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Abstract 

Biopharmaceutical industry portfolios have diversified from ones centred on protein 

therapeutics to inclusion of a myriad of novel modalities, such as cell and gene therapies 

(CGTs). These biotherapeutics have the ability to address unmet medical needs and 

potentially be curative. However, their nascency brings several complexities and uncertainties 

to their development, manufacturing and ultimately commercialisation. This thesis aims to 

create a decisional tool that integrates cost modelling with multi-objective optimisation to aid 

manufacturing and capacity decisions at the process, drug development and enterprise level 

for both protein and gene therapy modalities. 

This was approached by generating a decisional tool comprising the following key elements, 

(a) an adeno-associated virus (AAV) process economics model for the evaluation of AAV 

manufacturing options, (b) a drug development lifecycle cost model for the evaluation of 

overall research & development (R&D) budgets and (c) a stochastic multi-objective 

optimisation model for portfolio management and capacity planning of mixed-modality 

portfolios. 

Each component of the tool was used to approach industrially-relevant case studies. The first 

key novel contribution involved investigation of the cost-effectiveness and purity performance 

of AAV flowsheets, with a particular focus on the impact of traditional versus scalable 

alternatives. Secondly, the drug development cost model was used for the estimation of overall 

R&D budgets for protein and CGT products and to provide benchmark contributions for 

process development and manufacturing activities. Finally, the overall decisional tool provided 

a novel means to address a portfolio and capacity optimisation case study for mixed-modality 

drug pipelines. This reconciled both risk and reward as objective functions and provided the 

first study to consider the dynamic impact of clinical success rates on both portfolio 

composition and capacity. This initially focused on mAbs and ADCs, investigating the impact 

of batch versus continuous-next generation manufacturing on the profitability. The study was 
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extended to evaluate the impact of CGT injection upon the portfolio characteristics. Overall, 

the decisional tool outlined within this thesis addressed both a novel set of computational 

methods and case studies, tackling some of the significant challenges biotherapeutic 

developers currently face. 
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Impact statement 

Decisional tools have been utilised frequently within the biopharmaceutical industry to address 

a myriad of process and business-related questions, for a range of therapeutic modalities. The 

work conducted in this thesis involved construction of a decisional tool to address the 

perceived challenges associated with the manufacturing and development of cell and gene 

therapy products, as well as assessment of the profitability of mixed-modality portfolios in a 

dynamic environment. The outputs of each individual tool component aid industry in various 

decision-making practices early on in the development timeline. This aids in selection of 

processes or portfolio management strategies without practical implementation, thus reducing 

the use of material, labour and ultimately expenditure.  

The benefits of implementing the tools described in this thesis have been acknowledged by a 

series of industry specialists, who were involved in providing and benchmarking assumptions 

or sponsorship of the work. Particularly for the AAV process economics work, Thomas Linke, 

Ph.D. (Principal Scientist, Purification Process Sciences at AstraZeneca, Gaithersburg, USA) 

expressed that, “Adeno-associated virus (AAV)-based vectors have emerged as the leading 

platform to deliver therapeutic genes into a patient’s cells. However, high treatment costs 

present a serious obstacle for the future of AAV-based gene therapies, and significant 

improvements in productivity and yields are required to achieve reduced manufacturing costs. 

Annabel has developed a decisional tool that can be used to inform and guide upstream and 

downstream development strategies toward the most cost-effective manufacturing process 

while meeting drug substance purity targets. Annabel’s case study clearly demonstrates how 

the decisional tool identified the optimal AAV manufacturing flow chart from many options in 

terms of purity, scalability, and process economics. The results from the EngD collaboration 

between AstraZeneca and UCL can guide us in prioritising our process development efforts 

and has the potential to save approximately 12 man-months in process development that 

translates into approximately £150k. The work described in this thesis is an important 

contribution toward bringing AAV-based therapeutics to market and providing patients 
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equitable access to gene therapies.” This was further reinforced with a statement from Albert 

Schmelzer Ph.D. (Executive Director, Cell Culture & Fermentation Sciences, AstraZeneca, 

Gaithersburg, USA), who stated “Annabel has developed an informative decisional tool that 

can enable process development scientists to identify opportunities to reduce cost of goods. 

The case studies identify a strategy for achieving at least a 40% reduction in cost of goods 

manufactured compared to traditional AAV production methods. These strategies translate to 

savings of $12M or more per year at peak commercial demand for AAV-based therapies. 

Through the framework developed here, process development can proceed more efficiently, 

as cost of goods considerations are at the forefront of strategy rather than as an after-thought. 

Following a similar approach, anyone can apply this work to their manufacturing processes.” 

Furthermore, Brad Matanin (Director, Global Network Strategy for Biologics, AstraZeneca, 

Gaithersburg, USA) stated that “Biopharma portfolios are becoming increasingly complex with 

growth in both new modalities and standard mAbs.  Through this collaboration, we have 

gained access to Annabel’s portfolio analysis tool to help support decisions on how best to 

optimize R&D portfolio prioritization and asset capacity planning considering the balance 

between batch versus continuous manufacturing platforms and mAbs versus new modalities.  

This could help us prioritise investment decisions into new manufacturing facilities for next 

generation platforms and new modalities. This is key to delivering robust supply while 

maximizing profitability.”   
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1 Scope and Background 

1.1 Introduction 

The development pathway through which biological drugs traverse to achieve market status 

is often characterised by large expense and relatively low overall probabilities of success. The 

nascency of the field with respect to emerging modalities and technologies, as well as the 

many complexities existing at a molecular level often necessitate the injection of substantial 

research and development (R&D) budgets to finance key activities along the drug 

development pathway, notably process development efforts, drug manufacturing and the 

conductance of clinical trials. Estimates of these capitalised budgets have been placed in the 

range of $3 – 4bn (DiMasi et al., 2016; Farid et al., 2020) with overall timings from pre-clinical 

phase to commercialisation around 10 to 15 years. It is therefore critical that the various stage 

costs encountered along the pathway and ultimately R&D budgets are estimated early on, with 

the impact of risk upon investment playing a pivotal role in financial projections. Furthermore, 

at a dynamic level, consideration of a company’s finite resources and how best to allocate 

them amongst a plethora of drugs within the portfolio is also significant to ensure delays or 

manufacturing restrictions are not encountered. 

Whilst the aforementioned challenges are representative of biological drugs in general, they 

are particularly pronounced when considering the more novel biologics which have achieved 

less success to date in being commercialised. Particularly in comparison to more established 

modality groups like that of monoclonal antibodies (mAbs), cell and gene therapies (CGT) 

present significant and unique developmental challenges at both a process and business level. 

The relative complexity in production of these therapies have generated high cost of goods 

(COG) at a manufacturing level and often bring about increased early-phase process 

development effort (compared to mAbs). Furthermore, the long-term impact of utilising these 

treatments is still uncertain, hence patient follow-up is a more lengthy and costly process than 

for protein therapeutics.  
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In summary, this suggests that there is an importance in deriving a comprehensive and 

integrated tool capable of addressing the critical features of drug development, alongside the 

current challenges in both manufacturing and development. The use of decisional tools has 

historically been significant in deriving solutions to several of the process and business 

challenges (Farid, 2012). As a result, the aim of the work conducted in this thesis is the 

development and utilisation of a decisional tool that integrates process economic modelling 

with cash-flow and profitability analysis.  

To establish knowledge on the scope of research already conducted on the topics already 

outlined, including modelling techniques, this chapter presents a review of the relevant 

literature and explores areas where investigation is necessary. Section 1.2 gives an overview 

of the conventional drug development lifecycle for a biopharmaceutical, followed by a review 

of expedited pathways designed, in general, for more novel modalities. Section 1.3 provides 

detail about the manufacture of protein therapeutics, in particular monoclonal antibodies 

(mAbs) and antibody-drug conjugates (ADCs). Section 1.4 discusses the use of viral vectors 

in in-vivo gene therapy applications, specifically AAV. This section includes market data, as 

well as information on the various manufacturing strategies employed to produce AAVs and 

the corresponding challenges necessary to combat. Furthermore, Section 1.5 discusses an 

array of computational methods that have previously been employed in biopharmaceutical 

modelling and optimisation, with particularly focus given to meta-heuristics. Section 1.6 

provides a breakdown of the typical techniques employed in the decisional tools space, as 

well as various examples of their specific application within a bioprocessing context. This is 

narrowed down further to include the use of these tools for comparatively more novel 

modalities in comparison to mAbs. 
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1.2 Biopharmaceutical drug development 

Biopharmaceuticals are a subset of pharmaceuticals which are derived from biological 

sources, as opposed to chemical synthesis. These biopharmaceuticals generally may be small 

biomolecules, protein or nucleic acid-based, however in recent years, the field has expanded 

to include a wealth of other entities, including stem cells, gene therapies and combination 

therapies (Mokhtari et al., 2017). For the purposes of this review, as well as the work 

conducted in the thesis as a whole, monoclonal antibodies (mAbs), antibody drug-conjugates 

(ADCs), adeno-associated viruses (AAVs) and chimeric antigen receptor T-cells (CAR T cells) 

are specifically focused upon. 

1.2.1 Conventional drug development pathway 

1.2.1.1 Pre-discovery and drug discovery 

The pathway from drug discovery to market for a biopharmaceutical centres around three 

stages; drug discovery, development and commercialisation (Pérez-Escobedo et al., 2011). 

Figure 1.1 highlights the breakdown of this lifecycle; initiated before drug discovery, a 

preliminary stage whereby R&D teams aim to better understand a chosen indication and its 

effect on the body (Lo & Field, 2010; Schenone et al., 2013). This initial research may take 

place within the company itself, or may be in partnership with a contract research organisation 

(CRO). Following this, a wealth of relevant biomolecules are assessed in their ability to target 

a particular disease or condition (Chorghade, 2006). This iterative research process can 

typically last for 1 - 2 years, with the number of potential drug candidates decreasing as time 

goes on. A disease target (hypothesised to be the root cause of a given indication) is typically 

identified at this point. Most significantly, validation must be carried out to ensure that the 

desired target is able to be treated by a candidate therapy (Lo & Field, 2010).  

Progression from this point involves R&D teams searching for a potential therapeutic 

candidate to address the indication, by harnessing compounds found either as wild-type 

molecules or those that have been engineered for a particular use (recombinant). Through a 
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variety of initial screening techniques, lead candidates are narrowed down via an optimisation 

process, the objective being to select the drug that displays the highest preliminary level of 

safety and efficacy. In particular, virtual screening methods have advanced in efforts to reduce 

drug discovery costs and time impacts, through incorporation of machine learning or deep 

learning methodologies (Oliveria et al. 2023). These have the ability to rapidly evaluate large 

numbers of molecular structures and hence accelerate the overall discovery phase. 

Moreover, the pre-clinical trial stage involves the testing of the identified lead compounds 

either in-vitro (usually in cells or tissue culture) or in-vivo, by using animal models (Lo & Field, 

2010). The purpose of these studies is to determine preliminary information regarding the 

toxicity levels, pharmacokinetics, pharmacodynamics and the safety of the dosing regimen for 

the drug (Mundae & Ostor, 2010; Schmidt & Grossmann, 1996). If successful in this phase 

and in order to enable the development process of a potential therapeutic to begin, an 

investigational new drug (IND) application must be submitted to the FDA (if in the US), 

enabling companies to begin clinical trials in humans participants (Nitin Kashyap et al., 2013; 

Umscheid et al., 2011). The regulatory process is not dissimilar to that with the European 

Medicines Agency (EMA); instead of an IND, an investigational medicinal product dossier is 

filed (Nitin Kashyap et al., 2013).  

1.2.1.2 Drug development 

This portion of the drug development lifecycle involves the first testing in human volunteers. 

The period is initiated with Phase I, whereby around 20 - 100 healthy participants are recruited 

(Lo & Field, 2010), with the purpose of identifying the safety, tolerability and pharmacokinetics 

of the drug (Mundae & Ostor, 2010). The number of participants is increased to around 100 - 

300 following entry into Phase II of clinical trials. This particular phase can be divided into two 

halves; Phase IIa and IIb, however the overall aim of the trial is proof of concept; that is, the 

efficacy of the drug at the particular dosing level (Yuan et al., 2016). It has been well 

documented that the transition from Phase II to III of clinical trials is a critical point in the 

development lifecycle of a drug, largely due to the clinical success rate being far lower than 
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for bridging the gap between other phases (Paul et al., 2010). Multiple possibilities for the 

lower success rate associated with this point in development have been suggested. Given the 

much higher costs associated with Phase III, companies may choose not to embark on the 

next phase, as it may not be financially feasible for them to continue the development (Basu 

et al., 2017). Alternatively, and from a drug effectiveness standpoint, Phase II represents the 

stage in which the drug is first tested for its extent of functionality. Whilst many drug candidates 

can prove safety, many fall short at providing significant levels of efficacy (Van Norman, 2019). 

Nevertheless, perhaps the most common reason for the termination of Phase II trials is the 

lack of participant recruitment or retention (Basu et al., 2017). 

Phase III trials have a similar overall aim to Phase II, however the participant pool is far larger, 

with recruitment numbers of around 300 - 3,000 volunteers (Mundae & Ostor, 2010). More 

specific objectives of this phase include identification of side effects and patients who are 

exempt, therefore also forms the basis of the appropriate instructions and packaging 

corresponding to the therapy. After successful completion of clinical trials, a New Drug 

Application (NDA) is filed and submitted to the appropriate regulatory body, containing data 

collected from all trials, thus the main objective of the application is to provide the relevant 

authorities with sufficient evidence to permit market approval of the therapy. 

1.2.2 Expedited development pathways (FDA) 

Given the estimated time to market for a therapeutic often exceeds 10 years, the applicability 

of the conventional drug development pathway can hamper the rapid and effective treatment 

of a subset of serious and life-threatening indications. As such, many of these indications have 

yet to be addressed by the biopharmaceutical industry. Thus, in order to expedite their 

development and approval, the FDA has, since 1988, introduced a series of programs to 

facilitate and accelerate either the development or review of therapies that can be used to 

treat “serious conditions” (FDA, 2014). The FDA defines serious or life-threatening condition 

as one that can result in mortality or greatly impedes the patient’s quality of life (FDA, 2014). 

Another pertinent attribute required by therapies taking an expedited pathway is that they 
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provide treatment to indications yet to be focused upon; alternatively, if evidence is supplied 

that they are an improvement over existing therapies, this is also sufficient. The general 

heuristic is the potential benefits of bringing the drug to market early warrant the risks 

associated with rapid approval (FDA, 2014). These expedited pathways can be grouped by 

those that alter the time for review and those that speed up development. Table 1.1 highlights 

this split. 

Figure 1.1 Drug discovery and development pathway for typical biopharmaceuticals. Here, a 

split is determined between research or studies that are conducted in-vitro or in animals and 

those that are carried out in human volunteers. 

 

1.2.2.1 Orphan drug designation 

By definition, a drug with orphan status is considered to address a particularly rare indication. 

In quantitative terms and specifically in Europe, an indication is permitted orphan status if it 

affects 1 in 2000 people or less (Abozaid et al., 2022). Upon a therapy achieving orphan drug 

designation, access is granted to various financial, market and assistance-based incentives. 
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Table 1.1 Breakdown of expedited regulatory programs designated by the FDA.  

Pathway Eligibility criteria Impact on development Examples 

Accelerated 

approval 

Therapy must treat a serious 

condition and there must be early 

data that shows the advantage of 

the therapy over currently 

available others. 

Approval conditionally 

granted based upon Phase 

II/III data. 

Herceptin, 

Gleevec 

Fast-Track Therapy must treat a wide range 

of serious conditions. Either 

clinical or non-clinical data can be 

supplied, provided it evidences 

the therapeutic potential of the 

drug and addresses an unmet 

medical need. 

Ability to engage in 

frequent communication 

with FDA and gain access 

to advice on clinical trial 

design and how best to 

facilitate product 

development. Additionally, 

the data in question can be 

submitted on a rolling 

basis. 

Zolgensma 

Breakthrough Meaningful early clinical data 

must be supplied evidencing the 

superiority of the candidate over 

current available therapies. 

Gain access to intensive 

regulatory guidance on 

drug development.  

The development process 

is condensed.  

Kymriah, 

Yescarta, 

Zolgensma 

Priority Review Candidate drug must show a clear 

improvement with respect to 

safety and efficacy in comparison 

to currented available therapies. 

Review process for therapy 

is reduced to six months 

(from ten months). 

Luxturna, 

Zolgensma 

Note: The colour coding signifies those pathways that alter development time and those that alter review 

time (green is review time and orange is development time). Adapted from: (Monge et al., 2022). 

Financially, designation enables a reduction in the fees associated with clinical trials, namely 

a 50% tax credit on such expenditure (DiMasi & Grabowski, 2007). From a market perspective, 

it allows drugs market exclusivity for a period of seven years (US) and ten years (EU) (Nagai, 

2019), thus inhibiting the introduction of any competitive therapies. Furthermore, aid is 

provided to orphan drug manufacturers in the form of advice on how to ameliorate their 

development process. It must be noted that a drug being granted orphan drug designation 

does not necessary fall into the category of an expedited pathway, however in general, orphan 
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drug status innately yields many of the same benefits as expedited pathways, in particular 

accelerated approval (Nagai, 2019). 

As will be discussed later, many cell and gene therapies often target rare or ultra-rate 

diseases. Consequently, it can be inferred from the pathways mapped out in Table 1.1, as well 

as the various incentives provided by the Orphan Drug Act, that it is possible for companies to 

achieve a profit from a relatively moderate sales level of these so-called orphan drugs, as was 

outlined by (DiMasi & Grabowski, 2007). 

 

1.3 Manufacture of mAbs and ADCs 

mAbs are a type of biological drug that have been frequently used in the treatment of a 

multitude of indications. The global mAb market was valued in 2022 at $210bn, with a 

compound annual growth rate (CAGR) of ~11% (Grand View Research, 2022). In contrast, 

ADCs are a more targeted application of antibodies. Structurally, an ADC is comprised of a 

mAb molecule connected via a linker to a cytotoxic drug. The whole complex presents 

specificity as well as cytotoxicity to kill antigenic cells (Fu et al., 2022).  

In general, mAbs have a well-established manufacturing process. mAb production occurs in 

mammalian cells, specifically Chinese hamster ovary (CHO) cells (Li et al., 2010). This has 

been traditionally conducted using fed-batch cell culture, typically using stainless steel 

facilities. However, more recently, continuous manufacturing and namely perfusion cell culture 

has attracted increased interest, particularly governed by its ability to achieve higher 

productivities and thus smaller downstream volumes overall (Pollock et al., 2013). This 

ultimately offers the potential for smaller facility footprints over fed-batch culture. Other 

continuously operated steps have been implemented in mAb manufacturing, such as 

continuous protein A chromatography. This often takes the form of periodic counter current 

(PCC) chromatography, which involves cycling a number of smaller columns rather than just 

one (Gomis-Fons et al., 2020). In particular, Pollock et al. (2017) investigated the economic 
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impact of implementing perfusion cell culture and continuous capture for mAb manufacture, 

comparing and contrasting results with a fully batch flowsheet as a base-case. This highlighted 

that commercial use of continuous manufacturing (USP and capture) was not competitive in 

comparison to batch, but presented cost benefits throughout clinical manufacture (for pre-

clinical to Phase III). In contrast and more recently, there has been evidence of the benefits to 

implementing fully-continuous mAb flowsheets, termed end-to-end continuous. This was 

evaluated by Mahal et al. (2021), which presented a COG analysis comparing batch, end-to-

end continuous and a hybrid process. This detailed the potential commercial cost savings that 

can be achieved through implementation of single-use continuous facilities over stainless steel 

batch, in particular when annual demands are below 500kg. Greater demands (particularly 

those in the region of 1,000kg or higher) indicated smaller cost benefits (< 10%). 

mAbs are typically expressed extracellularly, thus do not require inclusion of a lysis phase to 

break open the CHO cells. Instead, recovery of the product involves centrifugation followed 

by depth filtration, although manufacturers may install multiple filtration steps (with differing 

filter grades) depending on the level of clarification desired (Kelley, 2009). For purification of 

the clarified product fluid, Protein A chromatography is first employed, offering high specificity 

and capacity to capture the mAbs. This step has also been reported to achieve high yields 

and purities (Liu et al., 2010). Elution of the product from the protein A resin involves low-pH 

conditions, which secondarily serves to inactivate any viruses present. Conventional mAb 

purification includes another two chromatography stages, such as cation-exchange (CEX) and 

anion-exchange (AEX). CEX is performed in bind-and-elute mode whilst AEX captures 

impurities and is hence operated in flow-through mode (Du et al., 2012). 

In ADC manufacture, production of the mAb component remains the same as if the mAb itself 

was the final medicinal product. However, for ADC therapies, several additional steps are 

required for production of the whole molecule. Most significantly, modification and conjugation 

steps are essential to attach the linker-drug complex to the mAb component, to generate the 
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ADC (Tsuchikama & An, 2018). Further purification stages are undertaken to remove any 

product-related impurities introduced during these stages.  

 

1.4 Gene therapy 

Gene therapy can be defined as the therapeutic introduction of genetic material to cells with 

the intention to correct a defective gene or replace a missing one (Gonçalves & Paiva, 2017). 

There are two definitive categories that gene therapy can be divided into, with each 

characterised by whether the genetic material is delivered to cells inside the body (in-vivo) or 

conversely, after the cells are removed from the body (ex-vivo).  

1.4.1 Introduction to adeno-associated viruses (AAV) 

Viral vectors have been shown to be a competent delivery system of genetic material into 

cells. In general, viral vectors may feature as the final product for in-vivo application or can be 

produced as a reagent for use in genetically modifying ex-vivo therapies (e.g. retrovirus or 

lentivirus). Given their inherent infectivity, viruses readily deliver DNA or RNA into mammalian 

cells and for those with a different tropism, a myriad of other cells. Whilst this is a general 

advantage of viruses for use in a gene therapy application, AAV in particular are rapidly 

becoming a clinical favourite (Naso et al., 2017). 

AAV originate from the parvoviridae family and are non-enveloped, DNA viruses (Kay et al., 

2001; Maier et al., 2010), typically falling in the size range of 20-25nm. They are additionally 

classed as helper-dependent viruses, thereby to achieve productive infection, require the 

addition of a much larger, helper virus (usually an adenovirus or herpes simplex virus) (Booth 

et al., 2004). Helper-dependent viruses are innately replication-defective and in contrast to a 

replication-competent virus, they are generally deemed to be safer for use in gene therapy. 

This can be attributed to the absence of the necessary genes to promote viral replication 

without aid. The inherent lack of pathogenicity and thereby safety of the AAV is paramount, 

making them an attractive end-product for gene therapy (Arnett et al., 2012). Nevertheless, 
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there are a wealth of other positive aspects of the AAV vector, which are further highlighted in 

Figure 1.2. For illustrative purposes, AAV were compared to lentiviruses (LV) in terms of their 

advantages as a gene therapy vector. 

Figure 1.2 Key advantages and disadvantages of using AAV as a gene delivery vehicle, 

relative to LV, another popular choice of vector in gene therapy  (Clark, 2002; Daya & Berns, 

2008; Mountain, 2000). 

As indicated in Figure 1.2, 12 human serotypes of AAV exist, which collectively results in a 

very broad tissue tropism. As a whole, this means AAV have the ability to infect a variety of 

tissue types and evidently be utilised for a wealth of indications. Moreover, unlike LV, AAV is 

non-enveloped and is instead enclosed with a capsid. Enveloped viruses are generally 

regarded as less stable than non-enveloped, due to a lower tolerance to environments such 

as high temperatures, salt, pH or the presence of chemical denaturants. This is attributable to 

the composition of the envelope being a lipid bilayer (Lucas, 2010).  

AAVs are also a non-integrating vector, where transient expression of the transgene is 

exhibited. Transient expression inherently infers that subsequent daughter cells will not 

contain the transgene, therefore in the context of a gene therapy, the potency of the treatment 

will diminish over time. Having said this, it has not been documented as a major disadvantage 
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of the AAV, as cell division in adult somatic cells is not frequent, thus AAV degradation is 

generally minimal over time. It has further been reported that expression of the necessary 

gene is often sustained even in these cases (Mountain, 2000). Thus in summary, whilst AAVs 

transiently express the gene of interest (GOI), this does not in actuality curtail its therapeutic 

potential. 

1.4.2 Viral vector market and clinical trials 

In the forecast period of 2019 to 2027, the viral vector manufacturing market is estimated to 

grow at a CAGR of 27.4% (Mordor Intelligence, 2022). AAV success has been recognised with 

the approval of in-vivo therapies in areas of ophthalmology, haematology and neuromuscular 

diseases. Specifically, the current commercialised AAV products are Luxturna (Spark 

Therapeutics, PA, USA), Zolgensma (AveXis, IL, USA), Hemgenix (CSL Behring, PA, USA), 

Roctavian (BioMarin, CA, US) and Upstaza (PTC Therapeutics, NJ, USA). 

Aside from those that are commercialised, there are a number of in-vivo AAV projects in clinical 

trials, addressing a multitude of therapeutic areas. This is illustrated in Figure 1.3, where 2022 

clinical trial data from the Cell and Gene Therapy Catapult was compiled and considered by 

clinical phase and indication. This highlights the progress towards commercialisation in 

ophthalmology, neuromuscular diseases and haematology, as it is shown that these are the 

only disease areas to have candidates in Phase III. This correlates with the success in these 

areas from AAV commercialised products, as discussed earlier. Additionally, Figure 1.3 also 

gives rise to the surplus of untapped disease areas, exemplifying that there still exist a myriad 

of uncertainties likely impeding the universal use of AAVs as a product. 

As discussed in Section 1.2.2, many therapies for non-chronic indications are granted the 

ability to take one or more expedited pathways during drug development, likely then enabling 

a shorter development timeline. This is seen in action with Luxturna and Zolgensma, which 

were both assigned orphan drug status. Additionally, Luxturna received priority review and 

Zolgensma granted priority review, fast-track and breakthrough designations by the FDA.  
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Figure 1.3 Breakdown by indication of AAVs used in clinical trials. This is further broken down 

to highlight the number of projects targeting a particular indication in each clinical trial phase 

(Cell and Gene Therapy Catapult, 2022) 

 

1.4.3 AAV manufacturing 

1.4.3.1 Upstream processing (USP) 

Traditionally, recombinant AAVs have had success in being produced to high titres in a 

laboratory setting, particularly using adherent human embryonic kidney (HEK) 293 cells (Xiao 

et al., 1998). Adherent mode refers to culturing cells that are attached to the vessel surface, 

with no free movement. Detachment of cells is necessary post-culture via trypsin. This is in 

contrast to suspension cell culture, where cells grow suspending in the cell culture media. 

There are a number of adherent cell culture technologies available in AAV manufacturing and 

a selection have been highlighted in Table 1.2. As a result, the majority of such lab procedures 

have been directly translated for use in a commercial setting, despite the use of adherent 

technologies characteristically being laborious and costly to maintain at the large scale (van 

der Loo & Wright, 2016).  
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Table 1.2 Common adherent technologies utilised for AAV production and the range of sizes 

that can be typically found in industry. 

Technology Surface area availability (cm2) Reference 

Roller bottles 490, 850, 1750 (Merten et al., 

2014b) 

Multilayer cell factories 1, 2, 4, 10, 40 stacks of 636cm2 each 

layer 

(Merten et al., 

2014b) 

Fixed bed reactor 66,000, 133,000, 333,000 Pall 

T-flasks 75, 150, 175, 225 (Strobel et al., 2019; 

Wang et al., 2012) 

Note: Whilst T-flasks are rarely used for relatively large production volumes, they are 

frequently found in the seed train for a multitude of adherent technologies. 

AAV production in adherent HEK293 cells is typically achieved via transient transfection, 

whereby three plasmids are taken up by the cells. The plasmids contain the necessary genetic 

material for the construction of an AAV particle; one plasmid contains the rep and cap genes, 

which provide packaging (with respect to the virus genetic material) and structural functions 

(formation of the capsid) respectively (Grieger et al., 2016). A second plasmid provides helper 

virus material to regulate and facilitate the replication of the AAV within the HEK cell, as 

innately, they are a replication deficient and helper-dependant virus. Thus, the presence of a 

helper virus promotes AAV gene expression, enabling effective replication within the host cell 

(Kay et al., 2001). Finally, the third plasmid contains the gene of interest (GOI), thereby is the 

vehicle conferring therapeutic potential to the viral vector. Whilst it is most common to use a 

three plasmid system when opting for transient transfection as a gene delivery method, some 

two plasmid systems have been reported (Allay et al., 2011). Here, both the plasmids 

containing the rep and cap genes and the GOI are transfected, however the helper virus DNA 

is delivered via infection to the mammalian cells. Having said this, using a tri-plasmid system 
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offers process benefits, such as a removal of the need to heat inactivate live helper viruses, 

thus preventing the risk of contamination by such (Ayuso et al., 2010; Kay et al., 2001) 

An alternative to transfection can take the form of stable packaging or producer cell lines for 

use in suspension culture. Generally, packaging and producer cell lines utilise infection via a 

helper virus, with the difference between the two being that packaging requires transfection 

with the plasmid containing the GOI and a producer cell line does not (Wang et al., 2012). 

Regarding hosts, there has been published use of HeLa cells (Martin et al., 2013) and baby 

hamster kidney (BHK) cells (Thomas et al., 2009) as either packaging or producer cell lines. 

A summary of the gene delivery methods is given in Figure 1.4. It must also be noted that a 

plasmid-free system has been reported by the gene therapy company CEVEC 

Pharmaceuticals. In this case, a producer cell system requiring no plasmids and no helper 

viral infections was generated (Faust, 2023). This circumvents the need to purify out the helper 

virus by introducing a helper free stable producer cell line.  

 

Figure 1.4 Overview of AAV gene delivery mechanisms into mammalian cells. The green tick 

symbolises the genetic material that is innately contained within the cells, whereas the red 

cross signifies that which is not innately present and therefore needs to be supplied, typically 

by means of transfection or infection. 
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1.4.3.1.1 Insect cells 

Though mammalian cells are arguably a favoured host for AAV production, an alternative 

method is the use of Sf9 insect cells in suspension. To induce AAV production, a specific insect 

parasite known as the baculovirus is used to infect host cells. This production system has 

gained prominence due to the relative ease of culturing insect cells and the high titres 

associated with recombinant baculovirus-induced AAV production per cell (Wang et al., 2012). 

In general, the production process involves Sf9 cells being infected by three separate 

baculoviruses; one responsible for providing the rep gene, another for the cap gene and a final 

construct with the intent to provide the GOI, as reported by Moreno et al. (2022). Recent 

advancements have allowed for a “OneBac” system to be used Aslanidi et al. (2009), where 

the Sf9 insect cells are modified in the same way as a producer cell line would be, to provide 

the AAV genetic functions innately; only one baculoviral infection is necessary to integrate 

helper virus material. The method developed here however was only applicable to two viral 

serotypes (AAV1 and AAV2). The term “OneBac” later became coined to describe a similar 

protocol, but had been refined for application to all human recombinant AAV serotypes 

(Mietzsch et al., 2014). 

1.4.3.2 Downstream processing (DSP) 

As with any bioprocess, efficient harvest and purification of the therapeutic product is 

imperative to ensuring a safe, potent and high purity payload is transferred into patients. Whilst 

these product attributes are vital, a balance must be satisfied with maximising the overall 

process yield so as to limit product losses and thus not impact the process economics so 

detrimentally. In general, and as with the USP portion of the process, the downstream section 

of AAV manufacturing often follows protocol that is standard in a laboratory setting (Merten et 

al., 2014a). As a summary, Figure 1.5 highlights the usual train of unit operations that feature 

during AAV DSP. It must be noted that the flowsheet outlined here is rather general and as 

outlined by Clément and Grieger (2016), production of AAVs across the field suffers from a 
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lack of uniformity regarding production protocols (this paper identified twelve greatly different 

flowsheets at the time of publication). 

 

Figure 1.5 General process flowsheet for AAV manufacture, supplemented with the function 

of each step. 

1.4.3.2.1 Harvest 

Regardless of the upstream method utilised, cells must be harvested to remove the cell culture 

broth. In contrast to other vector types, such as the lentivirus, certain AAV serotypes are 

located intracellularly (Wright, 2008), thus the extracellular medium is eliminated following cell 

culture. Having said this, extracellular AAV products have been reported and more regularly, 

those that are partially intracellular or extracellular. Crude harvest is typically performed by 

centrifugation at lab scale, thereby exploiting density differences between the cells and culture 
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medium or by filtration, namely depth, at large scale (Vandenberghe et al., 2010). An important 

consideration is that the clarification stage employed is highly dependent on the nature of the 

upstream technology and / or the AAV serotype behaviour. For example, the outflow stream 

of adherent technologies will contain no or very little cell quantities as this is prior to 

trypsinization, whereas suspension outflow streams contain a mixture of cells and broth, thus 

such a cell density could impact filter performance if a sub-optimal type is selected (Hebben, 

2018). Similarly, an intracellular AAV would typically require a tangential flow filtration (TFF) 

stage to retain cells and remove broth, whereas depth filtration is better suited to cases where 

the AAV is predominately extracellularly expressed.  

In cases where the AAV is intracellularly expressed, inclusion of a lysis step is necessary, to 

release the product from cells. This simultaneously releases impurities from the cells, such as 

host cell proteins (HCP) and host cell DNA (hcDNA). A multitude of techniques have been 

reported as a means of lysis, including microfluidization, chemical lysis via detergent 

treatment, heat-shock, freeze-thaw and sonication (Clément & Grieger, 2016; Merten et al., 

2014a; van der Loo & Wright, 2016). In general, larger manufacturing scales avoid techniques 

such as freeze-thaw, sonication and heat-shock due to limited scalability. Post-lysis, the 

impurity burden upon later downstream processing steps is typically lightened by addition of 

a nuclease employed in tandem with lysis, however generally is utilised as a step on its own 

(Segura et al., 2011), with the most frequent reagent used being Benzonase. This stage has 

an additional benefit in reducing lysate viscosity (Hebben, 2018). 

1.4.3.2.2 Purification 

In general, purification lacks the greatest consistency across AAV manufacturing. In part, this 

is attributable to the great diversity of AAV serotypes that are utilised in gene therapy and as 

such, processes often require re-design according to serotype and therefore indication. As 

with mAb bioprocessing, AAVs can be purified by a wide range of properties, including net 

surface charge, hydrophobicity, size or by affinity to a specific ligand (Merten et al., 2014a). A 

fairly standard and well-established purification protocol is the use of gradient density 
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ultracentrifugation, either by an iodixanol or caesium chloride (CsCl) gradient (Segura et al., 

2011). This method has shown impressive impurity removal profiles, with no bias towards AAV 

serotype (Strobel et al., 2015), however lacks the ability to be scaled by standard means and 

therefore must be scaled-out instead of up (Segura et al., 2011). With a natural industry drive 

towards increasing vector demands and ultimately larger scale manufacturing, 

chromatographic purification is a feasible alternative. This provides a scalable strategy and is 

highly specific, particularly that of affinity, given that the resin utilised is largely dependent on 

the serotype of AAV being produced. For example, Poros (Thermo Fisher, MA, US) distribute 

a specific affinity resin for AAV8 and AAV9, however AAVX has been developed to address 

the call for a more standardised resin that can work for a wide range of serotypes (this works 

for AAV1 through to AAV8). Moreover, as a means to overcome a serotype dependency on 

chromatography choice, a universal purification method was developed designed for 

compatibility with a myriad of AAV serotypes (Nass et al., 2018). 

IEX in particular is useful as either a capture or polishing stage, as it has the ability to satisfy 

the purification requirements of both types of step; it has the capacity and selectivity to remove 

bulk impurities and for the latter, has empty capsid removal capabilities, due to a slight charge 

difference between these and full capsids. Unlike lentiviruses and adenoviruses, AAVs exhibit 

a net positive charge at a neutral pH (Burova & Ioffe, 2005), allowing for binding if using a 

cation exchange (CEX) resin, which exhibit ligands that are negatively charged and hence 

bind positively charged cations. In contrast, using anion exchange (AEX) would typically allow 

for binding of negatively charged anions as resin ligands are positively charged. Additionally, 

utilised as a polishing stage over capture, multimodal chromatography (MM) is useful as it 

harnesses both size exclusion, hydrophobic and ionic capabilities. The molecular weight of an 

AAV particle is ~3,750kDa, thus commercially available MM platforms such as CaptoCore 400 

or 700 (Cytiva, Marlborough, US), with molecular weight cut-offs of 400kDa and 700kDa 

respectively, can be used in flow-through mode. Nevertheless, it must be recognised that 

whilst SEC or MMC are often referred to as polishing stages throughout the literature (Burova 
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& Ioffe, 2005; Merten et al., 2014a; Qu et al., 2015; Terova et al., 2018), they do not satisfy the 

definition of a polishing stage shown in Figure 1.5; this is because they lack empty capsid 

removal capabilities. 

Furthermore, chromatography yields for AAV purification are greatly variable. CEX yields have 

been reported to be higher than 90% (Burova & Ioffe, 2005; Qu et al., 2015) and AEX yields 

have shown to be lower than 10% in certain cases (Burova & Ioffe, 2005), yet in other studies, 

this number is elevated to 60-70% (Wang et al., 2012). Moreover, affinity or immuno-affinity 

yields tend to vary greatly across serotypes; as outlined by (Nass et al., 2018), yields range 

from 55-92% across serotypes. 

1.4.4 Development and manufacturing challenges 

1.4.4.1 Challenges in upstream processing 

Though transient transfection using adherent technologies has had much success in AAV 

production (with two marketed products i.e. Luxturna and Zolgensma following this vector 

generation method (Wright, 2008), manufacturing inherently encounters scalability issues, 

whereby traditional scale up is limited by the surface area available of the technology. To 

combat this, scale out is used to increase culture surface area as illustrated in Figure 1.6, 

potentially resulting in hundreds of units of the technology, as reported by (Wright et al., 2010), 

for companies manufacturing large vector quantities for clinical trials or for a chronic indication. 

As discussed in Section 1.4.3.1, the use of adherent cell lines is still used in both research 

and industry, therefore the cell culture technologies utilised are generally limited to, in the case 

of AAVs, roller bottles, multilayer cell factories or the more scalable fixed bed reactor. Overall, 

this scale out procedure rapidly becomes financially and logistically infeasible as it results in 

a large facility footprint, a requirement for copious labour and processing times and thus 

ultimately expenditure. However, it must be noted that the scalability issue is not a pressing 

matter for companies in the orphan drug space seeking to leverage the prompt development 

pathways associated with this novel subset of biopharmaceuticals; rather, this challenge is 
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particularly pronounced in the development and manufacture of AAVs for more prevalent 

indications.  

Irrespective of whether adherent or suspension cells are used, transfection as a method itself 

is met with variability, particularly concerned with the efficiency of the step (Merten et al., 

2014b); that is, the proportion of cells in the population that successfully took up the plasmids 

to express genetic material. Variability is also magnified due to the lack of automation with 

adherent cell processing, introducing the consistent issue of operator errors being introduced. 

Furthermore, whilst the inherent obstacle in increasing volume has been addressed through 

the use of suspension technologies, the economic viability of transfection as an approach 

lessens as the suspension culture volume increases. This specifically relates to the adaptation 

of the plasmid transfection method to use in suspension, where it has been found that 

transfection efficiency greatly reduces upon scaling up (Collard, 2021). 

Moreover, other suspension cell culture methods are fraught with their own challenges, despite 

satisfying the requirement for a more scalable and less manual approach. The use of Sf9 cells 

with baculoviral infection runs the risk of baculovirus contamination (Penaud-Budloo et al., 

2018), thereby necessitating increased purification to achieve sufficient deactivation or 

removal of such and ultimately additional, robust analytics. Besides this, in the general case 

of any packaging or producer cell line, seed generation can be an tedious process, with the 

cell line requiring a long lead time (Wang et al., 2012). From a commercial perspective, the 

process by which a cell line is developed is characteristically costly, particularly relating to 

licensing applications for the new cell (Smith, 2017). Furthermore, cell banking and 

subsequent quality testing is a costly and timely process. Development and creation of a 

master and working cell bank, as well as analytical testing can amount to €1.5 million 

(approximately $1.65 million) (Lawson et al. 2021). 
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Figure 1.6 Schematic highlighting the methods of increasing culture volume for AAV 

production. On the left, roller bottles, an example of an adherent culture technology, whereby 

scaling out is required to permit an increase in culture volume. On the right, a single use 

bioreactor as an example of a suspension culture technology; in this case, scale up is possible. 

Note: bioreactor images sourced from Sartorius, roller bottle images sourced from Sigma 

Aldrich. 

 



48 
 

1.4.4.2 Challenges in downstream processing 

Many of the issues with viral vector DSP have arisen from the industry’s inability to derive and 

optimise platform recovery and particularly purification technologies for specific use in 

producing viral vectors. It is arguably this type of development that has allowed mAbs to 

become a widely manufactured and used biopharmaceutical product, thus necessitating the 

same drive-in viral vector manufacturing. Whilst clear efforts have been made to address such 

an issue, this has often involved the transfer of the typical mAb purification platform over, 

resulting in viral vector purification being carried out in sub-optimal conditions (Lundgren, 

2019). 

Furthermore and in general for all viral vector products, production processes have 

consistently endured relatively poor downstream processing performance in terms of recovery, 

with 50% AAV yields generally considered plausible (Masri et al., 2019). Much of the difficulty 

here is that such loss accumulates after a train of suboptimal process steps, thus no single 

unit operation can be specifically deemed to be the major problem (Glover et al., 2019). Low 

yields however, are a particular issue for steps such as chromatography, whereby the 

conditions typically encountered (i.e. pH or conductivity extremes) can render many viral 

particles ineffective, thereby their ability to infect target cells is impaired (Potter et al., 2014). 

Traditional viral vector purification technologies, such as CsCl gradient density 

ultracentrifugation, encounter similar recovery and AAV infectivity losses, however achieve 

plausible impurity reduction levels. Iodixanol gradient partially satisfies the issue of infectivity 

reduction, as shown by and presents a low-toxicity alternative to CsCl gradient (Moleirinho et 

al., 2019). However, when process scale up is desired and large product demands are 

necessary, gradient density ultracentrifugation in general can become economically infeasible. 

Such a technology cannot be scaled in the same manner as other steps such as 

chromatography, thus manufacturers must often resort to scaling out, that is, to linearly 

increase the number of ultracentrifuges employed. The cost implications of doing this can be 

drastic, however companies manufacturing material for the market still reportedly employ this 
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as a polishing stage (Wright, 2008). Therefore, there exists a vital need for the effective 

translation of the purification performance achieved with technologies such as gradient density 

ultracentrifugation at the lab scale, to a more scalable technology that can cope economically 

in a commercial setting. 

Following on from this, a significant and somewhat unique impurity issue that arises with vector 

manufacturing is the generation of vector particles lacking fully packaged genetic material, 

referred to as empty capsids. As a result, this type of viral particle cannot provide the same 

clinical benefit as a full capsid and it is thought that in some cases, administration of such may 

provoke an increased immune response (Fraser Wright, 2014a) and through such, can reduce 

the expression of the desired gene (Hebben, 2018). The empty capsid issue is exacerbated 

by certain methods of vector generation, generally adherent over suspension (Merten, 2016), 

and presents an additional impurity that must be removed during downstream processing. The 

challenge industry faces with such an impurity is that they are structurally closely related to 

the full capsids (Qu et al., 2015), thereby making it difficult to utilise some chromatographic 

procedures and exploit molecular and structural differences between impurities. This is greatly 

exemplified by the inability of affinity chromatography to remove empty capsids, as the ligand 

cannot distinguish between the two types of particle due to identical capsid properties (Nass 

et al., 2018). It has been shown that IEX can adequately address this impurity issue (Nass et 

al., 2018; Urabe et al., 2006), as there is a subtle pI difference between full and empty capsids 

(approximately 0.4) (Qu et al., 2015), however as discussed previously, IEX has encountered 

great variability in yield when utilised in AAV purification and it is thought that purification 

performance is somewhat dependant on AAV serotype. 

Furthermore, steps such as ultracentrifugation have demonstrated success in removal of 

empty particles, independent of AAV serotype (Crosson et al., 2018). However, as discussed 

previously, whilst surmounting one key issue, one is faced still with the lack of scalability of 

the ultracentrifuge as a purification method. 
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1.4.4.3 Additional challenges 

Some general challenges faced include the characteristic stickiness of AAV capsids (Choong 

et al., 2016). This becomes a problem particularly during formulation and ultimately vial 

storage, as contact with glass surfaces can promote nonspecific adsorption of the AAV 

(Wright, 2008). Whilst it has been reported that certain reagents such as Pluronic F68 help to 

stabilise vector yields during formulation and limit vial adherence (Bennicelli et al., 2008), the 

extent of this challenge is largely dependent on the serotype of AAV, therefore present a more 

prominent issue in some cases. 

On the analytical front, there is a necessity for rapid and high throughput techniques for 

measuring AAV critical quality attributes at numerous stages throughout the whole 

manufacturing process. Particularly relevant to AAVs are the product-related impurities that 

bear multiple similarities both in terms of structure and size to the AAV product, bringing 

additional complexities to the purification and thus analytical procedures (Fraser Wright & 

Zelenaia, 2011). However, development of these analytical techniques is hindered by the very 

initiatives that are designed to alleviate some of the developmental burdens upon newer 

modalities such as AAV; that is, expedited pathways and orphan drug designation. Because 

of these, AAV development timelines often become too short to have sufficient time to develop 

adequate analytical support and ultimately evaluate process performance. Thus, a trade-off 

arises between rapid commercialisation of a product and exclusivity in a particular disease 

space and developing a robust bioprocess, with a set of equally plausible analytics to ensure 

safety, purity, identity and potency of the product. Evidently, a fundamental part of this 

challenge lies in where focus should be directed. 

Whilst progress is consistently observed in AAV manufacturing, it is evident that a wealth of 

challenges and process-business trade-offs remain to be addressed, thus inciting a need for 

the establishment of methods to alleviate some of the pressures associated with decisions 

faced by biopharmaceutical manufacturers. 
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1.5 Computational methods for optimisation 

1.5.1 Mathematical programming 

At a glance, mathematical programming is the use of mathematical models to address 

optimisation problems, ultimately with the purpose of aiding industrial decision-making. The 

foundations of mathematical programming are traced to publications in the 1950s and 1960s 

(Dantzig and Wolfe, 1960; Neumann and Morgenstern, 1953). It has since been widely applied 

in tackling optimisation problems related to capacity scheduling and portfolio management, in 

particular mixed-integer linear programming, which is a variation of linear programming 

(Jankauskas, 2019). By nature, this technique seeks to solve optimisation problems where 

both the objective function(s) and constraint are linear.  

The application of MILP involves expressing the objective function(s) and constraints as linear 

expressions. This means that in cases where these elements cannot inherently be formulated 

as linear expression, linearisation is required, which can be a complex process in large-scale 

applications. As is a general rule of optimisation-based problems, the objective function 

represents the quantity (or in cases of multi-objective optimisation, quantities) that must be 

minimised or maximised, subject to a variety of imposed constraints. Constraints define the 

limits within the region of the decision space that is deemed feasible, where feasibility is 

typically defined in the context of the specific problem. Whilst the goal of using MILP may often 

be to find the global optimum of a solution set, this is not necessarily guaranteed, particularly 

in the case of complex combinatorial optimisation problems. In these cases, finding the 

optimum may not be possible within a reasonable timeframe. 

One such simplistic example of mathematical programming is brute-force optimisation, which 

involves enumerating through all possible decision variable combinations in order to 

characterise the objective space. For deterministic problems with a small number of possible 

combinations, brute-force optimisation has been proven to be an efficient means to guarantee 

optimality. In the context of bioprocessing problems, particular those related to manufacture 
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of biotherapeutics, brute-force algorithms have been implemented previously in the literature. 

In particular, Jenkins et al. (2016) implemented a brute-force optimisation algorithm for rapid 

evaluation of various process configurations within stem cell manufacturing.  

However, due to the computationally demanding nature of this technique, it rapidly becomes 

an infeasible option in larger scale applications. A more common approach to MILP problems 

is branch and bound. In these cases, the feasible decision space is iteratively portioned into a 

smaller subsets (Huang et al., 2021). The organisation of these resembles a tree structure. 

The branch element refers to the splitting of the objective space in this hypothetical tree, whilst 

the bound is the procedure of determining the branches that may lead to infeasible subsets of 

the objective space (Huang et al., 2021). 

1.5.2 Heuristics and meta-heuristics 

As an alternative to mathematical programming, the field of heuristics and more commonly 

meta-heuristics have also been widely used as optimisation methods. They are able to 

alleviate several of the key limitations that would prevent implementation of mathematical 

programming, namely dealing with non-linearities in the model equations and generating 

solutions in a timely manner.  

Heuristic and meta-heuristic algorithms, in comparison to mathematical programming, are 

concerned with generating solutions that may or may not be the true optimal from the decision 

space. Though there is no guarantee of optimality, the algorithm performance is often 

dependent on the flexibility in the solutions across iterations and in cases of multi-objective 

optimisation, the reconciliation of conflicting objective functions. In cases where the decision 

space is near infinite (i.e. those employing stochastic elements), heuristic-based methods are 

far better suited to providing good quality solutions. A summary of the benefits and limitations 

of using either optimisation method is outlined in Table 1.3. 
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1.5.2.1 Genetic algorithms 

One of the most commonly used meta-heuristic optimisation algorithms is the genetic 

algorithm (GA), introduced by Holland (1975). These belong to a class of methods referred to 

as evolutionary algorithms, which build upon Darwinism and the theory of evolution to drive 

changes in solutions across iterations. In general, the process of biological evolution is 

followed, whereby the algorithms seek to select the fittest members of a given population and 

through elitism, pass these characteristics on to future generations. To introduce diversity into 

the population, typical genetic processes are also mimicked by the algorithm, including 

crossover and mutation of genes. These are typically expressed as a probabilistic rate (e.g. 

between 0 and 1) and the choice of both can greatly impact solution quality and the likelihood 

of premature algorithm convergence. 

The key terminology associated with genetic algorithms has been compiled in Table 1.4. 

Candidate solutions can more contextually be referred to as chromosomes, which are a string 

of genes that when combined, encode a unique strategy to the problem under consideration. 

The traditional procedure followed in running a GA is outlined in Figure 1.7, which highlighted 

a flowsheet of steps. There have been significant modifications or additions to this more 

traditional methodology since the algorithm’s development in the 1970s, however the generic 

steps have remained relatively the same. More recent published works have reported changes 

to the established GA structure, namely in regard to the chromosome-encoding strategy, 

selection method and crossover and / or mutation methods. These are outlined in greater 

detail within relevant chapters (i.e. Chapter 5), providing a rationale behind the methods 

selected and examples of their use in published studies. 
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Table 1.3 Summary of optimisation methods alongside benefits and limitations of 

implementation. 

Optimisation method Benefits Limitations 

Heuristic and meta-

heuristics 

• Less computationally 

expensive to run for large-

scale applications 

• Useful in handling non-

linearities 

• Does not guarantee optimality 

• Optimisation parameters 

govern algorithm performance 

• Requires a high computational 

time to converge to better 

solutions 

Mathematical 

programming 

• More likely to achieve the 

global optimum for linear 

problems than meta-heuristics 

(though not guaranteed) 

• Converge faster for small-

scale problems 

• High efficiency in terms of 

range of techniques to use 

• Computationally demanding 

and complex for large-scale 

problems 

• Limitations in handling non-

linear problems 

Reference: (Rodríguez et al., 2018) 
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Figure 1.7 Graphic representation of the generalised procedure undertaken during a GA. As 

highlighted, those elements integrated within the cyclic portion of the diagram refer to steps 

that are repeated across the number of algorithm generations. Those tasks that appear 

outside of this are steps required to initialise the algorithm and are only repeated when multiple 

runs of the algorithm are carried out. More distinct definitions of the terms involved in a GA 

are outlined in Chapter 5.  
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Table 1.4 Glossary of key genetic algorithm terms. 

 

 

 

 

Term Definition 

Gene A single position within a chromosome. Represents a single piece of 

information in the solution 

Locus Specific position of a gene on a chromosome 

Allele The value given to a specific gene within a chromosome 

Chromosome A string of genes that represent one candidate solution 

Population A set of chromosomes  

Parent An individual chromosome that arises before any genetic operations 

are applied 

Offspring Chromosomes that result from the mating process between two 

parents and application of mutation 

Selection Process by which parents are chosen to undergo genetic operations 

(i.e. crossover and mutation) 

Crossover Mechanism by which parent genes are combined to create new 

chromosomes 

Mutation Random alterations made to one or more genes to create new 

chromosomes / solutions 

Fitness Measure of chromosome success with respect to the objective 

function(s) 

Generation A single iteration within the genetic algorithm e.g. selection, crossover, 

mutation, evaluation and replacement 

Run A single iteration of the genetic algorithm e.g. the whole procedure is 

conducted for the max generations. Used for reproducibility 
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1.5.3 Single and multi-objective optimisation  

The purpose of any optimisation algorithm is the maximisation or minimisation of one or more 

objective functions. Problems which concern one objective function are therefore labelled as 

single-objective optimisation (SOO). In contrast, multi-objective optimisation (MOO) involves 

two or more objective functions (Zakaria et al., 2012). 

1.5.3.1 Convergence 

Another key point to consider is how convergence is assessed between either type of 

optimisation. For SOO, the average of the objective function across all runs and computation 

of the standard error have previously been employed. Jenkins (2018) reported the average 

fitness across generations of a genetic algorithm for bioprocess flowsheet optimisation. The 

standard error of the mean fitness was further utilised to quantify solution convergence, where 

smaller values were desirable. It is additionally possible to plot the change in fitness value 

across generations to identify improvements and ultimately a plateau. Evidence of this is 

shown in Webb et al. (2017), which used a genetic algorithm designed to minimise the volume 

of a plate structure. This presented the change in objective function over the algorithm 

generations, highlighting convergence. Furthermore, if a meta-heuristic technique like a GA is 

used, the output can be compared to the true optimal derived from e.g. a BFO to determine 

solution quality and convergence. This method is problem dependent and would be highly 

inefficient and time-consuming for large-scale applications. 

Convergence checking is possible by eye when plotting the solutions across iterations. The 

graphical nature of this procedure will give general information regarding the evolution of the 

Pareto set over time, hence can be a good indicator of algorithm performance. However, visual 

inspection is not a robust way to assess convergence in general and for greater effectiveness, 

a quantitative metric is important to use for convergence checking. Table 1.5 outlines some 

methods of doing this, particularly suited to multi-objective optimisation. 
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Of note, a popular metric, as highlighted in Table 1.5, is the hypervolume indicator. This relies 

on appropriate definition of a so-called reference point in order to derive the volume of the 

objective space covered by the non-dominated solutions. There are numerous approaches to 

defining an appropriate reference point. Some commonly selected methods include the ideal 

point, where both objective functions are minimised. Conversely, the Nadir point represents 

the maximum values for both objective functions. These techniques result in the reference 

point updating across generations to suit the solution set under consideration. A more flexible 

approach is a user-defined or random reference point. This is beneficial when there is prior 

knowledge regarding the bounds of the objective space and as such, ensures the point 

selected remains relevant to the problem. Defining a random point can also succeed in 

avoiding any bias, as the point will not be influenced by a particular point or weighted towards 

one objective in particular. 

1.5.3.2 Constraint-handling strategies 

In constrained optimisation, a number of constraints are typically applied to the problem in 

order to restrict the set of possible solutions (Rahimi et al., 2023). Any solutions that breach 

the imposed constraints are deemed infeasible and hence are not considered a viable option. 

Considering how the infeasible solutions are dealt with is a core part of how constraint-

handling is defined. It is also the process of ensuring that these infeasible solutions are 

identified. Though it is possible to discard the constraint-breaching solutions, this can be 

problematic depending on the type of optimisation algorithm being used. For example, 

discarding solutions in an evolutionary algorithm (e.g. a GA) would interfere with the population 

size, a key parameter that generally should not be changed throughout the progression of the 

procedure. It must be noted that in general, selection of a constraint-handling strategies is 

highly problem dependent and often depends on the optimisation algorithm used. 

Furthermore, modifications to those techniques described in this section may often be made 

to best suit the problem in question. 
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Table 1.5 A selection of convergence metrics used in multi-objective optimisation. 

