑑𝑡+ 𝜂𝑑𝐵𝑡, for all 𝑡 > 𝜏, 𝑃𝜏 = 𝑃𝜏 ,
(5.1)

where the parameters 𝐸, 𝛽, 𝛿 are as in (2.1), while (𝐵𝑡)𝑡≥0 is a Brownian motion (independent of 𝐵) modelling the shocks affecting the 
atmospheric stock of pollutants and the volatility 𝜂 > 0 denotes their extend. Such dynamics will neither interfere with the learning 
process of the decision maker nor affect the analysis resulting to the two-dimensional problem (4.8). The only difference is that the 
expected values of the stock of pollutants

𝔼𝖯𝜋 [𝑃𝑡] = 𝑒−𝛿𝑡𝑝+
𝛽1𝐸𝜋 + 𝛽2𝐸(1 − 𝜋)

𝛿
(1 − 𝑒−𝛿𝑡), for all 𝑡 ≤ 𝜏,

𝔼𝖯𝜋 [𝑃𝑡] = 𝑒−𝛿𝑡𝑝, for all 𝑡 > 𝜏,

(5.2)

should be used in the calculations, instead of the explicit expressions (2.2) and (2.6). All subsequent analysis of the resulting two-

dimensional problem should be identical.

Example 2. Another alternative would be to consider the setup when 𝑋𝑡 is the price per unit of a given good at time 𝑡 ≥ 0, that 
evolves according to the dynamics

𝑑𝑋𝑥
𝑡 = 𝜇𝑋

𝑥
𝑡 𝑑𝑡+ 𝜎𝑋

𝑥
𝑡 𝑑𝐵𝑡, 𝑋𝑥

0 = 𝑥 > 0,

where the future price trend 𝜇 is random and unknown to the decision maker. The latter can control the production process 𝑃 of 
this good, that evolves according to the dynamics

𝑑𝑃𝑡 = 𝛽(𝜆0 + 𝜆11{𝑡≥𝜏} − 𝑃𝑡)𝑑𝑡+ 𝜂𝑑𝐵𝑡, for all 𝑡 ≥ 0, 𝑃0 = 𝑝 > 0,

such that the mean production rate 𝜆0 can be increased to 𝜆0 +𝜆1 at time 𝜏 , chosen by the decision maker, at a cost 𝐼(𝑋𝜏 ) that could 
depend on the current price 𝑋𝜏 of the good in the economy at that time. The decision maker’s aim would then be to find the optimal 
timing for production expansion, while learning the trend of this good’s price via a learning process Π, in order to maximise their 
profits (net of production expansion costs), which takes the form of

sup
𝜏≥0

𝔼𝑥,𝑝,𝜋
[ 𝜏

∫
0

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡− 𝑒−𝑟𝜏𝐼(𝑋𝜏 ) +

∞

∫
𝜏

𝑒−𝑟𝑡𝑋𝑡𝑃𝑡𝑑𝑡
]

This problem can be studied using a similar analysis as in this paper.

Example 3. More generally, consider a two-dimensional stochastic processes (𝑋, 𝑃 ), whose components are independent and 𝑋 is 
always positive (e.g. generalised geometric Brownian motion), while 𝑃 is a mean-reverting process. The decision maker is faced 
with a second layer of uncertainty in the drift of 𝑋 and uses a learning process Π to learn the non-observable random drift via 
19

observations. The decision maker’s control is a stopping time that either changes (upwards/downwards) the drift of 𝑃 once and for 
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all, if it is part of the running cost/reward in the problem (i.e. 𝑖 = 1 below), with a sunk cost/reward that can depend on 𝑋, or 
simply stops the process 𝑋, if it is the only process involved (i.e. 𝑖 = 0 below). The decision maker’s aim is to maximise/minimise 
an optimisation criterion, given any initial values (𝑥, 𝑝, 𝜋) ∈ ℝ+ × ℝ × (0, 1) and constants 𝛾 ∈ ℝ and 𝑖 ∈ {0, 1}, in the form of the 
optimal stopping problems

𝑉 ±
1 (𝑥, 𝑝, 𝜋) ∶= inf

𝜏≥0 𝔼𝑥,𝑝,𝜋
[ 𝜏

∫
0

𝑒−𝑟𝑡𝛾𝑋𝑡𝑃
𝑖
𝑡 𝑑𝑡± 𝑒

−𝑟𝜏𝐼(𝑋𝜏 ) +

∞

∫
𝜏

𝑒−𝑟𝑡𝛾𝑋𝑡𝑃
𝑖
𝑡 𝑑𝑡

]
,

𝑉 ±
2 (𝑥, 𝑝, 𝜋) ∶= sup

𝜏≥0
𝔼𝑥,𝑝,𝜋

[ 𝜏

∫
0

𝑒−𝑟𝑡𝛾𝑋𝑡𝑃
𝑖
𝑡 𝑑𝑡± 𝑒

−𝑟𝜏𝐼(𝑋𝜏 ) +

∞

∫
𝜏

𝑒−𝑟𝑡𝛾𝑋𝑡𝑃
𝑖
𝑡 𝑑𝑡

]
,

(5.3)

which can be studied using similar techniques as in this paper.

