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Maternal diabetes and risk of 
attention-deficit/hyperactivity disorder  
in offspring in a multinational cohort  
of 3.6 million mother–child pairs

Previous studies report an association between maternal diabetes 
mellitus (MDM) and attention-deficit/hyperactivity disorder (ADHD), 
often overlooking unmeasured confounders such as shared genetics and 
environmental factors. We therefore conducted a multinational cohort 
study with linked mother–child pairs data in Hong Kong, New Zealand, 
Taiwan, Finland, Iceland, Norway and Sweden to evaluate associations 
between different MDM (any MDM, gestational diabetes mellitus (GDM) and 
pregestational diabetes mellitus (PGDM)) and ADHD using Cox proportional 
hazards regression. We included over 3.6 million mother–child pairs between 
2001 and 2014 with follow-up until 2020. Children who were born to mothers 
with any type of diabetes during pregnancy had a higher risk of ADHD 
than unexposed children (pooled hazard ratio (HR) = 1.16, 95% confidence 
interval (CI) = 1.08-1.24). Higher risks of ADHD were also observed for both 
GDM (pooled HR = 1.10, 95% CI = 1.04-1.17) and PGDM (pooled HR = 1.39, 
95% CI = 1.25-1.55). However, siblings with discordant exposure to GDM in 
pregnancy had similar risks of ADHD (pooled HR = 1.05, 95% CI = 0.94-1.17), 
suggesting potential confounding by unmeasured, shared familial factors. 
Our findings indicate that there is a small-to-moderate association between 
MDM and ADHD, whereas the association between GDM and ADHD is unlikely 
to be causal. This finding contrast with previous studies, which reported 
substantially higher risk estimates, and underscores the need to reevaluate 
the precise roles of hyperglycemia and genetic factors in the relationship 
between MDM and ADHD.

Globally, 16% of pregnant women experience hyperglycemia1,2. The 
prevalence of maternal diabetes mellitus (MDM) has increased world-
wide, which is associated with the growing epidemic of obesity, advanc-
ing maternal age and improved diagnostic approaches for MDM3,4. 
There are calls for greater attention to the risks associated with diabetes 
in pregnancy given the increasing trend of gestational diabetes and 
preexisting type 2 diabetes5. Animal studies have demonstrated the 
adverse effects of hyperglycemia during pregnancy on inflammatory 

responses, intrauterine oxidative stress and imbalance in epigenetic 
mechanisms, which may contribute to poor neurodevelopment in 
the offspring6,7.

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevel-
opmental disorder characterized by hyperactivity, impulsivity and 
inattentiveness8. Currently, ADHD is estimated to affect 2% to 7% of 
children worldwide9,10, making it one of the most common disorders 
among school-aged children. ADHD not only adversely impacts the 
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Data source-specific criteria were applied to ensure the best identifica-
tion of the exposure status (Supplementary Table 1).

ADHD was defined by each site using specific diagnosis and medi-
cation codes as reported in previous studies and detailed in Supple-
mentary Table 1 (refs. 30,31). In Hong Kong, New Zealand and Taiwan, 
children with either one ADHD diagnosis or one ADHD medication 
prescription were regarded as having the outcome. In Nordic coun-
tries, the outcome was defined as (1) ≥2 records of ADHD diagnoses or 
(2) ≥1 record of ADHD diagnosis and ≥2 records of ADHD medication 
prescription fills. In Hong Kong, New Zealand and Nordic countries, 
these criteria needed to be met at or after the age of 3 years to exclude 
invalid ADHD diagnoses (Supplementary Table 1).

We identified 3,619,717 mother–child pairs to be included in the 
analysis (Fig. 2). Overall, 8.0% (n = 30,396), 4.1% (n = 21,326), 13.7% 
(n = 107,898) and 6.6% (n = 126,425) of children were born to mothers 
with diabetes in Hong Kong, New Zealand, Taiwan and the Nordic 
countries, respectively. Child and maternal characteristics are sum-
marized in Supplementary Table 2. Covariate balances were achieved 
after propensity score (PS) weighting with standardized differences 
<10%, except for obesity in New Zealand (Supplementary Table 3).

Primary analyses and sibling-matched comparisons
When comparing children born to mothers with any diabetes during  
pregnancy (NMDM = 286,045) and unexposed children (Nnon-MDM =  
3,333,672), we identified a higher risk of ADHD (pooled hazard ratio 
(HR): 1.16, 95% confidence interval (CI): 1.08-1.24). The cumulative 
incidence of ADHD for different data sources is shown in Extended 
Data Fig. 3. Similarly, we identified a higher risk of ADHD across 
different types of MDM when comparing children whose mothers  
had GDM (NGDM = 230,798), PGDM (NPGDM = 54,825), type 1 PGDM  
(Ntype 1-PGDM = 11,444) and type 2 PGDM (Ntype 2-PGDM = 42,977) to those 
whose mothers did not have diabetes (GDM pooled HR: 1.10, 95% CI: 
1.04 to 1.17; PGDM pooled HR: 1.39, 95% CI: 1.25-1.55, type 1 PGDM pooled 
HR: 1.46, 95% CI: 1.24-1.71; type 2 PGDM pooled HR: 1.38, 95% CI: 1.24-
1.53; Fig. 3 and Table 2). We applied sibling-matched analysis for GDM to 
control for shared familial confounding including unmeasured lifestyle 
factors. Siblings who were born to the same mother but with discordant 
exposure to GDM during the respective pregnancy episodes did not dif-
fer in the risks of ADHD (pooled HR: 1.05, 95% CI: 0.94-1.17, NGDM = 72,791, 
Nnon-MDM = 75,082; Fig. 4 and Table 2). Risks of ADHD for children were 
similar across those whose mothers had GDM diagnosed at different 
trimesters in Hong Kong; in Taiwan and New Zealand, the risk of ADHD 
was highest for children born to mothers with GDM diagnosed in the 
first trimester (Supplementary Table 4).

affected individuals but also poses a substantial burden on their fami-
lies and the wider society11–17. A complex interaction between genetic, 
environmental and psychosocial risk factors is thought to be respon-
sible for the etiology of ADHD8.

