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ABSTRACT

Synchrotron X-ray imaging has been utilised to detect the dynamic behaviour of molten pools
during the metal additive manufacturing (AM) process, where a substantial amount of imaging
data is generated. Here, we develop an efficient and robust deep learning model, AM-SegNet,
for segmenting and quantifying high-resolution X-ray images and prepare a large-scale
database consisting of over 10,000 pixel-labelled images for model training and testing. AM-
SegNet incorporates a lightweight convolution block and a customised attention mechanism,
capable of performing semantic segmentation with high accuracy (~96%) and processing speed
(< 4 ms per frame). The segmentation results can be used for quantification and multi-modal
correlation analysis of critical features (e.g. keyholes and pores). Additionally, the application of
AM-SegNet to other advanced manufacturing processes is demonstrated. The proposed method
will enable end-users in the manufacturing and imaging domains to accelerate data processing
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from collection to analytics, and provide insights into the processes’ governing physics.

1. Introduction

Laser additive manufacturing (AM), such as laser powder
bed fusion (LPBF) [1-2] and directed energy deposition
(DED) [3-4], has attracted a great deal of interest from
both academia and industry, offering extraordinary advan-
tages over traditional manufacturing methods. However,
some features, e.g. lack of fusion [5,6] and residual porosity
[7-9], restrict its application in the manufacturing of safety-
sensitive components. With the development of synchro-
tron facilities, it has been possible to exploit in situ high-
speed X-ray imaging to gain insights into the complex
physical phenomena during the AM process [10-12],
such as powder melting and solidification, keyhole fluctu-
ation, as well as defect formation. The dynamic behaviour
of melt pool and critical features have been studied and
revealed using synchrotron imaging results. For example,
power-velocity process maps [e.g. 13-15] have been
defined to directly relate the product quality, e.g. porosity,
to the process parameters in LPBF experiments.
Generally, in situ synchrotron experiments are performed
at ultra-high temporal and spatial resolutions [16,17], thus
generating a large volume of X-ray imaging data and

making manual data processing time-consuming and
impractical. In this case, it becomes essential to propose
an efficient and reliable approach to performing image seg-
mentation and analysis. For example, an automatic detec-
tion algorithm [18] involving quotient, intensity difference
calculations, and numerical shaping was proposed to
detect the melt pool boundaries during the LPBF process
of aluminium alloys. Apart from the melt pool boundary,
it is of great importance to identify and classify the com-
ponent defects in an efficient and reliable manner. Recently,
machine learning techniques, such as support vector
machine [19,20], Bayesian classifier [21] and K-means clus-
tering [8,22,23], have been applied for the detection and
classification of manufacturing defects in metal AM pro-
cesses. Due to the stochastic nature of melt pool dynamics,
it is challenging for traditional machine learning approaches
to provide accurate and reliable detection results.

With the rapid advances in computational resources,
deep learning methods, especially convolutional neural
networks (CNN), are starting to play an important role in
the monitoring and quantification of surface defects and
other critical features during metal AM processes. For
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example, CNN models have been used for porosity detec-
tion [24], anomaly monitoring [25], and surface quality
improvement [26], etc. However, these studies focus on
optical or acoustic signals rather than in situ X-ray imaging
results, failing to reveal the dynamic behaviour beneath
the component surface. On the other hand, pixel-wise seg-
mentation models, such as U-Net [27] and its variants
[28,29], have been used to perform semantic segmentation
on synchrotron X-ray images [30,31]. For example, an auto-
matic deep learning segmentation model using U-Net was
proposed for the segmentation and annotation of melt
pools [32]. However, the U-Net and its variants exhibit com-
plicated model architectures and high latency, restricting
their potential applications in real-time detection and moni-
toring of the AM processes. Moreover, the diversity of X-ray
image datasets used in existing studies is limited, as these
datasets only cover a single synchrotron facility, Advanced
Photon Source [30-32] and three materials, including Ti-
6Al-4V [30], aluminium alloy [30-32]. As a result, the
trained segmentation models are not generalisable for a
range of manufacturing processes, process parameters,
materials, and synchrotron facilities, e.g. beam energy, inser-
tion devices, etc. The attempt to create a generalisable
machine-learning (ML) segmentation model for AM X-ray
images has not been explored yet. Lastly, none of the exist-
ing models can provide direct quantification results which is
an unexplored area.

