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ABSTRACT

We investigate the accuracy requirements for field-level inference of cluster and void masses using data from galaxy surveys. We
introduce a two-step framework that takes advantage of the fact that cluster masses are determined by flows on larger scales than
the clusters themselves. First, we determine the integration accuracy required to perform field-level inference of cosmic initial
conditions on these large scales by fitting to late-time galaxy counts using the Bayesian Origin Reconstruction from Galaxies
(BORG) algorithm. A 20-step COLA integrator is able to accurately describe the density field surrounding the most massive
clusters in the local super-volume (< 135 2~ Mpc), but does not by itself lead to converged virial mass estimates. Therefore, we
carry out ‘posterior resimulations’, using full N-body dynamics while sampling from the inferred initial conditions, and thereby
obtain estimates of masses for nearby massive clusters. We show that these are in broad agreement with existing estimates, and

find that mass functions in the local super-volume are compatible with ACDM.

Key words: methods: data analysis —large-scale structure of Universe —cosmology: theory.

1 INTRODUCTION

Traditionally, cosmological constraints have relied on observables
constructed from summary statistics of the density field, such as the
power spectrum. By contrast, the technique of field-level inference —
in which the full posterior distribution of the density field is sampled
— potentially allows one to access additional information contained
e.g. in the phases of the density field. Examples of the application
of field-level inference include a determination of the local matter
density from the 2M++ galaxy catalogue with the Bayesian Origin
Reconstruction from Galaxies (BORG) algorithm (Jasche & Lavaux
2019), the inference of the COSMOS initial density field using
Lyman-o data by Horowitz et al. (2019), Porqueres et al. (2019b),
and Ata et al. (2022), and the use of effective field theory by Babi¢,
Schmidt & Tucci (2022) to infer the density field on the baryon
acoustic oscillation scale from halo catalogues. Field-level inference
has also been demonstrated to outperform two-point statistics for
weak lensing (Porqueres et al. 2022; Porqueres et al. 2023), and
its robustness has previously been investigated in the context of
effective-field-theory (EFT) likelihoods (Kosti¢ et al. 2022; Nguyen
et al. 2021). However, accurate field-level inference on scales that
are even mildly non-linear at late times is challenging for a number
of reasons. The dynamic range of gravitational collapse and the
astrophysical complexity of galaxy biasing are key issues that must
be addressed in order to accurately infer a density field from
observational data.

As an example of the potential power of field-level inference,
cluster masses have long been envisioned as a probe of the cosmo-
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logical parameters (Bocquet et al. 2016; Costanzi et al. 2019; Pratt
et al. 2019) and of beyond-A-Cold-Dark-Matter (ACDM) physics,
such as primordial non-Gaussianity (Sartoris et al. 2010; LoVerde &
Smith 2011; Stopyra et al. 2021b) or modified gravity (Mak et al.
2012; Ili¢, Sakr & Blanchard 2019). However, clusters are structures
on scales of order Mpc, which is very small compared with the
overall volume in which the inference takes place. Therefore,
directly inferring cluster masses using field-level inference within a
traditional Bayesian sampling framework would require spatial (and
time-stepping) resolution that remains, for now, computationally
intractable.

The mass of clusters is none the less expected to be physically
dictated by large-scale flows (Bertschinger 1985; Lucie-Smith,
Peiris & Pontzen 2019; Lucie-Smith, Adhikari & Wechsler 2022).
Density and velocity information at such scales can be accurately
inferred with currently available approximate dynamical models
such as FastPM (Feng et al. 2016) or CO-moving Lagrangian
Acceleration (COLA Tassev, Zaldarriaga & Eisenstein 2013). This
opens up the possibility of using field-level inference to accurately
infer the relevant initial conditions on larger scales. One may then
resimulate, with high time and spatial resolution a number, of
samples from the posterior on the initial density field. In this way,
a posterior on the mass of a cluster as implied by the combination
of larger-scale information and the gravity solver can be determined.
We refer to this technique as posterior resimulation because it
takes samples from the posterior distribution of initial conditions,
and evolves each to redshiftz = 0 with a higher-accuracy gravity
solver.

Posterior resimulation is similar in spirit to the local Universe
simulations of HeB, Kitaura & Gottlober (2013). These belong in
the broader landscape of local Universe simulations, which has
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its genesis in Peebles (1989), who first studied initial conditions
for simulations, which closely resemble the local Universe. Local
Universe simulations are performed with a variety of techniques. For
instance, the CLUES collaboration (Gottlober, Hoffman & Yepes
2010; Sorce et al. 2014, 2016) use Hoffman—Ribak (Hoffman &
Ribak 1991) and the Reverse Zel’dovich Approximation (Doumler
et al. 2013) to incorporate a number of velocity constraints. A
Hoffman—Ribak approach is also used by Lavaux (2010). The
SIBELIUS simulations (McAlpine et al. 2022; Sawala et al. 2022)
use field-level inference to set a large-scale environment, and
subsequently introduce additional small-scale power, which is
necessary to reproduce local-group structures. A similar approach is
taken with the HESTIA hydrodynamical simulation suite (Libeskind
et al. 2020), in which unconstrained small-scale modes are randomly
seeded, and an ensemble of simulations with regions resembling the
Local Group is obtained by selecting initial conditions that satisfy
a set of criteria on the positions of cluster such as Virgo, and the
locations/masses of Local Group galaxies.

In contrast to most local Universe simulations, posterior resimu-
lation uses initial conditions drawn directly from the posterior distri-
bution, and therefore accurately projects statistical uncertainties into
the evolved universe, allowing us to explicitly assess the significance
of inferred structures. This approach therefore offers a new probe of
cluster masses and of other cosmological structure formation observ-
ables that are determined by information that resides at larger scales
in the initial conditions, and is therefore strongly constrained by the
combination of the gravitational collapse process and the large-scale
environment. As such, posterior resimulation opens up new avenues
for cosmological tests, e.g. one may compare the inferred cluster
masses with independent estimates — from Sunyaev—Zel’dovich (SZ),
X-rays or lensing for example — and for modelling or testing models
for galaxy intrinsic alignments, which are believed to be sensitive to
large-scale tidal fields (Codis, Pichon & Pogosyan 2015).