Emerging evidence has suggested that both pregestational  
diabetes mellitus (PGDM) and gestational diabetes mellitus (GDM) are 
associated with ADHD. A previous meta-analysis found that the off-
spring of diabetic mothers were at 40% higher risk of ADHD18. However, 
some of the included studies used self-reported data19–21, had limited 
statistical power20,22 or had limited adjustment for confounders19,20,23,24,  
especially familial factors, and were predominantly conducted in  
White populations7,19–23,25,26. To account for these limitations, we conduc
ted the current cohort study based on population-based data cover-
ing over 3.6 million mother–child pairs in Hong Kong, New Zealand,  
Taiwan, Finland, Iceland, Norway and Sweden, with extensive coverage 
of relevant covariates, to assess the association between MDM and  
the risk of ADHD in offspring.

Results
This study consisted of children from all live births within the site- 
specific study period (Table 1). All mother–child pairs were linked with 
exact deterministic linkage27. Children without valid mother–child 
linkage or with incomplete birth information (for example, sex or ges-
tational age) or without at least 6 years of follow-up were excluded 
to allow sufficient follow-up time to capture ADHD outcomes, as a 
diagnosis is often deferred until a child is of school age28. The follow-up 
period for each child started on the date of birth and ended on the date 
of outcome occurrence, date of death, or end of data source-specific 
study period, whichever came first. Details of the sample size calcula-
tion are given in Extended Data Fig. 1.

We identified the start and end of pregnancy by the date of the last 
menstrual period (LMP) and the child’s date of birth (Fig. 1). In Hong 
Kong, New Zealand and the Nordic countries, LMP was determined by 
subtracting gestational age at birth (determined by ultrasound) from 
the date of birth; in Taiwan, this was defined as the date of delivery 
minus 280 days29. As hyperglycemia may affect neurodevelopment 
differently at different trimesters, we divided the pregnancy period 
into first trimester (0–90 days after the LMP), second trimester (91–
180 days after the LMP) and third trimester (181 days after the LMP to 
delivery). The primary exposure is MDM (including GDM and PGDM). 
MDM was further classified as GDM (including those receiving and not 
receiving medications) and PGDM (including type 1 and type 2 PGDM; 
Extended Data Fig. 2). PGDM refers to existing diabetes before preg-
nancy, and GDM refers to diabetes diagnosed only during pregnancy. 

Table 1 | Data characteristics

Site Data source Nature of source data Coverage Time period Mother–child 
pairs included, N

Hong Kong Clinical Data Analysis and 
Reporting System

Electronic health record from 
public hospital and clinics

Territory-wide (~11 m) Births 2001-2014, 
follow-up until 2020

382,338

Finland NorPreSS National registers Nationwide (~5.5 m) Births 2006-2014, 
follow-up until 2020

532,004

Iceland NorPreSS National registers Nationwide (~350,000) Births 2004-2011, 
follow-up until 2017

32,251

Norway NorPreSS National registers Nationwide (~5.3 m) Births 2005-2014, 
follow-up until 2020

575,631

Sweden NorPreSS National registers Nationwide (~10 m) Births 2006-2013, 
follow-up until 2019

790,533

New Zealand Ministry of Health National 
Data Collection

National registers Nationwide (~5 m) Births 2007-2014, 
follow-up until 2020

520,143

Taiwan NHIRD Insurance claims database Nationwide (~23 m) Births 2011-2014, 
follow-up until 2020

789,730

m, million; NHIRD, National Health Research Insurance Database; NorPreSS, Nordic Pregnancy Drug Safety Studies.
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Exclusion assessment window
(children without valid mother-child linkage, 

or children without 6-year follow-up)
days [–∞ a, –1]

Covariate assessment window
(baseline conditionsb)

days [–∞ b, –1]

Cohort entry date
(date of delivery/birth)

day 0

Time

Exposure assessment window
days [–∞ c, –1]

Follow-up of main analysis
days [date of birth, censord]

Exposure assessment windowc

4321

Fig. 1 | Illustration of cohort inclusion and pregnancy periods. aThe earliest 
date of mothers’ health data in each data source. bBaseline conditions included: 
demographics, maternal conditions and medication use. For HK analysis, 
maternal age at delivery and birth year were assessed at the date of delivery, 
body mass index (BMI) was assessed from LMP − 365 days to LMP − 1 day and 
all other covariates were assessed before LMP; for analysis in Nordic countries 
and New Zealand, medication use was assessed from LMP − 365 days to LMP − 1 

day, and diagnoses were assessed from LMP − 365 days to delivery date; for 
Taiwan analysis, all covariates were assessed within 2 years before the date of 
delivery. cExposure window: (1) Period before pregnancy, (2) first trimester: LMP 
to LMP + 90 days, (3) second trimester: LMP + 91 days to LMP + 180 days, and 
(4) third trimester: LMP + 181 days to delivery date. dEarliest of: date of ADHD 
diagnosis, date of first ADHD medication prescription, date of death, end of 
database catchment period.

Birth records from 2011 to 
2020 (n = 1,743,927)

Non-MDM: n = 1,530,408
GDM: n = 205,615
PGDM: n = 7,904

Hong Kong
Birth records between 2001 
and 2018 (n = 583,058)

Exclusion criteria:
1. Missing baby’s ID (n = 47,133);
2. Unknown baby’s sex (n = 39);
3. Perinatal death or abortion (n = 669);
4. Missing gestational week (n = 200);
5. Missing mother’s birth date (n = 1).