In this study, we develop a novel generalised light-
weight neural network, AM-SegNet, to perform semantic
segmentation and feature quantification on time-series
X-ray images collected from various AM beamtime exper-
iments. For the comprehensive model training and
testing, we have established a large-scale benchmark
database consisting of more than 10,000 pixel-labelled
X-ray images. Experimental results indicate that AM-
SegNet outperforms other state-of-the-art segmentation
models in terms of accuracy, speed and robustness. A
well-trained AM-SegNet has been adopted to expedite
the quantification of critical features and conduct corre-
lation analysis in the LPBF experiments. The accuracy
and efficiency of AM-SegNet are further validated across
different types of AM experiments, and for another
advanced manufacturing technique, high-pressure die
casting (HPDCQ) [33], making it closer to achieving real-
time automatic segmentation and quantification of X-ray
images captured by high-speed synchrotron experiments.

2. Methodology
2.1. Architecture of AM-Segnet

To expedite the segmentation and quantification of X-
ray images collected from high-speed synchrotron

experiments, we propose a novel lightweight network
AM-SegNet (see Figure 1(a)) with the purpose of improv-
ing computation efficiency and segmentation speed
without compromising model performance. The AM-
SegNet adopts an encoder-decoder architecture in
which a customised lightweight convolution block (see
Figure 1(b)) and the attention mechanism (see Figure 1
(c)) are utilised.

The lightweight convolution block begins with a
squeeze convolution layer (1 x 1 kernels) that limits the
number of input channels, denoted as n,, to be pro-
cessed by the following expand module. The expand
module includes: (1) separable convolutions, (2) residual
convolution with 1 x 1 kernels and (3) expand convolu-
tion with 3 x 3 kernels. Specifically, separable convolu-
tion decomposes a regular convolution operation into
two separate steps: depth-wise convolution and point-
wise convolution. Depth-wise convolution applies a
single filter to individual input channels, bringing
about a feature map for each input channel separately.
All the resulting feature maps are concatenated into a
single output tensor and processed by the following
point-wise convolution with 1x 1 filters. Three sets of
outputs from the expand layer are concatenated in the
concatenation layer, increasing the channel number
from n; to 4 x n,. The capability and efficiency of such
squeeze-expand operations has been successfully vali-
dated in the task of image classification and defect
detection [34]. In the last encoder step, standard convo-
lutional layers are retained in order to ensure the
model’s robustness and generalisation and mitigate
over-fitting problems.

For better model sensitivity and higher segmentation
accuracy, the attention mechanism [35,36] has been
introduced to deep neural networks. It has been found
that attention gates can help to disambiguate irrelevant
and noisy responses and update the model parameters
based on spatial regions that are more relevant to the
given task. Inspired by this, a customised attention
gate is proposed in this study (see Figure 1(c)). The
purpose is to highlight the salient features in the last
encoding stage without consuming excessive compu-
tation resources. The output x’ after the attention gate
can be updated by attention coefficient a, given by:

X =xX « (M

a = ox{elo (B(x) + B(g)} (2)

where ¢ and @ are linear transformations implemented
as 1x1 convolutions, and o; and o, refer to RelLU
(Rectified Linear Unit) and sigmoid activations, respect-
ively. Here, the ReLU function outputs the input for posi-
tive values and zero for negative values, while the
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Figure 1. Schematic workflow of AM-SegNet designed for automatic segmentation and quantification of high-resolution X-ray
images: (a) the architecture of AM-SegNet using a lightweight convolution block and attention mechanism: H,x W, correspond
to the input sizes in different layers, and H, =Hy/2" and W,,=W,/2", where Hy and W, refer to the size of raw X-ray images; (b)
structure of the lightweight convolution block based on separable convolution, residual convolution, and squeeze-expand operations;
and (c) structure of the attention mechanism adopted in the standard convolution layers.

sigmoid function transforms input values into a smooth
S-shaped curve, mapping them to a range from 0 to 1.
In this study, AM-SegNet is proposed to perform
semantic segmentation on synchrotron X-ray images.
Semantic segmentation results can provide detailed
understanding and analysis by assigning a specific
label to each pixel within the image. Once a well-
trained AM-SegNet is ready, it will be feasible to
perform feature quantification and correlation with
high confidence, minimising the time-consuming and
subjective problems related to manual analysis.