In this study, we use posterior resimulation of initial conditions
obtained using field-level inference with BORG to estimate the masses
of nearby galaxy clusters. We investigate how the accuracy of the
gravity solver used for field-level inference affects cluster mass
estimation using posterior resimulation. Informed by these results,
we select an improved gravity solver and perform a new inference
of the initial conditions, which achieves higher accuracy compared
with those obtained by Jasche & Lavaux (2019). The latter initial
conditions have been used by Desmond et al. (2022) to initialize
simulations, and the resulting void properties have been studied.
However, we demonstrate that the improved accuracy obtained with
our choice of gravity solver is vital to reliably estimate both cluster
and void masses. We leave a full discussion of void properties, such
as their density profiles to future work.

The structure of the paper is as follows. In Section 2, we outline the
methods used for field-level inference, posterior resimulation, and the
validation of our results. In Section 3, we determine the accuracy of
the gravity solver needed for the study and show the results for cluster
and void mass functions. We then produce estimates of local massive
cluster masses and validate our results via comparison with existing
mass estimates, as well as through internal consistency checks. We
discuss the cosmological implications of the results in Section 4,
including an estimate of the underdensity of the local super-volume,
and conclude in Section 5.

2 METHODS

In this work, we will focus on the problem of estimating the masses
of galaxy clusters. We will use field-level inference to obtain the
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distribution of initial conditions compatible with a galaxy catalogue,
then resimulate these with greater accuracy to obtain the cluster
masses themselves. The first step involves inferring the initial
density field in the Lagrangian patch surrounding the galaxy clusters
of interest. In particular, in order to obtain converged mass estimates
via posterior resimulation in the second step, the large-scale flows
in the vicinity of the cluster must be accurately inferred. This places
strong requirements for the accuracy of the gravity solver used
within the forward model in the field-level inference step, which we
quantity in this study.

This section is structured as follows: in Section 2.1, we describe
the field-level inference framework we use, including the forward
model and the data set. In Section 2.2, we discuss how posterior
resimulation is used to estimate cluster masses from the field-level
inference. In Section 2.3, we outline the techniques we use for
validating our results.

2.1 Field-level inference with BORG

In this work, we use the BORG (Jasche & Wandelt 2013) algorithm to
perform field-level inference of galaxy cluster masses conditioned on
the 2M++- galaxy catalogue (Lavaux & Hudson 2011). BORG uses a
Hamiltonian Markov Chain Monte Carlo (MCMC) algorithm (Duane
etal. 1987; Neal 1993) to sample the posterior distribution of possible
initial density fields, 8!, assuming a ACDM Gaussian prior and
conditioned on the observed galaxy counts, N;, in a set of voxels
(labelled by 7). This posterior is given schematically by

P(8'©)P(N|GI8])

P(SIN) = )

, ey
where P(8'C) is the ACDM prior on the initial conditions, and
P(N|G[8%)) represents the likelihood of observing a given galaxy
distribution given a specific set of the initial conditions. This is
dependent on a gravity solver, G[8'°], which describes the gravi-
tational evolution that maps initial densities onto the final density
field at redshift z = 0. Additionally, a bias model is required to map
the final density field into galaxy counts; while this is a crucial part
of the inference, we do not represent this process in the schematic
equation (1) above, since we will not assess the accuracy of bias
modelling in this paper. We fix the bias model to that adopted by
Jasche & Lavaux (2019), briefly outlined in Section 2.1.3, so that we
can focus on the impact of the gravity solver choice on the inference
accuracy.

Relative to previous work presented in Jasche & Lavaux (2019),
we run a new MCMC inference with an improved gravity solver (see
below) and the updated likelihood introduced by Porqueres et al.
(2019a), which is further described in Appendix A.

2.1.1 The 2M++ galaxy catalogue

The data used in the BORG inference in this work is identical to that
used by Jasche & Lavaux (2019), known as the 2M++ galaxy cata-
logue (Lavaux & Hudson 2011). This consists of targets drawn from
the 2-Micron All-Sky Survey extended source catalogue (2MASS-
XSC; Huchra et al. 2012), with spectroscopic redshifts from the
2MASS Redshift Survey (2MRS; Huchra et al. 2012). It additionally
uses data from the 6-Degree Field galaxy redshift survey (6dFGRS;
Jones et al. 2006), and the Sloan Digital Sky Survey Data Release
7 (SDSS; Abazajian et al. 2009).

Following Jasche & Lavaux (2019), we allow the BORG algorithm
to infer galaxy bias parameters separately in several apparent and
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absolute magnitude bins as follows. First, the galaxies are split
into two apparent magnitude bins: K < 11.5 (reaching a distance
of ~200h~'Mpc) and 11.5 < K < 12.5 (reaching a distance of
~350 h~! Mpc). The vast majority of the ~70 000 galaxies are there-
fore contained within the 677.7 h~! Mpc simulation box. The latter
does not contain any galaxies from 2MRS, due to incompleteness at
fainter magnitudes.

These two apparent magnitude bins are further subdivided
into eight absolute magnitude (denoted My) bins between —25
< Mg < -—21, giving a total of 16 ‘catalogues’ in which the
bias model parameters are determined independently. The forward
model assumes that the dark-matter density field is common to all
16 catalogues.

