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Abstract—Idiopathic pulmonary fibrosis is an interstitial
lung disease that causes scarring of the lungs, leading to a
decline in lung function and eventually death. Because this
disease has a heterogeneous disease progression, predictive
models could guide clinicians in making decisions about
disease management. Some survival analysis methods, such
as Cox, seek to rank participants based on their predicted
survivability. However, Cox cannot directly output a sur-
vival time. DeepHit is a neural network based survival
analysis method which predicts the most likely histogram
bin of survival time. A disadvantage of DeepHit is that,
when training, an error of one year is equivalent to an error
of one hundred years. A common problem encountered is
that training data is often censored, where the exact time
of death is unknown except that it is past a censoring time.
Here, a comparison of neural network approaches utilising
five different losses is presented. Compared are; ranking
based approaches (such as Cox or Cox with a memory
bank of previous predictions) and death distribution based
approaches (such as DeepHit and likelihood with a uniform
or Gaussian distribution to sample censoring times). The
input to each model is a single computed tomography
volume (plus optionally clinical features) and the output is a
survival time. Improvements over previous work includes; a
larger model with a learned downsampling, a parameterised
activation (which starts linear and becomes non-linear),
a softplus output, orthogonal initialisation, an optimiser
integrating weight decay, gradient accumulation, and an
annealed learning rate. Evaluations used include; mean and
relative absolute error, the concordance index, the Brier
score, and a visual analysis of Grad-CAM results. Overall,
the likelihood models performed the best, with DeepHit
a close second and both Cox models a distant last. The
Event Conditional Likelihood model performed marginally
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better than the alternative.

I . I N T R O D U C T I O N

UNDER the umbrella of Interstitial Lung Diseases
(ILDs) , Idiopathic Pulmonary Fibrosis (IPF) is

characterised by a buildup of scar tissue in and a stiff-
ening of the lungs of the patient; leading to a reduction
in the volume of the lung, resulting in a shortness of
breath and eventually death. As with many other ILDs
, the progression of the disease is heterogeneous, and
prognosis is challenging [1].

Previously, methods to monitor IPF included testing
lung function, with spirometric measurement of lung
volume [2], or taking Computed Tomography (CT) ac-
quisitions over time [3]. Both approaches are limited
by several factors, including, physical limitations of the
patient, technical accuracy (spirometer baseline drift bias),
and longitudinal data availability. In contrast, measuring
how long an IPF patient could survive on the basis of
a baseline CT scan can be a useful clinical outcome to
measure in order to prioritise resources and plan inter-
vention. For this reason, here the focus is on accurately
predicting IPF patient death time based on a baseline CT
scan and associated clinical features.

In Cox Proportional Hazards Survival Analysis [4] the
death time of one participant is compared to another,
and the model ranks patients according to their expected
death times. However, a limitation is that the model does
not directly output survival times. Recently models have
been introduced that attempt to predict more directly the
death time of a participant. For instance, DeepHit uses a
Convolutional Neural Network (CNN) to perform feature
extraction on input CT and outputs the probability of
a survival time falling within predetermined bins of a
death time histogram [5]. This treats survival analysis as
a multi-class classification problem with a class for each
time-bin that a patient could die in. A disadvantage is
that the bins are not ordinally related and the model is
penalised as much for making an error of one month as
it is an error of ten years.



Censoring is a significant issue in survival analysis in
which the precise death time of a patient is unknown.
In the OSIC IPF data set [6], approximately 66% of the
records are right-censored, meaning that the time of death
is above a known value but it is unknown by how much.
A simple approach would be to remove censored data,
however, this would discard a very significant fraction of
training data. Missing data in clinical records is a related
issue. Again, with approximately 66% of the OSIC IPF
data [6] set has some missing clinical information.

Here, a number of survival analysis models that predict
death time using a Neural Network (NN) are presented.
The inputs of which being a baseline CT scan and asso-
ciated patient clinical information (such as height, age,
etc). The models are able to address censoring and miss-
ing clinical information following [7], [8] respectively.
Different training losses are used, including ones based
on classical Cox based ranking, likelihood, and DeepHit.
In the case of the Cox based loss, one with and one
without a memory bank of previous predictions is used
(to allow the loss to be approximated at all previously
seen data points [8]). In the case of the likelihood based
loss, one where censoring time is sampled in the classical
way and one where censoring time is sampled from a
uniform distribution is used [7]. Extensions over previous
work include; a change to the NN architecture (larger,
with a learnt downsampling, parameterised activation
and softplus output, and orthogonal initialisation), a new
optimiser, gradient accumulation (as such an increased
batch size), and an annealed learning rate.

I I . M E T H O D S

A. Data Acquisition and Preparation

A total of 550 CT acquisitions were taken from the
OSIC data set [6]. Each volume was segmented to
remove data outside of the lung and was normalised
independently. Where appropriate, clinical features, such
as age and sex were also used. If missing clinical features
were present, their value was imputed following [8]. Data
were split into train and test groups using five fold Cross
Validation (CV).

B. Models

Each NN consisted of seven CNN blocks, within which
were two convolutions with stride one and one with stride
two. Each convolution had a kernel size of three and
used an orthogonal activation [9]. Between each layer
there was a Parametric Rectified Linear Unit (PReLU)
activation [10], initialised with α set to one (meaning
the network begins linear and becomes more non-linear
as training progresses). At each downsampling step, the

number of channels doubled. Global average pooling and
flattening layers were used before fully connected layers
reduced the number of units until it equals the output size
(by halving the number of units at each layer). When
clinical features were used, they were concatenated to
the output of the flattening layer. A softplus activation
was used at the output for numerical stability. The model
architecture was selected using the Event Conditional
Likelihood loss.