2.2. Benchmark dataset

In this study, we build a large-scale benchmark database
for model training and testing. The database encom-
passes a broad range of synchrotron experiments,

incorporating various synchrotron beamlines, powder
materials and process parameters. Details of synchrotron
beamlines and X-ray imaging settings are available in
Section 2.3. As a result, it can be utilised by other
researchers to benchmark their models’ performance
against others and to develop novel algorithms or tech-
niques for image segmentation in this domain.

Figure 2(a) presents the pipeline of semantic pixel-lab-
elling of X-ray images, in which flat field correction, back-
ground subtraction, image cropping and pixel labelling
are executed step by step. Here, background subtraction
will be applied only if it is difficult to segment the regions
of interest from raw X-ray images. In the pixel-labelling
stage, each pixel in the image has its own corresponding
pixel label, i.e. keyhole, pore, substrate, background or
powder. Figure 2(b) presents some examples of manually
pixel-labelled X-ray images, which are used as ground-
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Figure 2. X-ray imaging benchmark database for model training and testing: (a) pipeline of image processing, including: flat field
correction, background subtraction, image cropping, and pixel labelling; (b) examples of manually pixel-wise labelled X-ray
images collected from LPBF and welding experiments; (c) distributions of X-ray images related to different substrate and powder
materials; and (d) percentages of individual pixel labels in the benchmark database.

truth in the following model training and testing steps.
Additionally, more in situ synchrotron imaging data
from recent studies [8,11,13] are incorporated into the
benchmark database in order to improve its universality
and generalisation. In the end, a variety of metal
materials, process parameters and synchrotron beam-
lines are covered by the benchmark database, as listed
in Table 1. We have also used random cropping — a data
augmentation technique to minimise over-fitting and
class-imbalance issues during model training. For data
augmentation, a random 10% of X-ray images are
selected and cropped. Then the newly-generated
images are added to the benchmark database to further
improve data diversity and generalisation.

Figures 2(c,d) present the distributions of X-ray
images and pixel labels in the benchmark database
related to LPBF and welding processes. It can be found
that the percentages of two critical features, keyhole
and pore, are significantly lower than the other three.
Therefore, class weighting will be applied for balancing
in the training of AM-SegNet and other CNN models.
During the preparation of the benchmark database,
some simplification operations are adopted, which can
introduce minor errors to the ground-truth pixel labels.
For example, the spatter ejected from the melt pool
during laser scanning is treated as background and the
gaps between large powder particles are ignored.
These errors only occur in a few cases and do not



Table 1. Synchrotron facilities, metal materials, and process
parameters during LPBF and welding synchrotron experiments
covered by the benchmark database

Laser

Synchrotron Substrate Powder power Scanning
facilities material material (W) speed (mm/s)

ESRF AlSi10Mg AlSi10Mg 300-500 400-1800

AlSi10Mg \ 300-500 400-1200

Inconel 625 \ 150-500 400-1200

CP1 CP1 150-500 400-1200

SS316 SS316 150-500 400-1200

SS316 \ 150-500 400-1200

Ti6Al4V Ti6Al4V 150-500 250-1800

Ti6Al4V \ 250-500 400-1500

Ti6Al4V Ti6242 150-400 250-1800

APS Ti6Al4V Ti6Al4V 100-600 200-1200

[8, 11, 13] Ti6Al4V \ 100-600 200-1200

Aluminium Al7A77 200-500 600-1600

Aluminium \ 200-500 600-1600

affect the overall accuracy and reliability of pixel-label-
ling results in the benchmark database. Furthermore,
X-ray imaging results collected during DED and HPDC
experiments were subsequently added to the database
and utilised in Section 3.3 to demonstrate the extended
application of AM-SegNet in different advanced manu-
facturing processes.

2.3. Synchrotron beamlines and imaging settings

In this study, the benchmark database consists of over
10,000 X-ray images collected from various AM beamtime
experiments, involving three synchrotron beamlines:

(1) European Synchrotron Radiation Facility (ESRF): In
situ operando synchrotron imaging of LPBF and
welding experiments (see Table 1) was performed
at ESRF, and the in situ X-ray imaging setup is illus-
trated in Figure 3. The dynamic behaviour of

Projected
X-ray image
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molten pool and relevant critical features was
imaged at high spatial (4.31 um) and temporal
(frame rate of 40 kHz) resolutions. Synchrotron exper-
iments were carried out using a custom-designed
replicator [8,10], which can provide an environ-
mental chamber to accommodate laser scanning
and synchrotron X-ray imaging at the same time.