Birth records from 2001 to 
2018 (n = 535,016)

Non-MDM: n = 487,783
GDM: n = 44,672
PGDM: n = 2,561

Nordic countries
Birth records between 2004
and 2020 (n = 3,158,104)

Exclusion criteriab:
1. Missing baby’s ID (n = 0);
2. Unknown baby’s sex (n = 4,537);
3. Perinatal death or abortion (n = 14,249);
4. Gestational week missing or outside 
range (22–44 weeks) (n = 3,461);
5. Missing mother’s birth date (n = 4,379)
6. Missing residence data (n = 4,612)a

Birth records from 2004 to 
2020 (n = 3,126,901)

Non-MDM: n = 2,922,365
GDM: n = 137,254
PGDM: n = 66,671

Exclusion criteria:
1. Missing baby’s ID (n = 50,351);
2. Unknown baby’s sex (n = 40);
3. Perinatal death or abortion (n = 9,500);
4. Missing gestational week (n = 0);
5. Missing mother’s birth date (n = 0).

Birth records included in the 
sensitivity analyses (n = 6,221,416)

Non-MDM: n = 5,713,011
GDM: n = 411,384
PGDM: n = 96,410

Taiwan
Birth records between 2011 
and 2020 (n = 1,803,818)

Birth records from 2001 to 
2014 (n = 382,338)

Non-MDM: n = 351,942
GDM: n = 28,662
PGDM: n = 1,734 

Birth records from 2004 to 
2014 (N = 1,927,506)

Non-MDM: n = 1,801,081
GDM: n = 85,911
PGDM: n = 40,092

Birth records from 2011 to 
2014 (n = 789,730)

Non-MDM: n = 681,832
GDM: n = 104,890
PGDM: n = 3,008

Birth records with at least 6 years of follow-up time 
were included in the main analyses (n = 3,619,717)

Non-MDM: n = 3,333,672
GDM: n = 230,798
PGDM: n = 54,825

Birth records from 2007 to 
2020 (n = 815,572)

Non-MDM: n = 772,455
GDM: n = 23,843
PGDM: n = 19,274

Exclusion criteria:
1. Missing baby’s ID (n = 2,224);
2. Unknown baby’s sex (n = 27);
3. Perinatal death or abortion (n = 0);
4. Missing gestational week (n = 2,298);
5. Missing mother’s birth date (n = 8).
6. Date of birth or sex mismatched   
across national datasets (n = 22,835)

New Zealand
Birth records between 2007 

and 2020 (n = 842,964)

Birth records from 2007 to 
2014 (n = 520,143)

Non-MDM: n = 498,817
GDM: n = 11,335
PGDM: n = 9,991

Fig. 2 | Flowchart of cohort identification. aNot applicable to Finland data, where residence/migration data are not available. bIndividuals could fulfill more than one 
exclusion criteria.
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Comparisons in different MDM exposures
Children born to mothers with GDM may have a lower risk of ADHD 
when compared with children born to mothers with PGDM (pooled HR: 
0.76, 95% CI: 0.61-0.96, NGDM = 230,798, NPGDM = 54,825). Risks of ADHD 
did not differ between children born to mothers with type 2 PGDM and 
type 1 PGDM (pooled HR: 1.04, 95% CI: 0.89-1.21, Ntype 1-PGDM = 11,444, 
Ntype 2-PGDM = 42,977). Children whose mothers had GDM requiring anti-
diabetic medication had a similar risk of ADHD when compared with 
children born to unmedicated mothers with GDM (pooled HR: 1.14, 
95% CI: 0.92-1.42, Nmedicated = 25,206, Nunmedicated = 205,592; Table 2 and 
Extended Data Fig. 4).

Sensitivity analyses
Results from the sensitivity analyses were similar to the primary analyses  
when the analytic cohorts included children with less than 6 years of 
follow-up and were stratified by sex (Supplementary Table 5). We com-
puted E-values to facilitate the interpretation of results in the presence 

of unmeasured confounding. The E-values of the pooled results range 
from 1.43 to 2.28, suggesting that unmeasured confounding with an 
association magnitude equal or greater to both the exposure and  
outcome could explain away the observed associations respectively 
(Supplementary Table 6). In other words, any residual confounding 
is likely to lead to an even smaller estimate. A post hoc analysis also 
yielded similar results when the analytic cohorts included only children 
with 9 or more years of follow-up (Supplementary Table 7). Finally, 
results from the Poisson and negative binomial regression were similar 
to the Cox regression in the main analysis (Supplementary Table 8).

Discussion
In this large multinational cohort study, including over 3.6 million 
mother–child pairs and leveraging a common data model and analytic 
approach, we found that MDM overall, GDM and PGDM were associated 
with a small-to-moderate risk of ADHD in offspring. After controlling 
for shared familial genetic and social factors in the sibling-matched 
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1.52 [1.36, 1.69]

1.38 [1.24, 1.53]
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Study or subgroup log[HR] s.e. Total Total Weight
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IV, random, 95% CI
Non-MDMGDM

Total (95% CI)
Heterogeneity: Tau2 = 0.00; χ2 = 14.58, df = 3 (P = 0.002); I2 = 79%
Test for overall effect: Z = 3.18 (P = 0.001)

Study or subgroup log[HR] s.e. Total Total Weight
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IV, random, 95% CI
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Non-MDMPGDM

Total (95% CI)
Heterogeneity: Tau2 = 0.01; χ2 = 13.08, df = 3 (P = 0.004); I2 = 77%
Test for overall effect: Z = 6.09 (P < 0.00001)

Study or subgroup log[HR] s.e. Total Total Weight
HR
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Non-MDMT1DM

Total (95% CI)
Heterogeneity: Tau2 = 0.01; χ2 = 7.11, df = 3 (P = 0.07); I2 = 58%
Test for overall effect: Z = 4.65 (P < 0.00001)

