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A B S T R A C T 

We investigate the accuracy requirements for field-level inference of cluster and void masses using data from galaxy surv e ys. We 
introduce a two-step framework that takes advantage of the fact that cluster masses are determined by flows on larger scales than 

the clusters themselves. First, we determine the integration accuracy required to perform field-level inference of cosmic initial 
conditions on these large scales by fitting to late-time galaxy counts using the Bayesian Origin Reconstruction from Galaxies 
( BORG ) algorithm. A 20-step COLA integrator is able to accurately describe the density field surrounding the most massive 
clusters in the local super -v olume ( < 135 h 

−1 Mpc ), b ut does not by itself lead to converged virial mass estimates. Therefore, we 
carry out ‘posterior resimulations’, using full N -body dynamics while sampling from the inferred initial conditions, and thereby 

obtain estimates of masses for nearby massive clusters. We show that these are in broad agreement with existing estimates, and 

find that mass functions in the local super -v olume are compatible with � CDM. 

Key words: methods: data analysis – large-scale structure of Universe – cosmology: theory. 
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 I N T RO D U C T I O N  

raditionally, cosmological constraints have relied on observables
onstructed from summary statistics of the density field, such as the
ower spectrum. By contrast, the technique of field-level inference –
n which the full posterior distribution of the density field is sampled

potentially allows one to access additional information contained
.g. in the phases of the density field. Examples of the application
f field-level inference include a determination of the local matter
ensity from the 2M ++ galaxy catalogue with the Bayesian Origin
econstruction from Galaxies ( BORG ) algorithm (Jasche & Lavaux
019 ), the inference of the COSMOS initial density field using
yman- α data by Horowitz et al. ( 2019 ), Porqueres et al. ( 2019b ),
nd Ata et al. ( 2022 ), and the use of ef fecti ve field theory by Babi ́c,
chmidt & Tucci ( 2022 ) to infer the density field on the baryon
coustic oscillation scale from halo catalogues. Field-level inference
as also been demonstrated to outperform two-point statistics for
eak lensing (Porqueres et al. 2022 ; Porqueres et al. 2023 ), and

ts robustness has previously been investigated in the context of
f fecti ve-field-theory (EFT) likelihoods (Kosti ́c et al. 2022 ; Nguyen
t al. 2021 ). Ho we ver, accurate field-le vel inference on scales that
re even mildly non-linear at late times is challenging for a number
f reasons. The dynamic range of gravitational collapse and the
strophysical complexity of galaxy biasing are key issues that must
e addressed in order to accurately infer a density field from
bservational data. 
As an example of the potential power of field-level inference,

luster masses have long been envisioned as a probe of the cosmo-
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s  

t  

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
ogical parameters (Bocquet et al. 2016 ; Costanzi et al. 2019 ; Pratt
t al. 2019 ) and of beyond- � -Cold-Dark-Matter ( � CDM) physics,
uch as primordial non-Gaussianity (Sartoris et al. 2010 ; LoVerde &
mith 2011 ; Stopyra et al. 2021b ) or modified gravity (Mak et al.
012 ; Ili ́c, Sakr & Blanchard 2019 ). Ho we ver, clusters are structures
n scales of order Mpc, which is very small compared with the
 v erall volume in which the inference takes place. Therefore,
irectly inferring cluster masses using field-level inference within a
raditional Bayesian sampling framew ork w ould require spatial (and
ime-stepping) resolution that remains, for now, computationally
ntractable. 

The mass of clusters is none the less expected to be physically
ictated by large-scale flows (Bertschinger 1985 ; Lucie-Smith,
eiris & Pontzen 2019 ; Lucie-Smith, Adhikari & Wechsler 2022 ).
ensity and velocity information at such scales can be accurately

nferred with currently available approximate dynamical models
uch as FastPM (Feng et al. 2016 ) or CO-moving Lagrangian
cceleration ( COLA Tassev, Zaldarriaga & Eisenstein 2013 ). This
pens up the possibility of using field-level inference to accurately
nfer the rele v ant initial conditions on larger scales. One may then
esimulate, with high time and spatial resolution a number, of
amples from the posterior on the initial density field. In this way,
 posterior on the mass of a cluster as implied by the combination
f larger-scale information and the gravity solver can be determined.
e refer to this technique as posterior resimulation because it

akes samples from the posterior distribution of initial conditions,
nd evolves each to redshift z = 0 with a higher-accuracy gravity
olver . 

Posterior resimulation is similar in spirit to the local Universe
imulations of Heß, Kitaura & Gottl ̈ober ( 2013 ). These belong in
he broader landscape of local Universe simulations, which has
© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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ts genesis in Peebles ( 1989 ), who first studied initial conditions
or simulations, which closely resemble the local Universe. Local 
niverse simulations are performed with a variety of techniques. For 

nstance, the CLUES collaboration (Gottl ̈ober, Hoffman & Yepes 
010 ; Sorce et al. 2014 , 2016 ) use Hoffman–Ribak (Hoffman &
ibak 1991 ) and the Reverse Zel’dovich Approximation (Doumler 
t al. 2013 ) to incorporate a number of velocity constraints. A
offman–Ribak approach is also used by Lavaux ( 2010 ). The 
IBELIUS simulations (McAlpine et al. 2022 ; Sawala et al. 2022 )
se field-level inference to set a large-scale environment, and 
ubsequently introduce additional small-scale power, which is 
ecessary to reproduce local-group structures. A similar approach is 
aken with the HESTIA hydrodynamical simulation suite (Libeskind 
t al. 2020 ), in which unconstrained small-scale modes are randomly 
eeded, and an ensemble of simulations with regions resembling the 
ocal Group is obtained by selecting initial conditions that satisfy 
 set of criteria on the positions of cluster such as Virgo, and the
ocations/masses of Local Group galaxies. 

In contrast to most local Universe simulations, posterior resimu- 
ation uses initial conditions drawn directly from the posterior distri- 
ution, and therefore accurately projects statistical uncertainties into 
he e volved uni verse, allo wing us to explicitly assess the significance
f inferred structures. This approach therefore offers a new probe of
luster masses and of other cosmological structure formation observ- 
bles that are determined by information that resides at larger scales 
n the initial conditions, and is therefore strongly constrained by the 
ombination of the gravitational collapse process and the large-scale 
nvironment. As such, posterior resimulation opens up new avenues 
or cosmological tests, e.g. one may compare the inferred cluster 
asses with independent estimates – from Sun yaev–Zel’do vich (SZ), 
-rays or lensing for example – and for modelling or testing models 

or galaxy intrinsic alignments, which are believed to be sensitive to 
arge-scale tidal fields (Codis, Pichon & Pogosyan 2015 ). 