(2) Diamond Light Source (DLS): The fast synchrotron
imaging of DED experiments was conducted on
the DLS 112 beamline. A replicator of the DED
process was integrated with the beamline for in
situ synchrotron X-ray experiments. Radiographic
images were obtained with a pixel size of 6.67 pm
at a frame rate of 1 kHz.

(3) Advanced Photon Source (APS): This study utilises
published X-ray imaging data [11,13] from other syn-
chrotron experiments to validate the segmentation
performance of AM-SegNet. The relevant synchrotron
experiments were performed at APS 32-ID-B beam-
line in the Argonne National Laboratory. Operando
X-ray imaging data were collected with a frame rate
of 50 kHz and a spatial resolution of ~2.0 pm/pixel.

3. Results and discussion
3.1. Model training and testing

In this study, AM-SegNet and other widely used CNN
models, i.e. U-Net and its variants (Res-U-Net and
Squeeze-U-Net), are trained and evaluated. In the var-
iants of U-Net, the standard convolution layer is substi-
tuted with an equivalent convolution block, e.g. the
residual block [37,38] in Res-U-Net. Additionally, access
to source codes for AM-SegNet and other CNN models

i' ﬂ Laser scan direction
I

Incident X-ray beam

<5

Melt pool

Powder bed

Substrate

Glassy carbon walls
mm

Figure 3. In situ X-ray imaging setup for capturing time-series radiographs during LPBF synchrotron experiments performed at ESRF.
X-ray imaging was performed at high spatial (4.31 um/pixel) and temporal (frame rate of 40 kHz) resolutions.
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is provided in Codes and Videos. In this study, all the
CNN models are developed in TensorFlow, and model
training and evaluation are carried out on a Windows
workstation with an AMD CPU (3975WX, 3.5 GHz) and
an NVIDIA GPU (RTX A6000, 48 GB). For model tuning,
X-ray images obtained from different synchrotron exper-
iments are randomly divided into training, testing and
validation datasets with a ratio of 4:1:1.

In general, a large learning rate enables the model to
learn faster but brings with it a risk of sub-optimal results
[39]. When the learning rate becomes smaller, the con-
vergence speed becomes lower in the initial stage, and
it takes a longer time to reach the stable stage. To
achieve a smooth learning process, we adopt a novel
training strategy of learning rate scheduling, called
annealing learning [40,41], to automatically anneal the
learning rate during the training process. In the early
stage of network training, a higher learning rate, e.g.
1x 1073, is used to allow the model to explore a larger
portion of the parameter space and embrace a higher
convergence speed. However, as the training progresses
and the model gets closer to its optimal solution, a lower
learning rate is adopted for the further fine-tuning of
model parameters. In this section, all the segmentation
models are trained for 100 epochs with an initial learning
rate of 1x 107> and a batch size of 16 using the Adam
solver [42,43]. In the model compile, the Dice loss and
Categorical Focal Loss are combined to measure the
model loss [44], and the F;-score and Jaccard index,
also known as Intersection over Union (loU), are selected
as model metrics [45,46]. Here, the loss function is
designed to help address the issue of class imbalance,
as it can lead the model to achieve better discrimination
between foreground and background classes. Addition-
ally, the loU score serves as a key metric for evaluating
the quality of segmentation results by accounting for
localisation accuracy, handling class imbalance and
enabling fair comparisons. The relevant results of
model training and testing are presented in Figure 4.
The training and testing of different segmentation
models are repeated 20 times and the average values
are calculated for further comparison and analysis.

