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STEADY WIND-GENERATED GRAVITY-CAPILLARY WAVES ON
VISCOUS LIQUID FILM FLOWS\ast 
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Abstract. Steady gravity-capillary periodic waves on the surface of a thin viscous liquid film
supported by an air stream on an inclined wall are investigated. Based on lubrication approximation
and thin air-foil theory, this problem is reduced to an integro-differential equation. The small-
amplitude analysis is carried out to obtain two analytical solutions up to the second order. Numerical
computation shows there exist two distinct primary bifurcation branches starting from infinitesimal
waves, which approach solitary wave configuration in the long-wave limit when the values of physical
parameters are above certain thresholds. New families of solutions manifest themselves either as
secondary bifurcation occurring on primary branches or as isolated solution branches. The limiting
configurations of the primary solution branches with the increase of two parameters are studied in
two different cases, where one and two limiting configurations are obtained, respectively. For the
latter case, the approximation of the configurations is given.
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1. Introduction. Gas sheared thin film flows arise in a number of natural phe-
nomena and technological applications, e.g., cooling of electronic devices, mass trans-
fer in distillation columns, and falling film flows in nuclear fusion reactors. Research
has been conducted on instabilities leading to wave formation with the objective
of understanding fundamental mechanisms and their utilization in the optimization
of processes using gas-liquid film flow. An important area of applications involves
gas-driven flow regime transitions in gas-liquid flows in pipes and channels [14]; large-
amplitude solitary type waves have been linked to the phenomenon of flooding that
can significantly degrade process performance. It is important, therefore, to model
and analyze such fundamental phenomena using appropriate mathematical models to
understand the system's solutions. It is a first and crucial step in designing passive
and active control protocols---for the control of liquid film flows see, for example,
[4, 15, 16].

Hanratty and Engen [7] explored experimentally the interaction between a turbu-
lent air stream and a water liquid film and documented the different wave transition
regimes. As the gas flow rate increased, the initially smooth liquid surface succes-
sively gave way to two-dimensional (2D) waves, squalls, roll waves, and dispersed
flows. Hanratty and Hershman [8] extended the theory of Jeffreys and Taylor [9]
to account for the initiation of roll waves in the concurrent flows of a turbulent air
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478 MENG, PAPAGEORGIOU, AND VANDEN-BROECK

and liquid. The theoretical predictions were compared with the experimental data for
different types of liquid solutions, and good agreement was found. Craik [5] performed
experiments on a uniform thin liquid film on a horizontal flat plate in the presence of
airflow. Under constant gas flow, ``slow"" and ``fast"" waves were observed. The ``slow""
waves traveled with speeds smaller than that of the liquid surface and were nonperi-
odic with steep fronts and long rears. The ``fast"" waves were distinctly sinusoidal and
traveled faster than the liquid surface. Demekhin [6] assumed the gas-liquid interface
as a rigid fixed wavy wall and then treated the problem in the turbulent gas separately.
An integral-boundary-layer model was developed in the long-wave limit and numerical
computations of steady periodic waves were carried out. They found ``trough"" type
near-soliton solutions for a sufficiently small wave-number. Jurman and McCready
[10] observed 2D steady periodic waves when the gas velocity was above the neutral
stability value, and for sufficiently large gas Reynolds number, steady solitary waves
appeared. However, these waves broke into 3D periodic waves at larger gas velocities.
To describe the observed waves, these authors derived a weakly nonlinear equation and
performed linear stability analysis to understand the kinematic or dynamic process
in different regimes. Peng, Jurman, and McCready [13] experimentally compared the
wave fields observed at low and high liquid Reynolds numbers. Their results showed
that at lower liquid Reynolds numbers, solitary waves appeared as a secondary tran-
sition from existing waves having large-amplitude-substrate depth ratios. If the fluid
layer is too thick, large-amplitude-substrate depth ratios cannot be achieved and this
transition to solitary waves does not occur. They also speculated that the degree
of dispersion plays an important role in the formation of large precursor waves (to
solitary waves).

King and Tuck [11] considered a viscous fluid layer supported by steady airflow on
an inclined wall and reduced this problem to an integro-differential equation based on
the lubrication approximation for the liquid flow and thin air-foil theory for the driving
gas flow [21]. Below a critical wall inclination angle, two distinct drop-shaped solutions
were obtained numerically. It is worth noting that surface tension was confined to the
region close to the leading edge of the fluid layer and neglected elsewhere. For the same
physical setup, King, Tuck, and Vanden-Broeck [12] used a similar integro-differential
equation model to study steady spatially periodic gravity waves in the absence of
surface tension. An analytical solution was obtained using small-amplitude analysis
to show some typical features of the waves. Periodic waves with finite amplitudes
were computed numerically, and a limiting solitary wave configuration was found by
increasing the wavelength to indicate the existence of air-driven gravity solitary waves
on the film. Tseluiko and Kalliadasis [17] established various asymptotic models to
describe the dynamics of falling liquid films on an inclined wall in the presence of
turbulent airflow. Traveling wave solutions were computed numerically based on the
integral-boundary-layer model, and the change of amplitudes and velocities of these
waves confirmed the existence of large-amplitude stationary waves, which are believed
to corresponded to the onset of flooding.

The related problem of the formation of hydraulic bores has been considered by
[1], [2] in the case of inviscid flows and by [3] for viscous flow models having arbitrary
Reynolds number. Bore solutions are constructed in different regimes and in some
cases multiple states are found to co-exist.

In the present paper, we extend the results of [12] by including the effect of surface
tension and investigate the wave configurations fully. The structure of the paper is
as follows. A brief derivation of the model equation is give in section 2. The small-
amplitude theory analysis is carried out, and a complete analytical solution is then
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WIND-GENERATED WAVES ON LIQUID FILMS 479

obtained in section 3. In section 4 we compute various bifurcations, wave profiles in
different cases, and limiting configurations of the periodic waves in relevant limits of
the physical parameters. Finally, section 5 is devoted to the conclusion.