Metric Use Benefits and 

limitations 

Reference 

Hypervolume Measures the volume of the 

region that is dominated by 

the Pareto-optimal solutions 

that the MOO algorithm 

determines. 

• Provides a scalar 

value 

• The true Pareto 

optimal is not 

needed to be 

known 

(Wang & 

Sebag, 2013) 

(Jankauskas 

& Farid, 2019) 

 

Generational 

distance 

Measures the distance from 

each solution in the obtained 

Pareto front to the closest 

point in the true Pareto 

optimal 

• Good for generality 

of the overall Pareto 

quality 

• Requires 

knowledge of the 

true Pareto optimal 

(Santos & 

Xavier, 2018) 

Inverted 

generational 

distance 

Measures the distance from 

the closest point in the true 

Pareto optimal to each 

solution in the obtained 

Pareto front 

• Good for generality 

of the overall Pareto 

quality 

• Requires 

knowledge of the 

true Pareto optimal 

(Santos & 

Xavier, 2018) 

(Kouka et al., 

2023) 
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There are several type of constraint handling strategy previously employed throughout the 

literature. By far one of the most widely used methods is the penalty function. In general 

however, the application of a penalty function involves penalising solutions which violate the 

constraints (Rahimi et al., 2023) by applying to the objective function a value which will ensure 

the solution will not be selected as optimal, e.g. if maximisation of the objective function is 

required, one may apply a value of 0. Penalty functions offer a simplistic method in dealing 

with constraints, however can be difficult in terms of deciding upon an appropriate penalty 

value to apply, particularly in minimisation problems. Another limitation with penalising 

solutions is that, when done correctly, infeasible solutions are disregarded from the selection 

process (Rahimi et al., 2023). Though intended, this may result in a loss of a solution that 

could be rearranged by crossover or mutation and inadvertently produce a better-quality 

solution, which can inadvertently diminish greater diversity in the population. Nonetheless, the 

penalty function method has been implemented and reported. Allmendinger et al. (2014) 

utilised a penalty value for research into the optimisation of chromatography sizing. This used 

a fixed (or static) penalty value regardless of how many constraints were violated or the degree 

of violation with respect to any one of the constraints. There has further been evidence of the 

use of a dynamic penalty function throughout the literature. These are concerned with 

assigning penalty values that change depending on the level of infeasibility the solution 

reaches. Yoo et al. (2021) described the implementation of a dynamic penalty function, which 

was systematically and gradually increased during a reinforcement learning task in 

approaching constrained control optimisation. 

Another common method in handling constraints involves repairing solutions that are found to 

be infeasible. This may necessitate directly repairing the structure of an infeasible solution or 

generation a new one that satisfies the imposed constraints (Lagaros et al., 2023). In either 

case, conversion to a feasible solution is the desired goal. Repair functions can often be 

regarded as more robust than penalty functions, as instead of simplistically discarding 

infeasible solutions, repair methods leverage the existing genetic information to transform 
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violating solutions into feasible ones. However, the potentially iterative process by which a 

solution is repaired can lead to longer computational times and in some problem-dependent 

cases, may introduce additional bias and mutation like effects. Additionally, the specific 

procedure by which repair occurs is dependent on the algorithm selected and the structure of 

a candidate solution. Chootinan and Chen (2006) proposed the use of derived-gradient 

information to repair infeasible solutions. The gradient information was utilised to direct the 

infeasible solutions towards the region of the objective space where a population of feasible 

solutions were located. Moreover, Samanipour and Jelovica (2020) introduced an adaptive 

repair strategy within the non-dominated genetic algorithm-II (NSGA-II) (initially proposed by  

Deb et al. (2002)) for use in an engineering optimisation problem. This identified the variables 

driving constraint violation and ranked the importance so as to alter those that were most 

significantly influencing the violation.  

It must be noted within a biopharmaceutical scheduling context, both Siganporia (2016) and 

Jankauskas (2018) rejected the use of repair strategies for candidate solution repair, deeming 

it too computationally expensive within the optimisation tools constructed. This further 

evidences that suitability of repair-based constraint-handling strategies is confined to the 

particular problem in question. Often, to circumvent any unnecessary complex 

implementations, it may be beneficial to initially run an algorithm with a more simplistic penalty 

function approach and assess the extent to which infeasible solutions could be repaired in a 

timely manner. 

1.5.4 Use of computational methods in decision-support tools 

Greater detail on the specific application of decisional tools within the biopharmaceutical 

industry is documented later, however this section provides an overview of the use of 

computational methods, in particular MILP and meta-heuristics, for biopharmaceutical portfolio 

management and capacity planning problems. 
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Concerning the use of mathematical programming, Lakhdar et al. produced a series of 

publications utilising MILP for biopharmaceutical manufacture planning and scheduling. This 

was initiated with the use of MILP in medium term capacity planning, which was concerned 

with identifying the optimal planning of production (Lakhdar et al., 2005, 2006). Lakhdar and 

Papageorgiou (2008) introduced a multi-objective model, where the medium-term planning of 

biopharmaceutical manufacture was considered in an uncertain environment. Mathematical 

programming was also implemented by Siganporia et al. (2014). This work described the use 

of a discrete-time MILP model for the optimisation of capacity plans when comparing fed-batch 

and perfusion manufacturing processes.  

Meta-heuristics have been regularly used in biopharmaceutical portfolio management and 

capacity planning. George and Farid (2008) introduced a stochastic optimisation framework 

for the reconciliation of conflicting objectives; the maximisation of profitability as well as 

maximising the probability of achieving a profit. This study formulated a combinatorial problem, 

whereby a fixed number of products were to be chosen from a larger set. The structure of a 

candidate solution had three distinct components – drug selection, development timing and 

corporate manufacturing strategy (i.e. in-house, outsourced or partnered).  Furthermore, a 

modified-GA was produced by Jankauskas and Farid (2019) for use in biopharmaceutical 

scheduling. Firstly, the GA parameters were optimised (referred to as meta-optimisation) using 

a Particle Swarm Optimisation (PSO) algorithm as a means of tuning. Furthermore, several 

unique elements were introduced into a traditional GA framework, such as the use of a 

variable-length and matrix-style chromosomes and hence modified crossover and mutation to 

handle the new structures. This also modelled multiple objectives, undertaking a ranking and 

selection process that reconciled objectives. As outlined in Section 1.5.3, multi-objective 

convergence metrics were employed in these studies, specifically the use of the hypervolume 

indicator. 
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1.6 Decisional tools 

The lengthy process of drug development, combined with the significant budgets necessary 

to dedicate towards project activities, can inhibit the delivery of cost-effective therapeutics to 

patient populations. At the base level, biotechnology companies must therefore establish cost-

effective and robust bioprocesses to manufacture products. Having access to tools that can 

carry out the rapid simulation, optimisation and ultimately economic appraisal is pertinent to 

achieving this. Additionally, at the portfolio level, as the biopharmaceutical industry has 

transformed, so has the pipeline of modality types developed by multiple companies. Given 

the characteristics of developing a therapeutic, a task which is both unique compared to other 

industries but also fraught with challenges, copious investment and severe risks, it is 

imperative that companies be advised on how best to handle a product portfolio mix, both from 

a resource allocation front, as well as a manufacturing stance. 

Decisional tools refer to the techniques utilised to infer guidance on decisions that sit at the 

process-business interface (Farid, 2012), thereby typically integrate both operational and 

financial attributes. These support tools allow for rapid evaluation of varying bioprocessing 

strategies, both at the manufacturing and portfolio level. Furthermore, given that in reality, 

biotechnology companies receive a wealth of strict regulatory requirements, as well as facing 

company-related pressures in both budget and resources, decisional tools have the capacity 

to incorporate these real-life constraints in order to derive a feasible, and in many cases 

optimal solution to a problem. 

1.6.1 Applications of decisional tools  

Whilst the decisional tool itself typically involves an economic engine designed to generate 

financial metrics such as cost of goods (COG), fixed capital investment (FCI) or net present 

value (NPV), it can also integrate other tools or algorithms to give additional supporting 

information. This architecture is highlighted in Figure 1.8. 
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Figure 1.8 Adapted from Farid (2012). Typical analytical stages and techniques employed in 

decision making. 

1.6.1.1 Deterministic analysis (base-case) 

Case studies begin with a base case analysis, whereby no stochasticity in input parameters 

is introduced, thus scenarios output purely deterministic data, for example cost metrics such 

as COG, FCI or NPV. The deterministic approach is largely utilised as a way to better 

understand the mechanism of a particular process, thus is pivotal for capturing the high-level 

structure of a model. Several examples of this have been reported in the literature. A 

deterministic economic evaluation comparing process flowsheets pertaining to mode of 

operation has been evaluated by Lim et al. (2006) and Pollock et al. (2013). Moreover, Farid 

et al. (2000) developed a hierarchical framework, to evaluate a stainless steel plant versus a 

disposable plant as a means of manufacturing, incorporating both process and business-

related variables into the model. This hierarchical structure has been employed also at the 

drug development level, whereby Rajapakse et al. (2005) used it to model the 
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biopharmaceutical drug development pathway, allowing for the formation of a decision-support 

tool to rapidly evaluate key profitability metrics such as NPV. 

A further example of a deterministic analysis is the use of discrete-event simulation (DES), a 

technique widely applied in modelling the sequential progression (or change in state) of a 

system, at defined, discrete times (Stonier, 2013). This method is often utilised for the 

scheduling of activities and the allocation of resources within a biopharmaceutical facility, as 

it is characteristically both dynamic and discrete in nature (Sachidananda et al., 2016). 

Particularly when a company has multiple drugs in its portfolio, thus likely multiple processes 

occurring in the same facility, appropriate resource allocation is crucial, encouraging the use 

of DES. This, for example, allows for delays in certain processing steps to be highlighted due 

to a lack of resources. Notable work on DES for biopharmaceutical facility scheduling has 

been carried out by Stonier et al. (2009) and Stonier et al. (2012), where DES tools were 

utilised for use in identification of optimal purification sizing strategies, as well as incorporation 

of an optimisation element to monitor how the sizing strategy is affected by changing cell 

culture titre.  

1.6.1.2 Uncertainty and sensitivity analysis 

Whilst a deterministic analysis is useful for capturing the general picture, it characteristically 

fails to account for uncertainty in the inputs, thereby if relied upon alone, may result in an 

incomplete analysis and ultimately an inaccurate conclusion be drawn (Farid et al., 2007). The 

various uncertainties widely associated with drug development and manufacturing often 

necessitate the application of probabilistic variables to the inputs to generate model 

uncertainty (Coleman & Steele, 2009). Therefore, the next analytical stage to the base case 

often involves the generation of an uncertainty or sensitivity analysis. Particularly in 

bioprocessing, many inputs have exact values that are unknown, inferring inherent uncertainty 

in these parameters. However prior to this, a sensitivity analysis can be applied to ascertain 

the inputs that have the greatest impact on the output and therefore, those parameters that 

are likely to have the most uncertainty associated with them. In cases whereby a COG 
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evaluation is performed, sensitivity analyses can be used to determine those process or 

economics parameters that contribute to the greatest deviation from the base-case COG, as 

has been utilised in a number of publications (Jenkins & Farid, 2018; Lim et al., 2006). 

Uncertainty analysis is utilised to identify how the uncertainty associated with the inputs 

propagates through the model and ultimately affects the output. This type of analysis is 

typically achieved through use of a Monte Carlo simulation. An abundance of researchers in 

the field have applied this technique to supplement the base-case analysis of bioprocessing 

related modelling, forming a more in-depth analysis (Farid et al., 2007; Lim et al., 2006; Pollock 

et al., 2013). Furthermore, the initial work from (Rajapakse et al., 2005) was extended to 

include a Monte Carlo simulation, thereby capturing some fundamental uncertainties 

associated with drug development (Rajapakse et al., 2006). 

1.6.1.3 Multi-criteria decision making (MCDM) 

Decisional tools integrate a wealth of both process and business related parameters in order 

to ease the decision-making process pertaining to some industrially relevant problem (Farid, 

2012). Naturally, biotechnology companies must consider a range of financial and operational 

attributes when coming to a decision, whereby these often conflict with one another. Whilst 

the former are relatively simple to express quantitatively, the latter are not as easily 

quantifiable, thus prompting the use of a method within decision-making models to help 

resolve these conflicting attributes. 

MCDM is a technique used to weigh up these conflicting criteria and ultimately search for the 

optimal solution from a pool of potential candidate solutions to a problem (Pavan & Todeschini, 

2009). This has been applied to the comparison of fed batch versus perfusion cell culture by 

(Pollock et al., 2017), in order to weigh up financial metrics such as FCI and COG/dose and 

far more intangible metrics such as ease of validation and scale-up from an operational 

standpoint. 
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The use of MCDM has proved useful at a portfolio level, as highlighted by (George et al., 

2007), where the technique was applied to create a framework for modelling from a process 

and business perspective, ultimately allowing for the identification of the most appropriate 

strategy for a company to acquire greater manufacturing capacity. 

1.6.1.4 Optimisation 

An in-depth analysis of the relevant optimisation techniques, along with their application 

throughout the literature was conducted in Section 1.5. However, the specific use of 

optimisation within a bioprocessing context is particularly relevant to the content of this thesis. 

Much of mathematical optimisation is concerned with the development of algorithms or 

methods that seek to either maximise or minimise some defined objective function, subject to 

several constraints. In the context of work in the decisional tools space, this objective function 

has often been attributed to a financial metric such as COG, FCI or NPV. In contrast to 

simulation, optimisation is utilised for broad decision spaces, whereby the number of candidate 

solutions is typically very large.  

As discussed in Section 1.5, the field of optimisation can be broadly split into mathematical 

programming and heuristics/meta-heuristics. Heuristic approaches, given its name, utilise a 

commonplace approach to derive a feasible solution, however by nature does not seek to find 

the optimal solution; rather it merely satisfies the problem, but in a relatively short time in 

comparison to mathematical programming. Genetic algorithms (GA) are a frequently used 

heuristic algorithm; this type of algorithm has been applied to the identification of optimal 

manufacturing strategies, often pertaining to individual unit operations. A GA was utilised by 

Simaria et al. (2012) as a means of identifying the optimal purification strategy, with a focus 

placed upon the sequence of purification steps and sizing characteristics across a range of 

mAb products, testing multiple USP:DSP train ratios. Additionally, multiple evolutionary search 

algorithms have been considered and applied to finding the optimal chromatography sizing 

strategy in terms of cost-effectiveness, time and generation of product waste (Allmendinger et 

al., 2014). Moreover, multiple works have been produced related to the use of optimisation, 
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particularly GA-based algorithms, for capacity planning and biopharmaceutical scheduling 

(Jankauskas et al., 2019; Jankauskas & Farid, 2019) utilising genetic algorithms to address 

problems related to; significantly, with multiple objective functions under uncertainty and 

discrete-time optimisation problems respectively. These works featured use of a variable-

length, matrix style chromosome to incorporate all scheduling decisions. The use of meta-

heuristic algorithms has similarly expanded for use in portfolio management; (George & Farid, 

2008a) utilised an estimation of distribution algorithm, inherently incorporating uncertainty, to 

determine optimal strategies relating to portfolio selection, acquiring capacity via a CMO or 

partner-company and the timing of drug candidates. Here, the model framework addressed a 

multi-objective optimisation problem, driven by a desire to maximise the NPV and the 

probability of attaining a positive NPV. The prospective pipeline was fixed at ten drugs and the 

case study evaluated combinations of choosing five from the set. 

Conversely, mathematical programming algorithms are innately designed with the intent to 

guarantee the discovery of an optimal solution. One such example of this is MILP, involving 

decision variables that can either be integers or non-integers, with the additional condition that 

both the constraints and objective function(s) must be linear in nature. This has been 

frequently utilised in portfolio management and capacity planning. Lakhdar et al. presented a 

string of publications (Lakhdar et al., 2005, 2006; Lakhdar & Papageorgiou, 2008), all utilising 

MILP in a capacity planning context; supplementing the deterministic analysis presented in an 

earlier work by implementing MILP with uncertainty for management of a multi-product facility 

and identification of the optimal production planning strategies for manufacturing. 

Furthermore, the use of discrete-time MILP was similarly implemented by (Siganporia et al., 

2014) in capacity planning, with a specific focus upon that of products manufactured via both 

fed-batch and perfusion cell cultures. 
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1.6.2 Decisional tools for novel modalities 

In recent years, the use of decision-support tools has expanded from domination by mAb 

processes or facility simulations and optimisation to use for more novel therapeutics, such as 

cell and gene therapies. This work is summarised in Table 1.6.  

Table 1.6 Summary table of the application of decision-support tools to novel therapeutics. 

Author Published work Modalities 

studied 

Summary of work 

(Simaria 

et al., 

2014) 

Allogeneic Cell Therapy 

Bioprocess Economics and 

Optimisation: Single-Use 

Cell Expansion 

Technologies 

Mesenchymal 

stem cells 

(MSC) 

Evaluation of the most economical 

expansion / cell culture technologies. 

Also implemented is a brute force 

algorithm, to search through all 

options of cell culture technology and 

find the most economical. 

(Hassan 

et al., 

2015) 

Allogeneic Cell Therapy 

Bioprocess Economics and 

Optimisation: Downstream 

processing decisions 

MSC Evaluation and subsequently 

identification of the optimal 

downstream processing and fill-finish 

strategies for MSCs. An optimisation 

algorithm was also incorporated to 

identify the optimal process in terms 

of COG/dose.  

(Nie, 

2015) 

Cost Evaluation and 

Portfolio Management 

Optimisation for 

Biopharmaceutical Product 

Development 

MSC* Application of a drug development 

lifecycle cost model to cell therapies.  

(Jenkins 

& Farid, 

2018) 

Cost-effective bioprocess 

design for the 

manufacturing of 

allogeneic CAR-T cell 

therapies using a 

decisional tool with multi-

attribute decision-making 

analysis 

CAR-T cells Comparison of process flowsheets for 

allogeneic CAR-T cell production in 

terms of manufacturing costs. 

Stochastic MCDM is integrated as a 

way to reconcile conflicting financial 

and operational attributes. 

(Pereira 

Chilima et 

al., 2018) 

Impact of allogeneic stem 

cell manufacturing 

decisions on cost of goods, 

process robustness and 

reimbursement 

MSC Evaluation of cost of goods for cell 

culture technologies for allogeneic 

MSCs, supplemented with uncertainty 

analysis, MADM and optimisation 

(brute-force). 

(Mizukami 

et al., 

2018) 

Technologies for large-

scale umbilical cord-

derived MSC expansion: 

Experimental performance 

and cost of goods analysis 

MSC Cost analysis across a range of MSC 

culture technologies with addition of 

stochastic analysis to identify output 

robustness 

Note: *The work presented here was for a generic cell therapy product, however drew data 

from (Hassan et al., 2015; Simaria et al., 2014). 
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As outlined previously, whilst there have been studies capturing process and economic 

modelling of novel modalities, there are fewer studies that specifically focus on viral vectors 

as an in-vivo gene therapy product. Having said this, Masri et al. (2019) carried out an 

assessment of the suitability of manufacturing technologies for AAV and lentivirus production 

currently. This also gave an estimation of the market sizes for indications that are currently 

being addressed by viral vectors, either as an intermediate or as the final product. Specifically 

pertaining to AAVs, an upstream cost evaluation was conducted, comparing multiple cell 

culture technologies, including both adherent and suspension platforms, to identify which 

technology gave the minimum cost of goods per dose (Cameau et al., 2020). Summarised in 

Table 1.6, Comisel et al. (2021b) presented a decisional tool for the evaluation cost-effective 

lentiviral vector processes, particularly with a comparative focus on the upstream processing 

(USP) portion of the bioprocess. This tool highlighted the importance of moving to more 

scalable upstream options from a cost perspective, as suspension was shown to achieve a 

~40% cost of goods (COG) reduction over more traditional technologies. This work was later 

extended to include a comparison between transient transfection and stable producer cell lines 

to generate viral vector products (Comisel et al., 2021a).  

To date, there has not been an in-depth analysis of whole flowsheets with both upstream and 

downstream manufacturing strategies for AAV from both economic and purity perspectives. 

Particularly when considering the whole drug portfolio, whilst this chapter has outlined 

significant research into portfolio management and capacity planning for biopharmaceuticals, 

these have focused on mAb products and have not considered the implications when portfolio 

mixes of proteins and CGTs are encountered. 
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1.7 Aims and organisation of thesis 

This review chapter has attempted to address both the complexities of biopharmaceutical drug 

development, with a specific focus upon how these are particularly pronounced with more 

novel modalities, such as cell and gene therapies. Details on AAV manufacturing and the 

scalability challenges encountered have also been provided. A focus on various computational 

methods relevant to addressing biopharmaceutical portfolio management and cost modelling 

case studies was also provided, particularly with a distinction between mathematical 

programming and meta-heuristic optimisation. Furthermore, an overview of decisional tools 

and their application to portfolio management, capacity planning and process economics has 

been detailed. As ascertained from the literature review, whilst work has been produced 

evaluating the economics of viruses as a gene therapy product, there has been very little 

scope into AAVs in particular, with no clear focus upon the downstream portion of the 

manufacturing process. Moreover, there is sufficient evidence of studies estimating R&D 

budgets for mAb products, delineating CMC contributions, however this has not yet been 

conducted for more novel therapeutic such as cell and gene therapies and hence no 

comparative analysis with more traditional mAbs. Building upon these elements, there is yet 

to be evidence of an integrated manufacturing, drug-development and portfolio tool that has 

optimisation and capacity planning capabilities for a range of modalities. 

The aims and objectives of this thesis were to construct and utilise the aforementioned 

integrated portfolio management tool for biotherapeutic modalities, covering mAbs, ADCs, 

AAVs and CAR T cell products. Within this tool, further areas to focus on include the process 

economic evaluation of AAVs, for which no tool had yet been devised within the decisional 

tools space, for use as part of a drug development and cash-flow analysis for all modalities 

detailed. This integrated tool is hypothesised to cover case study questions from three distinct 

industrially relevant areas; manufacturing and COG analysis, drug development and CMC 

budgeting and dynamic portfolio optimisation and capacity planning. All three elements govern 

changes in one another, hence the necessity for the tool to be combined into one. As a result, 
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a series of case studies have been designed and implemented throughout this thesis, 

highlighting the incremental building of the tool into its fully-integrated state. Each results 

chapter refers to work conducted to address each significant part of this tool on industrially 

relevant scenarios. 

Chapter 2 presents an overall description of the decisional tool requirements, dividing 

components appropriately and showing the interdependency between them. This highlighted 

the overall problem statement for the thesis, along with some of the individual contributions 

arising from each model within the tool, including the process economics work and R&D 

budget estimation. 

Chapter 3 presents the construction of the first major elements of the tool; a process 

economics model for AAV manufacturing. A case study was devised where the process 

economics tools was used for assessment of cost-effectiveness of traditional AAV flowsheets 

versus more scalable alternatives. The impact of AAV dose size was also considered to 

highlight the variability across indications. Furthermore, the tool was supplemented with 

additional decision-making techniques such as uncertainty analysis via application of a Monte 

Carlo simulation, designed to capture the robustness of flowsheets investigated in the base-

case scenario. A brute-force optimisation algorithm was implemented for rapid evaluation of 

the cost-effectiveness and purity potential of a range of AAV flowsheet options. 

Chapter 4 described a tool and a study to compare and contrast the process development 

and manufacturing budgets for mAbs, ADCs, AAVs and CAR T cell therapeutics. This study 

also estimated the clinical trials cost by phase to be used in calculating the total out-of-pocket 

cost per success. The clinical success rates for each modality provided estimates of the 

number of projects required at each phase if one market success is to be achieved, which was 

supported by a sensitivity analysis across the range values. In addition to the AAV model built 

in Chapter 3, access to individual process economics models for proteins and CAR T cells 

was possible, through work carried out by Simaria et al. (2012) and Stamatis and Farid (2021) 

and Pereira Chilima et al. (2020) respectively. These could be used to derive the relevant 
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manufacturing costs across phases for use in line with process development and clinical trials 

assumptions to determine the out-of-pocket costs. 

Furthermore, Chapter 5 sought to integrate the previously defined elements and tools 

described in Chapters 3 and 4 for use within portfolio management and capacity planning 

framework, thus presented the implementation of the fully-integrated decisional tool. The tool 

chiefly comprised a modified GA-based algorithm utilising a two-dimensional chromosome 

structure to characterise candidate portfolios and included bespoke constraint handling 

strategies. This further incorporated a success-failure algorithm based upon Bernoulli events 

to allow for the dynamic impact of drug failures to be expressed within the profitability analysis. 

The case study considered a large biotechnology company with a prospective pipeline of both 

protein therapeutics and CGTs. This firstly considered only mAbs and ADCs and comparing 

how a pipeline dominated by batch or products requiring continuous manufacture impacted 

profitability and capacity sourcing. This was extended to include CGTs, evaluating the risk: 

reward trade-off. 

Chapter 6 summarised the conclusions drawn from the previous chapters, including key 

outcomes and contributions and Chapter 7 highlighted the potential for commercialisation of 

the decisional tool described throughout the thesis, with discussion into current viability and 

alternatives software to be considered. 
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2 Decisional tool: Problem requirements and 

structure 

2.1 Overview 

The review chapter previously presented provided insights into the development and 

manufacturing of biotherapeutics. Additionally, a series of computational methods were 

outlined that have either been reported for use in portfolio management or capacity scheduling 

problems or were perceived to be options moving forward. Notably, the distinction between 

mathematical programming such as MILP-based models and meta-heuristic techniques such 

as genetic algorithms were previously specified, each with advantages and disadvantages in 

their implementation. This analysis evidenced the often-higher computational effort required 

for MILP-based algorithms, particularly when building a bespoke solution to a problem. In 

contrast, meta-heuristics offer users greater flexibility, facilitating efficient learning and 

implementation. In scenarios with non-linear decision variables and constraints, where 

reaching the true optimal solution is considered time-prohibitive (e.g. in stochastic 

environments), a GA-based approach was deemed to be a far more appropriate framework 

than mathematical programming. 

As indicated in Section 1.7, the aim of Chapter 5 involved identifying the optimal portfolio 

composition in terms of drug selection and commercial capacity sourcing strategies when 

firstly considering batch versus continuous manufacture of mAbs and ADCs and later the 

impact of injecting CGTs. Whilst construction of the portfolio management tool used within this 

chapter was the end goal, several elements of the tool were necessary to define initially in 

order to generate the relevant costs for use within the profitability analysis (i.e. generation of 

the NPV). In particular, this necessitated the development of an AAV process economics 

engine and leveraging those currently available for the other therapeutic modalities under 

consideration (mAb, ADC and CAR T cell). In addition to manufacturing costs, calculation of 
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process development and clinical trials costs was also necessary, within a drug development 

lifecycle model that could account for the interdependencies between these activities, along 

with the impact of success rates on the overall R&D budgets. Therefore, the portfolio 

management tool utilised in Chapter 5, more specifically expressed as a stochastic multi-

objective optimisation tool, extended the drug development lifecycle cost model with a cash-

flow analysis to generate profitability, with the formation and evolution of solutions governed 

by a GA-based optimisation algorithm.  

As such, due to the extent of techniques covered by the tool in its entirety, the specific 

materials and methods related to each individual model (i.e. AAV process economics, drug 

development lifecycle cost model and GA-based stochastic portfolio optimisation tool) have 

been outlined in their corresponding chapters within this thesis. Therefore, this chapter 

presents an overview of the whole decisional tool and the interactions between the models 

developed. Additionally, the motivations behind incorporating certain techniques have also 

been detailed within this chapter, along with the choice of building a custom tool over off-the-

shelf software. To provide greater clarity and to summarise the tool components developed 

within this thesis and the case studies these addressed, the work in Chapters 3, 4 and 5 are 

labelled below as components of the whole decisional tool. The components are also 

numbered here for further granularity and are also expressed in Figure 2.1. 

• Component 1: AAV process economics model (Chapter 3) 

• Component 2: Drug development lifecycle cost model for mAb, ADC and CAR T (Chapter 

4) 

• Component 3: Cash-flow analysis and portfolio optimisation algorithm (Chapter 5) 

The integration of the aforementioned components and hence the interaction between 

chapters is summarised in Table 2.1. This evidences the step-wise union of components, 

culminating in the portfolio optimisation tool and hence collation of all elements in Chapter 5. 
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Figure 2.1 Schematic of the interaction between chapters within the thesis. The red contour 

indicates the tool component used in the AAV process economics work. The blue contour 

indicates those used within the drug development lifecycle cost model work. The black contour 

represents the overall decisional tool, incorporating the portfolio management and capacity 

sourcing elements also.  

 

Table 2.1 Breakdown of results chapter by the model components used. 

Chapter Model components used 

3 Component 1 

4 Integration of Components 1 and 2 

5 Integration of Components 1, 2 and 3 
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2.2 Problem definition 

As summarised earlier, the overall goal within the thesis was the creation of a decisional tool 

for the optimisation of biopharmaceutical portfolios with respect to both the expected 

profitability (expected NPV) and the risk or volatility associated with the profit (quantitatively 

expressed as the standard deviation of the NPV). Candidate solutions were represented by 

the drugs selected and the capacity strategies used for each. The key components within the 

overall tool and their utilisation in each chapter were discussed in Section 2.1. This indicated 

the relationship between model components and thus interactions between the chapters. 

Whilst the overall portfolio management tool was employed in Chapter 5, the work conducted 

in Chapters 3 and 4 were necessary to build in the full capabilities of the decisional tool. As a 

result, the next section addresses the requirements and capabilities of the tool and follows a 

bottom-up approach; that is, the components are discussed in reverse order to highlight the 

overall goal and why it became necessary to build in the model elements utilised in Chapters 

3 and 4.  

2.2.1 Requirements and capabilities 

The model was required to ultimately address a portfolio optimisation problem for a large 

biotechnology company. In terms of capabilities, the model had to consider an established 

starting portfolio, a pool of potential candidate drugs to inject into the portfolio annually and a 

series of capacity sourcing options to manufacture the drug candidates (i.e. in-house, 

outsourcing to a CMO or building a new facility). This would also require inclusion of 

constraints, namely those related to R&D budget and manufacturing capacity. 

The goal of the study was portfolio optimisation, that is, ascertaining the portfolio composition 

of drugs and the corresponding capacity strategies that would maximise the expected 

profitability (eNPV). A secondary objective was to minimise the risk associated with this profit, 

which is quantitatively expressed as the standard deviation of the NPV (sdNPV). Derivation of 

these objective functions required a distribution of outputs be generated. This required 
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inputting distributions of parameters through an uncertainty analysis via Monte Carlo 

simulation, where larger standard deviations inferred riskier solutions. However, before 

integration of additional techniques such as an uncertainty analysis, the generation of the 

deterministic NPV was necessary. This required the integration of modality-specific process 

economics models and the drug development lifecycle model with a cash-flow analysis to 

determine annual revenues and expenses, before discounting cumulative costs to determine 

the NPV. As a result, components 1 and 2 defined in Section 2.1 were necessary to include 

within the overall portfolio tool. 

The key expenses considered within the cash-flow for deriving the NPV were necessary to 

define. These in particular could be broadly categorised as those related to process 

development, manufacturing and clinical trial activities. This gave rise to the model developed 

and employed in Chapter 4, designed to outline these expenses, as well as introduce the 

impact of clinical success rates on overall R&D costs. Similar to that already reported in 

previous R&D budget studies, process development costs were calculated from considering 

an annual salary and the personnel required across phases to characterise and optimise the 

process prior to manufacturing. Clinical trial budgets were assessed through assumption on 

trial sizes (in terms of patient population) and the average cost per patient involved in the trial. 

On the manufacturing front however, as shown in Chapter 1, derivation of the cost of goods 

required construction of detailed process economics engines. At the time of formulating the 

problem statement, process economic models for mAbs, ADCs and CAR T cells were 

available to be used or built upon, however no such model was available for AAV 

manufacturing. This missing element, along with several of the challenges indicated in Chapter 

1, provided motivation for the construction of an AAV process economics model.  

As such, the work carried out in Chapter 3 focused on the generation of an economics model 

capable of providing AAV cost of goods values, whilst addressing a number of the USP and 

DSP challenges described in Chapter 1. In particular, it became significant to assess the 

feasibility of traditional versus scalable AAV manufacturing strategies. Additionally, the extent 
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of AAV flowsheet options available drove the implementation of a brute-force optimisation to 

evaluate technologies from both an economic and purity perspective. 

 

2.3 Selection of software and overall model design 

The previous section provided information on the computational methods that would be 

required for addressing each element of the problem statement. An important consideration 

for construction of the tool was the programming language utilised. The majority of the tools 

discussed in Chapter 1 were constructed with Microsoft Excel alone or in combination with 

Python, in particular those involving process economic or drug development case studies. 

More extensive tools such as those for portfolio management or capacity scheduling have 

been implemented using more powerful programming languages, including Python, C++ or 

C#. In particular, Python is an object-oriented programming (OOP) language, allowing for data 

and function organisation into “classes”, which are instantiated as “objects” for specific 

problems. The language as a whole provides a relatively intuitive syntax and access to an 

extensive range of open-source libraries for data manipulation, statistics and visualisation to 

name a few. Though it has been reported that other languages such as C++ and C# enable 

relatively improved performance over Python, attributes such as rapid learning and 

development of programming skills and use of existing libraries were considered more 

significant factors in choosing Python as the primary programming language. Furthermore, 

several of the existing process economics models available to use within the whole decisional 

tool had previously been constructed in Python, hence maintaining this uniformity was also a 

driver in utilising Python throughout. 

Taking each tool component described in Table 2.1 as a standalone model, the following 

section outlines the methods utilised on a chapter-by-chapter basis, including the motivations 

behind their inclusion. 
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2.3.1 AAV process economics 

The following section outlines the key modelling elements from the AAV process economics 

model. The model was constructed in Python 3.8, with adjoining databases of assumptions 

stored in Microsoft Excel. Alternative process economic tools commercially available include 

BioSolve (Biopharm Services, UK), which allows for cost analysis of viral vector 

manufacturing. In this case, a software like BioSolve was not chosen due to the wider goal of 

the tool that was portfolio optimisation, which is not provided by this software. This would prove 

difficult in linking model components (as discussed in Section 2.1) if conflicting software was 

implemented on different tool elements. Other considerations for building an in-house process 

economics tool in Python 3.8 included the ability for customisation and incorporation of 

additional techniques (e.g. uncertainty analysis, brute-force optimisation) and particularly 

when compared to BioSolve, the perceived improved computational efficiency. 

Furthermore, the object-oriented structure described earlier was used for the design of the 

AAV COG tool. General unit operations (e.g. centrifugation, filtration, chromatography) were 

designed as classes, with objects instantiated for specific variations, e.g. an affinity 

chromatography object can be instantiated from the general chromatography class. An 

example of this architecture is highlighted in Figure 2.2, using chromatography as an 

illustrative example. Object outputs instantiated from each unit operation class were grouped 

for any given flowsheet to calculate the overall cost of goods. 
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Figure 2.2 Example of class design in the AAV process economics model in Python 3.8, using 

chromatography as an example unit operation. All classes were coded in Spyder (IDE) and 

objects were instantiated in Jupyter Notebook (GUI). The structure of classes always took the 

following: class definition (e.g. chromatography), definition of relevant attributes (e.g. DBC, 

resin type) and the set of methods or calculations related to the class (e.g. mass balancing 

and sizing equations for chromatography). 

The key elements within the AAV process economics tool are provided below. An overview is 

detailed within this section, with a more comprehensive discussion provided in materials and 

methods section of Chapter 3. 

1. Deterministic cost of goods: This included the overall COG per dose, as well as a 

breakdown by relevant cost category, e.g. raw materials, labour, indirect. At the base-case, 

only a single COG was generated for any given scenario, as no sensitivity or stochasticity 

of input parameters was considered at this point. This provided the central model element 
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and therefore, any additional computational techniques built-in would utilise the 

deterministic model to derive COG outputs. 

2. Uncertainty analysis: This linked to the process economics model and when provided 

with input distributions of uncertain input parameters, generated output distributions of 

COG/dose values. The inclusion of an uncertainty analysis is beneficial for assessment of 

the robustness or risk associated with any given AAV flowsheets. It also simulates the 

realistic uncertainty associated with several bioprocess-related parameters. 

3. Brute-force optimisation: As with the uncertainty analysis, outputs relied on the 

deterministic model to generate COG values. Brute-force algorithms rapidly feed 

numerous potential solutions into the deterministic model to generate the objective 

functions associated with each. Outputs were also assessed for compliance with any 

imposed constraints. This technique is generally useful for a rapid evaluation of flowsheet 

options and circumvents much of the computational time and intensity associated with 

manually inputting each flowsheet into the deterministic COG model. Equally, for a case 

study such as identifying optimal flowsheets (i.e. finite number of combinations and a 

relatively small objective space), a brute-force algorithm is often an apt choice over a more 

powerful meta-heuristic or mathematical programming technique. 

2.3.2 Derivation of R&D budgets for mAbs, ADCs, AAVs and CAR T 

This chapter sought to estimate the R&D budgets for a range of biotherapeutic modalities and 

compare and contrast costs across phases and development activities. Each modality 

evaluated had specific process economics models associated with them (all constructed in 

Python 3.8) and as such, consistency in the programming language provided a driver in 

constructing the drug development lifecycle cost model also in Python 3.8.  

The application of object-oriented programming within this model was particularly useful for 

instantiating phase-by-phase activities for a given modality, in calculating the cost 

breakdowns. An example of this architecture is highlighted in Figure 2.3. 
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Figure 2.3 Example of class design in the drug development lifecycle model in Python 3.8, 

using the stage as an example. All classes were coded in Spyder (IDE) and objects were 

instantiated in Jupyter Notebook (GUI). The structure of classes always took the following: 

class definition (e.g. a given stage), definition of relevant attributes (e.g. activity type (process 

development, manufacturing or clinical trials), modality under consideration or phase (e.g. I, 

II, III, regulatory review) and the set of methods or calculations related to the class (calculation 

of the costs for the activity, phase and modality under consideration). 

The major elements in the drug development lifecycle cost model are listed below. An overview 

is detailed within this section, with a more comprehensive discussion provided in a dedicated 

methodology section in Chapter 4. 

1. Deterministic total out-of-pocket cost per success: This was an integrated tool for all 

modalities and provided links to all relevant process economics models (including that 

described in Section 2.3.1). In addition to manufacturing, process development and clinical 

trials calculations were conducted and the overall out-of-pocket costs (also termed budget) 

could be generated. This was derived on a per success basis, meaning the clinical success 



84 
 

rates were considered to calculate the theoretical number of project required at each 

phase to achieve a single market success. 

2. Sensitivity analysis: This involved defining a best- and worst-case value alongside the 

base-case and inputting these into the deterministic out-of-pocket cost calculations. This 

targeted clinical success rates, due to their significance in influencing budgets and 

particularly, the distribution of costs across clinical phases. 

2.3.3 Portfolio management and capacity planning for mAbs, ADCs, 

AAVs and CAR T 

The building blocks of this section were described in Sections 2.3.1 and 2.3.2, however several 

additional computational elements were included here to address the problem statement more 

comprehensively. As described previously, the tool was designed in Python 3.8. In general, 

the language allows access to a range of libraries that expedite the implementation of various 

computational methods. Specific to optimisation, Python libraries such as PyGAD or PyMOO 

(for multi-objective problems) can effectively be regarded as off-the-shelf functions to 

implement optimisation. PyGAD provides tools for the implementation of genetic algorithms 

specifically, offering a framework for solution optimisation, parameter customisation and 

feature selection. Conversely, PyMOO is specifically designed for optimisation problems with 

two or more objective functions, where these often conflict with one another. This provides 

users with a range of multi-objective optimisation algorithms and tools for defining problem-

specific objectives, constraints and decision variables.  

Though these libraries were available, for the problem under consideration, several factors 

drove the implementation of a bespoke model in Python, coded without use of optimisation 

libraries or off-the-shelf tools. Chapter 5 provides more detail on the novelty of chromosome 

structure, however this motivated the construction of a bespoke tool, as typically off-the-shelf 

optimisation libraries come with a pre-defined chromosome structure. The use of highly 

specialised or unique chromosome structures would therefore be incompatible with the 
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aforementioned libraries. Furthermore, as discussed previously, the portfolio tool required 

integration with the existing model components, thus a custom tool can be beneficial in 

maintaining the overall tool architecture and data flow. It must also be noted that a driver 

behind the implementation of a custom portfolio optimisation tool was also to facilitate learning 

of the specific computational methods undertaken and to gain practical experience in building 

individual decision-making techniques. 

 

 

 

 

 

 

 

 

 

Figure 2.4 Example of class design in the portfolio optimisation tool in Python 3.8, using the 

genetic algorithm as an example. All classes were coded in Spyder (IDE) and objects were 

instantiated in Jupyter Notebook (GUI). The structure of classes always takes the following: 

class definition (e.g. genetic algorithm), definition of relevant attributes (e.g. GA parameters) 

and the set of methods or calculations related to the class (steps involved in evolving 

candidate solutions).  

As displayed previously, the use of OOP in this section of the tool is outlined in Figure 2.4, 

utilising the genetic algorithm as an illustrative example. Furthermore, the key elements within 
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the optimisation tool are provided below. An overview is detailed within this section, with a 

more comprehensive discussion provided in the methodology section of Chapter 5. 

1. Discounted cash-flow: This was fundamental to deriving the eNPV, which served as one 

of the objective functions. This allowed for multiple therapeutic products to be assessed 

and as such a combined cash-flow was considered based on the whole portfolio rather 

than just a single drug. The core of this was a profit and loss statement, with discounting 

of costs to account for the time value of money. 

2. Modified genetic algorithm: This was an essential element to carry out the optimisation 

procedure. As previously discussed, GAs are a meta-heuristic algorithm and as such are 

not concerned with providing the true optimal of the set, but typically reduce computational 

time in comparison to mathematical programming. This allowed for rapid evaluation of 

populations of candidate portfolios and assessed their performance with respect to the 

outputs of the discounted cash-flow. 

3. Uncertainty analysis: This was applied to entries into the cash-flow and resulted in a 

distribution of NPV values, ultimately generating the eNPV. This further allowed for the 

generation of the standard deviation of the NPV, which served as the second objective 

function. 

4. Multi-objective optimisation: The incorporation of an uncertainty analysis yielded 

multiple objective functions and as a result, use of a modified-GA based algorithm that can 

cope with both objectives to be optimised was necessary. This introduced modified ranking 

and selection methods that considered the performance of both objective functions. 

5. Model validation: Convergence metrics were defined to assess the performance of the 

algorithm, particularly ones suited to multi-objective optimisation as described in Chapter 

1. Parameter selection was also conducted to confirm the appropriate selection of GA 

parameters. 
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6. Dynamic risk simulation: This was a necessary addition to assess the transition success 

rates in a dynamic environment. This considered the success or failure of products in each 

portfolio and how failure impacted the profitability and capacity considerations. 

 

2.4 Conclusion 

In summary, the overall decisional tool was shown to require three distinct components; that 

related to AAV process economics, drug development lifecycle cost modelling and portfolio 

optimisation and capacity strategies for a mix of modalities. Furthermore, the motivation 

behind the use of Python as a programming language and the building of a custom tool over 

off-the-shelf applications was also discussed, highlighting the benefits in tailoring the 

modelling procedure to the specific requirements of the problem. This also discussed the 

option for incorporating novel elements to the tool that may not be possible in off-the-self 

software programs. Furthermore, construction of a bespoke tool provides a unique learning 

element that allows for a better understanding of the algorithms, any caveats associated with 

their use and the intricacies of the problem domain. 
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3 Process economic evaluation and optimisation of 

adeno-associated virus manufacturing 

3.1 Introduction 

As outlined in Chapter 1, a key challenge identified in large-scale AAV processing is the scale-

up of processes typically intended for lab-scale, a challenge present during both upstream 

processing (USP) and downstream processing (DSP). Cell culture has typically relied upon 

technologies that involve growing HEK293 cells adhered to a plastic surface, thus scale-out 

strategies are employed to increase the area required, rapidly increasing the number of 

incubators and ultimately facility footprint. Scalability issues are also encountered during 

purification as many traditional AAV protocols feature a non-scalable batch gradient density 

ultracentrifugation (UC) step, which similarly involves increasing the number of parallel 

ultracentrifuge units when a greater capacity is necessary. For annual demands characteristic 

of rare or orphan indications, scalability does not present a critical challenge. However, when 

targeting more prevalent disease areas or those with high dose sizes using AAVs, switching 

manufacturing strategies towards generation of a scalable platform is desired. As a result, 

there exists the need for the effective translation of the purification performance achieved with 

technologies such as ultracentrifugation at the lab scale, to more scalable technologies that 

are economically feasible in a commercial setting. 

A significant and somewhat unique impurity issue that arises with AAV manufacturing is the 

generation of vector particles lacking fully packaged genetic material, referred to as empty or 

partially-filled capsids. The challenge industry faces is that empty capsids are structurally 

closely related to the full capsids (Qu et al., 2015), thereby making it difficult to utilise some 

chromatographic procedures and exploit molecular and structural differences between 

impurities. Steps such as ultracentrifugation have demonstrated success in removal of empty 

particles, independent of AAV serotype (Crosson et al., 2018) and allow for more stable yields 
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relative to IEX. This presents the trade-off between ultracentrifugation and IEX; that is a high 

yield and purity step against a scalable strategy respectively. Alternative scalable options 

include the use of continuous ultracentrifugation, which can allow for large product volumes to 

be processed (Chen et al., 2016; Wada et al., 2023). This provides a scalable, serotype-

independent methodology for purifying AAV products, as well as linear scalability from the 

batch rotors during development to commercialisation (Merino & Brittle, 2023). In terms of 

purity, final product specifications lack definition with respect to empty capsids and hence there 

remains ambiguity around target removal levels. In contrast, information exists on AAV 

process-related impurities such as host cell proteins (HCP) and host cell DNA, where Wright 

(2014b) provided data on target levels for both. 

As such, this chapter investigates the cost-effectiveness of AAV manufacturing strategies, 

evaluating both USP and DSP. Section 3.2 provides the materials and methods related to the 

process economics model. Section 3.3 gives the case study setup, detailing key scenario-

related assumptions for the flowsheets under consideration. Significantly, Section 3.4 presents 

the results of the case study, firstly providing the deterministic analysis, focusing upon 

adherent cell factories (CF10) versus suspension stirred tank bioreactors for cell culture, and 

batch ultracentrifugation (UC) against anion-exchange chromatography (AEX) for polishing 

purification comparison. This is followed by study outlining how the dose size affects this base-

case COG/dose ranking. Furthermore, an uncertainty analysis was carried out to compare the 

robustness of the different manufacturing strategies. Finally, an optimisation of AAV 

purification platform was then implemented to find the optimal capture and polishing options 

from an economic and purity perspective. 
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3.2 Materials and methods 

3.2.1 Overview and description of decisional tool 

The decisional tool in Figure 3.1 was developed to allow for a comparison between AAV 

process flowsheets and ultimately determination of cost-effectiveness, whilst meeting any 

imposed purity constraints and targets. The tool comprised a process economics model, with 

an uncertainty analysis feature for assessment under stochastic conditions. Additionally, a 

brute-force optimisation algorithm fed information into the process economics model, where 

outputs were then fed back for identification of the optimal output. A hybrid modelling approach 

was undertaken, utilising both Python 3.8 (Python Software Foundation, DE, USA),  and 

Microsoft Excel (Microsoft Corporation, WA, USA).  

The tool itself was implemented in Python 3.8, with Spyder used as the main code editor of 

the model and Jupyter Notebook for the graphical user interface (GUI), to visualise key model 

outputs. Python 3.8 is well regarded as a relatively rapid programming software compared to 

using Microsoft Excel, with opportunities to leverage several shortcuts for data processing, 

analysis or visualisation through use of in-built libraries. Additionally, Python has often been 

used for object orient programming (OOP), a framework extensively followed when crafting 

bioprocessing economics models. Typically, any manufacturing flowsheet can be 

characterised as a series of unit operations, each with individual process models to determine 

sizing metrics and ultimately costs. Therefore, in this tool, model classes in Python were 

organised by general unit operation type (e.g. chromatography, filtration, cell culture) and 

specific objects were instantiated from a given class when calling the unit operation in the 

interface (e.g. affinity chromatography, depth filtration, chemical lysis). Whilst Python 

comprised the majority of the tool, Microsoft Excel was utilised as an adjoining database 

containing many of the inputs outlined in Figure 3.1. In particular, this included much of the 

mass balance, sizing cost and market data. As an additional impetus for the programming 



91 
 

language selected, the Pandas library in Python provides an intuitive means to load Excel-

based assumptions as variables into the model. 

 

Figure 3.1 Decisional tool architecture for AAV process economics. Assumptions and process 

parameters feed into the deterministic model, where the COG/dose is calculated. Information 

is transferred between the stochastic model feature and the process economics model as part 

of the uncertainty analysis via Monte Carlo simulation. A brute-force optimisation component 

is also present to conduct rapid evaluation of AAV flowsheets. 

3.2.2 Process models 

The process models used throughout this chapter for mass balancing and sizing were largely 

derived  and adapted from Simaria et al. (2012) and Stamatis & Farid (2021). Key viral vector 

process models, particularly fill-finish, were adapted from Comisel et al. (2021), but altered to 

represent AAV manufacturing over lentiviral vectors. Furthermore, new models were also 

incorporated (e.g. ultracentrifugation) for additional unit operations. The process models 

allowed for a whole flowsheet mass balance, as well as equipment sizing for each unit 

operation and ancillary equipment. 

In general, the process models for AAVs track the vector genomes (vg) out of each stage. The 

models utilised for each flowsheet are dependent on the nature of the upstream process 

material; that is, whether the AAV is intracellularly or extracellularly expressed post-culture. 



92 
 

This often also goes hand-in-hand with the cell culture type, i.e. whether cells grown in 

adherent or in suspension mode. 

The vg out of each step were, in the majority of cases (except where stated), calculated by 

assuming a step yield (𝑌𝑗) and applying it to the number of vg in. 

𝑣𝑔𝑜𝑢𝑡 = 𝑣𝑔𝑖𝑛 × 𝑌𝑗         (3.1) 

3.2.2.1 Seed expansion 

Seed expansion is characterised as a collection of stages designed to ensure the required 

seeding cell density for the production culture is achieved. The number of seed stages may 

vary between technology type, however in general, the seed vessels used also depend on 

whether cell culture is adherent or suspension. An adherent production cell culture means all 

adherent technologies are used throughout the seed and the same applies for suspension. In 

the work conducted in this chapter, each production cell culture technology was assigned a 

pre-defined seed train. Equations were then constructed to determine the number of units of 

each technology required at each seed stage based on the cells required for the following 

stage.  

It has been reported that a single seed train can be used to feed multiple production batches 

in viral vector manufacturing, such that the seed is maintained for a fixed time to later feed the 

other production batches. For the purpose of this work, this was defined as a campaign, where 

each campaign may have a maximum of four production batches fed by one seed. Hence the 

number of campaigns could be used to define how many seed runs were required annually. 

In cases where the number of annual production batches (𝐵) was not perfectly divisible by the 

maximum production batches per campaign (4), two varieties of campaign were defined. The 

equation for variety 1 is outlined below. 

𝑁𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛𝑠,1 = 𝐹𝐿𝑂𝑂𝑅(
𝐵

4
)        (3.2) 
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Campaign variety 2 was required if 
𝐵

4
 was found to be a non-integer value and as such the 

following equation was used. 

𝑁𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛𝑠,2 =  (
𝐵

4
− 𝑁𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛𝑠,1) × 4       (3.3) 

 

The assumption that one seed train could be used for multiple production batches governed 

the number of cells to be produced prior to seeding the first production batch and evidently 

meant an excess needed to be generated. In practice, this excess is further maintained in 

parallel seed stages as the first production batch is run, to ensure there are sufficient cells to 

seed the next production batch. As dictated previously, this calculation is further dependent on 

whether the cell culture is adherent or suspension. 

3.2.2.1.1 Adherent cell culture 

This type of cell culture involves the growth of cells on a surface, thereby densities are given 

in terms of cells per area of the technology. To seed one production batch, the following 

equation was utilised to determine the number of cells required. 

𝑁𝑠𝑒𝑒𝑑 = 𝑁𝑢𝑛𝑖𝑡𝑠𝑛
× 𝐴𝑛 × 𝑑𝑠𝑎

        (3.4) 

where 𝑁𝑠𝑒𝑒𝑑  = number of cells required to seed one production batch 

 𝑁𝑢𝑛𝑖𝑡𝑠𝑛  = units of the technology at production culture (denoted stage 𝑛) 

 𝐴𝑛 = surface area per unit of the technology (cm2) at production cell culture 

 𝑑𝑠𝑎  = adherent seeding cell density (cells/cm2) 

The number of excess cells required to seed multiple production batches, in addition to 𝑁𝑠𝑒𝑒𝑑, 

was ascertained by assuming a doubling time for the cells and the seed maintenance time. 

The following equation was formulated to do this. 

𝑁𝑠𝑒𝑒𝑑(𝑡𝑜𝑡𝑎𝑙) =  𝑁𝑠𝑒𝑒𝑑 × ∑ 𝑒−𝑏𝑘𝑡𝐵𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛−1

𝑏=0
                                                             (3.5) 

where 𝐵𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛 = number of production batches in a campaign  
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 𝑏 = index of production batch and is in the range (0… 𝐵𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛 − 1) 

𝑁𝑠𝑒𝑒𝑑(𝑡𝑜𝑡𝑎𝑙) = total cells required to cultivate  

 𝑘 = doubling time constant (see Equation A1 in Appendix A) 

 𝑡 = time (days) that the seed is maintained for to seed the next production batch 

The above equation only held true if 𝐵𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛 exceeded 1. In cases where one seed train fed 

only one production batch, the only value b could take was 0, hence 𝑁𝑠𝑒𝑒𝑑(𝑡𝑜𝑡𝑎𝑙) approximates 

to 𝑁𝑠𝑒𝑒𝑑. This concurs with the theory that no excess of cells would be required if no seed 

maintenance was necessary. Furthermore, t relies on the assumption that the seed is 

maintained for the duration of USP and DSP (see Figure A1 in Appendix A), thus incorporated 

the total time for which the cells must be maintained and further cultured in between two 

production batches.  

The number of units of the cell culture technology required at seed stage 𝑛 − 1 was calculated 

based upon the ratio of the surface areas and seeding densities of the current and previous 

seed stage. 

𝑁𝑢𝑛𝑖𝑡𝑠𝑛−1
=  

(𝑑𝑠𝑎×𝐴𝑛×𝑁𝑢𝑛𝑖𝑡𝑠𝑛)+ (𝑁𝑠𝑒𝑒𝑑(𝑡𝑜𝑡𝑎𝑙)−𝑁𝑠𝑒𝑒𝑑)

𝑑ℎ𝑎×𝐴𝑛−1
     (3.5) 

where 𝑑ℎ𝑎
 = adherent harvest cell density (cells/cm2) 

𝐴𝑛−1 = surface area of technology at stage 𝑛 − 1 (cm2) 

The equation is similar, but slightly modified for the calculation of how many units of other seed 

stages are required (𝑛 − 2, … 𝑛 − 𝑚) where 𝑚 is required number of seed stages. 

𝑁𝑢𝑛𝑖𝑡𝑠𝑛−𝑘
=  

(𝑑𝑠𝑎×𝐴𝑛−𝑗×𝑁𝑢𝑛𝑖𝑡𝑠𝑛−𝑗
)

𝑑ℎ𝑎×𝐴𝑛−𝑘
       (3.6) 

where 𝑁𝑢𝑛𝑖𝑡𝑠𝑛−𝑘
 = number of units of seed stage  𝑛 − 𝑘, where k = 2, … , 𝑚  

𝑁𝑢𝑛𝑖𝑡𝑠𝑛−𝑗
 = number of units of seed stage 𝑛 − 𝑗, where 𝑗 = 1,…, 𝑚 − 1 
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𝐴𝑛−𝑘 = surface area of technology at stage 𝑛 − 𝑘 (cm2) 

𝐴𝑛−𝑗 = surface area of technology at stage 𝑛 − 𝑗 (cm2)  

3.2.2.1.2 Suspension cell culture 

In contrast to adherent cells, cells in suspension grow within the cell culture media. The seed 

equations for determining the number of units of each technology per stage required are 

similar to that of adherent, except volume is used instead of surface area (thus 𝐴𝑛−1 becomes 

𝑉𝑛−1). Additionally, the seeding and harvest cell densities differ for suspension and have the 

units of cells/mL and are represented by 𝑑𝑠𝑠
or 𝑑ℎ𝑠

 (see Equations A2 and A3 in Appendix A). 