Figure 4 presents the training and testing results of
different CNN models for semantic segmentation of X-
ray images. Figure 4(a) focuses on the model’s compu-
tation efficiency, in which AM-SegNet realises the short-
est training and segmentation time compared with U-
Net and its variants. As a result, AM-SegNet is the first
one to finish the whole training process when the
maximum training epoch is set to be the same (see
Figure 4(b)). Here, the segmentation time refers to the
time taken by a CNN model to generate segmentation
results after an input image is fed into the network. On

the other hand, the training time is related to the iter-
ation process when the neural network computes the
network error and adjusts its weights and biases accord-
ingly to minimise the loss function. Specifically, the
minimal training and segmentation time associated
with AM-SegNet indicates that the lightweight convolu-
tional block proposed in this study can bring about
remarkable computation efficiency and propagation
speed. Compared with the standard U-Net, both training
and segmentation time is reduced by around 50%. When
it comes to the loU scores of individual pixel labels, the
model testing results (see Figure 4(d)) indicate that AM-
SegNet is able to produce reliable segmentation results
for two critical features, i.e. keyhole and pore, while the
loU scores related to the standard U-Net drop consider-
ably. Ablative analysis was performed to clarify the
impacts of the customised attention block on the AM-
SegNet. AM-SegNet* is developed in which the attention
block was removed from the AM-SegNet architecture.
The comparison results (see Table 2) indicate that the
attention block improves the model’s accuracy and
robustness. The segmentation time and trainable par-
ameters of the two models are very close, as listed in
Table 2, which means the usage of the attention block
does not consume excessive computation resources.

Table 2 lists the numbers of trainable parameters
related to different segmentation models. It can be
found that AM-SegNet* has the smallest number
(1.63 x 107), which should be attributed to its light-
weight design. Besides, the influence of adding the
attention block to AM-SegNet on the trainable par-
ameters is negligible whilst improving the F; and loU
scores. Comparing AM-SegNet and another lightweight
model — Squeeze-U-Net, both models have similar train-
able parameters, however AM-SegNet can provide
higher segmentation accuracy while reducing the seg-
mentation time by more than 40%.

Additionally, the Grad-CAM (gradient-weighted class
activation mapping) [47,48] technique is adopted for
interpreting and visualising the decision mechanism of
AM-SegNet after model tuning. It computes the gradient
of the output class score with respect to the feature
maps of the specific convolutional layer in a CNN
model. The resulting gradients are then used to gener-
ate a weighted activation map, highlighting the
regions of the image that make great contributions to
the network’s decision. Here, we present Grad-CAM
results related to the pixel labels of keyhole and pore
to examine the network responses of the AM-SegNet
after model tuning (see Figure 5(a)). The blue regime
corresponds to a condition of low influence, whereas
the red regime indicates high impact. For example, the
red zones in Figure 5(a) have the greatest impact on
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Figure 4. Training and testing of five different CNN semantic segmentation models for X-ray images: (a) comparison analysis of training
and segmentation time related to different models; (b) transition process of mean loU scores over training time; (c) comparison of mean
loU values within specified training duration; and (d) comparison between AM-SegNet and standard U-Net in terms of loU values of
individual pixel labels after model training. All loU scores related to AM-SegNet are higher, especially those of keyhole and pore.

Table 2. Comparison of different segmentation models

Trainable Mean Fq Segmentation time

Networks parameters loU scores (ms)
AM-SegNet 1.75% 107 0.961 0.980 3.94
AM-SegNet* 1.63 % 107 0.954 0.976 3.89
Res-U-Net 331x 107 0.951 0.974 10.56
Standard U- 3.14x 107 0945 0971 8.96

Net
Squeeze-U- 1.64 x 107 0.943  0.969 6.75

Net

AM-SegNet* is obtained by removing the attention block from the original
AM-SegNet.

classifying the relevant image pixels as keyhole or pore,
which agrees well with the ground truth and thereby
indicates excellent segmentation performance.

Overall, the AM-SegNet proposed in this study can
perform semantic segmentation on X-ray images with
excellent accuracy and processing speed. A well-trained
AM-SegNet has been utilised to perform segmentation
analysis on time-series X-ray images in the LPBF exper-
iments (see Figure 5(b) and Supplementary Video S1 in
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Codes and Videos). Moreover, the segmentation results
will be used for automatic quantification and correlation
analysis in the next section.

3.2. Feature quantification and correlation

After a well-trained AM-SegNet is obtained, the process of
carrying out feature quantification and correlation analy-
sis using synchrotron imaging results is considerably
streamlined. For example, AM-SegNet can be employed
to automatically compute the geometric properties of
two critical features, i.e. the keyhole and pores, within
the molten pool region in the LPBF experiments. The
keyhole refers to a deep, high aspect ratio vapour
depression, which plays an important role in the melt
pool region [13,49]. For example, the fluctuation and col-
lapse of keyhole are closely related to the pore evolution,
e.g. formation, growth and migration, potentially impact-
ing the fatigue life of metal components. Therefore, after
a well-trained AM-SegNet is obtained, the model will be
employed to carry out quantification and correlation
analysis of these two critical features within the melt
pool region in the LPBF experiments.

