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Abstract—In this paper, we study facial expression recognition
(FER) in the class-incremental learning (CIL) setting, which
defines the classification of well-studied and easily-accessible basic
expressions as an initial task while learning new compound
expressions gradually. Motivated by the fact that compound
expressions are meaningful combinations of basic expressions,
we treat basic expressions as attributes (i.e., semantic descrip-
tors), and thus compound expressions are represented in terms
of attributes. To this end, we propose a novel visual-textual
attribute learning network (VTA-Net), mainly consisting of a
textual-guided visual module (TVM) and a textual compositional
module (TCM), for class-incremental FER. Specifically, TVM
extracts textual-aware visual features and classifies expressions
by incorporating the textual information into visual attribute
learning. Meanwhile, TCM generates visual-aware textual fea-
tures and predicts expressions by exploiting the dependency
between textual attributes and category names of old and new
expressions based on a textual compositional graph. In particular,
a visual-textual distillation loss is introduced to calibrate TVM
and TCM during incremental learning. Finally, the outputs from
TVM and TCM are fused to make a final prediction. On the
one hand, at each incremental task, the representations of visual
attributes are enhanced since visual attributes are shared across
old and new expressions. This increases the stability of our
method. On the other hand, the textual modality, which involves
rich prior knowledge of the relevance between expressions,
facilitates our model to identify subtle visual distinctions between
compound expressions, improving the plasticity of our method.
Experimental results on both in-the-lab and in-the-wild facial
expression databases show the superiority of our method against
several state-of-the-art methods for class-incremental FER.

Index Terms—Facial expression recognition, Class-incremental
learning, Multi-modality learning, Attribute learning.

I. INTRODUCTION

W Ith the recent advance of deep learning, a large number
of facial expression recognition (FER) methods [1]–

[5] have been developed and achieved promising performance
in unconstrained environments. These methods mainly focus
on the classification of basic expressions (including angry,
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Fig. 1. Illustration of our motivation. We model the intrinsic relationship
between basic expressions and compound expressions from the perspective of
visual-textual attribute learning. In this way, each old/new expression image
and its category name can be represented in terms of visual attributes and
textual attributes, respectively.

disgusted, fearful, happy, sad, surprised, and neutral) according
to Ekman and Friesen’s pioneering study [6]. Unfortunately,
basic expressions cannot completely characterize the diversity
and complexity of human emotions in real-world scenarios.
Later, Du et al. [7] define compound expressions, which
are meaningful combinations of basic expressions (e.g., the
happily-surprised expression can be viewed as a combination
of the happy and surprised expressions). Compared with basic
expressions, compound expressions often involve more subtle
visual distinctions.

In many practical applications, new compound expression
data usually arrive sequentially since collecting all the expres-
sion categories at once is difficult. Conventional FER methods
need to retrain the whole model by combining old and new
data. However, such a way is time-consuming and sometimes
infeasible, especially when we have no access to all the old
training data due to memory limitations or data restrictions.
Only fine-tuning the model with new data renders it prone
to catastrophic forgetting of old classes (which refers to the
drastic performance drop on previously learned old classes
after learning new classes). This phenomenon can be ascribed
to the stability-plasticity dilemma (i.e., the balance between
accommodating new classes while retaining old classes) [8].

To address the above challenges, class-incremental learning
(CIL), which requires the model to have the ability to acquire
new knowledge from new classes while retaining previously
learned concepts, is becoming a hot research topic. A number
of CIL methods [9]–[11] have been proposed. In this paper,
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we study the class-incremental FER task, which aims to
classify both basic and compound expressions under a CIL
paradigm. In particular, we define well-studied and easily-
accessible basic expressions as initial classes while learning
new compound expressions incrementally.

For our class-incremental FER task, due to subtle visual
distinctions between compound expressions, depending only
on the visual modality may not guarantee satisfactory per-
formance. As a common sense of human vision, humans
can easily identify expressions by using not only the visual
modality, but also the textual, voice, and gesture modalities.
Hence, we take advantage of both visual and textual modalities
(i.e., images and category names) for class-incremental FER
to mitigate the stability-plasticity dilemma. In fact, the tex-
tual modality involves rich prior knowledge of the relevance
between expressions. Thus, we are able to leverage such
knowledge as an auxiliary signal to guide the incremental
training process, alleviating the forgetting of old classes when
learning new classes.

As we mentioned before, compound expressions are mean-
ingful combinations of basic expressions. Inspired by the
RGB color model (i.e., each color is represented in terms
of RGB components), we consider each basic expression at
the initial task as an attribute (i.e., the semantic descriptor
which captures some facial characteristics with inherent sta-
bility) while compound expressions are described in terms of
attributes. Accordingly, we define the latent visual features
extracted from basic expression images as visual attributes
and the textual word vectors from their category names as
textual attributes. In this way, each old/new expression image
and its category name can be represented in terms of visual
attributes and textual attributes, respectively. Fig. 1 illustrates
our motivation for introducing visual-textual attribute learning,
which serves as the basis of our proposed method for class-
incremental FER.

To this end, we propose a novel visual-textual attribute
learning network (VTA-Net) for class-incremental FER. VTA-
Net mainly consists of a textual-guided visual module (TVM)
and a textual compositional module (TCM). Specifically, TVM
extracts textual-aware visual features and performs expression
classification by incorporating the textual modality, where
a novel textual-guided loss is developed for visual attribute
learning. TCM gives expression prediction results based on
visual-aware textual features by considering the visual modal-
ity. TCM effectively models the dependency between textual
attributes and category names of old and new expressions
based on a textual compositional graph. TVM and TCM are
complementary to each other, where an effective visual-textual
distillation loss is introduced to calibrate them. Finally, we
combine the outputs from TVM and TCM to obtain the final
classification results.

On the one hand, at each incremental task, we can leverage
well-trained visual attributes guided by textual information to
discover subtle visual distinctions between compound expres-
sions, enabling the model to easily adapt to new classes. On
the other hand, since visual attributes are shared across old
and new expressions, learning new compound expressions is
beneficial to enhance the representations of visual attributes.

This in turn can reduce the forgetting of old classes.
The main contributions of this paper are as follows:
• We propose a novel VTA-Net method for class-

incremental FER, where we effectively take advantage
of visual and textual modalities to relieve the stability-
plasticity dilemma.

• We model the intrinsic relationship between basic and
compound expressions from the perspective of visual-
textual attribute learning. Therefore, we can represent
old and new expressions by attributes in a simple and
unified way. Based on visual and textual attributes, we
develop TVM and TCM to extract textual-aware visual
features and visual-aware textual features, respectively,
for classifying expressions.