Study or subgroup log[HR] s.e. Total Total Weight
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Heterogeneity: Tau2 = 0.01; χ2 = 9.71, df = 3 (P = 0.02); I2 = 69%
Test for overall effect: Z = 6.06 (P < 0.00001)

Fig. 3 | Meta-analyses of maternal diabetes and the risk of ADHD in offspring. 
Data are presented as HRs and 95% CIs, which were adjusted for demographics, 
socioeconomic status, birth year, multifetal pregnancies, maternal conditions 
and use of relevant medications using Cox proportional hazard regression, with 

a significance level of 5% for a two-sided test. No adjustments were made for 
multiple comparisons. df, degrees of freedom; IV, inverse variance; s.e., standard 
error; T1DM, type 1 pregestational diabetes; T2DM, type 2 pregestational 
diabetes.
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Table 2 | Risks of ADHD in offspring with different maternal diabetes by data sources

Exposed no. of events/Follow-up time  
(incidence rate (per 1,000 person years))

Unexposed no. of events/Follow-up time  
(incidence rate (per 1,000 person years))

PS-weighted HR (95% CI)

MDM vs non-MDM

  Hong Kong 1,292/293,721 (4.40) 14,869/4,046,161 (3.67) 1.16 (1.10-1.24)

  Nordic countries 3,927/1,253,276 (3.13) 45,600/18,450,640 (2.47) 1.20 (1.16-1.24)

  Taiwan 9,708/828,911 (11.71) 57,841/5,283,760 (10.95) 1.08 (1.05-1.10)

  New Zealand 659/200,604 (3.29) 13,194/5,142,864 (2.57) 1.22 (1.13-1.32)

GDM vs non-MDM

  Hong Kong 1,191/274,622 (4.34) 14,869/4,046,161 (3.67) 1.15 (1.08-1.23)

  Nordic countries 2,528/850,395 (2.97) 45,600/18,450,640 (2.47) 1.15 (1.10-1.21)

  Taiwan 9,291/806,581 (11.52) 57,841/5,283,760 (10.95) 1.06 (1.04-1.09)

  New Zealand 265/106,441 (2.49) 13,194/5,142,864 (2.57) 1.00 (0.88-1.13)

PGDM vs non-MDM

  Hong Kong 101/19,099 (5.29) 14,869/4,046,161 (3.67) 1.30 (1.06-1.59)

  Nordic countries 1,380/398,208 (3.47) 45,600/18,450,640 (2.47) 1.28 (1.21-1.36)

  Taiwan 417/22,330 (18.67) 57,841/5,283,760 (10.95) 1.57 (1.42-1.73)

  New Zealand 394/94,164 (4.18) 13,194/5,142,864 (2.57) 1.43 (1.29-1.59)

Type 1 PGDM vs non-MDM

  Hong Kong 53/8,658 (6.12) 14,869/4,046,161 (3.67) 1.44 (1.09-1.89)

  Nordic countries 310/83,745 (3.70) 45,600/18,450,640 (2.47) 1.32 (1.18-1.47)

  Taiwan 68/2,998 (22.68) 57,841/5,283,760 (10.95) 1.90 (1.48-2.43)

  New Zealand 73/18,216 (4.01) 13,194/5,142,864 (2.57) 1.35 (1.07-1.71)

Type 2 PGDM vs non-MDM

  Hong Kong 48/10,441 (4.60) 14,869/4,046,161 (3.67) 1.16 (0.87-1.55)

  Nordic countries 1,052/310,395 (3.39) 45,600/18,450,640 (2.47) 1.28 (1.21-1.37)

  Taiwan 349/19,332 (18.05) 57,841/5,283,760 (10.95) 1.52 (1.36-1.69)

  New Zealand 321/75,948 (4.23) 13,194/5,142,864 (2.57) 1.45 (1.30-1.63)

GDM vs PGDM

  Hong Kong 1,191/274,622 (4.34) 101/19,099 (5.29) 0.84 (0.63-1.13)

  Nordic countries 2,528/850,395 (2.97) 1,380/398,208 (3.47) 0.94 (0.86-1.02)

  Taiwan 9,291/806,581 (11.52) 417/22,330 (18.67) 0.65 (0.56-0.76)

  New Zealand 265/106,441 (2.49) 394/94,164 (4.18) 0.66 (0.56-0.78)

Type 2 PGDM vs type 1 PGDM

  Hong Kong 48/10,441 (4.60) 53/8,658 (6.12) 0.85 (0.53-1.36)

  Nordic countries 1,052/310,395 (3.39) 310/83,745 (3.70) 1.12 (0.91-1.38)

  Taiwan 349/19,332 (18.05) 68/2,998 (22.68) 0.75 (0.49-1.16)

  New Zealand 321/75,948 (4.23) 73/18,216 (4.01) 1.03 (0.74-1.44)

Medicated GDM vs unmedicated GDM

  Hong Kong 140/30,467 (4.60) 1,051/244,155 (4.30) 1.21 (0.95-1.55)

  Nordic countries 289/87,261 (3.31) 2,239/763,133 (2.93) 1.12 (0.98-1.27)

  Taiwan 378/22337 (16.92) 8,913/784,244 (11.37) 1.41 (1.27-1.57)

  New Zealand 238/99,610 (2.39) 27/6,831 (3.95) 0.62 (0.38-1.01)

Sibling-matched analyses: GDM vs non-MDM

  Hong Kong 311/75,607 (4.11) 443/103,958 (4.26) 1.11 (0.92-1.34)

  Nordic countries 691/269,892 (2.56) 1,046/36,1821 (2.89) 1.07 (0.93-1.23)

  Taiwan 2,799/244,218 (11.46) 2,635/222,656 (11.83) 0.96 (0.91-1.01)

  New Zealand 96/33,444 (2.87) 133/48,878 (2.72) 1.26 (0.96-1.65)

HRs in bold indicate statistically significant results.
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analyses, risks of ADHD did not differ between siblings with discord-
ant exposure to GDM in pregnancy. Due to the discrepancy around 
the within- and between-family analyses, we speculate that the rela-
tionship between GDM exposure and ADHD may be confounded by 
familial factors.