2. Formulation. The physical model of a 2D flow is depicted in Figure 1. A
Newtonian fluid with constant density \rho and viscosity \mu flows under gravity along a
flat substrate which is inclined to the horizontal direction at an angle \alpha . We shall
assume \alpha < \pi /2 in the following analysis; for vertical plates the scalings are slightly
different. An upward air stream with constant density \rho A flows over the fluid with
speed uA. The viscosity of the air region is neglected. A Cartesian coordinate system
(x, y) is introduced where the x-axis points up the substrate as shown in Figure 1 and
y is perpendicular to it with y = 0 on the substrate. The film thickness is y = h(x, t)
and its undisturbed value is h0. The liquid-air surface tension coefficient is \sigma and the
acceleration due to gravity is denoted by g.

The upward air stream exerts both a tangential and a normal stress on the liquid
film. We assume that the tangential stress is constant with a known drag coefficient
CD while the pressure is determined by the shape of the fluid layer by thin air-foil
theory [21]. As a result, the following evolution equation for the fluid layer is readily
obtained after a standard long-wave formulation:

ht +
1

3\mu 

\biggl[ \bigl( 
\rho Au

2
A\scrH [hxx] - \rho ghx cos\alpha  - \rho g sin\alpha + \sigma hxxx

\bigr) 
h3 +

3\rho Au
2
ACD

4
h2

\biggr] 
x

= 0,

(2.1)

where \scrH is the Hilbert transform defined as

\scrH [g](x) =
1

\pi 

 \infty 

 - \infty 

g(\xi \prime )d\xi \prime 

x - \xi \prime 
,(2.2)

where the Cauchy principal value of the integral is implied. Formal derivations of (2.1)
have been given by [20] and [12] (see also [19]). The equation is nondimensionalized
using the following scalings:

\~x= x/\lambda , \~h= y/hc, \~t= t/Tc,

where \lambda is the wavelength of wave solutions. Tildes represent dimensionless variables.
The scalings for wave height and time are

hc =
\rho Au

2
ACD

2\rho g sin\alpha 
, Tc =

6\mu \lambda 

\rho gh2
c sin\alpha 

.(2.3)

Fig. 1. Schematic of the problem and coordinate system.
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480 MENG, PAPAGEORGIOU, AND VANDEN-BROECK

These are obtained by considering positive constant solutions when the flux is positive,
namely when the upstream air flow is inducing a net flux up the substrate against
gravity---see [12] for details. In addition, the value hc in (2.3) is chosen so that the
convective terms in the linear problem cancel. After some algebra and dropping tildes
yields

1

2
ht +

\biggl[ \biggl( 
\nu 2

d1

 \infty 

 - \infty 

h\prime \prime d\xi 

x - \xi 
+

\nu 3

d2
hxxx  - \nu hx  - 1

\biggr) 
h3 + 3h2/2

\biggr] 
x

= 0,(2.4)

where the dimensionless parameters are

\nu =
hc

\lambda tan\alpha 
, d1 =

\pi CD

2 tan2\alpha 
, d2 =

\rho gh2
c sin\alpha 

\sigma tan3\alpha 
.(2.5)

Note that the parameter d1 in (2.5) includes the \pi factor from the Hilbert transform
definition (2.2). The parameter \nu is inversely proportional to the size of the system
(if \nu \ll 1 the wavelengths are asymptotically large), d1 measures the induced drag,
and d2 is a scaled Bond number based on hc.

The steady form of (2.4) is integrated once to yield

3

2h
+

\nu 2

d1

d

dx

 \infty 

 - \infty 

h\xi d \xi 

x - \xi 
+

\nu 3

d2
hxxx  - \nu hx  - 1 =

q

h3
,(2.6)

where q is the flux of fluid in the positive x direction, and we will be concerned with
solutions to (2.6). For \sigma = 0, i.e., d2 \rightarrow \infty , (2.6) degenerates to the equation obtained
by [12].

Before proceeding with our study of (2.6), we comment on the unsteady version
in order to motivate the inclusion of surface tension. A spatially uniform steady state
of (2.4) is h=H0, and linearizing about this and looking for normal mode solutions
proportional to eikx+2st gives

s= - \nu k2 +
\nu 2\pi 

d1
k2| k|  - \nu 3

d2
k4,(2.7)

from which we can see that in the absence of surface tension (d2 \rightarrow \infty ) the linear
problem is short-wave unstable and hence the initial value problem is ill-posed. Inter-
estingly, an identical linear dispersion relation arises in wave formation on a perfectly
conducting falling liquid film at Reynolds numbers below critical, when there is a ver-
tical electric field (uniform far away) acting in the air region above the liquid film---see
[18]. If the Reynolds number is above critical, then the  - \nu k2 term becomes \nu k2, hence
adding to the instability present due to the Hilbert transform term.

3. Weakly nonlinear theory. In this section, we seek asymptotic solutions of
(2.6) in the small-amplitude regime. We consider a constant film height solution of
h(x) = h0 > 0 with constant flux q= q0. Using (2.6) it follows that

q0 = h2
0

\biggl( 
3

2
 - h0

\biggr) 
.(3.1)

It follows from (3.1) that there are two nonzero film height solutions for 0< q0 < 1/2,
one solution for q0 < 0, and a single critical solution h0 = 1 when q0 = 1/2. In what
follows we develop a weakly nonlinear theory to study the bifurcated solutions from
the critical point q0 = 1/2, h0 = 1. The parabolic form of the h0 versus q0 curve near
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WIND-GENERATED WAVES ON LIQUID FILMS 481

this point implies that q0  - 1/2\sim (h0  - 1)2. Introducing the ordering | h - 1| \sim \epsilon \ll 1
implies the asymptotic expansions

h= 1+ \epsilon h1 + \epsilon 2h2 + \epsilon 3h3 + \cdot \cdot \cdot ,(3.2)

q=
1

2
+ \epsilon 2q2 + \epsilon 3q3 + \cdot \cdot \cdot ,(3.3)