In this study, we use posterior resimulation of initial conditions 
btained using field-level inference with BORG to estimate the masses 
f nearby galaxy clusters. We investigate how the accuracy of the 
ravity solver used for field-level inference affects cluster mass 
stimation using posterior resimulation. Informed by these results, 
e select an impro v ed gravity solv er and perform a new inference
f the initial conditions, which achieves higher accuracy compared 
ith those obtained by Jasche & Lavaux ( 2019 ). The latter initial

onditions have been used by Desmond et al. ( 2022 ) to initialize
imulations, and the resulting void properties have been studied. 
o we ver, we demonstrate that the improved accuracy obtained with 
ur choice of gravity solver is vital to reliably estimate both cluster
nd void masses. We leave a full discussion of void properties, such
s their density profiles to future work. 

The structure of the paper is as follows. In Section 2 , we outline the
ethods used for field-level inference, posterior resimulation, and the 

alidation of our results. In Section 3 , we determine the accuracy of
he gravity solver needed for the study and show the results for cluster
nd void mass functions. We then produce estimates of local massive 
luster masses and validate our results via comparison with existing 
ass estimates, as well as through internal consistency checks. We 

iscuss the cosmological implications of the results in Section 4 , 
ncluding an estimate of the underdensity of the local super -v olume,
nd conclude in Section 5 . 

 M E T H O D S  

n this work, we will focus on the problem of estimating the masses
f galaxy clusters. We will use field-level inference to obtain the 
istribution of initial conditions compatible with a galaxy catalogue, 
hen resimulate these with greater accuracy to obtain the cluster 

asses themselves. The first step involves inferring the initial 
ensity field in the Lagrangian patch surrounding the galaxy clusters 
f interest. In particular, in order to obtain converged mass estimates
ia posterior resimulation in the second step, the large-scale flows 
n the vicinity of the cluster must be accurately inferred. This places
trong requirements for the accuracy of the gravity solver used 
ithin the forward model in the field-level inference step, which we
uantify in this study. 
This section is structured as follows: in Section 2.1 , we describe

he field-level inference framework we use, including the forward 
odel and the data set. In Section 2.2 , we discuss how posterior

esimulation is used to estimate cluster masses from the field-level 
nference. In Section 2.3 , we outline the techniques we use for
alidating our results. 

.1 Field-level inference with BORG 

n this work, we use the BORG (Jasche & Wandelt 2013 ) algorithm to
erform field-level inference of galaxy cluster masses conditioned on 
he 2M ++ galaxy catalogue (Lavaux & Hudson 2011 ). BORG uses a
amiltonian Markov Chain Monte Carlo (MCMC) algorithm (Duane 

t al. 1987 ; Neal 1993 ) to sample the posterior distribution of possible
nitial density fields, δIC 

i , assuming a � CDM Gaussian prior and
onditioned on the observed galaxy counts, N i , in a set of voxels
labelled by i ). This posterior is given schematically by 

 ( δIC | N ) = 

P ( δIC ) P ( N | G [ δIC ]) 

P ( N ) 
, (1) 

here P ( δIC ) is the � CDM prior on the initial conditions, and
 ( N | G [ δIC ]) represents the likelihood of observing a given galaxy
istribution given a specific set of the initial conditions. This is
ependent on a gravity solver , G [ δIC ], which describes the gravi-
ational evolution that maps initial densities onto the final density 
eld at redshift z = 0. Additionally, a bias model is required to map

he final density field into galaxy counts; while this is a crucial part
f the inference, we do not represent this process in the schematic
quation ( 1 ) abo v e, since we will not assess the accuracy of bias
odelling in this paper. We fix the bias model to that adopted by

asche & Lavaux ( 2019 ), briefly outlined in Section 2.1.3 , so that we
an focus on the impact of the gravity solver choice on the inference
ccuracy. 

Relati ve to pre vious work presented in Jasche & Lavaux ( 2019 ),
e run a new MCMC inference with an impro v ed gravity solv er (see
elow) and the updated likelihood introduced by Porqueres et al. 
 2019a ), which is further described in Appendix A . 

.1.1 The 2M ++ galaxy catalogue 

he data used in the BORG inference in this work is identical to that
sed by Jasche & Lav aux ( 2019 ), kno wn as the 2M ++ galaxy cata-
ogue (Lavaux & Hudson 2011 ). This consists of targets drawn from
he 2-Micron All-Sky Survey extended source catalogue (2MASS- 
SC; Huchra et al. 2012 ), with spectroscopic redshifts from the
MASS Redshift Surv e y (2MRS; Huchra et al. 2012 ). It additionally
ses data from the 6-Degree Field galaxy redshift survey (6dFGRS; 
ones et al. 2006 ), and the Sloan Digital Sk y Surv e y Data Release
 (SDSS; Abazajian et al. 2009 ). 
Following Jasche & Lavaux ( 2019 ), we allow the BORG algorithm

o infer galaxy bias parameters separately in several apparent and 
MNRAS 527, 1244–1256 (2024) 
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bsolute magnitude bins as follows. First, the galaxies are split
nto two apparent magnitude bins: K ≤ 11.5 (reaching a distance
f � 200 h 

−1 Mpc ) and 11.5 < K ≤ 12.5 (reaching a distance of
 350 h 

−1 Mpc ). The vast majority of the � 70 000 galaxies are there-
ore contained within the 677 . 7 h 

−1 Mpc simulation box. The latter
oes not contain any galaxies from 2MRS, due to incompleteness at
ainter magnitudes. 

These two apparent magnitude bins are further subdivided
nto eight absolute magnitude (denoted M K ) bins between −25

M K ≤ −21, giving a total of 16 ‘catalogues’ in which the
ias model parameters are determined independently. The forward
odel assumes that the dark-matter density field is common to all

6 catalogues. 