2.1.2 Gravity solver

The choice of gravity solver within the forward model is crucial
to the goal of estimating the cluster masses. It is important to note
that clusters themselves will not be fully resolved within the field-
level inference. However, the much larger Lagrangian volume in the
initial conditions can be resolved, so once the linear field on large
scales is accurately inferred, the flows into a cluster are determined.
This is what enables the posterior resimulation to map the initial
field onto accurate cluster masses. Hence, if the gravity solver does
not reconstruct these large-scale flows accurately, the inferred initial
conditions, and any derived quantities, such as galaxy cluster masses,
will be biased. For example, if the gravity solver underestimates
the non-linear growth in high-density environments, then the initial
conditions will be driven towards artificially higher densities to match
the galaxy catalogue. This would then result in the cluster mass being
overestimated when these initial conditions are resimulated with an
N-body code.

Since the initial conditions are inferred via sampling, the gravity-
solver must also be computationally efficient, in order to obtain a
converged Markov chain in a reasonable time. Accuracy and speed
must therefore be carefully traded off against each other to satisty
the accuracy requirements of the problem under consideration.

In this work, we first used samples from the Jasche & Lavaux
(2019) MCMC chain to test two gravity solvers: 1024° particle
mesh (PM; Eastwood & Hockney 1974; Klypin & Shandarin 1983;
Klypin & Holtzman 1997), COmoving Lagrangian Acceleration
(COLA; Tassev, Zaldarriaga & Eisenstein 2013), comparing them
against the adaptive-time-stepping N-body code GADGET?2 (Springel
2005). We consider the effect of spacing the time-steps linearly with
scale factor, and logarithmically. We first investigated the optimal
time-stepping procedure (see Section 3.1 for more details), and
selected a 20-step COLA gravity solver (COLA20) with time-steps
spaced linearly in scale factor to be used for our new MCMC
inference. We compare our results to the 10-step particle mesh
method (PM10) used to perform field-level inference using the same
catalogue by Jasche & Lavaux (2019).

We use the solvers on a set of six initial conditions drawn from
the Jasche & Lavaux (2019) MCMC chain to simulate the evolution
of 5123 particles between z = 69 and 0 in a 677.7 h~! Mpc box,
for a final spatial resolution of 0.66 h~! Mpc. Initial conditions are
inferred on a 256° grid, which are oversampled to produce the 5123
particles used by the gravity solvers. We compare different choices
for the accuracy of the gravity solver in Section 3.

Because we perform the above gravity solver tests with initial
conditions drawn from the Jasche & Lavaux (2019) MCMC chain,
which was generated with the PM10 method, the masses shown in
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Figs 1 and 2 are not expected to be consistent with the more accurate
masses that result from our new MCMC inference below. However,
the convergence properties of the gravity solver are not altered by
this change in the initial conditions.

2.1.3 Galaxy bias model

The relationship between the final density field and the galaxy
distribution, N;, is described by a galaxy bias model. Specifically,
the inference uses the Neyrinck et al. (2014) bias model, where the
observed galaxy count N; in voxel i is assumed to follow a Poisson
distribution with mean number of galaxies A;. In the Neyrinck et al.
(2014) model, this mean count is related to the final density constrast
in that voxel, §;, by

Xi(8is N, B pgs €0) = SiAay N(1 + 8P exp (—p (1 4+ 8)7%) . (2)

The prefactor S; accounts for the selection function and survey mask
in voxel i, constructed following the procedure of Jasche & Lavaux
(2019). The four parameters of the bias model (N, 8, Pg» €g) Can
be inferred jointly with the density field. In practice, we infer only
B, pg, and €, since we use the likelihood presented in Porqueres
et al. (2019a), which is insensitive to N (see Appendix A). Different
parameters are inferred for each of 16 galaxy catalogues (each with a
different absolute and apparent magnitude range) in the 2M++ data
set.

The amplitude A, will be of particular interest in the present
work. Its purpose is to account for possible unknown multiplicative,
spatially-varying systematics, which may differ between each of
the 16 catalogues. The «(7) subscript refers to the definition of the
amplitudes over a separate healpix (Gorski et al. 2005) pixelization
of the sky with ngg¢e = 4, with each healpix pixel (healpixel) split
into 10 radial bins of width 60 2 ~! Mpc creating a set of 1920 regions
labelled by «. Each cubic voxel, i, is uniquely found in a specific
region, ¢(i), which is shared by a number of voxels (see Appendix A
for further details). The values of A, are marginalized over a Jeffreys
prior in the likelihood, though it is necessary to reconstruct their
posterior in order to perform the posterior predictive tests,which we
outline in Section 2.3. As a reminder that A, can differ between
catalogues, later we will refer to these values as AS,.

2.1.4 Redshift space distortions

Redshift space distortions are treated as in Jasche & Lavaux (2019);
the initial density field is first evolved to z = 0 using the gravity
solver, which produces particles with known position and velocity.
Then, the positions and velocities are combined to produce (physical)
redshift space positions for each particle,

_ 1+LH> 3)
S_( He) 2 )"

where H(a) is the Hubble rate as a function of scale factor a, r =
ax is the position in physical units, X the comoving position, and
v = dx/dr is the comoving velocity. The density field in redshift
space is then computed using the Cloud-in-Cell (CIC) approach on
a 2563 grid, with a spatial resolution of 2.65 h~! Mpc. By applying
the bias model in equation (2) to the redshift space density field on
this grid, we can compute mean galaxy counts for each voxel, which
are then compared to the 2M++ galaxies on the same grid using the
likelihood.
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Figure 1. Convergence of the Magq. (upper row) and Mg, (lower row) masses of three ~10'> Mg i~ clusters with COLA (brown lines) and PM (green lines)
gravity solvers, starting from identical initial conditions from the Jasche & Lavaux (2019) BORG inference. Solid lines indicate time-steps spaced linearly in
scale factor, and dotted lines indicate time-steps spaced logarithmically in scale factor. Circles highlight the results for COLA20 (brown), which is used for the
chain computed in this work, and PM10 (green), which was used for the chain generated by Jasche & Lavaux (2019). Error bars denote the standard deviation
of the mean over all contributing resimulated MCMC samples. The mass of the clusters is compared to that obtained using posterior resimulation (grey region,
showing the mean and the standard deviation of the mean mass over six samples from the Markov chain). The PM10 model fails to accurately describe the mass
enclosed even within the large scales measured by Mo, but COLA accurately describes the mass at this scale.