• We perform extensive experiments on both in-the-lab
and in-the-wild facial expression databases to show the
effectiveness of our method against several state-of-the-
art methods. This clearly validates the potential of visual-
textual attribute learning in our task.

The remainder of this paper is organized as follows. First,
we review the related work in Section II. Then, we elaborately
describe our proposed method in Section III. Next, we perform
extensive experiments on three facial expression databases in
Section IV. Finally, we draw the conclusion in Section V.

II. RELATED WORK

In this section, we first introduce facial expression recogni-
tion in Section II-A. Then, we briefly review class-incremental
learning in Section II-B.

A. Facial Expression Recognition (FER)

A variety of FER methods [2]–[4], which aim to classify
an input facial image into one of the basic expressions, have
been developed and shown outstanding performance. However,
basic expressions cannot comprehensively describe the diver-
sity of human emotions. Du et al. [7] define 22 expression
categories (consisting of basic and compound expressions)
and reveal that compound expressions can be viewed as
combinations of basic expressions. Such combinations are con-
sistent with the subordinate categories involved. For example,
the happily-surprised expression involves muscle movements
observed in the basic expressions of happiness and surprise.
Meanwhile, the differences between compound expressions are
sufficient to distinguish. Later, a large-scale dataset EmotioNet
[12] and a real-world dataset RAF-DB [13] are collected to
involve both basic and compound expressions, paving the way
for more practical applications of FER. Compared with basic
expressions, the visual differences between compound expres-
sions are more subtle. Thus, it is vital to extract fine-grained
features for identifying compounding expressions. Guo et
al. [14] learn the appearance and geometric representations
for compound FER while Zhang et al. [15] develop a two-
stage recognition strategy (including coarse and fine stages)
to perform compound expression recognition. Zou et al. [16]
perform compound FER under the cross-domain few-shot
learning setting.
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Recently, some methods [17]–[20] explore the facial expres-
sion generation and achieve outstanding performance. Wu et
al. [17] utilize local focuses to preserve details and suppress
overlapping artifacts for realistic performance, while Ma et al.
[20] leverage parametric 3D facial representations and achieve
high-quality facial expression transfer. Otberdout et al. [21]
remove the constraint of the 4D sequence and address 4D
facial expression generation. Although expression generation
can enlarge the diversity of compound expression images, the
quality of the generated expression images may affect the final
recognition performance.

Due to the ever-changing environment, training a model
on all the expressions at once is struggling and impracti-
cal. To fit for more practical applications, we introduce the
CIL paradigm to FER, so that we are able to perform the
classification of both basic and compound expressions when
expression data are collected continuously. Note that Zhu et
al. [22] also perform FER in the CIL paradigm and develop
a center-expression-distilled loss. Regrettably, they focus on
only basic expressions and do not fully exploit the intrinsic
relationship between expressions. In this paper, we study FER
in a different but more practical CIL setting, which considers
both basic and compound expressions. Notably, we leverage
basic expressions as initial classes and continually learn new
compound expressions. Meanwhile, we propose to make use of
the textual modality to improve the performance for classifying
both old and new expressions during incremental learning.

Note that Chen et al. [23] also combine text and images
for FER. They first compute the distances between the word
embedding and the image embedding, and then transform
these distances to weights. These weights are used as prior
knowledge for classifying expressions. Unlike this method, we
investigate the textual information based on attribute learning
and model the intrinsic relationship between different expres-
sions. In this way, we can establish a simple and unified way
to represent old/new expressions at each incremental task.

B. Class-Incremental Learning (CIL)
Existing CIL methods can be roughly divided into three

groups: regularization-based, distillation-based, and structure-
based. Regularization-based methods [24], [25] often impose
constraints on the model when learning new class data.
Distillation-based methods [9], [10], [26], [27] leverage knowl-
edge distillation to enforce the outputs of old classes on the
current model to be similar to those on the previous model.
iCaRL [9] uses a distillation loss to retain the knowledge
of old classes, while PODNet [10] proposes a novel spatial
knowledge distillation. Structure-based methods [11], [28],
[29] introduce new modules to improve the capacity for
learning new classes. DER [28] proposes dynamically expand-
able representations for incremental learning and introduces
a channel-level mask-based pruning strategy to reduce the
parameters. Later, FOSTER [11] employs gradient boosting
to dynamically expand and compress the model while MEMO
[29] measures the influence of different layers in the model
and expands the specialized block incrementally.

Although the above methods have made impressive
progress, they ignore the importance of textual information

that can be accessed easily and contains rich information.
Recently, Ali et al. [30] explore word embeddings of class
names as the textual information to facilitate the distillation
process while Li et al. [31] propose to leverage the textual in-
formation by adopting the memory prompt for few-shot image
classification tasks. Inspired by these methods, we introduce
the textual modality (which contains prior knowledge of old
and new expressions) as an auxiliary signal for our class-
incremental FER task.

Note that Ali et al. [30] utilize word embeddings as se-
mantic information to facilitate the distillation calculation.
In contrast, in our paper, the expressions are represented by
attributes. Such a way can effectively preserve the relationships
between expressions during the incremental learning process.
Based on this, we model the dependency between textual at-
tributes and category names, explicitly guiding visual attribute
learning. Moreover, the learning strategies between our method
and [30] are different. In [30], the authors apply k-means to
assign a superclass label to each class, while we utilize a
textual compositional graph in TCM and a textual-guided loss
in TVM to characterize the semantic correlation explicitly.

III. METHODOLOGY

In this section, we introduce our proposed VTA-Net method
for class-incremental FER. First, we give the problem formula-
tion in Section III-A. Then, we provide the overview of VTA-
Net in Section III-B. Next, we introduce the key components
(including the TVM module and the TCM module) of VTA-
Net in Sections III-C and III-D, respectively. Subsequently, we
give the joint loss in Section III-E. Finally, we summarize the
overall training in Section III-F.

A. Problem Formulation

In many real-world applications, expression data often come
in the stream format with emerging new compound expres-
sions. To accommodate these applications, we investigate a
practical setting for class-incremental FER, which defines
the classification of well-studied and easily-accessible basic
expressions as an initial task and the learning of compound
expressions continuously as incremental tasks.