5.2. Ideas for extensions

Our work provides a first tractable example of a stylised model aiming at describing the role of different sources of uncertainty 
in the typically irreversible social decisions related to climate policy. Clearly, there are various directions towards our analysis can 
be generalised.

First of all, an equally significant uncertainty could be considered in the drift of the dynamics (5.1) of the stock of pollution 𝑃 , 
instead of its socioeconomic costs 𝑋. Such a problem can also be reduced to a two-dimensional one, following similar arguments as 
in Section 4.1, but the resulting problem will involve a significantly more complicated structure for the reward function 𝐺 (cf. (4.9)) 
and the underlying dynamics of 𝑋 and Π will be driven by two distinct and correlated Brownian motions (instead of a common one, 
cf. (2.9)).

Second of all, it would be interesting to account for Knightian uncertainty in the dynamics of the cost process (see, e.g., Ferrari et 
al. (2022), Nishimura and Ozaki (2007), Hellmann and Thijssen (2018) for examples of real-options/irreversible investment problems 
under Knightian uncertainty). This would in turn allow to comparatively study how the different specifications of uncertainty (no 
uncertainty, Bayesian uncertainty, Knightian uncertainty) affect the optimal emissions reduction policy.

Finally, it would be important to allow for the transboundary effect of pollution and thus incorporate strategic interaction between 
different decision makers (see the recent Boucekkine et al. (2022) for a spatial deterministic game of pollution control). How the 
free-riding effect will depend on the specification of uncertainty would represent a key question in that context (see Kim and Kwon 
(2022), Kwon (2022) for recent works on public good contribution games under uncertainty).
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Appendix A. Technical proofs

Proof of Lemma 4.4. We show below that the process (𝑋𝑡, Π𝑡) from (2.9) satisfies the condition

𝔼𝑥,𝜋
[
sup
𝑡≥0
𝑒−𝑟𝑡𝐺(𝑋𝑡,Π𝑡)

]
< +∞, (A.1)

which will then imply, according to (Karatzas and Shreve, 1998, Theorem D.12), that the stopping time (4.11) is optimal for the 
well-posed problem (4.8), as well as ensures that (4.14) holds true.

To that end, notice that using the expression of 𝐺 in (4.9), we obtain

𝔼𝑥,𝜋
[
sup
𝑡≥0
𝑒−𝑟𝑡

(
𝛽𝐸𝑋𝑡(𝜃Π𝑡 + 𝜌) − 𝐼

)] ≤ 𝔼𝑥,𝜋
[
sup
𝑡≥0
𝑒−𝑟𝑡

(
𝛽𝐸𝑋𝑡(𝜃Π𝑡 + 𝜌)

)]
≤ 𝔼𝑥,𝜋

[
sup
𝑡≥0
𝑒−𝑟𝑡𝛽𝐸(𝜃 + 𝜌)𝑋𝑡

]
,

where the latter inequality is due to the positivity of 𝑒−𝑟𝑡𝛽𝐸𝜃𝑋𝑡 and the property Π𝜋𝑡 ∈ (0, 1) for 𝜋 ∈ (0, 1) (Cf. Lemma 4.3). Thus, 
using the explicit expression of 𝑋 in (4.12), the upper bound becomes

𝔼
[
sup
𝑡≥0
𝑒−𝑟𝑡𝛽𝐸(𝜃 + 𝜌)𝑋𝑥,𝜋

𝑡

]
= 𝛽𝐸(𝜃 + 𝜌)𝑥𝔼

[
sup
𝑡≥0
𝑒−𝑟𝑡 𝑒∫ 𝑡0 (2𝛼Π𝜋𝑠 −𝛼− 𝜎2

2 )𝑑𝑠+𝜎𝑊𝑡
]

≤ 𝛽𝐸(𝜃 + 𝜌)𝑥𝔼
[
sup
𝑡≥0
𝑒−𝑏𝑡+𝜎𝑊𝑡

]
,

2

20

where we define the constant 𝑏 ∶= 𝑟 − 𝛼 + 𝜎

2 > 0. Hence, using (Karatzas and Shreve, 1991, Section 3.5.C), which implies that
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for 𝑧 > 0, ℙ
(
sup
𝑡≥0

{
− 𝑏𝑡+ 𝜎𝑊𝑡

}
∈ 𝑑𝑧

)
= 2𝑏
𝜎2
𝑒
− 2𝑏
𝜎2
𝑧
𝑑𝑧,

we can conclude that

𝔼
[
sup
𝑡≥0
𝑒−𝑏𝑡+𝜎𝑊𝑡

]
= 2𝑏
𝜎2

∞

∫
0

𝑒𝑧𝑒
− 2𝑏
𝜎2
𝑧
𝑑𝑧 = 2𝑏

𝜎2

∞

∫
0

𝑒
−
(

2𝑏
𝜎2

−1
)
𝑑𝑧 < +∞,

where we used the fact that 2𝑏 > 𝜎2 due to Assumption 4.1. Hence, we conclude that (A.1) holds. □

Proof of Proposition 4.5. Proof of part (i). This is a trivial consequence of the definition (4.8) and the property (4.13), which imply 
the non-negativity of 𝑈 (𝑥, 𝜋), since never stopping, i.e. choosing 𝜏 =∞, is an admissible strategy which results in a payoff of zero.