3.2.2.2 Cell culture (expansion) 

The production phase of AAV manufacturing involves the expansion of HEK293T cells. AAV 

production is induced by transfection of three plasmids into the cells, containing necessary 

genes for the formation of AAV particles. Calculations pertaining to the vg out or volume out 

per batch were determined from setting an annual demand (in terms of the number of doses). 

By also considering the required vg per dose (i.e. dose size), Equation 3.8 was then utilised 

to generate the annual vg requirement.  

𝐴𝑛𝑛𝑢𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑔 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑣𝑔) =
𝐷𝑜𝑠𝑒 𝑠𝑖𝑧𝑒 ×(1+𝑏𝑎𝑡𝑐ℎ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒)×𝐷𝑒𝑚𝑎𝑛𝑑

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑦𝑖𝑒𝑙𝑑
  (3.7) 

In calculating the vg output required per batch, the number of batches per year (𝑁𝑏𝑎𝑡𝑐ℎ) was 

applied. 

𝑣𝑔𝑜𝑢𝑡 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑔 𝑜𝑢𝑡𝑝𝑢𝑡 (𝑣𝑔)

𝑁𝑏𝑎𝑡𝑐ℎ
       (3.8) 

Harvest titre is often defined differently for adherent cell culture over suspension. Adherent 

generally reports titres in vg/cm2 of cell growth area, whereas titre for suspension cell culture 

is typically expressed in terms of vg/L of media consumed. Therefore, for consistency with 

literature (see Table 1.2), these units are maintained throughout. As such, the output of 
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Equation 3.8 was used with the titre to ascertain either the growth surface area (𝐴𝑛𝑡𝑜𝑡𝑎𝑙
) or 

working volume required per batch (𝑉ℎ𝑎𝑟𝑣𝑒𝑠𝑡) (see Appendix A for titre determination). 

𝐴𝑛𝑡𝑜𝑡𝑎𝑙
=

𝑣𝑔𝑜𝑢𝑡

𝑇𝑖𝑡𝑟𝑒 (𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑡)
        (3.9) 

𝑉ℎ𝑎𝑟𝑣𝑒𝑠𝑡 =
𝑣𝑔𝑜𝑢𝑡

𝑇𝑖𝑡𝑟𝑒 (𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛)
        (3.10) 

The harvest volume per batch represents the volume that is removed from the cell culture 

vessel post-production. This value was utilised to generate the number of parallel units 

required to attain the volumetric capacity required (used for suspension only). 

𝑁𝑢𝑛𝑖𝑡𝑠𝑛
= [

𝑉ℎ𝑎𝑟𝑣𝑒𝑠𝑡

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡𝑒𝑐ℎ
]      (3.11) 

Conversely, in the case of adherent technologies, the total area required per batch was used. 

𝑁𝑢𝑛𝑖𝑡𝑠𝑛
= [

𝐴𝑛𝑡𝑜𝑡𝑎𝑙

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡𝑒𝑐ℎ
]       (3.12)  

The 𝑁𝑢𝑛𝑖𝑡𝑠𝑛
from either Equations 3.12 or 3.13 was the value utilised in the seed equations 

shown in Equations 3.4 and 3.6. 

3.2.2.2.1 Extracellular AAVs 

The previous volumetric equations outlined were modelled differently depending on the AAV 

serotype under consideration, more specifically whether extracellularly or intracellularly 

expressed. For extracellular AAVs, 𝑉𝑜𝑢𝑡 became equal to 𝑉ℎ𝑎𝑟𝑣𝑒𝑠𝑡, as all the vessel(s) contents 

were assumed to be transferred to harvest due to secretion of the product.  

3.2.2.2.2 Intracellular AAVs 

The intracellular case was further dependent on the type of cell culture used; adherent or 

suspension. For adherent cell culture, the volume out was a mixture of cells and the working 

volume of the technology that would be added back to re-suspend the cells following 

trypsinisation (i.e. detachment from the growth area). The assumption made is that all cells 

were successfully detached. 
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𝑉𝑜𝑢𝑡 = (𝑉𝑐𝑒𝑙𝑙𝑠) + (𝑉𝑖 × 𝑁𝑢𝑛𝑖𝑡𝑠𝑛
)       (3.13) 

where V𝑐𝑒𝑙𝑙𝑠 = volume of cells (L) 

 𝑉𝑖  = working volume of technology 𝑖 

3.2.2.3 Dead-end filtration 

For an extracellular flowsheet, harvest features a depth filtration step operating in dead-end 

mode. For an adherent-extracellular scenario, the cells remain attached to the technology 

surface and as the product is secreted, only the broth is required. However, a subsequent 

filtration stage was incorporated due to the likelihood of a small percentage of cells having not 

adhered or lost adherence and if not removed, could be detrimental to later column steps. 

In this work, clarifying depth filters and 0.2um filtration for sterility purposes were all conducted 

in dead-end mode with respect to the filter (flow is perpendicular), thus the design equations 

utilised to size the steps followed the same pattern. 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 × 𝑌𝐷𝐸𝐹         (3.14) 

where 𝑌𝐷𝐸𝐹 = yield of dead-end filtration stage 

The key sizing metric used for filtration is the area. For dead-end filtration, the volume in (𝑉𝑖𝑛) 

was divided by the filter capacity (𝑉𝑚𝑎𝑥). 

𝐴𝐷𝐸𝐹 =  
𝑉𝑖𝑛

𝑉𝑚𝑎𝑥
          (3.15) 

where 𝑉𝑚𝑎𝑥 = filter capacity (L/m2) 

A safety factor is commonly applied to calculated filter areas as a precaution in the case of 

batch-to-batch variations (Lutz et al., 2015) thus the original 𝐴𝐷𝐸𝐹 variable was updated. 

𝐴𝐷𝐸𝐹 = 𝐴𝐷𝐸𝐹 × 𝑆𝐹         (3.16) 

where SF = filter safety factor 
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3.2.2.4 Lysis 

This stage is only required if the AAV product under consideration is expressed intracellularly, 

thus cell breakage would be required to release the particles. Here, detergent treatment (i.e. 

chemical lysis) or microfluidisation were considered. 

3.2.2.4.1 Chemical lysis 

Chemical lysis involves the addition of detergent lysis buffer to the cells to disrupt their 

membranes and ultimately realise the intracellular product. An important consideration for this 

stage is how much lysis buffer must be added to enact the cell disruption process. The amount 

of buffer added was calculated on a volume basis. 

𝑉𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑉𝑐𝑒𝑙𝑙𝑠𝑖𝑛
× 𝑓𝑙𝑦𝑠𝑖𝑠 × (1 + 𝑂𝑣𝑒𝑟𝑓𝑖𝑙𝑙𝑙𝑦𝑠𝑖𝑠)     (3.17) 

where 𝑉𝑐𝑒𝑙𝑙𝑠𝑖𝑛
 = cell volume into the step (L) 

 𝑓𝑙𝑦𝑠𝑖𝑠 = lysis buffer addition factor (L/L) 

 𝑂𝑣𝑒𝑟𝑓𝑖𝑙𝑙𝑙𝑦𝑠𝑖𝑠 = lysis buffer overfill (%) 

Furthermore, in calculating the volume out of the stage, both the cell and broth volume were 

considered (whereby the broth volume included the lysis buffer added during the step as well 

as the product fluid).  

𝑉𝑐𝑒𝑙𝑙𝑠,𝑜𝑢𝑡 = 𝑉𝑐𝑒𝑙𝑙𝑠,𝑖𝑛 × 𝑆        (3.18) 

where 𝑆 = cell carryover (%) 

Assuming an even distribution of the product in the broth, the broth volume out was calculated 

via the following. 

𝑉𝑏𝑟𝑜𝑡ℎ,𝑜𝑢𝑡 = 𝑉𝑏𝑟𝑜𝑡ℎ,𝑖𝑛 × 𝑌𝑙𝑦𝑠𝑖𝑠        (3.19) 
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3.2.2.4.2 Microfluidisation 

Microfluidisation is a mechanical means of lysis and operates similarly to high pressure 

homogenisation, where multiple cycles or passes are initiated to break open the cells. Due to 

the similarities between the two, namely that both operate in a high-pressure environment, 

similar design equations were assumed. Here, the yield was calculated as an output from the 

step, rather than an input. 

𝑣𝑔𝑜𝑢𝑡 = 𝑣𝑔𝑖𝑛 × (1 −
1

𝑃𝑜𝑤𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟
)       (3.20) 

 

The power factor is determined by the following. 

𝑃𝑜𝑤𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑒𝑘𝑁         (3.21) 

where  𝑁 = number of passes through the microfluidiser 

𝑘 = constant, determined by Equation 3.23 

In calculating the constant (k), the pressure drop across the device was considered with how 

resistant to breakage the HEK293T cells are. 

𝑘 = 𝐶𝑃𝑎          (3.22) 

where  𝐶 = disruption constant (1/bar) 

 𝑃 = pressure drop (bar) 

 𝑎 = resistance to disruption 

As previously discussed, yield was an output from this unit operation and was calculated via 

the equation outlined: 

𝑌𝑙𝑦𝑠𝑖𝑠 =
𝑣𝑔𝑜𝑢𝑡

𝑣𝑔𝑖𝑛
          (3.23) 

Similar to that of chemical lysis, Equation 3.24 also applied for microfluidisation.  

𝑉𝑜𝑢𝑡 = (𝑉𝑖𝑛 + 𝑉𝑏𝑢𝑓𝑓𝑒𝑟) × 𝑌𝑙𝑦𝑠𝑖𝑠       (3.24) 
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3.2.2.5 Nuclease treatment 

This stage is utilised to degrade nucleic acid impurities that are contained within the broth. In 

general, Benzonase® is a frequently used reagent and as such, a key part of the process 

model was ascertaining the volume of such required to treat the broth. 

The mass of Benzonase® required was calculated as a function of the total broth volume into 

the step, as well as the concentration of the reagent itself. 

𝑚𝑏𝑒𝑛𝑧 = 𝑉𝑖𝑛 × 𝑐𝑏𝑒𝑛𝑧         (3.25) 

where 𝑐𝑏𝑒𝑛𝑧 = concentration of Benzonase® required (units/mL) 

Furthermore, as Benzonase® is an enzyme, it has a specific activity, which was utilised to find 

the volume from the mass. 

𝑉𝑏𝑒𝑛𝑧 =
𝑚𝑏𝑒𝑛𝑧

𝑈
          (3.26) 

where 𝑈 = Benzonase® activity (units/uL) 

𝑉𝑜𝑢𝑡 = (𝑉𝑖𝑛 × 𝑌𝑏𝑒𝑛𝑧) + 𝑉𝑏𝑒𝑛𝑧        (3.27) 

3.2.2.6 Ultracentrifugation 

3.2.2.6.1 Batch 

This stage is conducted in batch mode, using a density gradient. The ultracentrifuge rotor 

contains slots for a small number of tubes to be placed within. In addition to the product, the 

tube contains 𝑛 layers of reagent (usually either CsCl or Iodixanol), in differing concentrations. 

The ratios of each layer to the product volume were assumed from lab-based protocols. For 

simplicity, an overall ratio was determined for the calculations and was formulated as follows. 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅1 + ⋯ + 𝑅𝑛         (3.28) 

where  𝑅1= ratio of product to product (as such will always be 1) 

 𝑅𝑛= ratio of 𝑛𝑡ℎ layer of reagent to product, where 𝑛 is the total number of layers 
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Whilst the rotor capacity is a common metric utilised when describing ultracentrifuges, a more 

relevant capacity measurement when tracking the product throughout the mass balance is the 

rotor capacity that is dedicated to housing the product stream, rather that that including the 

reagent, as outlined below. 

𝑉𝑈𝐶(𝑓𝑒𝑒𝑑) =
𝑉𝑈𝐶(𝑡𝑜𝑡𝑎𝑙)

𝑅𝑡𝑜𝑡𝑎𝑙
         (3.29) 

where 𝑉𝑈𝐶(𝑡𝑜𝑡𝑎𝑙) = total rotor capacity 

From this capacity metric, the number of ultracentrifuge parallel units required was calculated. 

𝑁𝑢𝑛𝑖𝑡𝑠 = 𝐶𝐸𝐼𝐿𝐼𝑁𝐺(
𝑉𝑖𝑛

𝑉𝑈𝐶(𝑓𝑒𝑒𝑑)
)        (3.30) 

The continuous process model is found in the Appendix A. 

 

3.2.2.7 Chromatography 

Due to the wide range of chromatography options employed for AAV purification, both bind-

elute and flow-through type columns have been evaluated. Particularly applying to bind-elute 

columns, dynamic binding capacities are generally provided in units of vg/mL or vg/L for AAVs. 

Nevertheless, as with mAb bioprocessing, those chromatography columns operating in flow-

through mode generally report dynamic binding capacities in g/L as they bind impurities such 

as host cell proteins (HCPs). 

The sizing of the chromatography column must adhere to those column diameters that are 

commercially available. For bind-elute mode columns, the following was used to first ascertain 

the required column volume. 

𝑉𝑐𝑜𝑙𝑢𝑚𝑛 =  
𝑣𝑔𝑖𝑛

𝐷𝐵𝐶 ×𝑁𝑐𝑦𝑐𝑙𝑒𝑠×𝑁𝑐𝑜𝑙𝑢𝑚𝑛 
       (3.31) 

where 𝐷𝐵𝐶 = dynamic binding capacity of resin (vg/L) 

𝑁𝑐𝑦𝑐𝑙𝑒𝑠 = number of cycles 
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 𝑁𝑐𝑜𝑙𝑢𝑚𝑛 = number of columns 

In the case of a flow-through mode operation, 𝑣𝑔𝑖𝑛 in Equation 3.32 was replaced with the 

mass in of a specific impurity. 

For costing purposes, the column diameter (𝑑) was necessary to calculate.  

𝑑 = √
4 ×𝑉𝑐𝑜𝑙𝑢𝑚𝑛

𝜋×ℎ
         (3.32) 

where h = bed height (cm) 

Whilst Equation 3.33 allows for determination of the required column diameter, this was 

compared with industrially available chromatography column diameters (𝑑𝑎𝑐𝑡𝑢𝑎𝑙), thus a larger 

size, that is closest to the calculated column diameter, was chosen. In doing this, the column 

volume was recalculated. 

𝑉𝑐𝑜𝑙𝑢𝑚𝑛 =
𝜋 ×𝑑𝑎𝑐𝑡𝑢𝑎𝑙

2

4
× ℎ        (3.33) 

Furthermore, the actual volume out of the step also depends on the mode of operation. For 

bind-elute, Equation 3.35 was used. 

𝑉𝑜𝑢𝑡 = 𝐶𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛 × 𝑉𝑐𝑜𝑙𝑢𝑚𝑛 × 𝑁𝑐𝑦𝑐𝑙𝑒𝑠 × 𝑁𝑐𝑜𝑙𝑢𝑚𝑛 × 𝐶𝑢𝑡𝑝𝑜𝑖𝑛𝑡    (3.34) 

where 𝐶𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛 = elution column volumes 

For flow-through, 𝐶𝑉𝑒𝑙𝑢𝑡𝑖𝑜𝑛 was replaced with 𝐶𝑉𝑐ℎ𝑎𝑠𝑒. 

3.2.2.8 Ultrafiltration / diafiltration (UFDF) 

At large, this step has a dual function, to both concentrate the product stream and also provide 

buffer exchange capabilities. UFDF operates in tangential flow mode, thereby the feed stream 

flows parallel to the surface of the filter. The two distinct phases during this step are 

concentration and buffer exchange (diafiltration). 
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Concentration involves reducing the volume into the step to a level which reaches the target 

concentration out (𝐶𝑡𝑎𝑟𝑔𝑒𝑡). This was computed by the following. 

𝑉𝑟𝑒𝑡𝑒𝑛𝑡𝑎𝑡𝑒 =  
𝑉𝑖𝑛

𝐶𝐹
         (3.35) 

where 𝐶𝐹 is the concentration factor and can also be expressed as 
𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝐶𝑖𝑛
 

The required buffer volume to pass through the filter in diafiltration was then calculated and 

was proportional to the number of diavolumes selected to exchange through the filter. 

𝑉𝑏𝑢𝑓𝑓𝑒𝑟 =  𝑉𝑟𝑒𝑡𝑒𝑛𝑡𝑎𝑡𝑒 × 𝐷𝑉        (3.36) 

where 𝐷𝑉 = number of diavolumes 

Following diafiltration, the resulting concentration (𝐶𝑓𝑖𝑛𝑎𝑙) may be lower than (𝐶𝑡𝑎𝑟𝑔𝑒𝑡), thus if 

required, an additional concentration stage was employed as follows. 

𝑉𝑟𝑒𝑡𝑒𝑛𝑡𝑎𝑡𝑒(𝑓𝑖𝑛𝑎𝑙) =  
𝑉𝑟𝑒𝑡𝑒𝑛𝑡𝑎𝑡𝑒

𝐶𝐹
        (3.37) 

where 𝐶𝐹 = 
𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝐶𝑓𝑖𝑛𝑎𝑙
 

The filter sizing must consider the volume processed at both concentration and diafiltration. 

This gave rise to the following. 

𝐴𝑈𝐹 =
((

𝑉𝑖𝑛−𝑉𝑟𝑒𝑡𝑒𝑛𝑡𝑎𝑡𝑒
𝐽𝑈𝐹

)+(
𝑉𝑏𝑢𝑓𝑓𝑒𝑟

𝐽𝐷𝐹
))

𝑡𝑈𝐹𝐷𝐹
       (3.38) 

𝐴𝑈𝐹𝐷𝐹 =  (𝐴𝑈𝐹 + 𝐴𝐷𝐹) × 𝑆𝐹        (3.39) 

where 𝐽𝑈𝐹 = ultrafiltration flux (LMH) 

𝐽𝐷𝐹 = diafiltration flux (LMH) 

𝑡𝑈𝐹 = time for ultrafiltration (hr) 

 𝑡𝐷𝐹 = time for diafiltration (hr) 
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3.2.3 Process economics 

The cost assumptions stored in the aforementioned Microsoft Excel database were used in 

parallel with the process models to calculate costs including raw materials (reagents, 

consumables, QCQA), labour and facility-related indirect costs for any given process 

flowsheet. These constituent costs were used to find the total cost of goods (COG) for both 

the drug substance and drug product stages. A breakdown of these costs can be found in 

Table 3.1. Here, the equations used have been adapted from Farid (2002) with the exception 

of the FCI calculation method, which has been adapted from Pereira Chilima et al. (2020). 

3.2.3.1 Fixed capital investment (FCI) 

Traditional methods of FCI calculation, namely utilisation of the Lang factor, have frequently 

been used for calculating the FCI, following consideration of the total equipment purchase cost 

(TEPC). However, the Lang factor method is arguably not well suited in the estimation of 

single-use facility costs and for modalities such as CGT products. Additionally, as outlined in 

Pereira Chilima et al. (2020), the manufacture of gene therapy products typically feature 

technologies that are relatively novel in comparison to traditional mAb processes, and costs 

for such can widely vary depending on the vendor. Therefore, it is for these reasons that the 

factorial method for FCI calculation outlined in Pereira Chilima et al. (2020) was implemented 

(see Appendix A for breakdown of cost calculations).  

3.2.3.1.1 Equipment cost 

The number of parallel units of any given piece of equipment was calculated via Equation 

3.41. This allowed for the costing of equipment on a stage-by-stage basis (Equation 3.42). 

𝑁𝑢𝑛𝑖𝑡𝑠𝑖
=

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑖

𝑀𝑎𝑥 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑖 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
     (3.40) 

𝐶𝑒𝑞𝑢𝑖𝑝𝑗
=  ∑ (𝑁𝑢𝑛𝑖𝑡𝑠𝑖

× 𝐶𝑒𝑞𝑢𝑖𝑝𝑖
)𝑛

𝑖=1       (3.41) 

where 𝑁𝑢𝑛𝑖𝑡𝑠𝑖
= number of units of equipment 𝑖, where 𝑖 = 1, … , 𝑛  (𝑛 being the total number of 

equipment types used in single stage 𝑗)  
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 𝐶𝑒𝑞𝑢𝑖𝑝𝑖
= cost of a single unit of equipment 𝑖 

Subsequently, the total cost of equipment was calculated. 

𝐶𝑒𝑞𝑢𝑖𝑝 = ∑ 𝐶𝑒𝑞𝑢𝑖𝑝𝑗

𝑘
𝑗=1         (3.42) 

where 𝐶𝑒𝑞𝑢𝑖𝑝𝑗
= total equipment cost in unit operation 𝑗, where 𝑗 = 1, … , 𝑘 (𝑘 is the total number 

of stages in the flowsheet). 

3.2.3.1.2 Footprint 

The footprint, i.e. area of the equipment in facility (𝐴), was required in deriving the total facility 

area required. In this method of indirect cost calculation, project costs are contingent on the 

facility footprint (as detailed in Appendix A). 

The method used for calculating equation footprint mirrors that of the costing of equipment, 

whereby the footprints of each piece of equipment used are totalled.  

𝐴𝑒𝑞𝑢𝑖𝑝𝑗
=  ∑ (𝑁𝑢𝑛𝑖𝑡𝑠𝑖

× 𝐴𝑒𝑞𝑢𝑖𝑝𝑖
)𝑛

𝑖=1       (3.43) 

𝐴𝑒𝑞𝑢𝑖𝑝 = ∑ 𝐴𝑒𝑞𝑢𝑖𝑝𝑗

𝑘
𝑗=1         (3.44) 

The footprint was utilised with a series of ratios defined in Pereira Chilima et al. (2020) to 

calculate the total project cost and contingency costs, which make up the FCI. 
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Table 3.1 Cost of goods per year breakdown and equations utilised in model (Suzanne S. 

Farid, 2002). 

Category Cost type Equations 

Direct material costs (per year) Reagents 𝑁𝑢𝑛𝑖𝑡𝑠𝑏𝑎𝑡𝑐ℎ × 𝐶𝑟 × 𝑁𝑏𝑎𝑡𝑐ℎ 

Consumables (𝑁𝑢𝑛𝑖𝑡𝑠𝑏𝑎𝑡𝑐ℎ
× 𝐶𝑐 × 𝑁𝑏𝑎𝑡𝑐ℎ ×

𝑁𝑐𝑦𝑐𝑙𝑒𝑠) / 𝑁𝑟𝑒𝑢𝑠𝑒𝑠 

QC/QA materials 𝐶𝑄𝐶,𝑏𝑎𝑡𝑐ℎ × 𝑁𝑏𝑎𝑡𝑐ℎ 

Labour costs (per year) Operating labour 𝑁𝑜𝑝 × 𝐶𝑜𝑝 

Supervisors 0.2 x operating labour 

QC/QA labour 1 x operating labour 

General management 1 x operating labour 

Other indirect costs (per year) Maintenance 0.1 × FCI 

Local taxes 0.2 × FCI 

Insurance 0.01 × FCI 

Depreciation FCI / 𝑡𝑑𝑒𝑝 

General utilities 𝐶𝑢𝑡𝑖𝑙 × 𝑆𝑓𝑎𝑐
  

Cost of goods per year (COG/y)  Direct material costs per 

year + labour costs per year 

+ other indirect costs per 

year 

Cost of goods per dose 

(COG/dose) 

 COG/y / 𝑁𝑑𝑜𝑠𝑒𝑠 

Note: 𝑁𝑢𝑛𝑖𝑡𝑠𝑏𝑎𝑡𝑐ℎ
= units used per batch, 𝑁𝑏𝑎𝑡𝑐ℎ= number of batches, 𝐶𝑟= unit cost of reagent, 

𝐶𝑐= unit cost of consumable, 𝑁𝑐𝑦𝑐𝑙𝑒𝑠= number of cycles, 𝑁𝑟𝑒𝑢𝑠𝑒𝑠= number of reuses, 𝐶𝑄𝐶,𝑏𝑎𝑡𝑐ℎ= 

cost of QC per batch, 𝑁𝑜𝑝= number of operators, 𝐶𝑜𝑝= annual salary of an operator, FCI = 

fixed capital investment, 𝑡𝑑𝑒𝑝= depreciation period (years), 𝐶𝑢𝑡𝑖𝑙 = general utilities cost per 

square metre of facility ($/m2), 𝑆𝑓𝑎𝑐 = facility size (m2), 𝑁𝑑𝑜𝑠𝑒𝑠 = number of doses 
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3.2.3.2 Direct costs 

The cost of raw materials, as outlined in Table 3.1, was determined as a function of their 

utilisation in each process step. Consumables costs for each unit operation were calculated 

via the following. 

𝐶𝑐𝑗
=  ∑ (𝑁𝑢𝑛𝑖𝑡𝑠,𝑖 × 𝐶𝑐𝑖

)𝑛
𝑖=1        (3.45) 

where 𝑁𝑢𝑛𝑖𝑡𝑠,𝑖 = no. of units of consumable 𝑖 

𝐶ci
= unit cost of a single consumable 𝑖 

Reagent costs for each unit operation were calculated via the following general equation. 

𝐶𝑟𝑗
=  ∑ (𝑉𝑟𝑖

× 𝐶𝑟𝑖
)𝑛

𝑖=1         (3.46) 

where 𝑉ri
 = volume of reagent 𝑖. In certain cases, volume was replaced by mass of a certain 

reagent. 

 𝐶ri
 = unit cost of a reagent i 

Therefore, the total cost of raw materials was calculated by summing the total consumables 

and reagents cost for each unit operation, 𝑗. 

𝐶𝑚𝑎𝑡 = ∑ 𝐶𝑟𝑗

𝑘
𝑗=1 + ∑ 𝐶𝑐𝑗

𝑘
𝑗=1        (3.47) 

As displayed in Table 3.1, QC/QA materials were ascertained from an assumed fixed cost per 

batch, such that the overall raw materials (𝑅𝑀) cost was calculated as follows: 

𝐶𝑅𝑀 = 𝐶𝑚𝑎𝑡 + (𝐶𝑄𝐶,𝑏𝑎𝑡𝑐ℎ × 𝑁𝑏𝑎𝑡𝑐ℎ)     (3.48) 

3.2.3.3 Indirect costs 

3.2.3.3.1 Labour 

Labour can be categorised as either a direct or indirect cost. As a direct cost, labour is based 

on the time for which the product in question is manufactured in the facility as a whole. If 
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indirect, labour is regarded as a fixed cost and thus an annual salary is assigned to each 

operator. Under the assumption that specialist operators are required for AAV manufacturing, 

labour was costed as an indirect cost throughout this case-study. A facility utilisation factor 

was also applied to capture the proportion of an operator’s annual salary dedicated to the AAV 

product under consideration, as shown in Equation 3.50.  

𝐶𝑙𝑎𝑏 = 𝑁𝑜𝑝 × 𝐶𝑜𝑝 × 𝑓        (3.49) 

where 𝐶𝑙𝑎𝑏 = total labour cost ($) 

 𝑁𝑜𝑝 = number of operators required (#) 

 𝐶𝑜𝑝 = annual operator salary ($) 

 𝑓 = facility utilisation factor 

The facility utilisation, 𝑓, was defined as follows. 

𝑓 =
𝑡𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦,𝐴𝐴𝑉

𝑡𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦
         (3.50) 

where 𝑡𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦,𝐴𝐴𝑉  = time (days) that the specific AAV product manufacturing runs 

𝑡𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 = time (days) that the facility is active 

The time for which the facility is active was calculated by the following equation (see Table A7 

in Appendix A for more details). 

𝑡𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦,𝐴𝐴𝑉 = (𝑡𝑠𝑒𝑒𝑑 + 𝐵𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛𝑠(1) × (𝑡𝑈𝑆𝑃 + 𝑡𝐷𝑆𝑃) + (𝑡𝑡𝑖𝑡𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑡𝑓𝑖𝑙𝑙𝑓𝑖𝑛𝑖𝑠ℎ)) ×

𝑁𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛𝑠(1)  +  (𝑡𝑠𝑒𝑒𝑑 + 𝐵𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛𝑠(2) × (𝑡𝑈𝑆𝑃 + 𝑡𝐷𝑆𝑃) + (𝑡𝑡𝑖𝑡𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑡𝑓𝑖𝑙𝑙𝑓𝑖𝑛𝑖𝑠ℎ)) ×

𝑁𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛𝑠(2)         (3.51) 

USP labour cost was estimated by assuming the number of units of a particular technology 

that can be handled by a team of operators, as per cGMP requirements. The assumption for 

seed and USP was made that multiple shifts in a day were not required as the passage time 
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exceeded the need to be present regularly. It was also assumed cell culture could go 

unsupervised overnight. 

𝑁𝑜𝑝𝑈𝑆𝑃
=

𝑁𝑜𝑝𝑡𝑒𝑎𝑚
×𝑁𝑢𝑛𝑖𝑡𝑠𝑈𝑆𝑃

𝐶𝑎𝑝𝑡𝑒𝑎𝑚
      (3.52) 

where 𝑁opteam
 = no. of operators in a team 

 𝑁𝑢𝑛𝑖𝑡𝑠USP
 = no. of USP culture units 

 𝐶𝑎𝑝𝑡𝑒𝑎𝑚 = no. of units that can be handled by an operator team (denoted as capacity) 

In contrast to USP, DSP labour was calculated by an assumed number of operators for the 

whole DSP per train, with multiple eight-hour shifts required due to variations in start and end 

times for unit operations (some of which may occur overnight). The labour requirement was 

further dependent upon the number of units operating in parallel for each unit operation. In the 

case of parallel units of a unit operation, the number of operators required specifically for this 

was added to the set number assigned for the whole of DSP. The underlying assumption made 

was that a maximum of four parallel units could be handled by a team of two operators.  

𝑁𝑜𝑝𝐷𝑆𝑃(𝑡𝑜𝑡𝑎𝑙)
= (𝑁𝑜𝑝𝐷𝑆𝑃

× 𝑆ℎ𝑖𝑓𝑡𝑠) + ∑ (𝐶𝐸𝐼𝐿𝐼𝑁𝐺(𝑁𝑢𝑛𝑖𝑡𝑠𝑗
× 0.5))𝑘

𝑗=1  (3.53) 

where 𝑁𝑜𝑝𝐷𝑆𝑃
= fixed number of operators for whole DSP 

 𝑁𝑢𝑛𝑖𝑡𝑠𝑗
= number of units of equipment used in unit operation 𝑗. 

Note: the second part of the equation only applied if more than two units were utilised.  

3.2.3.3.2 Other indirect costs 

Other indirect costs accounted are outlined in Table 3.1, as are the equations associated with 

each. Depreciation costs use the FCI output outlined in Section 3.2.3.1 were divided by an 

assumed equipment lifetime or depreciation period. In the case of maintenance, local taxes 

and insurance, ratios adapted from Farid (2002) were used. Energy costs used an assumed 

cost per m2 and the overall facility footprint. Similarly, monitoring costs require that the facility 
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be assigned various class environments (A, B, C, etc.). Using then assumed values for the 

classes per m2 of facility, the total footprint for various process stages was used to calculate 

the monitoring cost per stage (see Appendix). 

As with labour costs, when only a certain fraction of the facility is dedicated to the product 

under consideration, the facility utilisation factor (𝑓) was applied to indirect costs to identify the 

specific contribution from the product in question. 

3.2.4 Uncertainty analysis 

Whilst those equations outlined in Sections 3.2.2 and 3.2.3 are the building blocks to 

establishing a deterministic COG output, they inherently fail to account for the realistic 

uncertainty that exists within any bioprocess and hence associated input parameters. The 

deterministic analysis tool was therefore linked to a Monte Carlo simulation to assess the 

robustness of the base-case scenario to changes in key parameters. The Monte Carlo method 

is a powerful analytical tool and can efficiently mimic the variability associated with several 

bioprocess parameters.  

The uncertainty analysis via Monte Carlo simulation was applied to a selection of process 

parameters found to be the most variable in AAV bioprocessing. These were first evaluated in 

a sensitivity analysis to determine their impact upon the COG / dose. For each, an appropriate 

probability distribution function was assigned and a random value from each uncertainty 

distribution was drawn and replaced the base-case input value. This process was repeated 

numerous times, until the standard deviation of the output converged (this was plotted to 

identify the appropriate number of Monte Carlo trials required to reach such convergence). 

Following numerous Monte Carlo trials, a distribution of COGs was generated, thus allowing 

for the extraction of statistical data, such as the mean, standard deviation and the probability 

of achieving a target COG/dose. Moreover, the shape of the output distribution can give 

information about the robustness of the manufacturing scenario evaluated. A wider output 
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distribution has more risk associated with it and can be attributed to input parameters that 

generally are far more variable. 

For the purpose of the work in this thesis, triangular distributions were assigned to all variables 

evaluated in the Monte Carlo simulation, thus for such inputs, the maximum, minimum and 

most likely values to be encountered were given.  

3.2.5 Optimisation 

As outlined in Chapter 1, optimisation refers to the process by which a set of candidate 

solutions are evaluated in terms of one or more objective functions, which is required to either 

maximise or minimise depending on the problem definition. 

The optimisation problem in question within the model described in Figure 3.2 can be 

mathematically formulated in the following way. Consider a bioprocess made up of 𝑘 unit 

operations, where the unit operation index is 𝑗, such that 𝑗 can take any value between 1 and 

𝑘. Realistically, some unit operations within the AAV manufacturing process only have one 

possible option in terms of technology selection, thus in the context of this optimisation 

problem, some instances of 𝑗 will only have one option. As a result, the possible values 𝑗 can 

take can be reduced to encompass only those stages that have multiple possible options to 

choose from. This is illustrated in Figure 3.2, where arbitrary values of 𝑗 have been allocated 

for visualisation purposes (case study specific values of 𝑗 will be referred to in Chapter 3). 

Therefore, 𝑘 can be updated to represent the number of unit operations in the bioprocess that 

have multiple options to be selected from. 

At each instance of 𝑗, a particular technology can be assigned, defined by 𝑖𝑗, where 𝑖 is an 

integer variable used to denote the technology. The number of possible options at each 𝑗 is 

represented by 𝑛𝑗 , such that 𝑖𝑗 = 1, … , 𝑛𝑗. For example, for an instance of 𝑗 where there are 5 

options available, 𝑛𝑗 = 5, thus 𝑖𝑗 = 1, … ,5. 
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Unit operation 

index 
 

1 2 3 

 
Decision  
variables 

 

 
𝑖1 

 
𝑖2 

 
𝑖3 

Figure 3.1 Example generic string for optimisation algorithm. 

The total number of candidate solutions to evaluate was calculated as the sum of all solutions  

from 𝑥1, … , 𝑥𝑛, 𝑛 in this context being the number of solutions. However, whilst 𝑛 represents 

the total solutions assessed, a portion of these will be deemed infeasible due to the constraints 

imposed. Equation 3.55 defines the total number of feasible solutions generated from the 

algorithm. 

𝑋 =  ∑ 𝑥𝑚
𝑛
𝑚=1 −  𝑋𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡       (3.54) 

Tying the elements from Equation 3.55 and that described in Figure 3.2, the equation for the 

number of feasible solutions within the brute-force optimisation could alternatively be 

expressed by the following. 

𝑋 =  ∏ 𝑛𝑗
𝑘
𝑗=1 −  𝑋𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡       (3.55) 

3.2.5.1 Brute-force optimisation 

Brute-force optimisation, also termed exhaustive enumeration, allows for the evaluation of a 

given set of potential solutions by enumerating through each and identifying the extent to 

which their objective function values meet the requirements of the optimisation problem (e.g. 

maximisation or minimisation). For relatively small decision spaces, brute-force optimisation 

is an efficient optimisation algorithm, as it guarantees optimality due to the complete 

enumeration of the solution set. However, as the objective space increases in size, brute-force 

algorithms are rendered less effective due to the computational time required to evaluate every 

solution.  
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When used within the process economics model, the candidate solutions are AAV flowsheets. 

The brute-force algorithm is used to evaluate each flowsheet and compute the corresponding 

COG/doses. The algorithm functions by translating assigned integer variables to their 

corresponding unit operations to ultimately form a flowsheet and hence a possible candidate 

solution, which served as the input flowsheet into the process economics model. Each iteration 

provided the minimum COG/dose value of the set, thus was consistently updated based on 

how many iterations were carried out, alongside an index function to determine the flowsheet 

that gave the minimum COG. The set-up for this algorithm is shown in Figure 3.3. 

Figure 3.2 Architecture of brute force optimisation algorithm and the relationship with the 

base-case process economics model. 

3.2.5.2 Constraint-handling 

When conducting an optimisation procedure in a bioprocessing context, there often arise 

several strategies that realistically would not be employed as they do not satisfy one or more 

constraints. As such, whilst numerous solutions may be defined and subsequently simulated, 

only a fraction of these are deemed feasible based on pre-defined constraints. It is therefore 

vital that these solutions be appropriately handled in relation to those that do not violate 

constraints. A series of constraint-handling techniques were highlighted in Chapter 1, however 
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two of these incorporated within the optimisation work in this thesis – penalty functions and 

repair strategies. 

For use with the brute-force optimisation, a static penalty function was implemented due to its 

simplicity and ease of execution. The brute-force algorithm was used with a relatively small 

solution space, where prior knowledge on the range of COG/dose values that would be 

achieved was available when running an unconstrained example. This helps in selection of a 

penalty value that is distinctly different enough from that contained in the range to distinguish 

between feasible and infeasible solutions. Structurally, constraints were considered prior to 

COG/dose evaluation of a particular flowsheet. Each constraint would be evaluated with 

respect to the solution and where a violation was found, the COG output for said scenario (the 

objective function) was set to the penalty value. 

3.2.6 Data collection 

The data utilised in Chapter 3 was collected from a variety of sources. Particularly the costs 

used in the adjoining model database were sourced from vendor information and often 

literature. This was also the case for many numerical assumptions, though some were 

gathered from industrial experts, namely AstraZeneca, UK. Yields for the study were drawn 

from literature studies, as highlighted in Table A1 in Appendix A. On the other hand, 

ultracentrifugation data was sourced from vendors (i.e. Alfa Wassermann), as well as industrial 

correspondence with the AstraZeneca process development team. Primarily, key industrial 

experts that provided data include Richard Turner, James Savery and Julia Thompson. 

Pertaining specifically to upstream processing of AAVs, key assumptions were gathered and 

sense-checked through discussions with Lekan Daramola (AstraZeneca, UK). Furthermore, 

regarding AAV DSP, data was collected through multiple discussions with Martyn Hulley and 

Ziyan Deng (AstraZeneca, UK). 
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3.3 Case study setup 

3.3.1 Case study overview 

The tool outlined in Section 3.2 was used to evaluate the economic and operational 

performance of various AAV flowsheets, initially from a small set of alternatives, before 

expanding the decision space to include a myriad of other processing options. The study 

began with exploring the impact of scalability during cell culture and at polishing purification, 

using a fixed demand of 1000 doses per year and a dose size of 1 × 1014 vg/dose (equivalent 

to ~1mg of AAV material in terms of mass). The range of dose sizes seen in marketed products 

and in late phase clinical trials across a range of indications were studied and the median of 

this range was used in the base case analysis. The base case demand was derived as the 

average of expected commercial patient populations (Masri et al., 2019). For cell culture, the 

trade‐off between adherent and suspension culture was evaluated with adherent culture 

offering higher AAV productivities (vg/cell) and suspension culture offering better scalability. 

For polishing purification, batch UC was compared to AEX chromatography to assess the 

trade‐off between UC delivering higher yield and purity (with respect to empty capsid removal) 

but being less scalable relative to AEX. The solution set was later expanded to include more 

purification platform options for evaluation in terms of cost and meeting increasing purity 

targets. This was further developed with the inclusion of USP and lysis options, to consider 

the whole AAV flowsheet. 

The process economics model was used to generate the deterministic COG/dose across 

demands for the different scenarios, before a Monte Carlo simulation was used to capture the 

robustness of the scenarios. The optimization algorithm was later used to identify the most 

cost‐effective flowsheet that met target purities. 

3.3.2 Process outline 

The various process flowsheets initially evaluated in this case study are shown in Figure 3.4, 

which includes a dendrogram to illustrate the key differences explored in the cell culture and 
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polishing stages. The preliminary case study investigated two alternatives for USP, adherent 

or suspension cell culture. For the adherent scenario, multi-layer cell factories (e.g. Cell 

Factory™) were used, specifically the 10-layer model (CF10), with a surface area totalling 

6,360 cm2 per unit. Moreover, the production culture vessel of choice in the suspension case 

was a stirred-tank single-use bioreactor (SUB), whereby the size was selected from the 

calculated working volume required.   

The USP duration assumed was 5 days, whereby cells were seeded at the beginning of day 

1 at a density of 25,000 cells/cm2 for adherent and 125,000 cells/mL for suspension. Post-cell 

culture, harvest by TFF occurred, where the product stream was the cells as is the case with 

intracellular AAVs. Intracellular AAV flowsheets also contain a chemical lysis step, whereby 

cells are lysed by addition of detergent to rupture the plasma membranes, resulting in release 

of the product along with the generation of cell debris. This debris is removed by a clarifying 

depth filter stage post-lysis. For extracellular AAVs, a concentration stage of TFF was included 

to reduce the volume at the Benzonase stage. 

Regarding purification, affinity chromatography featured as the capture stage in the first case 

study, supplemented by a traditional iodixanol gradient density ultracentrifugation polishing 

stage in some cases, or an AEX chromatography in others. For ultracentrifugation,  one batch 

ultracentrifuge unit (e.g. Type 70Ti rotor, Beckman Coulter) was assumed to have a maximum 

rotor capacity of 312mL and was allowed to be operated for a maximum of two cycles per 

working day. As discussed in Section 1, ultracentrifugation has been shown to be successful 

at removing empty capsids generated in AAV processing, a product-related impurity known to 

be characteristically difficult to eliminate via other means. Due to slight pI differences between 

full and empty capsids, AEX has also been shown to give an adequate empty capsid removal 

- thus it was chosen as the scalable comparator against ultracentrifugation. Moreover, as also 

evidenced in Table A1 in Appendix A, AEX yield can be variable and is often lower than what 

can be achieved by ultracentrifugation, thereby introducing the polishing purification trade-off 

of  ultracentrifugation with higher purity and yield versus scalable chromatography. 
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Figure 3.3 Viral vector process flowsheet for adeno-associated virus (AAV) vector product. 

The dendrograms illustrate the key differences between the four flowsheets initially evaluated 

in the cell culture (adherent versus suspension) and polishing (ultracentrifugation versus 

chromatography) stages. AEX, anion‐exchange chromatography; UC, ultracentrifugation. 

3.3.3 Key assumptions 

Table 3.2 shows the scenario specific assumptions used. Due to the dependency on cell 

culture type to describe titres, the titres were expressed in vg/cm2 and vg/L for adherent and 

suspension respectively. The cell productivity was used to calculate the titre and was chosen 

as the basis for comparison between scenarios. Furthermore, due to the differences in 

polishing purification between UC and AEX scenarios, the process yield differed between 

flowsheets, with UC assumed to result in a higher value. The key assumptions for the various 

unit operations employed across all scenarios can be found in Tables 3.3 and 3.4. Additionally, 

the active facility days was assumed to be 330. It was also assumed a maximum of 30 batches 
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could be carried out per year per train, where one train was defined as one single-use 

bioreactor through to fill-finish, with allowances for multiple units of certain DSP unit operations 

to run in parallel (e.g. ultracentrifugation). 

Additionally, Table 3.3 outlines the extra material required for QCQA purposes at both drug 

substance (DS) and drug product (DP), which was assumed to be a percentage in both cases. 

These values were sourced from Masri et al. (2019). Conversely, a fixed volume method for 

estimating QCQA demands has also been utilised in the literature, notably in Comisel et al. 

(2021). The model outputs from using either method differ depending on the dose size under 

consideration, where the fixed volume method results in a significant portion of product fluid 

being retained at smaller dose sizes. The impact of using either method is further discussed 

in Section 3.4.2. 

3.3.4 Monte Carlo assumptions 

The uncertain input parameters used in the Monte Carlo simulation, along with their 

corresponding probability distributions are displayed alongside the results (Figure 3.7 c). 

These include titres and the polishing purification yields, due to their characteristic variability 

in AAV manufacturing. The ranges set for each variable were selected from a review of the 

relevant literature, as well as industrial correspondence (see Table A1). 

3.3.5 Optimisation assumptions 

A series of options were identified and selected as part of determining the optimal AAV 

flowsheet from a cost and purity perspective (Table 3.4). Only capture and polishing 

purification unit operations were assessed (however, in three step purification cases, 

intermediate purification was also studied). Special conditions were assumed for a three-step 

purification process; a third step was only added where the two-step platform did not possess 

empty capsid removal capabilities, and, hence, a third step that did allow for such removal 

was added to bolster purification performance. Namely, this was only identified to occur for an 

affinity and multimodal combination and would only be followed by AEX. 
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Table 3.2 AAV flowsheet combinations considered in the deterministic analysis and the 

associated assumptions for each. 

Flowsheet 
abbreviation 

Cell culture 
technology 

Polishing stage Cell 
productivity 
(vg/cell) 

Titre Harvest 
cell 
density 

Overall 
process 
yield 

Ad-UC Adherent Ultracentrifugation 120,000 2.4 x 1010 
vg/cm2 

2 x 105 
cells/cm2 

29% 

Ad-AEX Adherent AEX 120,000 2.4 x 1010 
vg/cm2 

2 x 105 
cells/cm2 

25% 

Susp-UC Suspension Ultracentrifugation 60,000 6 x 1013 
vg/L 

1 x 106 
cells/mL 

29% 

Susp-AEX Suspension AEX 60,000 6 x 1013 
vg/L 

1 x 106 
cells/mL 

25% 

 

Table 3.3 Key AAV process assumptions for the case-study. 

Category Parameter Value 

General Dose size (vg/dose) 
Max. batches per train 
Facility active days 
DSP shifts 

1 x 1014 
30 
330 
3 

Seed & production cell 
culture 

Seeding cell density (adherent) (cells/cm2) 
Seeding cell density (suspension) 
(cells/mL) 
Medium cost ($/L) 
Cell culture duration (days) 
Doubling time (days) 
Plasmid DNA requirement (µg/106 cells) 
Transfection mix cost (pDNA + PEI) ($/g) 

2.5 x 104 
1.25 x 105 
100 
5 
1 
1 
190,000 

Chemical lysis Step yield 
Lysis buffer requirement (L/L) 

98% 
100 

Depth filtration Step yield 
Filter capacity (L/m2) 
Flux (LMH) 

95% 
60 
100 

Nuclease treatment Benzonase requirement (U/mL) 
Benzonase activity (U/µ L) 
Benzonase cost ($/25,000U) 

50 
250 
230 

UFDF / TFF Step yield 
Flux (LMH) 
Duration (concentration and diafiltration) 
(hrs) 

95% 
60 
6 

Sterile filtration Step yield 
Flux (LMH) 

90% 
40 

Drug substance / drug 
product 

DP concentration (vg/mL) 
Extra material produced for DS 
Extra material produced for DP 

1 x 1013 
10% 
10% 

LMH =  litres per square metre hour
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Table 3.4 Purification assumptions utilised in the process economics model. 

Technology Abbreviation Commercial 
equivalent 

Step 
yield 

DBC* 
(vg/mL**) 

Resin cost ($/L) HCP 
reduction 
(LRV) 

DNA 
reduction 
(LRV) 

EC 
reduction 
(%) 

Ultracentrifuge 
cost ($) 

Step 

Affinity 
chromatography 
(high DBC) 

AFFH Poros AAVX, 
(Thermo 
Fisher) 

70% 3 x 1013 50,000 4 2.5 N/A N/A Capture 

Affinity 
chromatography 
(low DBC) 

AFFL AVB 
Sepharose 
(Cytiva) 

70% 3 x 1012 25,000 4 2.5 N/A N/A Capture 

Anion exchange 
chromatography 

AEX Poros 50HQ 
(Thermo 
Fisher)  

60% 5 x 1013 2,500 2.5 1.5 70% N/A Capture, 
Polishing 

Cation exchange 
chromatography 

CEX Poros 50HS 
(Thermo 
Fisher) 

55% 5 x 1013 2,500 2.5 1.5 N/A N/A Capture, 
Polishing 

Multimodal 
chromatography 

MM Capto Core 
400,  
(Cytiva) 

75% 13 
(mg/ml) 

4,500 2 0.5 N/A N/A Capture, 
Intermediate, 
Polishing 

Batch 
ultracentrifugation 

BatchUC Type 70Ti 
(Beckman 
Coulter) 

70% N/A N/A 3 3 95% 85,000 Capture, 
Polishing 

Continuous 
ultracentrifugation 

ContiUC KII Model 
(Alfa 
Wassermann) 

70% N/A N/A 3 3 95% 350,000 Capture, 
Polishing 

Note: *DBC = dynamic binding capacity. ** unless otherwise stated.
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For the purity aspect of the optimisation framework, empty capsids represent a product-related 

impurity unique to the AAV space and in a relatively nascent field, final targets are not well 

defined. In contrast, specifications for HCP and DNA are more clearly defined in literature, as 

these impurities have been well documented and tracked in other modality areas (derived from 

cell culture). For the case study, both HCP and DNA were assessed at two starting levels, 

termed low (L) and high (H). The target levels for HCP and DNA were assumed to be 100 

ng/mg and 10 ng per dose respectively (Bracewell et al., 2015; Wright, 2020). The low starting 

levels for HCP and DNA were assumed to be 2x10-7 ng/vg and 6x10-10 ng/vg. For the high 

starting levels, the values were assumed to be 2x10-5 ng/vg for HCP and 6x10-8 ng/vg for DNA. 

For empty capsids, a single starting level was evaluated, however three potential targets were 

assessed, terms low (L), medium (M) and high (H).   

This optimisation case study first evaluated the optimal strategy when one AEX yield was 

considered. The evaluation was then extended by illustrating how the optimal solution changes 

if varying AEX yields are encountered, as well as empty capsid reduction requirement. For this 

study, a suspension cell culture was assumed for each flowsheet option. In addition, the 

demand and number of annual batches were fixed throughout. 

3.3.5.1 Constraint-handling 

Within the optimisation algorithm, solutions that breached any imposed constraints were 

considered infeasible and disallowed as a viable solution. These constraints can be broadly 

categorised as those pertaining to manufacturing sequence, purity and equipment.  

Sequence constraints were applied to capture, intermediate and / or polishing step, where it 

was defined that no duplicate stages were allowed. This requirement is characteristic of cGMP 

guidelines, where orthogonality in purification technologies is necessary. Secondly, breaching 

purity constraints referred to the manufacturing sequence under consideration failing to 

produce a final impurity profile that complied with the target end specification defined in the 

model, hence leading to exclusion from the feasible solution set. Finally, in the case of 

equipment constraints, limits upon the number of units that could be used in parallel for a given 
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unit operation were defined. For scenarios where scalability has historically been difficult, such 

as batch ultracentrifugation, employing multiple units in parallel has been typical. In this case 

study, it was assumed that any solution requiring over 12 units in parallel for a single unit 

operation was infeasible. A summary of these constraints can be found in Table 3.5. 

 

Table 3.5 Constraints considered in the brute-force optimisation work. 

Type Constraint Mathematical notation 

Sequence The purification train must 

feature orthogonal separation 

mechanisms, i.e. no duplicate 

unit operations utilised. 

No unit operation, 𝑗, in a given 

flowsheet may appear more 

than once 

 

Purity HCP: must be reduced to 

below 100 ng/mg 

DNA: must be reduce to below 

10ng per vector dose 

𝐼𝑘 = 𝐼0 × ∏ 𝑅𝑗

𝑘

𝑗=1

 

where 𝐼0= initial impurity level 

of impurity 𝐼 

𝐼𝑘= final impurity level of 

impurity 𝐼 

𝑅𝑗= impurity reduction level for 

step j (%) where j = 1…k  

𝐼𝑘 ≤ 𝐼𝑇 

where 𝐼𝑇= target impurity level 

 

Equipment Any scenario requiring more 

than 12 units of equipment (for 

a single step) in parallel 

(particularly pertains to 

ultracentrifugation) 

𝑁𝑢𝑛𝑖𝑡𝑠𝑖𝑗
≤ 12 

where 𝑁𝑢𝑛𝑖𝑡𝑠𝑖,𝑗
=number of 

units of equipment type i in unit 

operation j (not including USP 

consumables) 

 

USP Applies particularly to batch-

adherent scenarios e.g. roller 

bottles and cell factories. The 

number of culture units must 

not exceed 400 (for roller 

bottles) or 120 (for cell 

factories). 

𝑁𝑢𝑛𝑖𝑡𝑠𝑈𝑆𝑃
≤ 400 𝑜𝑟 120 

where 𝑁𝑢𝑛𝑖𝑡𝑠𝑈𝑆𝑃
=number of 

USP units required 
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3.4 Results and discussion 

The decisional tool introduced in Section 3.2 was utilised to evaluate the economic advantages 

that can be obtained from adapting to more scalable manufacturing strategies. This was 

initially addressed deterministically, before an uncertainty analysis was introduced to account 

for process variability and to assess the robustness of the base-case. Finally, the last part of 

the case study identifies the optimal manufacturing strategy in terms of both cost and purity 

targets from a broader set of alternatives. 

3.4.1 What is the COG/dose breakdown for the traditional versus 

scalable AAV flowsheets? 

The impact of the key traditional versus scalable USP and DSP choices for AAV flowsheets 

on the COG/dose was explored initially. Figure 3.5 presents the COG/dose comparison 

between the initial four flowsheets studied at a demand of 1x1017 vg/year. These four 

flowsheets were adherent-ultracentrifugation (Ad-UC), adherent-AEX (Ad-AEX), suspension-

ultracentrifugation (Susp-UC) and suspension-AEX. Overall, suspension-AEX (Susp-AEX) 

was shown to be the most cost-effective out of the set, offering a ~40% reduction over the 

most expensive flowsheet, which was adherent-UC (Ad-UC). This cost was driven by lower 

labour and equipment requirements associated with the use of one suspension bioreactor and 

one AEX column and skid versus multiple units in the competing flowsheets. The materials 

cost was not found to be a significant driver across scenarios. Furthermore, relative to the 

traditional flowsheet of Ad-UC, the competing manufacturing strategies were found to allow 

for a 17-41% reduction in COG/dose.  

Figure 3.5 also provides insights on the COG drivers for each flowsheet. Comparing solely 

UC and AEX scenarios, DSP labour costs were higher for adherent-UC (Ad-UC) than 

adherent-AEX (Ad-AEX) due to the condition that one operator can handle a maximum of two 

ultracentrifuges per run. Twenty-three ultracentrifuges were required in parallel for Ad-UC, 

thus an additional 12 DSP operators were necessary for this flowsheet. This requirement 
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evidently also resulted in a greater DSP indirect cost than Ad-AEX, as a larger total equipment 

purchase cost (TEPC) and facility footprint were associated with numerous ultracentrifuges 

compared to a single AEX column and skid. This trend was similarly observed when comparing 

suspension-UC (Susp-UC) and Susp-AEX. Similarly, studying adherent versus suspension 

cell culture scenarios, cost differences were largely driven by labour costs. The Ad-UC and 

Ad-AEX required the use of 78 - 91 cell factory (CF10) units with 16 - 18 USP operators, in 

comparison to the 2 operators used in the suspension flowsheets with a 250L bioreactor 

(Susp-UC or Susp-AEX).  

The trends observed can, to some extent, be described by examining the USP: DSP cost 

ratios. In general, it was shown that DSP costs dominated the COG, with the exception to this 

being Ad-AEX, where USP: DSP was found to be 54%: 46%. The impact of UC on the DSP 

costs was highlighted by the distinct shift in cost ratios from Ad-UC to Ad-AEX or Susp-UC to 

Susp-AEX. From a DSP perspective, this shift was from 64 - 77% to 46 - 65%. In terms of 

USP ratios, moving from an adherent to a suspension platform lowers the USP cost 

contribution from 36 - 54% to 23 - 35%, thus highlighting the significance of moving to more 

scalable platforms upon the cost of goods. 