2.1.5 Cosmological parameters and numerical convergence

For our new MCMC inference with the COLA solver, we as-
sumed the Planck 2018 (Planck Collaboration et al. 2020) cos-
mological parameters with lensing and baryon acoustic oscilla-
tions: Q, = 0.3111, 0y = 0.8102, Hy = 67.66kms™! Mpc™!, n, =
0.9665, 2, = 0.049. The chain was first run for 6000 MCMC steps
with a 10-step COLA solver, after which it was switched to 20-steps
and run for a further 9000 MCMC steps. The chain was converged by
around 7000 MCMC steps, and we use samples from beyond 7000
steps for our results. The end product of the inference is a set of
samples drawn from the posterior distribution for initial conditions
consistent with the 2M++ galaxy distribution. Each sample consists
of an initial density field at z = 50 on a 256° grid,' a final 2563
redshift-space density field at z = 0, and the parameters of the bias
model for each of the 16 galaxy catalogues.

2.2 Posterior resimulation

The second stage of our cluster mass estimation method requires
resimulating many initial conditions sampled from the posterior
distribution obtained using field-level inference, which can itself
be a computational demanding task. However, it is not necessary to
resimulate every sample from the Markov chain. One can resimulate
a selection of samples from the chain and histogram the mass

INote that Jasche & Lavaux (2019) used z = 69 as their initial redshift.

estimates thus obtained, assuming the estimates are approximately
independent. From these, we can compute the mean and variance of
the estimated distribution.

In this work, we take 20 initial conditions from the chain run
in Section 2.1, each separated by 300 MCMC steps (longer than
the measured correlation length of any relevant parameter or field
value). The initial conditions are generated with genetIC (Stopyra
et al. 2021a) from the 256% grid white-noise output of BORG, and
over-sampled with genetIC’s tricubic interpolation to generate
5123 particles with a mass resolution of 2 x 10" Mg ™!, in order
to reduce shot noise. They are then evolved from z = 50 to 0 with
GADGET?2 (Springel 2005) on a 677.7h~! Mpc box to give a set
of 20 simulations that sample the posterior distribution of the local
density field.

To find haloes, we use the AHF halo finder (Knollmann &
Knebe 2009), which identifies spherical-overdensity haloes in the
resimulations, and except where otherwise stated we adopt the My,
mass definition (i.e. the mass enclosed within a sphere whose mean
density is 200 times the critical density of the Universe).

For each sample, we also perform simulations with inverted
initial conditions to study the abundance of ‘antihaloes’ as a probe
of voids (Pontzen et al. 2016). Antihaloes are a model of voids
defined in N-body simulations by reversing the density-contrast of
the initial conditions (swapping under- and overdensities), evolving
the reversed initial conditions to redshift zero, and mapping the
halo particles in the resulting ‘anti-universe’ simulation into the
original simulation. Once mapped into the original simulation, they
correspond to voids, with the benefit that their abundance is closely
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Figure 2. Convergence of mass in the same simulations as Fig. 1, but for
a lower mass cluster with Mago, ~ 1014 Mo h~!. As for the higher mass
examples, the COLA forward model is able to reproduce the Mg, mass;
however, due to limitations in spatial resolution it is unable to reproduce
M>po., regardless of number of time-steps. This necessitates posterior
resimulation of initial conditions with GADGET if Mg masses are to be
accurately recovered.

related to that of haloes. Posterior resimulation is particularly
wellsuited to studying antihaloes, since the initial conditions are
available for inversion and resimulation.

2.3 Posterior predictive tests

To verify the accuracy of the inferred initial conditions, we perform
posterior predictive tests to compare the posterior-predicted galaxy
counts to those found in the 2M-++ galaxy catalogue. For this task,
we require the posterior distribution on the expected number of
galaxies in the ith voxel, A;, given observed 2M++ galaxy counts.
Obtaining this is complicated by the fact that (see Appendix A), the
likelihood used in this work marginalizes over the amplitudes Ag,
in equation (2), and hence this posterior is not explicitly provided
by the BORG MCMC chain. However, the required posterior can be
constructed from the MCMC chain, since it provides samples from
the posterior on A = Af/AS;). We find (see Appendix B for details)
that the expectation value of A¢, for catalogue c is given by

E(AS|N¢ ~ Nowa ol
(AGINY.p) =~ < § o
s=1

“

tot,at,s

where i = {1...I} are assumed to be the unmasked voxels in

the healpixel «, s indexes S samples from the posterior, N¢ , =

SOl Nfand &S, = S0i_, A¢ . Furthermore, the posterior distri-
bution P(A{|N}..;) = P(A;)_Lle,Cm ;) has expectation value
Y NC o > X;: a,s
E(ASKING.) = =52y 0 oo, 3)
S )“tol,a,s

s=1

MNRAS 527, 1244-1256 (2024)

Given that the set up using multiple amplitudes and catalogues
makes the correlation structure of the inferred field and hence its
variance cumbersome to calculate analytically, we proceed using a
bootstrap estimate of the uncertainty on the 2M+-+ data. In particular,
for each of the 16 galaxy catalogues, we bootstrap the 2M++4- galaxy
counts for the voxels in each spherical shell to obtain an estimate of
the uncertainty on the total number of galaxies in that shell.