Proof of part (ii). By the definition (4.8) of 𝑈 , the explicit expression (4.12) of 𝑋𝑥,𝜋 which implies that 𝑥 ↦𝑋𝑥,𝜋
𝜏 is increasing for 

any stopping time 𝜏 , and the definition (4.9) of 𝐺 which implies that 𝑥 ↦ 𝐺(𝑥, 𝜋) is increasing for any 𝜋 ∈ (0, 1), we conclude that 
𝑥 ↦𝑈 (𝑥, 𝜋) is increasing as well.

Proof of part (iii). Using the above properties together with the fact that 𝜋 ↦ Π𝜋𝜏 is increasing for any stopping time 𝜏 (see the 
comparison theorem of Yamada and Watanabe, e.g. (Karatzas and Shreve, 1991, Proposition 2.18)), the explicit expression (4.12) of 
𝑋𝑥,𝜋 which then implies that 𝜋↦𝑋𝑥,𝜋

𝜏 is also increasing for any stopping time 𝜏 , and the definition (4.9) of 𝐺 which implies that 
𝜋↦𝐺(𝑥, 𝜋) is increasing for any 𝜋 ∈ (0, 1), we conclude by the definition (4.8) of 𝑈 that 𝜋↦𝑈 (𝑥, 𝜋) is increasing as well.

Proof of part (iv). For any 0 < 𝑥1 < 𝑥2 and 𝜋 ∈ (0, 1), we define by 𝜏∗ ∶= 𝜏∗(𝑥2, 𝜋) the optimal stopping time for the value function 
𝑈 (𝑥2, 𝜋) in (4.8). Then using the monotonicity of 𝑈 (⋅, 𝜋) from part (ii) and the expression (4.8) of 𝑈 , we obtain for a sufficiently 
large constant 𝐶1(𝑥, 𝜋2) (cf. Lemma 4.4)

0 ≤𝑈 (𝑥2, 𝜋) −𝑈 (𝑥1, 𝜋)

≤ 𝔼𝑥2 ,𝜋
[
𝑒−𝑟𝜏

∗(
𝛽𝐸𝑋𝜏∗ (𝜃Π𝜏∗ + 𝜌) − 𝐼

)]
− 𝔼𝑥1 ,𝜋

[
𝑒−𝑟𝜏

∗(
𝛽𝐸𝑋𝜏∗ (𝜃Π𝜏∗ + 𝜌) − 𝐼

)]
= (𝑥2 − 𝑥1)𝔼

[
𝑒−𝑟𝜏

∗
𝛽𝐸𝑋1,𝜋

𝜏∗ (𝜃Π𝜋
𝜏∗ + 𝜌)

]
≤ (𝑥2 − 𝑥1)𝔼

[
𝑒−𝑟𝜏

∗
𝛽𝐸𝑋1,1

𝜏∗ (𝜃 + 𝜌)
] ≤ 𝐶1(𝑥,𝜋2)(𝑥2 − 𝑥1), (A.2)

where the penultimate inequality follows from the positivity of coefficients, Π𝑡 ∈ (0, 1) for all 𝑡 ≥ 0 due to Lemma 4.3, and 𝑋1,𝜋
𝜏∗ ≤𝑋1,1

𝜏∗ , 
since 𝜋↦𝑋𝑥,𝜋

𝜏∗ is increasing for the fixed 𝜏∗.

Proof of part (v). To show this, it is sufficient to use part (iv) and additionally prove that

𝜋↦𝑈 (𝑥,𝜋) is continuous.

To that end, fix 𝑥 > 0, 0 < 𝜋1 < 𝜋2 < 1 and define by 𝜏∗ ∶= 𝜏∗(𝑥, 𝜋2) the optimal stopping time for 𝑈 (𝑥, 𝜋2) in (4.8). Using the 
monotonicity of 𝑈 (𝑥, ⋅) from part (iii) and the expression in (4.8), we deduce that

0 ≤𝑈 (𝑥,𝜋2) −𝑈 (𝑥,𝜋1)

≤ 𝔼𝑥,𝜋2
[
𝑒−𝑟𝜏

∗(
𝛽𝐸𝑋𝜏∗ (𝜃Π𝜏∗ + 𝜌) − 𝐼

)]
− 𝔼𝑥,𝜋1

[
𝑒−𝑟𝜏

∗(
𝛽𝐸𝑋𝜏∗ (𝜃Π𝜏∗ + 𝜌) − 𝐼

)]
= 𝔼

[
𝑒−𝑟𝜏

∗
𝛽𝐸

(
𝑋
𝑥,𝜋2
𝜏∗

(𝜃Π𝜋2
𝜏∗

+ 𝜌) −𝑋𝑥,𝜋1
𝜏∗

(𝜃Π𝜋1
𝜏∗

+ 𝜌)
)]
. (A.3)