In summary, a suspension flowsheet coupled with AEX provided the most cost-effective 

strategy relative to other options explored, reinforcing the importance of moving to scalable 

strategies when in a commercial manufacturing environment. Having said this, the results here 

represent a single instance of demand and dose size, thus it became desirable to evaluate 

the cost-effectiveness of the flowsheets across dose size and demands. 
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Figure 3.4 COG/dose breakdown by category within USP and DSP process stages for four 

AAV flowsheet options with adherent or suspension culture for USP and AEX or UC for 

polishing. The boxes on the right of each bar represent key sizing metrics; the top number 

highlights the number of cell culture units or the bioreactor volume (for adherent or suspension 

scenarios respectively). The bottom number represents the number of parallel ultracentrifuges 

used or the AEX column diameter (for UC or AEX scenarios respectively). The second set of 

boxes located to the right of the bars highlights the USP: DSP cost of goods ratios for each 

scenario. The percentages next to each bar represent the COG/dose reduction for each 

flowsheet relative to the traditional flowsheet of adherent-ultracentrifugation. The demand was 

assumed to be 1,000 doses/year, with a dose size of 1 x 1014 vg/dose. The facility was resized 

for each set of inputs. Ad, adherent culture; AAV, adeno‐associated virus; AEX, anion‐

exchange chromatography; COG, cost of goods; DSP, downstream processing; Susp, 

suspension culture; UC, ultracentrifugation; USP, upstream processing. 

3.4.2 How does dose size impact COG/dose? 

The required dose of AAV varies significantly based on therapeutic indication, with ophthalmic 

indications at the lower end (e.g. 1x1012 vg/dose) through to neuromuscular and haemophilia 

indications at the higher end (e.g. 1x1015 vg/dose). Hence, scalability is a more significant 
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issue for those companies targeting diseases with characteristically high dose sizes. Figure 

3.6 displays the impact of dose size from 1x1012 - 1x1015 vg/dose upon flowsheet ranking. The 

optimal technology changes from AEX options in either adherent (Ad-AEX) or suspension 

(Susp-AEX) mode at the low doses to Susp-AEX being the clear winner at the higher doses.  

Little difference was found between Ad-AEX and Susp-AEX at dose sizes of 1x1013 vg/dose 

or lower, as Ad-AEX required 10 CF units per batch or less, needing only two USP operators 

as with the Susp-AEX scenario. This result suggests that for indications corresponding to 

these dose sizes, most notably ophthalmic genetic diseases, conducting adherent cell culture 

presents no extra financial burden to a company relative to suspension. Conversely, an 

increasing dose size accentuates the COG differences between suspension and adherent 

cultures. At 1x1015 vg/dose, the ranking alters such that Ad-AEX becomes less economically 

viable than either suspension scenarios, due to the increase in CF units and hence labour 

requirement. This suggests that for indications requiring a large dose size (e.g. neuromuscular 

and haemophilia), adherent is a less attractive cell culture option. 

Further to the discussion of QCQA material in Section 3.3, the impact of using either a fixed 

volume or percentage approach is dose size dependent. For the base case dose size of 1x1014 

vg/dose, the required equipment sizes and number of units (and ultimately COG/dose) do not 

differ significantly when using either material retention method. Quantitatively, the fixed volume 

method resulted in higher volumes for QCQA and hence more CF10 units or a higher working 

volume for suspension, with COG/dose differences of less than 3% with the percentage 

method (base case). At the lowest dose size evaluated in this study (1x1012 vg/dose), the fixed 

volume method was shown to yield a higher COG/dose, due to the requirement for a higher 

working volume (and so CF10 units) than the percentage method.  

It must also be noted that there are other adherent cell culture options (as outlined in Chapter 

1) e.g. fixed bed reactors, which provide scalable alternatives to the cell factories considered 

in this study. As such, the innovations in adherent technologies may provide a more 

competitive ranking relative to suspension. Additionally, novel technologies such as CellRev 
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(Newcastle, UK), which employed continuous processing with adherent cell culture present 

opportunities for process improvement that would impact the results in Figure 3.6 if 

considered here. 

 

Figure 3.5 Scatter plots displaying the COG/dose change with increasing dose size. The 

demand was assumed to be 1,000 doses/year. The facility was resized for each set of inputs. 

3.4.3 How does uncertainty impact the robustness of the strategies? 

The initial deterministic cost comparison highlighted the economic competitiveness offered by 

Susp-AEX. The study was extended to capture the impact of the perceived greater 

uncertainties with suspension culture and AEX, reflected in wider distributions for the cell 

productivities in suspension culture relative to adherent and in the DSP step yields for AEX 

relative to UC (Table 3.2). The Monte Carlo simulation technique was used to characterise the 

impact of these uncertainties on the COG/dose values. The findings from this analysis were 

assessed in terms of robustness and risk associated with each strategy.  
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Figure 3.7 a) shows the results from the Monte Carlo simulation as COG/dose frequency 

distributions displayed as violin plots. This illustrates that the uncertainties do not change the 

ranking found in the deterministic analysis. Overall, the impact of uncertainty was more 

pronounced in strategies employing less scalable technologies, namely adherent cell culture 

and UC purification, despite the tighter input distributions upon these variables. Susp-AEX 

unequivocally achieved the lowest COG/dose and the tightest distribution, as well as the 

highest probability of meeting any COG/dose target.  Furthermore, Ad-UC, Ad-AEX, Susp-UC 

all resulted in bimodal distributions, whilst Susp-AEX gave a trimodal distribution. Details into 

the key drivers for the shape of each distribution are outlined below. 

In general, for UC-containing strategies, changes in the number of UCs required for 

purification was the key driving force in defining the shape of the distributions (shown in 

Figures A3 a) and c) in Appendix A). The distributions for both Ad-UC and Susp-UC show two 

distinct peaks, representing the change in the number of ultracentrifuges required in certain 

instances. As discussed in the base-case analysis and Figure 3.5, 23 ultracentrifuges were 

required in parallel, which is represented by the larger peak in Figure 3.7 a) for both Ad-UC 

and Susp-UC. In scenarios where it is possible to achieve higher UC yields or cell culture 

productivities, the number of UCs needed reduced to 9 (the smaller peak in the UC 

distributions). This distinct and relatively large drop highlights the sensitivity of UC sizing to 

changes in key input parameters. 

Conversely, for AEX-containing scenarios, changes in USP were shown to be far more 

significant in driving the shape of the plots (as evidenced by Figures A3 b) and d). For Ad-

AEX, shown in Figure A3 b), the key factor in determining the distribution shape was found 

to be the number of incubators required for the many CF10 units used in both seeding and 

cell culture. Small differences in input parameters such as titres and yield resulted in changes 

in the number of CF10 units required. As this changes, so does the number of incubators used 

during USP. In contrast, Susp-AEX COG differences were primarily driven by bioreactor size, 

giving rise to three peaks as shown in Figure A3 d). At the base-case, a 250L bioreactor was 
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required, however instances where titre and yields fluctuated to lower levels resulted in larger 

processing volumes, prompting the use of bigger bioreactors, (e.g. 500L and 1,000L). Hence 

this ultimately gave rise to the trimodal distribution that is displayed. 

 

b) 

Scenario Mean ($/dose) Standard deviation ($/dose) 

Ad-UC 30,017 3,296 

Ad-AEX 25,827 2,350 

Susp-UC 24,058 2,951 

Susp-AEX 18,214 1,537 

c) 

Flowsheet Cell 
productivity 
(x105 vg/cell) 

Adherent 
harvest cell 
density (x105 

cells/cm2) 

Suspension 
harvest cell 
density (x106 
cells/mL) 

UC yield (%) AEX yield (%) 

Ad-UC Tr(1, 1.2, 1.3) Tr(1.6, 2, 2.4) N/A Tr(0.5, 0.7, 
0.8) 

N/A 

Ad-AEX Tr(1, 1.2, 1.3) Tr(1.6, 2, 2.4) N/A N/A Tr(0.4, 0.6, 
0.8) 

Susp-UC Tr(0.2, 0.6, 1) N/A Tr(0.8, 1.0, 
1.2) 

Tr(0.5, 0.7, 
0.8) 

N/A 

Susp-AEX Tr(0.2, 0.6, 1) N/A Tr(0.8, 1.0, 
1.2) 

N/A Tr(0.4, 0.6, 
0.8) 

a) 
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Figure 3.6 Uncertainty analysis results from the Monte Carlo simulation showing (a) violin 

plots of the COG/dose distributions for each scenario under uncertainty, (b) key probabilistic 

output parameters for each scenario, (c) uncertain process input  parameters and their 

distributions evaluated in the Monte Carlo simulations. The demand was assumed to be 1,000 

doses/year, with a dose size of 1 x 1014 vg/dose. The facility was resized for each set of inputs. 

 

3.4.4 What is the optimal purification strategy in terms of meeting 

cost and purity targets? 

As discussed in Chapter 1, there are numerous unit operations available for purifying AAV 

vector products beyond batch ultracentrifugation (batchUC) and AEX; these include other 

chromatography options. In this study, the pool of purification options was expanded to include 

multi-modal chromatography (MM), cation exchange chromatography (CEX), continuous 

ultracentrifugation (ContiUC) and a range of affinity chromatography (AFF) resins, with 

different cost and capacity trade-offs (see Table 3.4 for full list of options). DBCs reported for 

affinity resins range from 1 x 1012 to 1 x 1014 vg/mL, however more conservative values were 

selected to characterise the trade-off between affinity resins, e.g. lower DBC for the lower cost 

resins and a higher DBC for the higher cost resin. It must be noted that even if the upper end 

of the reported affinity DBC range was assumed, this would not significantly affect the 

outcomes, as typically the columns were oversized to reach a GMP size and to avoid longer 

column loading times. Furthermore, the oversizing was assumed not to impact column 

performance, for example yields or product quality. 

Due to the breadth of flowsheets that could be constructed from such options, it is desirable 

to ascertain the most cost-effective of the set evaluated, which can simultaneously satisfy 

various purity targets. From a purity perspective, there is a lack of well-defined data published 

on various impurity starting and target removal levels in AAV manufacturing. Subsequently, 

three heat-maps were generated, one for each impurity investigated (empty capsids, HCPs 
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and DNA), evaluating a range of potential starting and target levels. Figure 3.8 displays these 

heat-maps from assessing the COG/dose and purity of each DSP sequence. Red coloured 

boxes represent more expensive options relative to those that are blue. The grey coloured 

areas represent those options that breach the imposed constraints (see Figure A4 for the 

specific constraint labelling on the grey-coloured areas). Moreover, solutions that fall within 

the purple contour represent feasible combinations at the given purity target or starting level.  

Figure 3.8 a) evaluated three target empty capsid removal levels, with a distinct change in 

optimal solution shown at each. In scenarios where less than 75% empty capsid removal was 

achieved, the most economical and hence optimal purification strategy was “AFFH-MM”, using 

an affinity resin with high DBC (AFFH) and a mixed-mode resin. This can be primarily 

attributed to the high overall yield of the combination relative to other choices. This allowed for 

a lower overall processing volume at harvest and hence a lower raw materials cost. However, 

both AFFH and MM do not possess empty capsid removal capabilities since they cannot 

distinguish between full and empty particles. Thus, this train was not sufficient to meet either 

the 75% or 90% purity targets. The technologies assumed to be able to make the distinction 

between full and empty were AEX and UC techniques, thus the higher purity targets were 

shown to require inclusion of one of these steps. This was first observed for the 75% purity 

target, where AEX and UC options were sufficient to at least meet this goal. In satisfying both 

objectives of cost and purity, AEX was shown to be marginally more cost-effective than UC, 

driven by lower labour costs. Having said this, when moving to the 90% target, AEX became 

infeasible from a purity perspective and ContiUC was the operation that satisfied both the cost 

and impurity removal target. ContiUC sizing is based on flowrate, offering a more scalable 

alternative to the batch counterpart. In general, fully chromatographic platforms or those 

utilising ContiUC were shown to be more cost-effective than those using batchUC, reinforcing 

the importance of scalability. As shown in Figure 3.8, most purification trains containing 

batchUC as a capture step were omitted from the optimisation due to breaching the equipment 

constraint. BatchUC was shown to only be feasible as a polishing step coupled with a CEX or 



132 
 

AEX capture, due to their high dynamic binding capacities that translate into a lower volume 

to be processed by ultracentrifugation. Nevertheless, as evidenced by Figure 3.8, whilst 

feasible, these options are amongst the least cost-effective of the set, attributable to the 

requirement for 11 parallel ultracentrifugation units, thereby driving up labour and indirect 

costs.  

When studying HCPs and DNA, the low level (L) for each resulted in AFFH-MM being optimal, 

(Figures 3.8 b) and c)). The AFF-MM flowsheet was assumed to be capable of reaching an 

overall HCP and DNA log reduction value (LRV) of ~7.5 and ~4.5, respectively, which did not 

meet the target specification. For high starting impurity levels, the optimal strategy that met 

the purity targets was found to be AFFH-ContiUC for HCPs and AFFH-AEX for DNA. AFFH-

ContiUC yielded an HCP LRV of ~8.5, whilst AFFH-AEX was found to have a DNA LRV of ~6. 

Also included in the analysis was the option for a three-step purification train, involving the 

addition of an AEX step after MM, to provide additional purification capabilities. Whilst the 

three-step using AEX met the higher purity targets (for HCP, DNA and empty capsids) in 

contrast to many of the two-step options alone, the three-step purification trains were found to 

be less cost-effective than AFFH-ContiUC. This observation highlights that three-step trains 

are only necessary if employing AFFH-ContiUC is not an available option, reinforcing its cost 

effectiveness and impurity removal capabilities. 

Although, ContiUC was shown to be the optimal polishing choice when simultaneously 

considering cost and purity, it must be noted that there are still challenges surrounding its 

implementation and use in commercial AAV manufacturing. Though achieving scalability, 

ContiUC is relatively less understood than its non-scalable counterpart, batch 

ultracentrifugation. Additionally, unlike chromatography, ContiUC is not industrially established 

as a purification option and as a result, may require a larger process development effort initially 

when integrating into a manufacturing process. Furthermore, continuous flow 

ultracentrifugation generally requires establishment of a stable gradient at the large-scale to 

recreate the environment encountered in the batch ultracentrifuge, thus requiring additional 
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process optimisation and characterisation studies, to further prove compliance with cGMP 

requirements. Finally, the reliance on niche chemicals such as iodixanol may prove limiting in 

terms of throughput due to ongoing supply chain issues. As a result, further work is likely 

required to identify suitable materials and consistent supply for large-scale application and 

sourcing.  

The potential of the technology is significant however, as it provides a level of linear process 

scalability when moving from the relatively well characterised batch ultracentrifugation. 

Furthermore, the ability for ContiUC to evade the same scalability issues as batch is 

advantageous for future commercial implementation, particularly as the product loading 

potential is up to 40 times the actual rotor volume. 

3.4.5 How does the optimal polishing strategy change with AEX yield 

and empty capsid removal?  

As alluded to in the uncertainty analysis section of the case study, there are several uncertain 

process parameters or targets associated with AAV processing. To capture this variability 

encountered in AAV manufacturing, the AEX yield was varied for different empty capsid 

removal targets. Figure 3.9 a) shows the resulting matrix of optimal solutions for different 

combinations. Figure 3.9 a) highlights that AEX yield has a significant impact on the choice of 

optimal solution.  At the AEX yield of 60% (base-case) and 80%, AEX was preferred at the low 

and medium purity targets but was unable to compete at the high purity target with ContiUC. 

Nevertheless, at the 80% yield, a three-step chromatography-based alternative to ContiUC, 

featuring AEX, was shown to be competitive with ContiUC. Equivalence in this case was 

defined as two options having a COG/dose with less than 5% difference between them. 

However, if the AEX yield were to drop to 40% as some have reported (see Table A1), this 

would result in AEX being unable to compete at all, with it failing to feature across any of the 

purity targets. Such a drop pushes up the resin volume required and hence leads to a higher 

materials cost. As a result, the optimal solution shifts to either MM or ContiUC depending on 

the purity target required. 
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Figure 3.7 Brute-force outputs for AAV purification scenarios where a) differing target levels 

of empty capsid removal are encountered, b) different starting levels of host cell proteins 

(HCP) and c) different starting levels of DNA are defined. The $ symbols represent the most 

cost-effective option when less than 75% empty capsid removal is achieved or low starting 

levels of HCP or DNA (2x10-7 ng/vg and 6x10-10 ng/vg) are assumed. For a), M = optimal 

solution when at least 75% removal of empty capsids is required and H = optimal solution 

when at least 90% removal of empty capsids are required. For b) and c), H = optimal solution 

when a high impurity load is used (2x10-5 ng/vg and 6x10-8 ng/vg). The contours represent the 

following; (- - -) meet target for a moderate impurity level, (——) meet target for a high impurity 

c) 

a) b) 
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level. Grey box = breach constraints (see Figure A4 for details). The demand was assumed 

to be 1,000 doses/year, with a dose size of 1 x 1014 vg/dose. 

Furthermore, as the purity target increases, the remaining feasible solution set reduces, as 

many platforms cannot meet the empty capsid removal requirement (Figure 3.10 b)). The 

effect of this can be observed when moving to the 75% target, where the key competitor to 

AEX, which was MM polishing, was removed as a feasible option. As outlined in Figure 3.8, 

AEX polishing (two-step) was not sufficient to meet the 90% removal target. As such, UC or 

three-step AEX was necessary to be included in the purification train due to their propensity 

for removing empty capsids. In this instance, as evidenced by Figure 3.9 b), the feasible 

polishing steps remaining at this purity target were batch or continuous ultracentrifugation or 

three-step AEX. ContiUC was shown to be the most cost-effective across all AEX yields and 

additionally MM-AEX became more competitive at the higher AEX yield. 

In summary, it was shown that where higher AEX yields were achievable, the optimal polishing 

solution shifted towards the inclusion of AEX, making it more attractive and competitive with 

other possible options. Nevertheless, the trade-off still exists between reaching higher purities 

with scalable technologies, whilst implementing robust unit operations that exhibit minimal 

yield variations between serotypes. Therefore, whilst AEX is known to be a scalable option, 

the wide range of yields that can be encountered may lead to reductions in cost-effectiveness 

relative to competing technologies and preference for more yield-stable polishing stages such 

as continuous ultracentrifugation in some instances. 
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Figure 3.8 a) Optimal polishing purification choice in terms of COG/g across a matrix of 

scenarios with different combinations AEX yields and purity targets. A “/” sign in each box is 

used to represent solutions that fall within a 5% COG/dose difference from the optimal 

solution. Lighter shading represents solutions that do not contain AEX in the winning solution. 

Darker shading represents solutions that do contain AEX in the winning solution, b) Feasible 

solutions remaining in brute-force optimisation choices at each purity target. The demand was 

assumed to be 1,000 doses/year, with a dose size of 1 x 1014 vg/dose. The facility was resized 

for each set of inputs. 
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3.4.6 What is the optimal AAV flowsheet in terms of cost and purity 

targets? 

As outlined in Chapter 1, AAV manufacturing can follow numerous possible flowsheets, 

beyond those already investigated in this chapter. Section 3.4.4 highlighted the results of the 

study pertaining to AAV purification, where the identified capture and polishing options were 

evaluated. This section expands upon this work, integrating USP and lysis options as part of 

the optimisation framework. In addition to the USP technologies already evaluated in the base 

case (i.e. cell factories and single-use stirred tank bioreactor), roller bottles were included as 

another adherent option and the rocking motion bioreactor as an additional suspension 

technology. Significantly, providing a more scalable adherent option, the fixed-bed reactor was 

investigated in this case study, with available sizes of 66m2, 133m2 or 333m2. 

As with the optimisation work in Figure 3.8, three distinct empty capsid removal levels were 

investigated (less than 75%, 75% and 90%). The resulting heatmap of COG/doses in Figure 

3.10 was ordered according to these purity levels. Red shaded boxes represent more 

expensive options relative to those that are blue. The grey coloured areas represent those 

options that breach the imposed constraints (the same constraints outlined in Section X). 

Contours were used to separate the regions by purity level achieved and the specific labelling 

is further detailed in the caption. In general, the change in colour occurs from left to right, 

highlighting the cost-effectiveness as the technologies move away from batch-adherent cell 

culture scenarios, driven by lower labour and equipment costs in the more scalable scenarios. 

Unsurprisingly, the least cost-effective option was shown to be a cell factory (CF) platform 

coupled with microfluidisation (MF), cation exchange (CEX) and batch ultracentrifugation 

(BatchUC), a result which further reinforces the conclusions drawn earlier in the chapter that 

coupling adherent cell culture with ultracentrifugation negatively impacts the COG/dose. 

Conversely, the most cost-effective option was shown to feature an AFFH-MM purification 

train, similarly shown in Figure 3.8. Suspension cell culture coupled with these options was 

shown to produce a set of the lowest COG/doses, independent of purity target. 
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Though slight, differences in cost were obtained in using CF versus roller bottles (RB). The 

benefit of RB from an economic perspective lies in the cost per unit. Whilst the size of a single 

roller bottle is approximately 3.5 times smaller than a cell factory, the cost difference does not 

follow the same trend; roller bottles were assumed to be $30 per unit and cell factories $500. 

This was the key impetus for the minor changes between scenarios shown in Figure 3.10. As 

a more scalable adherent alternative, the fixed-bed reactors yielded a far more cost-effective 

set of results than CF or RB. The three available sizes allowed for scalability in terms of sizing 

the process, particularly evading the need for multiple units used in parallel, as the largest 

available size was assumed to be 333m2. Having said this, fixed-bed options were shown to 

be less favourable than the suspension cell culture options, the rocking motion (RM) and 

SUBs. This is attributable to the nature of fixed-bed sizing. In comparison to suspension cell 

culture, adherent production was assumed to require more rigid sizing to the full surface area 

of the vessel selected, e.g. if the calculated surface area was 210m2, a 333m2 FB model would 

be selected and the whole surface area was assumed to be covered. This results in 

overproduction of AAV product, hence a larger relative DSP process overall. Suspension cell 

culture has a greater sizing flexibility, where the working volume utilised can be anywhere 

between 20% utilisation of the reactor model and the maximum volume of the vessel. 

Nevertheless, FB was shown as a favourable alternative to other adherent options, 

highlighting its benefit for manufacturers who do not wish to adapt cell lines to suspension 

culture, but require production in a commercial environment. 

From a lysis perspective, two options were investigated in this study - chemical lysis (CL) and 

microfluidisation (MF). Chemical lysis is generally regarded as a less invasive cell disruption 

method than microfluidisation, where the yield of the latter was assumed to be lower. This 

assumption, along with the capital requirement and consideration of SIP and CIP, drives the 

cost of flowsheet options that contain MF up in comparison to those with chemical lysis 

instead. 
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Figure 3.9 Brute-force optimisation outputs for full flowsheet scenarios. The $ symbol 

represents the most cost-effective option when less than 75% empty capsid removal is 

achieved. M = best performing solutions when at least 75% removal of empty capsids is 

required. H = best performing solutions when at least 90% removal of empty capsids are 

required. The contours represent the following; (- - -) meet the 75% target, (——) meet the 

90% target. Grey coloured areas = breach constraints. The demand was assumed to be 1,000 

doses/year, with a dose size of 1 x 1014 vg/dose. The facility was resized for each set of inputs. 
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3.4.7 How does the critical lysis point impact cost and impurity 

release? 

AAV serotypes exhibit variable behaviour with respect to whether they are extra- or 

intracellularly expressed during cell culture. Oftentimes, those labelled extracellular AAVs are 

only partially secreted, with a certain percentage of material remaining within the cell post-

culture. There has been industrial discussion around serotypes following this behaviour, 

particularly the question of whether it is economically significant to use lysis to collect the 

product that may be retained within the cell or instead discard the material. The compromise 

relates to the additional impurities that would be released when lysing the cells, thereby 

necessitating a greater purification effort. 

Figure 3.11 investigates the aforementioned trade-off and provides information on the critical 

lysis point, across various extracellular: intracellular ratios. Each coloured block on the heat-

map represents an extracellular AAV instance for a given number of doses and extent of 

secretion. This percentages are with respect to the amount secreted. For example in the 90% 

case, it was assumed 90% of the AAV product was secreted to the cell culture medium and 

10% remained within the cell. As a result, the axis ranges only from 50 – 90%, as anything 

below 50% would be regarded as a primarily intracellular AAV product. Furthermore, the black 

dotted line in Figure 3.11 a) depicts the economic threshold (or critical lysis point). In any 

scenario situated to the left of the line, lysis is recommended as the product lost when the cells 

are discarded causes a >10% COG increase over the 100% extracellular AAV case. 

Across all demands, it was found that discarding up to 20% of the product did not detrimentally 

impact the COG/dose relative to the 100% extracellular case, meaning lysis could be avoided. 

Scale was shown to impact the threshold trajectory, as it was found for the low demand of 500 

doses, the COG/dose was not impacted by more than 10% even up to 50% product discarded. 

This is attributable to the sizing of the process primarily, where it can be concluded form Figure 

3.11 b) that regardless of the product losses from avoiding lysis, the reactor was always sized 
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to a 250L model. This sizing trend was similarly observed for the 1,000 doses case, however 

the threshold was met past 80% secreted here. In this case, it must be noted that the 100% 

extracellular case featured the use of a 250L reactor used almost to its maximum capacity, 

thus even a 10% loss of product meant a resizing to a 500L model throughout. This gave rise 

to the initial and relatively large jump of 5% COG difference. Nevertheless, larger COG 

differences (%) between each percentage secretion are observed as the demand increases. 

This is because at higher demands and hence vg batch sizes, changes in product yield amplify 

the changes in working volume required. 

An important trade-off to highlight is the cost-effectiveness versus meeting purity targets and 

thus to demonstrate this, a multimodal and anion exchange chromatography purification train 

was chosen in these figures, whilst assuming a high HCP starting level. This combination 

breached purity constraints by failing to meet the target HCP specifications, thus was regarded 

as an infeasible option for a high HCP starting level. However, this assumed an intracellular 

AAV and hence included a lysis step, after which it was assumed more impurities were 

released into the product fluid following cell breakage. Building upon that of Figure 3.11 a), 

those solutions within the black dotted box represent instances where lysis can be avoided 

and less than 10% COG/dose difference is generated, however those outside this box 

recommend lysis in order to yield more product and hence reduce the resulting COG/dose. 

However, as discussed, if lysis is initiated, the level of impurities also increase as more are 

released from the cells, thereby impacting the overall LRV for the flowsheet. For this case 

study at least 6.5LRV reduction of HCP when a low starting level is encountered was required 

to meet the target of 100ng/mg, hence those solutions within the black box where no lysis is 

used allow for MM-AEX to meet the HCP targets. Upon lysing, a reduction to 6.1LRV is 

exhibited, meaning that as with the heat-map, MM-AEX fails to meet the specification. 
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Figure 3.10 Heatmap generated for comparison of lysis point. Three demands (in doses) are 

presented, which are found on the y-axis. The x-axis refers to the extracellular scenario in 

question, e.g. 90% refers to a scenario where 90% of the AAV is secreted and 10% is retained 

in the cell. a) the percentages refer to the difference between the scenario under consideration 

and the case where a fully (100%) extracellular AAV was assumed (scale provided by the 

ladder on the right of the figure). The black dotted line is placed to give the critical lysis point, 

which is defined as the point beyond which a significant COG/dose difference is exhibited 

(significant being deemed 10%), b) upstream sizing for each scenario, where the first number 

is how many bioreactors were required and the second is the bioreactor model used, c) for a 

multi-model and AEX purification platform, what the overall LRV would be in cases of lysis or 

no lysis. 

a) b) 

c) 

Percentage difference 

with fully extracellular 

case (%) 

Percentage difference 

with fully extracellular 

case (%) 

Percentage difference 

with fully extracellular 

case (%) 
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3.5 Conclusion 

This chapter presented the use of a decisional tool for the evaluation of AAV manufacturing 

processes, first evaluating a small decision space, before use of an optimisation algorithm to 

expand the solution set and find the optimal in terms of cost-effectiveness and meeting purity 

targets. The deterministic analysis focused upon comparison at key points in the process, 

namely addressing issues of scalability at USP and during purification. This analysis 

highlighted the economic superiority of a suspension cell culture strategy over an adherent 

one, as well as of AEX chromatography over iodixanol gradient ultracentrifugation, with the 

flowsheet combining suspension culture with AEX chromatography attaining a COG/dose 

below $20,000 at 1,000 doses per year. The impact of AAV dose (and hence chosen disease 

area) upon process economics illustrated that adherent and suspension culture offer similar 

costs at lower doses but, at higher doses, strategies utilising suspension culture are clearly 

cheaper. 

The case study also incorporated an uncertainty analysis using Monte Carlo simulation to 

identify key risks associated with undertaking the various strategies. It was found that the 

strategy using adherent culture with AEX chromatography produced the widest distribution 

and hence was the least robust strategy. This was attributable to the wider input yield 

distribution associated with AEX and the impact this has on adherent process sizing. This 

would suggest that for manufacturers utilising the traditional AAV platform (adherent culture 

with ultracentrifugation), if a minimal process switch is initially desired, then efforts should be 

focussed upon a USP switch first over DSP, for a more cost-effective and robust initial 

outcome. However in general, it is important to note that whilst robustness of various strategies 

is significant as a decision criterion, manufacturers may have preferences in what to target for 

improvement based upon where their current process development experience is or their 

success to date. 

The optimisation case study reinforced the cost-effectiveness of scalable purification 

platforms, however also revealed the distinct sensitivity that purification performance had on 
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the optimal choice. The purification sequence of affinity followed by multimodal 

chromatography was deemed the optimal solution at the low starting or target impurities levels, 

whereas affinity chromatography with continuous ultracentrifugation was found to be the best 

combination at high levels. This was similarly seen when varying AEX yield. The decisional 

tool therefore served as a strategy to rapidly assess a myriad of AAV manufacturing options, 

accounting for both economics and purity to derive optimal solutions. 
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4 Estimation of research & development budgets for 

novel modalities 

4.1 Introduction 

Chapter 3 introduced the perceived scalability challenges associated with traditional AAV 

manufacturing and provided cost estimates for a range of flowsheet alternatives. However, 

manufacturing activities represent just one component of the overall R&D cost that 

biotechnology companies must allocate towards development and commercialisation of a 

drug. In general, biopharmaceutical drug development is associated with lengthy timescales, 

high risk and substantial expense. From the initial discovery of a drug to its availability on the 

market, the entire process can span up to 15 years (Paul et al., 2010), with latest estimates 

on capitalised R&D costs amounting to ~$3.1bn in 2020 (Farid et al., 2020). Additionally, it is 

often necessary to initiate multiple projects at the start of the development lifecycle to ensure 

a single market success, given that the overall probability of drug success from Phase I to 

likelihood of approval (LOA) ranges from 12 – 17% for mAbs (see Appendix B). Consequently, 

estimating research and development costs for biological products is a complex task due to 

the unique characteristics of the drug development lifecycle, but is crucial to ensure the 

allocation of appropriate budgets across phases and ultimately projects.  

In particular, it has become significant to define the contribution of process development and 

manufacturing (collectively described throughout this chapter as CMC activities) towards the 

total R&D budgets. Published studies to date have reported benchmark CMC contributions 

and costs specifically for mAb products, but have not addressed these elements for other 

modalities such as ADCs, AAVs and CAR T cells. More specifically, no comparison between 

these more novel modalities with mAb products in terms of clinical and non-clinical cost 

breakdowns has been presented. As a result, this chapter aims to provide estimations for the 

R&D budgets required to commercialise mAb, ADC, AAV and CAR T products, as well as 
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benchmark the contributions of CMC activities. In this chapter, the total R&D cost, also referred 

to as the out-of-pocket cost, is divided into three categories – process development, 

manufacturing and clinical trials. These stages share interdependencies, as each relies on the 

preceding activity to commence the next. For example, process development for a particular 

phase is necessary to establish and subsequently optimise the manufacturing process, which 

supplies a given clinical trial. Significantly, costs are sensitive to changes in the overall clinical 

success rates, which vary depending on modality type and target indication under 

consideration. As a result, this chapter also addresses the significance of success rates in 

influencing changes to the estimated R&D budgets. A drug development lifecycle cost model 

is presented, which considers process development, manufacturing and clinical trials costs for 

mAbs, ADCs, AAVs and CAR T cells. Additionally, the impact of varying the success rates was 

examined, particularly across modalities and indication, with the goal of identifying the 

modality requiring the smallest budget in each case.  

The chapter is structured as follows. Section 4.2 outlines the structure of the drug development 

lifecycle. Subsequently, Section 4.3 describes the architecture of the drug development cost 

model constructed. Specific case study assumptions are highlighted in Section 4.4, that utilise 

the model previously highlighted. Finally, Sections 4.5 and 4.6 the analysis and discussion on 

estimating the CMC budgets required for a range of modalities is given, along with the 

conclusions drawn from the study. 

 

4.2 Drug development lifecycle 

The pathway taken by a biopharmaceutical typically follows a well-defined trajectory in the 

case of non-accelerated drugs. The product candidate under consideration first undergoes a 

pre-clinical trial stage, involving testing either in-vitro (usually in cells or tissue culture) or in-

vivo, using animal models (Lo & Field, 2010). These studies aim to gather preliminary 

information regarding drug toxicity levels, pharmacokinetics, pharmacodynamics and the 
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safety of the dosing regimen (Mundae & Ostor, 2010; Schmidt & Grossmann, 1996). Upon 

successful completion of the pre-clinical phase and in order to enable the development 

process of a potential therapeutic to begin, an investigational new drug (IND) application must 

be submitted to the appropriate regulatory body, such as the FDA or EMA, depending on the 

region (Nitin Kashyap et al., 2013; Umscheid et al., 2011). If accepted, this allows companies 

to initiate clinical trials in human participants. A similar regulatory process exists with the 

European Medicines Agency (EMA), where instead of an IND, an investigational medicinal 

product dossier is filed (Nitin Kashyap et al., 2013).  

The clinical trials progress through three distinct phases. Phase I focuses on assessing the 

drug’s safety, tolerability and pharmacokinetics of the drug (Mundae & Ostor, 2010). The 

purpose of Phase II is proof of concept, through evaluating the drug’s efficacy at specific 

dosing levels (Yuan et al., 2016). Phase III trials have a similar overall aim to Phase II, however 

the patient pool is far larger. More specific objectives of this phase include identification of side 

effects and therefore also forms the basis of the appropriate instructions and packaging 

corresponding to the therapy. Following the successful completion of clinical trials, a New Drug 

Application (NDA) is filed and submitted to the appropriate regulatory body. This application 

contains data collected from all trials and serves the primary purpose of providing sufficient 

evidence to obtain market approval for the therapy. 

The work carried out in this chapter simulates the pathway of drugs from the pre-clinical phase 

to market approval. As outlined previously, there are several activities that occur before 

initiation of pre-clinical research and trials, such as drug discovery and target validation. The 

costs incurred during this period were not included within this study, as it is common for 

biopharmaceutical companies to evaluate multiple compounds simultaneously, leading to 

overlapping costs that are challenging to allocate appropriately. Therefore it is important to 

note that in reality, there are costs associated with the drug discovery portion of the 

development phase. However the work in this chapter focuses on the stages from pre-clinical 

process development and beyond. 
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Activities along the development timeline can be categorized into those relating to process 

development, manufacturing and clinical trials. Clinical trials are considered to be critical path 

stages, such that CMC (process development and manufacturing) activities take place to 

support them and occur in parallel with the critical path to ensure delays are avoided. In 

general, the process development refers to establishment and optimisation of the 

manufacturing process that is used to supply the clinical trials with material. The integrity of 

this order of activities (i.e. process development, manufacturing and trials) is maintained 

throughout. The interaction and any parallelisation of these activities is depicted in Figure 4.1, 

adapted from Nie (2015) and Farid et al. (2020). Of significance, Figure 4.1 exemplifies the 

fact that many process development and manufacturing activities occur at risk with respect to 

critical stages (i.e. clinical trials), hence activities are often parallelised. In practice, this means 

the process development and manufacturing for clinical phase 𝑛 + 1 may begin before the end 

of the trial for phase 𝑛, thus these activities would be costed “at risk”, accounting for the 

potential failure of trial 𝑛.  

Early process development studies involve optimisation and titre improvement, which can 

often result in disparity between early phase and late phase titres. This difference impacts the 

manufacturing activities, as titre is a key input within the process economics models. In terms 

of the manufacturing scale, Phase I and II were assumed to be equal. Phase III scales are 

assumed to be consistent with that used in commercial manufacturing, to avoid another scale 

up stage and further characterisation studies. Manufacture of material occurred across the 

clinical phases, with additional runs occurring during regulatory review to demonstrate process 

reproducibility and consistency, known as process performance qualification (PPQ) batches. 

The scale here is the same as Phase III and typically amounts to 3 to 5 batches. 

Figure 4.2 provides both qualitative and quantitative definitions of each activity, divided into 

clinical phases. The typical manufacturing demands and trial sizes are also displayed. As this 

case study evaluates a range of modalities, the differences in demands and trial sizes are 

outlined between them. For brevity, these have been grouped into those that are protein 
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therapeutics and those that are cell and gene therapies (CGTs). mAbs and ADCs are classed 

as proteins, whereas AAVs and CAR T cell products are regarded as the CGTs. Protein 

therapeutics are generally characterised by large patient populations in each trial, relative to 

CGTs. The latter often target rarer disease in comparison to protein therapeutics, hence 

patient recruitment is relatively more difficult, leading to smaller trial sizes.  

 

Figure 4.1 Representation of the dependencies between process development (PD), 

manufacturing (MFG) and clinical trials (Trials) activities. The example used here is the 

trajectory of a mAb product. Colours are used to distinguish between activities pertaining to a 

specific phase, e.g. the shade of blue used for Phase I is used for the corresponding PD and 

MFG activities. 
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a) 

b) 

 

Figure 4.2 a) Key inputs and outputs into the decisional tool, divided by key cost category, 

including process development, manufacturing and clinical trial activities, b) specifics of each 

activity broken down by development phase. Included here is quantitative data related to the 

inputs outlined in a).  
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4.3 Methodology 

4.3.1 Overview 

Figure 4.2 a) depicts the schematic for the tool utilised. A Microsoft Excel-based cost model 

from Nie (2015) and Farid et al. (2020) was converted into Python 3.8 for further use. This 

Python model integrated the process economics models for each modality considered with 

calculations for process development and clinical trial activities. This constituted the overall 

drug development lifecycle cost model. The Python model drew upon process development, 

manufacturing and clinical trial assumptions stored in a Microsoft Excel database. As shown 

in Figure 4.2, key assumptions utilised included costs associated with each activity, stage 

durations and clinical success rates. In general, process development activities were assumed 

to include all bulk drug substance process and formulation development, as well as process 

characterisation and validation. Manufacturing activities included the manufacturing of the bulk 

drug substance material to supply each clinical trial and additionally process performance and 

quality (PPQ) batches necessary for regulatory purposes. For AAV and CAR T, drug product 

manufacturing steps (e.g. vialling) were also accounted for. Furthermore, clinical trials 

represented the actual clinical trial undertaken with patients and drug recipients. 

The drug development model followed the specific product development pathway for a given 

modality, adjusting output costs for any activities assumed to be carried out “at risk” with 

respect to clinical trials, as described previously. Similarly, the phase-by-phase success rates 

were also considered throughout the lifecycle and were used to characterise the risk of drug 

failure. This generated the number of projects required to achieve a single market success for 

each modality. The number of projects was then used to determine the total out-of-pocket 

costs per phase, hence providing overall R&D budgets that accounted for the risk of clinical 

failure. 

 



152 
 

4.3.2 Process development 

In general, process development activities preceded or occurred in parallel with each 

manufacturing activity. Such activities include process characterisation, product synthesis, 

comparability studies, validation, technology transfer and process optimisation. Process 

development is a pivotal activity, designed to develop and optimise the manufacturing process 

for a drug to ultimately supply the multiple clinical and commercial phases involved in bringing 

a product to market. Being able to plan these activities early on can reduce costs incurred 

throughout.  

As displayed in Figure 4.2, when modelling process development activities, key attributes 

considered were the number of personnel and hence FTEs required, the salary per FTE year 

and the duration of the activity. These were used to calculate the number of FTE years and 

hence the overall process development cost on a per phase basis, for each modality under 

consideration. Process development personnel were categorised by job role before being 

estimated, (e.g. process scientists, tech transfer). A full list of the categorisations is provided 

later. Furthermore, the duration of each process development phase was estimated and used 

in conjunction with the number of personnel to calculate the FTE years. The hours worked by 

an employee functioned as the proportion of an FTE that was dedicated to a specific task. 

Assuming a typical 40-hour working week, one FTE was defined as an employee working all 

40 hours. 0.5 FTEs represented the equivalent of one employee working 20 hours a week on 

the project under consideration. Subsequently, the FTE years were calculated based on the 

required personnel multiplied by the duration of the process development stage. The term FTE 

years denotes the personnel effort required if activities were restricted to completion within 

one year, hence 20 personnel used for two years is equivalent to 40 in one. The number of 

FTE years was then used to calculate the required cost of the stage. The key equations 

derived are shown below. 
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𝑁𝐹𝑇𝐸𝑦,𝑖 = 𝑁𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙,𝑖 × 𝑡𝑖       (4.1) 

where 𝑁𝐹𝑇𝐸𝑦,𝑖 = number of FTE years required for process development for stage 𝑖, where 𝑖 

represents the phases considered across the development pathway, i.e. Phase I, II, III and 

regulatory review 

 𝑁𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙,𝑖 = number of personnel required for process development for stage 𝑖 

  𝑡𝑖 = duration of process development stage 𝑖 

𝐶𝑃𝐷,𝑖 = 𝑁𝐹𝑇𝐸𝑦,𝑖 × 𝐶𝐹𝑇𝐸         (4.2) 

where 𝐶𝑃𝐷,𝑖 = total cost of process development for stage 𝑖 

  𝐶𝐹𝑇𝐸 = FTE salary including overheads ($) 

4.3.3 Manufacturing 

Derivation of manufacturing contributions involved using modality-specific process economics 

models. For the protein therapeutics (specifically mAbs and ADCs) the model used was 

developed by Simaria et al. (2012) and was further optimised by Stamatis & Farid (2021). For 

viral vectors, the manufacturing cost models were based on versions described originally in 

by Comisel et al. (2021b) and Lyle et al. (2023), the latter of which was detailed more 

extensively in Chapter 3. Finally, the process economics model for CAR T cells was based on 

work by Pereira Chilima et al. (2020). Independent of modality type, each clinical and 

commercial phase required differing product demands, therefore each process economics 

model was required to run multiple times in order to obtain the cost of goods per phase. 

Additionally, PPQ was necessary for each modality post-phase III trials, requiring the process 

economics models to be run for around a 3 to 5 batch process depending on modality. 
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4.3.4 Clinical trials 

The clinical trials costs was calculated using two key inputs; the trial cost per patient and the 

number of patients involved in the trial. Examples of these values were previously shown in 

Figure 4.2. This was computed for each clinical trial, as well as pre-clinical trial activities. 

Equations are outlined below for clinical trials costs. 

𝐶𝑡𝑟𝑖𝑎𝑙𝑠,𝑖 = 𝑁𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠,𝑖 × 𝐶𝑡𝑟𝑖𝑎𝑙𝑠,𝑝𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡      (4.3) 

where 𝐶𝑡𝑟𝑖𝑎𝑙𝑠,𝑖 = total clinical trial cost for stage 𝑖 

 𝑁𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠,𝑖 = number of patients involved in the trial for stage 𝑖 

  𝐶𝑡𝑟𝑖𝑎𝑙𝑠,𝑝𝑒𝑟 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 = cost of clinical trial per patient 

4.3.5 Transition success rates 

As summarised in Section 4.2, the transition success rates were used to ascertain the number 

of projects required to achieve a market success per modality. Utilising these values provides 

a more realistic derivation of the total out-of-pocket cost on a per success basis for each 

modality. Success rates were assumed for each phase and were used to generate the number 

of projects required from the given phase to commercialisation. The overall number of projects 

from Phase I represented the inverse of the LOA from Phase I. A more comprehensive 

overview of the calculations is detailed below.  

𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠,𝑖 =
1

𝑝(𝑆𝑅𝑖) × 𝑝(𝑆𝑅𝑖+1) × …  𝑝(𝑆𝑅𝑘)
     (4.4) 

where 𝑖 is an index for the phases in the development pathway, where 𝑖 = {1, 2, …  𝑘}, 𝑘 being 

the total number of phases considered. 

𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠,𝑖= number of projects required to achieve a market success from phase 𝑖 

𝑝(𝑆𝑅𝑖) = clinical success rate (probability) for phase 𝑖 
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4.3.6 Total budgets and capitalised equivalents 

In summary, the information provided to this point was necessary in calculating the R&D 

budgets or out-of-pocket costs per phase (𝐶𝑅&𝐷,𝑖) and the following equation outlines its 

derivation. 

𝐶𝑅&𝐷,𝑖 = ∑ ((𝐶𝑃𝐷,𝑖 + 𝐶𝑀𝐹𝐺,𝑖 + 𝐶𝑡𝑟𝑖𝑎𝑙𝑠,𝑖) × 𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠,𝑖)𝑘
𝑖=1   (4.5) 

where 𝐶𝑀𝐹𝐺,𝑖 = the total manufacturing cost for phase 𝑖. 

It is often significant to consider the impact of the time value of money on costs and hence the 

capitalised equivalents of the total out-of-pocket costs. The equation outlined below details 

this calculation for a given phase 𝑖.  

𝐶𝑅&𝐷𝑐𝑎𝑝,𝑖 = 𝐶𝑅&𝐷,𝑖 × (1 + 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑟𝑎𝑡𝑒)(𝑡𝑡𝑜𝑡𝑎𝑙−∑ 𝑡𝑛−1
𝑖
𝑛=1 ) (4.6) 

where 𝐶𝑅&𝐷𝑐𝑎𝑝,𝑖 = is the capitalised R&D cost for phase 𝑖 

 𝑡𝑡𝑜𝑡𝑎𝑙 = the total of all phase times 

∑ 𝑡𝑛−1
𝑖
𝑛=1  = sum of phase times from 𝑡0 = 0 to the time for phase 𝑖  

 

4.4 Case study setup 

The case study sought to simulate the typical trajectory a drug takes from entry into pre-clinical 

trials through to commercialisation and hence estimate the total out-of-pocket costs 

associated with each modality investigated, in this case mAbs, ADCs, AAVs and CAR T cells. 

As a result, the assumptions related to those activities detailed in Section 4.3 were crucial to 

define across the stages of the drug development lifecycle. In general, assumptions were 

derived from industrial correspondence or from previous values used within the UCL 

Decisional Tools group (Comisel et al., 2021a; Farid et al., 2020; Hassan et al., 2016). As 
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detailed previously, manufacturing assumptions were used in the relevant process economics 

models to generate COG values for the modalities under consideration in the case study. 

4.4.1 Key assumptions 

4.4.1.1 Process development costs 

Process development costs were determined from estimations made on the number of FTEs 

needed for each phase and hence how many FTE years were required. This first involved the 

determination and definition of the relevant FTE categories, which has been outlined by Table 

4.1. In particular, these categorisations and definitions were sourced that reported by Nie 

(2015) and Farid et al. (2020) and were further confirmed through industrial correspondence.  

Table 4.1 Process development personnel breakdown by category and relevant definition. 

Process development personnel 

classification 
Definition for case study 

CMC project manager Team leader 

Product development scientists Involved in the process and analytical 

development 

Tech-transfer Involved in transfer of the process between 

PD and MFG or between MFG sites 

Regulatory support Examples may include assistance on 

scientific writing and regulatory procedure 

QC/QA Involved in product and process 

characterisation and testing 

Site support Preparation for commercial manufacturing, 

logistical and clinical supply 

 

In Table 4.1, the term product development scientist was used to collectively describe those 

working on the development of the manufacturing process, such as cell culture, downstream 
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processing and formulation, as well as on analytical development. Estimations regarding the 

personnel required across modalities and for each phase were made and these values can 

be found in Table 4.2 for protein therapeutics and Table 4.3 for cell and gene therapy products. 

The number of personnel in Tables 4.2 and 4.3 represented raw data on the actual number of 

employees assigned to each role across phases. One FTE was determined to represent an 

employee working an 8-hour day, ultimately totalling to a 40-hour working week. In instances 

where a non-integer value was used for the number of personnel, e.g. regulatory support and 

QC/QA for pre-clinical process development was assumed as 0.5 personnel, this represented 

situations where employees were drafted onto multiple projects at once, hence on average 

half their working day or week may be dedicated to the modality under consideration and the 

other half to a different project. 

In addition to the number of FTEs estimated per phase, the process development duration 

was also assumed, which is displayed in Tables 4.2 and 4.3. As evidenced in Section 4.3, this 

was also used in the FTE year-based approach to process development cost calculations, in 

order to derive the workload required in terms of FTE years. Furthermore, the per unit cost of 

an FTE year workload was assumed to be $150,000, accounting for the FTE salary and 

overheads. These overheads included those that were employee-related, such as pension 

contributions or healthcare provisions, as well as support costs for management and 

infrastructure. This value had previously been estimated at around $250,000 (Nie, 2015), 

however through internal discussion with industry, was lowered. 

An additional cost within the process development category related to product stability studies, 

involving the implementation of analytical tests and assays at various time points. This was 

assumed to be necessary for all modalities and across Phase I, III and during regulatory review 

process development activities. In parallel to that reported in Comisel et al. (2021b), Phase I 

and III product stability costs were fixed at $500,000 and $1,000,000 for the material produced 

in PPQ batches during regulatory review.
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Table 4.2 Estimated FTE requirements for process development activities for mAbs and ADCs. 

 

 

 

 mAbs ADCs 

PD 
Personnel 

for 
Pre-
clinical 

for 
Phase I 

for 
Phase III 

for 
Reg. 
Review 
(PD) 

for 
Reg. 
Review 
(Comm) 

for 
Pre-
clinical 

for 
Phase I 

for 
Phase III 

for 
Reg. 
Review 
(PD) 

for 
Reg. 
Review 
(Comm) 

CMC project 
manager 

1 1 2 2 0 1 1 2 2 0 

Product 
development 
scientists 

3 6 10 12 0 3 7 12 12 0 

Tech-
transfer 

1 2 4 4 0 1 3 6 4 0 

Reg. support 0.5 1 2 7 0 0.5 1 2 7 0 

QC/QA 0.5 2 2 4 20 0.5 3 3 4 20 

Site support 0 0 0 0 20 0 0 0 0 20 

Total 
personnel 

6 12 20 29 40 6 15 25 29 40 

Duration 
(year) 

0.5 1 2 1.5 1.5 0.5 1.5 2 1.5 1.5 

FTE year 3 12 40 43.5 60 3 22.5 50 43.5 60 

Cost ($) 450,000 1,800,000 6,000,000 6,525,000 9,000,000 450,000 3,375,000 7,500,000 7,200,000 9,000,000 
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Table 4.3 Estimated FTE requirements for process development activities for viral vectors and CAR T. 

1 Excluding pDNA process development as assumed it is outsourced 

2 Including both lentiviral and cell process development

 Viral vector 1 CAR T 2 

PD 
Personnel 

for 
Pre-
clinical 

for 
Phase I 

for 
Phase III 

for 
Reg. 
Review 
(PD) 

for 
Reg. 
Review 
(Comm) 

for 
Pre-
clinical 

for 
Phase I 

for 
Phase III 

for  
Reg. 
Review 
(PD) 

for 
Reg. 
Review 
(Comm) 

CMC project 
manager 

1 1 2 2 0 2 2 4 4 0 

Product 
development 
scientists 

3 9 10 12 0 6 18 20 24 0 

Tech-
transfer 

1 2 4 4 0 2 4 8 8 0 

Reg. support 0.5 2 2 7 0 1 4 4 10 0 

QC/QA 0.5 2 2 4 20 1 4 4 8 40 

Site support 0 0 0 0 20 0 0 0 0 40 

Total 
personnel 

6 16 20 29 40 12 32 40 54 80 

Duration 
(year) 

1 2 2 1.5 1.5 1 2 2 1.5 1.5 

FTE year 6 32 40 48 60 12 64 80 81 120 

Cost ($) 900,000 4,800,000 6,000,000 7,200,000 9,000,000 1,800,000 9,600,000 12,000,000 12,150,000 18,000,000 
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As outlined previously, each process development team was assumed to be headed by a CMC 

project manager, designed to oversee operations. The numbers were assumed to be 

consistent across modalities, with double the number required at Phase III and beyond due to 

the large increase in overall team size. Of the total number of FTEs at each phase and for 

each modality, product development scientists made up the majority, as this FTE category 

served as an umbrella term for multiple different activities, defined in Table 4.1. Differences in 

the number of product development scientists were assumed between modalities. At Phase I, 

an additional process development scientist was required for ADCs over mAbs, due to the 

likelihood that process development effort may be higher for the drug-conjugate component 

of the ADC. Similarly, 9 process development scientists were assumed for viral vectors over 

the 6 for mAbs, coupled with a longer duration, reflecting the need for greater process 

development and optimisation effort early on to establish a scalable platform process for this 

relatively nascent modality. This difference is minimised at Phase III, with the experience 

gained in viral vector manufacturing, reflecting a situation similar to that of protein therapeutics. 

In the case of CAR T cells, the process development requirement was doubled in relation to 

viral vectors for each category, reflecting the process development effort needed for both the 

viral vector and CAR T cell component separately. 

Moreover, tech transfer involved support in transferring the developed manufacturing process 

to clinical or commercial scale and as such, the number of FTEs increased with trial size and 

hence manufacturing scale. These values were assumed to be higher for ADCs, attributable 

to the complexities in transferring the conjugation process to larger scale. 

For regulatory review, process development effort was split into two sub-categories. That 

which has been labelled PD in Tables 4.2 and 4.3 refers to further process characterisation 

and validation activities, which saw an increase in the number of FTEs directed towards 

regulatory support compared to other phases, attributable to the need for extra effort in aiding 

regulatory writing and evidence gathering for the NDA submission. In contrast, the regulatory 



161 
 

review process development phase for commercial (comm) was assumed to be solely devoted 

to site support and QC/QA, to prepare for commercial launch, as outlined in Table 4.1.   

4.4.1.2 Manufacturing 

As discussed in Section 4.3, each modality considered in the case study was associated with 

specific process economics models, sourced from multiple locations. As such, the following 

section is organised by modality studied. 

4.4.1.2.1 Protein model 

For the purpose of this case study, the term protein was used to collectively describe mAb and 

ADC products. The cost of manufacturing for these were determined using an established 

techno-economic engine for proteins described in Section 4.3. In general, the manufacturing 

model utilised key assumptions such as demand, manufacturing scale, titre and annual 

number of batches.  

Several manufacturing assumptions for mAbs were sourced from Farid et al. (2020) namely 

the number of participants in each clinical trial. The average patient weight and dose size were 

also gathered from the same sources, where the values were assumed to be 86kg and 7 

mg/kg respectively. Furthermore, Table 4.4 shows the flow of calculations required to calculate 

the demand input for the process economics model. This began with using the number of 

participants in each clinical trial, along with the average patient weight, dose size and the 

number of doses required by each patient.  

An overproduction factor was also assumed, reflecting the necessity to overproduce material 

to account for manufacturing uncertainties and non-clinical uses (e.g. stability testing). To 

reflect the increase in manufacturing confidence and decrease in uncertainty as the drug 

moves along the development pathway, this overproduction factor was halved at Phase III 

manufacturing. Due to the small demands encountered at early phases, manufacturing for 

Phase I and II clinical trials was assumed to occur together. For example, the corrected 

demand for mAbs was calculated as 0.1kg for Phase I and 3.9kg for Phase II (as reflected in 
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Table 4.4), however as the manufacturing for both phases was combined, the overall 

manufacturing demand was assumed to be 4kg at a scale of 2,000L.  

The data for pre-clinical or regulatory review manufacturing material has not been defined in 

Table 4.4, as they were not calculated in the same way as Phase I, II and III. As outlined by 

Nie (2015) through personal communication with industry, it was ascertained that 0.5kg is a 

typical target demand for pre-clinical manufacturing, hence this value was also used here, at 

a manufacturing scale of 250L. In the case of regulatory review material, manufacturing that 

took place at this phase served purpose for PPQ, featuring 3 engineering runs or batches to 

display reproducibility and compliance with cGMP manufacturing to the regulatory authorities. 

As it was assumed the same manufacturing scale and process is used for PPQ as for Phase 

III, the cost of a Phase III batch was used to generate the cost of PPQ runs. 