\nu = \nu 0 + \epsilon \nu 1 + \epsilon 2\nu 2 + \epsilon 3\nu 3 + \cdot \cdot \cdot .(3.4)

Substituting (3.2)--(3.4) into (2.6), we find at O(\epsilon )

\nu 20
d1

d

dx

 \infty 

 - \infty 

h
\prime 

1d\xi 

x - \xi 
+

\nu 30
d2

h1xxx  - \nu 0h1x = 0.(3.5)

Without loss of generality, we then take h1 = a cos(2\pi x) + b where a and b are con-
stants, a solution with unit period, which leads to

\nu 0 =
\pi d2 \pm 

\sqrt{} 
(\pi d2)2  - 4d21d2
4\pi d1

.(3.6)

Equation (3.6) indicates the existence of two branches of solutions since given ad-
missible parameters d1 and d2 we can have two real values of \nu 0. We call these two
branches an upper branch, corresponding to the positive sign yielding larger \nu 0 and
shorter waves, and a lower branch corresponding to the negative sign representing
longer waves. For small surface tension d2 \rightarrow \infty , and the upper branch has the limit-
ing form \nu 0 \rightarrow \infty . The lower branch in this limit has \nu 0 = d1/(2\pi 

2) in full agreement
with the result in the gravity case [12].

Equation (3.6) gives real solutions if d2 \geq 4d21/\pi . Complex solutions when d2 <
4d21/\pi reflect the fact that no nontrivial steady states exist then. This can be seen
from the growth rate (2.7) by taking k= 2\pi to match the analysis in this section and
rewriting

s= - (2\pi )4\nu 

d2

\Biggl[ \biggl( 
\nu  - d2

4d1

\biggr) 2

+
d2
4\pi 2

 - d22
16d21

\Biggr] 
.(3.7)

It follows that s < 0 whenever d2 < 4d21/\pi ; hence the waves are linearly stable and the
only steady states are the uniform ones.

Proceeding to the next order, we find

\pi \nu 20
d1

\scrH [h2xx] +
\nu 30
d2

h2xxx  - \nu 0h2x =
3

2
h2
1  - 

2\nu 0\nu 1
d1

\scrH [h2xx] - 
3\nu 20\nu 1
d2

h1xxx + \nu 1h1x + q2.

(3.8)

To guarantee the wavelike property of solutions, we remove secular terms by choosing
b= 0, q2 = - 3a2

4 , and \nu 1 = 0. The solution for h2 is

h2 = e cos2\pi x+ f + g sin4\pi x,(3.9)

where

G=
3a2d1d2

64d2\pi 3\nu 20  - 256d1\pi 3\nu 30  - 16\pi d1d2\nu 0
,
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482 MENG, PAPAGEORGIOU, AND VANDEN-BROECK

which degenerates to 3\pi a2/8d1 as d2 \rightarrow \infty for the lower branch. The coefficients e
and f are determined at O(\epsilon 3) and we find

e= 0, f =
a2

8
, \nu 2 =

3gd1d2
48\nu 20\pi 

3d1 + 4\pi d1d2  - 16\pi 3\nu 0d2
.

Up to the second order, the solution of (2.6) is

h= 1+

\biggl[ 
4

3

\biggl( 
1

2
 - q

\biggr) \biggr] 1/2
cos2\pi x+

1 - 2q

12

\biggl( 
1 +

3sin4\pi x

8d2\pi 3\nu 30  - 32d1\pi 3\nu 30  - 2\pi d1d2\nu 0

\biggr) 
,

(3.10)

and

\nu = \nu 0 + \cdot \cdot \cdot ,(3.11)

where \nu 0 is given by (3.6). From the asymptotic analysis, two different branches of
solutions are obtained. The lower branch agrees with the results in the gravity case
as d2 \rightarrow \infty . Both solution branches exist when q is slightly smaller than 1/2 and are
completely determined by prescribing d1, d2, and q. At leading order, the wavelength
(specified by \nu ) is only dependent on d1 and d2. It is also worth noting that the wave
solutions are asymmetric about x= 0. These weakly nonlinear features determine the
form of the solution in the subsequent nonlinear numerical computation.

In the above analysis the solution is taken to be unimodal with unit period.
Denoting this solution by h(x;\nu ), it can be readily seen from (2.6) that given a positive
integerM \geq 2, then hM := h(Mx;\nu /M) is also a solution at the same values of the flux
q and the parameters d1 and d2. This observation allows us to construct multimodal
states from the unimodal branches. For example, we can obtain the bimodal wave
branch by using the linear unimodal results as an initial guess but with \nu decreased by
a factor of 2. This is used to initialize our computations when multimodal branches
are computed.

4. Numerical methods and results.

4.1. Numerical method. We explore the solutions of (2.6) numerically. In light
of the asymmetry of the asymptotic solutions, we write the solution as the truncated
Fourier series

h(x) = a0 +

N\sum 
n=1

an cos(2\pi nx) + bn sin(2\pi nx),(4.1)

where a0 \not = 0 is the mean film height, and we can select b1 = 0 by a shift of origin since
the problem is Galilean invariant. We note also that using the fact that\scrH [cosx] = sinx
and \scrH [sinx] = - cosx, we can express the Hilbert transform integral explicitly as

\nu 2

d1

d

dx

 \infty 

 - \infty 

h\xi d \xi 

x - \xi 
= - 4\pi 3\nu 2

d1

\Biggl( 
N\sum 

n=1

n2 sin(2\pi nx) - n2 cos(2\pi nx)

\Biggr) 
.(4.2)

All solutions presented here are periodic with period 1, and we term these uni-
modal. As we see below, such unimodal solutions can terminate in multimodal ones
as parameters vary, or bifurcate from multimodal branches---we present examples for
bimodal and trimodal structures but note that any modal state exists linearly and
can be continued numerically.
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WIND-GENERATED WAVES ON LIQUID FILMS 483

As seen from (4.1), 2N real unknown Fourier coefficients are introduced (a0,
a1, . . . , aN , and b2, . . . , bN ). In addition \nu and q are unknown but dependent (for
example, we can fix q and compute \nu as part of the solution, using continuation
thereafter). Hence, 2N +1 unknowns are needed to solve (2.6). This requires 2N +1
collocation points xi = i/(2N + 1), i = 0,1,2, . . . ,2N , to close the system. Newton's
method is used to solve the resulting nonlinear algebraic system for given values of
d1 and d2. The initial guess for Newton's method comes from the weakly nonlin-
ear solutions presented above. In every iteration the Jacobian matrix is calculated
analytically prior to each iteration. Iterations are terminated when the error is less
than 10 - 10, thus guaranteeing accurate results. Several numerical experiments were
carried out to determine the truncation N , with the conclusion that N = 250 gives
sufficiently accurate solutions. Therefore, in the computations that follow we choose
N = 250.