We now aim at taking limits as 𝜋1 → 𝜋2. To that end, we notice that, due to the positivity of coefficients, Π𝑡 ∈ (0, 1) for all 𝑡 ≥ 0
thanks to Lemma 4.3, and 𝑋𝑥,0

𝜏∗
≤𝑋𝑥,𝜋1

𝜏∗
≤𝑋𝑥,𝜋2

𝜏∗
≤𝑋𝑥,1

𝜏∗
(since 𝜋↦𝑋𝑥,𝜋

𝜏∗
is increasing for the fixed 𝜏∗), we conclude that

𝑒−𝑟𝜏
∗
𝛽𝐸

(
𝑋
𝑥,𝜋2
𝜏∗

(𝜃Π𝜋2
𝜏∗

+ 𝜌) −𝑋𝑥,𝜋1
𝜏∗

(𝜃Π𝜋1
𝜏∗

+ 𝜌)
) ≤ 𝑒−𝑟𝜏∗𝛽𝐸(𝑋𝑥,1

𝜏∗
(𝜃 + 𝜌) −𝑋𝑥,0

𝜏∗
𝜌
)
,

such that

𝔼
[
𝑒−𝑟𝜏

∗
𝛽𝐸

(
𝑋
𝑥,𝜋2
𝜏∗

(𝜃Π𝜋2
𝜏∗

+ 𝜌) −𝑋𝑥,𝜋1
𝜏∗

(𝜃Π𝜋1
𝜏∗

+ 𝜌)
)] ≤ 𝑥𝐶2(𝑥,𝜋2).

Here, 𝐶2(𝑥, 𝜋2) > 0 is a sufficiently large constant (note that the calculations in the proof of Lemma 4.4 imply the finiteness of the 
expectation). It thus follows that the dominated convergence theorem can be applied when letting 𝜋1 → 𝜋2 in (A.3), so that the upper 
bound in (A.3) tends to zero. This implies the continuity of 𝜋↦𝑈 (𝑥, 𝜋) and completes the proof. □

Proof of Proposition 4.7. In order to prove these results, we firstly define the distance 𝑢 of the value function from its intrinsic 
value, whose expression is obtained by an application of Dynkin’s formula:

𝑢(𝑥,𝜋) ∶=𝑈 (𝑥,𝜋) −𝐺(𝑥,𝜋) = sup
𝜏≥0

𝔼𝑥,𝜋
⎡⎢⎢

𝜏

∫ 𝑒−𝑟𝑡
(
𝛽𝐸

(
𝜃(𝛼 − 𝑟) + 2𝛼𝜌

)
𝑋𝑡Π𝑡 − (𝛼 + 𝑟)𝛽𝐸𝜌𝑋𝑡 + 𝑟𝐼

)
𝑑𝑡

⎤⎥⎥ .

21
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Proof of part (i). Thanks to Assumption 4.1, we can easily verify that 𝜃(𝛼 − 𝑟) + 2𝛼𝜌 < 0. Then, from the explicit solution of 𝑋𝑥,𝜋

given in (4.12), it is clear that 𝑥 ↦𝑋𝑥,𝜋 is increasing. This implies that for any stopping time 𝜏 , we have for any 𝜋 ∈ (0, 1), that

𝑥↦ 𝔼𝑥,𝜋
⎡⎢⎢⎣

𝜏

∫
0

𝑒−𝑟𝑡
(
𝛽𝐸

(
𝜃(𝛼 − 𝑟) + 2𝛼𝜌

)
𝑋𝑡Π𝑡 − (𝛼 + 𝑟)𝛽𝐸𝜌𝑋𝑡 + 𝑟𝐼

)
𝑑𝑡

⎤⎥⎥⎦ is decreasing on ℝ,

which implies that 𝑥 ↦ 𝑢(𝑥, 𝜋) is also decreasing.

Suppose now that (𝑥0, 𝜋0) ∈  and consider (𝑥, 𝜋0) for some 𝑥 ≥ 𝑥0. By the monotonicity of 𝑢(⋅, 𝜋), we have 𝑢(𝑥, 𝜋0) ≤ 𝑢(𝑥0, 𝜋0) = 0. 
Since 𝑢(𝑥, 𝜋0) is non-negative by definition, we must have 𝑢(𝑥, 𝜋0) = 0, thus 𝑈 (𝑥, 𝜋) =𝐺(𝑥, 𝜋), i.e. (𝑥, 𝜋0) ∈  .