.1.2 Gravity solver 

he choice of gravity solver within the forward model is crucial
o the goal of estimating the cluster masses. It is important to note
hat clusters themselves will not be fully resolved within the field-
e vel inference. Ho we ver, the much larger Lagrangian volume in the
nitial conditions can be resolved, so once the linear field on large
cales is accurately inferred, the flows into a cluster are determined.
his is what enables the posterior resimulation to map the initial
eld onto accurate cluster masses. Hence, if the gravity solver does
ot reconstruct these large-scale flows accurately, the inferred initial
onditions, and any derived quantities, such as galaxy cluster masses,
ill be biased. For example, if the gravity solver underestimates

he non-linear growth in high-density environments, then the initial
onditions will be driven towards artificially higher densities to match
he galaxy catalogue. This would then result in the cluster mass being
 v erestimated when these initial conditions are resimulated with an
 -body code. 
Since the initial conditions are inferred via sampling, the gravity-

olver must also be computationally efficient, in order to obtain a
onv erged Marko v chain in a reasonable time. Accurac y and speed
ust therefore be carefully traded off against each other to satisfy

he accuracy requirements of the problem under consideration. 
In this work, we first used samples from the Jasche & Lavaux

 2019 ) MCMC chain to test two gravity solvers: 1024 3 particle
esh (PM; Eastwood & Hockney 1974; Klypin & Shandarin 1983 ;
lypin & Holtzman 1997 ), COmoving Lagrangian Acceleration

 COLA ; Tassev, Zaldarriaga & Eisenstein 2013 ), comparing them
gainst the adaptive-time-stepping N -body code GADGET2 (Springel
005 ). We consider the effect of spacing the time-steps linearly with
cale factor, and logarithmically. We first investigated the optimal
ime-stepping procedure (see Section 3.1 for more details), and
elected a 20-step COLA gravity solver ( COLA20 ) with time-steps
paced linearly in scale factor to be used for our new MCMC
nference. We compare our results to the 10-step particle mesh

ethod ( PM10 ) used to perform field-level inference using the same
atalogue by Jasche & Lavaux ( 2019 ). 

We use the solvers on a set of six initial conditions drawn from
he Jasche & Lavaux ( 2019 ) MCMC chain to simulate the evolution
f 512 3 particles between z = 69 and 0 in a 677 . 7 h 

−1 Mpc box,
or a final spatial resolution of 0 . 66 h 

−1 Mpc . Initial conditions are
nferred on a 256 3 grid, which are o v ersampled to produce the 512 3 

articles used by the gravity solvers. We compare different choices
or the accuracy of the gravity solver in Section 3 . 

Because we perform the abo v e gravity solv er tests with initial
onditions drawn from the Jasche & Lavaux ( 2019 ) MCMC chain,
hich was generated with the PM10 method, the masses shown in
NRAS 527, 1244–1256 (2024) 
igs 1 and 2 are not expected to be consistent with the more accurate
asses that result from our new MCMC inference below. However,

he convergence properties of the gravity solver are not altered by
his change in the initial conditions. 

.1.3 Galaxy bias model 

he relationship between the final density field and the galaxy
istribution, N i , is described by a galaxy bias model . Specifically,
he inference uses the Neyrinck et al. ( 2014 ) bias model, where the
bserved galaxy count N i in voxel i is assumed to follow a Poisson
istribution with mean number of galaxies λi . In the Neyrinck et al.
 2014 ) model, this mean count is related to the final density constrast
n that voxel, δi , by 

i ( δi , N̄ , β, ρg , εg ) = S i A α( i) N̄ (1 + δi ) 
β exp 

(−ρg (1 + δi ) 
−εg 

)
. (2) 

he prefactor S i accounts for the selection function and surv e y mask
n voxel i , constructed following the procedure of Jasche & Lavaux
 2019 ). The four parameters of the bias model ( N̄ , β, ρg , εg ) can
e inferred jointly with the density field. In practice, we infer only
, ρg , and εg since we use the likelihood presented in Porqueres
t al. ( 2019a ), which is insensitive to N̄ (see Appendix A ). Different
arameters are inferred for each of 16 galaxy catalogues (each with a
ifferent absolute and apparent magnitude range) in the 2M ++ data
et. 

The amplitude A α( i ) will be of particular interest in the present
ork. Its purpose is to account for possible unknown multiplicative,

patially-varying systematics, which may differ between each of
he 16 catalogues. The α( i ) subscript refers to the definition of the
mplitudes o v er a separate healpix (Gorski et al. 2005 ) pixelization
f the sky with n side = 4, with each healpix pix el (healpix el) split
nto 10 radial bins of width 60 h 

−1 Mpc creating a set of 1920 regions
abelled by α. Each cubic voxel, i , is uniquely found in a specific
egion, α( i ), which is shared by a number of voxels (see Appendix A
or further details). The values of A α are marginalized o v er a Jeffreys
rior in the likelihood, though it is necessary to reconstruct their
osterior in order to perform the posterior predictive tests,which we
utline in Section 2.3 . As a reminder that A α can differ between
atalogues, later we will refer to these values as A 

c 
α . 

.1.4 Redshift space distortions 

edshift space distortions are treated as in Jasche & Lavaux ( 2019 );
he initial density field is first evolved to z = 0 using the gravity
olver, which produces particles with known position and velocity.
hen, the positions and velocities are combined to produce (physical)

edshift space positions for each particle, 

 = 

(
1 + 

a 

H ( a) 

v · r 
| r | 2 

)
r , (3) 

here H ( a ) is the Hubble rate as a function of scale factor a , r =
 x is the position in physical units, x the comoving position, and
 = d x /d t is the comoving velocity. The density field in redshift
pace is then computed using the Cloud-in-Cell (CIC) approach on
 256 3 grid, with a spatial resolution of 2 . 65 h 