Compared with a previous meta-analysis which showed a 40% and 
twofold increased risk of ADHD in children born to mothers with any 
diabetes and GDM respectively, our study demonstrates a relatively 
smaller risk estimate of ADHD in children born to mothers with any 
diabetes after comprehensively controlling for potential confound-
ers. The E-values for the primary analyses ranged from 1.43 to 2.28 
and were considered relatively small32. Thus, it is likely that there are 
unmeasured confounders of this magnitude, such as disease severity 
or paternal factors, that may explain the identified association in our 
primary analyses. More importantly, although we observed a higher 
risk of ADHD in offspring whose mothers had GDM at the population 
level, the association was null in the sibling-matched analysis. Thus, 
shared familial or genetic factors are likely to at least partly explain  
the observed association at least between GDM and ADHD in our  
primary analyses.

In our study, children born to mothers with medicated GDM had 
a similar risk of ADHD when compared with those with unmedicated 
GDM. Existing literature regarding the effects of GDM treatment on the 
risk of ADHD in offspring is scarce. A study using US private healthcare 
data found a 38% increased risk in children born to mothers requiring 
treatment for GDM than those with unmedicated GDM33. Combin-
ing our results with currently available evidence, it remains unclear 
whether maternal antidiabetic medication during pregnancy could 
increase the risk of ADHD in offspring or if the severity of GDM requir-
ing antidiabetic medication underlies the association. This further 
poses a question on the role of glycemic control during pregnancy in 
mitigating the risk of ADHD in children whose mothers have diabetes.

Our study has limitations. First, most data originated from reim-
bursement or other administrative purposes rather than research 
purposes, which represent a variety of data sources, healthcare 
settings, coding practices, diagnostics criteria, and treatment 
approaches. Nevertheless, data sources included in this study are 
all based on high-quality territory-wide electronic health records 
with robust mother–child linkage and comprehensive information 
on maternal and child medical records that have been used exten-
sively for pregnancy-related studies30,34–36. Moreover, we applied data 
source-specific identification criteria for not only the exposure and 
outcome but also the covariates to maximize the comparability of 
variables included in the study. Second, there may be inaccuracy in 
coding and incompleteness of diagnoses, prescriptions and laboratory 
test records. However, we used electronic records and the included 
pregnant women are likely to have received more frequent clinical 
monitoring throughout pregnancy. Furthermore, we used a com-
prehensive set of data ranging from diagnosis records, prescription 
records and laboratory test records for pregnant women. We defined 
the study outcome as a diagnosis for ADHD or with ADHD medication 

prescriptions to capture all possible cases to increase the power of our 
study, but we acknowledge that misclassification could exist, and some 
children with minor symptoms of ADHD might have been included in 
the non-ADHD group. Similarly, nondifferential misclassification of 
ADHD patients may direct our results towards the null, leading to a 
smaller effect estimate than previous studies. First, ADHD may not be 
diagnosed until later in life, which may lead to inclusion of undiagnosed 
ADHD patients in our non-cases. We therefore conducted a post hoc 
sensitivity analysis (Supplementary Table 7) to assess the effect of insuf-
ficient follow-up duration in our main analyses. After only including 
mother-baby pairs with at least 9 years of follow-up duration, we found 
a similar result to the main analyses, demonstrating the robustness of 
our study conclusion. Similarly, the rates of detection and diagnosis 
of ADHD were expected to vary with age. This finding implies that 
the hazards for exposed and unexposed children would naturally 
exhibit deviations from proportionality throughout the observation 
period (Extended Data Fig. 3)8. We therefore recommend interpreting 
the HRs we present as a weighted average of the time-varying haz-
ard ratios within our observation period. Nonetheless, sensitivity 
analyses using Poisson regression and negative binomial regression, 
which do not rely on the proportional hazards assumption, yielded 
consistent estimates that support our interpretation and conclusion 
(Supplementary Table 8). Second, some ADHD medication used in the 
Nordic countries may be used for other non-ADHD conditions such as 
narcolepsy. Therefore, ADHD case identification in Nordic countries 
required at least one ADHD diagnosis and at least two prescription 
fills for an ADHD medication and thus we were not likely to capture 
children using ADHD medication for other non-ADHD conditions. 
Third, maternal lifestyle factors such as physical activity and diet may 
not be fully captured in electronic health records such that inadequate 
adjustment for these factors could lead to residual confounding. We 
thus applied the current study design and analytic approaches to 
address this concern: 1) the use of sibling-matched analysis for GDM 
to control for shared familial confounding including lifestyle factors; 
2) the computation of E-value to aid the interpretation of the results 
in presence of unmeasured confounding. For MDM, E-value computa-
tion showed that any residual confounding is likely to lead to an even 
smaller estimate. Therefore, even if these behavioral factors could 
explain the association, it is unlikely to affect our conclusion that 
there is a small-to-moderate association between MDM and ADHD, 
whereas the association between GDM and ADHD is unlikely to be 
causal. Finally, although the sibling-matched analyses allowed us to 
control for unmeasured, shared confounding, the design could amplify 
confounding from factors unique to each sibling37. Therefore, we draw 
our conclusion based on complementary study designs, including 
the unrelated cohort analyses, sibling-matched comparisons and 
computation of E-values. More importantly, our results remain robust 
in all sensitivity analyses and consistent across all data sources from 
various populations.