Proof of part (ii). Recall that 𝜋↦Π𝜋 is increasing by the comparison theorem of Yamada and Watanabe (see, e.g., (Karatzas and 
Shreve, 1991, Proposition 2.18)) and consequently that 𝜋 ↦ 𝑋𝑥,𝜋 is also increasing in light of (4.12). Therefore, for any stopping 
time 𝜏 , we clearly have for any 𝑥 > 0, that

𝜋↦ 𝔼𝑥,𝜋
⎡⎢⎢⎣

𝜏

∫
0

𝑒−𝑟𝑡
(
𝛽𝐸

(
𝜃(𝛼 − 𝑟) + 2𝛼𝜌

)
𝑋𝑡Π𝑡 − (𝛼 + 𝑟)𝛽𝐸𝜌𝑋𝑡 + 𝑟𝐼

)
𝑑𝑡

⎤⎥⎥⎦ is decreasing on (0,1),

implying that 𝜋↦ 𝑢(𝑥, 𝜋) is also decreasing.

This in turn implies that for (𝑥0, 𝜋0) ∈  and (𝑥0, 𝜋) for some 𝜋 ≥ 𝜋0, we have 𝑢(𝑥0, 𝜋) ≤ 𝑢(𝑥0, 𝜋0) = 0. We then conclude that 
𝑢(𝑥0, 𝜋) = 0, i.e. (𝑥0, 𝜋) ∈  , which completes the proof. □

Proof of Corollary 4.8. Proof of part (i). This follows directly from the definition (4.15) of 𝑏, the shape of continuation and stopping 
regions in (4.16) and Proposition 4.7.(ii).

Proof of part (ii). Let (𝜋𝑛)𝑛∈ℕ be a decreasing sequence in (0, 1) that converges to some 𝜋0 ∈ (0, 1). Since 𝑏(⋅) is non-increasing, we 
have that 𝑏(𝜋𝑛) is non-decreasing in 𝑛 ∈ℕ and bounded above by 𝑏(𝜋0). Thus, the limit 𝑏(𝜋0+) ∶= lim𝑛→∞ 𝑏(𝜋𝑛) exists.

Since (𝑏(𝜋𝑛), 𝜋𝑛) ∈  we have 𝑈 (𝑏(𝜋𝑛), 𝜋𝑛) =𝐺(𝑏(𝜋𝑛), 𝜋𝑛) and by the continuity of the value function 𝑈 in Proposition 4.5.(iv) and 
𝐺 by definition (4.9), we conclude that

𝑈 (𝑏(𝜋0+), 𝜋0) =𝐺(𝑏(𝜋0+), 𝜋0).

This implies that 𝑏(𝜋0+) ≥ 𝑏(𝜋0) and due to the fact that 𝑏(⋅) is non-increasing, we obtain 𝑏(𝜋0+) = 𝑏(𝜋0) which completes the 
proof. □

Proof of Proposition 4.11. Proof of part (i). This claim follows from Lemma 4.10, together with the definition (4.30) of 𝑐.
Proof of part (ii). We observe from the definition (4.28) of 𝑐−1(⋅) that (since 𝑏 is bounded by the constant thresholds associated to 

the full information case with trend ±𝛼) we have

lim
𝜋↓0
𝑐−1(𝜋) = −∞ and lim

𝜋↑1
𝑐−1(𝜋) =∞.

Taking these into account together with the definition (4.30) of 𝑐(⋅), we then conclude that

lim
𝑧↓−∞

𝑐(𝑧) = 0 and lim
𝑧↑∞

𝑐(𝑧) = 1.

The non-decreasing property of 𝑐(⋅) from part (i) then completes the proof of this part.

Proof of part (iii). This follows from (Embrechts and Hofert, 2013, Proposition 1.(7)), upon using the strictly increasing property 
of 𝑐−1(⋅) (cf. Lemma 4.10) and (4.30).

Proof of part (iv). This claim again follows from the definition (4.30) of 𝑐 and its monotonicity from part (i), combined with the 
expressions of the sets in (4.29). □

Proof of Proposition 4.12. In both parts, we use the fact that 𝜃(𝛼 − 𝑟) + 2𝛼𝜌 < 0 thanks to Assumption 4.1.

Proof of part (i). This follows immediately due to the fact that

𝑧↦ exp{−𝑍𝑧𝑡 } = exp
{
− 𝑧− 1

2
𝜎2𝑡

}
is non-negative and decreasing on ℝ,

which implies that 𝑧 ↦𝑤(𝑧, 𝜋) is non-decreasing on ℝ.

Proof of part (ii). We firstly recall that 𝜋↦Π𝜋 is increasing and observe that this yields

𝜋↦
( Π𝜋𝑡
1 −Π𝜋𝑡

) 𝜎2
2𝛼

is increasing on (0,1), ℙ− a.s.,

which implies that 𝜋↦𝑤(𝑧, 𝜋) is non-increasing on (0, 1).
Proof of part (iii). In view of (4.14) together with (4.23), we know that
22

𝑡↦ 𝑒−𝑟(𝑡∧𝜏
∗)𝑊 (𝑍𝑡∧𝜏∗ ,Π𝑡∧𝜏∗ ) is a martingale.
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Taking this into account together with the problem’s parabolic formulation (cf. (4.20)), we can make use of standard arguments in 
the general theory of optimal stopping (see, e.g. (Peskir and Shiryaev, 2006, Section 7.1), among others) and classical PDE results on 
the regularity for solutions of parabolic differential equations (cf. (Krylov, 2008, Corollary 2.4.3)) to conclude that 𝑊 is the unique 
classical solution, on any open set  whose closure is contained in ′, of the PDE