−1 Mpc . By applying
he bias model in equation ( 2 ) to the redshift space density field on
his grid, we can compute mean galaxy counts for each voxel, which
re then compared to the 2M ++ galaxies on the same grid using the
ikelihood. 
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Figur e 1. Conver gence of the M 200 c (upper row) and M 100 m (lower row) masses of three ∼10 15 M � h −1 clusters with COLA (brown lines) and PM (green lines) 
gravity solvers, starting from identical initial conditions from the Jasche & Lavaux ( 2019 ) BORG inference. Solid lines indicate time-steps spaced linearly in 
scale factor, and dotted lines indicate time-steps spaced logarithmically in scale factor. Circles highlight the results for COLA20 (brown), which is used for the 
chain computed in this work, and PM10 (green), which was used for the chain generated by Jasche & Lavaux ( 2019 ). Error bars denote the standard deviation 
of the mean o v er all contributing resimulated MCMC samples. The mass of the clusters is compared to that obtained using posterior resimulation (grey region, 
showing the mean and the standard deviation of the mean mass o v er six samples from the Markov chain). The PM10 model fails to accurately describe the mass 
enclosed even within the large scales measured by M 100 m , but COLA accurately describes the mass at this scale. 
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.1.5 Cosmolo gical parameter s and numerical converg ence 

or our new MCMC inference with the COLA solver, we as-
umed the Planck 2018 (Planck Collaboration et al. 2020 ) cos-
ological parameters with lensing and baryon acoustic oscilla- 

ions: 
m 

= 0 . 3111 , σ8 = 0 . 8102 , H 0 = 67 . 66 km s −1 Mpc −1 , n s =
 . 9665 , 
b = 0 . 049. The chain was first run for 6000 MCMC steps
ith a 10-step COLA solver, after which it was switched to 20-steps

nd run for a further 9000 MCMC steps. The chain was converged by
round 7000 MCMC steps, and we use samples from beyond 7000 
teps for our results. The end product of the inference is a set of
amples drawn from the posterior distribution for initial conditions 
onsistent with the 2M ++ galaxy distribution. Each sample consists 
f an initial density field at z = 50 on a 256 3 grid, 1 a final 256 3 

edshift-space density field at z = 0, and the parameters of the bias
odel for each of the 16 galaxy catalogues. 

.2 Posterior resimulation 

he second stage of our cluster mass estimation method requires 
esimulating many initial conditions sampled from the posterior 
istribution obtained using field-level inference, which can itself 
e a computational demanding task. Ho we ver, it is not necessary to
esimulate every sample from the Markov chain. One can resimulate 
 selection of samples from the chain and histogram the mass
 Note that Jasche & Lavaux ( 2019 ) used z = 69 as their initial redshift. 

t
h
o
c  
stimates thus obtained, assuming the estimates are approximately 
ndependent. From these, we can compute the mean and variance of
he estimated distribution. 

In this work, we take 20 initial conditions from the chain run
n Section 2.1 , each separated by 300 MCMC steps (longer than
he measured correlation length of any rele v ant parameter or field
alue). The initial conditions are generated with genetIC (Stopyra 
t al. 2021a ) from the 256 3 grid white-noise output of BORG , and
 v er-sampled with genetIC ’s tricubic interpolation to generate 
12 3 particles with a mass resolution of 2 × 10 11 M � h −1 , in order
o reduce shot noise. They are then evolved from z = 50 to 0 with
ADGET2 (Springel 2005 ) on a 677 . 7 h 

−1 Mpc box to give a set
f 20 simulations that sample the posterior distribution of the local
ensity field. 
To find haloes, we use the AHF halo finder (Knollmann &

nebe 2009 ), which identifies spherical-o v erdensity haloes in the
esimulations, and except where otherwise stated we adopt the M 200 c 

ass definition ( i.e. the mass enclosed within a sphere whose mean
ensity is 200 times the critical density of the Universe). 
For each sample, we also perform simulations with inverted 

nitial conditions to study the abundance of ‘antihaloes’ as a probe
f voids (Pontzen et al. 2016 ). Antihaloes are a model of voids
efined in N -body simulations by reversing the density-contrast of 
he initial conditions (swapping under- and o v erdensities), evolving 
he reversed initial conditions to redshift zero, and mapping the 
alo particles in the resulting ‘anti-universe’ simulation into the 
riginal simulation. Once mapped into the original simulation, they 
orrespond to voids, with the benefit that their abundance is closely
MNRAS 527, 1244–1256 (2024) 
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M

Figur e 2. Conver gence of mass in the same simulations as Fig. 1 , but for 
a lower mass cluster with M 200 c � 10 14 M � h −1 . As for the higher mass 
examples, the COLA forward model is able to reproduce the M 100 m mass; 
ho we ver, due to limitations in spatial resolution it is unable to reproduce 
M 200 c , regardless of number of time-steps. This necessitates posterior 
resimulation of initial conditions with GADGET if M 200 c masses are to be 
accurately reco v ered. 
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elated to that of haloes. Posterior resimulation is particularly
ellsuited to studying antihaloes, since the initial conditions are

vailable for inversion and resimulation. 

.3 Posterior predicti v e tests 

o verify the accuracy of the inferred initial conditions, we perform
osterior predictive tests to compare the posterior-predicted galaxy
ounts to those found in the 2M ++ galaxy catalogue. For this task,
e require the posterior distribution on the expected number of
alaxies in the i th vox el, λi , giv en observ ed 2M ++ galaxy counts.
btaining this is complicated by the fact that (see Appendix A ), the

ikelihood used in this work marginalizes o v er the amplitudes A 

c 
α

n equation ( 2 ), and hence this posterior is not explicitly provided
y the BORG MCMC chain. Ho we ver, the required posterior can be
onstructed from the MCMC chain, since it provides samples from
he posterior on λ̄c 

i ≡ λc 
i /A 

c 
α( i) . We find (see Appendix B for details)

hat the expectation value of A 

c 
α for catalogue c is given by 

( A 

c 
α| N 

c 
1 ···I ) � 

N 

c 
tot ,α

S 

S ∑ 

s= 1 

1 

λ̄c 
tot ,α,s 

, (4) 

here i = { 1. . . I } are assumed to be the unmasked voxels in
he healpixel α, s indexes S samples from the posterior, N 

c 
tot ,α =

 I 

i= 1 N 

c 
i , and λ̄c 

tot ,α,s = 

∑ I 

i= 1 ̄λ
c 
i,s . Furthermore, the posterior distri-

ution P ( λc 
i | N 

c 
1 ···I ) = P ( A 

c 
αλ̄

c 
i | N 

c 
1 ···I ) has expectation value 

 

(
A 

c 
αλ̄c 

i | N 

c 
1 ···I 

) � 

N 

c 
tot ,α

S 

S ∑ 

s= 1 

λ̄c 
i,α,s 

λ̄c 
tot ,α,s 

. (5) 
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Given that the set up using multiple amplitudes and catalogues
akes the correlation structure of the inferred field and hence its

ariance cumbersome to calculate analytically, we proceed using a
ootstrap estimate of the uncertainty on the 2M ++ data. In particular,
or each of the 16 galaxy catalogues, we bootstrap the 2M ++ galaxy
ounts for the voxels in each spherical shell to obtain an estimate of
he uncertainty on the total number of galaxies in that shell. 