3 RESULTS

This section is structured as follows: in Section 3.1, by considering
the convergence of mass estimates as a function of physical scale,
we show that the COLA20 gravity solver is adequate for obtaining
reliable mass estimates for the highest mass clusters. In Section 3.2,
we present the results for mass functions obtained using COLA20,
and compare it to the previous state-of-the-art PM10 inference. In
Section 3.3, we discuss how individual clusters with masses between
10" and 10" Mg 2! can be identified within the posterior resimula-
tions, comparing the results with a collection of mass estimates from
the literature. Finally, we present the results of posterior predictive
tests for the galaxy counts in these clusters, noting some possible
indications of remaining systematic uncertainties (Section 3.4).

3.1 Choice of gravity solver

‘We begin by establishing the accuracy needed for the gravity solver
within the field-level inference in order to obtain reliable cluster
masses. This is accomplished by testing which gravity solvers
can predict converged masses relative to a GADGET2 resimulation,
starting from the same initial conditions. We used initial conditions
from the PM10 MCMC chain Jasche & Lavaux (2019) at z = 69
and evolved them to z = 0 using a variety of solvers with different,
fixed numbers of time-steps. We identified massive clusters in the
simulations by searching for the largest halo within a 20A~! Mpc
radius of the known position of a cluster in the Abell catalogue (Abell,
Corwin & Olowin 1989). We examined two different definitions of
mass (M., the mass contained within a sphere of density 200 times
the critical density, and Mg, the mass contained within a sphere of
density 100 times the mean density of the Universe). This allowed us
to examine how the gravity solvers perform at different scales: My,
virial radii are typically half that of M, virial radii. Convergence
to the correct mass for a given set of initial conditions indicates that
the solver is consistent with N-body simulations at a particular scale.

We show the results of the time-step tests for several different
clusters in the Jasche & Lavaux (2019) MCMC chain in Fig. 1 for
high mass, ~10'> Mg h~! clusters.? In each case, we consider a range
of step numbers between 3 and 128, and we also consider linear or
logarithmic spacing of these steps in scale factor between z = 69
and 0. Grey bands show the standard deviation of the mean mass
for these haloes over the samples taken from the posterior, while
the lines show the mean mass over all contributing MCMC samples
(error bar is the standard deviation of the mean).

At this mass scale, all the gravity solvers we considered converged
to the same mass as GADGET simulations when the number of time-
steps is increased, representing the increased accuracy (but also
increased computational cost) that comes with using more time-steps.

ZNote that because these tests were done with initial conditions from
the Jasche & Lavaux (2019) MCMC chain which used a PM10 gravity solver,
the masses are not expected to be consistent with the masses found for these
clusters in Fig. 4.
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For the COLA model, 10-20 time-steps were found to be sufficient to
reproduce the mass of the largest clusters (~10'3 Mg A~") at a level
consistent with GADGET (see Fig. 1).

We repeated our test for lower-mass clusters (~10'“Mgh™'),
with an example being shown in Fig. 2. In these cases, increasing
the time-stepping accuracy does not result in convergence to
the GADGET result for Mjyp.. This implies that the primary
limitation on the accuracy of the gravity solver is spatial rather than
temporal resolution on these scales. The grid scale is 2.65 h~! Mpc,
considerably larger than the virial radius Ry >~ 0.75h~!' Mpc for
this definition. However, convergence is still achieved for the Moo,
masses, and at this mass scale Rygo, =~ 1.4h~" Mpc. This implies
that the overall mass in the cluster environment can be correctly
reproduced with an approximate gravity solver, provided one does
not extrapolate too far below the grid scale.’

Choosing a specific gravity solver, time-step number, and time-
step spacing implies a trade-off between accuracy and runtime.
Ideally, one would choose a time-step that achieves convergence for
spatially-resolved quantities. Based on the results discussed above,
we chose COLA with 20 linearly-spaced steps as the best trade-off
for the spatial resolution of the inference here. While we did not
consider other integrators such as FASTPM in this work, recent work
by List & Hahn (2023) suggests that the incorporation of Lagrangian
perturbation theory information into an integrator allows for optimal
use of time-steps. We therefore expect that FASTPM should perform
similarly well to COLA for this purpose.

We emphasize that, while spatial resolution prevents Mpy. con-
vergence for low-mass clusters (~10' 42~! Mpc) within the BORG
gravity solver, resimulations with GADGET starting from posterior
samples will overcome this limitation. Based on the understanding
that Mg is dictated by the larger-scale flows that are resolved,
it is therefore legitimate to test whether the resimulated halo mass
functions agree with expectations.

3.2 Mass functions

In Fig. 3, we show the halo and antihalo M5 mass functions inferred
when using posterior resimulation applied to samples from BORG
with the COLA20 gravity solver, and compare this with the same
results using the previous PM10-based inference.

Fig. 3 shows that the COLA20 mass functions are in agreement
with those obtained from regions of similar underdensity in un-
constrained simulations (shown by the blue-shaded region), and are
therefore compatible with ACDM expectations. Conversely, when
using the PM10 gravity solver from Jasche & Lavaux (2019), the
resimulated mass functions overpredict the halo and antihalo abun-
dances. To obtain ‘similar underdensity’ regions in unconstrained
simulations, we first computed the mean density contrast of the
central 1352~ Mpc region over all 20 MCMC samples from the
COLA20 chain, which gave § = —0.043 & 0.001 (standard error of
the mean). We then select 135 4~! Mpc spheres centred randomly
within a set of unconstrained simulations with cosmological param-
eters matching that of the BORG inference, and retain those spheres
whose density contrast lies within one standard deviation of this
mean (—0.044 < § < —0.042).