Table 4.4 Key manufacturing inputs for the protein process economics model 

Clinical 
phase 

Trial 
duration 
(years) 

Number of 
trial 
participants 

Doses 
per 
patient 

Manufacturing 
scale (L) 

Demand 
(kg) 

Corrected 
demand 
(kg)1 

Phase I 2 40 1 2,000 0.025 0.025 0.1 0.1 

Phase 
II 

2 200 13 2,000 1.6 0.6 3.9 1.6 

Phase 
III 

3 2,000 26 12,000 32 13.6 40 17 

Note: the division in the demand and corrected demand columns represents the outputs for 

mAbs (first column) and ADCs (second column). 

1 Corrected demand includes an overproduction factor applied to the demand. 250% was used 

for Phase I and II, whilst 125% was used for Phase III.  

4.4.1.2.2 Cell and gene therapy model 

In the case of CGTs, the modalities under consideration were AAVs and CART cells. Assuming 

viral transduction of the CART, it was also necessary to consider the lentiviral vector 

component within the CAR T manufacturing cost models. The models described in Comisel et 

al. (2021) and Lyle et al. (2023) were used to generate COG values for both lentiviral vectors 
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and AAVs. Similarly, for CAR T cells, the economics models were sourced from Pereira 

Chilima (2019). In comparison to proteins, the number of trial participants for CGTs were 

assumed to be far smaller, characterised further by a smaller manufacturing scale at each 

phase. These relatively small trials are typical for CGTs as a whole. The demand was 

calculated by assuming a dose size for each modality. 7 x 1014 vg/dose was assumed for 

AAVs, reflecting that of marketed product Zolgensma, where the per kg dose is 1 x 1014, 

however factors in an average patient weight of 7kg (this figure is small due to prevalence of 

SMA in infants). Similarly for CAR T products, the dose size was drawn from available market 

data and was placed at 2.5 x 108 CAR T cells, the same as Yescarta (Kite Pharma, CA, US). 

In the case of the lentiviral vectors for transduction of the CAR, the dose size was not assumed 

and was instead calculated within the CAR T economics model. This allowed for an accurate 

determination of the required quantity of lentivirus in TUs, which was subsequently input into 

the lentiviral vector process economics model. AAV titres were assumed to be constant across 

phases, in comparison to mAbs and ADCs. This assumption was based upon that reported in 

Hassan et al. (2016) and Comisel et al. (2021b) and supported through industrial discussion. 

A value of 6 x 1013 vg/L was used, corresponding to that reported in Lyle et al. (2023). 

For pre-clinical material, the equivalent of 5 patient doses of each modality were assumed to 

be necessary. Though no human volunteers are involved in pre-clinical trials, the number of 

doses was used as a means to express the demand for CGTs throughout this chapter and 

hence calculate the corresponding COG values. Additionally, the number of PPQ batches was 

assumed to be 3. 
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Table 4.5 Key manufacturing inputs for the viral vector and CAR T process economics models. 

Clinical 
phase 

Trial 
duration 
(years) 

Trial 
participants 
(#) 

Doses 
per 
patient 

Manufacturing 
scale (L) 

Demand 
(doses) 

Corrected 
demand 
(doses) 

Phase I 2 30 1 250 / 
Integrated USP 
and DSP 

30 75 

Phase 
II 

2 50 1 250 / 
Integrated USP 
and DSP 

50 125 

Phase 
III 

3 150 1 1,000 / 
Integrated USP 
and DSP 

150 188 

Note: the first entry in the manufacturing scale (L) column is the bioreactor volume for viral 

vectors and the second represents the manufacturing system used for CAR T products 

(integrated USP and DSP is commercially recognised as the Miltenyi Prodigy). 

4.4.1.3 Clinical trials 

It was reported in previous CMC budgeting work undertaken by Farid et al. (2020) and by 

knowledge of the increasingly larger participant pool required as drug development 

progresses, that mAb clinical trials represent the largest proportion of the overall out-of-pocket 

cost, with around 15 - 20% coming from CMC activities. Previously, the cost of clinical trials 

was estimated from an array of studies which published out-of-pocket costs for mAbs. In these 

cases, the process development and manufacturing costs were subtracted from the total R&D 

cost to ascertain the portion dedicated to clinical trial activities. In contrast, in this chapter, an 

approach more similar to that carried out in Hassan et al. (2016) and Comisel et al. (2021a) 

was employed, whilst using previously reported clinical trials costs as benchmarks. In these 

cases, the cost of clinical trials was estimated by using a trial cost per patient, along with the 

number of patients involved in each trial. However in contrast to Hassan et al. (2016) and 

Comisel et al. (2021a), an updated value for the trial cost per patient (specifically for oncology) 

was sourced from Mikulic (2021). This study placed the maximum value for oncology trials at 

around $150,000 per patient. Utilisation of this value with the perceived mAb patient 

populations resulted in similar trials costs to that reported in Farid et al. (2020), providing 

further motivation to selecting this cost per patient. In the case of CGTs, due to the numerous 
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uncertainties that still exist in comparison to protein therapeutics, including a lengthy patient 

follow-up period of up to 10 years, a trade-off was defined that the trial cost for CGTs would 

be higher than mAbs and ADCs. This value was placed at $1,000,000 per patient (C. Mason, 

UCL, UK, personal communication, 2022). 

4.4.1.4 Transition success rates 

The success rates associated with each clinical phase in the development lifecycle are 

displayed in Table 4.6. This provides a range for each phase, for the sensitivity analysis 

conducted in the case study, where the first number represents the worst-case scenario, the 

middle value the base-case and then the best-case scenario. The success rates in general 

are vital metrics in characterising the risk of drug failure and thus when applied to phase costs, 

provide an accurate representation of the excess that must be allocated to budgets to ensure 

market success. For mAbs, there is extensive published data for the success rates and these 

have been compiled in Table B1 in Appendix B. When studying the more novel modalities 

relative to protein products, literature data is scarce, however the range in Table 4.6 has 

similarly been assumed from a smaller selection of literature sources (outlined in Table B1). 

The data in Table 4.6 evidenced the wider range of transition success rates for CGTs over 

mAbs, due to their relative infancy on the market.  

To supplement the previously mentioned sensitivity analysis, the success rates by indication 

were also considered. Within this part of the case study, the indications were selected based 

upon their commercial relevance to the modalities being studied, i.e. common disease areas 

targeted or where market success has been shown. For this study, the indications selected 

were haematology, ophthalmology, oncology and neurology / central nervous system (CNS) 

(see Table B2 in the Appendix B for data on success rates by indication). 
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Table 4.6 Clinical success rates for each modality by phase and the corresponding number of projects required overall. 

a LOA = likelihood of approval from Phase I 

Note: Three numbers provided that represent the worst-case: base-case: best-case values 

 

Modality Phase I Phase II Phase III Reg. review LOA from Phase I a No. of projects 

mAb 54%, 54%, 62% 34%, 34%, 36% 63%, 70%, 70% 91%, 91%, 91% 10.5%, 11.7%, 14.2% 13.8, 12.4, 10.2 

ADC 54%, 54%, 57% 34%, 34%, 37% 54%, 63%, 63% 91%, 91%, 91% 9.0%, 10.5%, 12.1% 16.1, 13.8, 12.0 

AAV 51%, 51%, 80% 34%, 34%, 66%, 21%, 64%, 75% 90%, 90%, 91% 3.3%, 10.0%, 36.0% 44.2, 14.5, 4.0 

CAR T 51%, 68%, 80% 34%, 40%, 66% 21%, 70%, 75% 90%, 91%, 91% 3.3%, 17.3%, 36.0% 44.2, 8.4, 4.0 
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4.4.1.5 Durations 

Each activity within the development timeline is associated with a duration, some assumed 

from that reported in previously published studied or through industrial discussion (particularly 

those associated with process development or clinical trial activities). Process development 

durations were previously defined in Tables 4.2 and 4.3 and were significant in determining 

the FTE years required for these activities. Furthermore, manufacturing for each phase and 

modality were calculated within each process economics model based upon the number of 

batches in the year and hence the facility utilisation. Finally, clinical trial durations were 

assumed from multiple published sources (DiMasi et al., 2016; Farid et al., 2020; Paul et al., 

2010), as well as through industrial discussion. For comparative purposes, these durations 

were set to be equal across modalities studied and have been presented in Tables 4.4 and 

4.5. Pre-clinical and regulatory review durations were assumed to be 1 and 2 years 

respectively. The clinical trial durations were not directly used in estimating the total out-of-

pocket costs, however played a significant role in determining the capitalised R&D cost. The 

capitalised cost represents the overall out-of-pocket cost adjusted for the cost of capital 

(assumed to be 11%) and to factor in discounting (time value of money). Generation of the 

capitalised equivalents was achieved through consideration of trial timings and the assumed 

cost of capital. 

As is the nature of drug development, many activities are interdependent with one another, 

thus for a particular clinical trial to proceed, the process development and manufacturing must 

come first in order to supply said trial. In certain cases, there can be an activity overlap, such 

that one may finish after the next stage has started. This was previously defined as activities 

being conducted “at risk” and refers to the conductance of the (𝑛 + 1)𝑡ℎ process development 

or manufacturing stage before completion of the 𝑛𝑡ℎ clinical trial. This means the activities 

conducted in parallel to the clinical trial inherit the risk of failure and quantitatively results in 

the success rates associated with the 𝑛𝑡ℎ trial being used to amplify the budgets associated 

with the next activity. 
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4.5 Results and discussion 

The framework described in Section 4.4 was used for an in-depth analysis of the process 

development, manufacturing and clinical trials costs for mAbs, ADCs, AAVs and CAR T cells. 

These were evaluated across development phases, ultimately deriving the total out-of-pocket 

costs for each modality to ensure a market success. The contribution of process development 

and manufacturing to the R&D costs was estimated from each modality. The impact of different 

clinical success rates on the budgets required for each modality was explored using a 

sensitivity analysis.  

4.5.1 What is the CMC contribution towards the R&D cost? 

It has become increasingly significant to define the contribution of process development and 

manufacturing activities (collectively referred to as CMC activities) to the total out-of-pocket 

cost (i.e. R&D cost). These activities underpin the supply of material to the clinical trials and 

as a result, estimating CMC budgets early on is critical to ensure appropriate allocation and to 

avoid delays. The drug development lifecycle model was used to determine the overall out-of-

pocket cost per market success for companies focusing on a single modality type. The model 

outcomes are shown in Figures 4.3 and 4.4 on a case-by-case basis for mAbs, ADCs, AAVs 

and CAR T cells, along with the cost breakdowns across the development pathway. This 

initially assumed an equal success rate from Phase I to approval for each modality under 

consideration of 12%. Figures 4.3 and 4.4 highlighted the CMC cost as a percentage of the 

total R&D budget, ranging from 19 – 30% for mAbs and ADCs and 30 – 42% for AAVs. Overall, 

mAbs were shown to require the smallest R&D budget, offering a 7 – 23% out-of-pocket cost 

reduction over AAVs, ADCs and CAR T cell therapies. These cost differences were largely 

driven by both process development and manufacturing costs, highlighting a greater 

development effort and overall cost of goods required to commercialise ADCs, AAVs and 

CART cells over mAbs. 
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a)  

b) 

Figure 4.3 Out-of-pocket cost schematic depicting the development pathway and cost 

breakdown by development activity and phase for a) mAbs and b) ADCs. The clinical success 

rates (overall rate of 12% assumed for a) and b)) were used to calculate the number of projects 

required at each stage of the development pathway to achieve a market success. The process 

development and manufacturing activities were costed at-risk based on the number of 

projects. The number of projects at each phase are shown about the cost breakdowns. [Style 

of figure presentation adapted from Nie (2015) and Farid et al. (2020)]. 
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a) 

b) 

Figure 4.4 Out-of-pocket cost schematic depicting the development pathway and cost 

breakdown by development activity and phase for a) AAVs and b) CAR T cells. The clinical 

success rates (overall rate of 12% assumed for a) and b)) were used to calculate the number 

of projects required at each stage of the development pathway to achieve a market success. 

The process development and manufacturing activities were costed at-risk based on the 

number of projects. The number of projects at each phase are shown about the cost 

breakdowns. [Style of figure presentation adapted from Nie (2015) and Farid et al. (2020)]. 
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Looking in greater detail, the total out-of-pocket cost per success was determined to be $836 

million, $968 million, $894 million and $1,086 million for mAbs, ADCs, AAVs and CAR T 

products respectively for an overall clinical success rate of 12%. The capitalised equivalents 

were found to be $1,576m, $1,833m, $1,893m and $2,311m respectively. The trade-off 

between mAb and ADC trials sizes versus the higher clinical trial cost per patient assumed for 

CGTs resulted in a similar overall trial cost between modalities. As a result, CMC cost 

contributions was shown to be a key driver in mAbs achieving the smallest out-of-pocket costs. 

This is further explained in Figure 4.5, which delineates the CMC cost breakdown for each 

modality and the reduction in both process development and manufacturing costs for mAbs 

over other therapy areas. Process development budgets were shown to range from ~$90 – 

250 million across modalities, whereas manufacturing costs were estimated between ~$70 – 

210 million. For process development, early efforts were assumed to be higher for the novel 

therapies relative to the more standardised mAb, hence driving up process development costs 

for AAVs, ADCs and CART in earlier phases. This was particularly evidenced by the 

assumption regarding an increase in Phase I product development scientists over mAbs, as 

displayed in Tables 4.2 and 4.3. Across modalities and per project success, Phase I was 

shown to dominate overall process development costs, with a requirement for companies to 

allocate $29 million for mAbs, $48 million for ADCs, $66 million for AAVs and $125 million for 

CAR T, driven by the number of projects required in earlier phases. This exemplifies the near 

5-fold difference in early-phase process development budget required to produce a CART over 

a mAb product. Per project costs for Phase I did not exceed that of the later phases, however 

they become dominant when considered on a per success basis, attributable to the higher 

number of theoretical projects required at Phase I. This is further evidenced by the “at-risk” 

nature of cost analysis conducted here, which as previously discussed involves costing CMC 

activities for a particular phase (e.g. phase 𝑛 + 1) based on the number of projects in the 

parallel trials for the previous phase (e.g. phase 𝑛). In the case of Phase I, the pre-clinical 

number of projects was therefore considered. 
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Regarding cost of goods, mAbs attained the smallest manufacturing budget overall compared 

to other modalities. The extent of manufacturing differences were evidenced during Phase I, 

where the patient populations across modalities did not differ significantly (40 patients for 

proteins and 30 for CGTs), yet the budgets exhibited variations. A breakdown of the cost of 

goods across modalities can be found in the Figure B1 in Appendix B. This highlighted the 

key differences in the major COG categories. The higher manufacturing budgets for ADCs and 

AAVs compared to mAbs can be attributed to a higher materials cost (i.e. reagents and 

consumables). More specifically, the ADCs have a higher DSP material cost given the extra 

conjugation steps and the AAV have a higher USP material cost given the pDNA component 

required for transient transfection. On the other hand, the COG breakdowns for CAR T 

products highlighted a greater contribution from labour and indirect costs over materials. This 

can be attributed to the scaling-out process employed for autologous CAR T, requiring parallel 

equipment units and operators. Additionally, within the analysis, the manufacturing of 

biological components (e.g. lentivirus and associated pDNA) required as raw materials for 

CAR T production was assumed to be outsourced and hence, a premium was applied to costs 

due to the use of a CMO.  

Figure 4.5 CMC out-of-pocket cost breakdown per success for each modality. The overall 

success rate was assumed to be equal across modalities (at 12% LOA from Phase I). PD = 

process development, MFG = manufacturing. 
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4.5.2 What is the impact of assuming different success rates 

between modalities? 

The previous analysis fixed the clinical success rates across modalities. However, recent data 

has suggested differences between these values (QLS, 2021), with overall clinical success 

rates estimated as 12%, 10.5%, 10% and 17% for mAbs, ADCs, AAVs and CAR T respectively 

(also shown in Table 4.6). As a result, the impact of assuming different success rates across 

modalities was investigated and the cost breakdown plotted in Figure 4.6. This provided the 

categorisation of costs by activity (i.e. process development, manufacturing and clinical trials) 

for each modality and presented both transition success rate scenarios for comparative 

purposes. This highlighted the impact of success rates, shown by the change in modality 

ranking with respect to the overall budgets between Figure 4.6 a) and b). Additionally, Figure 

4.6 indicated the influence of clinical trials cost on the total budgets, which was found to have 

the greatest contribution in the case of each modality. 

The trade-off between proteins and CGTs in terms of clinical trial cost per patient versus patient 

population yielded similar trial budgets overall. Larger clinical trials were assumed in the case 

of mAbs and ADCs, particularly evidenced during Phase III, where the number of trial 

participants was assumed to be 2,000 versus 150 in the case of AAV and CAR Nevertheless, 

despite this difference, overall clinical trials costs were shown to be similar between modalities, 

with the CGT cost only slighter smaller than the protein therapies ($630m for CGT and $677m 

for proteins). This was attributable to assumptions regarding the average per patient trial costs. 

Though trials were small, the CGTs per patient trial cost was estimated at $1,000,000 versus 

$150,000 for mAbs and ADCs. The near 7-fold difference in this value was a key driver in the 

ultimate similarities in clinical trials cost between modalities. The assumption of a higher trial 

cost per patient for CGTs arose due to the more stringent and time-consuming follow-up 

measures perceived necessary versus that of a mAb or ADC. In general, long-term effects of 

using CGTs are still yet to be fully addressed and as such, this follow-up period may be longer. 
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Generally, the half-life of a protein therapy is a matter of days, contrary to CGTs, which can 

persist longer in the patient. This results in a shorter follow-up time for protein therapeutics. 

Furthermore, Figures 4.6 a) and b) characterised the effect of clinical success rates upon 

modality ranking in terms of R&D budget. Figure 4.6 a) assumed the same overall LOA from 

Phase I across modalities, whereas 4.6 b) presented the case with differences, with values 

sourced from (QLS, 2021). This yielded a distinct change in modality ranking with respect to 

out-of-pocket cost. For example, the 17% overall success rate in Figure 4.6 b) for CAR T 

resulted in a similar budget to mAbs, thereby achieving the second smallest budget instead of 

the largest as shown in 4.6 a). Additionally, assuming the same overall LOA from Phase I 

resulted in AAV products achieving the smallest budget behind mAbs. This was shown to 

change when assuming an overall success rate of 10% for AAVs, as it required a higher budget 

than both mAbs and CAR T in this case. The comparison made between the two success rate 

scenarios further emphasised the significance of clinical success rates in formulating the 

required budgets and served as an additional motivation to evaluate their impact further in the 

subsequent sensitivity analysis. 

4.5.3 Sensitivity analysis 

Typical clinical success rates are well-documented for mAb products, with numerous studies 

outlining estimations of the LOA from Phase I. Less information has been reported in terms of 

success rates for ADCs, AAVs and CAR T cells and as such, the range of values reported in 

the literature have a far wider distribution than that for mAbs.. Additionally, success rates are 

not only reported by modality group but frequently by indication, which is useful when 

considering modalities that may be commonly used in targeting certain disease areas. As a 

result, the sensitivity analysis conducted in this study evaluated how the cost of development 

changed when considering different success rate profiles, these driven by both modality type 

and indication. 
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a)  

 b)  

Figure 4.6 Out-of-pocket cost breakdowns per success when a) the same clinical success 

rates were assumed across modalities and b) different clinical success rates were assumed 

for each modality, sourced from (QLS, 2021). 
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4.5.3.1 How does the success rate by modality impact R&D budgets? 

As dictated in previous sections, differences in the overall LOA from Phase I had a significant 

impact upon the budget ranking across modalities and as a result, their attractiveness in terms 

of development expense. A sensitivity analysis was first conducted assuming success rate 

values on a modality basis, with the distributions displayed in Table 4.6, highlighting the best, 

base and worst-case values. Figure 4.7 presents the resulting heatmap from considering 

these three success rate scenarios for each modality. Furthermore, the row labelled base in 

the heatmap in Figure 4.7 represents the case presented in Figure 4.6 b). The results 

reflected the impact of the wide range of success rates associated with CGTs, with higher best 

case and lower worst-case values determined over mAbs and ADCs.  

If the success rates dropped to the worst-case profile for each modality, AAV and CART would 

require a maximum of $3.2 – 4.2bn in R&D investment to bring a single product to market, 

whilst mAbs and ADCs would be of the order of approximately $1bn (Figure 4.7a). Additionally, 

the worst-case costs were 8% higher than the base case for mAbs and 20% higher for ADCs 

(Figure 4.7b). In relation to the CGTs, AAVs and CAR T out-of-pocket costs under the worst 

case profile were found to increase by 2.5- and 2.9-fold respectively over the base-case. 

Conversely, for best-case success rate profiles, mAbs and ADCs were subjected to a 7 – 9% 

reduction in budget as a result of the increased Phase I and II success rates. As described in 

Table 4.6, the best-case was assumed to be far more optimistic for CGTs, mirroring that 

reported in Hassan et al. (2016) and yielded a 42% cost reduction for AAVs and 40% for CAR 

T cell products. 
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Figure 4.7 Sensitivity analysis output when considering success rate scenarios by modality 

type. The y-axis refers to the modality under consideration and the x-axis represents what 

success rate scenario was being considered. Each box corresponds to the total out-of-pocket 

cost per success for the given scenario. The ladder on the right-hand side is a Python 3.8 

generated scale for the heatmap, where the darker shading relates to higher costs and lower 

costs for lighter shades. The best, base and worst scenarios reflect the data in Table 4.6, 

where the base case refers to the same used in Figure 4.6 b). 

In summary, the analysis indicated the uncertainty in the success rates for each modality, 

reflecting the greater experience industry has in bringing mAb products to market over the 

more nascent CGT products. The wider success rate range reported for AAVs and CAR Ts 

reinforced the risk associated with estimating R&D costs, particularly highlighted by the 5 – 6-

fold difference in budgets between the best- and worst-case scenarios. Particularly relative to 

mAbs, the magnitude of this range can be linked to the relative nascency of the CGT field, 

where a great deal of uncertainty exists. It is also important to note that some industrial players 

may have experience solely in CGT products, hence may achieve higher rates of success due 

to the experience gained and the ability to direct all process development efforts towards one 

modality group. 

R&D 
budget 
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4.5.3.2 How does the success rate by indication impact R&D budgets? 

In general, a breadth of disease areas are able to be targeted by the modalities under 

consideration in this study. These indications are also characterised by different overall 

success rates and as a result, Figure 4.8 a) presents the sensitivity analysis where success 

rate was considered on an indication basis. The indications were selected based on what was 

deemed most relevant to the modalities being studied. The indications were ordered by 

descending overall success rate.  

Haematology had the highest overall LOA from Phase I rate, resulting in lower R&D budgets 

across modalities. The correlation between success rate and budget remained consistent 

across indications and modalities, with an exception to this shown for mAbs and ADCs 

between oncology and neurology (with success rates of 9.3% and 7.5% respectively). Despite 

a higher success rate for oncology, the neurology budgets for mAbs and ADCs were shown to 

be marginally smaller. This is attributable to the distribution of success rates across phases 

differing between indications. For example, the lower Phase III success rate in oncology 

results in 2.3 projects at this stage required over 2.1 for neurology/CNS. This difference results 

in the Phase III budgets for oncology being higher than neurology/CNS. This trend was only 

observed with mAbs and ADCs, however. This may be linked to the saturation of oncology 

drugs in either clinical trials or on the market, indicated by the large number of candidates 

assessed in Table B1 in the Appendix. With a number of competitors, these drugs must 

highlight an improvement over existing products in order to progress. 

The impact of cost distribution across phases is evidenced by Figure 4.8 b). Phase III costs 

represent a significant portion of the total out-of-pocket cost, particularly for mAbs and ADCs. 

This suggests that a higher number of Phase III projects impacts the total cost more 

significantly than the lower success rates in Phases I and II particularly where protein 

therapeutics are concerned.  

Significantly, the modality requiring the smallest R&D budget varied across indications. AAV 

yielded the smallest budget in both haematology and ophthalmology, however mAbs were 
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found to be optimal in the case of oncology and neurology. This change can also be traced to 

the varying individual phase success rates, as well as the cost breakdown by phase. To better 

explore these elements, the ratio of the number of projects required in Phase I to Phase III 

was computed for each indication and is presented in Figure 4.8 a). Here, the base case from 

earlier analysis was included for further evidence. This showed that in cases where the ratio 

of Phase I projects to Phase III was higher, mAbs required the smallest overall budget. At 

smaller ratios, AAV instead yielded the smallest costs. The significance of this derived ratio is 

explained by Figure 4.8 b), reflecting the distribution of out-of-pocket costs for each modality 

across phases. mAbs and ADCs were shown to be dominated by Phase III costs, whereas 

AAVs and CARTs had a more even distribution of costs across Phase I, II and III. Therefore, 

in cases where the Phase I: III ratio was higher (translating to a large project requirement in 

Phase I), AAVs were less favourable as they had a larger proportion of costs incurred in Phase 

I and II than mAbs. Similarly, when the ratio was smaller, Phase III projects became more 

significant and hence mAbs and ADCs were less favourable, with 61% of their out-of-pocket 

cost generated in Phase III. 

Further granularity on the change in optimal modality (with respect to R&D budgets) across 

success rates was highlighted in Figure 4.9. This assessed the overall out-of-pocket cost for 

each modality in 1% increments of success rate to identify the critical point at which the 

modality with the smallest budget changed. It must be noted that the previously analysis 

demonstrated the impact of success rate distribution across phases, e.g. two indications may 

share the same LOA from Phase I success rate but yield different budgets if there are 

variations in how the rates were distributed. Thus, for the purpose of the data used in Figure 

4.9, the distribution of success rates across phases for the base case (54%, 34%, 71%, 91% 

which resulted in a 12% LOA from Phase I) was used as a baseline in determining all other 

increments. As is the assumption for the sensitivity ranges defined in Table 4.6, in all cases of 

Figure 4.9 where the LOA from Phase I was greater than 12%, higher success rates were 

equally assumed for Phase I and II and the Phase III value remained constant. Conversely, 
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for LOA from Phase I values in Figure 4.9 that are lower than 12%, Phase I and II rates 

remained constant and Phase III rates were lowered accordingly.  

At the lower end of the success rate range evaluated, the ranking of modalities in order of 

smallest budget was mAbs, AAVs, ADCs and CAR T. In parallel to the results generated in 

Figure 4.8, the optimal switched from mAbs to AAVs at a success rate of 16%. This similarly 

occurred for ADCs and CAR T cells at ~17.5%. This is significant in the context of the 

uncertainty associated with clinical success rates and provides a mapping of the various 

scenarios encountered along the development pathway. It may further govern the extent to 

which a company may favour the development of a protein therapeutic over a CGT. Having 

said this, additional factors must be considered when considering the development of a 

specific modality group. This analysis only sought to estimate the R&D budgets under varying 

risk scenarios and has not yet included the impact of revenues and profitability on the 

attractiveness of each modality or the consideration of portfolios where mixes of proteins and 

CGTs are encountered. These latter points are addressed in the next chapter. 
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Figure 4.8 a) The sensitivity analysis output for each indication. The x-axis gives key inputs (LOA 

from Phase I and Ph I: III projects) and the modalities under consideration. The optimal modality 

in terms of budget is highlighted with the dotted contours around corresponding budget values. 

The y-axis represents the indication under consideration. The ladder on the right-hand side is a 

Python 3.8 generated scale for the heatmap, where the darker blue relates to higher costs and 

lower costs for lighter shades of blue. Each box corresponds to the total out-of-pocket cost per 

success for the given scenario. The base case from Figure 4.4 was used as a reference point, b) 

total out-of-pocket cost distribution across all phases for each modality. The bars are annotated 

with the specific percentage contributions.
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Figure 4.9  Change in total out-of-pocket cost with overall LOA from Phase I success rate 

across modalities. The red dotted line represents the critical overall success rate at which the 

optimal in terms of budget changes.  

 

4.6 Conclusion 

This chapter provided estimates for development budgets across modalities, in particular 

highlighting the portion represented by CMC activities. The drug development model outlined 

the division of activities into those concerning process development, manufacturing and 

clinical trials. The application of success rates and their impact on the budgets was also 

described. Modality specific assumptions were provided to highlight the trade-off between 

therapeutic groups, particularly with respect to manufacturing scale and trial size.  

The results highlighted that for the base-case clinical success rates, mAb products achieved 

the smallest R&D budgets, driven by lower CMC costs compared to CGTs. This was shown in 
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patient cost coupled with larger trials for protein products yielded similar trial budgets of $630m 

for AAVs and CAR T and $677m for mAbs and ADCs in the base case. Additionally, ADC, AAV 

and CAR T products were found to have CMC contributions towards the total out-of-pocket 

cost upwards of 30%, compared to the 19% found for mAbs.  

Introduction of the sensitivity analysis on a modality basis highlighted the wider range of R&D 

budgets found for CGT products over protein therapeutics. In contrast, the sensitivity analysis 

by indication success rate suggested the optimal modality changed across disease area. 

Further analysis indicated the critical success rate at which the modality with the smallest 

required budget switched to AAVs over mAbs. This value was found to be 16%. This part of 

the study was significant in the context of current AAV market success. Higher success rates 

were shown to be associated with ophthalmology and haematology, which tend to be common 

disease areas commercially targeted with AAV products, emphasising the drive from industry. 

In summary, this chapter provided estimates of the key expenses incurred across the 

development pathway. Risk was applied by adjusting stage costs based on the number of 

projects expected at each stage based on the clinical success rates; this was a static 

approach. As a result, the drug development model defined in this chapter underpinned the 

portfolio management and capacity sourcing work presented in the next chapter, where risk 

was further analysed in a more dynamic environment, such that drug failures were not only 

considered from a cost perspective, but also in terms of capacity planning. 
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5 Portfolio optimisation and capacity planning for 

mixed modality portfolios 

5.1 Introduction 

The previous chapter sought to integrate the process economics framework defined Chapter 

3 with a drug development cost model to estimate R&D budgets for mAbs, ADCs, AAVs and 

CAR T products. This additionally provided benchmarks for the distribution of costs across 

development phases, in particular highlighting the contribution from CMC activities. Within 

these studies, biopharmaceutical development-related expenses were considered, namely 

process development, manufacturing and clinical trials costs, which realistically constitute the 

primary outgoings in a company’s cash-flow. However, the work up to this point did not factor 

in revenues and ultimately the profitability (i.e. NPV) of each modality. Additionally, Chapter 4 

considered each modality on an individual basis, without examination of the whole 

biopharmaceutical portfolio and a diversified pipeline to potentially be incorporated. The 

interaction between feasible portfolios and budget and capacity restrictions when bringing a 

prospective pipeline to market were also not considered to this point. 

By nature, biopharmaceutical portfolios are often diversified in terms of modality type and 

capacity strategy employed for individual product candidates. The dynamic nature of a drug’s 

trajectory throughout the development cycle and hence interaction with other candidates 

introduces greater uncertainties in addition to those described in Chapter 4. These included 

understanding the impact of budget constraints on drug selection and how capacity can be 

optimally allocated towards the overall portfolio. Significantly, Chapter 4 indicated the 

importance of success rates in governing overall R&D budgets and hence productivity and 

was used to characterise the risk of drug failure within the drug development lifecycle. These 

clinical success rates not only influence development expense, but also have dynamic 

implications upon drug selection, budget allocation and utilisation of capacity. To date, 
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published studies relating to portfolio management and capacity planning have focused 

primarily on drug selection or facility scheduling for protein therapeutics and have quantified 

risk (i.e. success rates) on solely an economic basis, i.e. to costs throughout the cash-flow, to 

generate a risk-adjusted profitability. As such, there has been no focus directed towards drug 

selection and capacity sourcing when mixed-modality portfolios are considered, in particular 

proteins and CGTs. Additionally, the work in this case study provides the first consideration of 

risk on a dynamic basis, by incorporation of a probabilistic simulation to determine drug 

success or failure, which is factored in to both the cash-flow and capacity decisions. 

The case study presented in this chapter reconciles the multiple model frameworks outlined 

in Chapters 3 and 4 and integrates them with a discounted cash-flow model to evaluate the 

profitability of a range of biopharmaceutical portfolios. This was further extended to include a 

stochastic GA-based optimisation tool for assessing the most favourable portfolio mixes and 

capacity sourcing strategies (i.e., in-house, outsourcing or building a new facility), and 

considered the impact of drug failures within a dynamic environment by use of a Bernoulli-

event based simulation. The significance of large-scale portfolio selection and capacity 

management served as the basis for the work outlined in this chapter. This was used to first 

evaluate batch versus next-generation continuously manufactured protein therapeutics, 

before considering the introduction of CGTs within the pipeline and hence the impact of 

portfolio mixes on reward and risk. 

The following chapter outlines the portfolio management tool and the case studies arising from 

its implementation. An overview of the tool and its arrangement with the previously defined 

models in Chapters 3 and 4 is presented in Section 5.2. Section 5.3 outlines the problem 

statement and hence setup of the case study the tool was used to address. The results and 

subsequent analysis are presented in Section 5.4, which highlights both the non-risk and risk-

adjusted outputs of the tool for illustrative purposes.  Furthermore, the conclusions of the case 

study are outlined in Section 5.5. 
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5.2 Model formulation 

5.2.1 Problem-specific notation 

𝐺 number of generations in the optimisation procedure 

𝑔 a single generation in the optimisation procedure 𝑔 ∈ 𝐺  

𝑆𝑔 a population of solutions from generation 𝑔 

𝑠𝑔,𝑝  a candidate solution (chromosome) from the population in generation 𝑔, 𝑆𝑔 =

{𝑠𝑔,𝑝=1,… , 𝑠𝑔,𝑝=𝑃} 

𝑁𝑑0
  number of drugs in the current portfolio (when time, 𝑡 = 0) 

𝑁𝑑𝑓
  number of drugs in the final (𝑓) portfolio (when time, 𝑡 = 𝑓) 

𝑁𝑑𝑝𝑖𝑝𝑒
   number of drugs in the available pipeline 

𝑁𝑝𝑜𝑝     population size 
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5.2.2 Case study terminology 

Table 5.1 Terms frequently used throughout the chapter and their specific definition. 

Term Case study definition  

Starting portfolio The drugs in the company’s portfolio at time 

0, i.e. before any drug injection is 

considered 

Final portfolio The drugs in the company’s portfolio after 

the cash-flow duration, i.e. considers all 

successful drugs from the starting 

portfolio, as well as drugs that were 

injected and remained successful up until 

the end of the cash-flow 

Pipeline The pool of drug candidates that could 

potentially be injected into the portfolio from 

time 0 onwards. 

Not all drugs in the pipeline are necessarily 

injected into each candidate portfolio, 

hence the portfolio selection problem 

Candidate portfolio / candidate solution / 

“the portfolio” 

An example collection of drugs from the 

pipeline that is injected into the portfolio 

and with the starting portfolio, creates the 

final portfolio. A population of these are 

evaluated within the portfolio optimisation 

tool. 
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5.2.3 Overview 

The portfolio optimisation tool can be broadly classified as a stochastic multi-objective 

optimisation framework and was developed to investigate portfolio-related decisions, namely 

drug selection and capacity sourcing. This framework can be divided into two parts; simulation 

and optimisation, which is better illustrated by Figure 5.1. The simulation component 

integrated the models described in Chapters 3 and 4 in order to generate relevant expenses 

for all drugs in both the starting portfolio and pipeline. These cost outputs were stored prior to 

initiating the optimisation component within the tool (detail provided in a later section). 

Stochasticity was introduced via a Monte Carlo simulation conducted on key inputs into the 

process economics and drug development models, and ultimately produced a distribution of 

NPVs for each candidate solution, yielding both the mean and standard deviation as objective 

functions. This Monte Carlo simulation was also conducted on transition success rates in a 

later part of the study, which served to highlight the risk associated with drug success or failure. 

The model was constructed using Python 3.8 and Microsoft Excel. The simulation and 

optimisation were fully coded using Python, with Spyder being used as the integrated 

development environment (IDE) for class building and loading assumptions. Jupyter Notebook 

served as the graphical user interface (GUI) to instantiate objects from each class and run the 

optimisation algorithm. Its use as a GUI was leveraged to also create an intuitive and user-

friendly experience by the addition of widgets, which enhanced interactivity with respect to 

setting assumptions and algorithm parameters. This feature is further explored later on when 

discussing the potential for commercialisation of the tool (Chapter 7). Utilising Python as a 

coding language was favourable in terms of computational time when considering the scope 

of the problem. As introduced in Chapter 2, the problem required incorporation of a number of 

complex features, as well as several algorithm runs. Python allowed access to a range of 

existing libraries with tools for more rapid evaluation. Additionally, Python was used initially in 

this work (i.e. for the process economics and drug development models) due to its simplified 

syntax and relatively intuitive nature, hence maintaining this continuity in coding language was 
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an important factor driving its use in the portfolio optimisation framework, particularly over 

other languages. Microsoft Excel was used to store all modality specific assumptions, 

including those required in the process economics and drug development cost models, as well 

as any general inputs relating to the portfolio. A separate Microsoft Excel database containing 

characteristics for all drugs considered in the case study (both starting portfolio and pipeline) 

was also used. These databases were loaded into the portfolio tool through use of a Spyder 

function that harnessed the capabilities of the Pandas inbuilt Python library and converted the 

data into a format for use in the GUI. 

As previously alluded to, calculations involved in the generation cost data for each drug were 

computed outside of the optimisation loop (contained within the red contours in Figure 5.1). 

Cost data such as development related expenses (e.g. process development, manufacturing 

and clinical trials costs) were calculated from the integrated process economic and drug 

development models outlined in Chapter 3 and 4. These were stored in a dictionary (see 

Section 5.2.6 for the details), with keys indicating the corresponding product ID. Incorporating 

the process economics and drug development cost models within the GA loop was found to 

impair efficiency and timeliness of algorithm completion, increasing the run time by ~120-fold 

compared to when keeping the components separate. Having said this, the calculation of the 

combined NPV (i.e. evaluating candidate solution fitness) for any given portfolio was 

conducted within the optimisation loop, as this depended upon the drug portfolio that was 

under consideration.  

As depicted in Figure 5.1, also included within the tool was a success-failure algorithm to 

model the progression of drugs throughout the development pathway, labelled as a Bernoulli-

event based simulation. This was utilised to generate the likelihood of success and its impact 

upon the NPV when realistic biopharmaceutical risk is considered on a dynamic basis. The 

algorithm was modelled as a series of constituent and independent Bernoulli trials, where only 

two outcomes were possible; success or failure of the given drug. These trials occurred 

outside of the bulk of the simulation and optimisation modelling, which is highlighted by Figure 
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5.1, however the outcomes were subsequently used within the optimisation framework to 

adjust for failures within candidate portfolios (see Section 5.2.9).  

The optimisation process was implemented by a stochastic, multi-objective GA-based tool that 

utilised bespoke constraint-handling strategies to ensure populations of infeasible portfolio 

solutions were not consistently produced. Chromosomes adopted a two-dimensional encoding 

strategy to accommodate both drug selection and capacity decisions in the candidate 

solutions, i.e. the first row represented the drugs included and the second was dedicated 

towards choice of capacity for said drug. The multiple decisions to be made as part of the 

portfolio problem prompted the use of this two-dimensional representation, which further drove 

modifications to the function of the traditional genetic operators such as crossover and 

mutation. Furthermore, the representation of a candidate portfolio took various forms, 

depending on the different stages of the simulation or optimisation framework, however the 

model ensured integrity of the candidate solution was maintained throughout. Specifically, 

binary or ternary value representation was utilised for crossover and mutation, as 

representation of the genes in binary format has been reported to be the most appropriate 

method when concerning genetic operations, detailed in Chapter 1. In contrast, the full drug 

names corresponding to each binary or ternary value and index within the chromosome were 

used when it was necessary to reference the product IDs, required for sourcing relevant cost 

data.  

At a glance, the optimisation procedure was initialised through the random generation of a 

population of candidate portfolios. These were evaluated with respect to the expected 

profitability and risk or volatility associated with the profitability indicator (quantitatively 

expressed as the eNPV and standard deviation of the NPV respectively), across Monte Carlo 

trials, and those deemed superior, subject to constraints, were selected for genetic 

manipulation through selection, crossover and mutation. This process was repeated across 

several generations of the GA. Due to the stochastic nature of the problem, a series of 

uncertain input parameters were generated prior to the initialisation of the algorithm, hence a 
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distribution of NPVs were calculated for each candidate portfolio. This distribution resulted in 

the expected NPV being used as an objective function and the standard deviation serving as 

a secondary objective. Therefore, the structure of a traditional, single-objective GA was 

modified to address the multiple-objectives through implementation of a NSGA-II (Deb, 2000; 

Deb et al., 2002). This is a multi-objective evolutionary algorithm approach that considers the 

impact of both objective functions to assess Pareto optimality.  

Figure 5.1 Overall tool architecture for the portfolio management and capacity planning case 

study. Grey shaded boxes located outside the dotted contours relate to assumptions or key 

model inputs. Simulation-based steps (i.e. generating cost data from process economics and 

drug development cost models) are contained within the red dotted contours or are shaded 

orange. Optimisation-based (i.e. use of the modified GA) are contained within the black dotted 

contours or are shaded blue. The step labelled “Evaluation of fitness” is contained within the 

optimisation procedure, but draws upon the outputs from the simulation part of the model, 

hence lies within a red contour. The green shaded box represents the success-failure 

simulation, which is an independent part of the tool. 



192 
 

5.2.4 GA theory 

The following section provides further granularity on that discussed in Chapter 1, outlining the 

range of techniques available for GA attributes or methods. This provided a more in-depth 

analysis of that employed in the literature to drive the most appropriate choice of techniques. 

The remainder of Section 5.2 focuses upon that selected, drawing on the information 

discussed here. 

5.2.4.1 Chromosome-encoding 

In the context of a GA, a chromosome is the name given to a single solution, made up of a 

number of genes. Each gene confers a level of information, and when strung together, form 

the whole chromosome which represents uniquely encoded candidate solution. The strategy 

by which chromosomes are encoded is an integral part to structuring any GA. Several methods 

for chromosome-encoding have been reported and are used selected due to problem-specific 

dependencies. 

One of the most commonly employed encoding methods is binary representation. In this case, 

genes within the chromosomes are restricted to taking values of 0 or 1, hence chromosomes 

resemble binary strings of information (Katoch et al., 2021). An individual binary-encoded gene 

represents a piece of information within the candidate solution as a whole. The encoding 

strategy selected is generally problem dependent and in certain scenarios, binary encoding 

may not be possible. It is fairly inherent strategy when considering binary decisions, e.g. yes 

or no, true or false, but in cases where decision variables are integer or decimal values 

chromosomes must be converted to binary through use of bit-string representation (that is, if 

binary-representation is desired). The implementation of genetic operators, namely mutation, 

is arguably less computationally demanding when opting for binary encoding (Koziel & 

Michalewicz, 1999). Mutating a binary-represented gene simply means the only alternative 

value is taken during the procedure (e.g. if the allele was originally 0, then the mutated 

alternative can only be 1).  
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An alternative encoding mechanism is permutation encoding, which is typically driven by 

integer representation. In contrast to binary, this technique allow a wider set of values to be 

assigned to genes, where the range of values used is based upon the problem definition. 

Permutation encoding using integer representation is particularly useful in problems where the 

order of the genes in the chromosome is essential to the characteristics of the solution. A 

common problem this type of encoding has been applied to is the Travelling Salesman 

Problem, further highlighting its benefit within logistics and transport scheduling. The 

application of permutation encoding to this problem was reported by Kaabi and Harrath (2019), 

where specific permutation rules were devised for the algorithm to solve the traditional 

problem.  

Furthermore, value encoding is useful when decision variables can take any user defined 

value  (Fox & McMahon, 1991). From this definition, strictly speaking, integer representation 

can be categorised as value encoding, but does not consider the permutation element to 

defining the candidate solution. More significantly, decimals or string may be used in value 

encoding, as highlighted in Figure 5.2 c). This format is particularly useful for use in the 

optimisation of neural network weights or hyperparameters, which take decimal values 

(Katoch et al., 2021). In general, conversion to more traditional binary-encoding format from 

decimal values adds greater complexity to the algorithm. Having said this, if value encoding is 

selected, it often requires modification to the traditional crossover and mutation approaches, 

as discussed earlier in this section. The range of values that each gene can take is restricted 

based on the specific problem in question so that violations within the encoding do not occur. 

Converting decision variables to binary representation promotes greater genetic diversity 

within GA-based algorithms, explained by how conversion takes place to binary strings. Based 

on the range of values within the chromosome, a number of bits (greater than one) is selected 

which remains fixed across all genes. This effectively translates to the number of binary 

variables used to represent the original value of the gene. This is illustrated in greater detail in 

Figure 5.3, where the number of bits was chosen to be three. As a result, each gene is 



194 
 

expressed as multiple variables, thus crossover and mutation are able to operate upon a 

bigger chromosome, enhancing diversity and the chance for exploring untapped regions of 

the decision space. A caveat to the conversion to binary is that chromosome length is 

increased, thus for large-scale applications, is not beneficial to computational time. Carvalho 

et al. (2011) reported conversion of both integer and decimal decision variables to binary 

format. This study used metaheuristics in line with an artificial neural network. 

a)  
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Figure 5.2 Examples of chromosome-encoding strategies employed when using GA-based 

algorithms, where a) is binary-encoding, b) permutation-encoding / integer representation and 

c) value-encoding. 
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Figure 5.3 Illustration of how value encoding can be converted to binary. The number of bits 

was assumed to be 3, hence each gene is represented in triplets, shown by the contour lines 

drawn. 

5.2.4.2 Selection methods 

Selection is a critical component in the progression of a GA-based algorithm, whereby 

individuals from the population are chosen for reproduction in order to generate members of 

the next generation. In general, the goal of the procedure is to ensure fitter individuals 

advance, so that their genetic information can be passed on to offspring. In general, individuals 

in the population are ranked with respect to their objective function(s), which aids in several of 

the selection methods that will be discussed in further detail. 

One of the most commonly employed selection methods is tournament selection. As the name 

suggests, individuals are typically selected in pairs (e.g. a tournament size of two) (Fiandaca 

et al., 2009) from the population and compete against one another in terms of fitness (i.e. the 

extent to they perform with respect to maximising or minimising the objective function). The 

individual with a better fitness (or rank) is selected for reproduction. Nevertheless, due to the 

random nature of the process in selecting two chromosomes to compete, prior ranking in terms 

of fitness is not necessarily required for tournament selection. The method can therefore be 

considered as beneficial from an efficiency perspective. However, it must be noted that for 

large population sizes, tournament selection may give unwanted attention to weaker 

performing solutions, as it is more likely through the random selection of individuals in large 
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sets (Goldberg & Deb, 1991). Having said this, occasional selection of weaker performing 

individuals can confer greater genetic diversity to the resulting population, as these 

chromosomes may have desired characteristics that can be inherited through later operations 

such as crossover and mutation.  

A technique referred to as Roulette Wheel selection has also been implemented in the 

literature (Behera, 2020). Selection here has a stochastic nature, whereby the probability of 

selection for each chromosome is derived from its proportionality to its fitness (Hu et al., 2022). 

For example, the probability would be higher for fitness individuals, increasing the likelihood 

of selection. The wheel is effectively spun, which in practice relates to the generation of a 

random number between 1 and the population size. Limitations to using this method have 

been reported, such that errors often arise introduced by the stochastic nature of the selection 

process (Katoch et al., 2021). 

5.2.4.3 Crossover and mutation methods 

Crossover is a fundamental genetic procedure occurring within a GA, aimed at introducing 

diversity into the population. It mirrors the natural process of gene exchange between two 

parent chromosomes designed to create offspring.  

Perhaps the most traditional crossover method is single-point. In this approach, a random, 

single crossover point within the chromosomes is selected (Burkowski, 2001). Genes beyond 

this point are exchanged with those before the point in the second chromosome and vice 

versa. As a result, offspring inherit a significant portion of parent genes, hence the algorithm 

can often converge quickly due to lack of genetic diversity promoted throughout (Katoch et al., 

2021). Conversely, two-point crossover has also been implemented, which involves 

generation of two crossover points randomly. The process is similar to single-point, except that 

genes within the two points are swapped with those either side in the second chromosome. 

This is not limited to two points and has also been referred to as k-point crossover, as multiple 

crossover points may be defined (Soon et al., 2013). This has been reported for use in the 

literature, with Fiandaca et al. (2009) presented the use of a multi-point crossover 
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methodology within a multi-objective optimisation framework for use in designing pressure 

swing adsorption processes. 

Furthermore, uniform crossover does not define crossover points but instead treats each gene 

on an individual basis. Each gene has an equal probability of being swapped or not, thus 

generally promoting more genetic diversity and opportunities for crossover to occur. Soon et 

al. (2013) provided a comprehensive comparison of the aforementioned crossover techniques, 

for use in video game design. Moreover, Hu and Di Paolo (2009) highlighted the benefits of 

uniform crossover, depicting its ability to encourage greater exploration of the objective space 

and often diversity. 

Regarding mutation, two methods have been widely used to perform the genetic operation. 

Arguably the simplest of the two is bit-point mutation, which operates similarly to single-point 

crossover. A mutation rate is defined representing the probability that mutation will occur on 

any given chromosome. If a chromosome is selected for mutation, a single gene is 

probabilistically chosen to be mutated. For binary-encoded chromosomes, the selected gene 

is flipped to the other available value (e.g. 0 would become 1 and vice versa). On the other 

hand, uniform mutation treats each gene on an individual basis. The mutation rate governs 

which chromosomes participate in the mutation, however an additional measure of mutation 

probability must be adopted to identify which genes will be mutated within the chromosomes. 

If binary-encoding is used, genes are flipped to the only alternative value, as before. However 

if integer representation is adopted, genes are randomly changed to any values between the 

specified lower and upper bounds. 

5.2.5 Chromosome-encoding strategy 

Before outlining the structure of a candidate portfolio, it is important to discuss the strategy by 

which chromosomes and hence solutions were encoded. Candidate solutions encoded the 

drugs selected from the pipeline for injection into the portfolio and ultimately the nature of 

capacity sourcing associated with each, i.e. whether commercial manufacturing operations 
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were kept in-house, outsourced to a CMO, or if a future facility was used. Due to the multiple 

layers associated with decision-making, chromosomes were structured as an 𝑚 by 𝑛 array, 

where 𝑛 represented the string length (number of columns) and also equated to the number 

of drugs available for selection in the pipeline (𝑁𝑑𝑝𝑖𝑝𝑒
) and 𝑚 denoted the number of rows in 

each chromosome. The number of rows was fixed at two, the first for drug selection and the 

second for the commercial manufacturing strategy (i.e. capacity) used for a given drug. The 

chromosome structure is further described by Figure 5.4.  

Traditional GAs are characterised by the use of one-dimensional chromosomes, thus the 

matrix structure employed within this tool represented a more novel encoding strategy. As a 

general heuristic in programming, two-dimensional arrays are often more computationally 

expensive than one-dimensional, however this notion does not hold true in cases where the 

column length differs between each array type being compared. For example, if the two-

dimensional structure outlined in Figure 5.4 were transformed into an array, where each 

couplet of genes referenced one drug, the chromosome length would equivalently double. 

Particularly for a GA-based method, where genetic operations rely on scanning the length of 

the whole chromosome, a reduction in chromosome length was deemed desirable. The matrix 

structure was additionally useful for indexing the position of genes, allowing for ease of 

translation to the corresponding product IDs. Within the pipeline, each drug was assigned an 

index value translating to its position within the chromosome (which remained constant 

throughout as chromosome length was fixed). This offered a simplistic method for identifying 

which drugs were included within any given candidate portfolio and as a result, using a one-

dimensional array risked interfering with the chronology of indexing. It must be noted that 

whilst matrix-style chromosome structures are relatively more novel than traditional encoding 

strategies, their use has been previously reported in scheduling optimisation problems. Tsai 

et al. (2015) introduced a two-dimensional chromosome structure for use in aircraft scheduling 

and as delineated in Chapter 1, Jankauskas and Farid (2019) also adopted a matrix-style 

structure for biopharmaceutical capacity planning. Both of these studies introduced 
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modifications to the genetic operators (i.e. crossover and mutation) that  adapted to the 

multiple chromosome layers.  

Furthermore, a hybrid binary and ternary chromosome-encoding strategy was used. As 

depicted in Figure 5.4, the first row of the chromosome represented drug selection decisions 

and was coded using binary variables. Specifically, 1 was assigned to those drugs included 

within a candidate portfolio and 0 to those excluded. For the second row concerning capacity 

decisions, a ternary-encoding system was utilised, meaning genes could take only one of three 

distinct values, i.e. {0, 1, 2}. This decision was indicative of the three strategies available for 

commercial manufacturing, those being in-house manufacturing, outsourcing to a CMO and a 

future facility build. 

 

 
𝑑𝑠,1 

 

 
𝑑𝑠,2 

 
… 𝑑𝑠,𝑁𝑑𝑝𝑖𝑝𝑒

 

 
𝑚𝑠,1 

 

 
𝑚𝑠,2 

 

 
… 

 
𝑚𝑠,𝑁𝑑𝑝𝑖𝑝𝑒

 

 

Figure 5.4 Generic chromosome structure for the case study. Notation: 𝑑𝑠,𝑖 = candidate drug 

𝑖 from candidate solution (𝑠), 𝑖 ∈ 𝑁𝑑𝑝𝑖𝑝𝑒
, 𝑚𝑠,𝑖 = commercial manufacturing strategy for drug 𝑖 

(in-house, CMO or future facility), 𝑖 ∈ 𝑁𝑑𝑝𝑖𝑝𝑒
, 𝑠 ∈ 𝑁𝑝𝑜𝑝. 

5.2.6 Candidate portfolio structure 

In each generation of the modified-GA, 𝑔, a population of solutions was denoted by 𝑆𝑔. 

Individual solutions were represented by 𝑠𝑔,𝑝, where 𝑝 = {1, 2, … 𝑁𝑝𝑜𝑝} and 𝑁𝑝𝑜𝑝 was the 

parent and offspring population size. As a result, 𝑝 was used as an index for each candidate 

solution in the population. Bringing all these elements into coherence, a population of 

candidate solutions from a single generation could be expressed by the following notation. 
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𝑆𝑔= {𝑠𝑔,𝑝=1, 𝑠𝑔,𝑝=2  … 𝑠𝑔,𝑝=𝑁𝑝𝑜𝑝
}   ∀𝑔 𝜖 𝐺, 𝑝 𝜖 𝑁𝑝𝑜𝑝      (5.1) 

Any given candidate portfolio, 𝑠𝑔,𝑝, was divided into drug selection and capacity sourcing 

decisions. These were denoted with different mathematical representations within the 

optimisation setup and as such, 𝑠𝑔,𝑝 could be further expressed as (𝑑𝑠, 𝑚𝑠). This meant that 

for a given instance of 𝑠𝑔,𝑝, the set of drugs available for injection was denoted by 𝑑𝑠, the size 

of which was fixed and previously defined as 𝑁𝑑𝑝𝑖𝑝𝑒
. The following equation was used to 

represent 𝑑𝑠. 

𝑑𝑠 = {𝑑𝑠,𝑖=1, 𝑑𝑠,𝑖= 2 … 𝑑𝑠,𝑖=𝑁𝑑𝑝𝑖𝑝𝑒
}   ∀𝑠 𝜖 𝑆𝑔, 𝑖 𝜖 𝑁𝑑𝑝𝑖𝑝𝑒

    (5.2) 

It was necessary to distinguish between the number of drugs available in the pipeline for 

selection (𝑁𝑑𝑝𝑖𝑝𝑒 ) and the actual number of drugs selected for a given portfolio (denoted by 

𝑁𝑑𝑠
 in this case). Outlined in the case study notation and terminology in Section 5.2.2, 𝑁𝑑𝑝𝑖𝑝𝑒

 

referred to the total number of drugs in the pipeline (available for injection into the portfolio). 