Assume that there are a sequence of N+1 incremental
tasks {D0, · · · ,DN} without overlapping classes, where Dn

denotes the n-th incremental task (D0 denotes the initial task).
Similar to [9], we adopt the rehearsal strategy, which stores
a tiny number of exemplars from old classes ever seen as
memory and fixes them during the incremental process. At
the n-th incremental task, the model is trained with a set of
expression samples Bn = {(xn

i , y
n
i , t

n
i )}Bi=1, which consist of

the exemplars from old classes and all the samples from new
classes. Here, B is the number of samples; xn

i ∈ {En ∪Dn},
yni ∈ Yn, and tni denote the i-th input image, its ground-truth
label, and the textual word vector corresponding to its category
name, respectively; En denotes the exemplars of old classes
at the n-th incremental task; Yn denotes the label set of old
classes (i.e., Cn

old) and new classes (i.e., Cn
new). In this paper,

the textual word vector is represented by a word embedding
given by the GloVe model [32].
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Fig. 2. Overview of the proposed VTA-Net method. VTA-Net is mainly composed of a textual-guided visual module (TVM) and a textual compositional
module (TCM). TVM extracts textual-aware visual features and predicts expressions by incorporating the textual modality into visual attribute learning, while
TCM performs expression recognition based on visual-aware textual features by additionally considering the visual modality. A visual-textual distillation loss
is used to calibrate the two modules above. We use ResNet-18 as the backbone. Details of symbols are given in the text.

B. Overview

Considering the intrinsic relationship between basic and
compound expressions, we view the latent visual features
(which focus on the most related facial regions w.r.t one basic
expression) extracted from basic expression images as visual
attributes and the textual word vectors from their category
names as textual attributes. Based on this, old/new expression
images and their category names are respectively described in
terms of visual and textual attributes that are common across
expressions. In this way, the visual-textual information of
expressions is appropriately modeled. Learning visual-textual
attributes enables us to represent old and new expressions in
a simple and unified manner during incremental learning.

The whole framework of our VTA-Net method is given in
Fig. 2. VTA-Net is mainly composed of a textual-guided visual
module (TVM) and a textual compositional module (TCM).
TVM predicts expressions based on textual-aware visual fea-
tures by additionally considering the textual modality. TCM
performs expression recognition based on visual-aware textual
features by additionally considering the visual modality. TVM
and TCM are complementary to each other and are beneficial
to discover the intrinsic relationship between old and new
expressions for class-incremental FER. In particular, a visual-
textual distillation loss is introduced to calibrate TVM and
TCM. Finally, the outputs from TVM and TCM are simply
added as the final prediction results.

C. Textual-Guided Visual Module (TVM)

TVM is designed to identify the most related facial re-
gions for each visual attribute (which corresponds to one
basic expression) and extract textual-aware visual features
for expression recognition. To effectively exploit the textual

modality, we leverage the textual attributes to guide visual
attribute learning.

Specifically, assume that we have K (equal to the number
of basic expression categories) visual attributes. Given the i-
th image xn

i at the n-th incremental task, a set of preliminary
visual features are first extracted from the backbone. In this
paper, we transform the feature map Fi ∈ RH×W×C extracted
from the last convolutional layer of the backbone into a
set of preliminary visual features {f1,i, f2,i, · · · , fHW,i} with
fr,i ∈ RC×1, where H , W , and C denote the height, width,
and channel number, respectively. Hence, each preliminary vi-
sual feature is constructed by concatenating the same position
feature values along the channel dimension. These preliminary
visual features corresponding to different facial regions (note
that each pixel in the feature map corresponds to a receptive
field in the original image) and a set of textual attributes
{s1, s2, · · · , sK} (sk ∈ RZ×1 represents the Z-dimensional
textual word vector for the k-th basic expression name) are
used as the inputs of TVM.

For the k-th visual attribute, we first calculate a visual-
textual compatibility score between the corresponding textual
attribute and the r-th preliminary visual feature, which can be
defined as

αr
k,i =

exp(sTkWαfr,i)∑HW
r′=1 exp(sTkWαfr′,i)

, (1)

where Wα ∈ RZ×C is a learnable matrix; αr
k,i ∈ R1×1

denotes the visual-textual compatibility score. The higher
value of αr

k,i indicates that the r-th preliminary visual feature
(corresponding to a facial region) is more related to the k-th
textual attribute.

Then, the preliminary visual features and their visual-textual
compatibility scores are combined to obtain the latent visual
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feature, which pays attention to the most related facial regions
for the k-th visual attribute (e.g., the mouth region for the
visual attribute corresponding to the surprised expression). We
denote this feature as the k-th visual attribute, i.e.,

ak,i =

HW∑
r=1

αr
k,ifr,i, (2)

where ak,i ∈ RC×1 denotes the k-th visual attribute for the
i-th image xn

i .
Attribute Relation Block (ARB). To effectively highlight the
relevant visual attributes for each expression, we apply a set
of ARBs, where each block consists of a fully-connected (FC)
layer and a Sigmoid activation operation. Mathematically, each
block is formulated as

βk,i = σ1(W
T
βk
ak,i), (3)

where βk,i is the attentive weight for the k-th visual attribute;
Wβk

∈ RC×1 and σ1 denote the linear transformation of the
FC layer and the Sigmoid operation, respectively. Ideally, the
attentive weight of one relevant visual attribute should be large
for a basic expression image while the attentive weights of
two relevant visual attributes should be large for a compound
expression image.

Next, we combine these features and generate a textual-
aware visual feature, defined as vi =

∑K
k=1βk,iak,i for the

i-th input image. Finally, the textual-aware visual feature vi

is fed into a cosine classifier [33] to give the predicted results
(denoted as pi).
Textual-Guided Loss. The visual differences between ex-
pressions are subtle and fine-grained. To effectively capture
fine-grained distinctions, we leverage a co-occurrence loss
to explicitly enforce each expression (basic or compound
expression) to associate with the relevant visual attributes.
Meanwhile, we expect that the different facial images from
the same expression category have similar distributions of
attentive weights, according to the correlation between the
category name and textual attributes (since this correlation is
fixed and consistent during incremental learning). Therefore,
we also adopt a distribution loss. By combining the co-
occurrence loss and the distribution loss, we define the textual-
guided loss as

Lt = −
K∑

k=1

1[k=ỹn
i ]log(pk,i)︸ ︷︷ ︸

Lco

+

K∑
k=1

(βk,i − β̃k,i)
2

︸ ︷︷ ︸
Ldis

, (4)

pk,i =
σ2(ak,i)

Tσ2(lk)

||σ2(ak,i)||2||σ2(lk)||2
, (5)

where Lco and Ldis are the co-occurrence loss and the distri-
bution loss, respectively; lk ∈ RC×1 is a learnable vector and
σ2 is the ReLU operation; pk,i is the occurrence probability
of visual attributes by computing a cosine similarity between
ak,i and lk; when k = ỹni , the function 1[k=ỹn

i ] equals
to 1, otherwise its value is 0; β̃k,i denotes the correlation
learned from the textual modality through a cosine similarity
between the category name tni and textual attributes. For a
basic expression image at the initial task, its class label y0i

equals to ỹ0i . For a compound expression image at the n-th
incremental task, its class label yni is converted into the labels
(ỹnp and ỹnq ) of its two relevant basic expressions (instead of
directly using its class label).