We begin our computations by fixing the two physical parameters d1 and d2, which
represent the effect of airflow and surface tension, respectively. To guarantee real \nu 
in linear initializations of the system, it follows from (3.11) that we need to satisfy
d2 > 4d21/\pi 

2. Therefore, we only focus on the parameter region where d2 > 4d21/\pi 
2 in

the numerical computations that follow.

4.2. Bifurcations and wave profiles. As discussed above, there are two
branches of solutions emerging from the linear and weakly nonlinear results---see (3.6).
In what follows we compute nonlinear solutions and bifurcations for these branches
and investigate their interactions as the parameters d1 and d2 vary. To illustrate the
nature of the solutions we fix d1 = 0.8 and compute solutions as d2 is increased above
the value d2 = 4d21/\pi 

2 which is required for the existence of linear and weakly nonlin-
ear solutions. For d1 = 0.8 this value is d2 \approx 0.2594. Once the quantitative features
of the solutions are described, we produce a numerically constructed phase diagram
that delineates solution branches in the d1  - d2 phase space---see Figure 7.

4.2.1. The case \bfitd 1 = 0.8 and \bfitd 2 = 0.313. We begin by presenting results for
the upper branch with d1 = 0.8 and d2 = 0.313. In Figure 2(a), a representative
collection of bifurcation diagrams is plotted in the 3D phase space (q,A, \nu ), where
A is the computed wave amplitude. All branches appear to asymptotically approach
limiting solutions as \nu tends to zero, i.e., the wavelength tends to infinity. The almost
limiting solutions marked by the circles on the curves in Figure 2(a) are shown in
Figure 2(d), with the flux q decreasing from top to bottom. These waves approach
``hump"" type solitary waves as \nu \rightarrow 0. The solitary wave with the smallest flux (bottom
plot in panel (d)) possesses more ripples on the left side compared to the other two
profiles. While the behavior as \nu \rightarrow 0 is similar, the three bifurcation curves shown
in Figure 2(a) start with different periodic waves as depicted in panel (c). The top
branch denoted as the unimodal primary branch originates from infinitesimal waves,
and its bifurcation mechanism is analogous to the gravity wave cases shown in [12].

Additional bifurcation branches exist besides the primary branch. It can be seen
that the second branch (dashed red curve) and third branch (dotted yellow curve)
start with waves of finite amplitude, shown in Figure 2(c), which emerge from the
bimodal and trimodal primary branches (note that the starting waves in the second
and third plots of Figure 2(c) are almost bimodal and trimodal, respectively). Hence,
new families of solutions appear as secondary finite-amplitude bifurcations from the
points on multimodal primary branches. Figure 2(b) shows the projection of the
3D bifurcation curves into (q, \nu ) space, where the solid blue and dashed red curves
correspond to the branches of the same colors in Figure 2(a). The green dash-dot curve

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

4/
24

 to
 1

44
.8

2.
11

4.
25

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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Fig. 2. Bifurcation diagrams and typical profiles of upper branches for d1 = 0.8 and d2 = 0.313.
(a) The unimodal primary bifurcation branch (solid blue) and secondary bifurcation branches (dashed
red, dotted yellow) from bimodal, trimodal primary branches. (b) The projection of 3D bifurcations
onto (q, \nu ) space. The solid blue and dashed red curves correspond to the branches with the same
colors and line types in Figure 2(a); the dash-dot green curve represents the branch originating
from infinitesimal bimodal waves. (c) Wave profiles of the starting points (labeled by stars) on the
bifurcation curves. (d) Wave profiles of the ending points (labeled by circles) on the bifurcation
curves. (Color online.)

is the projection of the 3D bifurcation starting from infinitesimal bimodal waves (not
shown in panel (a)), the shape of which is the same as that of the unimodal primary
branch after the scaling \nu \rightarrow \nu /2, as explained at the end of section 3. It can be seen
that the dashed red curve just emanates from the first turning point of the dash-dot
bimodal curve. It is interesting to note that the second and third bifurcation curves
start with waves of almost the same flux q, and corresponding values of \nu \approx 0.0607
and 0.0406, respectively, which are consistent with the scaling predictions in section 3.
In summary, the three bifurcation diagrams shown for d1 = 0.8 and d2 = 0.313 start
with unimodal, bimodal, and trimodal waves, respectively, and terminate with similar
limiting waves of different flux. It should be emphasized that we have only presented
three representative upper branch bifurcation curves for d1 = 0.8 and d2 = 0.313.
However, there exist more solutions which branch off from other multimodal waves
and approach solitary wave configurations as \nu \rightarrow 0. For example, the fourth branch
is expected to start from tetramodal waves with \nu \approx 0.03 and end with a solitary wave
configuration which has more ripples compared to the wave profile on the bottom of
Figure 2(d).