(− 𝑟)𝑚(𝑧,𝜋) = 0, for (𝑧,𝜋) ∈, with 𝑚|𝜕 = 𝑊 |𝜕 .
In view of this result, the arbitrariness of , the definition (4.32) of 𝑤, and the smooth expression of 𝐹 in (4.25), we can conclude 
that 𝑤 ∈ 𝐶1,2(′) and solves the claimed PDE. □

Proof of Proposition 4.13. The fact that 𝜋 ↦ 𝜕𝑤

𝜕𝜋
(𝑧, 𝜋) is continuous separately in the continuation region ′ and in the stopping 

region  ′ is due to Proposition 4.12.(iii) and to 𝑤 ≡ 0 on  ′, respectively. Hence, it remains only to prove the continuity of 
𝜋↦ 𝜕𝑤

𝜕𝜋
(𝑧, 𝜋) for all (𝑧, 𝜋) ∈ 𝜕′. This is accomplished in the following steps.

Step 1: For any (𝑧, 𝜋) ∈ (ℝ × (0, 1)) ⧵ 𝜕′ and 𝜏∗ = 𝜏∗(𝑧, 𝜋) given by (4.27), we have 𝜕𝑊
𝜕𝑧

(𝑧, 𝜋) = −𝑊 (𝑧, 𝜋) − 𝔼𝑧,𝜋
[
𝑒−𝑟𝜏

∗
𝐼
]
. To prove 

this, we obtain the expression of 𝜕𝑊
𝜕𝑧

in two separate parts of the state space:

For (𝑧, 𝜋) ∈  ′, the definition (4.26) of  ′ implies that 𝑊 (𝑧, 𝜋) = 𝐹 (𝑧, 𝜋), (4.27) implies that 𝜏∗ = 0 and in view of the definition 
(4.25) of 𝐹 , we have

𝜕𝑊

𝜕𝑧
(𝑧,𝜋) = 𝜕𝐹

𝜕𝑧
(𝑧,𝜋) = −𝐹 (𝑧,𝜋) − 𝐼 = −𝑊 (𝑧,𝜋) − 𝔼𝑧,𝜋

[
𝑒−𝑟𝜏

∗
𝐼
]
.

For (𝑧, 𝜋) ∈ ′, we choose a sufficiently small 𝜀 > 0 such that (𝑧 − 𝜀, 𝜋) ∈ ′ and (𝑧 + 𝜀, 𝜋) ∈ ′. Then, we have from (4.25) that

𝑊 (𝑧+ 𝜀,𝜋) −𝑊 (𝑧,𝜋)
𝜀

≥ 1
𝜀
𝔼
[
𝑒−𝑟𝜏

∗(
𝐹 (𝑍𝑧+𝜀

𝜏∗ ,Π𝜋
𝜏∗ ) − 𝐹 (𝑍

𝑧
𝜏∗ ,Π

𝜋
𝜏∗ )
)]

= 𝔼
[
𝑒−𝑟𝜏

∗
𝛽𝐸𝑒−

1
2 𝜎

2𝜏∗
( Π𝜋

𝜏∗

1 − Π𝜋
𝜏∗

) 𝜎2
2𝛼 (𝜃Π𝜋

𝜏∗ + 𝜌)
(
𝑒−(𝑧+𝜀) − 𝑒−𝑧

𝜀

)]
Similarly, we also obtain

𝑊 (𝑧,𝜋) −𝑊 (𝑧− 𝜀,𝜋)
𝜀

≤ 𝔼
[
𝑒−𝑟𝜏

∗
𝛽𝐸𝑒−

1
2 𝜎

2𝜏∗
( Π𝜋

𝜏∗

1 − Π𝜋
𝜏∗

) 𝜎2
2𝛼 (𝜃Π𝜋

𝜏∗ + 𝜌)
(
𝑒−𝑧 − 𝑒−(𝑧−𝜀)

𝜀

)]
.

Letting 𝜀 ↓ 0 in both expressions and recalling that 𝑊 ∈ 𝐶1,2(′), we find that

𝜕𝑊

𝜕𝑧
(𝑧,𝜋) = −𝔼

[
𝑒−𝑟𝜏

∗
𝛽𝐸𝑒

−𝑍𝑧
𝜏∗
( Π𝜋

𝜏∗

1 − Π𝜋
𝜏∗

) 𝜎2
2𝛼 (𝜃Π𝜋

𝜏∗ + 𝜌)
]
= −𝑊 (𝑧,𝜋) − 𝔼𝑧,𝜋

[
𝑒−𝑟𝜏

∗
𝐼
]
.