It was hypothesized that hyperglycemia may alter the intrauter-
ine environment with increased inflammation, metabolic stress and 

Hong Kong
New Zealand
NorPreSS
Taiwan

Total (95% CI)
Heterogeneity: Tau2 = 0.01; χ2 = 6.96, df = 3 (P = 0.07); I2 = 57%
Test for overall effect: Z = 0.87 (P = 0.38)

0.1044
0.2311

0.0677
-0.0408

0.0959
0.1387
0.0713
0.0266

8,004
3,772

28,437
32,578

8,624
4,418

32,632
29,408

19.4%
11.8%
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42.4%

1.11 [0.92, 1.34]
1.26 [0.96, 1.65]
1.07 [0.93, 1.23]
0.96 [0.91, 1.01]

72,791 75,082 100.0% 1.05 [0.94, 1.17]
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Study or subgroup log[HR] s.e. Total Total Weight
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0.5 0.7 1 1.5 2

GDM vs non-GDM

Fig. 4 | Meta-analyses of discordant GDM exposure in siblings and the risk of ADHD. Data are presented as HRs and 95% CIs, which were adjusted for demographics, 
socioeconomic status, birth year, multifetal pregnancies, maternal conditions and use of relevant medications using Cox proportional hazard regression, with a 
significance level of 5% for a two-sided test.
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lipotoxicity, which may affect the neurodevelopment of offspring6. Our 
study, however, only found a small-to-moderate effect between MDM 
and ADHD where the effect is likely to be confounded by shared genetic 
and familial factors, at least in the case of GDM. Future studies should 
explore the specific roles of genetic factors and glycemic control dur-
ing different developmental stages of the human embryonic brain.
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Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
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Methods
Study design
This is a population-based cohort study with linked mother–child 
pairs based on healthcare data in Hong Kong, New Zealand, Taiwan and 
Nordic countries (Finland, Iceland, Norway and Sweden; data nested 
within the NorPreSS collaboration38). The study results were reported 
following the STrengthening the Reporting of OBservational studies 
in Epidemiology statement.

All study sites used pseudonymized patient-level electronic health 
data derived from the respective territory-wide administrative, clinical, 
or register databases. The list of data sources is provided in Table 1. We 
applied a distributed network approach with a common data model to 
harmonize the data structure and standardize the contents from dif-
ferent data sources. Briefly, the coordinating center at the University 
of Hong Kong distributed a common analytic package for generating 
aggregated results based on the common data model38,39. Site investiga-
tors conducted the analyses locally in Hong Kong, New Zealand, Taiwan 
and Nordic countries where data from individual Nordic countries 
were pooled into one cohort and analyzed centrally38, before sharing  
aggregated results with the study coordinator. This approach pre-
served data confidentiality as the individual-level data remained at 
each site40. Moreover, we were able to maintain the consistency of 
analyses among sites with common analytics41. The codes used to 
identify relevant diagnoses and medication prescriptions from each 
site are presented in Supplementary Table 8.

Covariate assessment
Covariates were selected based on known confounders for the study 
association and risk factors for the study outcomes30,42–50, including  
demographic factors such as maternal age47,51–53, infant sex (as directly 
recorded by clinicians)54, socioeconomic status55,56, birth year, multife-
tal pregnancies57 and other maternal factors including smoking44,47,58,59, 
alcohol consumption47,60,61, psychiatric and neurological condi-
tions47,48,62–64, other chronic medical conditions (hypertension51,65, renal 
disease, inflammatory bowel disease66,67, autoimmune disease46,68,69, 
thyroid disorders43,47,70,71 and polycystic ovary syndrome45,72,73), 
BMI44,47,51,74 and use of psychotropic medication42,47,49, antihyperten-
sives, ADHD medication and known or suspected teratogenic medica-
tion. Various measures were applied as the proxy of socioeconomic 
status for each data source according to their respective practice 
(namely, median household income in Hong Kong, education level in 
Nordic countries, insurance fees in Taiwan and deprivation quintile in 
New Zealand). Definitions of the covariates by study site are available 
in Supplementary Table 8. A schematic directed acyclic graph illustrat-
ing the causal relationships between the different covariates and the 
exposure and/or outcome is shown in Extended Data Fig. 5.

Comparison groups
In our primary analyses, we compared the ADHD status in children 
born to mothers with any MDM, GDM, any PGDM, type 1 PGDM and 
type 2 PGDM, with children born to mothers without any diabetes. We 
also conducted sibling-matched analyses which compared the ADHD 
status in children born to the same mothers but with discordant GDM 
exposure. In our secondary analyses, we compared the ADHD status 
between children born to mothers with different diabetes subtypes, 
namely GDM and PGDM, type 2 PGDM and type 1 PGDM, and medicated 
GDM and unmedicated GDM.

Statistical analysis
We estimated HRs of average treatment effect with 95% CIs to study the 
associations between MDM status and ADHD using Cox proportional 
hazard regression models. Propensity score (PS) fine-stratification 
weighting was used to address the differences in baseline covari-
ates. PS, the probability of receiving treatment conditional on the 
observed characteristics at baseline, can be applied to account for 

confounding effects efficiently in observational studies50,75. We used PS 
fine-stratification weighting because of the greater precision, less resid-
ual and equivalent bias control compared to traditional PS methods75,76. 
The PS is first used to create 50 fine strata; weights for both exposure 
and reference patients in all strata are subsequently calculated based on 
the total number of patients within each stratum, whereas strata with no 
exposed or reference patients are dropped out before weight calcula-
tion76. We applied robust standard errors to adjust for data clustering. 
All the covariates listed in Supplementary Table 8 were included in the 
PS model. Factors with standardized differences greater than 10% were 
further adjusted in the Cox models77. For missing data, indicator vari-
ables for missing maternal characteristics were included in the Nordic 
(folic acid use, education level, cohabitation, parity, and non-Nordic 
place of birth) and New Zealand (mother’s socioeconomic status and 
BMI) models; median imputation was applied for socioeconomic status 
in Taiwan for missing insurance fees (missing rate = 0.13%).