Geometry and motion [34], [35] are widely utilized in the
FER field, and both of them show promising performance for
classifying video-based expressions. In this paper, we mainly
consider image-based FER, where the motion information
cannot be used. Some existing FER methods [3], [36]–[38]
either explore an attention mechanism or divide an image into
diverse local patches to adaptively capture the importance of
facial regions, learning discriminative features without pre-
defined landmarks or geometry-based features. Motivated by
the success of these methods, we expect our visual modality
to focus on different regions in TVM. By combining the
visual-textual compatibility scores and the preliminary visual
features, TVM first learns the important regions of the corre-
sponding basic expressions (as illustrated in Fig. 2). Then,
TVM utilizes ARB to highlight and aggregate the relevant
visual attributes for each expression. In this way, fine-grained
details about the expression can be extracted in TVM.

D. Textual Compositional Module (TCM)
To make full use of textual information at the semantic level,

TCM is designed to model the dependency between textual
attributes and category names of old and new expressions
based on a textual compositional graph.

Compositionality, which has been widely used in zero-shot
learning [39], [40] and transfer learning [41], can be viewed
as the ability to decompose an observation into its primitives
[42]. Inspired by this, at the n-th incremental task, we propose
to construct a novel textual compositional graph based on
textual attributes and category names (i.e., the compositions
of textual attributes). For example, ‘Happily-surprised’ is a
composition of ‘Happy’ and ‘Surprised’. Hence, the graph can
model the initial dependency between textual attributes and
category names of old and new expressions. Based on it, a
graph convolutional network (GCN) is leveraged to learn the
dependency structure. In this way, the prior knowledge of the
relevance between expressions is well exploited.
Node Features. Both textual attributes and category names
are viewed as nodes. Each textual attribute is represented by
a textual word vector of one basic expression name, while
each compound expression name is represented by averaging
textual word vectors of its relevant textual attributes.
Textual Compositional Graph. The textual compositional
graph defined in our method is constructed by Q = K + |Yn|
node features that represent K textual attributes and their |Yn|
compositions (i.e., category names of old and new expressions)
at the n-th incremental task. Technically, the textual compo-
sitional graph M, which is a symmetric adjacency matrix, is
constructed according to the relevance between expressions.
If there is a connection between node i and node j (i.e., two
nodes corresponding to overlapped category names (such as
‘Happily-Surprised’ and ‘Happy’) or two nodes corresponding
to textual attributes), Mij = 1, otherwise Mij = 0.
Training Process. GCN [43] is an efficient type of convolu-
tional neural network (CNN) on graphs and learns new feature
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representations of nodes over M layers. We use the textual
compositional graph as the adjacency matrix M ∈ RQ×Q. M
and node features O ∈ RQ×Z (each row is a textual word
vector) are taken as the inputs of GCN. Then, GCN is utilized
to propagate and aggregate the relations over neighboring
nodes. The propagation rule [43] can be formulated as{

H(m+1) = σ2(D−1MH(m)W(m)),

H(0) = O,
(6)

where W(m)denotes a learnable weight matrix; D represents a
diagonal node degree matrix with normalized rows in M; H(m)

is the hidden representations in the m-th layer. The output of
GCN is denoted as H(M) ∈ RQ×Z . We choose the last |Yn|
rows of H(M) which predict the classifier weights for all the
seen expression categories, and denote them as K ∈ R|Yn|×Z .

Finally, the output of TCM is given by gi = Khg(vi),
where gi ∈ R|Yn|×1 denotes the prediction of TCM and hg(·)
denotes a nonlinear network (an FC layer followed by a ReLU
activation function) to reduce the dimension of vi to Z and
generate the visual-aware textual feature.

In TCM, the textual compositional graph is initialized in an
unweighted way. Based on it, GCN is utilized to propagate
and aggregate the relations over neighboring nodes, learning
the dependency between nodes flexibly and adaptively.

E. Joint Loss

We obtain the final prediction results by combining the
outputs from TVM and TCM as di =

1
2pi +

1
2gi.

Visual-Textual Distillation Loss. Inspired by [44], a visual-
textual distillation loss Lvt is introduced to calibrate TVM
and TCM during incremental learning. Lvt is composed of a
Jensen-Shannon divergence (JSD) and a squared l2 distance
between the predictions of two modules, which is formulated
as

Lvt =
1

2
(DKL(pi||gi) +DKL(gi||pi)) + ||pi − gi||22, (7)

where pi and gi are the probability outputs of all the seen
classes from TVM and TCM, respectively, for the i-th input
image at the n-th incremental task. DKL(.||.) denotes the
Kullback-Leibler (KL) divergence. The first two terms are
JSD, while the last term is the squared l2 distance. JSD is a
symmetric and smoothed version of the KL divergence, which
measures the similarity between two probability distributions.
In our task, JSD can measure how closely the probability
distribution of features in one modality matches with the distri-
bution in another modality. By minimizing JSD, the model is
encouraged to produce similar distributions for both textual
and visual inputs. The l2 distance measures the difference
between two sets of values. Minimizing the l2 distance can
push the model to make the features from the two modalities
as close as possible. In a word, the JSD ensures that the
distributions of features from the two modalities are aligned,
while the l2 distance ensures the corresponding features from
the two modalities are close, providing a more direct measure
of similarity. By combining the two losses, our method can
give better performance than using either loss alone. This is

Algorithm 1 The overall training of our method at the n-th
incremental task
Input: The n-th incremental subset Dn; the old class ex-
emplars En; the total training epochs Tmax; a set of textual
attributes {s1, s2, · · · sK}; the node features O in Dn;
Output: The updated model;

1: Initialize the textual compositional graph M via the node
features O;

2: for each t = 1 to Tmax do
3: for each mini-batch in {Dn ∪ En} do
4: for each image in a mini-batch do
5: Calculate the visual-textual compatibility score

αr
k,i via Eq. (1);

6: Obtain the k-th visual attribute ak,i via Eq. (2);
7: Calculate the attentive weight βk,i for ak,i via

Eq. (3);
8: Calculate the textual-guided loss via Eq. (4);
9: end for

10: Obtain the textual-aware visual feature vi and the
output pi of TVM via the cosine classifier;

11: Calculate the updated classifier weights of TCM via
GCN via Eq. (6);

12: Obtain the visual-aware textual feature and the out-
put gi of TCM;

13: Obtain the final results via a simple addition between
pi and gi;