3Note that recovering the Magg. mass of haloes is generally a more stringent
test than, for example, reproducing the Friend-of-Friends halo-mass function
with linking length [ = 0.2~ Mpc, which can be done with approximate
solvers such as COLA or FASTPM (Feng etal. 2016) at the per cent level (Izard,
Crocce & Fosalba 2016).
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These results show that insufficient integration accuracy leads
the sampler to push linear over- and underdensities to exaggerated
values in compensation; when resimulated, this leads to unphysically
high mass clusters and antihaloes. In more detail, the PM10 solver
presented by Jasche & Lavaux (2019) has insufficient time-steps at
low redshift to properly resolve the final-stage collapse of even high-
mass haloes. As a result, it underestimates the true density at the
core of massive haloes (Fig. 1); this causes BORG to overestimate
the initial conditions in order to infer the correct final density field.
This results in inflated cluster masses when the initial conditions
are resimulated with more accurate N-body solvers. This indirectly
affects the masses of the antihaloes as well, since consistency with
the larger-scale underdensity of the local super-volume requires the
extra mass in these clusters to be taken from surrounding regions,
resulting in an excess of antihaloes.

These results explain the excess of clusters found by SIBELIUS-
DARK (McAlpine etal. 2022) and Hutt et al. (2022), as well the excess
of antihaloes relative to ACDM noted in Desmond et al. (2022); all
of these works used the Jasche & Lavaux (2019) inference based on
2M++. Our COLA2 0-based result demonstrates that the excess of
antihaloes and haloes is not a real effect, and disappears when a more
accurate gravity solver is used for the inference. The requirements
for reconstructing individual cluster masses, however, may be even
more stringent than the requirements for the mass function, and we
now turn to this issue.

3.3 Individual cluster masses

In the resimulations based on COLA20, we again identify clusters
by searching for the largest halo within a 20/~ Mpc radius, as
we previously applied to the older PM10-based resimulations
(Section 3.1). This leads to an unambiguous identification of the
relevant halo for clusters of masses approaching 10" Mg A=, which
are well-constrained by the field-level inference. There are nine
such cases, and we identify the clusters as Perseus—Pisces (A426),
Hercules B (A2147), Coma (A1656), Norma (A3627), Shapley
(A3571), A548, Hercules A (A2199), Hercules C (A2063), and
Leo (A1367). The mean mass of each cluster using the posterior
distribution is obtained by averaging the halo masses for all its
counterparts across all 20 resimulations.

To compare these M,p. mass estimates to known data, we
make use of previously collected mass estimates for nine nearby
massive clusters. The estimates come from dynamical, X-ray, SZ
and weak lensing techniques; full details of the estimates are
discussed in Stopyra et al. (2021b). These mass estimates are
shown in Fig. 4 and compared to our resimulation estimates using
the new COLA20-based field-level inference. In most cases, these
new results are consistent with existing mass estimates. Perseus—
Pisces (A426) is a notable exception, which we will return to in
Section 3.4.

For several of these clusters, M. is in the order of 68 per cent.
As previously discussed in relation to Fig. 2, the gravity solver
used within the inference is prevented by its spatial resolution from
directly predicting such masses; the resimulations, however, remove
this limitation.

3.4 Posterior predictive tests

So far, we have shown that using COLA20 as the gravity integrator
within the BORG pipeline, then resimulating to obtain a final cluster
(or antihalo) catalogue, gives rise to Mg, cluster and antihalo mass
functions in good agreement with ACDM expectations. We have
further shown that the mass estimates for individual clusters obtained

MNRAS 527, 1244-1256 (2024)
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Figure 3. Halo mass function (left) and antihalo mass function (right) for the central 135/~! Mpc region (covering the local super-volume) obtained using
posterior resimulation of the new BORG COLA20 field-level inference (pink lines, this work) versus the original PM10 inference (Jasche & Lavaux 2019) (green
lines). The shaded regions show the 95 per cent Poisson interval expected using mass functions estimated from GADGET simulations with the same cosmological
parameters as the COLA2 0-based inference, conditioned on regions with a density contrast that matches that of the local super-volume (§ = —0.043 &+ 0.001).
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Figure 4. Cluster mass estimates (Mzgo.) obtained with the resimulated COLA20 BORG inference (black dots), compared with other Moo mass estimates for
the same clusters as compiled by Stopyra et al. (2021b) (non M. estimates are converted Mg, via a concentration-mass relationship). The uncertainties on
the BORG estimates are given by the standard deviation of the distribution of halo masses associated with a given cluster, obtained from 20 resimulated MCMC
samples. In most cases, the masses are consistent with other estimates. Perseus—Pisces (A426) is a notable exception, which we discuss in Section 3.4.

in this way are, in most cases, in agreement with independent
observational estimates.

We next computed the posterior predictive tests outlined in
Section 2.3 for the nine individual massive clusters discussed in the
previous section. Since the majority of the clusters pass the posterior

MNRAS 527, 1244-1256 (2024)

predictive test, we show in Fig. 5 just two illustrative examples: Coma
and Perseus—Pisces, which contain similar numbers of galaxies.
Posterior predictive tests for the other seven clusters are shown in
Appendix C. The dark- and light-shaded regions of Fig. 5 indicate
68 and 95 per cent credible intervals for the 2M++ galaxy counts
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Figure 5. Posterior predictive tests for the galaxy count in radial 68 per cent-wide shells around two clusters in the local super-volume: Perseus—Pisces
(left-hannd panels) and Coma (right-hand panels). Solid lines show the predicted mean counts from the posterior distribution for each absolute magnitude bin,
while shaded regions show the 68 and 95 per cent credible intervals computed by bootstrapping the sum of all voxels in each shell for the 2M++- galaxies. The
K < 11.5 catalogue is shown in orange, while the K > 11.5 catalogue is shown in blue. Note that Perseus—Pisces entirely lacks K > 11.5 catalogue data due to
being in the 2MRS portion of the sky. Despite its apparently underestimated mass in Fig. 4, the posterior predictive tests pass in all magnitude bins.

in radial shells around the centres of each cluster, estimated using
bootstrap. The solid lines show the mean of the posteriority predicted
galaxy counts in the same shells computed using equation ((5)).
Orange and blue colours, respectively, indicate the K < 11.5 and K
> 11.5 catalogues.