Whilst this was the total number available, not all of these drugs were necessarily injected and 

hence included within each candidate solution, governed in reality by budget and capacity 

constraints. Thus in comparison, 𝑁𝑑𝑠
 was randomly generated value by the algorithm and 

could be less than or equal to 𝑁𝑑𝑝𝑖𝑝𝑒
. In practice and highlighted by Equation 5.2, each instance 

of 𝑑𝑠 had an equal length of 𝑁𝑑𝑝𝑖𝑝𝑒
, which did not vary between candidate solutions so to 

maintain the chromosome length. Instead, the distribution of binary variables within each 𝑑𝑠 

was varied, based upon which drugs were included or excluded. Therefore, the number of 

drugs with a 1 assigned to them within 𝑑𝑠 (i.e. those selected in the portfolio) summed to 𝑁𝑑𝑠
, 

whilst 𝑁𝑑𝑝𝑖𝑝𝑒
 remained constant throughout. The binary encoding and thus restriction of any 

𝑑𝑠,𝑖 to either of the two possible values is shown below. 

𝑑𝑠,𝑖 ∈ {0, 1}      ∀𝑠 𝜖 𝑆𝑔, 𝑖 𝜖 𝑁𝑑𝑝𝑖𝑝𝑒
   (5.3) 
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The second part of a candidate solution involved the commercial manufacturing strategies 

used for each drug in 𝑑𝑠 as part of any 𝑠𝑔,𝑝 and was denoted by 𝑚𝑠. The overall structure of 

the set is represented by the following. 

𝑚𝑠 = {𝑚𝑠,𝑖=1, 𝑚𝑠,𝑖= 2 … 𝑚𝑠,𝑖=𝑁𝑑𝑝𝑖𝑝𝑒
}   ∀𝑠 𝜖 𝑆𝑔, 𝑖 𝜖 𝑁𝑑𝑝𝑖𝑝𝑒

  (5.4) 

As discussed previously, a ternary representation was used for the capacity strategies, where 

0 represented in-house manufacturing, 1 related to using a CMO and 2 for building a new 

facility and conducting operations within this. 

𝑚𝑠,𝑖 ∈ {0, 1, 2}       ∀𝑠 𝜖 𝑆𝑔, 𝑖 𝜖 𝑁𝑑𝑝𝑖𝑝𝑒
  (5.5) 

The constraints considered within the tool and the strategies employed to handle them are 

discussed in detail later in a dedicated section. However to briefly summarise, a basic repair 

strategy was employed to deal with any instances of an infeasible capacity strategy being 

assigned to certain modality types (following crossover or mutation). For example, if an AAV 

were assigned in-house manufacturing by a genetic operation, when the assumption is this 

was not possible for CGT products, the repair method employed by the model would switch 

the gene to a feasible capacity strategy. 

5.2.7 Objective functions 

The optimisation tool addressed both the expected profitability (eNPV) and the standard 

deviation of the profitability (sdNPV) as objective functions. The deterministic NPV was 

calculated through a discounted cash-flow, which for a given product, considered the income 

and outgoings from its development and ultimately commercialisation, before applying a 

discount factor to consider the time value of money (as the cash flow is forecasted over a fixed 

period of time). In comparison, the eNPV can be defined as the average of a given set of 

NPVs. In this case study, the uncertainty analysis generated a distribution of NPVs and hence, 

the eNPV was calculated as the average of these outputs. 
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Independent of the Monte Carlo simulation, the workflow employed to calculate a single NPV 

for a candidate portfolio has been presented in Figure 5.5. At any given iteration of the 

algorithm (i.e. a generation, 𝑔), the population was represented by a Python list, which 

contained a number of sub-lists within designed to characterise the candidate portfolios in the 

population. These candidate portfolio lists were assessed in the modified-GA, in terms of their 

objective functions, as shown in Figure 5.5. Furthermore, each drug element in a given 

candidate portfolio list, as previously described, could be represented by 𝑑𝑠,𝑖. Denoted by the 

grey shaded boxes in Figure 5.5, a dictionary of the cash-flow elements was constructed 

outside of the GA loop. In using Python dictionaries, keys must be defined for referencing and 

drawing out values when necessary. Keys and their values are separated by a colon, such 

that ‘calling’ the key yields the associated value. An illustrative example of the dictionary 

structure is outlined below, along with a list, to give clarity to the terminology utilised. 

𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦     =      {

𝑘𝑒𝑦1: 𝑣𝑎𝑙𝑢𝑒1,
𝑘𝑒𝑦2: 𝑣𝑎𝑙𝑢𝑒2,
𝑘𝑒𝑦3: 𝑣𝑎𝑙𝑢𝑒3

}      →     {

𝑚𝐴𝑏1: [0, 1, 2],
𝐴𝐴𝑉1: [3, 4, 5],

𝐴𝐷𝐶1: [6, 7, 8]
}    (5.6) 

𝑙𝑖𝑠𝑡     =      [

[𝑣𝑎𝑙𝑢𝑒1,1, 𝑣𝑎𝑙𝑢𝑒1,2, 𝑣𝑎𝑙𝑢𝑒1,3],

[𝑣𝑎𝑙𝑢𝑒2,1, 𝑣𝑎𝑙𝑢𝑒2,2, 𝑣𝑎𝑙𝑢𝑒2,3],

[𝑣𝑎𝑙𝑢𝑒3,1, 𝑣𝑎𝑙𝑢𝑒3,2, 𝑣𝑎𝑙𝑢𝑒3,3]

]  → [

[0, 1, 2],
[3, 4, 5],
[6, 7, 8]

]       (5.7) 

Each drug in both the starting portfolio and pipeline was used as a key to reference its 

individual set of expenses and revenues (these served as the values shown above). All drugs 

assessed in the case study were included in these dictionaries. Furthermore, expenses and 

revenues were ordered and indexed by their cash flow year, which allowed for correct entry 

and hence discounting in the combined cash-flow for each portfolio assessed. Independent of 

the grey-shaded dictionaries in Figure 5.5, separate expenses and revenue lists were 

generated during each generation of the optimisation algorithm to store the relevant cash-flow 

entries for each drug within all candidate portfolios assessed, which are enclosed within the 

solid purple contour. This can be cross-referenced with that detailed in Figure 5.1, where the 

evaluation of fitness for a candidate portfolio was shown to be independent from the initial 
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generation of expenses and revenues for each drug. Revenue for each drug was calculated 

using the annual selling price and the total number of patients treated in a year. This is 

summarised in the following equation. 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑆𝑃 × 𝑁𝑑𝑜𝑠𝑒𝑠/𝑦𝑒𝑎𝑟       (5.8) 

In contrast, the dotted contours represent the adjusted expenses and revenues list when risk 

was considered within the scenario. This accounted for the original lists within the solid 

contours alongside the output of the Bernoulli event-based simulation. The output of the 

Bernoulli event-based simulation was used to highlight, for each drug, whether it succeeded 

along its ideal trajectory or if not, the position within the pathway where failure occurred. The 

index of the failure position was a vital part of determining the adjusted costs for a given drug, 

as it was used in parallel with the cash-flow years to determine the position where costs were 

no longer considered (as the drug had failed). Numerically, values in both the expenses and 

revenues list beyond the failure point were set to 0 to ensure that any theoretical cash-flow 

contributions from the failed drug were not included in the NPV calculation. 

The specific calculations used within the cash-flow to generate the NPV can be found in 

Figure C1 in Appendix C. This provides a step-by-step procedure of handling income and 

outgoings. 
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Figure 5.5 Derivation of the objective functions within the tool. Within each box, an indication 

of the Python data structure used for coding the datasets, e.g. list or dictionary, is provided. 

Boxes shaded in grey represent datasets that are constructed outside of the optimisation 

algorithm loop, thus were not confined to any form of time complexity that arose from running 

over multiple iterations. Boxes shaded light blue represent datasets that vary across each 

iteration or generation within the algorithm, hence were re-generated during each loop. The 

solid contour (     ) was used to highlight the grouping of the expenses and revenues for any 

given candidate solution, though values were expressed in separate lists (income versus 

outgoings). The dotted contour (- - -) was used to group the income and outgoings after the 

impact of drug failures were applied, if the Bernoulli event-based simulation was conducted. 
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5.2.8 Optimisation algorithm 

5.2.8.1 Overview of modified genetic algorithm 

The optimisation portion of the tool incorporated several elements of a traditional genetic 

algorithm and the non-dominated sorting and crowding distance features from the NSGA-II, 

as outlined in Chapter 1. Crucially however, several modifications were made in adapting the 

more traditional GA methods to the chromosome-encoding strategy described in Section 

5.2.5. As highlighted in the tool architecture in Figure 5.1, the optimisation framework featured 

GA functions such as population initialisation, evaluation of fitness, crossover, mutation, 

offspring evaluation of fitness and population replacement. During population initialisation, a 

set of size 𝑁𝑝𝑜𝑝 candidate portfolios (chromosomes) were generated, with varying sizes (𝑁𝑑𝑠
) 

as described previously. These candidate portfolios were expressed as both a binary string 

and by their corresponding drug names to source relevant cost data. Portfolios were then 

evaluated through the calculation of the combined NPV for each portfolio, using a whole 

portfolio cash-flow function within the optimisation loop. This was conducted across Monte 

Carlo trials and the mean and standard deviation of the NPV were derived to determine the 

objective functions. 

Deviation from the traditional structure of a GA occurred following the evaluation of the 

objective functions. The presence of multiple objective functions required alternate strategies 

be introduced to accurately rank solutions, by considering the contribution of both. Ranking 

with respect to only one objective would disregard the impact of the second objective and 

hence fail to capture any trade-offs in the results. In this work, the NSGA-II was employed. In 

contrast to traditional ranking methods for fitness evaluation, which are inherently designed 

for single-objective problems, NSGA-II reconciles both objective functions when ranking 

solutions. The specific protocol by which the NSGA-II was employed is discussed further within 

this chapter, as well as the additional modifications made to tournament selection for handling 

two objective functions.  
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Figure 5.6 depicts the flow of the modified-GA used within the optimisation tool. Crossover 

and mutation were both implemented to enhance genetic diversity within the population, but 

were both refined to suit the manipulation of two-dimensional chromosomes. A uniform method 

for both was selected over the more conventional single-point (or bit-point), which 

probabilistically treated each gene in chromosomes individually, rather than selecting only a 

single gene to perform genetic changes on. As discussed in Chapter 1, uniform approaches 

to both crossover and mutation have been shown to enhance diversity and coverage within 

the objective space. 

 

Figure 5.6 General tool architecture for the modified genetic algorithm. The dotted boxes 

further highlight the changes occurring to the population size throughout the procedure.  
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5.2.8.2 Multi-objective optimisation 

The nature of multi-objective optimisation centres on evaluating and optimising for two or more 

objective functions. Due to the often-conflicting nature of multiple objectives, there regularly 

arises cases where some solutions may perform well in relation to one, but poorly for the 

second. To this end, the sorting and selection mechanisms used in single-objective 

optimisation cannot be efficiently transferred into a multi-objective environment. Instead, all 

solutions can be plotted with the objective functions as axes and a schematic known as the 

Pareto frontier can be constructed, representing the non-dominated and hence optimal 

solutions within the objective space. It must be noted that the Pareto front is not constituted 

by a plot of the entire objective space but is instead a specific subset of the objective space 

representing the optimal trade-offs between the multiple, conflicting objectives. Throughout 

this chapter, the algorithm utilised for MOO was the NSGA-II, selected for its robustness in 

handling problems with large numbers of variables and non-linear constraints. Hence, for an 

application in biopharmaceutical portfolio management and capacity planning, this algorithm 

is well-suited, with evidence of its implementation in similar fields being outlined in Chapter 1. 

The placement of the NSGA-II components of the algorithm is highlighted in both Figures 5.1 

and 5.6. Its use was primarily in population ranking and selection. This ranking occurred post-

fitness evaluation and facilitated the process of tournament selection. For further clarity, the 

pseudocode in Algorithm 5.1 outlines the procedure. This process sought to identify the non-

dominated set of candidate solutions. Within the procedure of non-dominated sorting, when 

comparing two solutions 𝑥 and 𝑦, 𝑥 is said to dominate 𝑦 if the following holds true: 

o Solution 𝑥 is no worse than 𝑦 in all objective functions 

o Solution 𝑥 is strictly better than 𝑦 in at least one objective function 

Each candidate solution was compared to another with respect to the performance of both 

objective functions and the number of solutions that dominated or were dominated by the 

candidate under consideration were recorded. This looped procedure is referred to as non-
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dominated sorting, which governs the categorisation of solutions into ranks and therefore, 

leads to the formation of the Pareto front. These ranks are referred to as Pareto fronts or ranks, 

e.g. rank 1 would be considered superior in comparison to rank 2. Upon this basis, Pareto 

rank 1 represented the non-dominated solutions within the population and therefore the 

optimal set, such that no other solutions dominated them in terms of all objectives 

simultaneously. Nonetheless, all solutions were assigned Pareto ranks based on their 

dominance relationships with other solutions, not the top performing set alone. Illustration of 

this procedure is displayed in Figure 5.7. 

With reference to the concept of Pareto optimality and in the context of the NSGA-II, the goal 

of the algorithm is often more accurately aligned with achieving convergence toward higher 

Pareto ranks rather than specifically toward the Pareto front. The NSGA-II is designed to attain 

a diverse set of solutions across all prescribed Pareto ranks. By exploring solutions across 

ranks, the NSGA-II promotes genetic diversity in the final set of solutions, ensuring the 

algorithm does not converge to a limited portion of the Pareto front, but instead provides a 

more comprehensive representation of the trade-offs.  

Evaluation of the fitness involved combining the offspring and parent populations (see Figure 

5.6) and then ranking the integrated set. However, only half of this combined population were 

selected for the next generation of the process, which evoked scenarios where certain Pareto 

ranks required division to achieve a population size of 𝑁𝑝𝑜𝑝 for advancement. As a result, 

operations to divide the front were necessary to define. This was achieved through non-

dominated sorting (discussed previously) and crowding distance sorting. The procedure has 

been displayed in Figure 5.7 for clarity. Crowding distance is a measure of how close a 

candidate is to its neighbouring solutions in the population. The procedure here, which utilised 

the Manhattan distance calculation, is outlined in Appendix C1. The aim is maximisation, 

where the greater the crowding distance, the higher the ranking of the solution, as this has 

been found to promote a greater population diversity, by encouraging exploration of less dense 

areas of the objective space that have yet to be covered. The calculated crowding distance 
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also served as a relevant criterion during tournament selection. When comparing two 

competing chromosomes with the same Pareto rank, the solution that achieved the higher 

crowding distance would be selected for reproduction. In contrast, binary tournament selection 

during a single-objective optimisation problem simply involves comparing the objective 

functions of two randomly selected chromosomes from the population and selecting the one 

that better meets the problem conditions, i.e. minimisation or maximisation of the objective 

function.  

For model validation purposes, an important consideration was how to assess algorithm 

convergence and solution quality within a multi-objective environment. A far more simplistic 

approach can be taken when only one objective function is considered, typically involving how 

the fitness changes over successive generations and identifying the threshold where no 

significant improvement takes place. For MOO, this methodology does not translate as 

effectively, particular where problems often yield conflicting objective function values. As 

outlined in Chapter 1, the hypervolume indicator is a well-established performance metric 

widely used in MOO problems, particularly NSGA-II based algorithms. This particularly 

prompted the use of it throughout this work. Additional points governing its suitability include 

its relatively simplistic computation for two-objective problems and that it does not add 

additional computational complexities in terms of time. The hypervolume is often driven by 

selection of a reference point, which confers flexibility to the user as it can be randomly 

selected. Other derivations of reference point have been highlighted in Chapter 1, however a 

user-defined reference point was utilised in this chapter due to the flexibility it allows, as well 

as its benefits when knowledge of the breadth in the objective space has been acquired. In 

this case, the decision space was evaluated in terms of the minimum and maximum values 

found for each objective (i.e. the boundaries). For an objective requiring maximisation, the 

reference coordinate was set to be smaller than the minimum value of that objective in the 

space. The converse was then true for an objective function to be minimised, i.e. a reference 

coordinate value greater than the maximum value obtained in the objective space. 
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Furthermore, in comparison to other indicators outlined in Chapter 1, the hypervolume is the 

only metric that strictly satisfies the mathematical definition of Pareto dominance, a concept 

highlighted throughout this work. 

 

Figure 5.7 Creation of new population at each generation in the optimisation algorithm. Pg 

and Og together depict the combined parent and offspring population. The next stage 

highlights the procedure of non-dominated sorting, where the combined population are divided 

into a series of Pareto ranks or fronts (front 1 is the optimal set). The next parent population 

is half of the combined population in the previous generation and therefore, any relevant 

splitting of a particular Pareto front / rank is handled by crowding distance sorting, which seeks 

to reject a portion of the front which is considered more crowded. Furthermore, Pg+1 reflects 

the new population created for the next generation. 
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Algorithm 5.1 Pseudocode for NSGA-II Pareto ranking and crowding distance is calculated. 

Require: 𝑅 (𝑃𝑎𝑟𝑒𝑡𝑜 𝑟𝑎𝑛𝑘 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦), 𝐷𝑜𝑚𝑥 (𝑠𝑒𝑡 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑏𝑦 𝑥), 
𝑛𝑑𝑜𝑚,𝑥  (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑥), 𝑆𝑔 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑎 𝑔𝑖𝑣𝑒𝑛 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑔), 𝑓1(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 1 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠), 𝑓2(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 2 
𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠) 

1  𝑅 is an empty dictionary with Pareto front ranks as keys and empty lists ([ ]) as values 

2      for 𝑟 in 𝑅 

3           𝐷𝑜𝑚𝑥 = { }, 𝑛𝑑𝑜𝑚,𝑥 = 0  

4           for 𝑥 in 𝑆𝑔 

5                for 𝑦 in 𝑆𝑔 

6                     if 𝑥 dominates 𝑦 

7                          𝑦 is added to set 𝐷𝑜𝑚𝑥                                        # 𝑦 is dominated by 𝑥     

8                     else  

9                        𝑛𝑑𝑜𝑚,𝑥 = 𝑛𝑑𝑜𝑚,𝑥 + 1                        # add one to the number of solutions  

                                                                                   dominating 𝑥     

10         append solutions which have 𝑛𝑑𝑜𝑚,𝑥 = 0 to whatever 𝑟 is being considered 

11         remove from 𝑆𝑔 the solutions which have 𝑛𝑑𝑜𝑚,𝑥 = 0 

12         repeat 

12  Create new dictionaries to rank solutions by 𝑓1 and 𝑓2 

13      for 𝑟 in 𝑅 

14           Calculate the crowding distance (see Algorithm C1 in Appendix C) 

 

The hypervolume is a measure of the volume of the objective space taken up by the Pareto 

solutions evaluated. In general, larger hypervolume values are indicative of a better-quality 

set that is close to approximating the true Pareto optimal. Additionally, convergence can be 

monitored by assessing the change in hypervolume over time. As this change lessens, the 

process of convergence is likely to be occurring. The hypervolume calculated in this study was 

the area under the Pareto curve, utilising a rectangular method for computational simplicity 

(highlighted in Figure 5.8). It must be noted that whilst used here, the terminology of 
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hypervolume is more aptly used in optimisation problems with 3 or more objectives. 

Furthermore, though division of the objective space into rectangular segments provided a 

rapid means to calculate the indicator, it would be more accurate to adopt a triangular or 

trapezoidal methods, as this would ensure greater coverage of the area in the objective space 

(as highlighted in the results section). 

The formation of these rectangles are contingent on defining a set of coordinates (the 

reference point) in the objective space. The arrangement of the reference point and the 

rectangles formed in the objective space is illustrated by Figure 5.8. Additionally, the pseudo-

code for the hypervolume calculation is outlined in Algorithm 5.2.  

 

 

 

Figure 5.8 Illustrative example of the hypervolume calculation. The axes represent an 

illustrative example of an objective function 1 (f1) and objective function 2 (f2), where it is 

desirable to maximise f1 and minimise f2. The dotted lines show how the rectangles are formed 

for the calculation of the overall hypervolume. The reference point is highlighted in blue.  
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Algorithm 5.2 Pseudocode for hypervolume calculation as part of the NSGA-II algorithm. 

Require: 𝑅𝑃 (𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡), 𝑓1 (𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 1 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑛 −
𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠) 𝑓2 (𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 2 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑛 −
𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠), 𝐺 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠), 𝐻𝑉(ℎ𝑦𝑝𝑒𝑟𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟) 

1 𝐻𝑉, 𝐻𝑉_𝑙𝑖𝑠𝑡 = 0, [ ]             # Initialise a hypervolume list to store the value across 

                                              generations 

# Hypervolume loop for each generation 

2 for 𝑔 in 𝐺 

3      for 𝑦, 𝑥 in (𝑓1, 𝑓2) 

4           if index of 𝑓 = 0                      # If it’s the first entry in the list 

5                𝐻𝑉 = 𝐻𝑉 + (𝑥 − 𝑅𝑃1) × (𝑦 − 𝑅𝑃2) 

6                𝑅𝑃 = (𝑥, 𝑅𝑃2)                        # x coordinate of RP updated      

7           else 

8                𝐻𝑉 = 𝐻𝑉 + (𝑥 − 𝑅𝑃1) × (𝑦 − 𝑅𝑃2)     

9                𝑅𝑃 = (𝑥, 𝑅𝑃2) 

10           append 𝐻𝑉 to 𝐻𝑉_𝑙𝑖𝑠𝑡 

11 return 𝐻𝑉_𝑙𝑖𝑠𝑡 
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5.2.8.3 Crossover and mutation 

A modified methodology for both crossover and mutation was proposed by Tsai et al. (2015) 

to perform genetic operations upon two-dimensional chromosomes. This presented 

techniques similar to single-point crossover and bit-point mutation, but adapted for two-

dimensional chromosomes, where the crossover and mutation points were defined as a row 

and column index, instead of a single gene position. In general, single-point based genetic 

operations are widely regarded to lack in promoting genetic diversity throughout the algorithm, 

risking instances of premature convergence towards local optima. A single-point swap or 

mutation often leads to similar patterns of gene inheritance in offspring to that of the parent 

chromosomes, and over generations, leads to minimal genetic variations as parents tend 

toward having similar characteristics with one another (i.e. convergence).  

In contrast to these methods, uniform crossover and mutation treats each gene in the 

chromosome on an individual probabilistic basis, resulting in greater diversity in the offspring 

population and offers the chance to explore regions of the decision space where there may be 

better performing solutions. As a result, the work in this chapter introduced the use of a 

bespoke uniform crossover and mutation method tailored specifically to two-dimensional 

chromosomes. Illustration of the differences between the traditional single-point or bit-point 

crossover and mutation methods and the uniform approach is provided in Figure 5.9. 

Highlighted in Figure 5.9 a), the modifications to the methods are shown in the definition of a 

row and column index to define where crossover or mutation takes place. Selection of these 

indices was random and the probability of either genetic operation taking place was subject to 

the defined crossover and mutation rate respectively. 
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Figure 5.9 Examples of the crossover and mutation procedures followed in the tool (b) and 

their differences between single-point and bit-point crossover and mutation, a) single-point 

crossover and bit-point mutation procedure for matrix-style chromosomes and b) uniform 

crossover and mutation for matrix-style chromosomes. In both a) and b), the split between 

crossover and mutation is defined. The solid contours in the parent chromosomes represent 

the crossover point(s) and the impact is shown in the “after crossover” chromosomes, shaded 

grey to depict the swapping of genes. The dashed contours highlight the mutation points(s), 

where the blue shading in the offspring highlighted the result of a gene mutation. 

a) 

b) 
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5.2.8.4 Parameter selection 

Balancing the trade-off between computational efficiency and solution quality is an important 

task when selecting GA parameters and is generally problem dependent. It may also require 

some form of prior knowledge or iterative experimentation. The population size and number 

of generations are two key parameters that greatly impact algorithm performance. Throughout 

the literature, these values vary greatly depending on the type and size of the problem. 

Allmendinger et al. (2014) presented a GA structure for the optimisation of chromatography 

sizing and utilised a population size of 80, along with 25 generations. In portfolio and capacity 

planning problems, where typically the objective space is larger, Jankauskas et al. (2019) 

reported using upwards of 100 generations with a population size of 100. However, defining 

the problem broadly as related to portfolio management or capacity planning does not 

necessarily govern the selection of GA parameters, as shown by George and Farid (2008). 

This study imposed a maximum of 17 generations on the algorithm. Therefore, particularly 

where population size and generation number were concerned, arbitrary selection of these 

parameters based on comparison with those reported in literature for similar sized problems 

was deemed an unsuitable selection method. Another consideration and potential driver for 

selecting GA parameters related to a balance between reducing computational speed and 

maintaining solution quality. For many problems in portfolio optimisation, smaller GA 

parameters may be sufficient to provide a set of optimal solutions and would ensure the 

computational time does not exceed any potential user-defined constraints.  

These considerations prompted the use of a parameter selection study, to ensure appropriate 

values were opted for throughout the work conducted. Ranges of population size and number 

of generations were explored and the optimal solution achieved from each scenario was 

recorded, along with the computational time. The specifics of the procedure undertaken is 

outlined below. 
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1. The population size was fixed at the median of the defined range, then the number of 

generations was varied. The GA was run multiple times for reproducibility and the optimal 

solution, hypervolume indicator and computational time was recorded and averaged 

across runs. 

2. The number of generations was fixed at the median of the defined range, then the 

population size was varied. The GA was run multiple times for reproducibility and the 

optimal solution, hypervolume indicator and computational time was recorded and 

averaged across runs. 

3. The results from both experiments were plotted and the optimal solution was analysed 

with respect to how it changed with the GA parameters. The same was done for any 

changes in hypervolume indicator. 

Of note, in the population size study specifically, a large pool of potential candidate solutions 

(greater than the upper bound of the range evaluated) were first generated as part of the 

population initialisation phase of the GA-based procedure. Utilising the same possible 

candidates throughout the study ensured sampling was conducted on the same pool for every 

population size tested. This was thought to minimise the bias introduced by random efforts, 

such as the consistent reinitialization of the population in every population size run, which may 

influence the results. The Python library “random” was harnessed to sample the desired 

number of chromosomes each time, before running the GA as normal. 

Additionally, to consider the impact of both objective functions, a weighted value between the 

two was also expressed and the following calculation was used. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑓1 × 0.5 + 𝑓2 × 0.5    (5.9) 
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5.2.8.5 Constraints and handling strategies 

The portfolio optimisation problem under consideration was constrained, thus by definition, 

feasible solutions needed to adhere to various constraints imposed. As is the nature of 

constrained optimisation, often a portion of solutions generated violate the constraints and are 

deemed infeasible. Specifically for the portfolio optimisation tool used in this chapter, 

budgetary and capacity constraints were defined.  

Budgetary constraints related to the expenses injected into the cash-flow over a defined period 

of time. An R&D budget was assumed over a fixed duration and in cases where expenses 

required for a candidate portfolio for the same time period exceeded the defined budget, the 

solution became infeasible. On the other hand, capacity constraints required a more in-depth 

calculation to assess solution feasibility. In general, capacity considerations introduced a 

dynamic element to the portfolio problem, as it considered the position of a given drug within 

the cash-flow timeline and hence if and when they occupy manufacturing capacity. The 

specific constraints were handled by calculating the number of batches required to 

manufacture the drug and considering the maximum batches that could be carried out from 

the trains available in the facility. The procedure for determining capacity violation is found in 

Algorithm 5.3.  
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Algorithm 5.3 Pseudocode for determining solutions which breach capacity constraints. 

Require: 𝑑0 (𝑠𝑒𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜), 𝑑𝑠 (𝑠𝑒𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔𝑠 𝑖𝑛 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 
𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑓𝑟𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠), 𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠 (𝑛𝑜. 𝑜𝑓 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒 𝑒𝑎𝑐ℎ 𝑑𝑟𝑢𝑔  

𝑖𝑛 𝑑0), 𝑆𝑇𝐺_𝑖𝑑𝑥 (𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑠𝑡𝑎𝑔𝑒 𝑡ℎ𝑎𝑡 𝑒𝑎𝑐ℎ 𝑑𝑟𝑢𝑔 𝑖𝑛 𝑑0 𝑖𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 0) 

𝑦𝑒𝑎𝑟𝑠 (𝑙𝑖𝑠𝑡 𝑜𝑓 𝑦𝑒𝑎𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠ℎ𝑓𝑙𝑜𝑤), 𝐶𝑚𝑎𝑥  (𝑖𝑛 ℎ𝑜𝑢𝑠𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑛𝑛𝑢𝑎𝑙𝑙𝑦), 𝑇 (𝑡𝑟𝑎𝑖𝑛𝑠) 

1 Create an empty dictionary. Each drug in 𝑑0 represents a separate key 

𝐶, 𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = [ ], [ ]                                                                  # Initialise lists for capacity 

2 for 𝑑 in 𝑑0                                                                  # Each drug in the starting portfolio 

3      append 𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠,𝑑 and  𝑆𝑇𝐺_𝑖𝑑𝑥𝑑   # Tabulate the batches required and the position                    

                                                                the drug is at in development 

4 for 𝑑 in 𝑑𝑠                                                               # Each drug in candidate solution 𝑑𝑠 

5      append 𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠,𝑑                                                    # Tabulate the batches required 

7 for 𝑑𝑠,𝑖 in (𝑑0 + 𝑑𝑠)                                          # Combined portfolio to assess capacity 

8      for 𝑦 in 𝑦𝑒𝑎𝑟𝑠  

9           for 𝑑 in 𝑑𝑠,𝑖                                                 # for each drug in candidate portfolio 

10                consider position of 𝑑 in the development timeline 

11                if 𝑑 is in a manufacturing phase 

12                     append 𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠,𝑑 to 𝐶 

13                𝑆𝑇𝐺_𝑖𝑑𝑥𝑑 = 𝑆𝑇𝐺_𝑖𝑑𝑥𝑑 + 1          # Move the drug on in the development timeline 

14 # C is indexed by the candidate portfolio and year under consideration 

15 for 𝑑𝑠,𝑖 in (𝑑0 + 𝑑𝑠) 

16      for 𝑦 in 𝑦𝑒𝑎𝑟𝑠  

17           𝑁𝑜. 𝑑𝑟𝑢𝑔𝑠 = 𝑙𝑒𝑛(𝐶𝑖,𝑦)       # How many drugs share the manufacturing suite at          

18                                                       the same time (in a given year) 

19           if  𝑁𝑜. 𝑑𝑟𝑢𝑔𝑠 > 𝑇             # Drugs at one time exceed the number of trains 

20                call Algorithm C2 (see Appendix C) 

21           else 

22                append 𝑁𝑏𝑎𝑡𝑐ℎ𝑒𝑠,𝑑  to 𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑                     # Assign each drug to a train 

23 for 𝑦 in 𝑦𝑒𝑎𝑟𝑠 

24      if 𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑,𝑦 > 𝐶𝑚𝑎𝑥                          

25           𝑑𝑠 is deemed infeasible 

26      else 𝑑𝑠 is considered feasible 
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In the pseudocode shown in Algorithm 5.3, the starting portfolio refers to drugs already in the 

portfolio before the cash-flow was instigated and the 𝑑𝑠 refers to an example chromosome in 

the population (made up of prospective drugs to inject into the portfolio). 

Constraint-handling involves dealing with solutions that violate the constraints defined in the 

problem. A violation renders the solution infeasible. Chapter 1 detailed several constraint 

handling techniques reported in the literature, including application of penalty functions and 

repair mechanisms. As a summary, penalty functions are notably simple to implement and can 

be useful when prior knowledge is available on the range of objective function values in the 

decision space. Repair-based mechanisms are often problem dependent and offer flexibility 

in building bespoke handling strategies for the specific population. In the work conducted in 

this chapter, a hybrid constraint handling methodology was undertaken, with elements of a 

penalty and a repair function implemented, depending on the specific constraint being violated. 

A repair mechanism was implemented following crossover and mutation on any chromosomes 

that did not follow the logic of the structure, e.g. instances where a drug was not included in 

the portfolio (and so the gene labelled a 0), but CMO decisions were still present (a 1 or 2 

used for genes pertaining to CMO vs in-house for that specific drug). Here, repair ensured that 

if a gene in the first row was 0, then all other genes in the same column also had to be 0. 

Similarly, a chromosomal repair took place if crossover and mutation yielded chromosomes 

where some violating capacity strategies were assigned to drugs, e.g. if in-house was 

assigned to a continuously manufactured drug (there is no available in-house continuous 

manufacturing). 

A simplistic penalty function was used for budget and capacity constraint violations, which 

involved setting the NPV to 0 for infeasible solutions and the standard deviation as 1 x 1010, 

so as to penalise these strategies for ongoing ranking and genetic operations. Nevertheless, 

as will be discussed later in the chapter, a bespoke repair strategy was also incorporated 

within the model for capacity violations. Practical implementation of constraint-handling is 

often dependent on the problem in question and as a result, may require some initial running 
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to identify any intrinsic biases or caveats to consider. Therefore, the capacity-repair method 

was implemented in cases where the penalty function introduced any algorithmic biases or 

impeded the genetic operators and further details are discussed later in the chapter. In 

summary, a more simplistic penalty function was opted for initially and a repair only if needed. 

Penalty functions provided a simpler method to implement, particularly amidst an algorithm 

that contains many computationally demanding additions. From a contextual perspective, the 

prior knowledge on the specific objective functions used also favoured its use, which aids in 

selecting appropriate penalty values.  

5.2.9 Uncertainty 

Stochasticity was introduced in the form of uncertain parameters related to process 

economics, CMC activities or market characteristics. For each parameter, a distribution of 

values was generated. Each value replaced the base-case value, such that a corresponding 

output distribution was generated. In the case of the portfolio tool, a distribution of NPVs were 

ultimately generated, as well as the standard deviation of the NPV. 

5.2.10 Bernoulli event-based simulation 

The simulation of drug success throughout the portfolio architecture was one of a stochastic 

nature, where each development phase had an associated transition success rate. As a result, 

the journey of a given drug through the development pathway could be modelled as a series 

of consecutive stochastic events, where the outcome of each was either drug success (1) or 

failure (0). In instances where a drug under consideration failed, its development pathway was 

prematurely cut short as failure represented its removal from consideration within the portfolio. 

As such, the binary nature of the simulation enabled the use of a Bernoulli distribution to 

represent the two possible outcomes of success or failure. Each critical phase (clinical trial) 

had a probability of transition success attributed to them (defined in Chapter 4) and as such, 

all phases could be independently modelled using a Bernoulli distribution with probability of 

drug success 𝑝 and failure 1 − 𝑝.  
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The simulation was conducted as follows. A random variable 𝑈 was generated from a pseudo-

random number generator, following a uniform distribution. For any given drug and clinical trial 

phase, if 𝑈 exceeded the probability of transition success, 𝑝, then 𝑋 was equal to 0 and hence 

the drug failed. Conversely, if 𝑈 was less than or equal to the probability of transition success, 

the drug was assumed to succeed in transitioning from that clinical phase to the next. This can 

be better highlighted by the following representation: 

𝑋 =  {
1, 𝑖𝑓 0 ≤ 𝑈 < 𝑝
0, 𝑖𝑓 𝑝 ≤ 𝑈 ≤ 1

} 

The event simulation did not consider the individual reasons for drug success or failure; it 

solely described the progression of drugs on a quantitative basis. Any interdependencies 

between trial outcomes or drugs were also not considered within the simulation e.g. if a drug 

targeting one indication fails, does this make another more or less likely to succeed. 

Placement of the Bernoulli event-based simulation was also investigated. Introduction of the 

algorithm before the optimisation loop and within the final generation of the procedure were 

compared in terms of quality of solution, as well as how the resulting populations illustrated 

risk in a realistic environment. Nevertheless, regardless of where the simulation was 

introduced, the pseudo-code for the procedure can be found in Algorithm 5.4. Of note, the 

operation in line 5 loops through each element within two input lists (must be of equal size), 

whilst also producing a third list containing the indices associated with the list elements. The 

indices range from 1 to the length of the lists. As highlighted here, positions represented the 

output of the Bernoulli event-based simulation, which gave the dynamic pathways for each 

drug within the candidate portfolios comprising the whole population. Lines 6 to 12 represent 

the key Bernoulli events taking place within the algorithm. For instances where the uniformly 

generated random variable 𝑈 was less than the probability of transition success for the 

particular drug and phase in question, a 1 was added to the positions list, indexed by the drug 

and the candidate solution within the population. Conversely, a 0 was added to the list to 

highlight that the drug had failed to progress into the next development phase. Furthermore, 
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lines 11 and 12 were used to deal with the presence of any 0 values within positions. In a 

practical context, this related to handling drug failures that were simulated. As shown in these 

lines, no further additions were made to positions if the drug under consideration has failed.  

Within the wider context of the model, the positions output was used in parallel to the functions 

described in Figure 5.5, where expenses and revenues were compiled for drugs under 

consideration. By design, positions was structured such that 0 values were paired with the 

stage index where failure occurred (shown in line 8). For example, if the failure occurred in 

Phase 2, the couplet [0, 2] was appended to positions. The code break in line 12 meant that 

the couplet signifying failure would consistently be the last element in the given sub-list within 

positions (sub-lists were indexed by drug and candidate portfolio). The stage index could then 

be sourced within the cash-flow model in order to define the phase where failure occurred and 

in practice, the position from which revenues and expenses were no longer considered for the 

given drug. 
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Algorithm 5.4 Pseudocode for Bernoulli event-based simulation for characterising risk. 

Require: 𝑁𝑝𝑜𝑝 (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒), 𝑆𝑔(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛), 𝑇𝑆𝑅 (𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑜𝑓  

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑢𝑐𝑐𝑒𝑠𝑠), 𝑖𝑠_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡𝑜 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑖𝑓 𝑡ℎ𝑒 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑜𝑟  
  𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑜𝑟 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑑𝑟𝑢𝑔𝑠), 𝑆𝑇𝐺(𝑠𝑡𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑝𝑎𝑡ℎ𝑤𝑎𝑦)  

𝐶𝑟𝑖𝑡_𝑆𝑇𝐺(𝑡ℎ𝑒 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑠𝑡𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑝𝑎𝑡ℎ𝑤𝑎𝑦) 

1     Create an empty list 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = [ ] 

2 for 𝑠 in 𝑆𝑔 

3      for 𝑑𝑟𝑢𝑔 in 𝑠    

4           generate a uniformly distributed random variable 𝑥 

5           for 𝑖, 𝑗, 𝑘 in enumerate(zip(𝑆𝑇𝐺, 𝐶𝑟𝑖𝑡_𝑆𝑇𝐺)) 

6                if 𝑖 = 𝑘 and 𝑆𝑇𝐺 𝑑𝑟𝑢𝑔 < 𝑖 

7                     if 𝑥 > 𝑇𝑆𝑅𝑑𝑟𝑢𝑔,𝑗  

8                          append 0 and 𝑗 to 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 

9                     else 

10                          append 1 to 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 

11                else append 1 to 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 

11                if 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑠,𝑑𝑟𝑢𝑔,𝑖 is  0                 # if drug has failed stop the simulation and   

12                     break                                      # move to the next drug 

Note: if drug is part of the pipeline, it will always start at position 0 in the development pathway. 

However, if the drug is in the starting portfolio, 𝑆𝑇𝐺 concerns the index of the stage it is at from 

time 0, e.g. Ph II clinical trials is represented by an index of 4. Additionally, critical stages in 

the development pathway were defined as those where transition probabilities need to be 

considered (in practice critical stages were clinical trials) 

 

5.3 Case study setup 

5.3.1 Case study definition 

The integrated optimisation tool introduced in Section 5.2 was used in evaluating a series of 

portfolio-related questions, with a particular aim to optimise drug selection and capacity 

sourcing for protein therapeutics (i.e. mAbs and ADCs) initially, before the injection of AAV and 
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CAR T products were also considered. The study first explored the impact of changing the 

proportion of future protein therapeutics that were manufactured continuously. This compared 

scenarios of 20% versus 80% continuous: batch in the pipeline. A key trade-off existing 

between the batch and continuous manufacturing options was that the biotechnology 

company being modelled did not have existing in-house continuous manufacturing 

capabilities, hence only outsourcing or facility build options were available for capacity 

sourcing. In comparison, batch could be conducted in-house, outsourced or built. A further 

distinction between the manufacturing options related to the cost of goods, where it was 

assumed that the continuous flowsheet would allow for a 35% reduction in COG over the 

batch, as reported in Mahal et al. (2021). A further trade-off was defined that early phase 

process development effort was 50% greater in terms of FTE requirement for the continuous 

platform, due to its nascency relative to batch configurations. 

The case study was later expanded to include CGT options. For each modality under 

consideration, the transition success probabilities outlined in Chapter 4 were used to address 

the impact of risk in a dynamic environment, highlighting how drug success and failure 

influenced the objective functions. Similarly, the sensitivity analysis using success rates 

presented in Chapter 4 was also reinforced, giving insight into how the portfolio structure in 

terms of protein to CGT ratio changed across each risk profile evaluated. The model produced 

both a non-risk and risk adjusted output to illustrate the economic impact of risk, as well as 

how it logistically affects capacity. 

The optimisation framework involved using a stochastic, modified-GA based structure to 

generate populations of candidate portfolios and the capacity strategies associated with each. 

Additional techniques were built-in to bolster the overall analysis, including a Monte Carlo 

simulation and a Bernoulli-event based algorithm for simulating drug success and failure. Due 

to the complexities that can often arise relating to GA parameter selection, an additional study 

was included to investigate the impact of the selected inputs (i.e. population size and number 

of generations) on the resulting Pareto front and the hypervolume indicator. Optimisation with 
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respect to drug selection and capacity sourcing was constrained, with constraints placed upon 

annual budget allowance and the manufacturing capacity both internally and in facility build 

options. Section 5.2 outlined the key notation and terminology associated with the case study. 

To add further clarity to this, the following problem definition was constructed, alongside key 

assumptions used throughout. 

5.3.1.1 Problem statement 

The objective of the whole study was to assess a large biopharmaceutical company with an 

established array of drugs in their starting portfolio. Management has a prospective pool of 

candidates in the pipeline available to inject into the portfolio, in addition to the set already in 

development. The starting portfolio can be expressed in the following format. 

𝑑0= {𝑑′1,  𝑑′2 … 𝑑′𝑁𝑑0
}  representing the drugs in the portfolio at time 𝑡 = 0, where 𝑁𝑑0

 is the 

total number of drugs in the starting portfolio (at time 0). The 𝑑′ was used to highlight drugs in 

the starting portfolio over the future pipeline. The pipeline of prospective drug candidates can 

be represented by the following set. 

𝑑𝑝𝑖𝑝𝑒 =  {𝑑1,  𝑑2 … 𝑑𝑁𝑑𝑝𝑖𝑝𝑒
}  where 𝑁𝑑𝑝𝑖𝑝𝑒

 was the total number of drug candidates in the 

pipeline. Candidate drugs were indexed independent from those in the starting portfolio, hence 

the distinction between 𝑑′ and 𝑑. In defining the problem statement further, the key scenario 

attributes and inputs were outlined in the following section. 

Given: 

• Large biotechnology company 

• 𝑁𝑑0
= 15  

• 𝑁𝑑𝑝𝑖𝑝𝑒
= 50 

o The injection rate of  𝑁𝑑𝑝𝑖𝑝𝑒
 is 10 per year across a period of 5 years 

o When only protein therapeutics were considered, a ratio of 80: 20 of mAbs: ADCs 

was assumed in the pipeline 
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o When CGT products were also considered, injection initially occurred at a rate of 

one per year (alternating AAV and CAR T). As described in detail in later sections, 

the injection rate was varied, considering three and then five per year. 

Determine: 

• The optimal portfolio composition and capacity strategies when batch v continuously 

manufactured proteins are considered 

• The impact of injecting CGT products into the portfolio 

• The dynamic impact of risk on the optimal portfolios 

To: 

• Maximise the expected NPV (eNPV), also referred to as the reward or profitability 

• Minimise the standard deviation of the NPV (sdNPV), also referred to as the risk or 

volatility associated with the profitability. 

Subject to: 

• Budget constraints – $3bn each 5-year period 

• Capacity constraints – placed on in-house and future facility (i.e. build) manufacturing, 

not CMO 

o In-house – available only for mAbs and ADCs (not drug-conjugate component) 

and was constrained to 4 x 12,000L USP trains and 4 DSP trains. 

o Future facility – available for all product candidates and was constrained. Details 

of facility configurations and capacities are discussed later. 

5.3.2 Portfolio outline 

A case study was formulated to represent a large biotechnology company specialising in mAb 

and ADC production, with growing interest in developing CGTs such as AAVs and CAR T cell 

products. Referring to the biotechnology company as large indicated the presence of an 

established portfolio of products (i.e. starting portfolio) in conjunction with the pipeline of 
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potential drugs that could be injected. With specific reference to the notation defined in Section 

5.2, 𝑁𝑑0
, i.e. the number of drugs in the starting portfolio when 𝑡 = 0, was assumed to be 15. 

The pool of potential drugs that could be injected from the pipeline (i.e. 𝑁𝑑𝑝𝑖𝑝𝑒
) was assumed 

to be 50, with an equal number injected per year considered. The entry year of any given drug 

in the pipeline was fixed and hence was not considered as part of the optimisation string 

(details on the entry years for each drug are found in Tables C1, C2 and C3 in Appendix C).  

The nature of the optimisation problem was constrained, therefore biotechnology-specific 

constraints were defined previously to frame realistic portfolio management and capacity 

planning questions. Further detail on the constraints relating to budget and capacity, as well 

as strategies to handle violations is discussed later. In any case, it was vital that quantitative 

measures for assessing these constraints were defined. In terms of budget, characterisation 

of the biotechnology company in question as large referenced not only the size of the portfolio, 

but also the annual profits and ultimately R&D budgets available. As such, the budget was 

assumed to be $3bn for each five-year increment (to be split over these years not necessarily 

equally). In terms of capacity, an in-house facility for commercial mAb manufacture was 

assumed to be available, with 4 processing trains, each with a bioreactor size of 12,000L. This 

was also capable of manufacturing the mAb component of ADC products, with conjugation 

and further purification requiring outsourcing to a CMO.  

Another facility was assumed to be available for clinical mAb, ADC and AAV manufacture. The 

bioreactor sizes in this smaller facility were set at 100L, 250L, 500L and 2,000L. This facility 

was only able to support up to Phase II clinical trials for AAV products, hence outsourcing was 

required beyond this point. Furthermore, CAR T manufacture for only Phase I trials was 

assumed to be possible in a separate facility utilising an integrated USP and DSP processing 

platform. Greater clarity on these constraints and any additional caveats is provided in a 

dedicated section later in the chapter. 
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5.3.3 Key portfolio assumptions 

Table 5.1 shows the key assumptions for the starting portfolio (referred to as 𝑑0). Titre, 

demand and scale were used within the process economics model to generate the associated 

COG values. Also defined was the stage of development, which related to the assumed 

position of the drug within the development pathway at the start of the cash-flow.  Taking mAb1 

as an example, Table 5.1 shows that when the cash-flow was initiated, the drug had entered 

into manufacturing for Phase III trials. This position was important in understanding the correct 

annual allocation of costs when considering the combined portfolio. It was also significant in 

considering capacity and specifically the accurate tracking of when drugs were utilising the 

manufacturing facility. 

For drugs in the pipeline, Table 5.2 outlines the key ranges of assumptions. Due to the quantity 

of drugs in the potential pipeline, ranges were provided for brevity, however the more detailed 

database with specific product IDs can be found in Appendix C. In contrast to the stage of 

development column in Table 5.1, the equivalent metric defined for future drugs was the entry 

year into the portfolio, which particularly influenced capacity scheduling and the discounting 

of costs in the cash-flow. Process development and clinical trial assumptions remained 

consistent from those described in Chapter 4, and for drugs in the same modality group, no 

variations were assumed. The exception to this were mAbs or ADCs requiring continuous 

manufacture versus their batch alternatives, where a 50% increase in Phase I process 

development personnel was assumed. 

Also significant to capacity sourcing considerations was the assumed premium on COG values 

when outsourcing manufacturing to a CMO. A factor of 1.5 was applied to COGs for mAbs and 

ADCs and for AAV and CAR T cell products, manufacturing costs were amplified by a factor 

of 2. A difference in these premiums was defined through industrial correspondence. 
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Table 5.1 Characteristics of the drugs in the starting portfolio. 

 

Note: P1, P2, P3, P4 = Phase I, II, III and regulatory review 

 

 

Product ID Stage of 

development 

Titre (g/L) Commercial 

demand (kg) 

Patient population Selling price 

($/patient/annum) 

mAb1 P3 MFG 9 484 30250 29791 

mAb2 P2 MFG 9 185 11563 34240 

mAb3 P1 PD 7 537 33563 33145 

mAb4 P3 MFG 8 257 16063 80839 

mAb5 P2 MFG 8 600 37500 96240 

mAb6 P1 CT 7 140 8750 101353 

mAb7 P4 PD 7 536 33500 122489 

mAb8 P3 MFG 5 191 11938 183484 

mAb9 P2 MFG 8 207 12938 102274 

mAb10 P1 CT 8 449 28063 48381 

mAb11 P4 PD 7 447 27938 184426 

mAb12 P3 MFG 7 482 30125 27141 

mAb13 P3 MFG 5 357 22313 151076 

mAb14 P1 MFG 9 307 19188 83616 

mAb15 P2 CT 12 481 30063 192256 
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Table 5.2 Ranges of assumptions used for drugs in the pipeline.

Product Titre Commercial demand Patient population Selling price 

($/patient/annum) 

mAb 5 – 15 g/L 150 – 1,000 kg 5,000 – 100,000 20,000 – 180,000 

ADC 5 – 15 g/L 150 – 1,000 kg 5,000 – 100,000 20,000 – 180,000 

AAV 6 x 1013 – 1 x 1014 vg/L 500 – 5,000 doses 500 – 5,000 800,000 – 2,000,000 

CAR T N/A 500 – 5,000 doses 500 – 5,000 400,000 – 800,000 



232 
 

5.3.4 Optimisation structure and assumptions 

As discussed in Section 5.2, chromosomes followed a two-dimensional structure, where the 

first row corresponded to drug selection and the second dealt with commercial capacity 

decisions. Mathematically, drug selection was regarded as a binary activity, where 1 

represented a given drug’s inclusion in the candidate portfolio and 0 denoted exclusion. This 

binary representation allowed for a fixed chromosome length across all candidate solutions, 

as drugs excluded from the portfolio were still considered in the string, but were assigned a 0. 

Example chromosomes and their translation to the corresponding product IDs were formulated 

and shown in Figure 5.10, to highlight their setup. For brevity in illustrating this, a set of only 

ten drugs was considered in this example. This indicates the fixed chromosome length and 

the translation of binary encoding to different examples of portfolio selection. Maintaining the 

length of the chromosome enabled it to be consistently expressed as 𝑁𝑑𝑝𝑖𝑝𝑒
. 

Though binary representation was used for chromosome-encoding, the algorithm required 

conversion to the corresponding product names for use in referencing costs from associated 

Python dictionaries. Generation of the product names from each chromosome was achieved 

by considering the position of a given gene and its index with respect to the string length. An 

example of how these are used is provided in Figure 5.10. 
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1 0 1 0 0 1 1 1 1 
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mAb2 mAb3 mAb4 mAb5 mAb6 mAb7 mAb8 mAb9 mAb10 

 

 

 
0 

 
1 1 1 0 1 1 0 1 1 

 

 
mAb1 
 

mAb2 mAb3 mAb4 mAb5 mAb6 mAb7 mAb8 mAb9 mAb10 

 

Figure 5.10 Illustrative examples of chromosome encoding and the translation to the 

corresponding product IDs. The dotted contours around certain drugs highlight their exclusion 

and hence a 0-value assigned during binary encoding. 

Additionally, the assumptions related specifically to the optimisation process are found in 

Table 5.3. The number of generations and population size were expressed as ranges, as 

these were evaluated in a parameter selection study. Section 5.2 outlined the procedure for 

this, intended for ensuring the selection of the appropriate GA parameters (i.e. population size 

and generations). As a result, ranges were necessary to define to conduct this study. 

Due to the number of algorithm runs employed, an array of high-performing solutions were 

generated across all conducted. Reporting of the results was carried out differently depending 

on the nature of the case study under consideration. More specifically, when the desirable 

outcome of the case study was assessing the structure of candidate portfolios (i.e. gene by 

gene), the algorithm selected the top performer across all algorithm runs to analyse. However, 

when the more general characteristics of the portfolios became the significant output, average 

values of the objective functions and portfolio weightings across runs were taken to include in 

the analysis. The summarised difference here is that in the first case, a single result was 
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considered, i.e. the best of the set. In the second method, an average of all top performers 

across runs was considered. 

Table 5.3 Key inputs used for the GA-based optimisation work and corresponding values. 

Parameter Value 

Number of generations 1 – 40 

Selection method Binary tournament selection 

Mutation probability 0.05 

Crossover probability 0.55 

Population size (parent and offspring) 20 - 180 

Monte Carlo trials 25 

Bernoulli simulation runs 100 

Number of runs* 10 

Note: * Runs refer to the whole algorithm 

5.3.5 Constraints 

5.3.5.1 Capacity 

As discussed in the problem statement, in-house commercial manufacturing capacity was 

considered an option for mAb products, which also allowed for production of the mAb 

component in ADCs. The linker and drug component were assumed to always be outsourced. 

The in-house capacity was constrained to four 12,000L stainless steel bioreactors, with four 

downstream processing trains. Both starting portfolio mAbs and ADCs, as well as those 

injected from the pipeline could utilise the existing in-house capacity. In-house clinical 

manufacturing was available for each modality under consideration. mAbs, ADCs and AAVs 

were assumed to share a smaller facility, with bioreactor sizes of 100L, 250L, 500L and 2,000L 

available. All clinical phases for mAb and ADC products were able to be supported in-house, 

however for AAVs, the facility was assumed to only support Phase I and II trials. As a result, 

Phase III manufacturing for AAVs required outsourcing. Furthermore, another in-house clinical 
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site for CAR T was available, supporting only Phase I manufacturing. This featured an 

integrated USP and DSP system, utilising a single CliniMACS Prodigy (Miltenyi Biotech, 

Germany). 

Assumptions around the capacities of the facilities that could be built are found in Table 5.4. 

This highlights the available manufacturing trains, as well as the fixed capital investment 

required for building. The facility to build for mAbs and ADCs was dependent on the pipeline 

scenario under consideration, i.e. whether drugs requiring continuous manufacture made up 

20% or 80% of the pool. For the 20% continuous scenario, future facility manufacturing would 

need to prioritise batch, hence 4 of the 6 possible USP trains were 12,000L stainless steel 

reactors for fed-batch culture. Conversely, for the 80% continuous scenario, the weighting of 

USP trains switched to 2 out of 6 for fed-batch.  

The capital investments outlined in Table 5.4 were calculated from the corresponding process 

economics models for each modality for facilities having the manufacturing capabilities listed 

in the table. These were further benchmarked against studies reporting FCI values for the 

modalities in question. Specifically, Pollock (2015) presented a comparison of batch and 

continuous (perfusion cell culture) FCI values. This study determined a 40% FCI reduction for 

perfusion-based manufacturing facilities over batch. Additionally, Mahal et al. (2021) 

suggested for multi-train continuous facilities, the indirect cost reduction over stainless-steel 

batch was between 20 – 30%. Therefore, the data generated in Table 5.4 aligns with this, 

where a ~30% FCI difference was found between the majority batch over continuous facility. 

Furthermore, for autologous CAR T products, Pereira Chilima et al. (2020) produced a 

correlation between FCI and annual demands (in doses) for different manufacturing platforms, 

suggesting an FCI between ~$110 – 125M for 5,000 doses per year. It was further assumed 

that the CAR T facility would be a centralised site, hence product transportation costs were 

necessary to consider in the cash-flow. Overall product transportation costs were assumed to 

amount to $3,000 per dose produced (Pereira Chilima, 2019). Table 5.5 summarises the 

capacity availability and options across modalities. These provided additional constraints 
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within the optimisation algorithm, such that breaching any rules would require the repair 

mechanism (detailed in Section 5.2) be implemented. 

Table 5.4 Future facility options and manufacturing capacities. 

Modalities in facility Manufacturing trains FCI ($M) 

mAb, ADC (20% 

continuous pipeline) 

Batch mAb and ADC: 4 x 12,000L SS and 

associated DSP for each 

Continuous mAb and ADC: 2 x 2,000L SU 

and associated DSP for each 

230 

mAb, ADC (80% 

continuous pipeline) 

Batch mAb and ADC: 2 x 12,000L SS and 

associated DSP for each 

Continuous mAb and ADC: 4 x 2,000L SU 

and associated DSP for each 

160 

AAV 4 x 2,000L SU and associated DSP for each 100 

CAR T Integrated USP / DSP platform with capacity 

for up to 5,000 doses 

100 CliniMACS Prodigy units 

120 

 

Table 5.5 Summary of capacity options available for each modality. 