14: Calculate the visual-textual distillation loss via
Eq. (7) and the classification loss via Eq. (8);

15: Update the model by SGD;
16: end for
17: end for

because Lvt can deal with both the distributional alignment
and the feature-wise alignment, leading to a more robust and
effective learning process.
Classification Loss. We leverage the cross-entropy loss with
self-calibration [45] as the classification loss, which can offer
non-zero probabilities to old classes, reducing the forgetting
of old classes during incremental learning. The classification
loss is define as

Lc = −
|Yn|∑
l=1

1[l=yn
i ]log(σ3(sl,i))− λclog(

|Cn
old|∑

l
′
=1

σ3(sl′ ,i + 1Cn
old

(l
′
))),

(8)
where λc is the balancing parameter; si denotes the class
scores given by the classifier in TVM or TCM; sl,i is the l-th
element of si; σ3(sl,i) = exp(sl,i)/

∑|Yn|
c=1 exp(sc,i) denotes

the softmax operation; σ3(si) equals to pi in TVM and gi

in TCM; when l = yni , the function 1[l=yn
i ] equals to 1,

otherwise its value is 0; when l
′ ∈ Cn

old, the function 1Cn
old

(l
′
)

equals to 1, otherwise its value is -1;
Based on the above formulations, the joint loss is given as

L = Ld + λ1Lc + λ2Lt + λ3Lvt, (9)

where Ld denotes a simple distillation loss [9]; λ1, λ2, and
λ3 are the balancing parameters.
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F. Overall Training

We summarize the overall training of our method at the n-th
incremental task in Algorithm 1.

IV. EXPERIMENTS

In this section, we first introduce the databases in Section
IV-A. Then, we present the implementation details of our
method in Section IV-B. Next, we conduct ablation studies
in Section IV-C and give some visualization results in Section
IV-D. Finally, we compare our method with several state-of-
the-art methods in Section IV-E.

A. Databases

In this paper, we evaluate our method on an in-the-lab
database (i.e., CFEE [7]) and two in-the-wild databases (i.e.,
RAF-DB [13] and EmotioNet [12]).

CFEE first defines the compound expressions. In CFEE, a
total of 230 human subjects are recruited from the university
area, where different races are included. Meanwhile, CFEE
also provides facial action unit (AU) coding system analysis
to analyze the differences between basic expressions and com-
pound expressions. Each AU encodes the fundamental actions
of individuals or groups of muscles, where the meaningful
combinations of AU can give specific facial expressions. In
total, CFEE contains 7 basic expressions (with 1,610 images)
and 15 compound expressions (with 3,450 images).

RAF-DB is a real-world FER database ranging in age
from 0 to 70 years old including 52% female, 43% male,
and 5% remain unsure. For the racial distribution, there
are 77% Caucasian, 8% African-American, and 15% Asian.
Meanwhile, RAF-DB contains basic expressions with a single-
modal distribution and compound expressions with a bimodal
distribution, consistent with the CFEE observations. In total,
RAF-DB contains 7 basic expressions and 11 compound ex-
pressions. Specifically, it has 15,339 basic expression images
involving 12,271 training images and 3,068 test images. It
also has 3,954 compound expression images involving 3,162
training images and 792 test images.

EmotioNet is a large-scale in-the-wild database captured
from the internet, where AU and AU intensity are auto-
matically annotated by a trained classifier. Meanwhile, it
also divides facial expressions into the basic and compound
emotion categories defined in CFEE. We use the second track
of the EmotioNet Challenge. It contains 2,478 images with 6
basic expressions and 10 compound expressions.

B. Implementation Details

Each facial image is first aligned and then resized to the
size of 224×224. All the results are reported under the same
settings based on PyCIL [46] (a Python toolbox for CIL).

Our model is trained using stochastic gradient descent with
the initial learning rate of 0.01 at the initial task and 0.001 at
the incremental tasks, where we use CosineAnnealingLR [47]
as a scheduler. For each incremental task, we train the model
for 40 epochs with a batch size of 32. We store 20 exemplars
of old classes based on the rehearsal strategy as [9].

Following most existing FER methods [2], [3], [16], all
the competing methods here adopt ResNet-18 pre-trained on
the MS-Celeb-1M face recognition dataset as the backbone
because of its good tradeoff between classification accuracy
and model efficiency. Note that vision Transformer (ViT) [48]
is not used as the backbone. This is due to the relatively large
number of network parameters in ViT, which adversely affects
the performance (since the number of training expression
images is not sufficient during each incremental task in our
experiments). In all experiments, we first train our method on
basic expressions as the initial task and learn new compound
expressions as the incremental tasks. We run experiments on
three different compound class orders (i.e., random seed 1993
as common). We first set the classification of basic expressions
as our initial task and then the compound expressions are
randomly selected and learned incrementally at each incre-
mental task according to the class orders. The number of
incremental classes is set to C=3 or C=5 in incremental tasks.
The parameters λ1, λ2, λ3, and λc are empirically set to 1.0,
1.0, 0.5, and 0.1, respectively (λc=0 at the initial task). The
number of basic expression categories K is 7 in RAF-DB and
CFEE, while K is 6 in EmotioNet. The results are evaluated
on both old and new classes after each incremental task. Then,
we average these results as the final result for each class
order. Finally, the report average±standard deviations for three
different class orders as DER [28].

For RAF-DB, we employ its official training set and test set.
For CFEE and EmotioNet, we follow the default evaluation
protocols provided in the original papers, where we conduct
a 10-fold cross-validation test on CFEE and a 5-fold cross-
validation test on EmotioNet. The random state of division is
1993. The evaluation protocols in these databases are designed
to evaluate the performance of FER under various conditions
(such as different races, genders, poses, illuminations, and
identities). By adopting the default evaluation protocols, the
results obtained by our method and those in other papers can
be fairly compared.

C. Ablation Studies

The results obtained by different variants of VTA-Net on
RAF-DB are given in Table I. ResNet-18 with a cosine
classifier and a simple distillation strategy is used as our
baseline method.
Influence of TVM. We evaluate a variant of our method
(denoted as Baseline+TVM), which incorporates TVM into
the baseline. Moreover, we evaluate Baseine+TVM without
the textual-guided loss (denote as Baseline+TVM (w.o. Lt)).
We also evaluate a simple version of our method (denoted as
Baseline+Textual), which simply exploits the textual informa-
tion by projecting the visual features into the textual space, as
done in [49].