AdamW was used as the optimiser, with weight decay,
to improve the convergence rate as well as to penalise
against large weights and overfitting [11]. The learning
rate started close to zero and increased linearly to the
target learning rate over the first one tenth of iterations,
before reducing back to close to zero over the next nine
tenths. For each loss calculation a batch size of four
was used, this is because Cox loss requires a batch size
greater than one (for the sake of comparison the same
number was used for all losses). This was approximately
increased to 32 using gradient accumulation, meaning
eight gradients were averaged together at each iteration.
Because of the Memory Bank (MB) the effective batch
size of Cox MB was greater.

For comparison, five loss functions were trialled:
• Event Conditional Likelihood - Maximise likeli-

hood using a Gaussian to model the time of death,
where the censoring time was sampled from a
uniform distribution from time zero up to the death
time [7].

• Classical Likelihood - Maximise likelihood using
a Gaussian to model the time of death, where
the censoring time was sampled from a Gaussian
distribution parameterised by the censor time. This
is one of the classical ways to handle censoring [5].

• Cox - Cox Proportional Hazards [4].
• Cox MB - Cox Proportional Hazards with MB [8].
• DeepHit - Log-likelihood, with a maximum output

value of 105 years and 840 bins [5].
For both likelihood losses a fixed Standard Deviation

(STD) equal to one year was used. For both Cox losses the
output was converted to survival times using the Breslow
estimator [12].

C. Evaluation

For evaluation of the results of the five loss functions
the following methods were used; the Mean Absolute
Error (MAE) and Relative Absolute Error (RAE) for the
uncensored data between the predicted and true value was
taken, the concordance index, the Brier score and a visual
analysis of Grad-CAM images [13]–[15]. For display of
Grad-CAM a slice was selected which displayed fibrosis



TABLE I
A C O M PA R I S O N O F M A E , R A E , T H E C O N C O R D A N C E

I N D E X , A N D T H E B R I E R S C O R E . T H E AV E R A G E
S U RV I VA L T I M E WA S A P P R O X I M AT E LY 32 M O N T H S . H E R E

C R E F E R S T O C L A S S I C A L L I K E L I H O O D , E C
L I K E L I H O O D R E F E R S T O E V E N T C O N D I T I O N A L

L I K E L I H O O D , A N D C F R E F E R S T O W H E N T H E C L I N I C A L
F E AT U R E S W E R E I N C L U D E D I N T H E M O D E L .

MAE RAE C-Index Brier
EC Likelihood 22.7± 1.51 1.72± 0.89 0.77± 0.05 0.22± 0.07

EC Likelihood CF 21.5± 1.32 1.98± 0.82 0.80± 0.03 0.18± 0.05
C Likelihood 28.9± 1.96 2.23± 0.01 0.76± 0.05 0.25± 0.01

C Likelihood CF 25.3± 1.74 2.04± 0.01 0.75± 0.04 0.20± 0.01
Cox 187± 309 17.0± 30.7 0.73± 0.04 0.61± 0.28

Cox CF 233± 287 26.4± 21.9 0.72± 0.03 0.57± 0.16
Cox MB 166± 267 17.7± 28.2 0.74± 0.03 0.53± 0.31

Cox MB CF 179± 294 16.3± 22.8 0.73± 0.05 0.56± 0.24
DeepHit 38.4± 14.8 3.99± 0.34 0.72± 0.03 0.40± 0.01

DeepHit CF 31.3± 9.19 3.50± 0.42 0.71± 0.04 0.42± 0.01

Fig. 1. From left to right a slice through a fibrotic region of a Grad-CAM
image, taken from a middle convolution, of a 65 year old patient with a
survival time of 30 months For; (a) Death Conditional Likelihood, (b) Classical
Likelihood, (c) Cox, (d) Cox MB, and (e) DeepHit. All colour maps are
consistent for all images.

in the base of both lungs. Only the model without clinical
features was used for Grad-CAM extraction.

I I I . R E S U LT S

From TABLE I it can be seen that the the MAE and
RAE are often lower for both likelihood based models
than for all other models. The MAE and RAE for the
DeepHit model is lower than that of the Cox based
model, while for the Cox based models not only are
their errors high but they also have a substantially higher
variance. The MAE and RAE of the Event Conditional
Likelihood model is often lower than that of the Classical
Likelihood model. The Brier score results also back up
this assertion, however it is difficult to draw conclusions
from the concordance index results. The results also seem
to indicate that there is some benefit to including the
clinical features, although from these results alone it is
not possible to say if this is due to the added information
from the clinical features or the increase in model size.
From Fig. 1 it can be seen that both likelihood based
model and DeepHit produced updates which identified
the fibrosis in both lungs, the Cox based model only
seemed to detect fibrosis in the left lung. Both likelihood
models seemed to extract updates which are less noisy
than the DeepHit update.

I V. D I S C U S S I O N A N D C O N C L U S I O N

From a comparison of errors and a visual analysis it
appears that the likelihood based models provide the best
results most often.

The model used for the DeepHit model had more
parameters than the model used for all other methods
(due to the output being larger), thus it may not be an
entirely fair comparison. However, while using a larger
model the method does not provide results significantly
better than the likelihood models.

When clinical features were used it seems to improve
results, although not significantly. For the increase in
complexity it may not be worth including.

What is not factored into the results is computation
time. The Cox loss without MB is the fastest to compute,
the likelihood losses are not much longer. The DeepHit
loss takes slightly longer than both previous methods
while the Cox MB loss takes magnitudes longer (approx-
imately six hours vs four days).
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