Capacity option mAb ADC  AAV CART 

In-house 

(commercial) 

Yes Yes (mAb 

component) 

No (drug / linker) 

No No 

In-house 

(clinical) 

Yes Yes Yes (to Phase II) Yes (to Phase I) 

CMO Yes Yes Yes Yes 

Future facility 

(Build) 

Yes Yes (mAb 

component) 

No (drug / linker) 

Yes Yes 
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5.3.6 Uncertainty assumptions 

The uncertain input parameters used in the portfolio model are displayed in Table 5.6, along 

with the deviation applied to the base-case value to generate the minimum and maximum 

values for the triangular distribution. These parameters included those related to the process 

economics (such as those from Chapter 3), drug-development and within the combined 

portfolio profitability analyses. Triangular distributions were assumed for each parameter and 

the number of Monte Carlo trials utilised was 25 given that this was sufficient following 

convergence tests. A weighted value was computed that considered an equal contribution of 

objective functions 1 and 2. The standard deviation of this weighted value was then considered 

across Monte Carlo trials. The objective here was stabilisation of this standard deviation 

across trials, confirming an appropriate level of convergence for the problem in question. 

 

Table 5.6 Uncertain parameters utilised in the portfolio management tool. 

Parameter Upper and lower bounds 

Cell culture titre* ± 30% 

Process yield (%) ± 10% (mAb, ADC), ± 30% (AAV, CAR T) 

Selling price ($) ± 15% 

Clinical trials cost per patient ($ / patient) ± 10%  

Probabilities of transition success rates See later Section 5.3.7 

 

5.3.7 Bernoulli-event based simulation 

This simulation was devised as a method to characterising the dynamic impact of risk upon 

drugs in the portfolio.  This primarily relied on the probabilities of transition success for each 

modality, first outlined in Chapter 4. However, these have been again expressed in Table 5.7. 

The ranges provided here similarly served as the triangular distributions utilised in the 

uncertainty analysis, as dictated by Table 5.6.  

The procedure for the algorithm was outlined in Section 5.2, where it was shown that uniformly 

distributed random variables were generated in each trial for comparison with the transition 

success rates. These random variables were generated by the Python 3.8 library “random”, 
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which uses the Mersenne Twister as its core pseudo-random number generator. The overall 

simulation was run multiple times to aid in reproducibility, with 100 runs selected as a 

preliminary value. The final non-risk adjusted population of portfolios from the modified-GA 

were collated and remained consistent throughout all runs of the Bernoulli-event simulation. 

This meant that each run of the risk simulation operated on the same final population, to avoid 

any bias introduced (i.e. 100 risk-adjusted variations of the final population were generated).  

For further clarity on the definition of a run within the tool as a whole, run as listed in Table 5.6 

referred to the whole algorithm, including the modified-GA and the Bernoulli simulation (across 

all 100 runs). This whole procedure was run 10 times, therefore, the mean output across all 

Bernoulli runs and then whole algorithm runs was utilised in the portfolio weightings and 

objective function values displayed in the results section.
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Table 5.7 Probabilities of transition success for each modality by phase and the corresponding number of projects required overall. 

a LOA = likelihood of approval 

Note: Three numbers provided that represent the worst-case: base-case: best-case values

Modality Phase I Phase II Phase III Reg. review LOA from Phase I a No. of projects 

mAb 54%, 54%, 62% 34%, 34%, 36% 63%, 70%, 70% 91%, 91%, 91% 10.5%, 11.7%, 14.2% 13.8, 12.4, 10.2 

ADC 54%, 54%, 57% 34%, 34%, 37% 54%, 63%, 63% 91%, 91%, 91% 9.0%, 10.5%, 12.1% 16.1, 13.8, 12.0 

AAV 51%, 51%, 80% 34%, 34%, 66%, 21%, 64%, 75% 90%, 90%, 91% 3.3%, 10.0%, 36.0% 44.2, 14.5, 4.0 

CAR T 51%, 68%, 80% 34%, 40%, 66% 21%, 70%, 75% 90%, 91%, 91% 3.3%, 17.3%, 36.0% 44.2, 8.4, 4.0 
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5.4 Results and Discussion 

The tool described previously was used to address the problem statement defined in Section 

5.3. The results presented in this section detail the optimal portfolio compositions and capacity 

strategies initially considering mAbs and ADCs, before later including AAV and CAR T cells 

into the pipeline, across a range of success rate scenarios and objective weightings. Portfolios 

were evaluated in terms of their expected NPV (eNPV) and the standard deviation of the NPV 

(sdNPV). Transition success rates were investigated on a dynamic basis to produce a set of 

risk-adjusted candidate solutions. The study was extended to include a sensitivity analysis 

where the transition success rates were varied and the resulting weightings of protein to CGT 

products were generated. The objective function weightings were then adjusted to present the 

potentially different business goals for the company. Initially however, a parameter selection 

study was conducted to verify the choice of GA parameters, specifically the number of 

generations and population size. 

5.4.1 What is the appropriate choice of GA parameters? 

When using GA-based algorithms, the choice of hyperparameters govern the trade-off 

between the algorithm’s ability to discover fitter solutions across the entire procedure and  the 

computational time expended. As a result, a parameter selection study is often important in 

defining the optimal parameters to balance the trade-off between solution quality and 

computational efficiency. The progression of the algorithm in exploring the objective space and 

forming the Pareto front was firstly evaluated across generations, using a fixed population size 

(100), crossover rate and mutation rate. The results are shown in Figure 5.11. Discovery of 

the objective space is incrementally highlighted from Figures 5.11 a) to i). The range of figures 

presented evidence the convergence of solutions toward the non-dominated, Pareto front and 

in general, towards higher Pareto ranks. Convergence towards the Pareto front occurred 

relatively early in the process and evidence of this was observed from the 5th generation 

onwards. Though this convergence process began early, increasing the number of 
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generations further was shown to generate higher eNPV values, evidencing the improvement 

in solution quality and shift towards the Pareto frontier. 

For the first generation displayed in Figure 5.11 a), a random dispersion of candidate solutions 

and hence objective function values was observed. This relates to the random initialisation of 

the population in GA-based algorithms, which promotes the initial exploration of the objective 

space. The ranking and selection steps, as well as the genetic operations (i.e. crossover and 

mutation) lead to convergence over time towards the Pareto front and higher ranks, as fitter 

solutions are preferred in each generation. This trend was observed from Figures 5.11 a) to 

i). In many cases of multi-objective optimisation, it can be expected for the Pareto to change 

in terms of distribution, even after the shape has formed and convergence is taking place. In 

earlier generations, solutions tended towards a specific portion of the Pareto, particularly in b) 

and c). Moving towards d) and e) highlighted the tendency for the algorithm to approximate 

the entire Pareto front, with a greater distribution across the entire ideal curve. This reflects 

the trade-off between the two objectives and indicates the diversity in the algorithm, hence it 

being the idealistic outcome. From a decision-making perspective, converging towards the 

whole Pareto evenly rather than an individual region of it allows for a more comprehensive 

understanding of which solution can best fit a company’s goals. Nonetheless, no significant 

progression of the Pareto front was displayed between Figures 5.11 e) and i). 

Independent of the type of optimisation problem (whether single- or multi-objective), 

visualising how the objective function(s) changes with key parameters such as population size 

or number of generations is useful to gain a general understanding of solution convergence 

and quality. As a result, this was plotted in Figure 5.12. To capture the impact of both objective 

functions, regardless of whether they conflict with one another, a weighted value was derived 

from both (the equation for this is detailed in Section 5.2.8). This value accounted for both the 

eNPV and the sdNPV, with an equal weighting of 50% for each taken. As with any weighting-

based procedure, different weights could be assigned to either objective function, to confer 

any level of importance if necessary, which was investigated later.  
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Figure 5.12 was plotted to determine the ideal number of generations to use in the GA-based 

procedure and to support the conclusions drawn from examining the plots of the objective 

space. This outlined the increase in both solution quality and computational time with the 

number of generations. Increasing the number of generations allowed access to areas of the 

objective space where fitter solutions were located, however required a greater level of 

computational power and time, hence the trade-off between time and solution quality. The 

weighted value was shown to increase with generations, before maintaining solution quality at 

around 22 generations or higher. Also shown in Figure 5.12 was an upper and lower boundary 

around the optimal weighted value obtained, placed 5% either side. GA-based algorithms 

inherently are meta-heuristic and are not intended to reach the true optimal solution during an 

algorithm run. As such, it can be useful to learn the generation number beyond which no 

significant variation in the optimal solution was exhibited. A range of ±5% was selected to give 

flexibility that may be realistically encountered in an industrial setting. This range similarly 

confirmed the lack of variation in the weighted value from 22 generations.  

To bolster the visual conclusions derived from Figures 5.11 and 5.12, the hypervolume was 

introduced as a quantitative metric for analysis. This takes into consideration both objective 

functions whilst providing a numerical indicator for assessing solution quality and 

convergence. The normalised hypervolume values calculated at each generation, as well as 

the corresponding objective function values are displayed in Table 5.8. The hypervolume 

increased with the number of generations, confirming the convergence found in Figures 5.11 

and 5.12. Beyond 20 generations, whilst the optimal solution did not differ and quality was 

maintained throughout, the hypervolume began to decrease slightly despite the increase in 

solution quality. Nevertheless, it must be noted that the hypervolume provides information on 

the quality of the objective space as a whole, rather than just the optimal solution. As a result, 

it was important to balance the trade-off between maximising hypervolume and generation of 

high-quality solutions. 
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Figure 5.11 Progression of the objective space over generations, a) generation number 1, b) 

generation number 5, c) generation number 10, d) generation number 15, e) generation 

number 20, f) generation number 25, g) generation number 30, h) generation number 35, i) 

generation number 40.  

 Figure 5.12 Change in the weighted objective functions with the number of algorithm 

generations. A secondary axis of computational time is provided to show the increased 

computational intensity required to achieve fitter solutions. Red dotted line = boundary defined 

where the optimal solution is +/-5% of the maximum value achieved in the study. 
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Table 5.8 Key model results across algorithm generations. 

Generation 
number 

Optimal 
solution (a, b) 

Weighted 
value 

Hypervolume 
(normalised) 

Computational 
time (secs) 

1 a: 9,866 
b: 642 

4,612 0.000 180 

5 a: 9,877 
b: 214 

4,832 0.906 246 

10 a: 12,393 
b: 207 

6,093 0.963 329 

15 a: 14,104 
b: 418 

6,843 0.991 412 

20 a: 14,929 
b: 527 

7,201 1.000 495 

25 a: 15,865 
b: 407 

7,729 0.989 578 

30 a: 15,754 
b: 612 

7,571 0.991 661 

35 a: 15,883 
b: 504 

7,690 0.985 744 

40 a: 15,729 
b: 408 

7,661 0.975 827 

a = eNPV ($M), b = sdNPV ($M) 

 

The second algorithm parameter to be investigated was the population size. In this case, the 

number of generations was fixed at 20. As discussed in Section 5.2, a population of 500 

chromosomes were generated for sampling purposes, in order to minimise potential bias that 

may occur from consistently reinstating the population during each run. The change in 

distribution of the objective space was plotted across population sizes and the results are 

highlighted in Figure 5.13. 

The shape of the Pareto front was shown to become more defined as the population size 

increased, driven largely by the increased saturation of points within the objective space. It 

must be noted that the Pareto did not significantly change in terms of the range of objective 

function values obtained across Figures 5.13 a) to i), despite the smaller set of candidates 

evaluated (population size of 20). This was driven by the fixed number of generations used, 

where it was previously shown in Figure 5.13 that the Pareto had taken shape around 20 

generations, independent of population size. Therefore, the population size was shown to 

influence the coverage of the objective space more significantly over convergence and Pareto 
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distribution. A larger population resulted in a more evenly distributed Pareto front, which can 

be beneficial for the promotion of diversity and exploration of the decision space. It is worth 

noting that the number of non-dominated solutions found across the study was relatively small. 

This can be traced to the relatively strict budget and capacity constraints imposed, which was 

found to significantly reduced the number of feasible solutions (~40% breached these 

constraints). 

Figure 5.14 derived the weighted objective function across population sizes and 

computational time exceeded. As denoted previously, equal weightings of 50 : 50 were given 

to each objective function and the weighted value was plotted with a ±5% threshold to assess 

convergence. This indicated that a population size of ~60 or greater could be considered to 

have attained convergence, where the data did not deviate outside the 5% boundary. 

Additionally, higher population sizes increased the computational intensity of the algorithm, 

with 100 solutions running for approximately 8 minutes. Balancing the time and population 

size was important considering the complexity of the algorithm moving forward. Furthermore, 

the specific data on the objective function values and hypervolume indicator are shown in 

Table 5.9. In the case of population size selection, hypervolume was considered to be a less 

important metric in defining the appropriate value. This is attributable to the larger 

hypervolume values found as population size increases, suggesting the method of portioning 

the objective space into rectangles was not suitable for the calculation of hypervolume when 

used as a solution quality indicator. Instead, computational time and satisfying the trade-off 

between exploration and exploitation were considered to be more significant metrics for 

selecting the population size for the case study. 

Accommodating both exploration and exploitation when using meta-heuristic algorithms is an 

important trade-off to consider. Evidenced particularly in Figure 5.13 i), a larger population 

size encouraged greater exploration of the objective space. However, focusing solely on this 

aspect can inadvertently place less significance on convergence towards higher Pareto ranks 

and hence the exploitation of fitter solutions. Therefore, selecting a population size that 
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promotes a balance between exploration and exploitation is beneficial. In particular, Figures 

5.13 d) and e), which indicated adequate convergence, whilst sustaining a well populated 

objective space.  

 

 

 

Figure 5.13 Progression of the objective space across population sizes, a) population size = 

20, b) population size = 40, c) population size = 60, d) population size = 80, e) population size 

= 100, f) population size = 120, g) population size = 140, h) population size = 160, i) population 

size = 180. 
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Figure 5.14 Change in weighted objective value with the population size. A secondary axis of 

computational time is provided to show the increased computational intensity required to 

achieve fitter solutions. The optimal line represents the fittest solution achieved after 

successive algorithm iterations. Red dotted line = boundary defined where the optimal solution 

is +/-5% of the maximum value achieved in the study. 

Table 5.9 Key model results across population sizes evaluated. 

 

Population 
size 

Optimal 
solution (a, b) 

Weighted 
value 

Hypervolume 
(normalised) 

Computational 
time (secs) 

20 
a: 11,905 
b: 353 

 5776 0.000 103 

40 
a: 12,669 
b: 356 

 6157 0.161 208 

60 
a: 13,797 
b: 334 

 6732 0.377 311 

80 
a: 14,717 
b: 778 

 6970 0.414 412 

100 
a: 14,708 
b: 949 

 6880 0.632 516 

120 
a: 14,768 
b: 304 

 7232 0.721 613 

140 
a: 14,733 
b: 350 

 7192 0.808 720 

160 
a: 14,657 
b: 626 

 7016 0.923 825 

180 
a: 14,351 
b: 703 

 6824 1.000 940 
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5.4.2 What is the optimal portfolio structure when different batch: 

continuous ratios are assumed? 

It is widely perceived that implementation of continuous manufacturing for mAb and ADC 

products can lead to a reduction in overall cost of goods compared to batch, with figures 

ranging from 10 – 35% depending on the kg demand of product (Mahal et al., 2021). As 

described in the problem statement in Section 5.3, the biotechnology company under 

consideration in this case study was assumed to run in-house batch processing capability, 

thus sourcing continuous capacity would require outsourcing or construction of a new facility. 

To investigate the impact of implementing next-generation continuously manufacturing mAbs 

or ADCs, on portfolio selection and capacity sourcing, two scenarios were evaluated relating 

to pipeline composition. The first case assumed that 20% of the potential pipeline of mAbs 

and ADCs requiring continuous manufacture. The second scenario increased this percentage 

to 80% of the prospective mAb and ADC pipeline. The results are outlined in the following 

section, providing both non-risk and risk-adjusted runs. 

5.4.2.1 Non-risk adjusted approach 

Though accounting for risk provides a more comprehensive and realistic output, a non-risk 

adjusted comparison was first presented to convey information on the underlying structure of 

the algorithm and how it may influence the choices made. Introduction of the Bernoulli-event 

simulation immediately, which is inherently stochastic, may neglect some significant trends in 

the progression of the algorithm, particularly with respect to drug and capacity selection. As 

such, Figure 5.15 presents the objective space and resulting Pareto front from the final 

generation of algorithm, with specific reference made to the five of the top performing 

candidate solutions. The progression of the objective space and discovery of the Pareto can 

be found in Figure C2 in Appendix C. Furthermore, the portfolios associated with the circled 

solutions can be found in Figure 5.16. Overall, the these exhibited structural similarities 

concerning portfolio selection and capacity strategies. Particularly relevant to the case study 

comparison, the top-performing solutions consistently opted for more than 90% of the 
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available products requiring continuous manufacture in the pipeline, which were shaded grey 

in Figure 5.16. Additionally, there was shown to be benefits in facility building occurring slightly 

later in terms of timing, as in all cases, the first instance of “F” occurred in Year 1. 

Despite the lack of representation in the pipeline, drugs requiring continuous manufacture 

were shown to be preferentially selected, as over 90% of those available were selected in the 

top performers (details are provided in Table 5.10). This equated to selecting at least nine out 

of the ten continuously manufactured products available in the pipeline. The inclusion of a 

substantial percentage of mAbs or ADCs requiring continuous manufacture in the optimal 

portfolios was noteworthy, given that these products accounted for only 20% of the overall 

pipeline. Additional insights could be gained by comparing this 20% figure to the proportion of 

continuous products in each winning portfolio. The ratios of continuously manufactured 

products to batch in each winning portfolio ranged from 36%: 64% to 43%: 57%, indicating a 

preference for selecting continuous products, particularly relevant to the pipeline ratio of 20%: 

80% continuous to batch. For the sake of contextual comparison, it is worth noting that the 

proportion of products requiring continuous manufacture in a lower-performing portfolio was 

significantly lower. For instance, a solution selected from Pareto rank 8 for analysis contained 

only 40% (four out of ten) of the available continuous options, which represented 21% of the 

entire portfolio. This comparison further reinforces the inclination towards incorporating 

proteins requiring continuous manufacture, leveraging the lower cost of goods. 

In terms of capacity sourcing, the ratios of in-house: CMO: future facility are displayed in Table 

5.10. The percentage of drugs in the winning portfolios occupying in-house capacity ranged 

from 21 – 36%, providing benchmarks to compare with the 80% pipeline scenario later. 

Moreover, the solutions depicted in Figure 5.16 were the result of a constrained optimisation 

problem, in terms of both budget and capacity. The capacity ratios defined in Table 5.10 

evidence the influence of constraints upon the composition of the portfolio, specifically the 

distribution of in-house and future facility options, as indicated by the orange and green 

shading. Given the stricter limitations on in-house capacity (four manufacturing trains 
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available), large groupings of these options were not observed. This is attributable to the 

dynamic nature of the capacity constraint, where selection of in-house manufacturing for 

multiple products each year created significant pressure upon capacity, particularly when 

considering the products already utilising in-house capacity in the starting portfolio. As will be 

highlighted in the risk-adjusted simulation provided later in the section, drug failures were 

indirectly beneficial in adhering to capacity constraints. Products that failed before 

commercialisation represented opportunities for capacity to be directed toward a successful 

drug to be manufactured in-house. 

Figure 5.16 also provided insights into the importance of the facility build timing in relation to 

the cash-flow. When assessing any given candidate portfolio, the algorithm considered the 

index of the first instance of “F” or 2 in ternary representation. Where “F” first occurred related 

to the position in the cash-flow at which building was initiated (i.e. building occurred in parallel 

to development of the given drug). Other drugs associated with an “F” for a capacity strategy 

could then occupy commercial capacity. It must also be noted that the entry years defined for 

each drug were indexed in different terms to that described for the discounting in the cash-

flow. For example, entry years of 1 and 2 into the portfolio were equivalent to Years 0 and 1 

respectively, with respect to the cash-flow and hence discounting of costs. To this end, across 

the winning portfolios, the first instance of “F” occurred in drugs with a portfolio entry year of 

2, equivalent to Year 1 in the cash-flow. As a result, the capital investment to build was injected 

later within the cash-flow and was discounted by a factor of 
1

(1+0.11)𝑛, where 𝑛 represented the 

year index in the cash-flow. In practical terms, this decreases the initial facility investment by 

a factor of 1.11, proving advantageous to the eNPV. The capital investment was assumed to 

be spread evenly over the course of the build time of three years, thus further discounting 

occurred in Years 2 and 3, by factors of 1.23 and 1.37 respectively, driving slightly later build 

positions from a profitability perspective. 
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Table 5.10 Key outputs for top performing candidate portfolios in the 20% study. 

Candidate 
portfolio 

eNPV 
($bn) 

SdNPV 
($bn) 

% of portfolio 
which is 
continuously 
manufactured 

% of continuous 
options 
selected from 
pipeline 

Capacity 
strategies 
(IH:CMO:FF) 

1 16.1 0.20 40% 100% 24%: 64%: 12% 

2 16.1 0.21 36% 90% 36%: 44%: 20% 

3 15.5 0.13 43% 90% 29%: 52%: 19% 

4 15.1 0.02 38% 90% 24%: 52%: 24% 

5 14.6 0.01 42% 100% 21%: 58%: 21% 

Figure 5.15 Plot of the objective space from generation 30. Circled solutions are part of the 

non-dominated frontier or Pareto rank 1 and were hence selected to further analyse on a drug-

by-drug basis. As discussed in Section 5.2, candidate solutions are generally represented by 

𝑠𝑔,𝑝, where 𝑔 = generation number and 𝑝 = solution index in the population.
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Figure 5.16 Structure of the candidate portfolios highlighted in Figure 5.14. Each set of two rows represents a single candidate portfolio, as 

denoted in the figure. M = mAb product and A = ADC product. I = in-house, C = CMO and F = future facility. Orange shading = internal capacity 

options selected (in-house), blue shading = outsourcing to CMO and green shading = future facility. Grey shading = products that are 

manufactured continuously and white shading = products that are manufactured in batch mode. 

M3 M4 M8 A1 A2 M11 M12 M13 M14 M16 M17 M18 M19 M23 M24 A5 A6 M25 M27 M29 M32 A7 M34 M35 M40

C C C I I C I C I F I C F C C C C F C C C I C C C

M2 M3 M4 M8 A1 M11 M12 M13 M14 M17 M18 M19 M20 M23 M24 A6 M27 M28 M29 M30 M32 A7 M34 M35 M40

I C I C I F C C I I C C C I C F F I I F C I C C F

M9 M11 M12 M13 M15 M16 M18 M19 M20 M22 M23 M24 A6 M27 M30 M32 A7 A8 M35 M36 M40

C C F I I C I C C I C F C F C F I I C C C

M4 M8 A1 A2 M9 M11 M12 M16 M17 M18 M19 M20 M23 M24 A6 M25 M27 M30 M32 A7 A8 M34 M35 M36 M40

I C C I C C C F C C C I C C C F F C F I I C F I F

M3 M8 A1 A2 M11 M13 M16 M18 M19 M20 M23 M24 A6 M25 M27 M29 M30 M31 M32 A7 M35 M38 M39 M40

C C I I F C I I C C C C C I C C F C F F C F C C

Solution 1 - 𝒔𝟑𝟎,𝟏 

Solution 2 - 𝒔𝟑𝟎,𝟐 

Solution 3 - 𝒔𝟑𝟎,𝟑 

Solution 4 - 𝒔𝟑𝟎,𝟒 

Solution 5 - 𝒔𝟑𝟎,𝟓 



253 
 

The second scenario evaluated the case where 80% of the pipeline were continuously 

manufactured, with the remaining product options produced in batch mode. As with the 20% 

continuous case study, the objective space was plotted across a number of generations (see 

Figure C3 in Appendix C) and the final iteration was was selected for further analysis, shown 

in Figure 5.17. The top five strategies chosen for analysis are depicted in Figure 5.18. Overall, 

selection of continuous options was more likely due to their prevalence within the pipeline, 

coupled with a distinct decrease in in-house capacity selected. Additionally, the range of eNPV 

values generated across top performers was significantly higher than those found in the 20% 

pipeline scenario. 

As with the 20% scenario, Table 5.11 evidenced the continued preference for including 

continuous products relative to their weighting in the pipeline, where the ratio of continuous to 

batch in the winning portfolios ranged from 80: 20 to 88: 12, thereby greater than or equal to 

the ratio in the pipeline. The economic benefits of including more continuous proteins is 

exhibited by the distribution of eNPVs within Table 5.11 compared to Table 5.10. Here, the 

average of top performing eNPV values in the 80% scenario was found to be 21% higher than 

that in the 20% scenario. This was driven by the lower overall COG values for continuously 

manufactured products, along with the smaller capital investment required for a future facility 

focusing primarily on smaller, continuous trains compared to fed-batch. This was shown to 

override the differences in a higher early phase process development effort for continuous 

products over batch or the premium set on CMO activities, as defined in the trade-off in Section 

5.3. Furthermore, in terms of capacity sourcing, Figure 5.18 indicated the preference for build 

and buy manufacturing options (future facility and CMO) when including more continuous 

options in the pipeline. This is particularly evidenced by the reduction in orange-shading 

comparing Figures 5.17 and 5.18, thus a reduction in the use of available in-house 

manufacturing capacity, which decreased on average across solutions from 27% to 8%. This 

is attributable to the feature within the model that continuous manufacturing was not permitted 

by the in-house facility available, hence only CMO and future facility options could be selected. 
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To this end, position of the facility build was shown to be less significant than in Figure 5.17, 

as less capacity options were available for the portfolios weighted towards products requiring 

continuous manufacture over batch.  

Whilst the economic benefits from both a cost of goods and profitability perspective are 

noteworthy, it is also important to consider the qualitative attributes that support the decision-

making process. In general, continuous manufacturing is evidenced to achieve higher 

productivities than fed-batch, which allow for smaller downstream facility footprints due to 

smaller upstream volumes to process. Moreover, with particularly reference to perfusion cell 

culture, the periodic removal of product results in shorter residence times in the reactor and is 

often linked to lower rates of product degradation (Khanal & Lenhoff, 2021). It is however, a 

less established platform for the manufacturing of biologics than a batch flowsheet and so it is 

important to consider the company’s current level of expertise and therefore the potentially 

additional process development effort required when recommending the integration of 

continuous manufacturing. 
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Table 5.11 Key outputs for top performing candidate portfolios in the 80% study. 

Candidate 
portfolio 

eNPV 
($bn) 

sdNPV 
($bn) 

% of portfolio 
which is 
continuously 
manufactured 

% of continuous 
options selected 
from the pipeline 

Capacity 
strategies 
(IH:CMO:FF) 

1 19.9 0.23 88% 73% 6%: 55%: 39% 

2 19.2 0.03 80% 60% 4%: 53%: 43% 

3 18.6 0.03 88% 70% 13%: 53%: 34% 

4 18.4 0.03 84% 68% 6%: 66%: 28% 

5 17.7 0.01 84% 68% 9%: 56%: 35% 

Figure 5.17 Plot of the objective space from generation 30. Circled solutions are part of the 

non-dominated frontier (or Pareto rank 1) and were hence selected to further analyse on a 

drug-by-drug basis. As discussed in Section 5.2, candidate solutions are generally 

represented by 𝑠𝑔,𝑝, where 𝑔 = generation number and 𝑝 = solution index in the population. 
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Figure 5.18 Structure of the candidate portfolios highlighted in Figure 5.16. Each set of two rows represents a single candidate portfolio, as 

denoted in the figure. M = mAb product and A = ADC product. I = in-house, C = CMO and F = future facility. Orange shading = internal capacity 

options selected (in-house), blue shading = outsourcing to CMO and green shading = future facility. Grey shading = products that are 

manufactured continuously and white shading = products that are manufactured in batch mode. 
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Solution 1 - 𝒔𝟑𝟎,𝟏 

Solution 2 - 𝒔𝟑𝟎,𝟐 

Solution 3 - 𝒔𝟑𝟎,𝟑 

Solution 4 - 𝒔𝟑𝟎,𝟒 

Solution 5 - 𝒔𝟑𝟎,𝟓 
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Most notably, Figures 5.17 and 5.18 evidence the differences in portfolio size generated 

between the case studies, where the average size was found to be 24 drugs and 32 drugs 

respectively. This revealed a significant structural driver within the algorithm and can be 

directly traced to the nature of constraint-handling employed throughout, which as described 

in Section 5.2, was a penalty function method. Initially, penalty values of 0 for the eNPV and 

1 x 1010 for the sdNPV were assigned to the objective functions of violating solutions to 

penalise their rankings in the population, thereby favouring the selection of superior strategies 

that comply with budget and capacity constraints. However, this approach may inadvertently 

exclude from consideration solutions with favourable attributes that are worth inheriting in 

subsequent generations. Notably, in this case, larger portfolios may be disproportionately 

penalised as they breach capacity constraints, rather than switch the violating genes to CMO 

or FF options that would be deemed feasible. Over the course of the algorithm run, this can 

cause populations to converge towards smaller portfolios. Therefore, to ensure that 

differences in fitness between scenarios were truly attributable to portfolio characteristics and 

not influenced by size biases, a repair strategy was implemented in cases where in-house 

capacity was exceeded. This concerned switching in-house strategies to CMO (i.e. 0 to 1) in 

solutions where a capacity violation was flagged. 

The 20% continuous pipeline was compared with and without the repair with respect to the 

eNPV, portfolio size and the number of constraint violations. Detailed results of this analysis 

is presented in Table 5.12, with the drug selection and capacity characteristics for the scenario 

using the repair strategy provided in Figures C4 and C5. This confirmed the unintentional bias 

introduced when opting for a penalty function for in-house capacity constraints, indicated by 

the increase in both average eNPV and portfolio size, along with the decrease in in-house 

constraint violations after implementation of the repair strategy. Utilising the repair strategy 

yielded a 12% increase in average eNPV over the 20% scenario when using a penalty function 

method. This highlighted the benefits to inclusion of a repair strategy for the 20% scenario to 

allow for an equitable assessment between the pipeline case studies. Nonetheless, the 80% 
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scenario still achieved a ~9% higher average eNPV than the improved 20% scenario, 

reinforcing the benefits of the continuously weighted pipeline over batch when similar sizes 

portfolios are assessed. 

Table 5.12 Change in eNPV and portfolio size when repair strategy is implemented. 

Pipeline scenario Average 

eNPV 

($bn) 

Average 

portfolio size 

(# drugs) 

Budget 

constraints 

violated 

Capacity 

constraints 

violated 

(IH) 

Capacity 

constraints 

violated 

(FF) 

20% (without repair) 15.5 24 7 24 0 

20% (with repair) 17.3 32 9 0 0 

80% 18.8 32 7 0 9 

 

5.4.3 How does risk dynamically impact the portfolio? 

Whilst the previous section uncovered significant underlying trends within the algorithm, in 

terms of both constraint-handling and performance, it did not yet integrate the realistic impact 

of the drug failure risk. As outlined in Chapter 4, accounting for success probabilities is crucial 

due to the inherently high levels of uncertainty and risk associated with drug development and 

commercialisation. Additionally, the work conducted in Chapter 4 highlighted the impact of 

these success rates upon budgets within a static environment, with no investigation into how 

failures impact capacity planning or profitability.  

In order to simulate the realistic trajectory of drug portfolios, the addition of dynamic risk was 

achieved through use of a Bernoulli event-based simulation for all drugs at each development 

phase (outlined in Section 5.2.9). The application of the simulation upon the population of 

solutions generated in both the 20% and 80% continuous pipeline generated the results in 

Table 5.13. In line with that generated in the non-risk adjusted case, the 80% continuous 

pipeline achieved a higher average NPV than the 20%. From the data in Table 5.13, the 

average NPV for the 80% continuous pipeline was shown to be 16% higher than the 20% 

scenario. Significantly, no constraints were violated across scenarios in comparison to the 
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non-risk adjusted scenarios. This highlighted some of the unintentional capacity benefits that 

arose when drug failure occurred, where failures represented opportunities for capacity or 

remaining budget to be directed towards another project. As a result, the repair strategy 

previously detailed was not necessary in the risk-adjusted case.  

Table 5.13 Risk-adjusted results for both continuous pipeline scenarios. 

Scenarios eNPV ($bn) sdNPV ($bn) Percentage of 
portfolio that is 
continuously 
manufactured (%) 

Capacity 
sourcing ratios 
(IH:CMO:FF) 

20% 
continuous 
pipeline 

6.32 0.5 40% 23%: 50%: 27% 

5.67 0.3 34% 50%: 40%: 10% 

6.12 0.4 33% 33%: 59%: 8% 

5.12 0.3 33% 0%: 57%: 43% 

4.83 0.1 38% 15%: 40%: 45% 

80% 
continuous 
pipeline 

7.55 0.5 100% 0%: 63%: 37% 

5.29 0.3 87% 0%: 50%: 50% 

6.97 0.4 90% 10%: 60%: 30% 

6.28 0.4 90% 0%: 50%: 50% 

6.41 0.2 82% 9%: 55%: 36% 

 

A major driver governing solution performance after application of the Bernoulli event-based 

simulation was the distribution of failures across the development phases, as well as the actual 

average LOA from Phase I (how many drugs were commercialised from the total injected 

before the application of risk). Figure 5.19 a) highlighted these characteristics in both top 

performers and for illustrative purposes, a subset of lower performing solutions. This was 

conducted on the 80% continuous pipeline due to its performance earlier in the case study. 

Top performing solutions yielded an average 3-fold higher eNPV over lower performers. 

Figure 5.19 a) indicated the correlation between high profitability and higher achieved LOA 

from Phase I rates. In practice, portfolios achieving higher overall success rates (a greater 

conversion of injected drugs to commercial success) correspond to a smaller proportion of 

failures and hence less expense incurred within the portfolio for no revenue gain. On a similar 

track, the data split in Figure 5.19 a) indicated that earlier failures also drove higher eNPV 

values. The raw data in Figure 5.19 b) evidenced that in top performers, over 90% of failures 
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occurred in Phase I. Comparatively, 69 – 83% of failures occurred in Phase I for the example 

lower performing solutions. For similar reasons to lower achieved LOA from Phase I rates, 

portfolios where the majority of failures occurred later into the development pathway (i.e. 

Phase II and in particular Phase III) resulted in greater expense injected into the cash-flow for 

no return for the failed drug, which reduced overall profitability. In general, Phase I clinical 

trials were characterised by relatively small patient pools and as a result, the process 

development and manufacturing activities that support the trial equivalently required either 

less personnel effort or smaller product demands. As a result, failure landscapes weighted 

greatly towards Phase I are associated with smaller injections of expense for no revenue 

return than those with failures also in Phase II and III (when comparing similar sized portfolios). 

From an algorithm perspective, consideration of the optimal placement of the Bernoulli-event 

based simulation within the optimisation tool was accounted for. As a means of validation, two 

scenarios were evaluated with respect to the placement. The first of these initiated the 

simulation prior to running the optimisation loop across generations, hence occurred 

immediately post-initialisation of the population. This effectively meant that genetic operations 

such as selection, crossover and mutation took place on risk-adjusted chromosomes (where 

failed drugs had been removed from the candidate solutions). The second scenario introduced 

the simulation at the end of the algorithm, specifically after the last generation.  

Application of the risk simulation before any genetic procedures were undertaken was found 

to unintentionally bias the outputs, with results paralleling that of non-risk adjusted scenario. 

Conversely, placement of the simulation after algorithm completion produced a far more 

realistic set of risk-adjusted results. The issues with the first scenario are associated with the 

tendency for the algorithm to optimise the objective functions, hence over time and with the 

use of genetic operators such as crossover and mutation, larger portfolios were produced that 

were preferentially selected for their typically higher associated profitability values.  As such, 

the second placement scenario for the Bernoulli event-based simulation was applied within 

each case study, to characteristic the risk of failure on a more realistic basis. 
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a) 

b) 

 

Figure 5.19 a) Profitability of selected candidate solutions compared with the overall LOA from 

Phase I (%). The data is split corresponding to the percentage of failures that occur early, i.e. 

in Phase I, b) raw data corresponding to that plotted in a). 

 

Solutions NPV ($bn) Successful 

drugs 

Total 

injected 

drugs 

Failed in 

Phase I (%) 

Calculated 

LOA from 
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5.4.4 How does the injection of CGTs impact the portfolio 

characteristics? 

The previous sections outlined the impact of different manufacturing strategies upon portfolio 

selection and capacity sourcing for protein therapeutics, specifically mAbs and ADCs. 

However, as described in the problem statement in Section 5.3, the biotechnology company 

being modelled also considered the injection of CGT products (i.e. AAVs and CAR T cells) into 

the portfolio, at an initial rate of one product per year. As such, the impact of CGT injection 

was evaluated on the optimal portfolio characteristics. Significantly, this was investigated 

initially through a sensitivity analysis utilising the same risk profiles introduced in Chapter 4. 

Within that case study, worst-, base- and best-case success rates were defined for all 

modalities under consideration (also restated in Table 5.7) and their influence on CMC 

budgets within a static environment were outlined. The worst-case success rates for CGTs 

were assumed to be significantly lower than for protein therapeutics and the best-case higher, 

linked to that reported to date within the literature and also in line with the relative nascency 

of CGTs in comparison to protein therapeutics. Having said this, evaluating a range of success 

rates for CGTs is important given the nascent nature of the field. Success rates can vary 

depending on the level of experience with new modalities ranging from an understanding of 

the link between the manufacturing process and product quality through to how best to 

demonstrate clinical safety and efficacy with evolving regulatory frameworks. Values typically 

range from 3 – 36% depending on these experience levels. 

Consequently, the sensitivity analysis conducted within this chapter utilised the success rates 

from Chapter 4, but determined the dynamic implications of injecting a modality mix into 

portfolios and the influence of drug failure across various risk profiles. Across scenarios, the 

Bernoulli event-based simulation was conducted and the resulting top performing portfolios 

recorded. Key structural characteristics emphasised from the resulting solutions included the 

ratios of mAbs, ADCs, AAVs and CART and how this changed across the risk profile employed. 

The results are highlighted in Figure 5.20. On average, the eNPV was shown to increase with 
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success rate, shown in its descent from the red shading towards the blue. Significantly, the 

worst-case profile included CGTs in only one out of five of the winning solutions, however upon 

an increase in success rate, a more even modality distribution within the portfolio was shown. 

In a strictly deterministic environment, the base-case risk scenario underlined the profitability 

benefits in sporadic injection of CGT products. Compared to the same scenario in Table 5.13, 

where only mAbs and ADCs were evaluated, the average eNPV was shown to increase from 

$6.5bn to $7.3bn in Figure 5.20. This was driven by the significantly higher selling prices 

assumed for CGTs, ranging from $450,000 to $2,000,000. Though the patient populations 

were assumed to be smaller than for mAbs and ADCs, the revenues generated from these 

selling prices were shown to override the impact of the smaller market demands.  

In contrast, the worst-case risk scenario generated lower eNPVs on average than those in the 

base- and best-cases, attributable to the greater number of failures occurring. Due to the 

relatively wide success rate distribution for CGT therapeutics, they are not generally featured 

within the winning portfolios, evidenced by the change in product distribution compared to the 

base-case and best-case. For CGTs, the worst-case LOA from Phase I was assumed to be 

3.5%, roughly translating to a probability of 1 in 30 CGT products achieving success. 

Interestingly, the worst-case risk scenario resembles that of the data in Table 5.13, where only 

mAbs and ADCs were considered in the portfolio.  

Overall, the increase in average eNPV from the worst-case to best-case scenario was found 

to be 34%. Furthermore, the analysis demonstrated the high risk, high reward nature of CGT 

commercialisation. This trade-off was particularly shown in the deviation in portfolio 

composition across risk profiles, but a significantly higher base-case and best-case NPV 

compared to the protein-only scenario previously shown. As such, a more in-depth analysis of 

this trade-off was conducted to assess the impact of varying CGT injection ratios, as well as 

risk : reward weightings. 
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Figure 5.20 Sensitivity analysis results when three risk profiles are considered in the portfolio 

optimisation framework. The probabilities of transition success used across scenarios are 

found in Table 5.7. The red shading represents the worst-case. The white shading is the base-

case. The blue shading is the best-case. 

5.4.5 How does the portfolio structure change if CGTs are injected 

at the same rate as mAbs? 

Up to this point, CGT products were injected at a rate of one per year, alternating between 

AAVs and CAR Ts. This translated to 10% of the pipeline being CGT products, with the 

remainder protein therapeutics. To indicate the impact of developing mixed-modality portfolios 

on portfolio structure, an additional two scenarios were evaluated, where the percentage of 

CGTs in the pipeline was increased. Of the ten drugs to potentially be injected per year, 

scenarios where 3 (30%) and 5 (50%) of these were CGTs were investigated relative to the 

10% case, across the same three probability of transition success profiles – worst, base and 

best. The results are presented in Figure 5.21, indicating the significance of risk profile upon 

the resulting portfolio composition and capacity sourcing structure. As success rate increased, 

the inclusion of more CGTs in the winning portfolios was observed, chiefly driven by the higher 
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LOA from Phase I associated with AAV and CAR T products versus the proteins in the best-

case risk profile (36% versus 12 - 14% respectively). This trend was observed across each 

CGT ratio in the pipeline. Similarly, increasing the percentage of CGTs injected into the 

portfolio (i.e. from left to right in the matrix) also increased the likelihood of their appearance 

in the final portfolios, independent of success rate. 

Even when a worst-case risk profile was assumed, injecting a higher percentage of CGTs into 

the pipeline resulted in an increasing quantity within the resulting portfolios, moving from 0% 

towards 29% in the case of the 50% CGT scenario. This is attributable to the quantity of CGTs 

available in the pipeline. More significantly, the 30% and 50% CGT scenarios highlighted the 

profitability benefits arising from including an increased number of CGTs within the portfolio, 

indicated by shading in Figure 5.21. Particularly at the base and best-cases, the winning 

portfolios were shown to exceed the eNPV threshold set, in comparison to lower percentages 

of CGTs in the pipeline. 

Scenarios where an increased proportion of CGTs were found in the winning portfolios 

highlighted the preference for building capacity and hence manufacturing within these future 

facilities. As described in Section 5.3, both AAV and CAR T cell products required a separate 

facility to mAbs and ADCs. In part, this preference for future facility options in Figure 5.21 was 

driven by a lower competition, as separate facilities were assumed, however the key driver 

related to the CMO premium required for AAV and CAR T products. A higher premium was 

assumed for CGTs over proteins (2 versus 1.5), therefore effectively inflating commercial 

COGs by a factor of 2, driving the utilisation of the build-capacity for CGT weighted portfolios. 

In summary, the results presented in this section emphasise the realistic nature of the risk: 

reward trade-off associated with CGT commercialisation, where high selling prices allow for 

large returns and hence eNPVs, however there is a greater uncertainty associated with their 

development, given the perceived wider probabilistic range of success reported. As only the 

eNPV as an objective function was studied within this particular section, it was also necessary 

to consider the quantitative impact of including CGTs upon the sdNPV, further expressed as 
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the risk associated with the profitability. Therefore, the next section examined variations in the 

weighting of the objective functions and its influence upon the choice of optimal portfolios. 

Figure 5.21 Optimal portfolio composition across different CGT injection rates when success 

rate (risk scenario) is also varied. Within each box, the top value represents the ratio of protein 

products to CGT products within the final portfolio and the bottom value highlights the ratio of 

in-house to CMO to future facility capacity selected. The shading (key in the top-left) 

represents those solutions that fall below or above a set NPV threshold, defined here as $8bn. 

The risk scenarios represent those presented in Table 5.7.  

5.4.6 How does the portfolio structure change if risk is favoured over 

reward? 

The NSGA-II elements of the algorithm introduced in Section 5.2 were primarily intended for 

the ranking of the population, by giving equal consideration to each objective function. 

However, in practice, decision-makers may find it beneficial to assign different priorities to 

objectives depending on their business goals. This prioritisation can be achieved by weighting 

either objective, which typically involves multiplication or division of the objective function value 

by a fixed factor or coefficient. This process plays a crucial role in achieving optimal solutions 

that address problem-specific goals and particularly in this context, where profitability and risk 



267 
 

are the objectives, satisfy companies adopting either a more risk-averse or risk-tolerant 

approach. 

To capture these weightings, three scenarios were generated and presented in Figure 5.22. 

As a control, the equally weighted series was presented alongside those where the priority 

was placed upon both the reward and risk. In each case, a weighting factor of 2 was applied. 

When prioritising the reward, the factor of 2 amplified the eNPV as the goal was to maximise 

the profitability. Conversely, the sdNPV was divided by the factor to minimise the risk. Of 

additional note, the sensitivity scenarios (i.e. worst, base, best) were not conducted here, thus 

to consider the uncertainty and variations in the success rates across modalities, these were 

instead considered within the Monte Carlo simulation as an uncertain input parameter, utilising 

the inputs distributions from Table 5.7.  

As depicted in Figure 5.22 a), a shift towards lower eNPVs was shown when favouring risk. 

Significantly, Figure 5.22 b) applied the same colour-coding as in a), which highlighted the 

change in portfolio composition across weighting scenarios. This evidenced the propensity for 

protein-dominated portfolios when the minimisation of risk is favoured and above all, the high 

risk, high reward nature of CGT directed portfolios. 

When a higher weighting was assigned to the eNPV, the curve was shown to have greater y-

values due to the priority given to the profitability. In contrast, the sdNPV values were shown 

to have a relatively wide distribution, but in general were clustered towards the higher end of 

the axis. This was attributable to the cumulatively higher risk associated with solutions that 

favoured reward. This also correlated with favouring a portfolio composition that included up 

to ~55% CGTs, as depicted in Figure 5.22 b). As a result, the benefits of including AAV and 

CAR T products when reward is favoured became apparent, attributable to the higher selling 

prices of CGTs relative to mAbs and ADCs. As risk was considered a less significant objective 

in this weighting scenario, the uncertainty associated with CGT commercialisation did not 

heavily impact the optimisation algorithm, emphasising the risk: reward trade-off. Conversely, 

when prioritising the risk, winning portfolios contained less than 15% of CGT products. The 
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risk-averse approach favoured the injection of mAbs and ADCs, which had a tighter distribution 

of transition success rates, hence a relatively more robust set of products within the pipeline. 

An indication of the smaller range of standard deviations generated is evidenced in Figure 

5.22 a) with the grey-shaded line. Despite the overall lower profitability, these values fell 

between $0.5bn and $1bn. 

In summary, this study provided a more diverse set of user-tailored scenarios, as in practice, 

decision-making may be weighted towards curtailing risk or bolstering profitability depending 

on the overall business goals. As shown, the drug ratios in resulting portfolios were found to 

be significantly dependent on the weighting of either objective function, with protein-dominated 

considered to be a less risky approach over a generally more profitable CGT and protein equal 

portfolio ratio. The scenarios provide benchmarks on optimal portfolio weightings for an array 

of company-specific aims. 
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a) 

b) 

 

Figure 5.22 a) Top ranking solutions plotted by each objective when different weightings were 

assigned to each objective function and b) the percentage of CGTs that appeared in the top 

performing portfolios in each weighting scenario. The bar colour in b) correspond to the lines 

in a).  
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5.5 Conclusion 

This chapter sought to address a series of portfolio management and capacity planning case 

studies utilising the decisional tool described in Section 5.2. This first evaluated the impact of 

batch versus continuous manufacturing for mAb and ADC pipelines on portfolio selection and 

capacity decisions, considering both the impact of a non-risk and risk simulated environment. 

Providing both scenarios with and without the presence of the risk simulation gave insights 

into the algorithm performance structurally, which further motivated the use of a repair strategy 

for constraint-handling. The analysis indicated the benefits of including drugs requiring 

continuous manufacture within portfolios, with up to a 16% increase in eNPV over the 

predominantly batch pipeline. Particularly for a large biopharmaceutical company, already with 

some experience in the continuous manufacturing space, this highlighted the benefits to 

incorporating a greater proportion of continuously manufactured products in the portfolio. This 

further evidenced the requirement for sourcing external capacity or building in capabilities 

when favouring continuous products, where the average utilisation of existing in-house 

capacity decreased from 27% to 8% between the 20% and 80% continuous scenarios. 

The addition of the dynamic impact of success probabilities revealed the significance relating 

to the timing of drug failure in the optimal portfolios. The case study supported the general 

heuristic that failing early is preferable, particularly when comparing optimal portfolios with 

lower performing solutions. Between 90 – 100% of drug failures occurred early (i.e. Phase I) 

in better performing portfolios, concurrent with the earlier conclusions regarding the smaller 

expense injected for no return, versus the 69 – 83% of failures in Phase I for lower performers. 

This was attributable to the greater expense required for later failures without revenue, which 

were characterised by larger trials and equivalently more PD effort and manufacturing 

demands.  

The consideration of AAV and CAR T products within the pipeline reflected the extent of the 

risk: reward trade-off associated with their development. Lower transition success rate 

scenarios tended to exclude CGTs from the top candidate portfolios, however larger eNPV 
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values were exhibited through their inclusion in either the base or best-case scenarios. 

Furthermore, introducing weighting to each objective function provided a realistic spread of 

scenarios to address the potential for various business goals. This further emphasised the 

risk: reward trade-off, where 15% of CGTs were selected in portfolios during the risk-averse 

scenario, versus 55% in the risk-tolerant approach. This indicated the quantitative impact of 

the wider success rate distributions that have been reported in the literature for CGTs, namely 

linked to their nascency and the mixed success achieved across a range of industry players. 

As such, it is important to note that whilst the risk: reward trade-off for CGT inclusion 

highlighted in this work is certainly relevant to companies looking to increase activity in the 

space, there would be variation in the case of companies that solely target CGT products and 

that already have facility infrastructure to support in-house manufacturing of AAVs and CAR-

Ts. 
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6 Conclusions and future work 

6.1 Introduction 

The work carried out in this thesis presented three distinct applications of a decisional tool, 

addressing industrially relevant case studies in areas of AAV process economics, drug 

development budget estimation and ultimately portfolio management and capacity sourcing. 

There was an initial focus upon AAV manufacturing, with a comparison between traditional 

and scalable flowsheets alternatives. This included an optimisation algorithm that investigated 

a variety of flowsheet options in terms of cost-effectiveness and meeting purity targets. The 

focus was then shifted towards investigating mAb, ADC, AAV and CAR T products in Chapters 

4 and 5. These were initially evaluated statically, outlining the R&D budgets per product 

success across phases. The final chapter sought to integrate the previous elements of the 

tool, to be used for portfolio management and capacity sourcing purposes and approached 

the study with a consideration for the dynamics of drug success or failure. The results 

presented throughout this thesis are summarised within this chapter and are supported by 

suggestions for how the work could be extended in the future. 

6.2 Process economic evaluation and optimisation of AAV 

manufacturing 

6.2.1 Summary of findings 

The work in Chapter 3 provided a cost comparison between traditional versus more scalable 

AAV manufacturing strategies. This constituted an initial evaluation of adherent versus 

suspension cell culture, as well as batch ultracentrifugation and anion exchange 

chromatography as a polishing purification option. Additionally, to capture the variability arising 

in AAV serotype behaviour, a comparison between intracellularly and extracellularly expressed 

AAV products was presented. The tool allowed for slightly different flowsheets for either case, 

which varied the product stream accordingly (i.e. cells for intracellular AAVs and the culture 
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broth for extracellular AAVs). The deterministic element of the tool described in Chapter 3 was 

utilised to calculate the COG/dose for any given AAV manufacturing scenario. The tool also 

featured a Monte Carlo simulation to assess the robustness or risk associated with each base-

case scenario, considering the impact of uncertain process parameters and inputs. Moreover, 

the study was further extended to capture a larger set of AAV processing options, which were 

rapidly evaluated through use of a brute-force optimisation algorithm within the tool. 

The results highlighted the potential for up to 40% COG/dose savings in utilising more scalable 

flowsheet alternatives in AAV manufacturing. Furthermore, COG/dose differences were shown 

to be minimal at smaller dose sizes, particularly when comparing suspension and adherent 

cell culture. This supported some of the industrial trends observed that companies targeting 

indications with lower dose sizes have not implemented suspension cell culture. The 

uncertainty analysis feature of the decisional tool indicated the relative robustness of 

implementing suspension and AEX-based flowsheets. For the competing flowsheets, the 

uncertain input parameters had a more significant impact upon the adherent and 

ultracentrifugation sizing and ultimately the COG/dose distributions generated, highlighting the 

greater relative risk associated with these strategies. Moreover, upon expansion of the set of 

flowsheet options available, the optimisation framework indicated the benefits of continuous 

ultracentrifugation as a polishing purification option. Continuous ultracentrifugation offered a 

cost-effective alternative to chromatography, coupled with a high purity performance. 

Nevertheless, further process development effort was concluded to be likely for continuous 

ultracentrifugation to be implemented in a commercial environment. 

6.2.2 Future work 

Though the brute-force optimisation portion of the work in Chapter 3 evaluated a plethora of 

AAV manufacturing options, there is a more novel subset of purification options available 

commercially that were excluded from analysis, driven by a lack of assumptions available, 

particularly on a comparative basis with packed-bed chromatography. Therefore, future 

research could feature the inclusion and hence evaluation of more novel purification 
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approaches. In particular, this could include nanofibres, which introduce advantages over 

packed-bed chromatography by offering higher surface areas and porosity, avoiding some of 

the diffusion and pressure drop limitations encountered in the packed-bed strategies. 

Additionally, nanofibres show the potential for a large reduction in residence time, which may 

reduce the overall purification time. Other options include membrane chromatography or 

monoliths, which provide similar advantages to nanofibers in terms of reducing bottlenecks in 

processing time. Monoliths additionally have been perceived to provide higher purification 

capacities than traditional packed-bed. Studying these novel purification techniques in 

comparison to traditional options may highlight the purification benefits with respect to HCP, 

DNA and empty capsids, potentially allowing for a one-step purification in some cases. The 

reduction in the number of processing steps would lead to improvements in overall yield and 

circumvent any bottlenecks in terms of step durations. 

In terms of scheduling, assumptions were made throughout the case study that a single seed 

train, through culture maintenance, could be used to seed four production batches. This 

allowed for the overall number of production batches performed annually to be increased, as 

running a new seed for each batch creates scheduling bottlenecks unless activities are 

parallelised. It may therefore be beneficial to investigate the impact of this upon the COG/dose, 

by varying the number of production batches seeded by one seed train. This would present a 

mapping of various production scenarios and would likely lead to multiple production trains 

required in parallel to meet annual demands. There could also be qualitative considerations 

given to the study, such as any caveats related to the cell viability or any deterioration through 

seed maintenance. Therefore, future work could seek to address this trade-off between 

economic and operational attributes, potentially through implementation of a MCDM analysis. 
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6.3 Estimation of CMC budgets for novel modalities 

6.3.1 Summary of findings 

Chapter 4 outlined the budgets required for the development of mAbs, ADCs, AAVs and CAR 

T cell products. This evaluated the contribution of process development, manufacturing and 

clinical trials costs on a phase-by-phase basis, as well as the impact of transition success 

rates on the number of projects required to produce a market success. In addition, the process 

development and manufacturing activities were collectively described as the CMC component 

of the total out-of-pocket cost. This grouping was used to define the contribution of clinical 

versus non-clinical activities towards the total cost. Furthermore, the tool also incorporated a 

sensitivity analysis to strengthen the conclusions drawn on the optimal budgets under varying 

transition success rate scenarios. These evaluated success rates on both a modality basis, 

as well as by disease area. 

In the initial study, mAbs were found to require the smallest overall out-of-pocket costs per 

success, driven by lower CMC costs, which represented 19% of the whole budget. In 

comparison, between 30 – 42% of the budgets for ADCs, AAVs and CAR T were related to 

CMC activities. Furthermore, clinical trials costs across modalities did not vary significantly, 

despite the trade-off between trial cost per patient and patient population employed for CGTs 

versus proteins. The introduction of the sensitivity analysis indicated the relative risk 

associated with CGTs over proteins, evidenced by the wider distributions of total out-of-pocket 

cost determined when evaluating success rate by modality group. Conversely, the sensitivity 

on success rate by indication highlighted a change in optimal modality across disease areas. 