Compared with the Baseline, Baseline+Textual obtains
higher accuracy for both C=3 and C=5, This indicates that
making use of the rich textual information is beneficial to
improve the performance of class-incremental FER. Base-
line+TVM significantly outperforms Baseline+Textual. Notice
that Baseline+Textual simply learns a visual-textual mapping,
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TABLE I
ABLATION STUDIES FOR SEVERAL VARIANTS OF OUR METHOD WITH THE

DIFFERENT NUMBERS OF INCREMENTAL CLASSES C=3 AND C=5 ON
RAF-DB. ‘AVG±STD’ DENOTES THE AVERAGE ACCURACY (%) AND THE

STANDARD DEVIATION OVER THE INCREMENTAL TASKS. THE BEST
RESULTS ARE MARKED IN BOLD.

Methods
Avg±std

C=3 C=5

Baseline 45.53±1.49 48.77±1.67

Baseline+Textual 51.17±1.69 54.82±0.27

Baseline+TVM (w.o. Lt) 60.89±1.22 61.85±0.42

Baseline+TVM (Lco) 62.59±1.72 63.96±0.27

Baseline+TVM (Ldis) 61.59±0.55 63.78±0.82

Baseline+TVM 66.35±0.67 66.56±0.44

Baseline+TCM 63.32±0.83 63.86±0.74

Baseline+TVM+TCM (C) 67.37±1.13 67.45±0.76

Baseline+TVM+TCM (Con) 67.13±1.72 66.76±0.80

Baseline+TVM+TCM (Att) 65.10±1.13 66.94±1.08

Baseline+TVM+TCM (w.o.Lvt) 70.51±1.08 70.35±0.71

Baseline+TVM+TCM (JSD) 70.84±0.61 71.67±0.34

Baseline+TVM+TCM (l2) 71.03±0.60 71.72±0.26

Baseline+TVM+TCM 71.05±1.20 72.17±0.38

which cannot effectively describe subtle visual distinctions
between expressions. In contrast, Baseline+TVM can extract
more discriminative fine-grained features guided by the textual
attributes. Compared with Baseline+TVM (w.o. Lt), Base-
line+TVM achieves 5.46% and 4.71% improvements in terms
of recognition accuracy on C=3 and C=5, respectively. The
co-occurrence loss can enforce each expression to associate
with the relevant visual attributes, while the distribution loss
can make the same expression category give similar weights.
Minimizing the two losses can improve the performance from
the perspectives of the relationship among expressions and the
distribution within one expression. Hence, their combination
can make the model obtain better performance. The above
experiments show the effectiveness of TVM and the textual-
guided loss.
Influence of TCM. We evaluate a variant of our method
(denoted as Baseline+TCM), which incorporates TCM into
the baseline. For Baseline+TCM, we directly use the features
extracted from the backbone network instead of the textual-
aware visual features. Baseline+TCM obtains better accuracy
than Baseline and Baseline+Textual for both C=3 and C=5.
This shows the importance of TCM, which exploits the depen-
dency between textual attributes and category names based on
a textual compositional graph.
Influence of Different Fusion Strategies. We investigate three
different fusion strategies from the different perspectives of fu-
sion level (including feature level (concatenation and attention)
and decision level) to investigate the different combinations of
TVM and TCM. Specifically, we denote the method that only
uses the outputs (i.e., gi) of TCM for expression classification
as Baseline+TVM+TCM (C), while the method that only uses
the outputs (i.e., pi) of TVM for identifying expressions is
denoted as Baseline+TVM. Baseline+TVM+TCM (Con) de-
notes the method that adopts a concatenate operation between
the textual-aware visual feature in TVM and the visual-aware
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Fig. 3. Influence of the combination coefficients (c1, c2) of the outputs
from TVM and TCM on RAF-DB.

textual feature in TCM, and then passes the concatenated
feature through a nonlinear network (an FC layer followed by a
ReLU activation function) for expression classification. Base-
line+TVM+TCM (Att) denotes the method that applies the at-
tention mechanism [50] between the visual and textual features
in TVM and TCM. Both Baseline+TVM+TCM (Con) and
Baseline+TVM+TCM (Att) perform fusion at the feature level.
Our proposed method is denoted as Baseline+TVM+TCM ,
while our method without the visual-textual distillation loss is
denoted as Baseline+TVM+TCM (w.o. Lvt). The comparison
results are given in Table I.

Compared with Baseline+TVM, Baseline+TVM+TCM (C)
and Baseline+TVM+TCM (w.o. Lvt) gives 1.02% and 4.16%
accuracy improvements, respectively, on C=3. More impres-
sively, Baseline+TVM+TCM (w.o. Lvt) outperforms Base-
line+TVM+TCM (C) by 3.14% and 2.90% improvements in
terms of accuracy for C=3 and C=5, respectively. There-
fore, the predicted results fused from the two modules can
give better performance. Baseline+TVM+TCM (Con) and
Baseline+TVM+TCM (Att) obtain worse results than Base-
line+TVM+TCM. This shows that these two types of fusion
strategies are not optimal choices for our class-incremental
FER task. The decision-level fusion gives better results than
the feature-level fusion. Baseline+TVM+TCM achieves higher
accuracy than Baseline+TVM+TCM (w.o. Lvt). JSD can help
the feature distributions of the two modalities become more
similar since we expect that the two modalities can com-
plement and calibrate from the perspective of distribution.
Meanwhile, we also expect that the l2 distance can make
the features from the two modalities more similar. From
Table I, we can see the combination of them can achieve better
performance than each loss. This shows the superiority of Lvt

since these two modules can learn collaboratively to calibrate
each other.
Influence of the Combination Coefficients. We study the
influence of the combination coefficients (c1, c2) of the outputs
from TVM and TCM (i.e., the final output is predicted by
c1pi+c2gi) on RAF-DB. The results are given in Fig. 3.
From Fig. 3, our method obtains the best results when the
combination coefficients are set to (0.5, 0.5). Therefore, both
TVM and TCM are equally important to ensure the good
accuracy of our method.
Influence of the Number of Incremental Classes. We also
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Fig. 4. Influence of the number of incremental classes on RAF-DB.

TABLE II
PERFORMANCE (THE AVERAGE ACCURACY (%)) COMPARISONS

BETWEEN THE PROPOSED METHOD AND SEVERAL STATE-OF-THE-ART
FER METHODS ON TWO POPULAR DATABASES (MMI AND

OULU-CASIA.