 RESULTS  

his section is structured as follows: in Section 3.1 , by considering
he convergence of mass estimates as a function of physical scale,
e show that the COLA20 gravity solver is adequate for obtaining

eliable mass estimates for the highest mass clusters. In Section 3.2 ,
e present the results for mass functions obtained using COLA20 ,

nd compare it to the previous state-of-the-art PM10 inference. In
ection 3.3 , we discuss how individual clusters with masses between
0 14 and 10 15 M � h 

−1 can be identified within the posterior resimula-
ions, comparing the results with a collection of mass estimates from
he literature. Finally, we present the results of posterior predictive
ests for the galaxy counts in these clusters, noting some possible
ndications of remaining systematic uncertainties (Section 3.4 ). 

.1 Choice of gravity solver 

e begin by establishing the accuracy needed for the gravity solver
ithin the field-level inference in order to obtain reliable cluster
asses. This is accomplished by testing which gravity solvers

an predict converged masses relative to a GADGET2 resimulation,
tarting from the same initial conditions. We used initial conditions
rom the PM10 MCMC chain Jasche & Lavaux ( 2019 ) at z = 69
nd evolved them to z = 0 using a variety of solvers with different,
xed numbers of time-steps. We identified massive clusters in the
imulations by searching for the largest halo within a 20 h 

−1 Mpc
adius of the known position of a cluster in the Abell catalogue (Abell,
orwin & Olowin 1989 ). We examined two different definitions of
ass ( M 200 c , the mass contained within a sphere of density 200 times

he critical density, and M 100 m , the mass contained within a sphere of
ensity 100 times the mean density of the Uni verse). This allo wed us
o examine how the gravity solvers perform at different scales: M 200 c 

irial radii are typically half that of M 100 m virial radii. Convergence
o the correct mass for a given set of initial conditions indicates that
he solver is consistent with N -body simulations at a particular scale.

We show the results of the time-step tests for several different
lusters in the Jasche & Lavaux ( 2019 ) MCMC chain in Fig. 1 for
igh mass, ∼10 15 M � h −1 clusters. 2 In each case, we consider a range
f step numbers between 3 and 128, and we also consider linear or
ogarithmic spacing of these steps in scale factor between z = 69
nd 0. Grey bands show the standard deviation of the mean mass
or these haloes o v er the samples taken from the posterior, while
he lines show the mean mass o v er all contributing MCMC samples
error bar is the standard deviation of the mean). 

At this mass scale, all the gravity solvers we considered converged
o the same mass as GADGET simulations when the number of time-
teps is increased, representing the increased accuracy (but also
ncreased computational cost) that comes with using more time-steps.
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or the COLA model, 10–20 time-steps were found to be sufficient to
eproduce the mass of the largest clusters ( ∼10 15 M � h −1 ) at a level
onsistent with GADGET (see Fig. 1 ). 

We repeated our test for lower-mass clusters ( ∼10 14 M � h −1 ),
ith an example being shown in Fig. 2 . In these cases, increasing

he time-stepping accuracy does not result in convergence to 
he GADGET result for M 200 c . This implies that the primary 
imitation on the accuracy of the gravity solver is spatial rather than
emporal resolution on these scales. The grid scale is 2 . 65 h 

−1 Mpc ,
onsiderably larger than the virial radius R 200 c � 0 . 75 h 

−1 Mpc for
his definition. Ho we ver , con vergence is still achieved for the M 100 m 

asses, and at this mass scale R 100 m 

� 1 . 4 h 

−1 Mpc . This implies
hat the o v erall mass in the cluster environment can be correctly
eproduced with an approximate gravity solv er, pro vided one does 
ot extrapolate too far below the grid scale. 3 

Choosing a specific gravity solver, time-step number, and time- 
tep spacing implies a trade-off between accuracy and runtime. 
deally, one would choose a time-step that achieves convergence for 
patially-resolved quantities. Based on the results discussed abo v e, 
e chose COLA with 20 linearly-spaced steps as the best trade-off 

or the spatial resolution of the inference here. While we did not
onsider other integrators such as FASTPM in this work, recent work 
y List & Hahn ( 2023 ) suggests that the incorporation of Lagrangian
erturbation theory information into an integrator allows for optimal 
se of time-steps. We therefore expect that FASTPM should perform 

imilarly well to COLA for this purpose. 
We emphasize that, while spatial resolution prevents M 200 c con- 

ergence for low-mass clusters ( ∼10 14 h 

−1 Mpc ) within the BORG
ravity solver, resimulations with GADGET starting from posterior 
amples will o v ercome this limitation. Based on the understanding 
hat M 200 c is dictated by the larger-scale flows that are resolved, 
t is therefore legitimate to test whether the resimulated halo mass
unctions agree with expectations. 

.2 Mass functions 

n Fig. 3 , we show the halo and antihalo M 200 c mass functions inferred
hen using posterior resimulation applied to samples from BORG 
ith the COLA20 gravity solver, and compare this with the same 

esults using the previous PM10 -based inference. 
Fig. 3 shows that the COLA20 mass functions are in agreement 

ith those obtained from regions of similar underdensity in un- 
onstrained simulations (shown by the blue-shaded region), and are 
herefore compatible with � CDM e xpectations. Conv ersely, when 
sing the PM10 gravity solver from Jasche & Lavaux ( 2019 ), the
esimulated mass functions o v erpredict the halo and antihalo abun- 
ances. To obtain ‘similar underdensity’ regions in unconstrained 
imulations, we first computed the mean density contrast of the 
entral 135 h 

−1 Mpc region over all 20 MCMC samples from the 
OLA20 chain, which gave δ = −0.043 ± 0.001 (standard error of 

he mean). We then select 135 h 

−1 Mpc spheres centred randomly 
ithin a set of unconstrained simulations with cosmological param- 

ters matching that of the BORG inference, and retain those spheres
hose density contrast lies within one standard deviation of this 
ean ( −0.044 < δ < −0.042). 
 Note that reco v ering the M 200c mass of haloes is generally a more stringent 
est than, for example, reproducing the Friend-of-Friends halo-mass function 
ith linking length l = 0 . 2 h −1 Mpc , which can be done with approximate 

olvers such as COLA or FASTPM (Feng et al. 2016 ) at the per cent level (Izard, 
rocce & Fosalba 2016 ). 