We now turn to the lower branch solutions for d1 = 0.8, d2 = 0.313. Results are
shown in Figures 3(a)--3(d). The top branch (solid blue curve) in Figure 3(a) bifurcates
from infinitesimal unimodal waves; the results show that it does not approach a
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Fig. 3. Bifurcation diagrams and typical profile of lower branches for d1 = 0.8 and d2 = 0.313.
(a) The unimodal primary bifurcation branch (solid blue), a new isolated branch (dashed red), and
a secondary bifurcation branch (dotted yellow) from bimodal primary branch. (b) The projection of
3D bifurcations onto (q, \nu ) space. The curves correspond to the branches in the same colors and line
types in (a), while the dash-dot line represents the bimodal primary branch. (c) Wave profiles of the
starting points (labeled by stars) on the bifurcation curves. (d) Wave profiles of the ending points
(labeled by circles) on the 3D bifurcation curves.

solitary wave as is the case for the upper branch, and instead terminates with linear
bimodal waves---see the top plots (solid blue curves) in Figures 3(c) and 3(d) for the
starting points marked with a star and the end points marked with a circle. The
second branch at lower values of \nu (the dashed red curve) appears to be an isolated
branch connecting two ``trough"" type solitary waves with different fluxes as \nu \rightarrow 0;
these are shown in the middle plots of Figures 3(c) and 3(d). The solitary wave
with smaller flux (panel (d)) also features more ripples, which is a characteristic
of upper branch solitary waves presented earlier. The last dotted bifurcation curve
included in Figure 3(a) and shown in yellow branches off from a finite-amplitude wave
on the bimodal primary branch and eventually produces a solitary wave as \nu \rightarrow 0.
Figure 3(b) shows the projection of the 3D bifurcation curves in Figure 3(a), as well as
the branch bifurcating from infinitesimal bimodal waves represented by the dash-dot
green line. It is clear from panel (b) that the dotted yellow branch is connected with
the bimodal primary bifurcation by a secondary bifurcation point---see also the bottom
(dotted yellow) plot of Figure 3(c), which shows the starting profiles to be nonlinear
and bimodal. The numerical results show that there are two different solitary wave
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Fig. 4. Bifurcation diagrams and typical profiles of lower branches for d1 = 0.8 and d2 = 0.325.
(a) The unimodal primary bifurcation branch (solid blue) and secondary bifurcation branches from
bimodal waves. (b) The projection of 3D bifurcations onto (q, \nu ) space. The curves correspond to the
branches with the same colors and line types in (a), while the dash-dot line represents the bimodal
primary branch. (c) Wave profiles of the starting points (labeled by stars) on the bifurcation curves.
(d) Wave profiles of the ending points (labeled by circles) on the 3D bifurcation curves.

configurations corresponding to the upper and lower branches, that is, the ``hump""
type solitary waves with ripples on the left and the ``trough"" type solitary waves with
ripples on the left. A qualitative analogy to these two kinds of configurations is the
elevation and depression solitary waves in water wave theory.

4.2.2. The case \bfitd 1 = 0.8 and \bfitd 2 = 0.325. Next we keep d1 = 0.8 and increase
d2 to 0.325. The behavior described next is similar for larger values of d2 also---we
are above a critical value that produces solitary waves for all computed branches as
\nu \rightarrow 0. A phase diagram in d1 - d2 space is constructed later after we illustrate details
of the solutions. The upper branches are qualitatively similar to the case d1 = 0.313
and so the results are not included here. The lower branches are different, however.
The new feature is that the unimodal primary branch (shown by the solid blue curve
in Figure 4(a)) approaches a solitary wave configuration as \nu \rightarrow 0, unlike termination
to a linear bimodal state as found for d1 = 0.313---see Figure 3(a). In general we
find that as d2 is increased (for a fixed d1), the upper primary branch produces a
solitary wave as \nu \rightarrow 0 at a lower value of d2 than the value required for the lower
primary branch to terminate in a solitary wave. We also notice that the other two

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

4/
24

 to
 1

44
.8

2.
11

4.
25

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



WIND-GENERATED WAVES ON LIQUID FILMS 487

bifurcations (the dashed red and dotted yellow curves in Figure 4(a)) branch out from
secondary points on primary branches and tend to solitary waves as the wavelength
approaches infinity. It can be seen from Figure 4(b) that the dashed red unimodal
curve bifurcates from a point on the branch starting with infinitesimal bimodal waves
(the dash-dot green line). The starting wave profiles identified by stars in Figure 4(a)
are given in Figure 4(c), while the ending solitary waves denoted by open circles are
given in Figure 4(d); the same color scheme is used in all panels.

4.2.3. The case \bfitd 1 = 0.8 and \bfitd 2 = 0.31,0.3. In the third numerical experi-
ment, we choose d1 = 0.8 and d2 = 0.31, a value closer to the critical one, d2 \approx 0.2594.
Figure 5(a) shows three representative bifurcation curves for the upper branches. The
unimodal primary branch (solid blue curve) emanates from infinitesimal waves and
ends with a bimodal wave of finite amplitude shown in the top plot of Figure 5(d).
This indicates that the upper primary branches cannot approach solitary waves when
d2 is below a critical value. The second bifurcation is a separated branch which links
two ``hump"" type solitary waves at its two end points---see the middle plots in dashed
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Fig. 5. Bifurcation diagrams and typical profiles of upper branches for d1 = 0.8 and d2 = 0.31.
(a) The unimodal primary bifurcation branch (solid blue), a new isolated branch, and a secondary
bifurcation branch from the trimodal primary solution branch. (b) The projection of 3D bifurcations
onto (q, \nu ) space. The curves correspond to the branches with the same colors and line types in (a),
while the dashed line represents the trimodal primary branch. (c) Wave profiles of the starting points
(labeled by stars) on the bifurcation curves. (d) Wave profiles of the ending points (labeled by circles)
on the bifurcation curves.
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Fig. 6. Bifurcation diagrams and typical profile of branches for d1 = 0.8 and d2 = 0.3. (a)
Unimodal primary bifurcation curves for the upper (solid blue) and lower (dashed red) branch, a
new isolated closed branch (dash-dot yellow), and a secondary bifurcation from trimodal primary
branch. (b) The projection of 3D bifurcations onto (q, \nu ) space. The two curves correspond to the
branches with the same colors and line types in (a), while the dashed line represents the trimodal
primary branch. (c) Wave profiles of the starting points (labeled by stars) on the bifurcation curves.
(d) Wave profiles of the ending points (labeled by circles) on the bifurcation curves.

red in Figures 5(c) and 5(d). The bottom branch is a secondary bifurcation from the
trimodal primary solution branch, which can be observed clearly from the projection
of the 3D trajectories in Figure 5(a) into Figure 5(b). The profiles of the starting
and ending points, labeled by the asterisks and circles, respectively, are shown in
Figures 5(c) and 5(d). The lower branches are completely analogous to those de-
scribed for the case d2 = 0.313, and for brevity we exclude the results.