Step 2: 𝜕𝑊
𝜕𝑧

is locally bounded. Notice from the expression of 𝜕𝑊
𝜕𝑧

in step 1 and the continuity of 𝑊 (⋅, ⋅) on ℝ × (0, 1) from 
Proposition 4.9 that

lim′∋(𝑧,𝜋)→(𝑧0 ,𝜋0)∈𝜕′
||| 𝜕𝑊𝜕𝑧 (𝑧,𝜋)||| <∞ ⇔

𝜕𝑊

𝜕𝑧
∈𝐿∞

𝑙𝑜𝑐
(ℝ × (0,1)).

Step 3: 𝜕
2𝑤
𝜕𝜋2

(⋅, ⋅) is bounded on the closure of  ∩ ′, for all bounded sets . Recall from Proposition 4.12.(iii), that 𝑤 solves the PDE 
(4.34) on ′, which implies in view of the definition (4.20) that

1
2

(2𝛼
𝜎

)2
𝜋2(1 − 𝜋)2 𝜕

2𝑤

𝜕𝜋2
(𝑧,𝜋) = 𝑟𝑤(𝑧,𝜋) − 1

2
𝜎2
𝜕𝑤

𝜕𝑧
(𝑧,𝜋) − 𝑞(𝑧,𝜋), for (𝑧,𝜋) ∈ ′.

Due to step 2 and the smooth expression (4.25) of 𝐹 , we observe that the right-hand side of the above expression is bounded on the 
closure of  ∩ ′, for all bounded sets . Hence, 𝜕

2𝑤
𝜕𝜋2

(⋅, ⋅) is bounded on the closure of  ∩ ′.

Step 4: 𝜕𝑤
𝜕𝜋

(𝑧0, 𝜋0) = 0, for all (𝑧0, 𝜋0) ∈ 𝜕′ such that 𝜋0 = 𝑐(𝑧0). Take now (𝑧0, 𝜋0) ∈ 𝜕′, so that 𝜋0 = 𝑐(𝑧0). Due to step 3 we know 
that the left-derivative 𝜕𝑤

𝜕𝜋
(𝑧, 𝜋−) exists. It thus follows from Proposition 4.12.(ii) that 𝜕𝑤

𝜕𝜋
(𝑧0, 𝜋0−) ≤ 0, since (𝑧0, 𝜋0−) ∈ ′ thanks 

to (4.31), while we know from the definition (4.32) of 𝑤 that 𝜕𝑤
𝜕𝜋

(𝑧0, 𝜋0+) = 0, since (𝑧0, 𝜋0+) ∈  ′. Aiming for a contradiction we 
assume that 𝜕𝑤

𝜕𝜋
(𝑧0, 𝜋0−) < −𝛿0, for some 𝛿0 > 0.

Then, we take a rectangular domain  around (𝑧0, 𝜋0) and define the stopping time

𝜏 ∶= inf{𝑡 ≥ 0 | (𝑍𝑧0𝑡 ,Π𝜋0𝑡 ) ∉}.
In view of (4.14) together with (4.23), we know that
23

𝑡↦ 𝑒−𝑟𝑡𝑊 (𝑍𝑡,Π𝑡) is a supermartingale,
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which yields that

𝑤(𝑧0, 𝜋0) ≥ 𝔼𝑧0 ,𝜋0

[
𝑒−𝑟(𝑡∧𝜏)𝑤(𝑍𝑡∧𝜏 ,Π𝑡∧𝜏 ) +

𝑡∧𝜏

∫
0

𝑒−𝑟𝑠𝑞(𝑍𝑠,Π𝑠)𝑑𝑠
]
.

Given that 𝑡 ↦𝑍𝑡∧𝜏 is increasing, 𝑧 ↦𝑤(𝑧, 𝜋) is non-decreasing on ℝ due to Proposition 4.12.(i) and 𝑞(⋅, ⋅) is bounded on  by a 
constant 𝑐 ∶= sup(𝑧,𝜋)∈ |𝑞(𝑧,𝜋)| ≥ 0, we have

𝑤(𝑧0, 𝜋0) ≥ 𝔼𝑧0 ,𝜋0

[
𝑒−𝑟(𝑡∧𝜏)𝑤(𝑧0,Π𝑡∧𝜏 ) − 𝑐(𝑡 ∧ 𝜏)

]
.

Then, we can use Tanaka’s formula on (𝑒−𝑟𝑠𝑤(𝑧0, Π𝑠))𝑠∈[0,𝑡∧𝜏] thanks to step 3 to get

0 ≥ 𝔼𝑧0 ,𝜋0

[ 𝑡∧𝜏

∫
0

𝑒−𝑟𝑠(− 𝑟)𝑤(𝑧0,Π𝑠)𝟏{Π𝑠≠𝜋0}𝑑𝑠+
𝑡∧𝜏

∫
0

𝑒−𝑟𝑠
(
𝑤(𝑧0, 𝜋0+) −𝑤(𝑧0, 𝜋0−)

)
𝑑𝐿

𝜋0
𝑠 − 𝑐(𝑡 ∧ 𝜏)