In this study, the geometrical properties of keyholes
and pores are calculated pixel by pixel using semantic
segmentation results from AM-SegNet, including

Grad-CAM: keyhole

Ground-truth

(b)

keyhole area (Ay), keyhole depth (di) and pore area (A,),
as shown in Figure 6(a). Additionally, the distribution of
quantification errors associated with A, is given in
Figure 6(b). Here, each individual metal material has its
corresponding 100 X-ray images for quantification tests
and the calculation results are then compared with the
ground truth to compute quantification errors. The
quantification errors related to other geometric proper-
ties, i.e. di and A, are presented in Figures 6(c,d), respect-
ively. The experimental results indicate that employing
AM-SegNet to replace manual operations for feature
quantification is feasible, as it is capable of presenting
quantification results in an efficient and accurate manner.

It has been reported that pore formation is closely
related to keyhole fluctuations in the LPBF process
[7,8]. This finding is consistent with the comparison
results in Figures 7(a,b), which present the histograms
of keyhole areas in two LPBF experiments with and
without pore formation, respectively. Comparing these
two histograms provides an intuitive way to reveal the
distribution of keyhole area across different intervals.
The histogram with outliers and a high degree of var-
iance (see Figure 7(b)) is connected to the LPBF
process with pore formation. Furthermore, leveraging
the quantification results from AM-SegNet enables us
to correlate keyhole fluctuation with pore formation

Grad-CAM: pore

AM-SegNet

Figure 5. Examination and application of the trained AM-SegNet: (a) Grad-CAM results of keyhole and pore associated with the
trained AM-SegNet. The blue regime corresponds to a condition of low influence, whereas the red regime indicates high impact;
and (b) comparison between ground-truth and AM-SegNet segmentation results of time-series X-ray images in the LPBF experiments.
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Figure 6. Quantification of critical features in LPBF X-ray images using the trained AM-SegNet: (a) calculation of keyhole and pore
geometry; (b) quantification errors of keyhole area (A,) related to different materials; (c) quantification errors of keyhole depth
(dy) related to different materials; and (d) quantification errors of pore area (A,) related to different materials.

from a statistical perspective. Figures 7(c,d) depict the
mapping relationships between keyhole deviations and
pore formation. The size of pink bubbles corresponds
to the pore size (equivalent diameter ¢J.) segmented
from X-ray images. Here, the fluctuations of keyholes
(Ax and d,) in time-series X-ray imaging are measured
using &max and 8,4 which correspond to the
maximum and average deviations of keyholes under
different experimental conditions. For example, the
deviation 6 of keyhole area (A,) can be given by:

Ac= > Au/n (3)
1

8 = Ak — Axl/Ax (4)

where i and n are the sequence of the current image and
the total number of all X-ray images, respectively.
Additionally, the equivalent diameter @, of a segmented
pore is calculated by:

Pe = \/4As/ T (5)

where A, is the pore area segmented from the X-ray
image.

Here, X-ray imaging results from 81 sets of LPBF
experiments are used for correlative mapping analysis,
with pores being detected in 60 experimental sets. The
average and maximum deviations of keyhole area are

analysed in Figure 7(c), while Figure 7(d) takes both
keyhole area and depth into consideration (average
deviations only). The data points in both scenarios, i.e.
with and without pore formation, exhibit a strong clus-
tering effect, represented by ellipses of varying colours
and divided by blue dashed lines. Like the P-V (laser
power vs. scan speed) space reported in the literature
[13,15], we can use the correlation maps (Figures 7(c-
d)) as a data-driven approaches to avoid process par-
ameters with a high likelihood of pore generation and
hence improve the process consistency in LPBF.