Next we decrease d2 to the value 0.3, keeping d1 = 0.8. No solitary waves were
found by varying \nu (see Figure 6(a)) for both upper and lower branches. From top
to bottom in Figure 6(a), the first and second curves (blue and red, respectively)
are the unimodal upper and lower primary branches; the former terminates with
finite-amplitude bimodal waves while the latter one ends with infinitesimal bimodal
waves. The third bifurcation (dash-dot yellow) is an isolated and closed branch. The
last branch (dotted pink) bifurcates from a secondary point on the trimodal primary
branch, which is shown by the dashed green curve in Figure 6(b), and is linked with a
bimodal wave. Typical profiles labeled by circles and asterisks on the 3D bifurcation
diagrams are shown in Figures 6(c) and 6(d).
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Fig. 7. Regions of d1 - d2 space where solitary waves exist or not for primary branches. Region
1: both upper and lower primary branches can approach solitary waves as \nu \rightarrow 0; region 2: only the
upper primary branches approach solitary waves as \nu \rightarrow 0; region 3: no solitary waves for both upper
and lower branches as \nu \rightarrow 0.

4.2.4. Solution phase diagram in (\bfitd 1, \bfitd 2) space. The results given for the
fixed value d1 = 0.8 as d2 varies show a rich bifurcation structure of upper and
lower branch solutions in (q,A, \nu ) space. It is noted that for d1 = 0.8 there exist
two critical values of d2, namely d2 \approx 0.312 and d2 \approx 0.32, for the primary upper and
lower branches, respectively, above which the bifurcation curves can approach solitary
waves as \nu \rightarrow 0. Extensive computations were carried out to extend these canonical
phenomena to a wide range of values of d1. The results are given in Figure 7. The
yellow solid line is given by d2 = 4d21/\pi and denotes the boundary below which no
steady state linear and weakly nonlinear solutions exist---see section 3. Hence, we
focus on the region d2 > 4d21/\pi , which is itself divided into three regions numbered on
the figure, and which are characterized as follows. For a given d1, no solitary waves
can be found for the primary branches when d2 is in region 3. The primary upper
branches arrive at solitary waves as \nu \rightarrow 0 when d2 is located in region 2. Increasing
the value of d2 until it is in region 1, we find that both primary upper and lower
branches can approach solitary waves as \nu \rightarrow 0. The boundaries between the regions
were computed using continuation methods and monitoring the limits \nu \rightarrow 0.

Next, we take the upper bifurcation diagrams for d1 = 0.8 and d2 = 0.313 given in
Figure 2 as an example to further explore the connection among different branches.
It is shown in Figure 2(a) that the three branches depicted approach solitary waves
with different values of q and A as \nu \rightarrow 0. This implies that we can find a discrete
set of solitary waves through the continuation of \nu for different solution branches.
To find out whether there exist solitary waves for other values of q, for instance, for
values of q between the circles on the blue and red curves, we explore the bifurcation
curve in the (q,A) plane with fixed large wavelength determined by \nu . The results
are given in Figure 8 for \nu = 0.014 and d1 = 0.8, d2 = 0.313. The dot and asterisk
on the curve correspond exactly to the almost-solitary waves bifurcating from the
unimodal and bimodal branches labeled by circles in Figure 2(a). We can conclude
that the solitary waves computed in Figure 2 are located on the same solution branch.
In addition, there exist solitary waves for a large range of values of q. If we perform
further computations along this 2D curve, we expect to find points which correspond
to solitary waves that branch off from other multimodal waves. However, there may
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Fig. 8. Bifurcation curves in (q,A) space with fixed \nu = 0.014 when d1 = 0.8 and d2 = 0.313.
The dot and asterisk correspond to the two almost solitary waves on the unimodal primary branch
(blue) and the secondary branch (red), respectively, in Figure 2(a).
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Fig. 9. Plot of the amplitude A versus the flux q for various d2 with d1 = 0.8.

exist many turning points before we arrive at the solutions. This is beyond the scope
of our aims here, and we only present part of the bifurcation curve to illustrate the
connection between the solitary waves bifurcating from unimodal and bimodal waves.

To explore the solution space further, we compute the variations of the wave
amplitude A with the flux q for various values of d2. We only focus on the branches
originating from the infinitesimal unimodal waves at q= 1/2 for which we have small-
amplitude asymptotic results given in section 3. Figure 9 shows the three upper
branches for fixed d1 = 0.8 and corresponding to d2 = 0.29,0.3,0.313, respectively,
as labeled on the figure. For these branches, the amplitude is predicted to be (see
solution (3.10))

A=
4

3

\biggl( 
1

2
 - q

\biggr) 1/2

.(4.3)

The prediction (4.3) is superimposed in Figure 9 with a dash-dot pink curve. Agree-
ment of the theoretical prediction with the computations is seen to be good. As q
moves away from 0.5, the waves become significantly nonlinear and the amplitudes de-
pendent strongly on d2 and q. It is worth noting that the curves shown in Figure 9 are
intrinsically different from those in Figure 8. The curve in Figure 9 is the projection
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of the bifurcation curves from (A,q, \nu ) space onto the (q,A) plane. Therefore, the
values of \nu , and hence the wavelengths, of different points on the curve are differ-
ent, while the bifurcation curve in Figure 8 represents a branch of wave solutions
with the same wavelength. For every \nu smaller than the value \nu 0 prescribed by the
small-amplitude theory, we can obtain a two-dimensional bifurcation curve which is a
two-parameter branch determined by the wavelength and amplitude (or flux). How-
ever, the curve in Figure 2(a) is a single-parameter branch since both \nu and h(x) are
specified by the flux q, as illustrated by the solutions in section 3. It should be noted
that although some bifurcation diagrams in (A,q, \nu ) space do not directly start with
infinitesimal waves, they are linked with the bifurcations starting with infinitesimal
waves at a secondary bifurcation point. Therefore, in essence, these branches are still
single-parameter branches.