We conducted sibling-matched analyses to control for shared 
genetic, familial and environmental confounding factors and used 
stratified Cox regression with a separate stratum for each family identi-
fied by the mother’s unique identification number. Only sibling pairs 
with discordant exposure and outcome statuses were informative and 
contributed to the effect estimates.

We pooled the effect estimates from each data source in a meta- 
analysis using a random-effect model. Meta-analyses were represented 
in forest plots and the I2 statistic was used to quantify heterogeneity 
between sites. CIs not overlapping 1.0 were considered statistically 
significant. Statistical Analysis System (SAS) v9.4 (SAS Institute) and 
R Foundation for Statistical Computing version 3.6.0 were used for 
data analysis.

Sensitivity analyses
We conducted sensitivity analyses to test the validity and robustness 
of the study results. First, we repeated the main analysis in the entire 
mother-baby cohort, including offspring with less than 6 years of 
follow-up. Second, we stratified the analyses by offspring’s sex due to a 
higher prevalence of ADHD in males. Third, to assess the impact of any 
unmeasured confounders, we computed the E-value, which is defined as 
the minimum strength of association that an unmeasured confounder 
would need to have with both exposure and outcome, conditional on the 
measured covariates, to explain away an observed association78. Fourth, 
a post hoc sensitivity analysis including only mother-baby pairs with at 
least 9 years of follow-up was conducted to assess the effect of insufficient 
follow-up duration in our main analyses. Finally, Poisson and negative 
binomial regression models were also applied in the sensitivity analyses 
to test the robustness of our results in the presence of model uncertainty.

Ethics and inclusion statement
The study used healthcare data obtained from Hong Kong, New Zealand, 
Taiwan and Nordic countries. These data encompassed various sources 
such as electronic health records, registers, and insurance records. 
Each participating site followed the relevant local ethics and regula-
tory frameworks for study approval, namely the Finnish Institute for 
Health and Welfare (THL/1551/6.02.00/2018, THL/1673/5.05.00/2019) 
and the Social Insurance Institution of Finland (Kela 148/522/2018 and 
Kela 117/522/2019) in Finland; the University of Hong Kong/Hospital 
Authority Hong Kong West Cluster (UW20-051) in Hong Kong; the 
National Bioethics Committee (VSNb2018060017/03.01) in Iceland; 
the Norwegian Data Inspectorate (17/02068/Norwegian Data Inspec-
torate) and the Regional Committee for Medical and Health Research 
Ethics (2017/2546/REC South-East Norway) in Norway; the New Zealand  
Health and Disability Ethics Committee (13789) in New Zealand;  
the Swedish Ethical Review Authority (Dnr 2015/1826-31/2, 2017/ 
2238-32, 2018/1790-32, 2018/2211-32, 2022-04004-02) in Sweden;  
and the National Cheng Kung University Human Research Ethics  
Committee (110-453) in Taiwan.
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We fully endorse the Nature Portfolio journals’ guidance on 
authorship and inclusion. All collaborators of this study have fulfilled 
the criteria for authorship required by Nature Portfolio journals have 
been included as authors, as their participation was essential for the 
design and implementation of the study. Roles and responsibilities 
were agreed among collaborators ahead of the research. This work 
includes findings that are locally relevant, which have been determined 
in collaboration with local partners. This research was not severely 
restricted or prohibited in the setting of the researchers and does not 
result in stigmatization, incrimination, discrimination or personal risk 
to participants. Local and regional research relevant to our study was 
taken into account in citations.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The Hong Kong data used in this study will not be accessible to external 
parties, as the data custodians have not given permission due to con-
cerns regarding patient privacy protection. Requests can be submitted 
to hacpaaedr@ha.org.hk (the Central Panel on Administrative Assess-
ment of External Data Requests, the Hospital Authority, Hong Kong). 
It should be noted that the processing time for such requests may 
vary as the provided data will be customized for the specific purpose 
of each project. Individual-level data from the Nordic countries were 
used under license for the current study and cannot be made publicly 
available due to data privacy laws. The data are available from the data 
custodians of the health registers after obtaining the necessary permis-
sions in Finland, Iceland, Norway and Sweden. Due to data privacy laws, 
individual-level data from the New Zealand cannot be make publicly 
available. The National Health Research Insurance Database of Taiwan 
can only be accessed at the Health and Welfare Data Center due to data 
privacy concerns.

Code availability
R and SAS codes and sample dataset adopted in this study are available 
on GitHub repository at https://github.com/legao513/DIAMOND-A 
(ref. 79).
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Power for Cohort Studies

Input Data
Two-sided confidence interval (%) 95
Number of exposed 286045
Risk of disease among exposed (%) 6.7
Number of non-exposed 3333672
Risk of disease among non-exposed (%) 6.5
Risk ratio detected 1

Power based on:
Normal approximation 98.63%
Normal approximation with continuity correction 98.61%

References
Kelsey et al., Methods in Observational Epidemiology 2nd Edition, Table 12-15
Fleiss, Statistical Methods for Rates and Proportions, formulas 3.18 &3.19

Extended Data Fig. 1 | Sample size and power considerations. Notes: Results are rounded up to the nearest integer. Abbreviations: CC, continuity correction.
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All Pregnancy 
Episodes

with Maternal 
Diabetes (MDM)

Pregesta�onal 
Diabetes(PGDM)

Type 1-PGDM

Type 2-PGDM

Gesta�onal 
Diabetes (GDM)

Medicated 
GDM

Unmedicated 
GDM

without Maternal 
Diabetes (non-MDM)

Extended Data Fig. 2 | General definition of exposure groups. Abbreviations: GDM, gestational diabetes mellitus; MDM, maternal diabetes mellitus;  
PGDM, pregestational diabetes mellitus.
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Age of offspring (years) 6 8 10 12 14