In the case of Perseus—Pisces, while the mass appears substantially
underestimated relative to constraints in the literature (as shown
in Fig. 4), the posterior-predicted number of galaxies is consistent
with the available data. This raises the question of how the mass
can be so low compared to Coma, which has a similar number
of observed galaxies but an order of magnitude higher inferred
mass. The connection from the inferred density field to predicted
number counts is dictated by a global bias model per catalogue,
but it is additionally locally modulated in each healpix pixel by an
amplitude A{. We therefore investigated the expectation value of A,
for the healpixel in the 10 2! Mpc surrounding Coma and Perseus—
Pisces to test whether these amplitudes can account for the differing
results.

Fig. 6 shows, in absolute magnitude bins (left to right) for
Perseus—Pisces (top) and Coma (bottom), the distribution of the
expectation values for healpixel amplitudes across the entire local

super-volume. These are computed using equation (4), and K <
11.5 and K > 11.5 results are, respectively, shown as orange and
blue histograms. Vertical arrows show the amplitudes for healpixels
within 1042~! Mpc of the centre of each cluster. First, we note that
Perseus—Pisces has no galaxies in the K > 11.5 catalogues (and
therefore these histograms are not shown). Second, in the bright (K
< 11.5) galaxies, the amplitudes inferred around Perseus—Pisces are
preferentially in the high-end tail. This is indicative of a potential
systematic error, allowing an unphysically small overdensity to
generate a large number of galaxies. However, obtaining further
insight into this result requires a detailed study of the interaction
between the local amplitudes and the global bias models, or even
a revision of the construction of the original catalogue, which is
beyond the scope of the present work. We also note that Perseus—
Pisces appears to lack SZ or weak lensing mass estimates in the
literature, and that compiled dynamical mass estimates for other
clusters are nearly all overestimates relative to other methods. In
summary, there are strong indications that our posterior resimulation
mass inference for Perseus—Pisces is biased, but we also cannot
rule out the possibility that mass estimates using other methods for
Perseus—Pisces may require revision.
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Figure 6. Distribution across the full sky of expected amplitudes, A, given by equation (4) for each of five magnitude bins (histograms), with arrows indicating
the amplitudes for the healpixels within 102 ~! Mpc of the centre of the two clusters Perseus—Pisces (top) and Coma (bottom). Orange again indicates the K
< 11.5 catalogue, while blue indicates the 11.5 < K < 12.5 catalogue. The number of 2M++ galaxies within 10 ! Mpc of the cluster centre, which lie
in each absolute magnitude bin are specified. The healpixel amplitudes for Perseus—Pisces consistently lie in the high-amplitude tail of the distribution. Note
that the distance to Perseus—Pisces (54.6 h~! Mpc) places it close to the boundary between two different 60 4~! Mpc-wide healpix shells. It therefore receives

contributions from many more healpix regions than Coma.

4 DISCUSSION

In a previous work, we showed that the number of clusters and
antihaloes in the local super-volume with masses above 10'> Mg /™!
is a powerful test of consistency with ACDM (Stopyra et al.
2021b). Related cosmological tests include assessments of the
rarity of structures such as the Sloan Great Wall and the Shapley
supercluster (Nichol et al. 2006; Sheth & Diaferio 2011). While the
2M++ catalogue does not have sufficient signal-to-noise to directly
assess the rarity of the Sloan Great Wall, we find that the number
of massive clusters in Fig. 4 and the mass function in Fig. 3 appear
compatible with ACDM, with masses broadly consisting of X-ray
and SZ estimates. Our results show that the number of massive
clusters and antihaloes in the local super-volume is compatible with
theoretical expectations from a ACDM universe.

The question of whether the local super-volume lies at the centre of
alarge Local Void has attracted much attention in the literature (Frith
et al. 2003; Xie, Gao & Guo 2014; Shanks et al. 2019b). More
recently, it has been suggested that a large-scale underdensity might
be responsible for the Hubble tension (Shanks, Hogarth & Metcalfe
2019a). In particular, the 2MASS survey has been claimed to provide
evidence for such a large-scale underdensity (Frith et al. 2003; Shanks
et al. 2019b). Using field-level inference with BORG, which includes
2MASS data as part of the 2M++- catalogue, we are able to directly
probe the dark-matter density field and thus infer the size of the large-
scale underdensity. We find that the local super-volume has a density
contrast of § = —0.043 4 0.001 out to a radius of 1354~! Mpc.
While this means that the local super-volume is underdense, it is not
sufficiently underdense to have a significant impact on measurements
of the Hubble rate (Wu & Huterer 2017), so does not help by itself
to alleviate the Hubble tension.
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5 CONCLUSIONS

In this work, we assessed different gravity solvers that can be
used for field-level inference in the context of the BORG algorithm
followed by posterior resimulation. We showed that replacing the
10-step PM solver used in the Jasche & Lavaux (2019) with a 20-step
COLA solver corrects the overabundance of massive haloes and
voids previously noted by McAlpine et al. (2022), Hutt et al. (2022),
Desmond et al. (2022).

We used the 20-step COLA solver to construct a new BORG
inference from the 2M++ catalogue, with updated cosmological
parameters and likelihood. The new inference, combined with pos-
terior resimulation, leads to halo and void mass functions, which are
consistent with ACDM expectations, and the masses of individual
massive local clusters are broadly consistent with other estimates
in the literature. An exception to this, however, was the Perseus—
Pisces cluster, which appeared to have a significantly lower mass
than expected from its galaxy counts and from other estimates of
its mass in the literature. We discussed possible reasons for this in
Section 3.4.