Methods MMI Oulu-CASIA

DDL [53] 83.67 88.26
FDRL [16] 85.23 88.26
ADDL [54] 86.13 89.44

CBLSTM [55] 83.67 -

Baseline 75.58 85.49
VTA-Net (Ours) 85.79 88.54
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Disgusted

Fig. 5. Visualization of the attention maps of 7 visual attributes correspond-
ing to 7 basic expression and compound expression images on RAF-DB. The
image in the red box in each row denotes the attention map of the relevant
visual attribute associated with one basic expression.
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Fig. 6. Visualization of confusion matrices obtained by (a) Baseline, (b)
FOSTER, (c) SCN, and (d) our VTA-Net at the last incremental task on CFEE
(C=5).

visualize the influence of the number of incremental classes
(denoted as C) on RAF-DB. As shown in Fig. 4, the different
values of C have great influence on the final performance.
When the number of incremental classes becomes large, the
influence caused by forgetting is alleviated. Meanwhile, our
method greatly outperforms than Baseline. This shows the
effectiveness of our method. Therefore, we choose two specific
values of C to evaluate the performance of CIL FER tasks
when the number of incremental classes is small (C=3) and
large (C=5) in our experiments.

Performance on the Traditional FER Task. To identify the
relationship between our task and the traditional FER task
(i.e., the classification of basic expressions), we train and test
our model on the basic expression images (such a task is the
same as the initial task D0) and compare our method with
several state-of-the-art FER methods on two popular basic
expression databases (MMI [51] and Oulu-CASIA [52]). The
results are given in Table II. We can see that our proposed
method, although designed for class-incremental FER rather
than traditional FER, outperforms some state-of-the-art FER
methods (such as DDL, FDRL, and CBLSTM). This shows the
feasibility of our model on the traditional FER task. Note that
our method achieves worse performance than the recently pro-
posed method ADDL. ADDL leverages complicated network
design to alleviate the influence of multiple disturbing factors
for FER. In contrast, our method aims to address the stability-
plasticity dilemma of class-incremental FER (note that our
method is not designed for the traditional FER task). Our
method explores the relationship between basic and compound
expressions by attribute learning. Moreover, we model the
dependency between textual attributes and category names of
old and new expressions in TCM.
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TABLE III
THE LABEL INFORMATION OF DIFFERENT EXPRESSIONS IN CFEE.

Label Expressions Label Expressions

0 Neutral 11 Appealled
1 Happy 12 Fearfully Angry
2 Sad 13 Sadly Fearful
3 Happy 14 Hatred
4 Angry 15 Sadly Surprised
5 Surprised 16 Happily Surprised
6 Disgusted 17 Angrily Disgusted
7 Angrily Surprised 18 Fearfully Disgusted
8 Awed 19 Sadly Disgusted
9 Disgustedly Surprised 20 Fearfully Surprised
10 Sadly Angry 21 Happily Disgusted

(a) (b)

Fig. 7. Visualization of correlations between textual word vectors corre-
sponding to some category names on (a) CFEE and (b) RAF-DB.

D. Visualization

Visualization of Attention Maps. Fig. 5 visualizes the at-
tention maps of 7 visual attributes corresponding to 7 basic
expression images and some compound expression images
(from K=7 classes) on RAF-DB. Our model can effectively
learn visual attributes for different basic expression images.
Each visual attribute can pay attention to the most related
regions which contain rich and fine-grained information for
identifying the corresponding expression. Based on the learned
visual attributes from basic expressions, compound expres-
sions can be represented in terms of visual attributes. Thus, we
can represent an old or new expression (a basic or a compound
expression) in a simple and unified way, serving as the basis
of our method for the class-incremental FER task.

Moreover, we can see that each compound expression as-
sociates with its relevant visual attributes which pay attention
to the most related regions for this expression. For example,
as shown in Fig. 5, the visual attribute of the expression ‘An-
grily Surprised’ (corresponding to the ‘Angry’ and ‘Surprised’
expressions) can focus on the informative region (e.g., the
eye and the mouth) and suppress other uninformative regions.
Although some expressions could share very similar facial
actions, the most related expressions should be emphasized
with co-occurrence loss. The same phenomenon also can be
shown in the compound expression ‘Angrily Disgusted’, as a
combination of the basic expressions ‘Angry’ and ‘Disgusted’,
the relevant visual attributes related to ‘Angrily Disgusted’ are
more highlighted.
Visualization of Confusion Matrices. We visualize the

(b) VTA-Net(a) Baseline

Fig. 8. Visualization of expression features obtained by (a) Baseline and
(b) VTA-Net. We randomly select several basic and compound expressions
from different incremental tasks. The upper row and the lower row of panels
show the feature distributions on RAF-DB and CFEE, respectively.

confusion matrices obtained by several methods at the last
incremental task on CFEE (C=5), as shown in Fig. 6. The label
information of different expressions in CFEE is given in Table
III. The Baseline method is prone to focus on learning new
classes even with a distillation loss, and it forgets the learned
knowledge severely. The stability (remembering old classes)
of FOSTER is better than other methods while its plasticity
(learning new classes) is not good. Moreover, these methods
do not fully consider both the rich textual information (which
characterizes the intrinsic dependency between expressions)
and the visual information. Due to the bias towards new
classes, SCN is likely to relabel the samples to new classes,
leading to the forgetting of old classes. On the contrary, our
VTA-Net effectively mitigates the stability-plasticity dilemma
by considering both visual and textual modalities.
Visualization of Correlations. As shown in Fig. 7, we visu-
alize the correlations (we use the cosine similarity) between
textual word vectors corresponding to some category names on
CFEE and RAF-DB, showing the close relationship between
basic and compound expressions. The correlations between a
compound expression and its two relevant basic expressions
are higher than those between a compound expression and
irrelevant basic expressions. Therefore, the textual modality
can provide rich prior information and offer guidance to visual
attribute learning in TVM.
Visualization of Expression Features. In Fig. 8, we visualize
the expression features of test data by t-SNE on RAF-DB
(C=3) and CFEE (C=3). Compared with the features obtained
by Baseline, the features obtained by our VTA-Net method are
more discriminative on different classes. Our method can ef-
fectively learn features with better inter-class separability and
intra-class compactness for identifying different expressions.
Test Accuracy on CFEE and EmotioNet. We show the test
accuracy vs. the number of classes by different methods on
CFEE and EmotioNet in Fig. 9. Our method performs better
than the other competing methods at each incremental task
and obtains better results with the accuracy improvements
of 1.01%/0.80% and 1.13%/0.91% on CFEE (C=3/C=5) and
EmotioNet (C=3/C=5), respectively. This demonstrates the
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TABLE IV
PERFORMANCE COMPARISONS (THE AVERAGE ACCURACY (%) AND THE STANDARD DEVIATION OVER THE INCREMENTAL TASKS) BETWEEN OUR
PROPOSED METHOD AND SEVERAL STATE-OF-THE-ART METHODS WITH THE DIFFERENT NUMBERS OF INCREMENTAL CLASSES C=3 AND C=5 ON

CFEE, RAF-DB, AND EMOTIONET. THE BEST RESULTS ARE MARKED IN BOLD.