Cumula�ve incidence – MDM (%) 0.48 2.22 3.71 4.64 5.58

Cumula�ve incidence – non-MDM (%) 0.39 1.82 3.04 3.81 4.59

Risk difference (%) 0.09 0.4 0.67 0.83 0.99

Age of offspring (years) 6 8 10 12 14 16 18

Cumula�ve incidence – MDM (%) 0.50 2.78 5.40 6.60 7.06 7.30 7.44

Cumula�ve incidence – non-MDM (%) 0.43 2.39 4.66 5.70 6.09 6.31 6.43

Risk difference (%) 0.07 0.39 0.74 0.9 0.97 0.99 1.01

Age of offspring (years) 6 7 8 9 10

Cumula�ve incidence – MDM (%) 5.01 7.40 9.49 10.98 12.36

Cumula�ve incidence – non-MDM (%) 4.65 6.88 8.82 10.22 11.50

Risk difference (%) 0.36 0.52 0.67 0.76 0.86

Age of offspring (years) 6 8 10 12 14

Cumula�ve incidence – MDM (%) 0.41 1.93 3.81 5.20 6.17

Cumula�ve incidence – non-MDM (%) 0.33 1.59 3.14 4.30 5.10

Risk difference (%) 0.08 0.34 0.67 0.9 1.07

Extended Data Fig. 3 | Cumulative incidence of ADHD in different comparison groups from the main analyses. Abbreviations: ADHD, attention-deficit/
hyperactivity disorder; MDM, maternal diabetes mellitus.
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Study or Subgroup
Hong Kong
New Zealand
NorPRESS
Taiwan

Total (95% CI)
Heterogeneity: Tau² = 0.03; Chi² = 15.91, df = 3 (P = 0.001); I² = 81%
Test for overall effect: Z = 1.24 (P = 0.22)

log[Hazard Ratio]
0.1906

-0.4780
0.1133
0.3462

SE
0.1257
0.2498
0.0657
0.0540

Total
2587

10648
8941
3030

25206

Total
26075

687
76970

101860

205592

Weight
24.0%
12.3%
31.3%
32.5%

100.0%

IV, Random, 95% CI
1.21 [0.95, 1.55]
0.62 [0.38, 1.01]
1.12 [0.98, 1.27]
1.41 [1.27, 1.57]

1.14 [0.92, 1.42]

Medicated
GDM

Unmedicated
GDM Hazard Ratio Hazard Ratio

IV, Random, 95% CI

0.5 0.7 1 1.5 2
Medicated GDM VS Unmedicated GMD

Study or Subgroup
Hong Kong
New Zealand
NorPRESS
Taiwan

Total (95% CI)
Heterogeneity: Tau² = 0.04; Chi² = 25.27, df = 3 (P < 0.0001); I² = 88%
Test for overall effect: Z = 2.36 (P = 0.02)

log[Hazard Ratio]
-0.1708
-0.4155
-0.0619
-0.4308

SE
0.1490
0.0838
0.0440
0.0779

Total
28662
11335
85911

104890

230798

Total
1720
9991

40092
3008

54811

Weight
19.8%
25.6%
28.5%
26.1%

100.0%

IV, Random, 95% CI
0.84 [0.63, 1.13]
0.66 [0.56, 0.78]
0.94 [0.86, 1.02]
0.65 [0.56, 0.76]

0.76 [0.61, 0.96]

GDM PGDM Hazard Ratio Hazard Ratio
IV, Random, 95% CI

0.5 0.7 1 1.5 2
GDM VS PGDM

Study or Subgroup
Hong Kong
New Zealand
NorPRESS
Taiwan

Total (95% CI)
Heterogeneity: Tau² = 0.00; Chi² = 1.89, df = 3 (P = 0.60); I² = 0%
Test for overall effect: Z = 0.45 (P = 0.65)

log[Hazard Ratio]
-0.1625
0.0334
0.1133

-0.1597

SE
0.2410
0.1707
0.1059
0.2382

Total
952

8153
31272

2600

42977

Total
782

1838
8416

408

11444

Weight
10.9%
21.7%
56.3%
11.1%

100.0%

IV, Random, 95% CI
0.85 [0.53, 1.36]
1.03 [0.74, 1.44]
1.12 [0.91, 1.38]
0.85 [0.53, 1.36]

1.04 [0.89, 1.21]
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Extended Data Fig. 4 | Results of comparisons between different MDM 
types. Notes: Data are presented as hazard ratios and 95% CIs, which were 
adjusted for demographics, socioeconomic status, birth year, multifoetal 
pregnancies, maternal conditions and use of relevant medications using Cox 
proportional hazard regression, with a significance level of 5% for a two-sided 

test. No adjustments were made for multiple comparisons. Abbreviations: CI, 
confidence interval; df, degrees of freedom; GDM, gestational diabetes mellitus; 
IV, inverse variance; MDM, maternal diabetes mellitus; PGDM, pregestational 
diabetes mellitus; T1DM, type 1 pregestational diabetes mellitus; T2DM, type 2 
pregestational diabetes mellitus; SE, standard error.
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Extended Data Fig. 5 | Directed acyclic graph related to the analyses. Notes: 
* including diagnosis or medication prescription; psychiatric and neurological 
conditions: including ASD, anxiety disorders, bipolar disorders, depression, 
disorders of psychological development, epilepsy, illicit drug use, intellectual 
disability, personality disorders, schizophrenia, sleep disorders; other chronic 
medical conditions: including cluster headache, crohn’s disease and ulcerative 
colitis, hypertension, migraine or other headaches, polycystic ovary syndrome, 

renal disease, rheumatoid arthritis and other inflammatory polyarthropathies, 
thyroid disorders; Medications for psychiatric and neurological conditions: 
including antihypertensives, antipsychotics, antidepressants, antiepileptics, 
antiparkinson drugs, anxiolytics, sedatives, opioids, triptans; socioeconomic 
status: defined by income level, birth institution or maternal education 
according to each data source.
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