]
,

where 𝐿𝜋0 is the local time of Π at 𝜋0. However, given that 𝜕𝑤
𝜕𝜋

(𝑧0, 𝜋0+) = 0 and the assumption 𝜕𝑤
𝜕𝜋

(𝑧0, 𝜋0−) < −𝛿0, as well as the 
boundedness of ( − 𝑟)𝑤(⋅, ⋅) on the closure of  ∩ ′, we obtain for another constant 𝑐 ≥ 0 that

0 > 𝔼𝑧0 ,𝜋0

[
𝛿0

𝑡∧𝜏

∫
0

𝑒−𝑟𝑠𝑑𝐿
𝜋0
𝑠 − 𝑐(𝑡 ∧ 𝜏)

]
≥ 𝛿0𝑒−𝑟𝑡 𝔼𝑧0 ,𝜋0

[
𝐿
𝜋0
𝑡∧𝜏

]
− 𝑐 𝔼𝑧0 ,𝜋0

[
𝑡 ∧ 𝜏

]
.

This implies that

𝛿0𝑒
−𝑟𝑡 𝔼𝑧0 ,𝜋0

[
𝐿
𝜋0
𝑡∧𝜏

]
< 𝑐 𝔼𝑧0 ,𝜋0

[
𝑡 ∧ 𝜏

]
,

which leads to a contradiction for small enough 𝑡, since we can show that 𝔼𝑧0,𝜋0 [𝐿
𝜋0
𝑡∧𝜏 ] ∼

√
𝑡 ∧ 𝜏 by arguments similar to those in 

Lemma 13 of Peskir (2019). □

Proof of Theorem 4.14. We will prove the two equalities sequentially.

Proof of 1𝑠𝑡 equality. Take 𝑇 > 0 and (𝑧, 𝜋) ∈ℝ × (0, 1). Then, it follows from (Peskir, 2005a, Theorem 3.1) that

𝑒−𝑟(𝑇∧𝜏𝑛)𝑤(𝑍𝑧
𝑇∧𝜏𝑛

,Π𝜋
𝑇∧𝜏𝑛

) =𝑤(𝑧,𝜋) −

𝑇∧𝜏𝑛

∫
0

𝑒−𝑟𝑠𝑞(𝑍𝑧𝑠 ,Π
𝜋
𝑠 )𝟏{Π𝜋𝑠 <𝑐(𝑍𝑧𝑠 )}𝑑𝑠

+

𝑇∧𝜏𝑛

∫
0

𝑒−𝑟𝑠
𝜕𝑤

𝜕𝜋
(𝑍𝑧𝑠 ,Π

𝜋
𝑠 )Π

𝜋
𝑠 (1 − Π𝜋𝑠 )𝑑𝑊𝑠,

where we define for all 𝑛 ∈ ℕ, the stopping times

𝜏𝑛 ∶= inf
{
𝑡 ≥ 0 |||

𝑡

∫
0

𝑒−𝑟𝑠
(
𝜕𝑤

𝜕𝜋
(𝑍𝑧𝑠 ,Π

𝜋
𝑠 )Π

𝜋
𝑠 (1 − Π𝜋𝑠 )

)2
𝑑𝑠 ≥ 𝑛}.

Then, by taking expectations, we have

𝑤(𝑧,𝜋) = 𝔼𝑧,𝜋
[
𝑒−𝑟(𝑇∧𝜏𝑛)𝑤(𝑍𝑧

𝑇∧𝜏𝑛
,Π𝜋

𝑇∧𝜏𝑛
) +

𝑇∧𝜏𝑛

∫
0

𝑒−𝑟𝑠𝑞(𝑍𝑧𝑠 ,Π
𝜋
𝑠 )𝟏{Π𝜋𝑠 <𝑐(𝑍𝑧𝑠 )}𝑑𝑠

]
.

Then, taking limits as 𝑛 ↑∞ and 𝑇 ↑∞, it follows from the dominated convergence theorem that

𝑤(𝑧,𝜋) = 𝔼𝑧,𝜋
[ ∞

∫
0

𝑒−𝑟𝑠𝑞(𝑍𝑧𝑠 ,Π
𝜋
𝑠 )𝟏{Π𝜋𝑠 ≤𝑐(𝑍𝑧𝑠 )}𝑑𝑠

]
, (A.4)

where the replacement of 𝟏{Π𝜋𝑠 <𝑐(𝑍𝑧𝑠 )} with 𝟏{Π𝜋𝑠 ≤𝑐(𝑍𝑧𝑠 )} is possible because (Π𝜋𝑡 )𝑡≥0 admits an absolutely continuous transition density 
(𝑝𝑡(𝜋, 𝜋′))𝑡≥0,(𝜋,𝜋′)∈(0,1)2 due to (Nualart, 2006, Theorem 2.3.1) and (𝑍𝑧𝑡 )𝑡≥0 is a deterministic process.
24

Proof of 2𝑛𝑑 equality. This follows by expressing the expectation as an integral with respect to the transition density of (Π𝜋𝑡 )𝑡≥0. □
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