3.3. Extended applications of AM-SegNet

In this section, the application of AM-SegNet is extended
to other synchrotron facilities, e.g. APS and DLS, and
other advanced manufacturing processes (e.g. DED
and HPDC). More relevant details of synchrotron beam-
lines and imaging settings can be found in Section 2.3.
Figures 8(a,b) present the differences in loU scores
between two model training strategies: training from
scratch and transfer learning using the same X-ray
imaging data collected from LPBF synchrotron exper-
iments performed at APS. In the transfer learning, a
pre-trained AM-SegNet is further tuned on the new
dataset. Here, synchrotron experiment data collected
from recent studies [11,13] are used for model training
and testing. In this section, the model training platforms,
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Figure 7. Correlative analysis of critical features in LPBF X-ray images using AM-SegNet: (a) histogram of keyhole areas in an LPBF
experiment without pores; (b) histogram of keyhole areas in an LPBF experiment with segmented pores; (c) correlation mapping
between pore formation and deviations of keyhole area; and (d) correlation mapping between pore formation and deviations of

both keyhole area and depth.

i.e. hardware and software, are kept the same as listed in
Section 3.1 and similar training strategies are adopted.
Additionally, the total training epochs in Figures 8(b,c)
are set to 100 and 200, respectively. It is noted that
the segmentation performance of AM-SegNet remains
excellent in terms of mean loU scores (~95%) when con-
fronted with a new dataset, regardless of the selection of
training strategies. Furthermore, the utilisation of trans-
fer learning enables the pre-trained model to achieve
excellent performance with reduced training time and
computation resources. This is because the pre-trained
segmentation model has been comprehensively tuned
on a large dataset and learned general features of
X-ray imaging data that can be useful in similar tasks.
Additionally, the performance of AM-SegNet is further
validated using X-ray imaging data collected from other
advanced manufacturing processes. For example,
Figure 8(c) presents the transition of mean loU scores
when the AM-SegNet is trained on DED and HPDC X-ray
imaging data. Upon the completion of model training,
the mean loU scores of AM-SegNet exceed 95% for both
experiments. Likewise, the well-trained segmentation
model can be used to perform feature quantification, i.e.
calculation of pore area, on time-series DED X-ray images
with high confidence (see Figures 8(d,e)). Additionally,

the trained model was tested on X-ray imaging results
from an HPDC experiment with reasonable success (see
Supplementary Video S2 in Codes and Videos).

4. Conclusions

In summary, this paper proposes a novel lightweight
neural network, AM-SegNet, for image segmentation
and feature quantification of X-ray imaging data collected
from a variety of synchrotron experiments. A large-scale
benchmark database consisting of pixel-labelled X-ray
images has been established for network training and
testing. The performance of AM-SegNet was compared
with other state-of-the-art networks and further validated
in other advanced manufacturing processes (DED and
HPDC). The utilisation of AM-SegNet to facilitate feature
quantification and correlation analysis was also explored.
The main conclusions are given below:

(1) AM-SegNet has the highest segmentation accuracy
(~96%) and the fastest processing speed (< 4 ms
per frame), outperforming other state-of-the-art seg-
mentation models.

(2) Trained AM-SegNet enables automatic feature quantifi-
cation and correlation analysis, minimising the time-
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Figure 8. Extended application of AM-SegNet to other advanced manufacturing processes: (a) comparison of loU values of individual
labels after transfer learning and training from scratch using the same X-ray imaging data collected from APS synchrotron exper-
iments; (b) transition of mean loU scores during model training of (a); (c) transition of mean loU scores in the model training on
DED and HPDC X-ray imaging data; (d) illustration of pore area calculation using the segmentation results from AM-SegNet; and
(e) error distribution of pore area quantification on DED X-ray imaging data collected from DLS synchrotron experiments.

consuming and subjective problems related to manual
analysis.

Application of AM-SegNet for the segmentation and
analysis of X-ray images can be feasibly extended to
other advanced manufacturing processes with high
confidence.

The proposed method will enable researchers and
engineers in the manufacturing and imaging domains
to expedite the processing of X-ray imaging data and
gain new insights into complex experimental phenomena
from a data-driven perspective. The benchmark database
established in this study covers a wide range of high-
speed synchrotron experiments, involving different
beamlines, powder materials and process parameters.

Therefore, it can be adopted by researchers to benchmark
the performance of their models against others, and to
develop new algorithms or techniques forimage segmen-
tation and quantification in this field. It is expected that
real-time segmentation and quantification of X-ray
images in high-speed synchrotron experiments will be
achieved through deep learning in the near future.
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