Our results show that the use of field-level inference for extracting
information on non-linear scales requires careful control of the
accuracy of the forward modelling used. We have shown how to
validate the forward modelling for the accurate estimation of cluster
masses using posterior resimulation. In the process, we have created
a new inference of the intial conditions consistent with the local
Universe and provided constraints on the local underdensity, and the
number of massive nearby clusters. In future work, we will apply
this inference to constructing an anti-halo void catalogue of the local
super-volume.
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APPENDIX A: LIKELITHOOD

The new BORG inference we used in this paper uses an updated
likelihood compared to the Jasche & Lavaux (2019) inference, first
outlined by Porqueres et al. (2019a). The aim of this approach is to
make the likelihood robust to unknown systematics in the underlying
data.

To achieve this, the sky is first subdivided into 192 healpix
pixels (Gorski et al. 2005), with ng4. = 4. The extension of these
healpixels into three dimensions is then split into 10 radial bins of
depth 60 2~! Mpc each, giving 1920 regions on the sky, which we
denote patches. Note that this is a separate pixelization to the 256°
cubic voxels into which we divide the simulation. Each voxel, which
we label with Roman letters, i, lies within a given healpix patch
(labelled by Greek letters, «), and there is a unique mapping o(i)
from voxels to the healpix patch which contains them.

All the voxels that lie in a given patch have a shared amplitude,
A¢, for catalogue c, which is regarded as a nuisance parameter
and marginalized over in the likelihood. Once the gravity solver
is specified, equation (2) gives the expected number of galaxies for
catalogue c in voxel i, A{, as a function of the final density field,
8 = G(8'). We define A = A{/AS,;), where AS,, is the systematics
amplitude parameter corresponding to the patch containing voxel i.
We can then write a Poisson likelihood for the number of galaxies in
catalogue c, N, that lie in voxels i € {1, ..., I'} in patch « as

I c
(ASAONT ese
P(N{ 125 ,, A | | e At (AD)

N{!

Porqueres et al. (2019a) chose to marginalize over the amplitudes
A¢, to create a new ‘robust’ likelihood that reduces sensitivity to
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spatially-varying systematics in the data,

(NC 1|}\1 1)=/dA§ ( ) (NC 1|’\1 17A§:)- (A2)

They chose a Jeffreys prior P(Ag) = «o/Ag, with normalization
constant k. This yields the marginalized hkehhood

Ng
P(N; 135 o<H< ) : (A3)
/ 1

Note that we assume all catalogues c are independent except via their
dependence on the final density 8, used to compute A in equation (2).
The likelihood for the number of galaxies in all catalogues and voxels
is therefore given by the product of equation (A3) over all catalogues,
¢, and all patches, «.

APPENDIX B: POSTERIOR PREDICTIVE
TESTS WITH THE ROBUST LIKELIHOOD

The fact that the amplitudes in equation (2) are marginalized over in
the robust likelihood presented in Appendix A makes it more difficult
to interrogate the inferred model using posterior predictive testing.
We wish to compare the posterior-predicted number of galaxies to
that actually found in the 2M++ catalogue in specific regions of
interest; this requires a posterior for the amplitudes, A;,. We now
show how to reconstruct the information we need for constructing
posterior predictive tests using the information we do have access to.

BORG samples the posterior for initial density and bias parameters,
which are combined to give 1§ = AS/ Ay i) If we have ahealpix region
containing voxels i = 1. .. I, with amplitude A;, in catalogue c, we can
compute the joint posterior distribution for ¢ and AS conditioned
on N ;-

P (R AGINT ) = P(Ri_4INT ;) P(AGIAS ;. VY )

— P(_(l:mllNC ) (Acl)‘l I)P( lcllA;’Xil)

P(N§_;|Ai..1)
= P()_‘E JINY. )
PO TTL, (545)"
JdAgP(AL) T, (k54

—A An/N“l
)N —iA H/ch

(B1)

Here, we have used Bayes theorem in the second step, and assumed
conditional independence between AS and AS  in the third. We have
also made use of equation (Al). Using the same Jeffreys prior as
before, P(AS) = Ko/ A}, and defining N, , = = Nfand Moo =
S xS we find

PR AGINT 1)
1 (A(Cx)_‘lcol,a)N[fnﬂ eiAgifoLu

A T (Niwa)

= P(A_INT ) (B2)
The BORG Markov chain provides samples from the posterior
distribution P (XS ,|Nf ;). By marginalizing over XS ; using
Monte-Carlo integration, we can estimate the posterior distribution
for Ag:

P(AGINT.1)
Ac N‘f)l,o{_l 1 s ) . B
~ 5 3 i) o e e ®
tot,« . 1

Here, we have taken S samples from the posterior, and g,
is calculated from the MCMC sample s. We therefore obtain the
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expectation value of A as

o0
| aasazp(azing )
0

E(ASINY ;)

Noo o= 1
NN (B4)

c
N =1 )‘tot,u,s

yielding equation (4). An analogous computation gives the expecta-
tion value for the mean number of galaxies in pixel i, ASXS, yielding
equation (5):

. Néo o= A
E(ALING )~ =2 ) = (BS)
S Kt

Field level inference of massive structures 1255

APPENDIX C: POSTERIOR PREDICTIVE
TESTS FOR OTHER CLUSTERS

We show in Fig. C1, the posterior predictive tests for the remaining
seven clusters considered in this work. For all these clusters,
the posterior predictive tests pass in all but a handful of radial
bins.

This paper has been typeset from a TEX/IXTEX file prepared by the author.
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Figure C1. Posterior predictive tests for the other seven clusters considered in Fig. 4, using the same conventions as Fig. 5.
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