Methods
CFEE RAF-DB EmotioNet

C=3 C=5 C=3 C=5 C=3 C=5

iCaRL [9] 67.39±1.25 68.27±1.64 63.33±0.79 63.96±0.22 59.48±0.44 61.40±0.77

PODNet [10] 63.82±1.85 66.31±1.55 58.36±1.20 61.02±0.92 56.11±0.57 59.73±1.32

COIL [56] 56.35±1.26 58.25±0.47 47.73±2.65 48.34±1.13 52.85±2.21 56.38±1.62

AFC [27] 65.54±1.75 66.81±1.49 68.59±1.11 66.96±0.47 59.79±1.50 61.75±0.91

FOSTER [11] 62.12±1.60 62.39±1.17 69.11±0.58 70.04±0.27 60.90±2.06 62.85±0.40

MEMO [29] 66.01±2.28 67.95±1.97 63.22±1.47 62.49±0.72 57.87±1.85 58.73±0.93

SCN [2] 46.62±0.23 53.73±1.29 43.34±2.53 40.34±1.45 50.21±1.84 55.40±1.43

Baseline 60.30±1.41 61.30±0.95 45.53±1.49 48.77±1.67 55.48±0.75 57.23±1.08

VTA-Net (Ours) 68.40±1.46 69.07±1.59 71.05±1.20 72.17±0.38 62.03±1.50 63.76±0.76
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Fig. 9. Test accuracy (%) vs. the number of classes obtained by different methods for (a) C=3 and (b) C=5 on CFEE, while (c) C=3 and (d) C=5 on
EmotioNet.
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Fig. 10. Test accuracy vs. the number of classes obtained by different
methods for (a) C=3 and (b) C=5 on RAF-DB.

effectiveness of our method.
FOSTER achieves slightly worse performance than our

method on EmotioNet, but its performance greatly drops on
CFEE. This is mainly due to the different characteristics of the
databases. CFEE involves more subtle differences between the
compound expression categories (such as hatred and appalled)
than EmotioNet. Note that FOSTER leverages the dynamic
structures and requires a large number of samples to accu-
rately identify these subtle distinctions, leading to insufficient
training in CFEE. In contrast, our method can achieve the best

results on both CFEE and EmotioNet among all the competing
methods.

E. Comparison with State-of-the-Art Methods

Table IV shows the performance comparisons between our
proposed VTA-Net method and several state-of-the-art CIL
methods and an FER-based method on three facial expression
databases. We also give the test accuracy vs. the number of
classes by different methods on RAF-DB in Fig. 10. Note that
some methods [30], [31] also explore both visual and textual
information for image recognition. However, they focus on
few-shot class-incremental learning, which intrinsically differs
from our settings. Therefore, these methods are not evaluated
in our experiments.

Our VTA-Net method achieves the best average accuracy
among all the competing methods while its standard devi-
ation is comparable to those of other methods on all the
databases. Specifically, VTA-Net obtains the highest accu-
racy of 68.40% (69.07%) on the in-the-lab CFEE database,
71.05% (72.17%), and 62.03% (63.76%) on the in-the-wild
RAF-DB and EmotioNet databases, respectively, when the
number of incremental classes is C=3 (5). iCaRL, PODNet,
and AFC leverage different distillation strategies to alleviate
the stability-plasticity dilemma, while FOSTER and MEMO
investigate the dynamic structures to balance the learning of
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new classes and the retaining of old classes. However, these
methods do not fully consider both the rich textual information
and the visual information. For the FER-based method, SCN
performs well on basic expressions but it may relabel the
samples to new classes due to the bias towards new classes.
On the contrary, based on the relationship between basic and
compound expressions, our proposed VTANet considers both
visual and textual modalities for class-incremental FER. The
above results show the effectiveness of our proposed method,

The Baseline method can adapt to new classes but it cannot
remember the learned knowledge well. FOSTER gives good
performance on old expressions but obtains low accuracy on
new expressions. COIL develops a semantic mapping to trans-
fer old classifiers to new classes with optimal transport and
transfer new classifiers to old classes symmetrically. However,
the semantic mapping in COIL does not fit FER CIL very
well. iCaRL, PODNet, and AFC explore different distillation
strategies, where iCaRL leverages a distillation loss via old
exemplars while PODNet and AFC utilize the distillation loss
to prevent the model from forgetting important information
of old classes. For the FER method, SCN achieves good
accuracy on the classification of basic expressions but fails
to identify old expressions in the incremental tasks. Although
the distillation loss and exemplars from old classes are used
to train SCN, it still suffers from catastrophic forgetting since
the bias towards new classes makes the model easily relabel
new classes.

Existing methods ignore the importance of textual informa-
tion in the class-incremental FER. In contrast, our VTA-Net
method explores the effective learning way of textual modality
and FER class-incremental tasks. In such a way, VTA-Net can
model the intrinsic relationship between basic and compound
expressions based on visual-textual attribute learning through
TVM and TCM. Meanwhile, VTA-Net utilizes an effective
Visual-Textual Distillation Loss to complement and calibrate
the two branches. Among all the competing methods, VTA-
Net can effectively balance the trade-off between old and
new expressions and achieve the best performance in terms
of average accuracy on three databases.

V. CONCLUSION AND FUTURE WORK

In this paper, we develop a novel VTA-Net for class-
incremental FER by taking advantage of both visual and
textual modalities. To fit to the compound FER task, we
take well-studied and easily-accessible basic expressions as
initial classes while treating new compound expressions as
incremental classes. By elaborately designing TVM and TCM,
old/new expression images and their expression names can
be represented in terms of visual and textual attributes. In
this way, the textual modality provides auxiliary supervision
to identify fine-grained expressions while the representations
of visual attributes are continuously enhanced during each
incremental task, alleviating the stability-plasticity dilemma.
Experiments show the effectiveness of our method in compar-
ison with several state-of-the-art methods.

Our method mainly focuses on addressing the stability-
plasticity dilemma of class-incremental FER. Hence, we nei-
ther utilize data augmentations to balance classes nor employ a

LOSO or LOVO decomposition to avoid representation bias.
However, the unbalanced class distribution or representation
bias can also affect the performance of class-incremental FER.
These problems merit further research in future work. Apart
from this, in real-world applications, some new compound ex-
pressions may not be clear combinations of basic expressions.
A more flexible way to deal with such a case also deserves
our future research. Our exploration suggests that we can
leverage a similarity function to explore the top similar basic
expressions of a new expression via the word embedding in
the textual space, and then leverage similar basic expressions
to guide visual-textual attribute learning.
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