4.2.5. Limiting configurations. King, Tuck, and Vanden-Broeck [12] consid-
ered waves in the absence of surface tension, i.e., when d2 =\infty in our notation. They
found that as the wind parameter d1 increases, which physically implies that the effect
of the blowing is absent in the limit, the wave height as | x| \rightarrow \infty of the long periodic
waves (i.e., the height of the solitary wave tails) decreases and appears to tend to
zero, signaling the formation of a drop solution. Therefore, they speculated that the
periodic waves approach a series of separated blobs analogous to those studied by
[11]. A complete exploration of this limit was not carried out and in what follows we
do this and also consider the effects of surface tension.

The present study includes surface tension, and the small-amplitude theory in
section 3 indicates that as d2 \rightarrow \infty (i.e., surface tension vanishes), the lower branch
recovers the gravity wave solutions computed by King, Tuck, and Vanden-Broeck
[12]. The asymptotic behavior of the upper branch is distinct in that the value of \nu 
approaches infinity, yielding a singular limit in the sense that the wavelength decreases
to zero. Note that this can be seen directly from the weakly nonlinear theory and
the formula (3.11) with the plus sign that gives the upper branch. Therefore, we first
focus on fixing d1 and increasing the value of d2. The results for d1 = 2 are shown
in Figure 10(a) for the behavior of the lower branch and Figure 10(b) for the upper
branch. Figure 10(a) shows that as d2 increases, the solution approaches the gravity
wave solution computed in the absence of surface tension and superimposed in blue;
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Fig. 10. Typical wave profiles on the lower and upper branches as d1 is fixed to 2 and d2
increases. (a) Comparison between wave profiles for various values of d2 on the lower branch and
the gravity solution. (b) Wave profiles with \nu = 0.15 for various d2 on the upper branch.
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the difference between the d2 = 60 and the d2 = \infty solutions is very small, as seen
in the figure. Considering the upper branch results of Figure 10(b), we find that
as d2 increases, the wave thickness of the flat solitary wave tails decreases rapidly
to small values, suggesting a touchdown. At the same time, the main part of the
wave gets narrower. Note that this type of solution is strongly attracting since the
wave almost touches the wall even for the moderate value of d2 = 4.5. Note that in
these computations we have fixed \nu and varied d2 in order to evaluate the effect of
decreasing surface tension on waves having the same wavelength; this was also done
by [12].

Next, we consider the limiting configurations when the air velocity parameter d1
becomes large. As mentioned in section 3, to guarantee real \nu and nontrivial steady
states we must have d2 > 4d21/\pi 

2, which in turn implies that d2 \rightarrow \infty as d1 \rightarrow \infty .
To explore this limit numerically, we pick d2 = d31 so as to guarantee nontrivial states
for d1 \gg 1. In the results that follow we retain surface tension (with the ordering
d2 = d31) when computing the upper branch, but drop it when considering the lower
branch solutions. This is motivated by the results in Figure 10(a); since d2 \gg d1 we
recover the large d1 gravity solutions of [12]. Here we construct solutions for larger
values of d1 than those considered by [12].

Figures 11(a) and 11(b) show typical wave profiles on the upper and lower branches,
respectively, for various values of d1 noted on the figures. As mentioned above, all
lower branch solutions in Figure 11(b) are computed in the absence of surface tension.
It can be seen that as d1 increases, the flat portion of the waves moves closer to the
substrate and the waves get narrower for both branches; this was also observed by [12]
for gravity waves and values of d1 \leq 17. At the same time, the wave profiles become
almost symmetric about the origin. Results of the dependence on d1 of the minimum
wave height and the width of the corresponding profiles are given in Figure 12. We
denote by hmu and hml the minimum heights on the upper and the lower branch,
respectively, and by wu and wl the corresponding wave profile widths defined to be
the distance between the two almost symmetrically occurring minima. Figure 12(a)
depicts the minima (the upper branch in a solid blue curve and the lower branch in
a dashed red curve), and Figure 12(b) shows the corresponding variation in the wave
widths. The data indicate that all four quantities decrease algebraically with d1, and
the exponents are given by the slopes of the curves in the log-log plots of Figure 12.
Using least square fits we obtain, approximately,
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Fig. 11. Typical wave profiles for various d1 with two values of \nu . (a) Solutions on the upper
branches for \nu = 0.44. (b) Solutions on the lower branches for \nu = 0.3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

4/
24

 to
 1

44
.8

2.
11

4.
25

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



WIND-GENERATED WAVES ON LIQUID FILMS 493

0 1 2 3 4 5
-7

-6

-5

-4

-3

-2

-1
upper branch

lower branch

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

-3

-2.5

-2

-1.5

-1

-0.5

0

(b)

Fig. 12. Variation of the height of the lowest point from the substrate and the width of the
profiles as d1 tends to infinity. (a) Log-log plot of the height of the lowest point from the substrate
and d1. (b) Log-log plot of the width of the waves and d1.
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Fig. 13. Rescaled typical wave profiles for various values of d1. (a) Solutions on the upper
branch. (b) Solutions on the lower branches.

hmu = d - 6.63
1 , hml = d - 1.49

1 , wu = d - 2.25
1 , wl = d - 1.09

1 .(4.4)