3

S  

w  

(  

f
f

These results show that insufficient inte gration accurac y leads 
he sampler to push linear o v er- and underdensities to exaggerated
alues in compensation; when resimulated, this leads to unphysically 
igh mass clusters and antihaloes. In more detail, the PM10 solver
resented by Jasche & Lavaux ( 2019 ) has insufficient time-steps at
ow redshift to properly resolve the final-stage collapse of even high-

ass haloes. As a result, it underestimates the true density at the
ore of massive haloes (Fig. 1 ); this causes BORG to o v erestimate
he initial conditions in order to infer the correct final density field.
his results in inflated cluster masses when the initial conditions 
re resimulated with more accurate N -body solvers. This indirectly 
ffects the masses of the antihaloes as well, since consistency with
he larger-scale underdensity of the local super -v olume requires the
xtra mass in these clusters to be taken from surrounding regions,
esulting in an excess of antihaloes. 

These results explain the excess of clusters found by SIBELIUS-
ARK (McAlpine et al. 2022 ) and Hutt et al. ( 2022 ), as well the excess
f antihaloes relative to � CDM noted in Desmond et al. ( 2022 ); all
f these works used the Jasche & Lavaux ( 2019 ) inference based on
M ++ . Our COLA20 -based result demonstrates that the excess of
ntihaloes and haloes is not a real effect, and disappears when a more
ccurate gravity solver is used for the inference. The requirements 
or reconstructing individual cluster masses, ho we ver, may be even
ore stringent than the requirements for the mass function, and we

ow turn to this issue. 

.3 Individual cluster masses 

n the resimulations based on COLA20 , we again identify clusters
y searching for the largest halo within a 20 h 

−1 Mpc radius, as
e previously applied to the older PM10 -based resimulations 

Section 3.1 ). This leads to an unambiguous identification of the
ele v ant halo for clusters of masses approaching 10 15 M � h −1 , which
re well-constrained by the field-level inference. There are nine 
uch cases, and we identify the clusters as Perseus–Pisces (A426), 
ercules B (A2147), Coma (A1656), Norma (A3627), Shapley 

A3571), A548, Hercules A (A2199), Hercules C (A2063), and 
eo (A1367). The mean mass of each cluster using the posterior
istribution is obtained by averaging the halo masses for all its
ounterparts across all 20 resimulations. 

To compare these M 200 c mass estimates to known data, we 
ake use of previously collected mass estimates for nine nearby 
assive clusters. The estimates come from dynamical, X-ray, SZ 

nd weak lensing techniques; full details of the estimates are 
iscussed in Stopyra et al. ( 2021b ). These mass estimates are
hown in Fig. 4 and compared to our resimulation estimates using
he new COLA20 -based field-level inference. In most cases, these 
ew results are consistent with existing mass estimates. Perseus–
isces (A426) is a notable exception, which we will return to in
ection 3.4 . 
F or sev eral of these clusters, M 200 c is in the order of 68 per cent.

s previously discussed in relation to Fig. 2 , the gravity solver
sed within the inference is prevented by its spatial resolution from
irectly predicting such masses; the resimulations, ho we v er, remo v e
his limitation. 

.4 Posterior predicti v e tests 

o far, we have shown that using COLA20 as the gravity integrator
ithin the BORG pipeline, then resimulating to obtain a final cluster

or antihalo) catalogue, gives rise to M 200 c cluster and antihalo mass
unctions in good agreement with � CDM expectations. We have 
urther shown that the mass estimates for individual clusters obtained 
MNRAS 527, 1244–1256 (2024) 
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Figure 3. Halo mass function (left) and antihalo mass function (right) for the central 135 h −1 Mpc region (covering the local super -v olume) obtained using 
posterior resimulation of the new BORG COLA20 field-level inference (pink lines, this work) versus the original PM10 inference (Jasche & Lavaux 2019 ) (green 
lines). The shaded regions show the 95 per cent Poisson interval expected using mass functions estimated from GADGET simulations with the same cosmological 
parameters as the COLA20 -based inference, conditioned on regions with a density contrast that matches that of the local super -v olume ( δ = −0.043 ± 0.001). 

Figure 4. Cluster mass estimates ( M 200 c ) obtained with the resimulated COLA20 BORG inference (black dots), compared with other M 200 c mass estimates for 
the same clusters as compiled by Stopyra et al. ( 2021b ) (non M 200 c estimates are converted M 200 c via a concentration-mass relationship). The uncertainties on 
the BORG estimates are given by the standard deviation of the distribution of halo masses associated with a given cluster, obtained from 20 resimulated MCMC 

samples. In most cases, the masses are consistent with other estimates. Perseus–Pisces (A426) is a notable exception, which we discuss in Section 3.4 . 
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n this way are, in most cases, in agreement with independent
bservational estimates. 
We next computed the posterior predictive tests outlined in

ection 2.3 for the nine indi vidual massi ve clusters discussed in the
revious section. Since the majority of the clusters pass the posterior
NRAS 527, 1244–1256 (2024) 
redictive test, we show in Fig. 5 just two illustrative examples: Coma
nd Perseus–Pisces, which contain similar numbers of galaxies.
osterior predictive tests for the other seven clusters are shown in
ppendix C . The dark- and light-shaded regions of Fig. 5 indicate
8 and 95 per cent credible intervals for the 2M ++ galaxy counts
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Figure 5. Posterior predictive tests for the galaxy count in radial 68 per cent-wide shells around two clusters in the local super -v olume: Perseus–Pisces 
(left-hannd panels) and Coma (right-hand panels). Solid lines show the predicted mean counts from the posterior distribution for each absolute magnitude bin, 
while shaded regions show the 68 and 95 per cent credible intervals computed by bootstrapping the sum of all voxels in each shell for the 2M ++ galaxies. The 
K ≤ 11.5 catalogue is shown in orange, while the K > 11.5 catalogue is shown in blue. Note that Perseus–Pisces entirely lacks K > 11.5 catalogue data due to 
being in the 2MRS portion of the sky. Despite its apparently underestimated mass in Fig. 4 , the posterior predictive tests pass in all magnitude bins. 
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n radial shells around the centres of each cluster, estimated using
ootstrap. The solid lines show the mean of the posteriority predicted 
alaxy counts in the same shells computed using equation (( 5 )).
range and blue colours, respectively, indicate the K ≤ 11.5 and K
 11.5 catalogues. 
In the case of Perseus–Pisces, while the mass appears substantially 