This drove an additional case study on determining the critical success rate at which this 

change in optimal modality occurs, which was found to be 16%. Below this value, mAbs were 

found to provide the smallest budget and if over, AAV was optimal. 
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6.3.2 Future work 

At present, the study assumed all modalities took non-accelerated development or regulatory 

pathways to commercialisation. However, particularly in the case of CGT products, regulatory 

agencies typically grant access to at least one accelerated pathway, which was discussed in-

depth in Chapter 1. In this case, the durations along the pathway would be reduced or in some 

situations, certain phases may be circumvented altogether. Therefore, future research could 

direct efforts towards evaluating the impact of accelerated regulatory pathways on the 

budgets. The speed at which the field evolves would necessitate regular model updates as 

part of future research, namely relating to development timelines and cost assumptions. This 

may be particularly relevant for AAVs and CAR T cell products, as existing products on the 

market, e.g. Luxturna, Kymriah, were reported to have taken an expedited pathway. This 

would introduce alternative scenarios to compare with the more traditional protein 

therapeutics, potentially highlighting some of the additional regulatory benefits that can be 

leveraged when developing and commercialising novel therapies. 

Moreover, the work in Chapter 4 assumed a trade-off between the clinical trial cost per patient 

for proteins and CGTs, which remained constant throughout each scenario evaluated. 

Particularly relevant to the sensitivity analysis on success rate by indication, further work could 

bolster the conclusions drawn by including variations in trial cost per patient for each indication 

in parallel with the transition success rates. This addition would allude to any additional factors 

that govern changes in the optimal modality with respect to budget. 

Furthermore, the CMC development cost framework produced enables process change 

decisions to be evaluated from a COG versus cost of development (COD) perspective. Further 

research on this would involve evaluating each modality on a switch in manufacturing 

procedure along the development pathway, particularly investigating the impact on COG and 

COD when early versus late phase-switching is undertaken. In general, a process change 

necessitates a bridging study take place to confirm comparability in terms of product quality 

and stability, thus incurring greater development costs. Conversely, a manufacturing change 
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is often implemented to drive down COG values through enhanced scalability or process 

optimisation, thus the trade-off between COG and COD. 

6.4 Portfolio management and capacity planning for mixed 

modality portfolios 

6.4.1 Summary of findings 

Chapter 5 presented an integrated model framework to perform portfolio optimisation and 

capacity planning for mixed modality portfolios (proteins versus CGTs as with Chapter 4). The 

goal of the optimisation process was maximisation of the expected profitability, generated 

through a discounted cash flow to calculate the NPV, as well as minimisation of the standard 

deviation of the NPV, which qualitatively translated to the volatility or risk associated with the 

profitability. Candidate solutions (or portfolios) within the algorithm concerned drug selection 

from the available pipeline and the commercial capacity sourcing strategy utilised for each. 

The algorithm itself comprised a GA basis, with modifications to traditional crossover and 

mutation to operate on a two-dimensional chromosome structure. The algorithm also featured 

components of an NSGA-II for handling the presence of multiple objectives, bespoke 

constraint handling strategies and a Bernoulli-event based simulation for emulating 

biopharmaceutical risk of failure. 

The initial study focused on a pipeline with only protein products (mAbs and ADCs) available. 

This evaluated the impact of batch versus continuously manufactured proteins, comparing a 

batch-dominant pipeline to a continuous-dominant and how this influenced the resulting final 

portfolios selected by the algorithm. The results indicated the preference for selecting 

continuously manufactured products, regardless of whether they were dominant in the 

pipeline, driven by the lower COGs that could be achieved relative to batch. Furthermore, 

consideration of risk via the Bernoulli simulation highlighted the profitability benefits in 

portfolios where the majority of failures occur early (i.e. in Phase I). Significantly, the impact of 

injecting CGT products into the portfolio was investigated, highlighting the risk : reward trade-
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off associated with their addition. It was found that favouring profitability (i.e. reward) as an 

objective function yielded winning portfolios with a greater proportion of CGTs injected 

compared to the case where risk (standard deviation of NPV) was favoured.    

6.4.2 Future work 

Firstly, when considering the specifics of the algorithm and computational methods employed, 

unique crossover and mutation techniques were implemented. This built upon the principles 

of uniform crossover and mutation, however adapted their execution to suit a two-dimensional 

chromosome structure. Due to the novelty of these techniques, there is potential for further 

research to be conducted on comparing these with other methods of crossover and mutation. 

Soon et al. (2013) highlighted a study which compared single-point, k-point and uniform 

crossover and mutation in terms of performance with respect to the objective function. A similar 

study may be beneficial for two-dimensional chromosomes and equally for a multi-objective 

optimisation problem. 

Furthermore, on the case study side, capacity was a fundamental part of the optimisation 

string, where each drug selected within the portfolio had a capacity strategy associated with 

it. In-house and future facility capacity was constrained and as outlined in Chapter 5, solution 

feasibility was assessed by considering the batches required to manufacture each product 

and the years when manufacturing took place. If the number of available batches and then 

manufacturing trains were exceeded for a particular year, a constraint violation arose. Further 

research could involve modelling capacity not only as a constraint, but perhaps also as an 

additional objective function in the optimisation process. This may involve derivation of the 

optimal production schedule for the drugs in the portfolio, which can be framed as a 

combinatorial optimisation problem.  

Finally, consideration of the realistic impact of portfolio diversification would be a beneficial 

additional to future drug selection problems. Specifically, it is possible that success for one 

product may adversely impact another if they target the same indication. Having multiple drugs 



279 
 

in the portfolio that are within the same disease area can introduce competition and hence 

limit returns for one drug over the other. In previous studies, this has been quantified with a 

series of factors to be applied to the revenue (revenue dependencies). 

6.5 Summary 

In summary, the work in this thesis demonstrated the importance of decisional tools in 

providing insights on a range of industrially relevant case studies, including those related to 

process design, allocating development budgets and portfolio and capacity decisions. This 

also highlighted the benefits of mathematical modelling techniques and computational 

methods in satisfying these process-business trade-offs. This chapter outlined the potential to 

build upon the work carried out in this thesis, with suggestions for novel integrations at both 

the modelling and case study levels. 
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7 Commercialisation 

7.1 Introduction 

The tool described throughout this thesis gave rise to a potential plan for its commercialisation 

as a biopharmaceutical decision-support tool. As a result, this chapter provides details on how 

commercialisation could be achieved, including key considerations required. The current state 

of the tool is discussed, to ascertain the extent to which current components can be leveraged 

in a commercialisation environment. Similarly, any software or framework alternatives that can 

aid interactivity are also outlined. Logistical considerations are also made, including data 

sourcing, security measures, pricing strategy and ongoing performance reviews (and code 

amendments if necessary). 

7.2 Tool appraisal for industrial practices 

At present, the model described throughout this thesis was developed in Python 3.8, using 

Spyder as an IDE and Jupyter notebook as a GUI. To aid the simplicity of using the tool 

internally within industry, several software additions were made to the Jupyter framework to 

enhance its applicability commercially. This firstly involved a library addition to Jupyter 

notebook to allow parts of the code to be selectively hidden or not. From a practical 

perspective, this would allow users unfamiliar with Python programming to be concerned only 

with inputting data, rather than scanning through the bulk of code. Similarly, Python allowed 

accessed to a variety of measures to improve interactivity of assumption definition, particularly 

through the use of ipywidgets. Specifically, this is a library within Python that enables 

assumptions to be displayed in different ways, e.g. sliding scales, check-boxes, dropdown 

boxes. The specific details of these additions are outlined in the following sections. 

7.2.1 Hiding Jupyter code 

When used in the biopharmaceutical industry, it is often the case that users may not possess 

the specialist programming knowledge to handle extensive sections of complex code 
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displayed on a Jupyter notebook GUI. Particularly in cases where code is often very long and 

outputs can be generated sporadically throughout, displaying all code can decrease the 

effectiveness and efficiency of using the tool in industry. As a result, a Jupyter notebook 

extension was sought to enable the option of code hiding, leaving only inputs cells or outputs 

on the GUI. This was achieved through use of an extension called “NbExtensions”, where this 

contained an option for hiding code as a checkbox. This is practically highlighted in Figure 

7.1. The resulting output from triggering the hide code command is displayed in Figure 7.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Snapshot of the GUI for the decisional tool on Jupyter notebook. The blue circle 

highlights the hide code tab installed through “NbExtensions” and the red circle highlights a 

shortcut to access this hide code feature.  
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Figure 7.2 Resulting GUI from enabling the hide code feature. The only remaining displays 

are any input widgets or outputs from the functioning of the hidden code. 

Though the previous elements described improved the overall experience and interactivity of 

the decisional tool, there are alternatives means to create a GUI using Python-related libraries 

or software, or by leveraging the capabilities of a different program. Development of an intuitive 

and user-friendly GUI is essential to allow for non-programming users within the 

biopharmaceutical industry opportunities to understand the tool better. Python itself has 

several alternative libraries, such as Tkinter or PyQt. In contrast, building an interface that is 

web-based may evoke the need for a framework such as Flask or Django. 

Tkinter is a standard library for GUI implementation in Python. Running the library from the 

command line triggers a separate window to open, which highlights the most basic example 

of a Tkinter-generated GUI. This also utilises widgets to display any inputs. However, in all of 

the aforementioned software or libraries, companies may benefit from having access to a 

specialist programmer, to aid in any troubleshooting when issues arise.  
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7.2.2 Implementation of widgets 

In general, widgets refer to a component of the GUI that confers a level of interactivity to 

performing some function. In Jupyter notebook, this is commonly achieved through importing 

the library “ipywidgets”. This enables addition of widgets such as sliding scales, checkboxes, 

dropdown boxes or buttons for toggling various assumptions.  

Implementation of widgets improves interactivity, particularly for users with little coding 

experience. The default alternative to expressing assumptions as widgets is changing the 

assumptions within the code itself, which can be more tedious to edit. Furthermore, rerunning 

certain cells of code is not necessary when using widgets, allowing for increased productivity. 

Some examples of this can be seen in Figures 7.1 and 7.2. As highlighted, the GA specific 

parameters were controlled by a sliding scale. Elements pertaining to the case study setup, 

such as whether optimisation was to be constraint or not, or the risk simulation was run were 

controlled by toggle buttons. Alternatively, numerical inputs such as the number of Monte Carlo 

trials were not strictly controlled by a instance from the ipywidgets library, but rather an input 

cell. The syntax corresponding to this is highlighted in Figure 7.3. 

 

Figure 7.3 Syntax relating to the input of the number of Monte Carlo trials. Input is an in-built 

Python 3.8 function for entering numerical data if paired with int(). 

 

7.2.3 Performance 

Throughout the model construction process, performance testing was routinely conducted to 

ensure outputs were generated in a timely manner. As discussed in Chapter 5, the overall 

model speed was increased by ~120-fold over its previous state. Initially, generation of 

expenses and revenue required running the integrated process economics and drug 

development model within the modified-GA for each drug in each portfolio evaluated. This was 
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found to impair efficiency of the tool, particularly when full-scale datasets and other additions, 

such as the Monte Carlo or Bernoulli-event based simulation, were included. This was 

circumvented through introduction of data structures such as dictionaries and lists as a means 

to store costs outside the modified-GA loop. Other means of code optimisation were 

performed, such as avoiding large library imports and instead only calling the specific functions 

required.  

Furthermore, the tool currently communicates with Microsoft Excel for loading assumptions 

related to process economics, drug development and portfolio attributes across modalities. At 

present, this functioned effectively and Excel is regarded as a relatively user-friendly database 

software within the biopharmaceutical industry. However, in cases where the scalability of the 

datasets increase, Microsoft Excel can be limiting in terms of time and hence may evoke 

performance issues within the tool as a whole. Alternatively, structured query language (SQL)  

databases provide a scalable alternative to Excel, particularly where datasets are likely to 

expand. Furthermore, considering the use of this tool by multiple users within a company, SQL 

is beneficial for maintaining the integrity of databases across versions. The drawbacks lie in 

the relative complexity of SQL over Excel, which may hinder tool use for non-technical users. 

7.2.4 Supporting documentation for usage 

One of the fundamental elements when considering commercial deployment of the decisional 

tool is provision of a user-guide or supporting documentation for its implementation. At the 

most basic level, both Spyder and Jupyter notebook allow for commentary throughout, which 

was leveraged for this decisional tool to provide indications of why certain functions or 

equations were included. Jupyter notebook enabled more extensive commentary, where cells 

could be changed to markdown over code to add text (see Figures 6.1 and 6.2). 

However, for large-scale use, a separate supporting document could be beneficial to construct 

for use in industry. This would provide a comprehensive tutorial, including installation of Python 

and additional Jupyter extensions required for full interactive accessibility. A user guide would 
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be included that defines relevant tool functions and features and any particular caveats that a 

user would find helpful. 

Understanding the simplicity of using the tool,  or lack-thereof, there has been an opportunity 

to distribute the tool for use in a student project. This provided opportunities to understand 

where extra explanation or notes would be beneficial in a real commercial environment. 

Therefore, in accessing the commercial feasibility of the tool in its current state, this 

documentation requires writing. 

7.2.5 Revenue 

Looking beyond internal use, full commercialisation of the tool would require consideration of 

a revenue model or pricing structure. The choice of scheme depends on a number of factors 

and in practice may require a deeper valuation of the product and market characteristics, 

however there are a number of common revenue models used for computational tools. 

A one-time purchase-based license is often implemented, where a fee is paid once and the 

tool is free to use perpetually. Alternatively, a subscription-based revenue scheme is also often 

opted for, where users pay on a fixed term to access the tool. From a cash-flow perspective, 

this provides a more consistent revenue stream and could be useful in defining tiers of access, 

e.g. certain subscription levels to access more features of the tool. It also provides greater 

simplicity in implementing version updates and troubleshooting. Ultimately, from a contextual 

perspective a subscription-based model would provide the flexibility required in the 

biopharmaceutical industry, where differing model tiers can accommodate the varying needs 

of individual industry users. From a consumer perspective, a model that allows users to stop 

paying when they no longer require the tool is also attractive and serves as a marketing 

benefit. 
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Appendices 

A: Process economic evaluation and optimisation of AAV 

manufacturing 

Tables 

Table A1 Yield and purity ranges ascertained from literature and industrial correspondence. 

Step Yield Empty 
capsid 
reduction 

HCP LRV DNA LRV AAV 
serotype 

Sources 

Affinity 55 – 95% - 4.0 2.5 1, 2, 5, 10 (Florea et 
al., 2023; 
Nass et al., 
2018) 

AEX 30 – 90% 70 - 90% 2.5 1.5 1, 2, 5, 9 (Burova & 
Ioffe, 2005; 
Nass et al., 
2018; 
Okada et 
al., 2009; G. 
Qu et al., 
2007; Stone 
et al., 2018), 
(Linke, 
personal               
communicat
ion, 2020) 
 
 

CEX 15 – 90% - 2.5 1.5 1, 2 (Burova & 
Ioffe, 2005; 
Okada et 
al., 2009) 

Multimodal 75% - 2.0 1.0 Any (Linke, 
personal               
communicat
ion, 2020) 

Ultra-
centrifugation 

50 – 70% 99 - 100% 3.0 3.0 Any (Linke, 
personal               
communicat
ion, 2020) 
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Table A2 Productivity ranges and the corresponding culture type found in the literature. 

Productivity (vg/cell) Culture type Source 

120,000 Adherent (CF10) (Emmerling et al., 2016; Masri 

et al., 2019) 

130,000 Adherent (CF10) (Z. Yuan et al., 2011) 

50,000 Adherent (FB) (Emmerling et al., 2016; Masri 

et al., 2019) 

15,000 Suspension (Moço et al., 2023) 

50,000 Suspension (Masri et al., 2019) 

100,000 Suspension (Grieger et al., 2016b) 

20,000 Suspension (Clément & Grieger, 2016) 
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Table A3 Data used in FCI calculation 

Parameter Value Units 

Process support equipment costs 2,389 $/m2 of cleanroom 

Logistics equipment costs 548 $/m2 of cleanroom 

Environmental monitoring system 

unit 

108,800 $ 

Equipment installation costs 1,920 $/unit 

Building shell costs 548 $/m2 

Fit out costs (Grade B) 8,320 $/m2 

Fit out costs (Grade C) 6,106 $/m2 

Fit out costs (Grade D) 5,082 $/m2 

Fit out costs (CNC) 1,741 $/m2 

Fit out costs (Unclassified) 64 $/m2 

Contractor’s fees 12 % of fitout costs 

Land costs 6 % of shell costs 

Yard costs 10 % of shell costs 

Engineering, management and 

consultancy fees (EMC) 

20 % of direct project costs 

Contingency costs 20 % of direct project costs w/ EMC fees 

Grade B gown 60 $/gown 

Grade C gown 45 $/gown 

Equipment area: Cleanroom area 0.16 ratio 
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Table A4 Ratios used in FCI calculation 

Area Area: Product manufacturing 

area (Cleanroom) 

Room classification 

Clean change 1 0.105 Grade C/B 

Clean change 2 0.147 Grade C/B 

Clean corridors 0.322 Grade C/B 

Clean janitor 0.042 Grade C/B 

QC labs 0.65 Grade D 

Microbiology lab 0.301 Grade D 

Labs corridor 0.273 Grade D 

PCR room 0.294 Grade D 

Janitor 0.042 Grade D 

Waste corridor 0.804 Unclassified 

Waste change 0.042 Unclassified 

Waste treatment 0.168 Unclassified 

Logistics 1.077 Unclassified 

Offices 3.147 Unclassified 

Meeting rooms 0.105 Unclassified 

Stairs 0.231 Unclassified 

Cold rooms 0.168 Unclassified 

Janitor 0.042 Unclassified 

General corridor 0.399 Unclassified 

Lorry/Van loading docks 0.224 Unclassified 

Reception 0.538 Unclassified 

WC 0.392 Unclassified 

Plant level 4.755 CNC 
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Table A5 USP technology characteristics and assumptions. 

 

Technology Surface area (cm2) Maximum working 

volume, Vi (L) 

Consumable unit 

cost ($) 

Maximum no. of 

units handled by 

two operator team 

Incubator capacity 

(units/incubator) 

Ancillary 

equipment cost 

($) 

SF250 - 0.1 13.26 80 100 - 

SF500 - 0.2 18.24 80 100 - 

T75 75 0.015 5.14 80 100 - 

T225 225 0.045 11.48 80 100 - 

RB850 850 0.25 11.51 40 90 - 

RB1750 1750 0.53 27.70 40 90 - 

CF2 1272 0.3 131.80 20 60 - 

CF10 6360 1.5 650 12 12 - 

FB66 660,000 70 19,000 1 - 325,000 

FB133 1,330,000 70 22,300 1 - 325,000 

FB333 3,330,000 70 29,400 1 - 325,000 

RM1 - 0.5 328.32 2 - 92,208 

RM2 - 1 418.90 2 - 92,208 

RM10 - 5 1,038.96 2 - 92,208 

RM20 - 10 1,168.83 2 - 92,208 

RM50 - 25 1,298.70 2 - 92,208 

RM100 - 50 1,657.01 2 - 223,377 

RM200 - 100 2,114.19 2 - 223,377 

SUB1 - 1 373.60 5 - 27,273 

SUB5 - 5 978.66 5 - 55,195 

SUB50 - 50 3,896.10 1 - 224,675 

SUB100 - 100 4,410.00 1 - 229,870 

SUB250 - 250 5,194.81 1 - 233,766 

SUB500 - 500 7,792.21 1 - 253,247 

SUB1000 - 1,000 10,389.61 1 - 279,221 

SUB2000 - 2,000 15,584.42 1 - 389,610 
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Table A6 Key cost data utilised. 

 

Unit operation Type Subtype Cost ($) Base size 

Chromatography Equipment Column 20,000 10cm 

Chromatography Equipment Skid 158,902 3L/min 

Chromatography Equipment Packing system 50,000 - 

Lysis Equipment Microfluidiser 32,000 36L/hr 

Nuclease treatment Reagent Benzonase 0.005 1mL 

Ultracentrifugation Equipment Batch ultracentrifuge (floor standing) 70,000 - 

Ultracentrifugation Equipment Batch ultracentrifuge (rotor) 16,800 1.5L 

Ultracentrifugation Equipment Continuous ultracentrifuge 350,000 9L/hr 

Ultracentrifugation Consumable Batch ultracentrifuge (tube) 5.60 39mL 

Ultracentrifugation Reagent Iodixanol 1.08 1mL 

Filtration Equipment TFF skid 165,000 5m2 

Filtration Equipment Normal flow filtration skid 10,000 1m2 

Filtration Consumable Depth filter / Sterile filter 500 0.26m2 

Filtration Consumable UFDF filter 3,500 1m2 

Fill finish Equipment Fill finish machine 620,000 600 (1mL vials/hr) 

Hold vessel Equipment Container 13,450 1,000L 

Hold vessel Consumable Bag 829 1,000L 
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Table A7 Equations and assumptions regarding process timing. 

Category Assumption on time Equations used to calculate time 

Seed k from doubling time equation 𝑡𝑠𝑒𝑒𝑑

=
𝐿𝑁(

𝑁𝑠

𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑐𝑒𝑙𝑙 𝑏𝑎𝑛𝑘 (𝑐𝑒𝑙𝑙𝑠/𝑓𝑙𝑎𝑠𝑘)
)

𝑘 (𝑑𝑎𝑦−1)
 

TFF / UFDF Assumed duration of 6 hours (used for 
area calculations 

NA 

Chemical lysis Assumptions: 
Preparation time = 0.5hr 
Operation time = 1hr 

Operation time = Operation time + 
Preparation time 

Depth filtration Assumed duration limit of 4 hours  Recalculated processing time = 

(
𝑉𝑖𝑛

(𝐴𝐷𝐹×𝐽𝐷𝐹
) 

Benzonase 
treatment 

Assumptions: 
Preparation time = 0.5hr 
Operation time = 1hr 

Operation time = Operation time + 
Preparation time 

Chromatography 
𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒(𝐿) =

𝐵𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡

𝐿𝑜𝑎𝑑 𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
 

𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒(𝑁𝐿) =
𝐵𝑒𝑑 ℎ𝑒𝑖𝑔ℎ𝑡

𝑁𝑜𝑛𝑙𝑜𝑎𝑑 𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
 

Load time = (
(

𝑉𝑖𝑛
𝑁𝑐𝑦𝑐𝑙𝑒𝑠

)

𝑉𝑐𝑜𝑙𝑢𝑚𝑛
) × 𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒(𝐿) 

Non-loading time = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑉𝑠 ×
𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒(𝑁𝐿) 

 
Cycle time = Load time + Non-loading 
time 
 
Operation time = Cycle Time x 𝑁𝑐𝑦𝑐𝑙𝑒𝑠 

 
Ultracentrifugation Assumed duration limit (for continuous) of 

6 hours (operational) 
Assumed duration limit (for batch) of 3 
hours (operational) – however with two 
cycles conducted in a day, the total would 
be 6 hours  
This 6 hours factors in actual processing 
time, as well as acceleration and 
deceleration time (industrial 
correspondence) 
 

NA 
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Figures  

 

Figure A1 Gantt chart depicting one campaign without the seed time.
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Figure A2 a) frequency distribution plots depicting the Monte Carlo output for Ad-UC, b) Ad-

AEX c) Susp-UC d) Susp-AEX. The y-axis for each represents the key factor determining the 

shape of the distributions in Figure 3.5. 

  

b) 



320 
 

 

 

 

 

 

 

 

 

 

 

 

Figure A3 Confirmation of Monte Carlo convergence across all trials. Top-left: Ad-UC, top-

right: Ad-AEX, bottom-left: Susp-UC, bottom-right: Susp-AEX. 
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Figure A4 Specific constraints violated by purifications sequences in the optimisation work. 

Seq = sequence.  
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Equations 

Seed 

The constant k in the above equation was generated through the doubling time equation, that 

is, the time for the initial cell population to double. 

𝑘 =  
𝑙𝑛 (2)

𝜏
            (A.0.1) 

where 𝜏 = doubling time (days) 

USP 

The key basis for comparison is an equal cell productivity (vg/cell) across all scenarios, hence 

this value can be utilised to calculate the corresponding adherent and suspension titres, as 

outlined in Section 3.2. 

𝑇𝑖𝑡𝑟𝑒𝑎𝑑ℎ𝑒𝑟𝑒𝑛𝑡 = 𝑃 × 𝑑ℎ𝑎
        (A.0.2) 

𝑇𝑖𝑡𝑟𝑒𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 = 𝑃 × 𝑑ℎ𝑠
        (A.0.3) 

Finally, as the process models outlined in Chapter 3 assume a plasmid transfection method of 

gene delivery into the cells, calculation of the mass of plasmid required is pertinent, particularly 

for later costing purposes. The equation differs between adherent or suspension cell culture, 

and the difference is outlined below. 

𝑚𝑝𝑙𝑎𝑠𝑚𝑖𝑑 = 𝑚𝑝𝑙𝑎𝑠𝑚𝑖𝑑,1𝑀𝑐𝑒𝑙𝑙𝑠 × 𝑑ℎ𝑎 ×
1

1,000,000
× 𝐴𝑛 × 𝑁𝑢𝑛𝑖𝑡𝑠     (A.0.4) 

𝑚𝑝𝑙𝑎𝑠𝑚𝑖𝑑 = 𝑚𝑝𝑙𝑎𝑠𝑚𝑖𝑑,1𝑀𝑐𝑒𝑙𝑙𝑠 × 𝑑ℎ𝑠 ×
1

1,000,000
× 𝑉𝑛 × 𝑁𝑢𝑛𝑖𝑡𝑠     (A.0.5) 

where 𝑚𝑝𝑙𝑎𝑠𝑚𝑖𝑑,1𝑀𝑐𝑒𝑙𝑙𝑠 = mass of plasmid required per 1 million cells (ug/1M cells) 

 𝑑ℎ𝑎 = adherent harvest cell density (cells/cm2) 

𝑑ℎ𝑠 = suspension harvest cell density (cells/mL) 
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 𝐴𝑛 = surface area of adherent USP technology (stage n) 

 𝑉𝑖 = working volume of suspension USP technology (stage n) 

Depth filtration 

In calculating the processing time for the step. 

𝑡𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑉𝑖𝑛

𝐴𝑁𝐹𝐹×𝐽𝑁𝐹𝐹
          (A.0.6) 

where JNFF = flux (LMH) for specific NFF step 

UFDF 

Primarily for costing purposes, the volume of diafiltration buffer utilised was corrected, to 

account for the extra needed due to losses from volume that is held up on the filter and the 

portion of such that is eventually recovered. 

𝑉𝑏𝑢𝑓𝑓𝑒𝑟(𝑎𝑐𝑡𝑢𝑎𝑙) =  𝑉𝑏𝑢𝑓𝑓𝑒𝑟 + (𝐴𝑡𝑜𝑡𝑎𝑙(𝑈𝐹𝐷𝐹) ×  𝐻 × 𝑅)      (A.0.7) 

Microfluidisation 

Moreover, a duration limit for the whole microfluidisation stage is typically set, so that in 

scenarios where 𝑡𝑙𝑦𝑠𝑖𝑠 (the actual duration of the stage) for a single microfluidiser unit exceeds 

the assumed duration limit (𝑡𝑚𝑎𝑥), the number of parallel units is corrected as follows. 

𝑁𝑢𝑛𝑖𝑡𝑠 =
(

𝑉𝑖𝑛
𝑄

)

𝑡𝑚𝑎𝑥
           (A.0.8) 

where Q = volumetric flowrate (L/h) through microfluidiser 

The corrected time for the process can therefore be ascertained. 

𝑡𝑙𝑦𝑠𝑖𝑠 =
𝑉𝑖𝑛

𝑄×𝑁𝑢𝑛𝑖𝑡𝑠
          (A.0.9) 
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Ultracentrifugation 

Therefore, the total number of tubes used per batch was generated. 

𝑁𝑡𝑢𝑏𝑒𝑠 = 𝐶𝐸𝐼𝐿𝐼𝑁𝐺 (
𝑉𝑖𝑛

𝑉𝑡𝑢𝑏𝑒
𝑅𝑡𝑜𝑡𝑎𝑙

)         (A.0.10) 

The continuous mode ultracentrifuge features a limited capacity core, however large volumes 

can be processed through high flowrates. 

The flowrate required when assuming a maximum duration limit for the step allows for 

determination of the required flowrate (𝑄𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑). This in turn gives information as to whether 

multiple parallel ultracentrifuge units are needed. 

𝑄𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝑉𝑖𝑛

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑚𝑖𝑡 (ℎ𝑟)
  

If 𝑄𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 exceeds the maximum flowrate of the largest model in the database, then the 

number of parallel units is calculated as follows. 

𝑁𝑢𝑛𝑖𝑡𝑠 = 𝐶𝐸𝐼𝐿𝐼𝑁𝐺(
𝑄𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝑀𝑎𝑥 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 𝑜𝑓 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑙
)  

Fill finish 

As the final stage of the process in any case, it is essential to calculate the number of doses 

that have been generated in a single batch and hence evaluate the number of annual doses 

produced. This also serves as something of a check, to ensure the mass balance aligns with 

the expected product out. 

𝐷𝑜𝑠𝑒𝑠 𝑝𝑒𝑟 𝑏𝑎𝑡𝑐ℎ =
𝑣𝑔𝑜𝑢𝑡

𝑣𝑔𝑑𝑜𝑠𝑒
         (A.0.11) 

The sizing of the fill finish is contingent on the volume of each dose, along with what available 

vial sizes exist within the database. The dose volume is calculated by accounting for the drug 

product concentration, thus the target concentration to reach in the final UFDF stage. 
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𝑉𝑑𝑜𝑠𝑒 =
𝑣𝑔𝑑𝑜𝑠𝑒

𝐶𝐷𝑃
           (A.0.12) 

𝑁𝑣𝑖𝑎𝑙𝑠 = 𝐶𝐸𝐼𝐿𝐼𝑁𝐺 (
𝑉𝑑𝑜𝑠𝑒

𝑀𝑎𝑥.𝑣𝑖𝑎𝑙 𝑠𝑖𝑧𝑒
)        (A.0.13) 

The actual vial volume/size is selected by matching the dose volume per vial to the nearest 

vial size that is greater than the volume.  

The sizing metric used for fill finish equipment is the number of vials that can be filled per hour 

(𝑢𝑣𝑖𝑎𝑙), hence allowing for a specific machine type to be selected. As long as the number of 

doses filled per batch is less than the maximum vial output per filling operation. An operation 

is defined by the following. 

𝑡𝑓𝑖𝑙𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑡𝑓𝑖𝑙𝑙 𝑠ℎ𝑖𝑓𝑡 × 𝑁𝑠ℎ𝑖𝑓𝑡𝑠𝑚𝑎𝑥
        (A.0.14) 

𝑁𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 = 𝐶𝐸𝐼𝐿𝐼𝑁𝐺(
𝐷𝑜𝑠𝑒𝑠 𝑝𝑒𝑟 𝑏𝑎𝑡𝑐ℎ

𝑀𝑎𝑥 𝑣𝑖𝑎𝑙𝑠 𝑝𝑒𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛
)       (A.0.15) 

𝑡𝑓𝑖𝑙𝑙 = 𝐶𝐸𝐼𝐿𝐼𝑁𝐺(
𝐷𝑜𝑠𝑒𝑠 𝑝𝑒𝑟 𝑏𝑎𝑡𝑐ℎ × 𝑁𝑣𝑖𝑎𝑙𝑠

𝑢𝑣𝑖𝑎𝑙×𝑁𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠
)       (A.0.16) 

𝑁𝑠ℎ𝑖𝑓𝑡𝑠 =  𝐶𝐸𝐼𝐿𝐼𝑁𝐺(
𝑡𝑓𝑖𝑙𝑙

𝑡𝑓𝑖𝑙𝑙 𝑠ℎ𝑖𝑓𝑡
)         (A.0.17) 

For fill finish, the conditions for calculating number of operators depended on that defined in 

the fill finish process model (see Appendix). In general however, a team of two operators are 

assumed to work one shift and can handled one filling machine.  

𝑁𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠,𝐹𝐹 = 𝑁𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 × 𝑁𝑠ℎ𝑖𝑓𝑡𝑠 × 2       (A.0.18) 

If the required filling time exceeds the maximum number of shifts that can be carried out in 

one day, then the equation takes the following form. 

𝑁𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠,𝐹𝐹 = 𝑁𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 × 𝑁𝑠ℎ𝑖𝑓𝑡𝑠/𝑑𝑎𝑦 × 2       (A.0.19) 
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Novel method for facility footprint calculation 

 

Cleanroom area 

𝐶𝑙𝑒𝑎𝑛𝑟𝑜𝑜𝑚 𝑎𝑟𝑒𝑎 =
𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡

𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑎𝑟𝑒𝑎: 𝐶𝑙𝑒𝑎𝑛𝑟𝑜𝑜𝑚 𝑎𝑟𝑒𝑎
      (A.0.20) 

If the USP technology is semi-closed (e.g. roller bottle or CF10), the equations for grade D 

and C footprint are as follows. 

𝐺𝑟𝑎𝑑𝑒 𝐵 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = 𝑈𝑆𝑃 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 + 𝐹𝑖𝑙𝑙 𝑓𝑖𝑛𝑖𝑠ℎ 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡   (A.0.21) 

𝐺𝑟𝑎𝑑𝑒 𝐶 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = 𝐷𝑆𝑃 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡       (A.0.22) 

Alternatively. 

𝐺𝑟𝑎𝑑𝑒 𝐵 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = 𝑆𝑒𝑒𝑑 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 + 𝐹𝑖𝑙𝑙 𝑓𝑖𝑛𝑖𝑠ℎ 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡   (A.0.23) 

𝐺𝑟𝑎𝑑𝑒 𝐶 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 = 𝐷𝑆𝑃 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡   (A.0.24) 

Grade D area 

𝑁𝑜. 𝑜𝑓 𝑄𝐶 𝑙𝑎𝑏𝑠 × 𝐶𝑙𝑒𝑎𝑛𝑟𝑜𝑜𝑚 𝑎𝑟𝑒𝑎 × 𝐺𝑟𝑎𝑑𝑒 𝐷 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑅𝑎𝑡𝑖𝑜𝑠    (A.0.25) 

CNC area 

𝐶𝑁𝐶 𝑎𝑟𝑒𝑎 × 𝐶𝑁𝐶 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑟𝑎𝑡𝑖𝑜𝑠       (A.0.26) 

Unclassified area 

𝑈𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑟𝑒𝑎 × 𝑈𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑟𝑎𝑡𝑖𝑜𝑠      (A.0.27) 

Process support equipment cost 

𝐶𝑙𝑒𝑎𝑛𝑟𝑜𝑜𝑚 𝑎𝑟𝑒𝑎 × 𝐶𝑜𝑠𝑡 (𝑝𝑒𝑟 𝑚2𝑜𝑓 𝑐𝑙𝑒𝑎𝑛𝑟𝑜𝑜𝑚)     (A.0.28) 

Equipment logistic cost 

𝐶𝑙𝑒𝑎𝑛𝑟𝑜𝑜𝑚 𝑎𝑟𝑒𝑎 × 𝐶𝑜𝑠𝑡 (𝑝𝑒𝑟 𝑚2𝑜𝑓 𝑐𝑙𝑒𝑎𝑛𝑟𝑜𝑜𝑚)      (A.0.29) 
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Equipment installation cost 

𝐶𝑙𝑒𝑎𝑛𝑟𝑜𝑜𝑚 𝑎𝑟𝑒𝑎 × 𝐶𝑜𝑠𝑡 (𝑝𝑒𝑟 𝑚2𝑜𝑓 𝑐𝑙𝑒𝑎𝑛𝑟𝑜𝑜𝑚)      (A.0.30) 

QC lab cost 

𝑁𝑜. 𝑜𝑓 𝑙𝑎𝑏𝑠 × 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑙𝑎𝑏         (A.0.31) 

Total cleanroom change area  

𝑁𝑜. 𝑜𝑓 𝑔𝑜𝑤𝑛𝑠 𝑝𝑒𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑝𝑒𝑟 𝑑𝑎𝑦 × (𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑐𝑙𝑒𝑎𝑛 𝑖𝑛 +  𝑜𝑢𝑡) 

× 𝐶𝑙𝑒𝑎𝑛𝑟𝑜𝑜𝑚 𝑎𝑟𝑒𝑎          (A.0.32) 

Grade B cleanroom change area 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑙𝑒𝑎𝑛𝑟𝑜𝑜𝑚 𝑐ℎ𝑎𝑛𝑔𝑒 𝑎𝑟𝑒𝑎 × (
𝐺𝑟𝑎𝑑𝑒 𝐵 𝑎𝑟𝑒𝑎

𝑇𝑜𝑡𝑎𝑙 𝑐𝑙𝑒𝑎𝑛𝑟𝑜𝑜𝑚 𝑎𝑟𝑒𝑎
)     (A.0.33) 

Total facility footprint 

𝐺𝑟𝑎𝑑𝑒 𝐷 𝑎𝑟𝑒𝑎 +  𝐶𝑁𝐶 𝑎𝑟𝑒𝑎 +  𝑈𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑟𝑒𝑎 +  𝐶𝑙𝑒𝑎𝑛𝑟𝑜𝑜𝑚 𝑎𝑟𝑒𝑎 

 + 𝐶𝑙𝑒𝑎𝑛 𝑐ℎ𝑎𝑛𝑔𝑒 𝑎𝑟𝑒𝑎         (A.0.34) 

 

Shell costs 

𝐶𝑜𝑠𝑡 ($/𝑚2)  ×  𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡       (A.0.35) 
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B: Estimation of research & development budgets for novel 

modalities 

Figures 

 

Figure B1 Cost of goods breakdowns across modalities for Phase I manufacturing. 
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Tables 

Table B1 Range of success rates by modality found in the literature. 

Source Modalities studied LOA from Phase I 

(Hay et al., 2014) mAb 14% 

(Hassan et al., 2016), 

(Comisel et al., 2021a) 

AAV 1 

CART 1 

36% 

36% 

(Kaplon & Reichert, 2019) mAb 17% 

(Suzanne S. Farid et al., 

2020) 

mAb 12% 

(Yamaguchi et al., 2021) mAb 

AAV 2 

CAR T 2 

12% 

3.3% 

3.3% 

(Roo, 2021) mAb 

ADC 

AAV 

CAR T 

12% 

10.5% 

10% 

17.3% 

1 Collectively studied cell therapies, however was later used for AAV and CAR T in (Comisel 

et al., 2021a). 

2 Study referred to these as novel modalities,  stating this included nucleic acids, cell and gene 

therapies and viral medicines.
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Table B2 Range of success rates by indication found in the literature. 

Indication Source Phase I 
to II 

Phase II 
to III 

Phase III 
to NDA 

NDA to 
LOA 

Number 
of drug 
studied  

Haematology (D. Thomas et al., 
2016) 
(Roo, 2021) 

70% 
73% 

48% 
57% 

77% 
75% 

93% 
84% 

352 
283 

Ophthalmology (D. Thomas et al., 
2016) 
(Roo, 2021) 
(Wong et al., 2019) 
 

85% 
72% 
89% 

45% 
36% 
58% 

58% 
51% 
74% 

78% 
91% 
100% 

267 
415 
437 

Oncology (D. Thomas et al., 
2016) 
(Roo, 2021) 
(Hay et al., 2014) 
(Wong et al., 2019) 
(Kaplon & Reichert, 
2019) 
(Kaplon & Reichert, 
2019) 

63% 
49% 
69% 
79% 
68% 
61% 

25% 
25% 
42% 
54% 
38% 
45% 

40% 
48% 
55% 
49% 
67% 
75% 

82% 
92% 
83% 
100% 
100% 
100% 

3163 
4179 
919 
3107 
176 
274 

Neurology / CNS (D. Thomas et al., 
2016) 
(Roo, 2021) 
(Hay et al., 2014) 
 

59% 
48% 
63% 

30% 
27% 
34% 

57% 
53% 
67% 

83% 
87% 
85% 

1304 
1411 
301 
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C: Portfolio optimisation and capacity planning for mixed modality portfolios 

Table C1 Detailed characteristics of the mAbs and ADCs considered in the pipeline (20% continuous pipeline). 

Index Product ID Entry year Manufacturing 

(batch / 

continuous) 

Titre (g/L) 

or 

productivity 

(g/L/day) 

Commercial 

demand (kg) 

Patient 

population 

Selling price 

($/patient/annum) 

1 mAb1 1 B 6 175 10938 61469 

2 mAb2 1 B 9 472 29500 193841 

3 mAb3 1 C 3 146 9125 18367 

4 mAb4 1 B 5 274 17125 113816 

5 mAb5 1 B 6 640 40000 86267 

6 mAb6 1 B 8 164 10250 87720 

7 mAb7 1 B 5 490 30625 77604 

8 mAb8 1 C 4 400 25000 70650 

9 ADC1 1 B 8 311 44429 62518 

10 ADC2 1 B 9 448 64000 34165 

11 mAb9 2 B 6 129 8063 145192 

12 mAb10 2 B 7 122 7625 74550 

13 mAb11 2 C 4 691 43188 41585 

14 mAb12 2 B 10 448 28000 115634 

15 mAb13 2 B 9 546 34125 150417 

16 mAb14 2 B 7 211 13188 116607 

17 mAb15 2 B 10 621 38813 162396 

18 mAb16 2 C 4 433 27063 78103 

19 ADC3 2 B 9 525 75000 162461 

20 ADC4 2 B 7 476 68000 123021 

21 mAb17 3 B 8 406 25375 147628 

22 mAb18 3 B 10 254 15875 59176 
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23 mAb19 3 C 4 684 42750 185711 

24 mAb20 3 B 8 400 25000 44564 

25 mAb21 3 B 8 539 33688 54498 

26 mAb22 3 B 9 187 11688 41803 

27 mAb23 3 B 10 472 29500 49882 

28 mAb24 3 C 4 579 36188 98012 

29 ADC5 3 B 6 519 74143 108162 

30 ADC6 3 B 6 698 99714 104515 

31 mAb25 4 B 10 609 38063 125921 

32 mAb26 4 B 10 273 17063 147546 

33 mAb27 4 C 4 355 22188 108157 

34 mAb28 4 B 10 582 36375 102254 

35 mAb29 4 B 9 277 17313 158239 

36 mAb30 4 B 5 635 39688 69744 

37 mAb31 4 B 9 244 15250 22848 

38 mAb32 4 C 3 210 13125 113558 

39 ADC7 4 B 7 348 49714 127804 

40 ADC8 4 B 5 311 44429 61046 

41 mAb33 5 B 5 129 8063 63541 

42 mAb34 5 B 10 479 29938 92600 

43 mAb35 5 C 4 664 41500 21839 

44 mAb36 5 B 9 673 42063 176647 

45 mAb37 5 B 10 101 6313 195333 

46 mAb38 5 B 5 283 17688 38141 

47 mAb39 5 B 9 354 22125 55385 

48 mAb40 5 C 4 665 41563 53472 

49 ADC9 5 B 6 364 52000 199561 

50 ADC10 5 B 10 132 18857 60418 
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Table C2 Detailed characteristics of the mAbs and ADCs considered in the pipeline (80% continuous pipeline). 

Index Product ID Entry year Manufacturing 

(batch / 

continuous) 

Titre (g/L) 

or 

productivity 

(g/L/day) 

Commercial 

demand (kg) 

Patient 

population 

Selling price 

($/patient/annum) 

1 mAb1 1 C 2 175 10938 61469 

2 mAb2 1 C 3 472 29500 193841 

3 mAb3 1 C 4 146 9125 18367 

4 mAb4 1 B 2 274 17125 113816 

5 mAb5 1 C 3 640 40000 86267 

6 mAb6 1 C 4 164 10250 87720 

7 mAb7 1 C 2 490 30625 77604 

8 mAb8 1 C 4 400 25000 70650 

9 ADC1 1 B 2 311 44429 62518 

10 ADC2 1 C 3 448 64000 34165 

11 mAb9 2 C 2 129 8063 145192 

12 mAb10 2 C 2 122 7625 74550 

13 mAb11 2 C 4 691 43188 41585 

14 mAb12 2 B 4 448 28000 115634 

15 mAb13 2 C 3 546 34125 150417 

16 mAb14 2 C 2 211 13188 116607 

17 mAb15 2 C 4 621 38813 162396 

18 mAb16 2 C 4 433 27063 78103 

19 ADC3 2 B 3 525 75000 162461 

20 ADC4 2 C 2 476 68000 123021 

21 mAb17 3 C 3 406 25375 147628 
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22 mAb18 3 C 3 254 15875 59176 

23 mAb19 3 C 4 684 42750 185711 

24 mAb20 3 B 2 400 25000 44564 

25 mAb21 3 C 2 539 33688 54498 

26 mAb22 3 C 3 187 11688 41803 

27 mAb23 3 C 3 472 29500 49882 

28 mAb24 3 C 4 579 36188 98012 

29 ADC5 3 B 2 519 74143 108162 

30 ADC6 3 C 2 698 99714 104515 

31 mAb25 4 C 3 609 38063 125921 

32 mAb26 4 C 3 273 17063 147546 

33 mAb27 4 C 4 355 22188 108157 

34 mAb28 4 B 3 582 36375 102254 

35 mAb29 4 C 3 277 17313 158239 

36 mAb30 4 C 2 635 39688 69744 

37 mAb31 4 C 3 244 15250 22848 

38 mAb32 4 C 4 210 13125 113558 

39 ADC7 4 B 2 348 49714 127804 

40 ADC8 4 C 2 311 44429 61046 

41 mAb33 5 C 2 129 8063 63541 

42 mAb34 5 C 3 479 29938 92600 

43 mAb35 5 C 4 664 41500 21839 

44 mAb36 5 B 3 673 42063 176647 

45 mAb37 5 C 3 101 6313 195333 

46 mAb38 5 C 2 283 17688 38141 

47 mAb39 5 C 3 354 22125 55385 

48 mAb40 5 C 4 665 41563 53472 

49 ADC9 5 B 2 364 52000 199561 

50 ADC10 5 C 3 132 18857 60418 
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Table C3 AAV products considered throughout the case study. 

 

 

 

 

 

 

 

 

Product ID Entry year Manufacturing 

(batch / 

continuous) 

Titre (vg/L) Commercial 

demand 

(doses) 

Patient 

population 

Dose size 

(vg/dose) 

Selling price 

($/patient) 

AAV1 1 B 6 x 1013 5,000 5,000 7 x 1013 800,000 

AAV2 1 B 6 x 1013 5,000 5,000 1 x 1014 1,500,000 

AAV3 1 B 6 x 1013 5,000 5,000 7 x 1014 2,100,000 

AAV4 2 B 1 x 1014 1,000 1,000 2 x 1014 1,500,000 

AAV5 2 B 1 x 1014 1,000 1,000 6 x 1014 2,000,000 

AAV6 3 B 8 x 1013 5,000 5,000 8 x 1013 800,000 

AAV7 3 B 8 x 1013 5,000 5,000 1 x 1014 1,500,000 

AAV8 3 B 8 x 1013 5,000 5,000 3 x 1014 2,100,000 

AAV9 4 B 6 x 1013 1,000 1,000 1 x 1014 1,500,000 

AAV10 4 B 6 x 1013 1,000 1,000 1 x 1014 2,000,000 

AAV11 5 B 8 x 1013 5,000 5,000 7 x 1013 800,000 

AAV12 5 B 8 x 1013 5,000 5,000 1 x 1014 1,500,000 

AAV13 5 B 8 x 1013 5,000 5,000 7 x 1014 2,100,000 
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Table C4 CAR T products considered throughout the case study. 

 

 

 

Product ID Entry year Manufacturing 

(batch / 

continuous) 

Commercial 

demand 

(doses) 

Patient 

population 

Dose size 

(vg/dose) 

Selling price 

($/patient) 

CAR1 1 B 1,000 1,000 1 x 107 300,000 

CAR2 1 B 1,000 1,000 2.5 x 108 600,000 

CAR3 2 B 500 500 3 x 107 450,000 

CAR4 2 B 5,000 5,000 9 x 107 500,000 

CAR5 2 B 2,000 2,000 2.5 x 108 750,000 

CAR6 3 B 1,000 1,000 5 x 107 350,000 

CAR7 3 B 500 500 1 x 108 600,000 

CAR8 4 B 5,000 5,000 4 x 107 450,000 

CAR9 4 B 1,000 1,000 8 x 107 500,000 

CAR10 4 B 2,000 2,000 1 x 108 750,000 

CAR11 5 B 5,000 5,000 1 x 107 300,000 

CAR12 5 B 1,000 1,000 2.5 x 108 600,000 
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Figure C1 Flow of calculations required for determining the net present value (NPV). 
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Figure C2 Progression of the objective space and Pareto discovery and for a non-risk adjusted 

scenario over generations when a 20% continuous pipeline was assumed, a) generation 

number 1, b) generation number 5, c) generation number 10, d) generation number 15, e) 

generation number 20, f) generation number 25. 
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Figure C3 Progression of the objective space and discovery of the Pareto for a non-risk 

adjusted scenario over generations when an 80% continuous pipeline was assumed, a) 

generation number 1, b) generation number 5, c) generation number 10, d) generation number 

15, e) generation number 20, f) generation number 25. 
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Figure C4 Final plot of the objective space when the repair strategy is implemented on the 

20% pipeline scenario. 
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Figure C5 Structure of the candidate portfolios arising from the repair strategy implemented on the 20% continuous pipeline. M = mAb product 

and A = ADC product. I = in-house, C = CMO and F = future facility. Green shading = external capacity options selected (CMO or build), orange 

shading = internal capacity options selected (in-house), grey shading = products that are manufactured continuously (over batch).

M2 M8 A1 A2 M9 M10 M11 M14 M16 M17 M18 M19 M20 M21 M22 M23 M24 A5 A6 M25 M27 M28 M29 M30 M31 M32 A7 M33 M34 M35 M36 M38 M40

I C C I C C C I F C C C I C C I F C C F C I C F C C I F F C I C C

M1 M2 M8 A1 M9 M10 M11 M13 M15 M16 A3 M17 M19 M20 M22 M23 M24 A5 A6 M25 M26 M27 M28 M30 M32 A8 M34 M35 M37 M38 M40 A9 A10

I I C C C C F I C F C C F F C C C C I F C C C I C C C C I C F F I

M3 M4 M7 A1 A2 M10 M11 M13 M15 M16 M17 M19 M22 M23 M24 A5 A6 M25 M26 M27 M28 M30 M31 M32 A7 A8 M34 M35 M37 M39 M40 A9

C C C C I C F C I F C F C I F I C C I F F I C C I C F F C I F I

Solution 1 - 𝒔𝟑𝟎,𝟏 

Solution 2 - 𝒔𝟑𝟎,𝟐 

Solution 3 - 𝒔𝟑𝟎,𝟑 
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Algorithm C1 Crowding distance calculation in the NSGA-II. 

Require: 𝑅(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑒𝑑 𝑖𝑛𝑡𝑜 𝑃𝑎𝑟𝑒𝑡𝑜 𝑟𝑎𝑛𝑘𝑠), 𝑓1(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 1 𝑣𝑎𝑙𝑢𝑒𝑠), 

𝑓2(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 2 𝑣𝑎𝑙𝑢𝑒𝑠) 

1 Objective function values were also organised by ranks and hence can be indexed by 
𝑟 

2 for 𝑟 in 𝑅 

3      sort solutions in 𝑟 by each objective in descending order 

4      generate two lists with the sorted 𝑆𝑔 for both objectives 

5      assign large crowding distances to boundary solutions to preserve them 

6      for 𝑥 in 𝑟 

7 
          𝐶𝐷𝑥,𝑓1

=
𝑓1,𝑟

𝑥+1−𝑓1,𝑟
𝑥−1

𝑓1,𝑟
𝑚𝑎𝑥−𝑓1,𝑟

𝑚𝑖𝑛 

8 
          𝐶𝐷𝑥,𝑓2

=
𝑓2,𝑟

𝑥+1−𝑓2,𝑟
𝑥−1

𝑓2,𝑟
𝑚𝑎𝑥−𝑓2,𝑟

𝑚𝑖𝑛 

9           𝐶𝐷𝑥 = 𝐶𝐷𝑥,𝑓1
+ 𝐶𝐷𝑥,𝑓2
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Algorithm C2 Batch assignment during capacity constraint considerations. 

Require: 𝑁𝑜. 𝑑𝑟𝑢𝑔𝑠 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑟𝑢𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑦𝑒𝑎𝑟, 𝑓𝑟𝑜𝑚 𝑎 𝑔𝑖𝑣𝑒𝑛 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜), 𝑇 (𝑡𝑟𝑎𝑖𝑛𝑠) 

1 𝑆ℎ𝑎𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛𝑠 = 𝑐𝑒𝑖𝑙(
𝑁𝑜.𝑑𝑟𝑢𝑔𝑠

𝑇
)   # Maximum number of drugs handled by a train  

2 𝑟𝑒𝑚 = 𝑁𝑜. 𝑑𝑟𝑢𝑔𝑠 % 𝑇                                             # % in Python calculates remainder,  

3                                               which translates to how many drugs have to share a train 

4 if 𝑟𝑒𝑚 ! = 0                                                                                # There is a remainder 

5     𝑎𝑟𝑟1 = [0, 𝑠ℎ𝑎𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛𝑠 … (𝑠ℎ𝑎𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛𝑠 × 𝑟𝑒𝑚)]  

6     𝑎𝑟𝑟2 ,   𝑎𝑟𝑟3 = [1, … 𝑟𝑒𝑚 + 1],    

7     𝑎𝑟𝑟3 =  [(𝑠ℎ𝑎𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛𝑠 × 𝑟𝑒𝑚), (𝑠ℎ𝑎𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛𝑠 − 1), . . . ,   𝑁𝑜. 𝑑𝑟𝑢𝑔𝑠] 

8     for 𝑖, 𝑗 in (𝑎𝑟𝑟1, 𝑎𝑟𝑟2) 

9           append 𝑠𝑢𝑚(𝐶[𝑖: (𝑠ℎ𝑎𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛𝑠 × 𝑗)]) to 𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 

10     for 𝑘 in 𝑎𝑟𝑟3 

11           append 𝑠𝑢𝑚(𝐶[𝑘: (𝑘 × (𝑠ℎ𝑎𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛𝑠 − 1))]) to 𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 

12 else 

13      for 𝑖 in [0, 𝑠ℎ𝑎𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛𝑠 … 𝑁𝑜. 𝑑𝑟𝑢𝑔𝑠] 

14           append 𝑠𝑢𝑚(𝐶[𝑖: (𝑖 + (𝑠ℎ𝑎𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛𝑠))]) to 𝐶𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 

  

 

Explanation 

𝑟𝑒𝑚 is used to identify how many drugs would have to share a train for that year. 𝑎𝑟𝑟1 is a 

constructed array with values ranging from 0 to the product of 𝑠ℎ𝑎𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛𝑠 and 𝑟𝑒𝑚, in 

increments of 𝑠ℎ𝑎𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛𝑠. Use of both arrays together ensures where shared trains are 

required, appropriately grouping of drugs is performed  

Using a numerical example to highlight why extra arrays were required, if the number of drugs 

utilising the manufacturing facility in a given year was 7 and the number of trains was equal to 

4, 𝑠ℎ𝑎𝑟𝑒𝑑_𝑡𝑟𝑎𝑖𝑛𝑠 became 2, meaning the maximum number of drugs allocated to a single train 

is 2. The 𝑟𝑒𝑚 is therefore equal to 3. This value relates to the number of drugs that have to 
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share a train with another drug. In this case, as 𝑟𝑒𝑚 does not equal 0, 𝑎𝑟𝑟1 = [0, 2, 4], 𝑎𝑟𝑟2 =

[1, 2, 3], 𝑎𝑟𝑟3 = [6]. It must be noted that when defining a range in Python, the length of the 

array is not included in the array itself, as can be seen in this example of 𝑎𝑟𝑟1, where the final 

value was specified as 6, in increments of 2, but the last value of the array was 4 not 6. This 

was also seen for 𝑎𝑟𝑟2 and 𝑎𝑟𝑟3. 

Line 9 then sum the batches stored in 𝐶 by utilising Python indexing to group drugs, i.e. [0: 2] 

(in Python, this means the index of 0 and 1 are summed) and then [2: 4] and [4: 6]. By this 

point, drugs in indices from 0 to 5 (i.e. 6 drugs) have been grouped. This leaves one remaining 

drug to use a train to itself, evidenced in Lines 10 and 11. 
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