This indicates that according to the model, the limiting configuration cannot touch
the bottom at a finite value of d1, and so we cannot obtain the configuration of
blobs computed by King and Tuck [11] unless additional physics is brought in and the
models are modified to allow for dewetted solutions. In addition, the results presented
here for limiting profiles (on both branches) as d1 increases are found to converge to
universal profiles under a spatial rescaling, as shown in Figure 13. We conclude this
section by a closer analysis of the numerical results for the lower branch solutions
in the absence of surface tension, i.e., in the limit d2 \rightarrow \infty . To better identify the
dominant characteristics of limiting configurations, we consider the relative sizes of
the terms in (2.6) for the solution on the lower branch when d1 = 25.89. In what
follows we denote by T1 the surface traction exerted by the air flow, i.e., the first term
on the left-hand side (LHS) of (2.6). The pressure term induced by the air flow, i.e.,
the second term on the LHS of (2.6), is denoted by T2. The gravity term  - \nu hx is
denoted by T3, and finally the term  - q/h3 is denoted by T4. The spatial dependence
of these four terms is plotted together in Figure 14 and color coded as identified
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Fig. 14. Plots of values of terms in (2.6).

in the legend. Several conclusions can be drawn from the data in Figure 14. First,
in the flat portion of the wave in the far field, the dominant terms are T1 and T4 so that
the balance q \sim 3h2

2 follows. Second, close to the origin x= 0 where the main central
part of the wave lies, it is seen from Figure 14 that the dominant balance is between
the terms T2 and T3, i.e., a pressure-gravity balance yielding (\nu 2/d1)\scrH [hxx] \sim \nu hx.
Considering the almost symmetric feature of the limiting configuration, the center
portion can be described as a cosKx, and the wave-number K can be determined by
solving

\nu 2

d1
\scrH [hxx] = \nu hx.(4.5)

It is readily obtained that K = d1/(\pi \nu ). Of course this prediction is valid in the
vicinity of the origin and describes the central part of the wave. Near | x| = (\pi /2K)
the wave amplitude decreases to zero. Hence, the term T1 = 3/(2h) will enter in the
balance to provide a transition region between the central region and the flat far-field
portion. As seen from the numerical results in Figure 14, all four terms appear to
be in balance in the transition region. The resolution of this behavior using matched
asymptotic expansions is left for future work.

5. Conclusions. Steady gravity-capillary periodic waves on the surface of a thin
viscous liquid layer coating the surface of an inclined flat plate have been investigated
in the presence of an upward air stream parallel to the plate. A long-wave mathemat-
ical model was studied to describe the steady gravity-capillary waves that appear in
the presence of the outer air stream. The model incorporates a nonlocal term due to
the induced pressure on the liquid film by the outer air flow, as well shear stresses,
gravitational forces, and surface tension. A weakly nonlinear analysis is carried out to
obtain solutions to the second order in the small-amplitude parameter and to charac-
terize the permissible steady waves. It is found that there exist two primary solution
branches which are denoted as the upper and lower branches, respectively. When
the surface tension becomes vanishingly small, the lower branches degenerate to the
solution branches obtained by King, Tuck, and Vanden-Broeck [12], but the upper
branches tend to waves of decreasing wavelength.

Extensive numerical computations are carried out to evaluate the effect of surface
tension on steady state gravity waves studied by [12]. We find that surface tension
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provides a richer bifurcation structure and more solution branches. The first type
of bifurcations is denoted by primary branches and these arise from infinitesimal
linear waves that were analyzed into the weakly nonlinear regime in section 3. In
the absence of surface tension, d2 \rightarrow \infty in (2.6), it is established numerically (see
also [12]) that branches starting from infinitesimal waves and arbitrary values of d1
develop nonlinearly to produce solitary wave solutions. However, when surface tension
is present and for a fixed value of the air flow parameter d1, both lower and upper
solution branches will approach solitary waves only if the values of d2 are above some
critical value that depends on d1; we found numerically and analytically that nontrivial
steady waves are supported as long as d2 > 4d21/\pi . It is also noted that the values
of d2 above which solitary waves emerge are larger for the lower branches than the
upper ones. New branches are also found whose bifurcation mechanisms are different
from the primary ones. These branches bifurcate from nonlinear multimodal periodic
waves. More specifically, there exist secondary bifurcation points on the primary
branches, and new curves branch out from such points. Examples of bifurcations
emanating from bimodal and trimodal branches have been presented.

Besides the novel bifurcation diagrams in the presence of surface tension, we also
investigated the limiting configuration of the steady periodic waves in two different
cases as physical parameters vary. For the first scenario we fix the value of d1 and
allow d2 to increase so that in the limit d2 \rightarrow \infty surface tension vanishes. Our
computations indicate that the wave solutions on the upper branches become narrower
and almost touch the bottom, while the wave profiles on the lower branches approach
the corresponding gravity solutions computed by [12]. In the second case we allow d1
and d2 to increase at the same time with the special ordering d2 = d31 motivated by
the fact that for nontrivial solutions we require d2 \gg d21. Of course other orderings
are possible, for example, d2 = \Gamma d21, where \Gamma is a sufficiently large constant, but we
picked d2 = d31 so that the lower branch would be guaranteed to converge to the
gravity solution as d1 \rightarrow \infty (in fact we assume such behavior and study limiting lower
branch configurations in the absence of surface tension). Two limiting configurations
are obtained. Both upper and lower branch solutions develop to almost dewetting
drop-like solutions; this happens at moderate values of d1 for the upper branch but
at much higher values of d1 for the lower branch. More precisely, it is found that
the width of the profiles and the minimum wave height decrease algebraically with
d1. For the lower branch where computations could be carried out to large values of
d1, we considered the relative size of different terms in (2.6) at different positions x
and found that the limiting configuration can be approximated by a cosine function
in the central portion of the wave, while the flat far-field portion is described by a
balance between the flux q and the wave height h through the relationship q\sim 3h2/2.
A transition region is required to connect the central and far-field parts of the wave,
and all terms in the equation are in balance here as indicated by our computations.
A matched asymptotics solution to describe this limiting behavior is the subject of
ongoing work.
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