nderestimated relative to constraints in the literature (as shown 
n Fig. 4 ), the posterior-predicted number of galaxies is consistent 
ith the available data. This raises the question of how the mass

an be so low compared to Coma, which has a similar number
f observed galaxies but an order of magnitude higher inferred 
ass. The connection from the inferred density field to predicted 

umber counts is dictated by a global bias model per catalogue, 
ut it is additionally locally modulated in each healpix pixel by an
mplitude A 

c 
α . We therefore investigated the expectation value of A 

c 
α

or the healpixel in the 10 h 

−1 Mpc surrounding Coma and Perseus–
isces to test whether these amplitudes can account for the differing 
esults. 

Fig. 6 shows, in absolute magnitude bins (left to right) for
erseus–Pisces (top) and Coma (bottom), the distribution of the 
xpectation values for healpixel amplitudes across the entire local 
uper -v olume. These are computed using equation ( 4 ), and K ≤
1.5 and K > 11.5 results are, respectively, shown as orange and
lue histograms. Vertical arrows show the amplitudes for healpixels 
ithin 10 h 

−1 Mpc of the centre of each cluster. First, we note that
erseus–Pisces has no galaxies in the K > 11.5 catalogues (and

herefore these histograms are not shown). Second, in the bright ( K
11.5) galaxies, the amplitudes inferred around Perseus–Pisces are 

referentially in the high-end tail. This is indicative of a potential
ystematic error, allowing an unphysically small o v erdensity to 
enerate a large number of galaxies. Ho we ver, obtaining further
nsight into this result requires a detailed study of the interaction
etween the local amplitudes and the global bias models, or even
 revision of the construction of the original catalogue, which is
eyond the scope of the present work. We also note that Perseus–
isces appears to lack SZ or weak lensing mass estimates in the

iterature, and that compiled dynamical mass estimates for other 
lusters are nearly all o v erestimates relativ e to other methods. In
ummary, there are strong indications that our posterior resimulation 
ass inference for Perseus–Pisces is biased, but we also cannot 

ule out the possibility that mass estimates using other methods for
MNRAS 527, 1244–1256 (2024) 
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Figure 6. Distribution across the full sky of expected amplitudes, A α , given by equation ( 4 ) for each of five magnitude bins (histograms), with arrows indicating 
the amplitudes for the healpixels within 10 h −1 Mpc of the centre of the two clusters Perseus–Pisces (top) and Coma (bottom). Orange again indicates the K 

≤ 11.5 catalogue, while blue indicates the 11.5 < K ≤ 12.5 catalogue. The number of 2M ++ galaxies within 10 h −1 Mpc of the cluster centre, which lie 
in each absolute magnitude bin are specified. The healpixel amplitudes for Perseus–Pisces consistently lie in the high-amplitude tail of the distribution. Note 
that the distance to Perseus–Pisces (54 . 6 h −1 Mpc ) places it close to the boundary between two different 60 h −1 Mpc -wide healpix shells. It therefore receives 
contributions from many more healpix regions than Coma. 
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 DISCUSSION  

n a previous work, we showed that the number of clusters and
ntihaloes in the local super -v olume with masses abo v e 10 15 M � h −1 

s a powerful test of consistency with � CDM (Stopyra et al.
021b ). Related cosmological tests include assessments of the
arity of structures such as the Sloan Great Wall and the Shapley
upercluster (Nichol et al. 2006 ; Sheth & Diaferio 2011 ). While the
M ++ catalogue does not have sufficient signal-to-noise to directly
ssess the rarity of the Sloan Great Wall, we find that the number
f massive clusters in Fig. 4 and the mass function in Fig. 3 appear
ompatible with � CDM, with masses broadly consisting of X-ray
nd SZ estimates. Our results show that the number of massive
lusters and antihaloes in the local super -v olume is compatible with
heoretical expectations from a � CDM universe. 

The question of whether the local super -v olume lies at the centre of
 large Local Void has attracted much attention in the literature (Frith
t al. 2003 ; Xie, Gao & Guo 2014 ; Shanks et al. 2019b ). More
ecently, it has been suggested that a large-scale underdensity might
e responsible for the Hubble tension (Shanks, Hogarth & Metcalfe
019a ). In particular, the 2MASS surv e y has been claimed to provide
vidence for such a large-scale underdensity (Frith et al. 2003 ; Shanks
t al. 2019b ). Using field-level inference with BORG , which includes
MASS data as part of the 2M ++ catalogue, we are able to directly
robe the dark-matter density field and thus infer the size of the large-
cale underdensity. We find that the local super -v olume has a density
ontrast of δ = −0.043 ± 0.001 out to a radius of 135 h 

−1 Mpc .
hile this means that the local super -v olume is underdense, it is not

ufficiently underdense to have a significant impact on measurements
f the Hubble rate (Wu & Huterer 2017 ), so does not help by itself
NRAS 527, 1244–1256 (2024) 

o alleviate the Hubble tension. 
 C O N C L U S I O N S  

n this work, we assessed different gravity solvers that can be
sed for field-level inference in the context of the BORG algorithm
ollowed by posterior resimulation. We showed that replacing the
0-step PM solver used in the Jasche & Lavaux ( 2019 ) with a 20-step
OLA solver corrects the overabundance of massive haloes and
oids previously noted by McAlpine et al. ( 2022 ), Hutt et al. ( 2022 ),
esmond et al. ( 2022 ). 
We used the 20-step COLA solver to construct a new BORG

nference from the 2M ++ catalogue, with updated cosmological
arameters and likelihood. The new inference, combined with pos-
erior resimulation, leads to halo and void mass functions, which are
onsistent with � CDM expectations, and the masses of individual
assive local clusters are broadly consistent with other estimates

n the literature. An exception to this, ho we ver, was the Perseus–
isces cluster, which appeared to have a significantly lower mass

han expected from its galaxy counts and from other estimates of
ts mass in the literature. We discussed possible reasons for this in
ection 3.4 . 
Our results show that the use of field-level inference for extracting

nformation on non-linear scales requires careful control of the
ccuracy of the forward modelling used. We have shown how to
alidate the forward modelling for the accurate estimation of cluster
asses using posterior resimulation. In the process, we have created
 new inference of the intial conditions consistent with the local
niv erse and pro vided constraints on the local underdensity, and the
umber of massive nearby clusters. In future work, we will apply
his inference to constructing an anti-halo void catalogue of the local
uper -v olume. 
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PPENDIX  A :  L I K E L I H O O D  

he new BORG inference we used in this paper uses an updated
ikelihood compared to the Jasche & Lavaux ( 2019 ) inference, first
utlined by Porqueres et al. ( 2019a ). The aim of this approach is to
ake the likelihood robust to unknown systematics in the underlying

ata. 
To achieve this, the sky is first subdivided into 192 healpix

ixels (Gorski et al. 2005 ), with n side = 4. The extension of these
ealpixels into three dimensions is then split into 10 radial bins of
epth 60 h 

−1 Mpc each, giving 1920 regions on the sky, which we
enote patches . Note that this is a separate pixelization to the 256 3 

ubic voxels into which we divide the simulation. Each voxel, which
e label with Roman letters, i , lies within a given healpix patch

labelled by Greek letters, α), and there is a unique mapping α( i )
rom voxels to the healpix patch which contains them. 

All the voxels that lie in a given patch have a shared amplitude,
 

c 
α , for catalogue c, which is regarded as a nuisance parameter

nd marginalized o v er in the likelihood. Once the gravity solver
s specified, equation ( 2 ) gives the expected number of galaxies for
atalogue c in voxel i , λc 

i , as a function of the final density field,
= G ( δIC ). We define λ̄c 

i = λc 
i /A 

c 
α( i) , where A 

c 
α( i) is the systematics

mplitude parameter corresponding to the patch containing voxel i .
e can then write a Poisson likelihood for the number of galaxies in

atalogue c, N 

c 
i , that lie in voxels i ∈ { 1, . . . , I } in patch α as 

 ( N 

c 
1 ... I | ̄λc 

1 ... I , A 

c 
α) = 

I ∏ 

i= 1 

( A 

c 
αλ̄

c 
i ) 

N c 
i 

N 

c 
i ! 

e −A c α λ̄c 
i . (A1) 

orqueres et al. ( 2019a ) chose to marginalize o v er the amplitudes
 

c 
α to create a new ‘robust’ likelihood that reduces sensitivity to
NRAS 527, 1244–1256 (2024) 
patially-varying systematics in the data, 

 

(
N 

c 
1 ... I | ̄λc 

1 ... I 

) = 

∫ 

d A 

c 
αP 

(
A 

c 
α

)
P 

(
N 

c 
1 ... I | ̄λc 

1 ... I , A 

c 
α

)
. (A2) 

hey chose a Jeffreys prior P ( A 

c 
α) = κα/A 

c 
α , with normalization

onstant κα . This yields the marginalized likelihood 

 

(
N 

c 
1 ... I | ̄λc 

1 ... I 

) ∝ 

I ∏ 

i= 1 

( 

λ̄c 
i ∑ I 

j= 1 ̄λ
c 
j 

) N c 
i 

. (A3) 

ote that we assume all catalogues c are independent except via their
ependence on the final density δi used to compute ̄λc 

i in equation ( 2 ).
he likelihood for the number of galaxies in all catalogues and voxels

s therefore given by the product of equation ( A3 ) o v er all catalogues,
, and all patches, α. 

PPENDI X  B:  POSTERI OR  P R E D I C T I V E  

ESTS  WI TH  T H E  RO BU ST  L I K E L I H O O D  

he fact that the amplitudes in equation ( 2 ) are marginalized o v er in
he robust likelihood presented in Appendix A makes it more difficult
o interrogate the inferred model using posterior predictive testing.

e wish to compare the posterior-predicted number of galaxies to
hat actually found in the 2M ++ catalogue in specific regions of
nterest; this requires a posterior for the amplitudes, A 

c 
α . We now

ho w ho w to reconstruct the information we need for constructing
osterior predictive tests using the information we do have access to.
BORG samples the posterior for initial density and bias parameters,

hich are combined to give ̄λc 
i = λc 

i /A 

c 
α( i) . If we have a healpix region

ontaining voxels i = 1. . . I , with amplitude A 

c 
α in catalogue c, we can

ompute the joint posterior distribution for λ̄c 
i and A 

c 
α conditioned

n N 

c 
1 ... I : 
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(B

Here, we have used Bayes theorem in the second step, and assumed
onditional independence between A 

c 
α and ̄λc 

1 ... I in the third. We have
lso made use of equation ( A1 ). Using the same Jeffreys prior as
efore, P ( A 

c 
α) = κα/A 

c 
α , and defining N 

c 
tot ,α = 

∑ I 

i= 1 N 

c 
i and ̄λc 

tot ,α =
 I 

i= 1 ̄λ
c 
i we find 
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he BORG Markov chain provides samples from the posterior
istribution P 

(
λ̄c 

1 ... I | N 

c 
1 ... I 

)
. By marginalizing o v er λ̄c 

1 ... I using
onte-Carlo integration, we can estimate the posterior distribution

or A 

c 
α : 

P 

(
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c 
α| N 

c 
1 ... I 

)
≈

(
A 
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α

)N c tot ,α−1 (
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tot ,α − 1 

)
! 
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s= 1 
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tot ,α,s 

)N c tot ,α e −A c α λ̄c 
tot ,α,s . (B3) 

ere, we have taken S samples from the posterior, and λ̄c 
tot ,α,s 

s calculated from the MCMC sample s . We therefore obtain the
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ielding equation ( 4 ). An analogous computation gives the expecta- 
ion value for the mean number of galaxies in pixel i , A 

c 
αλ̄c 

i , yielding
quation ( 5 ): 

 

(
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αλ̄i | N 
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1 ... I 
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. (B5) 
PPENDI X  C :  POSTERI OR  PREDI CTI VE  

ESTS  F O R  OTH ER  CLUSTERS  

e show in Fig. C1 , the posterior predictive tests for the remaining
even clusters considered in this work. For all these clusters, 
he posterior predictive tests pass in all but a handful of radial
ins. 
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Figure C1. Posterior predictive tests for the other seven clusters considered in Fig. 4 , using the same conventions as Fig. 5 . 
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